2 * Copyright (c) 1996 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
16 * 4. Modifications may be freely made to this file if the above conditions
20 * Copyright (c) 2003-2014 Apple Inc. All rights reserved.
22 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
24 * This file contains Original Code and/or Modifications of Original Code
25 * as defined in and that are subject to the Apple Public Source License
26 * Version 2.0 (the 'License'). You may not use this file except in
27 * compliance with the License. The rights granted to you under the License
28 * may not be used to create, or enable the creation or redistribution of,
29 * unlawful or unlicensed copies of an Apple operating system, or to
30 * circumvent, violate, or enable the circumvention or violation of, any
31 * terms of an Apple operating system software license agreement.
33 * Please obtain a copy of the License at
34 * http://www.opensource.apple.com/apsl/ and read it before using this file.
36 * The Original Code and all software distributed under the License are
37 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
38 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
39 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
40 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
41 * Please see the License for the specific language governing rights and
42 * limitations under the License.
44 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
47 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
48 * support for mandatory and extensible security protections. This notice
49 * is included in support of clause 2.2 (b) of the Apple Public License,
54 * This file contains a high-performance replacement for the socket-based
55 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
56 * all features of sockets, but does do everything that pipes normally
59 * Pipes are implemented as circular buffers. Following are the valid states in pipes operations
61 * _________________________________
62 * 1. |_________________________________| r=w, c=0
64 * _________________________________
65 * 2. |__r:::::wc_______________________| r <= w , c > 0
67 * _________________________________
68 * 3. |::::wc_____r:::::::::::::::::::::| r>w , c > 0
70 * _________________________________
71 * 4. |:::::::wrc:::::::::::::::::::::::| w=r, c = Max size
75 * a-z define the steps in a program flow
76 * 1-4 are the states as defined aboe
77 * Action: is what file operation is done on the pipe
79 * Current:None Action: initialize with size M=200
80 * a. State 1 ( r=0, w=0, c=0)
82 * Current: a Action: write(100) (w < M)
83 * b. State 2 (r=0, w=100, c=100)
85 * Current: b Action: write(100) (w = M-w)
86 * c. State 4 (r=0,w=0,c=200)
88 * Current: b Action: read(70) ( r < c )
89 * d. State 2(r=70,w=100,c=30)
91 * Current: d Action: write(75) ( w < (m-w))
92 * e. State 2 (r=70,w=175,c=105)
94 * Current: d Action: write(110) ( w > (m-w))
95 * f. State 3 (r=70,w=10,c=140)
97 * Current: d Action: read(30) (r >= c )
98 * g. State 1 (r=100,w=100,c=0)
103 * This code create half duplex pipe buffers for facilitating file like
104 * operations on pipes. The initial buffer is very small, but this can
105 * dynamically change to larger sizes based on usage. The buffer size is never
106 * reduced. The total amount of kernel memory used is governed by maxpipekva.
107 * In case of dynamic expansion limit is reached, the output thread is blocked
108 * until the pipe buffer empties enough to continue.
110 * In order to limit the resource use of pipes, two sysctls exist:
112 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
113 * address space available to us in pipe_map.
115 * Memory usage may be monitored through the sysctls
116 * kern.ipc.pipes, kern.ipc.pipekva.
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/filedesc.h>
123 #include <sys/kernel.h>
124 #include <sys/vnode.h>
125 #include <sys/proc_internal.h>
126 #include <sys/kauth.h>
127 #include <sys/file_internal.h>
128 #include <sys/stat.h>
129 #include <sys/ioctl.h>
130 #include <sys/fcntl.h>
131 #include <sys/malloc.h>
132 #include <sys/syslog.h>
133 #include <sys/unistd.h>
134 #include <sys/resourcevar.h>
135 #include <sys/aio_kern.h>
136 #include <sys/signalvar.h>
137 #include <sys/pipe.h>
138 #include <sys/sysproto.h>
139 #include <sys/proc_info.h>
141 #include <security/audit/audit.h>
143 #include <sys/kdebug.h>
145 #include <kern/zalloc.h>
146 #include <kern/kalloc.h>
147 #include <vm/vm_kern.h>
148 #include <libkern/OSAtomic.h>
150 #define f_flag f_fglob->fg_flag
151 #define f_msgcount f_fglob->fg_msgcount
152 #define f_cred f_fglob->fg_cred
153 #define f_ops f_fglob->fg_ops
154 #define f_offset f_fglob->fg_offset
155 #define f_data f_fglob->fg_data
158 * interfaces to the outside world exported through file operations
160 static int pipe_read(struct fileproc
*fp
, struct uio
*uio
,
161 int flags
, vfs_context_t ctx
);
162 static int pipe_write(struct fileproc
*fp
, struct uio
*uio
,
163 int flags
, vfs_context_t ctx
);
164 static int pipe_close(struct fileglob
*fg
, vfs_context_t ctx
);
165 static int pipe_select(struct fileproc
*fp
, int which
, void * wql
,
167 static int pipe_kqfilter(struct fileproc
*fp
, struct knote
*kn
,
169 static int pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
,
171 static int pipe_drain(struct fileproc
*fp
,vfs_context_t ctx
);
173 static const struct fileops pipeops
= {
184 static void filt_pipedetach(struct knote
*kn
);
185 static int filt_piperead(struct knote
*kn
, long hint
);
186 static int filt_pipewrite(struct knote
*kn
, long hint
);
188 static struct filterops pipe_rfiltops
= {
190 .f_detach
= filt_pipedetach
,
191 .f_event
= filt_piperead
,
194 static struct filterops pipe_wfiltops
= {
196 .f_detach
= filt_pipedetach
,
197 .f_event
= filt_pipewrite
,
200 static int nbigpipe
; /* for compatibility sake. no longer used */
201 static int amountpipes
; /* total number of pipes in system */
202 static int amountpipekva
; /* total memory used by pipes */
204 int maxpipekva
__attribute__((used
)) = PIPE_KVAMAX
; /* allowing 16MB max. */
207 SYSCTL_DECL(_kern_ipc
);
209 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekva
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
210 &maxpipekva
, 0, "Pipe KVA limit");
211 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekvawired
, CTLFLAG_RW
|CTLFLAG_LOCKED
,
212 &maxpipekvawired
, 0, "Pipe KVA wired limit");
213 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipes
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
214 &amountpipes
, 0, "Current # of pipes");
215 SYSCTL_INT(_kern_ipc
, OID_AUTO
, bigpipes
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
216 &nbigpipe
, 0, "Current # of big pipes");
217 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekva
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
218 &amountpipekva
, 0, "Pipe KVA usage");
219 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekvawired
, CTLFLAG_RD
|CTLFLAG_LOCKED
,
220 &amountpipekvawired
, 0, "Pipe wired KVA usage");
223 static void pipeclose(struct pipe
*cpipe
);
224 static void pipe_free_kmem(struct pipe
*cpipe
);
225 static int pipe_create(struct pipe
**cpipep
);
226 static int pipespace(struct pipe
*cpipe
, int size
);
227 static int choose_pipespace(unsigned long current
, unsigned long expected
);
228 static int expand_pipespace(struct pipe
*p
, int target_size
);
229 static void pipeselwakeup(struct pipe
*cpipe
, struct pipe
*spipe
);
230 static __inline
int pipeio_lock(struct pipe
*cpipe
, int catch);
231 static __inline
void pipeio_unlock(struct pipe
*cpipe
);
233 extern int postpipeevent(struct pipe
*, int);
234 extern void evpipefree(struct pipe
*cpipe
);
236 static lck_grp_t
*pipe_mtx_grp
;
237 static lck_attr_t
*pipe_mtx_attr
;
238 static lck_grp_attr_t
*pipe_mtx_grp_attr
;
240 static zone_t pipe_zone
;
242 #define MAX_PIPESIZE(pipe) ( MAX(PIPE_SIZE, (pipe)->pipe_buffer.size) )
244 #define PIPE_GARBAGE_AGE_LIMIT 5000 /* In milliseconds */
245 #define PIPE_GARBAGE_QUEUE_LIMIT 32000
247 struct pipe_garbage
{
248 struct pipe
*pg_pipe
;
249 struct pipe_garbage
*pg_next
;
250 uint64_t pg_timestamp
;
253 static zone_t pipe_garbage_zone
;
254 static struct pipe_garbage
*pipe_garbage_head
= NULL
;
255 static struct pipe_garbage
*pipe_garbage_tail
= NULL
;
256 static uint64_t pipe_garbage_age_limit
= PIPE_GARBAGE_AGE_LIMIT
;
257 static int pipe_garbage_count
= 0;
258 static lck_mtx_t
*pipe_garbage_lock
;
259 static void pipe_garbage_collect(struct pipe
*cpipe
);
261 SYSINIT(vfs
, SI_SUB_VFS
, SI_ORDER_ANY
, pipeinit
, NULL
);
263 /* initial setup done at time of sysinit */
270 zone_size
= 8192 * sizeof(struct pipe
);
271 pipe_zone
= zinit(sizeof(struct pipe
), zone_size
, 4096, "pipe zone");
274 /* allocate lock group attribute and group for pipe mutexes */
275 pipe_mtx_grp_attr
= lck_grp_attr_alloc_init();
276 pipe_mtx_grp
= lck_grp_alloc_init("pipe", pipe_mtx_grp_attr
);
278 /* allocate the lock attribute for pipe mutexes */
279 pipe_mtx_attr
= lck_attr_alloc_init();
282 * Set up garbage collection for dead pipes
284 zone_size
= (PIPE_GARBAGE_QUEUE_LIMIT
+ 20) *
285 sizeof(struct pipe_garbage
);
286 pipe_garbage_zone
= (zone_t
)zinit(sizeof(struct pipe_garbage
),
287 zone_size
, 4096, "pipe garbage zone");
288 pipe_garbage_lock
= lck_mtx_alloc_init(pipe_mtx_grp
, pipe_mtx_attr
);
292 /* Bitmap for things to touch in pipe_touch() */
293 #define PIPE_ATIME 0x00000001 /* time of last access */
294 #define PIPE_MTIME 0x00000002 /* time of last modification */
295 #define PIPE_CTIME 0x00000004 /* time of last status change */
298 pipe_touch(struct pipe
*tpipe
, int touch
)
304 if (touch
& PIPE_ATIME
) {
305 tpipe
->st_atimespec
.tv_sec
= now
.tv_sec
;
306 tpipe
->st_atimespec
.tv_nsec
= now
.tv_usec
* 1000;
309 if (touch
& PIPE_MTIME
) {
310 tpipe
->st_mtimespec
.tv_sec
= now
.tv_sec
;
311 tpipe
->st_mtimespec
.tv_nsec
= now
.tv_usec
* 1000;
314 if (touch
& PIPE_CTIME
) {
315 tpipe
->st_ctimespec
.tv_sec
= now
.tv_sec
;
316 tpipe
->st_ctimespec
.tv_nsec
= now
.tv_usec
* 1000;
320 static const unsigned int pipesize_blocks
[] = {512,1024,2048,4096, 4096 * 2, PIPE_SIZE
, PIPE_SIZE
* 4 };
323 * finds the right size from possible sizes in pipesize_blocks
324 * returns the size which matches max(current,expected)
327 choose_pipespace(unsigned long current
, unsigned long expected
)
329 int i
= sizeof(pipesize_blocks
)/sizeof(unsigned int) -1;
330 unsigned long target
;
333 * assert that we always get an atomic transaction sized pipe buffer,
334 * even if the system pipe buffer high-water mark has been crossed.
336 assert(PIPE_BUF
== pipesize_blocks
[0]);
338 if (expected
> current
)
343 while ( i
>0 && pipesize_blocks
[i
-1] > target
) {
348 return pipesize_blocks
[i
];
353 * expand the size of pipe while there is data to be read,
354 * and then free the old buffer once the current buffered
355 * data has been transferred to new storage.
356 * Required: PIPE_LOCK and io lock to be held by caller.
357 * returns 0 on success or no expansion possible
360 expand_pipespace(struct pipe
*p
, int target_size
)
362 struct pipe tmp
, oldpipe
;
364 tmp
.pipe_buffer
.buffer
= 0;
366 if (p
->pipe_buffer
.size
>= (unsigned) target_size
) {
367 return 0; /* the existing buffer is max size possible */
370 /* create enough space in the target */
371 error
= pipespace(&tmp
, target_size
);
375 oldpipe
.pipe_buffer
.buffer
= p
->pipe_buffer
.buffer
;
376 oldpipe
.pipe_buffer
.size
= p
->pipe_buffer
.size
;
378 memcpy(tmp
.pipe_buffer
.buffer
, p
->pipe_buffer
.buffer
, p
->pipe_buffer
.size
);
379 if (p
->pipe_buffer
.cnt
> 0 && p
->pipe_buffer
.in
<= p
->pipe_buffer
.out
){
380 /* we are in State 3 and need extra copying for read to be consistent */
381 memcpy(&tmp
.pipe_buffer
.buffer
[p
->pipe_buffer
.size
], p
->pipe_buffer
.buffer
, p
->pipe_buffer
.size
);
382 p
->pipe_buffer
.in
+= p
->pipe_buffer
.size
;
385 p
->pipe_buffer
.buffer
= tmp
.pipe_buffer
.buffer
;
386 p
->pipe_buffer
.size
= tmp
.pipe_buffer
.size
;
389 pipe_free_kmem(&oldpipe
);
394 * The pipe system call for the DTYPE_PIPE type of pipes
397 * FREAD | fd0 | -->[struct rpipe] --> |~~buffer~~| \
399 * FWRITE | fd1 | -->[struct wpipe] --X /
404 pipe(proc_t p
, __unused
struct pipe_args
*uap
, int32_t *retval
)
406 struct fileproc
*rf
, *wf
;
407 struct pipe
*rpipe
, *wpipe
;
411 if ((pmtx
= lck_mtx_alloc_init(pipe_mtx_grp
, pipe_mtx_attr
)) == NULL
)
414 rpipe
= wpipe
= NULL
;
415 if (pipe_create(&rpipe
) || pipe_create(&wpipe
)) {
420 * allocate the space for the normal I/O direction up
421 * front... we'll delay the allocation for the other
422 * direction until a write actually occurs (most likely it won't)...
424 error
= pipespace(rpipe
, choose_pipespace(rpipe
->pipe_buffer
.size
, 0));
428 TAILQ_INIT(&rpipe
->pipe_evlist
);
429 TAILQ_INIT(&wpipe
->pipe_evlist
);
431 error
= falloc(p
, &rf
, &fd
, vfs_context_current());
438 * for now we'll create half-duplex pipes(refer returns section above).
439 * this is what we've always supported..
442 rf
->f_data
= (caddr_t
)rpipe
;
443 rf
->f_ops
= &pipeops
;
445 error
= falloc(p
, &wf
, &fd
, vfs_context_current());
447 fp_free(p
, retval
[0], rf
);
451 wf
->f_data
= (caddr_t
)wpipe
;
452 wf
->f_ops
= &pipeops
;
454 rpipe
->pipe_peer
= wpipe
;
455 wpipe
->pipe_peer
= rpipe
;
456 /* both structures share the same mutex */
457 rpipe
->pipe_mtxp
= wpipe
->pipe_mtxp
= pmtx
;
462 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
464 * struct pipe represents a pipe endpoint. The MAC label is shared
465 * between the connected endpoints. As a result mac_pipe_label_init() and
466 * mac_pipe_label_associate() should only be called on one of the endpoints
467 * after they have been connected.
469 mac_pipe_label_init(rpipe
);
470 mac_pipe_label_associate(kauth_cred_get(), rpipe
);
471 wpipe
->pipe_label
= rpipe
->pipe_label
;
474 procfdtbl_releasefd(p
, retval
[0], NULL
);
475 procfdtbl_releasefd(p
, retval
[1], NULL
);
476 fp_drop(p
, retval
[0], rf
, 1);
477 fp_drop(p
, retval
[1], wf
, 1);
486 lck_mtx_free(pmtx
, pipe_mtx_grp
);
492 pipe_stat(struct pipe
*cpipe
, void *ub
, int isstat64
)
499 struct stat
*sb
= (struct stat
*)0; /* warning avoidance ; protected by isstat64 */
500 struct stat64
* sb64
= (struct stat64
*)0; /* warning avoidance ; protected by isstat64 */
507 error
= mac_pipe_check_stat(kauth_cred_get(), cpipe
);
513 if (cpipe
->pipe_buffer
.buffer
== 0) {
514 /* must be stat'ing the write fd */
515 if (cpipe
->pipe_peer
) {
516 /* the peer still exists, use it's info */
517 pipe_size
= MAX_PIPESIZE(cpipe
->pipe_peer
);
518 pipe_count
= cpipe
->pipe_peer
->pipe_buffer
.cnt
;
523 pipe_size
= MAX_PIPESIZE(cpipe
);
524 pipe_count
= cpipe
->pipe_buffer
.cnt
;
527 * since peer's buffer is setup ouside of lock
528 * we might catch it in transient state
531 pipe_size
= MAX(PIPE_SIZE
, pipesize_blocks
[0]);
534 sb64
= (struct stat64
*)ub
;
536 bzero(sb64
, sizeof(*sb64
));
537 sb64
->st_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
538 sb64
->st_blksize
= pipe_size
;
539 sb64
->st_size
= pipe_count
;
540 sb64
->st_blocks
= (sb64
->st_size
+ sb64
->st_blksize
- 1) / sb64
->st_blksize
;
542 sb64
->st_uid
= kauth_getuid();
543 sb64
->st_gid
= kauth_getgid();
545 sb64
->st_atimespec
.tv_sec
= cpipe
->st_atimespec
.tv_sec
;
546 sb64
->st_atimespec
.tv_nsec
= cpipe
->st_atimespec
.tv_nsec
;
548 sb64
->st_mtimespec
.tv_sec
= cpipe
->st_mtimespec
.tv_sec
;
549 sb64
->st_mtimespec
.tv_nsec
= cpipe
->st_mtimespec
.tv_nsec
;
551 sb64
->st_ctimespec
.tv_sec
= cpipe
->st_ctimespec
.tv_sec
;
552 sb64
->st_ctimespec
.tv_nsec
= cpipe
->st_ctimespec
.tv_nsec
;
555 * Return a relatively unique inode number based on the current
556 * address of this pipe's struct pipe. This number may be recycled
557 * relatively quickly.
559 sb64
->st_ino
= (ino64_t
)VM_KERNEL_ADDRPERM((uintptr_t)cpipe
);
561 sb
= (struct stat
*)ub
;
563 bzero(sb
, sizeof(*sb
));
564 sb
->st_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
565 sb
->st_blksize
= pipe_size
;
566 sb
->st_size
= pipe_count
;
567 sb
->st_blocks
= (sb
->st_size
+ sb
->st_blksize
- 1) / sb
->st_blksize
;
569 sb
->st_uid
= kauth_getuid();
570 sb
->st_gid
= kauth_getgid();
572 sb
->st_atimespec
.tv_sec
= cpipe
->st_atimespec
.tv_sec
;
573 sb
->st_atimespec
.tv_nsec
= cpipe
->st_atimespec
.tv_nsec
;
575 sb
->st_mtimespec
.tv_sec
= cpipe
->st_mtimespec
.tv_sec
;
576 sb
->st_mtimespec
.tv_nsec
= cpipe
->st_mtimespec
.tv_nsec
;
578 sb
->st_ctimespec
.tv_sec
= cpipe
->st_ctimespec
.tv_sec
;
579 sb
->st_ctimespec
.tv_nsec
= cpipe
->st_ctimespec
.tv_nsec
;
582 * Return a relatively unique inode number based on the current
583 * address of this pipe's struct pipe. This number may be recycled
584 * relatively quickly.
586 sb
->st_ino
= (ino_t
)VM_KERNEL_ADDRPERM((uintptr_t)cpipe
);
591 * POSIX: Left as 0: st_dev, st_nlink, st_rdev, st_flags, st_gen,
594 * XXX (st_dev) should be unique, but there is no device driver that
595 * XXX is associated with pipes, since they are implemented via a
596 * XXX struct fileops indirection rather than as FS objects.
603 * Allocate kva for pipe circular buffer, the space is pageable
604 * This routine will 'realloc' the size of a pipe safely, if it fails
605 * it will retain the old buffer.
606 * If it fails it will return ENOMEM.
609 pipespace(struct pipe
*cpipe
, int size
)
616 if ((buffer
= (vm_offset_t
)kalloc(size
)) == 0 )
619 /* free old resources if we're resizing */
620 pipe_free_kmem(cpipe
);
621 cpipe
->pipe_buffer
.buffer
= (caddr_t
)buffer
;
622 cpipe
->pipe_buffer
.size
= size
;
623 cpipe
->pipe_buffer
.in
= 0;
624 cpipe
->pipe_buffer
.out
= 0;
625 cpipe
->pipe_buffer
.cnt
= 0;
627 OSAddAtomic(1, &amountpipes
);
628 OSAddAtomic(cpipe
->pipe_buffer
.size
, &amountpipekva
);
634 * initialize and allocate VM and memory for pipe
637 pipe_create(struct pipe
**cpipep
)
640 cpipe
= (struct pipe
*)zalloc(pipe_zone
);
642 if ((*cpipep
= cpipe
) == NULL
)
646 * protect so pipespace or pipeclose don't follow a junk pointer
647 * if pipespace() fails.
649 bzero(cpipe
, sizeof *cpipe
);
651 /* Initial times are all the time of creation of the pipe */
652 pipe_touch(cpipe
, PIPE_ATIME
| PIPE_MTIME
| PIPE_CTIME
);
658 * lock a pipe for I/O, blocking other access
661 pipeio_lock(struct pipe
*cpipe
, int catch)
664 while (cpipe
->pipe_state
& PIPE_LOCKFL
) {
665 cpipe
->pipe_state
|= PIPE_LWANT
;
666 error
= msleep(cpipe
, PIPE_MTX(cpipe
), catch ? (PRIBIO
| PCATCH
) : PRIBIO
,
671 cpipe
->pipe_state
|= PIPE_LOCKFL
;
676 * unlock a pipe I/O lock
679 pipeio_unlock(struct pipe
*cpipe
)
681 cpipe
->pipe_state
&= ~PIPE_LOCKFL
;
682 if (cpipe
->pipe_state
& PIPE_LWANT
) {
683 cpipe
->pipe_state
&= ~PIPE_LWANT
;
689 * wakeup anyone whos blocked in select
692 pipeselwakeup(struct pipe
*cpipe
, struct pipe
*spipe
)
694 if (cpipe
->pipe_state
& PIPE_SEL
) {
695 cpipe
->pipe_state
&= ~PIPE_SEL
;
696 selwakeup(&cpipe
->pipe_sel
);
698 if (cpipe
->pipe_state
& PIPE_KNOTE
)
699 KNOTE(&cpipe
->pipe_sel
.si_note
, 1);
701 postpipeevent(cpipe
, EV_RWBYTES
);
703 if (spipe
&& (spipe
->pipe_state
& PIPE_ASYNC
) && spipe
->pipe_pgid
) {
704 if (spipe
->pipe_pgid
< 0)
705 gsignal(-spipe
->pipe_pgid
, SIGIO
);
707 proc_signal(spipe
->pipe_pgid
, SIGIO
);
712 * Read n bytes from the buffer. Semantics are similar to file read.
713 * returns: number of bytes read from the buffer
717 pipe_read(struct fileproc
*fp
, struct uio
*uio
, __unused
int flags
,
718 __unused vfs_context_t ctx
)
720 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
728 error
= pipeio_lock(rpipe
, 1);
733 error
= mac_pipe_check_read(kauth_cred_get(), rpipe
);
739 while (uio_resid(uio
)) {
741 * normal pipe buffer receive
743 if (rpipe
->pipe_buffer
.cnt
> 0) {
745 * # bytes to read is min( bytes from read pointer until end of buffer,
746 * total unread bytes,
747 * user requested byte count)
749 size
= rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.out
;
750 if (size
> rpipe
->pipe_buffer
.cnt
)
751 size
= rpipe
->pipe_buffer
.cnt
;
752 // LP64todo - fix this!
753 if (size
> (u_int
) uio_resid(uio
))
754 size
= (u_int
) uio_resid(uio
);
756 PIPE_UNLOCK(rpipe
); /* we still hold io lock.*/
758 &rpipe
->pipe_buffer
.buffer
[rpipe
->pipe_buffer
.out
],
764 rpipe
->pipe_buffer
.out
+= size
;
765 if (rpipe
->pipe_buffer
.out
>= rpipe
->pipe_buffer
.size
)
766 rpipe
->pipe_buffer
.out
= 0;
768 rpipe
->pipe_buffer
.cnt
-= size
;
771 * If there is no more to read in the pipe, reset
772 * its pointers to the beginning. This improves
775 if (rpipe
->pipe_buffer
.cnt
== 0) {
776 rpipe
->pipe_buffer
.in
= 0;
777 rpipe
->pipe_buffer
.out
= 0;
782 * detect EOF condition
783 * read returns 0 on EOF, no need to set error
785 if (rpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) {
790 * If the "write-side" has been blocked, wake it up now.
792 if (rpipe
->pipe_state
& PIPE_WANTW
) {
793 rpipe
->pipe_state
&= ~PIPE_WANTW
;
798 * Break if some data was read in previous iteration.
804 * Unlock the pipe buffer for our remaining processing.
805 * We will either break out with an error or we will
806 * sleep and relock to loop.
808 pipeio_unlock(rpipe
);
811 * Handle non-blocking mode operation or
812 * wait for more data.
814 if (fp
->f_flag
& FNONBLOCK
) {
817 rpipe
->pipe_state
|= PIPE_WANTR
;
818 error
= msleep(rpipe
, PIPE_MTX(rpipe
), PRIBIO
| PCATCH
, "piperd", 0);
820 error
= pipeio_lock(rpipe
, 1);
829 pipeio_unlock(rpipe
);
835 * PIPE_WANT processing only makes sense if pipe_busy is 0.
837 if ((rpipe
->pipe_busy
== 0) && (rpipe
->pipe_state
& PIPE_WANT
)) {
838 rpipe
->pipe_state
&= ~(PIPE_WANT
|PIPE_WANTW
);
840 } else if (rpipe
->pipe_buffer
.cnt
< rpipe
->pipe_buffer
.size
) {
842 * Handle write blocking hysteresis.
844 if (rpipe
->pipe_state
& PIPE_WANTW
) {
845 rpipe
->pipe_state
&= ~PIPE_WANTW
;
850 if ((rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.cnt
) > 0)
851 pipeselwakeup(rpipe
, rpipe
->pipe_peer
);
853 /* update last read time */
854 pipe_touch(rpipe
, PIPE_ATIME
);
862 * perform a write of n bytes into the read side of buffer. Since
863 * pipes are unidirectional a write is meant to be read by the otherside only.
866 pipe_write(struct fileproc
*fp
, struct uio
*uio
, __unused
int flags
,
867 __unused vfs_context_t ctx
)
872 struct pipe
*wpipe
, *rpipe
;
873 // LP64todo - fix this!
874 orig_resid
= uio_resid(uio
);
877 rpipe
= (struct pipe
*)fp
->f_data
;
880 wpipe
= rpipe
->pipe_peer
;
883 * detect loss of pipe read side, issue SIGPIPE if lost.
885 if (wpipe
== NULL
|| (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
))) {
890 error
= mac_pipe_check_write(kauth_cred_get(), wpipe
);
901 * need to allocate some storage... we delay the allocation
902 * until the first write on fd[0] to avoid allocating storage for both
903 * 'pipe ends'... most pipes are half-duplex with the writes targeting
904 * fd[1], so allocating space for both ends is a waste...
907 if ( wpipe
->pipe_buffer
.buffer
== 0 || (
908 (unsigned)orig_resid
> wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
&&
909 amountpipekva
< maxpipekva
) ) {
911 pipe_size
= choose_pipespace(wpipe
->pipe_buffer
.size
, wpipe
->pipe_buffer
.cnt
+ orig_resid
);
915 * need to do initial allocation or resizing of pipe
916 * holding both structure and io locks.
918 if ((error
= pipeio_lock(wpipe
, 1)) == 0) {
919 if (wpipe
->pipe_buffer
.cnt
== 0)
920 error
= pipespace(wpipe
, pipe_size
);
922 error
= expand_pipespace(wpipe
, pipe_size
);
924 pipeio_unlock(wpipe
);
926 /* allocation failed */
927 if (wpipe
->pipe_buffer
.buffer
== 0)
932 * If an error occurred unbusy and return, waking up any pending
936 if ((wpipe
->pipe_busy
== 0) &&
937 (wpipe
->pipe_state
& PIPE_WANT
)) {
938 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
946 while (uio_resid(uio
)) {
949 space
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
951 /* Writes of size <= PIPE_BUF must be atomic. */
952 if ((space
< uio_resid(uio
)) && (orig_resid
<= PIPE_BUF
))
957 if ((error
= pipeio_lock(wpipe
,1)) == 0) {
958 int size
; /* Transfer size */
959 int segsize
; /* first segment to transfer */
961 if (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) {
962 pipeio_unlock(wpipe
);
967 * If a process blocked in pipeio_lock, our
968 * value for space might be bad... the mutex
969 * is dropped while we're blocked
971 if (space
> (int)(wpipe
->pipe_buffer
.size
-
972 wpipe
->pipe_buffer
.cnt
)) {
973 pipeio_unlock(wpipe
);
978 * Transfer size is minimum of uio transfer
979 * and free space in pipe buffer.
981 // LP64todo - fix this!
982 if (space
> uio_resid(uio
))
983 size
= uio_resid(uio
);
987 * First segment to transfer is minimum of
988 * transfer size and contiguous space in
989 * pipe buffer. If first segment to transfer
990 * is less than the transfer size, we've got
991 * a wraparound in the buffer.
993 segsize
= wpipe
->pipe_buffer
.size
-
994 wpipe
->pipe_buffer
.in
;
998 /* Transfer first segment */
1001 error
= uiomove(&wpipe
->pipe_buffer
.buffer
[wpipe
->pipe_buffer
.in
],
1005 if (error
== 0 && segsize
< size
) {
1007 * Transfer remaining part now, to
1008 * support atomic writes. Wraparound
1009 * happened. (State 3)
1011 if (wpipe
->pipe_buffer
.in
+ segsize
!=
1012 wpipe
->pipe_buffer
.size
)
1013 panic("Expected pipe buffer "
1014 "wraparound disappeared");
1018 &wpipe
->pipe_buffer
.buffer
[0],
1019 size
- segsize
, uio
);
1023 * readers never know to read until count is updated.
1026 wpipe
->pipe_buffer
.in
+= size
;
1027 if (wpipe
->pipe_buffer
.in
>
1028 wpipe
->pipe_buffer
.size
) {
1029 if (wpipe
->pipe_buffer
.in
!=
1031 wpipe
->pipe_buffer
.size
)
1034 wpipe
->pipe_buffer
.in
= size
-
1038 wpipe
->pipe_buffer
.cnt
+= size
;
1039 if (wpipe
->pipe_buffer
.cnt
>
1040 wpipe
->pipe_buffer
.size
)
1041 panic("Pipe buffer overflow");
1044 pipeio_unlock(wpipe
);
1051 * If the "read-side" has been blocked, wake it up now.
1053 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1054 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1058 * don't block on non-blocking I/O
1059 * we'll do the pipeselwakeup on the way out
1061 if (fp
->f_flag
& FNONBLOCK
) {
1067 * If read side wants to go away, we just issue a signal
1070 if (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) {
1076 * We have no more space and have something to offer,
1077 * wake up select/poll.
1079 pipeselwakeup(wpipe
, wpipe
);
1081 wpipe
->pipe_state
|= PIPE_WANTW
;
1083 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
, "pipewr", 0);
1091 if ((wpipe
->pipe_busy
== 0) && (wpipe
->pipe_state
& PIPE_WANT
)) {
1092 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1095 if (wpipe
->pipe_buffer
.cnt
> 0) {
1097 * If there are any characters in the buffer, we wake up
1098 * the reader if it was blocked waiting for data.
1100 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1101 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1105 * wake up thread blocked in select/poll or post the notification
1107 pipeselwakeup(wpipe
, wpipe
);
1110 /* Update modification, status change (# of bytes in pipe) times */
1111 pipe_touch(rpipe
, PIPE_MTIME
| PIPE_CTIME
);
1112 pipe_touch(wpipe
, PIPE_MTIME
| PIPE_CTIME
);
1119 * we implement a very minimal set of ioctls for compatibility with sockets.
1123 pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
,
1124 __unused vfs_context_t ctx
)
1126 struct pipe
*mpipe
= (struct pipe
*)fp
->f_data
;
1134 error
= mac_pipe_check_ioctl(kauth_cred_get(), mpipe
, cmd
);
1150 mpipe
->pipe_state
|= PIPE_ASYNC
;
1152 mpipe
->pipe_state
&= ~PIPE_ASYNC
;
1158 *(int *)data
= mpipe
->pipe_buffer
.cnt
;
1163 mpipe
->pipe_pgid
= *(int *)data
;
1169 *(int *)data
= mpipe
->pipe_pgid
;
1181 pipe_select(struct fileproc
*fp
, int which
, void *wql
, vfs_context_t ctx
)
1183 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
1187 if (rpipe
== NULL
|| rpipe
== (struct pipe
*)-1)
1192 wpipe
= rpipe
->pipe_peer
;
1197 * XXX We should use a per thread credential here; minimally, the
1198 * XXX process credential should have a persistent reference on it
1199 * XXX before being passed in here.
1201 if (mac_pipe_check_select(vfs_context_ucred(ctx
), rpipe
, which
)) {
1209 if ((rpipe
->pipe_state
& PIPE_DIRECTW
) ||
1210 (rpipe
->pipe_buffer
.cnt
> 0) ||
1211 (rpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
))) {
1215 rpipe
->pipe_state
|= PIPE_SEL
;
1216 selrecord(vfs_context_proc(ctx
), &rpipe
->pipe_sel
, wql
);
1222 wpipe
->pipe_state
|= PIPE_WSELECT
;
1223 if (wpipe
== NULL
|| (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) ||
1224 (((wpipe
->pipe_state
& PIPE_DIRECTW
) == 0) &&
1225 (MAX_PIPESIZE(wpipe
) - wpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)) {
1229 wpipe
->pipe_state
|= PIPE_SEL
;
1230 selrecord(vfs_context_proc(ctx
), &wpipe
->pipe_sel
, wql
);
1234 rpipe
->pipe_state
|= PIPE_SEL
;
1235 selrecord(vfs_context_proc(ctx
), &rpipe
->pipe_sel
, wql
);
1246 pipe_close(struct fileglob
*fg
, __unused vfs_context_t ctx
)
1250 proc_fdlock_spin(vfs_context_proc(ctx
));
1251 cpipe
= (struct pipe
*)fg
->fg_data
;
1253 proc_fdunlock(vfs_context_proc(ctx
));
1261 pipe_free_kmem(struct pipe
*cpipe
)
1263 if (cpipe
->pipe_buffer
.buffer
!= NULL
) {
1264 OSAddAtomic(-(cpipe
->pipe_buffer
.size
), &amountpipekva
);
1265 OSAddAtomic(-1, &amountpipes
);
1266 kfree((void *)cpipe
->pipe_buffer
.buffer
,
1267 cpipe
->pipe_buffer
.size
);
1268 cpipe
->pipe_buffer
.buffer
= NULL
;
1269 cpipe
->pipe_buffer
.size
= 0;
1277 pipeclose(struct pipe
*cpipe
)
1283 /* partially created pipes won't have a valid mutex. */
1284 if (PIPE_MTX(cpipe
) != NULL
)
1289 * If the other side is blocked, wake it up saying that
1290 * we want to close it down.
1292 cpipe
->pipe_state
&= ~PIPE_DRAIN
;
1293 cpipe
->pipe_state
|= PIPE_EOF
;
1294 pipeselwakeup(cpipe
, cpipe
);
1296 while (cpipe
->pipe_busy
) {
1297 cpipe
->pipe_state
|= PIPE_WANT
;
1300 msleep(cpipe
, PIPE_MTX(cpipe
), PRIBIO
, "pipecl", 0);
1305 * Free the shared pipe label only after the two ends are disconnected.
1307 if (cpipe
->pipe_label
!= NULL
&& cpipe
->pipe_peer
== NULL
)
1308 mac_pipe_label_destroy(cpipe
);
1312 * Disconnect from peer
1314 if ((ppipe
= cpipe
->pipe_peer
) != NULL
) {
1316 ppipe
->pipe_state
&= ~(PIPE_DRAIN
);
1317 ppipe
->pipe_state
|= PIPE_EOF
;
1319 pipeselwakeup(ppipe
, ppipe
);
1322 if (cpipe
->pipe_state
& PIPE_KNOTE
)
1323 KNOTE(&ppipe
->pipe_sel
.si_note
, 1);
1325 postpipeevent(ppipe
, EV_RCLOSED
);
1327 ppipe
->pipe_peer
= NULL
;
1334 if (PIPE_MTX(cpipe
) != NULL
) {
1335 if (ppipe
!= NULL
) {
1337 * since the mutex is shared and the peer is still
1338 * alive, we need to release the mutex, not free it
1343 * peer is gone, so we're the sole party left with
1344 * interest in this mutex... unlock and free it
1347 lck_mtx_free(PIPE_MTX(cpipe
), pipe_mtx_grp
);
1350 pipe_free_kmem(cpipe
);
1351 if (cpipe
->pipe_state
& PIPE_WSELECT
) {
1352 pipe_garbage_collect(cpipe
);
1354 zfree(pipe_zone
, cpipe
);
1355 pipe_garbage_collect(NULL
);
1362 pipe_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused vfs_context_t ctx
)
1366 cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1371 * XXX We should use a per thread credential here; minimally, the
1372 * XXX process credential should have a persistent reference on it
1373 * XXX before being passed in here.
1375 if (mac_pipe_check_kqfilter(vfs_context_ucred(ctx
), kn
, cpipe
) != 0) {
1381 switch (kn
->kn_filter
) {
1383 kn
->kn_fop
= &pipe_rfiltops
;
1387 kn
->kn_fop
= &pipe_wfiltops
;
1389 if (cpipe
->pipe_peer
== NULL
) {
1391 * other end of pipe has been closed
1396 if (cpipe
->pipe_peer
)
1397 cpipe
= cpipe
->pipe_peer
;
1404 if (KNOTE_ATTACH(&cpipe
->pipe_sel
.si_note
, kn
))
1405 cpipe
->pipe_state
|= PIPE_KNOTE
;
1412 filt_pipedetach(struct knote
*kn
)
1414 struct pipe
*cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1418 if (kn
->kn_filter
== EVFILT_WRITE
) {
1419 if (cpipe
->pipe_peer
== NULL
) {
1423 cpipe
= cpipe
->pipe_peer
;
1425 if (cpipe
->pipe_state
& PIPE_KNOTE
) {
1426 if (KNOTE_DETACH(&cpipe
->pipe_sel
.si_note
, kn
))
1427 cpipe
->pipe_state
&= ~PIPE_KNOTE
;
1434 filt_piperead(struct knote
*kn
, long hint
)
1436 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1441 * if hint == 0, then we've been called from the kevent
1442 * world directly and do not currently hold the pipe mutex...
1443 * if hint == 1, we're being called back via the KNOTE post
1444 * we made in pipeselwakeup, and we already hold the mutex...
1449 wpipe
= rpipe
->pipe_peer
;
1450 kn
->kn_data
= rpipe
->pipe_buffer
.cnt
;
1451 if ((rpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
)) ||
1452 (wpipe
== NULL
) || (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
))) {
1453 kn
->kn_flags
|= EV_EOF
;
1457 if (kn
->kn_sfflags
& NOTE_LOWAT
) {
1458 if (rpipe
->pipe_buffer
.size
&& kn
->kn_sdata
> MAX_PIPESIZE(rpipe
))
1459 lowwat
= MAX_PIPESIZE(rpipe
);
1460 else if (kn
->kn_sdata
> lowwat
)
1461 lowwat
= kn
->kn_sdata
;
1463 retval
= kn
->kn_data
>= lowwat
;
1474 filt_pipewrite(struct knote
*kn
, long hint
)
1476 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1480 * if hint == 0, then we've been called from the kevent
1481 * world directly and do not currently hold the pipe mutex...
1482 * if hint == 1, we're being called back via the KNOTE post
1483 * we made in pipeselwakeup, and we already hold the mutex...
1488 wpipe
= rpipe
->pipe_peer
;
1490 if ((wpipe
== NULL
) || (wpipe
->pipe_state
& (PIPE_DRAIN
| PIPE_EOF
))) {
1492 kn
->kn_flags
|= EV_EOF
;
1498 kn
->kn_data
= MAX_PIPESIZE(wpipe
) - wpipe
->pipe_buffer
.cnt
;
1500 int64_t lowwat
= PIPE_BUF
;
1501 if (kn
->kn_sfflags
& NOTE_LOWAT
) {
1502 if (wpipe
->pipe_buffer
.size
&& kn
->kn_sdata
> MAX_PIPESIZE(wpipe
))
1503 lowwat
= MAX_PIPESIZE(wpipe
);
1504 else if (kn
->kn_sdata
> lowwat
)
1505 lowwat
= kn
->kn_sdata
;
1511 return (kn
->kn_data
>= lowwat
);
1515 fill_pipeinfo(struct pipe
* cpipe
, struct pipe_info
* pinfo
)
1521 struct vinfo_stat
* ub
;
1530 error
= mac_pipe_check_stat(kauth_cred_get(), cpipe
);
1536 if (cpipe
->pipe_buffer
.buffer
== 0) {
1538 * must be stat'ing the write fd
1540 if (cpipe
->pipe_peer
) {
1542 * the peer still exists, use it's info
1544 pipe_size
= MAX_PIPESIZE(cpipe
->pipe_peer
);
1545 pipe_count
= cpipe
->pipe_peer
->pipe_buffer
.cnt
;
1550 pipe_size
= MAX_PIPESIZE(cpipe
);
1551 pipe_count
= cpipe
->pipe_buffer
.cnt
;
1554 * since peer's buffer is setup ouside of lock
1555 * we might catch it in transient state
1558 pipe_size
= PIPE_SIZE
;
1560 ub
= &pinfo
->pipe_stat
;
1562 bzero(ub
, sizeof(*ub
));
1563 ub
->vst_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
1564 ub
->vst_blksize
= pipe_size
;
1565 ub
->vst_size
= pipe_count
;
1566 if (ub
->vst_blksize
!= 0)
1567 ub
->vst_blocks
= (ub
->vst_size
+ ub
->vst_blksize
- 1) / ub
->vst_blksize
;
1570 ub
->vst_uid
= kauth_getuid();
1571 ub
->vst_gid
= kauth_getgid();
1574 ub
->vst_atime
= now
.tv_sec
;
1575 ub
->vst_atimensec
= now
.tv_usec
* 1000;
1577 ub
->vst_mtime
= now
.tv_sec
;
1578 ub
->vst_mtimensec
= now
.tv_usec
* 1000;
1580 ub
->vst_ctime
= now
.tv_sec
;
1581 ub
->vst_ctimensec
= now
.tv_usec
* 1000;
1584 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
1585 * XXX (st_dev, st_ino) should be unique.
1588 pinfo
->pipe_handle
= (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe
);
1589 pinfo
->pipe_peerhandle
= (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)(cpipe
->pipe_peer
));
1590 pinfo
->pipe_status
= cpipe
->pipe_state
;
1599 pipe_drain(struct fileproc
*fp
, __unused vfs_context_t ctx
)
1602 /* Note: fdlock already held */
1603 struct pipe
*ppipe
, *cpipe
= (struct pipe
*)(fp
->f_fglob
->fg_data
);
1607 cpipe
->pipe_state
|= PIPE_DRAIN
;
1608 cpipe
->pipe_state
&= ~(PIPE_WANTR
| PIPE_WANTW
);
1611 /* Must wake up peer: a writer sleeps on the read side */
1612 if ((ppipe
= cpipe
->pipe_peer
)) {
1613 ppipe
->pipe_state
|= PIPE_DRAIN
;
1614 ppipe
->pipe_state
&= ~(PIPE_WANTR
| PIPE_WANTW
);
1627 * When a thread sets a write-select on a pipe, it creates an implicit,
1628 * untracked dependency between that thread and the peer of the pipe
1629 * on which the select is set. If the peer pipe is closed and freed
1630 * before the select()ing thread wakes up, the system will panic as
1631 * it attempts to unwind the dangling select(). To avoid that panic,
1632 * we notice whenever a dangerous select() is set on a pipe, and
1633 * defer the final deletion of the pipe until that select()s are all
1634 * resolved. Since we can't currently detect exactly when that
1635 * resolution happens, we use a simple garbage collection queue to
1636 * reap the at-risk pipes 'later'.
1639 pipe_garbage_collect(struct pipe
*cpipe
)
1642 struct pipe_garbage
*pgp
;
1644 /* Convert msecs to nsecs and then to abstime */
1645 old
= pipe_garbage_age_limit
* 1000000;
1646 nanoseconds_to_absolutetime(old
, &old
);
1648 lck_mtx_lock(pipe_garbage_lock
);
1650 /* Free anything that's been on the queue for <mumble> seconds */
1651 now
= mach_absolute_time();
1653 while ((pgp
= pipe_garbage_head
) && pgp
->pg_timestamp
< old
) {
1654 pipe_garbage_head
= pgp
->pg_next
;
1655 if (pipe_garbage_head
== NULL
)
1656 pipe_garbage_tail
= NULL
;
1657 pipe_garbage_count
--;
1658 zfree(pipe_zone
, pgp
->pg_pipe
);
1659 zfree(pipe_garbage_zone
, pgp
);
1662 /* Add the new pipe (if any) to the tail of the garbage queue */
1664 cpipe
->pipe_state
= PIPE_DEAD
;
1665 pgp
= (struct pipe_garbage
*)zalloc(pipe_garbage_zone
);
1668 * We're too low on memory to garbage collect the
1669 * pipe. Freeing it runs the risk of panicing the
1670 * system. All we can do is leak it and leave
1671 * a breadcrumb behind. The good news, such as it
1672 * is, is that this will probably never happen.
1673 * We will probably hit the panic below first.
1675 printf("Leaking pipe %p - no room left in the queue",
1677 lck_mtx_unlock(pipe_garbage_lock
);
1681 pgp
->pg_pipe
= cpipe
;
1682 pgp
->pg_timestamp
= now
;
1683 pgp
->pg_next
= NULL
;
1685 if (pipe_garbage_tail
)
1686 pipe_garbage_tail
->pg_next
= pgp
;
1687 pipe_garbage_tail
= pgp
;
1688 if (pipe_garbage_head
== NULL
)
1689 pipe_garbage_head
= pipe_garbage_tail
;
1691 if (pipe_garbage_count
++ >= PIPE_GARBAGE_QUEUE_LIMIT
)
1692 panic("Length of pipe garbage queue exceeded %d",
1693 PIPE_GARBAGE_QUEUE_LIMIT
);
1695 lck_mtx_unlock(pipe_garbage_lock
);