]> git.saurik.com Git - apple/xnu.git/blob - bsd/dev/dtrace/dtrace.c
xnu-3248.30.4.tar.gz
[apple/xnu.git] / bsd / dev / dtrace / dtrace.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Portions Copyright (c) 2013, Joyent, Inc. All rights reserved.
24 * Portions Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27 /*
28 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
30 */
31
32 /* #pragma ident "@(#)dtrace.c 1.65 08/07/02 SMI" */
33
34 /*
35 * DTrace - Dynamic Tracing for Solaris
36 *
37 * This is the implementation of the Solaris Dynamic Tracing framework
38 * (DTrace). The user-visible interface to DTrace is described at length in
39 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
40 * library, the in-kernel DTrace framework, and the DTrace providers are
41 * described in the block comments in the <sys/dtrace.h> header file. The
42 * internal architecture of DTrace is described in the block comments in the
43 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
44 * implementation very much assume mastery of all of these sources; if one has
45 * an unanswered question about the implementation, one should consult them
46 * first.
47 *
48 * The functions here are ordered roughly as follows:
49 *
50 * - Probe context functions
51 * - Probe hashing functions
52 * - Non-probe context utility functions
53 * - Matching functions
54 * - Provider-to-Framework API functions
55 * - Probe management functions
56 * - DIF object functions
57 * - Format functions
58 * - Predicate functions
59 * - ECB functions
60 * - Buffer functions
61 * - Enabling functions
62 * - DOF functions
63 * - Anonymous enabling functions
64 * - Consumer state functions
65 * - Helper functions
66 * - Hook functions
67 * - Driver cookbook functions
68 *
69 * Each group of functions begins with a block comment labelled the "DTrace
70 * [Group] Functions", allowing one to find each block by searching forward
71 * on capital-f functions.
72 */
73 #include <sys/errno.h>
74 #include <sys/types.h>
75 #include <sys/stat.h>
76 #include <sys/conf.h>
77 #include <sys/systm.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/param.h>
80 #include <sys/proc_internal.h>
81 #include <sys/ioctl.h>
82 #include <sys/fcntl.h>
83 #include <miscfs/devfs/devfs.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel_types.h>
86 #include <sys/proc_internal.h>
87 #include <sys/uio_internal.h>
88 #include <sys/kauth.h>
89 #include <vm/pmap.h>
90 #include <sys/user.h>
91 #include <mach/exception_types.h>
92 #include <sys/signalvar.h>
93 #include <mach/task.h>
94 #include <kern/zalloc.h>
95 #include <kern/ast.h>
96 #include <kern/task.h>
97 #include <netinet/in.h>
98
99 #include <kern/cpu_data.h>
100 extern uint32_t pmap_find_phys(void *, uint64_t);
101 extern boolean_t pmap_valid_page(uint32_t);
102 extern void OSKextRegisterKextsWithDTrace(void);
103 extern kmod_info_t g_kernel_kmod_info;
104
105 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
106 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
107
108 #define t_predcache t_dtrace_predcache /* Cosmetic. Helps readability of thread.h */
109
110 extern void dtrace_suspend(void);
111 extern void dtrace_resume(void);
112 extern void dtrace_init(void);
113 extern void helper_init(void);
114 extern void fasttrap_init(void);
115 extern void dtrace_lazy_dofs_duplicate(proc_t *, proc_t *);
116 extern void dtrace_lazy_dofs_destroy(proc_t *);
117 extern void dtrace_postinit(void);
118
119 #include "../../../osfmk/chud/chud_dtrace.h"
120
121 extern kern_return_t chudxnu_dtrace_callback
122 (uint64_t selector, uint64_t *args, uint32_t count);
123
124 /* Import this function to retrieve the physical memory. */
125 extern int kernel_sysctlbyname(const char *name, void *oldp,
126 size_t *oldlenp, void *newp, size_t newlen);
127
128 /*
129 * DTrace Tunable Variables
130 *
131 * The following variables may be dynamically tuned by using sysctl(8), the
132 * variables being stored in the kern.dtrace namespace. For example:
133 * sysctl kern.dtrace.dof_maxsize = 1048575 # 1M
134 *
135 * In general, the only variables that one should be tuning this way are those
136 * that affect system-wide DTrace behavior, and for which the default behavior
137 * is undesirable. Most of these variables are tunable on a per-consumer
138 * basis using DTrace options, and need not be tuned on a system-wide basis.
139 * When tuning these variables, avoid pathological values; while some attempt
140 * is made to verify the integrity of these variables, they are not considered
141 * part of the supported interface to DTrace, and they are therefore not
142 * checked comprehensively.
143 */
144 uint64_t dtrace_buffer_memory_maxsize = 0; /* initialized in dtrace_init */
145 uint64_t dtrace_buffer_memory_inuse = 0;
146 int dtrace_destructive_disallow = 0;
147 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
148 size_t dtrace_difo_maxsize = (256 * 1024);
149 dtrace_optval_t dtrace_dof_maxsize = (384 * 1024);
150 size_t dtrace_global_maxsize = (16 * 1024);
151 size_t dtrace_actions_max = (16 * 1024);
152 size_t dtrace_retain_max = 1024;
153 dtrace_optval_t dtrace_helper_actions_max = 32;
154 dtrace_optval_t dtrace_helper_providers_max = 64;
155 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
156 size_t dtrace_strsize_default = 256;
157 dtrace_optval_t dtrace_cleanrate_default = 990099000; /* 1.1 hz */
158 dtrace_optval_t dtrace_cleanrate_min = 20000000; /* 50 hz */
159 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
160 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
161 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
162 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
163 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
164 dtrace_optval_t dtrace_nspec_default = 1;
165 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
166 dtrace_optval_t dtrace_stackframes_default = 20;
167 dtrace_optval_t dtrace_ustackframes_default = 20;
168 dtrace_optval_t dtrace_jstackframes_default = 50;
169 dtrace_optval_t dtrace_jstackstrsize_default = 512;
170 int dtrace_msgdsize_max = 128;
171 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */
172 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
173 int dtrace_devdepth_max = 32;
174 int dtrace_err_verbose;
175 int dtrace_provide_private_probes = 0;
176 hrtime_t dtrace_deadman_interval = NANOSEC;
177 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
178 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
179
180 /*
181 * DTrace External Variables
182 *
183 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
184 * available to DTrace consumers via the backtick (`) syntax. One of these,
185 * dtrace_zero, is made deliberately so: it is provided as a source of
186 * well-known, zero-filled memory. While this variable is not documented,
187 * it is used by some translators as an implementation detail.
188 */
189 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
190 unsigned int dtrace_max_cpus = 0; /* number of enabled cpus */
191 /*
192 * DTrace Internal Variables
193 */
194 static dev_info_t *dtrace_devi; /* device info */
195 static vmem_t *dtrace_arena; /* probe ID arena */
196 static vmem_t *dtrace_minor; /* minor number arena */
197 static taskq_t *dtrace_taskq; /* task queue */
198 static dtrace_probe_t **dtrace_probes; /* array of all probes */
199 static int dtrace_nprobes; /* number of probes */
200 static dtrace_provider_t *dtrace_provider; /* provider list */
201 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
202 static int dtrace_opens; /* number of opens */
203 static int dtrace_helpers; /* number of helpers */
204 static void *dtrace_softstate; /* softstate pointer */
205 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
206 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
207 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
208 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
209 static int dtrace_toxranges; /* number of toxic ranges */
210 static int dtrace_toxranges_max; /* size of toxic range array */
211 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
212 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
213 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
214 static kthread_t *dtrace_panicked; /* panicking thread */
215 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
216 static dtrace_genid_t dtrace_probegen; /* current probe generation */
217 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
218 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
219 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
220 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
221
222 static int dtrace_dof_mode; /* See dtrace_impl.h for a description of Darwin's dof modes. */
223
224 /*
225 * This does't quite fit as an internal variable, as it must be accessed in
226 * fbt_provide and sdt_provide. Its clearly not a dtrace tunable variable either...
227 */
228 int dtrace_kernel_symbol_mode; /* See dtrace_impl.h for a description of Darwin's kernel symbol modes. */
229
230
231 /*
232 * To save memory, some common memory allocations are given a
233 * unique zone. For example, dtrace_probe_t is 72 bytes in size,
234 * which means it would fall into the kalloc.128 bucket. With
235 * 20k elements allocated, the space saved is substantial.
236 */
237
238 struct zone *dtrace_probe_t_zone;
239
240 static int dtrace_module_unloaded(struct kmod_info *kmod);
241
242 /*
243 * DTrace Locking
244 * DTrace is protected by three (relatively coarse-grained) locks:
245 *
246 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
247 * including enabling state, probes, ECBs, consumer state, helper state,
248 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
249 * probe context is lock-free -- synchronization is handled via the
250 * dtrace_sync() cross call mechanism.
251 *
252 * (2) dtrace_provider_lock is required when manipulating provider state, or
253 * when provider state must be held constant.
254 *
255 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
256 * when meta provider state must be held constant.
257 *
258 * The lock ordering between these three locks is dtrace_meta_lock before
259 * dtrace_provider_lock before dtrace_lock. (In particular, there are
260 * several places where dtrace_provider_lock is held by the framework as it
261 * calls into the providers -- which then call back into the framework,
262 * grabbing dtrace_lock.)
263 *
264 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
265 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
266 * role as a coarse-grained lock; it is acquired before both of these locks.
267 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
268 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
269 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
270 * acquired _between_ dtrace_provider_lock and dtrace_lock.
271 */
272
273
274 /*
275 * APPLE NOTE:
276 *
277 * For porting purposes, all kmutex_t vars have been changed
278 * to lck_mtx_t, which require explicit initialization.
279 *
280 * kmutex_t becomes lck_mtx_t
281 * mutex_enter() becomes lck_mtx_lock()
282 * mutex_exit() becomes lck_mtx_unlock()
283 *
284 * Lock asserts are changed like this:
285 *
286 * ASSERT(MUTEX_HELD(&cpu_lock));
287 * becomes:
288 * lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
289 *
290 */
291 static lck_mtx_t dtrace_lock; /* probe state lock */
292 static lck_mtx_t dtrace_provider_lock; /* provider state lock */
293 static lck_mtx_t dtrace_meta_lock; /* meta-provider state lock */
294 static lck_rw_t dtrace_dof_mode_lock; /* dof mode lock */
295
296 /*
297 * DTrace Provider Variables
298 *
299 * These are the variables relating to DTrace as a provider (that is, the
300 * provider of the BEGIN, END, and ERROR probes).
301 */
302 static dtrace_pattr_t dtrace_provider_attr = {
303 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
304 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
305 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
306 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
307 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
308 };
309
310 static void
311 dtrace_nullop(void)
312 {}
313
314 static int
315 dtrace_enable_nullop(void)
316 {
317 return (0);
318 }
319
320 static dtrace_pops_t dtrace_provider_ops = {
321 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
322 (void (*)(void *, struct modctl *))dtrace_nullop,
323 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
324 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
325 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
326 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
327 NULL,
328 NULL,
329 NULL,
330 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
331 };
332
333 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
334 static dtrace_id_t dtrace_probeid_end; /* special END probe */
335 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
336
337 /*
338 * DTrace Helper Tracing Variables
339 */
340 uint32_t dtrace_helptrace_next = 0;
341 uint32_t dtrace_helptrace_nlocals;
342 char *dtrace_helptrace_buffer;
343 size_t dtrace_helptrace_bufsize = 512 * 1024;
344
345 #if DEBUG
346 int dtrace_helptrace_enabled = 1;
347 #else
348 int dtrace_helptrace_enabled = 0;
349 #endif
350
351
352 /*
353 * DTrace Error Hashing
354 *
355 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
356 * table. This is very useful for checking coverage of tests that are
357 * expected to induce DIF or DOF processing errors, and may be useful for
358 * debugging problems in the DIF code generator or in DOF generation . The
359 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
360 */
361 #if DEBUG
362 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
363 static const char *dtrace_errlast;
364 static kthread_t *dtrace_errthread;
365 static lck_mtx_t dtrace_errlock;
366 #endif
367
368 /*
369 * DTrace Macros and Constants
370 *
371 * These are various macros that are useful in various spots in the
372 * implementation, along with a few random constants that have no meaning
373 * outside of the implementation. There is no real structure to this cpp
374 * mishmash -- but is there ever?
375 */
376 #define DTRACE_HASHSTR(hash, probe) \
377 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
378
379 #define DTRACE_HASHNEXT(hash, probe) \
380 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
381
382 #define DTRACE_HASHPREV(hash, probe) \
383 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
384
385 #define DTRACE_HASHEQ(hash, lhs, rhs) \
386 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
387 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
388
389 #define DTRACE_AGGHASHSIZE_SLEW 17
390
391 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
392
393 /*
394 * The key for a thread-local variable consists of the lower 61 bits of the
395 * current_thread(), plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
396 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
397 * equal to a variable identifier. This is necessary (but not sufficient) to
398 * assure that global associative arrays never collide with thread-local
399 * variables. To guarantee that they cannot collide, we must also define the
400 * order for keying dynamic variables. That order is:
401 *
402 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
403 *
404 * Because the variable-key and the tls-key are in orthogonal spaces, there is
405 * no way for a global variable key signature to match a thread-local key
406 * signature.
407 */
408 #if defined (__x86_64__)
409 /* FIXME: two function calls!! */
410 #define DTRACE_TLS_THRKEY(where) { \
411 uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
412 uint64_t thr = (uintptr_t)current_thread(); \
413 ASSERT(intr < (1 << 3)); \
414 (where) = ((thr + DIF_VARIABLE_MAX) & \
415 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
416 }
417 #else
418 #error Unknown architecture
419 #endif
420
421 #define DT_BSWAP_8(x) ((x) & 0xff)
422 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
423 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
424 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
425
426 #define DT_MASK_LO 0x00000000FFFFFFFFULL
427
428 #define DTRACE_STORE(type, tomax, offset, what) \
429 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
430
431
432 #define DTRACE_ALIGNCHECK(addr, size, flags) \
433 if (addr & (MIN(size,4) - 1)) { \
434 *flags |= CPU_DTRACE_BADALIGN; \
435 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
436 return (0); \
437 }
438
439 /*
440 * Test whether a range of memory starting at testaddr of size testsz falls
441 * within the range of memory described by addr, sz. We take care to avoid
442 * problems with overflow and underflow of the unsigned quantities, and
443 * disallow all negative sizes. Ranges of size 0 are allowed.
444 */
445 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
446 ((testaddr) - (baseaddr) < (basesz) && \
447 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
448 (testaddr) + (testsz) >= (testaddr))
449
450 /*
451 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
452 * alloc_sz on the righthand side of the comparison in order to avoid overflow
453 * or underflow in the comparison with it. This is simpler than the INRANGE
454 * check above, because we know that the dtms_scratch_ptr is valid in the
455 * range. Allocations of size zero are allowed.
456 */
457 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
458 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
459 (mstate)->dtms_scratch_ptr >= (alloc_sz))
460
461 #define RECOVER_LABEL(bits) dtraceLoadRecover##bits:
462
463 #if defined (__x86_64__)
464 #define DTRACE_LOADFUNC(bits) \
465 /*CSTYLED*/ \
466 uint##bits##_t dtrace_load##bits(uintptr_t addr); \
467 \
468 uint##bits##_t \
469 dtrace_load##bits(uintptr_t addr) \
470 { \
471 size_t size = bits / NBBY; \
472 /*CSTYLED*/ \
473 uint##bits##_t rval = 0; \
474 int i; \
475 volatile uint16_t *flags = (volatile uint16_t *) \
476 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
477 \
478 DTRACE_ALIGNCHECK(addr, size, flags); \
479 \
480 for (i = 0; i < dtrace_toxranges; i++) { \
481 if (addr >= dtrace_toxrange[i].dtt_limit) \
482 continue; \
483 \
484 if (addr + size <= dtrace_toxrange[i].dtt_base) \
485 continue; \
486 \
487 /* \
488 * This address falls within a toxic region; return 0. \
489 */ \
490 *flags |= CPU_DTRACE_BADADDR; \
491 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
492 return (0); \
493 } \
494 \
495 { \
496 volatile vm_offset_t recover = (vm_offset_t)&&dtraceLoadRecover##bits; \
497 *flags |= CPU_DTRACE_NOFAULT; \
498 recover = dtrace_set_thread_recover(current_thread(), recover); \
499 /*CSTYLED*/ \
500 /* \
501 * PR6394061 - avoid device memory that is unpredictably \
502 * mapped and unmapped \
503 */ \
504 if (pmap_valid_page(pmap_find_phys(kernel_pmap, addr))) \
505 rval = *((volatile uint##bits##_t *)addr); \
506 RECOVER_LABEL(bits); \
507 (void)dtrace_set_thread_recover(current_thread(), recover); \
508 *flags &= ~CPU_DTRACE_NOFAULT; \
509 } \
510 \
511 return (rval); \
512 }
513 #else /* all other architectures */
514 #error Unknown Architecture
515 #endif
516
517 #ifdef __LP64__
518 #define dtrace_loadptr dtrace_load64
519 #else
520 #define dtrace_loadptr dtrace_load32
521 #endif
522
523 #define DTRACE_DYNHASH_FREE 0
524 #define DTRACE_DYNHASH_SINK 1
525 #define DTRACE_DYNHASH_VALID 2
526
527 #define DTRACE_MATCH_FAIL -1
528 #define DTRACE_MATCH_NEXT 0
529 #define DTRACE_MATCH_DONE 1
530 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
531 #define DTRACE_STATE_ALIGN 64
532
533 #define DTRACE_FLAGS2FLT(flags) \
534 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
535 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
536 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
537 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
538 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
539 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
540 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
541 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
542 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
543 DTRACEFLT_UNKNOWN)
544
545 #define DTRACEACT_ISSTRING(act) \
546 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
547 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
548
549
550 static size_t dtrace_strlen(const char *, size_t);
551 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
552 static void dtrace_enabling_provide(dtrace_provider_t *);
553 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
554 static void dtrace_enabling_matchall(void);
555 static dtrace_state_t *dtrace_anon_grab(void);
556 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
557 dtrace_state_t *, uint64_t, uint64_t);
558 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
559 static void dtrace_buffer_drop(dtrace_buffer_t *);
560 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
561 dtrace_state_t *, dtrace_mstate_t *);
562 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
563 dtrace_optval_t);
564 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
565 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
566
567
568 /*
569 * DTrace sysctl handlers
570 *
571 * These declarations and functions are used for a deeper DTrace configuration.
572 * Most of them are not per-consumer basis and may impact the other DTrace
573 * consumers. Correctness may not be supported for all the variables, so you
574 * should be careful about what values you are using.
575 */
576
577 SYSCTL_DECL(_kern_dtrace);
578 SYSCTL_NODE(_kern, OID_AUTO, dtrace, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "dtrace");
579
580 static int
581 sysctl_dtrace_err_verbose SYSCTL_HANDLER_ARGS
582 {
583 #pragma unused(oidp, arg2)
584 int changed, error;
585 int value = *(int *) arg1;
586
587 error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
588 if (error || !changed)
589 return (error);
590
591 if (value != 0 && value != 1)
592 return (ERANGE);
593
594 lck_mtx_lock(&dtrace_lock);
595 dtrace_err_verbose = value;
596 lck_mtx_unlock(&dtrace_lock);
597
598 return (0);
599 }
600
601 /*
602 * kern.dtrace.err_verbose
603 *
604 * Set DTrace verbosity when an error occured (0 = disabled, 1 = enabld).
605 * Errors are reported when a DIFO or a DOF has been rejected by the kernel.
606 */
607 SYSCTL_PROC(_kern_dtrace, OID_AUTO, err_verbose,
608 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
609 &dtrace_err_verbose, 0,
610 sysctl_dtrace_err_verbose, "I", "dtrace error verbose");
611
612 static int
613 sysctl_dtrace_buffer_memory_maxsize SYSCTL_HANDLER_ARGS
614 {
615 #pragma unused(oidp, arg2, req)
616 int changed, error;
617 uint64_t value = *(uint64_t *) arg1;
618
619 error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
620 if (error || !changed)
621 return (error);
622
623 if (value <= dtrace_buffer_memory_inuse)
624 return (ERANGE);
625
626 lck_mtx_lock(&dtrace_lock);
627 dtrace_buffer_memory_maxsize = value;
628 lck_mtx_unlock(&dtrace_lock);
629
630 return (0);
631 }
632
633 /*
634 * kern.dtrace.buffer_memory_maxsize
635 *
636 * Set DTrace maximal size in bytes used by all the consumers' state buffers. By default
637 * the limit is PHYS_MEM / 3 for *all* consumers. Attempting to set a null, a negative value
638 * or a value <= to dtrace_buffer_memory_inuse will result in a failure.
639 */
640 SYSCTL_PROC(_kern_dtrace, OID_AUTO, buffer_memory_maxsize,
641 CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
642 &dtrace_buffer_memory_maxsize, 0,
643 sysctl_dtrace_buffer_memory_maxsize, "Q", "dtrace state buffer memory maxsize");
644
645 /*
646 * kern.dtrace.buffer_memory_inuse
647 *
648 * Current state buffer memory used, in bytes, by all the DTrace consumers.
649 * This value is read-only.
650 */
651 SYSCTL_QUAD(_kern_dtrace, OID_AUTO, buffer_memory_inuse, CTLFLAG_RD | CTLFLAG_LOCKED,
652 &dtrace_buffer_memory_inuse, "dtrace state buffer memory in-use");
653
654 static int
655 sysctl_dtrace_difo_maxsize SYSCTL_HANDLER_ARGS
656 {
657 #pragma unused(oidp, arg2, req)
658 int changed, error;
659 size_t value = *(size_t*) arg1;
660
661 error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
662 if (error || !changed)
663 return (error);
664
665 if (value <= 0)
666 return (ERANGE);
667
668 lck_mtx_lock(&dtrace_lock);
669 dtrace_difo_maxsize = value;
670 lck_mtx_unlock(&dtrace_lock);
671
672 return (0);
673 }
674
675 /*
676 * kern.dtrace.difo_maxsize
677 *
678 * Set the DIFO max size in bytes, check the definition of dtrace_difo_maxsize
679 * to get the default value. Attempting to set a null or negative size will
680 * result in a failure.
681 */
682 SYSCTL_PROC(_kern_dtrace, OID_AUTO, difo_maxsize,
683 CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
684 &dtrace_difo_maxsize, 0,
685 sysctl_dtrace_difo_maxsize, "Q", "dtrace difo maxsize");
686
687 static int
688 sysctl_dtrace_dof_maxsize SYSCTL_HANDLER_ARGS
689 {
690 #pragma unused(oidp, arg2, req)
691 int changed, error;
692 dtrace_optval_t value = *(dtrace_optval_t *) arg1;
693
694 error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
695 if (error || !changed)
696 return (error);
697
698 if (value <= 0)
699 return (ERANGE);
700
701 lck_mtx_lock(&dtrace_lock);
702 dtrace_dof_maxsize = value;
703 lck_mtx_unlock(&dtrace_lock);
704
705 return (0);
706 }
707
708 /*
709 * kern.dtrace.dof_maxsize
710 *
711 * Set the DOF max size in bytes, check the definition of dtrace_dof_maxsize to
712 * get the default value. Attempting to set a null or negative size will result
713 * in a failure.
714 */
715 SYSCTL_PROC(_kern_dtrace, OID_AUTO, dof_maxsize,
716 CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
717 &dtrace_dof_maxsize, 0,
718 sysctl_dtrace_dof_maxsize, "Q", "dtrace dof maxsize");
719
720 static int
721 sysctl_dtrace_global_maxsize SYSCTL_HANDLER_ARGS
722 {
723 #pragma unused(oidp, arg2, req)
724 int changed, error;
725 dtrace_optval_t value = *(dtrace_optval_t*) arg1;
726
727 error = sysctl_io_number(req, value, sizeof(value), &value, &changed);
728 if (error || !changed)
729 return (error);
730
731 if (value <= 0)
732 return (ERANGE);
733
734 lck_mtx_lock(&dtrace_lock);
735 dtrace_global_maxsize = value;
736 lck_mtx_unlock(&dtrace_lock);
737
738 return (0);
739 }
740
741 /*
742 * kern.dtrace.global_maxsize
743 *
744 * Set the global variable max size in bytes, check the definition of
745 * dtrace_global_maxsize to get the default value. Attempting to set a null or
746 * negative size will result in a failure.
747 */
748 SYSCTL_PROC(_kern_dtrace, OID_AUTO, global_maxsize,
749 CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
750 &dtrace_global_maxsize, 0,
751 sysctl_dtrace_global_maxsize, "Q", "dtrace global maxsize");
752
753 static int
754 sysctl_dtrace_provide_private_probes SYSCTL_HANDLER_ARGS
755 {
756 #pragma unused(oidp, arg2)
757 int error;
758 int value = *(int *) arg1;
759
760 error = sysctl_io_number(req, value, sizeof(value), &value, NULL);
761 if (error)
762 return (error);
763
764 if (value != 0 && value != 1)
765 return (ERANGE);
766
767 lck_mtx_lock(&dtrace_lock);
768 dtrace_provide_private_probes = value;
769 lck_mtx_unlock(&dtrace_lock);
770
771 return (0);
772 }
773
774 /*
775 * kern.dtrace.provide_private_probes
776 *
777 * Set whether the providers must provide the private probes. This is
778 * mainly used by the FBT provider to request probes for the private/static
779 * symbols.
780 */
781 SYSCTL_PROC(_kern_dtrace, OID_AUTO, provide_private_probes,
782 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
783 &dtrace_provide_private_probes, 0,
784 sysctl_dtrace_provide_private_probes, "I", "provider must provide the private probes");
785
786 /*
787 * DTrace Probe Context Functions
788 *
789 * These functions are called from probe context. Because probe context is
790 * any context in which C may be called, arbitrarily locks may be held,
791 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
792 * As a result, functions called from probe context may only call other DTrace
793 * support functions -- they may not interact at all with the system at large.
794 * (Note that the ASSERT macro is made probe-context safe by redefining it in
795 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
796 * loads are to be performed from probe context, they _must_ be in terms of
797 * the safe dtrace_load*() variants.
798 *
799 * Some functions in this block are not actually called from probe context;
800 * for these functions, there will be a comment above the function reading
801 * "Note: not called from probe context."
802 */
803
804 int
805 dtrace_assfail(const char *a, const char *f, int l)
806 {
807 panic("dtrace: assertion failed: %s, file: %s, line: %d", a, f, l);
808
809 /*
810 * We just need something here that even the most clever compiler
811 * cannot optimize away.
812 */
813 return (a[(uintptr_t)f]);
814 }
815
816 /*
817 * Atomically increment a specified error counter from probe context.
818 */
819 static void
820 dtrace_error(uint32_t *counter)
821 {
822 /*
823 * Most counters stored to in probe context are per-CPU counters.
824 * However, there are some error conditions that are sufficiently
825 * arcane that they don't merit per-CPU storage. If these counters
826 * are incremented concurrently on different CPUs, scalability will be
827 * adversely affected -- but we don't expect them to be white-hot in a
828 * correctly constructed enabling...
829 */
830 uint32_t oval, nval;
831
832 do {
833 oval = *counter;
834
835 if ((nval = oval + 1) == 0) {
836 /*
837 * If the counter would wrap, set it to 1 -- assuring
838 * that the counter is never zero when we have seen
839 * errors. (The counter must be 32-bits because we
840 * aren't guaranteed a 64-bit compare&swap operation.)
841 * To save this code both the infamy of being fingered
842 * by a priggish news story and the indignity of being
843 * the target of a neo-puritan witch trial, we're
844 * carefully avoiding any colorful description of the
845 * likelihood of this condition -- but suffice it to
846 * say that it is only slightly more likely than the
847 * overflow of predicate cache IDs, as discussed in
848 * dtrace_predicate_create().
849 */
850 nval = 1;
851 }
852 } while (dtrace_cas32(counter, oval, nval) != oval);
853 }
854
855 /*
856 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
857 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
858 */
859 DTRACE_LOADFUNC(8)
860 DTRACE_LOADFUNC(16)
861 DTRACE_LOADFUNC(32)
862 DTRACE_LOADFUNC(64)
863
864 static int
865 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
866 {
867 if (dest < mstate->dtms_scratch_base)
868 return (0);
869
870 if (dest + size < dest)
871 return (0);
872
873 if (dest + size > mstate->dtms_scratch_ptr)
874 return (0);
875
876 return (1);
877 }
878
879 static int
880 dtrace_canstore_statvar(uint64_t addr, size_t sz,
881 dtrace_statvar_t **svars, int nsvars)
882 {
883 int i;
884
885 for (i = 0; i < nsvars; i++) {
886 dtrace_statvar_t *svar = svars[i];
887
888 if (svar == NULL || svar->dtsv_size == 0)
889 continue;
890
891 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
892 return (1);
893 }
894
895 return (0);
896 }
897
898 /*
899 * Check to see if the address is within a memory region to which a store may
900 * be issued. This includes the DTrace scratch areas, and any DTrace variable
901 * region. The caller of dtrace_canstore() is responsible for performing any
902 * alignment checks that are needed before stores are actually executed.
903 */
904 static int
905 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
906 dtrace_vstate_t *vstate)
907 {
908 /*
909 * First, check to see if the address is in scratch space...
910 */
911 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
912 mstate->dtms_scratch_size))
913 return (1);
914
915 /*
916 * Now check to see if it's a dynamic variable. This check will pick
917 * up both thread-local variables and any global dynamically-allocated
918 * variables.
919 */
920 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
921 vstate->dtvs_dynvars.dtds_size)) {
922 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
923 uintptr_t base = (uintptr_t)dstate->dtds_base +
924 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
925 uintptr_t chunkoffs;
926
927 /*
928 * Before we assume that we can store here, we need to make
929 * sure that it isn't in our metadata -- storing to our
930 * dynamic variable metadata would corrupt our state. For
931 * the range to not include any dynamic variable metadata,
932 * it must:
933 *
934 * (1) Start above the hash table that is at the base of
935 * the dynamic variable space
936 *
937 * (2) Have a starting chunk offset that is beyond the
938 * dtrace_dynvar_t that is at the base of every chunk
939 *
940 * (3) Not span a chunk boundary
941 *
942 */
943 if (addr < base)
944 return (0);
945
946 chunkoffs = (addr - base) % dstate->dtds_chunksize;
947
948 if (chunkoffs < sizeof (dtrace_dynvar_t))
949 return (0);
950
951 if (chunkoffs + sz > dstate->dtds_chunksize)
952 return (0);
953
954 return (1);
955 }
956
957 /*
958 * Finally, check the static local and global variables. These checks
959 * take the longest, so we perform them last.
960 */
961 if (dtrace_canstore_statvar(addr, sz,
962 vstate->dtvs_locals, vstate->dtvs_nlocals))
963 return (1);
964
965 if (dtrace_canstore_statvar(addr, sz,
966 vstate->dtvs_globals, vstate->dtvs_nglobals))
967 return (1);
968
969 return (0);
970 }
971
972
973 /*
974 * Convenience routine to check to see if the address is within a memory
975 * region in which a load may be issued given the user's privilege level;
976 * if not, it sets the appropriate error flags and loads 'addr' into the
977 * illegal value slot.
978 *
979 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
980 * appropriate memory access protection.
981 */
982 static int
983 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
984 dtrace_vstate_t *vstate)
985 {
986 volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
987
988 /*
989 * If we hold the privilege to read from kernel memory, then
990 * everything is readable.
991 */
992 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
993 return (1);
994
995 /*
996 * You can obviously read that which you can store.
997 */
998 if (dtrace_canstore(addr, sz, mstate, vstate))
999 return (1);
1000
1001 /*
1002 * We're allowed to read from our own string table.
1003 */
1004 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
1005 mstate->dtms_difo->dtdo_strlen))
1006 return (1);
1007
1008 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1009 *illval = addr;
1010 return (0);
1011 }
1012
1013 /*
1014 * Convenience routine to check to see if a given string is within a memory
1015 * region in which a load may be issued given the user's privilege level;
1016 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1017 * calls in the event that the user has all privileges.
1018 */
1019 static int
1020 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
1021 dtrace_vstate_t *vstate)
1022 {
1023 size_t strsz;
1024
1025 /*
1026 * If we hold the privilege to read from kernel memory, then
1027 * everything is readable.
1028 */
1029 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
1030 return (1);
1031
1032 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
1033 if (dtrace_canload(addr, strsz, mstate, vstate))
1034 return (1);
1035
1036 return (0);
1037 }
1038
1039 /*
1040 * Convenience routine to check to see if a given variable is within a memory
1041 * region in which a load may be issued given the user's privilege level.
1042 */
1043 static int
1044 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
1045 dtrace_vstate_t *vstate)
1046 {
1047 size_t sz;
1048 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1049
1050 /*
1051 * If we hold the privilege to read from kernel memory, then
1052 * everything is readable.
1053 */
1054 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
1055 return (1);
1056
1057 if (type->dtdt_kind == DIF_TYPE_STRING)
1058 sz = dtrace_strlen(src,
1059 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
1060 else
1061 sz = type->dtdt_size;
1062
1063 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
1064 }
1065
1066 /*
1067 * Compare two strings using safe loads.
1068 */
1069 static int
1070 dtrace_strncmp(char *s1, char *s2, size_t limit)
1071 {
1072 uint8_t c1, c2;
1073 volatile uint16_t *flags;
1074
1075 if (s1 == s2 || limit == 0)
1076 return (0);
1077
1078 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1079
1080 do {
1081 if (s1 == NULL) {
1082 c1 = '\0';
1083 } else {
1084 c1 = dtrace_load8((uintptr_t)s1++);
1085 }
1086
1087 if (s2 == NULL) {
1088 c2 = '\0';
1089 } else {
1090 c2 = dtrace_load8((uintptr_t)s2++);
1091 }
1092
1093 if (c1 != c2)
1094 return (c1 - c2);
1095 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1096
1097 return (0);
1098 }
1099
1100 /*
1101 * Compute strlen(s) for a string using safe memory accesses. The additional
1102 * len parameter is used to specify a maximum length to ensure completion.
1103 */
1104 static size_t
1105 dtrace_strlen(const char *s, size_t lim)
1106 {
1107 uint_t len;
1108
1109 for (len = 0; len != lim; len++) {
1110 if (dtrace_load8((uintptr_t)s++) == '\0')
1111 break;
1112 }
1113
1114 return (len);
1115 }
1116
1117 /*
1118 * Check if an address falls within a toxic region.
1119 */
1120 static int
1121 dtrace_istoxic(uintptr_t kaddr, size_t size)
1122 {
1123 uintptr_t taddr, tsize;
1124 int i;
1125
1126 for (i = 0; i < dtrace_toxranges; i++) {
1127 taddr = dtrace_toxrange[i].dtt_base;
1128 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1129
1130 if (kaddr - taddr < tsize) {
1131 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1132 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1133 return (1);
1134 }
1135
1136 if (taddr - kaddr < size) {
1137 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1138 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1139 return (1);
1140 }
1141 }
1142
1143 return (0);
1144 }
1145
1146 /*
1147 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1148 * memory specified by the DIF program. The dst is assumed to be safe memory
1149 * that we can store to directly because it is managed by DTrace. As with
1150 * standard bcopy, overlapping copies are handled properly.
1151 */
1152 static void
1153 dtrace_bcopy(const void *src, void *dst, size_t len)
1154 {
1155 if (len != 0) {
1156 uint8_t *s1 = dst;
1157 const uint8_t *s2 = src;
1158
1159 if (s1 <= s2) {
1160 do {
1161 *s1++ = dtrace_load8((uintptr_t)s2++);
1162 } while (--len != 0);
1163 } else {
1164 s2 += len;
1165 s1 += len;
1166
1167 do {
1168 *--s1 = dtrace_load8((uintptr_t)--s2);
1169 } while (--len != 0);
1170 }
1171 }
1172 }
1173
1174 /*
1175 * Copy src to dst using safe memory accesses, up to either the specified
1176 * length, or the point that a nul byte is encountered. The src is assumed to
1177 * be unsafe memory specified by the DIF program. The dst is assumed to be
1178 * safe memory that we can store to directly because it is managed by DTrace.
1179 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1180 */
1181 static void
1182 dtrace_strcpy(const void *src, void *dst, size_t len)
1183 {
1184 if (len != 0) {
1185 uint8_t *s1 = dst, c;
1186 const uint8_t *s2 = src;
1187
1188 do {
1189 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1190 } while (--len != 0 && c != '\0');
1191 }
1192 }
1193
1194 /*
1195 * Copy src to dst, deriving the size and type from the specified (BYREF)
1196 * variable type. The src is assumed to be unsafe memory specified by the DIF
1197 * program. The dst is assumed to be DTrace variable memory that is of the
1198 * specified type; we assume that we can store to directly.
1199 */
1200 static void
1201 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1202 {
1203 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1204
1205 if (type->dtdt_kind == DIF_TYPE_STRING) {
1206 dtrace_strcpy(src, dst, type->dtdt_size);
1207 } else {
1208 dtrace_bcopy(src, dst, type->dtdt_size);
1209 }
1210 }
1211
1212 /*
1213 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1214 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1215 * safe memory that we can access directly because it is managed by DTrace.
1216 */
1217 static int
1218 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1219 {
1220 volatile uint16_t *flags;
1221
1222 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1223
1224 if (s1 == s2)
1225 return (0);
1226
1227 if (s1 == NULL || s2 == NULL)
1228 return (1);
1229
1230 if (s1 != s2 && len != 0) {
1231 const uint8_t *ps1 = s1;
1232 const uint8_t *ps2 = s2;
1233
1234 do {
1235 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1236 return (1);
1237 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1238 }
1239 return (0);
1240 }
1241
1242 /*
1243 * Zero the specified region using a simple byte-by-byte loop. Note that this
1244 * is for safe DTrace-managed memory only.
1245 */
1246 static void
1247 dtrace_bzero(void *dst, size_t len)
1248 {
1249 uchar_t *cp;
1250
1251 for (cp = dst; len != 0; len--)
1252 *cp++ = 0;
1253 }
1254
1255 static void
1256 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1257 {
1258 uint64_t result[2];
1259
1260 result[0] = addend1[0] + addend2[0];
1261 result[1] = addend1[1] + addend2[1] +
1262 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1263
1264 sum[0] = result[0];
1265 sum[1] = result[1];
1266 }
1267
1268 /*
1269 * Shift the 128-bit value in a by b. If b is positive, shift left.
1270 * If b is negative, shift right.
1271 */
1272 static void
1273 dtrace_shift_128(uint64_t *a, int b)
1274 {
1275 uint64_t mask;
1276
1277 if (b == 0)
1278 return;
1279
1280 if (b < 0) {
1281 b = -b;
1282 if (b >= 64) {
1283 a[0] = a[1] >> (b - 64);
1284 a[1] = 0;
1285 } else {
1286 a[0] >>= b;
1287 mask = 1LL << (64 - b);
1288 mask -= 1;
1289 a[0] |= ((a[1] & mask) << (64 - b));
1290 a[1] >>= b;
1291 }
1292 } else {
1293 if (b >= 64) {
1294 a[1] = a[0] << (b - 64);
1295 a[0] = 0;
1296 } else {
1297 a[1] <<= b;
1298 mask = a[0] >> (64 - b);
1299 a[1] |= mask;
1300 a[0] <<= b;
1301 }
1302 }
1303 }
1304
1305 /*
1306 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1307 * use native multiplication on those, and then re-combine into the
1308 * resulting 128-bit value.
1309 *
1310 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1311 * hi1 * hi2 << 64 +
1312 * hi1 * lo2 << 32 +
1313 * hi2 * lo1 << 32 +
1314 * lo1 * lo2
1315 */
1316 static void
1317 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1318 {
1319 uint64_t hi1, hi2, lo1, lo2;
1320 uint64_t tmp[2];
1321
1322 hi1 = factor1 >> 32;
1323 hi2 = factor2 >> 32;
1324
1325 lo1 = factor1 & DT_MASK_LO;
1326 lo2 = factor2 & DT_MASK_LO;
1327
1328 product[0] = lo1 * lo2;
1329 product[1] = hi1 * hi2;
1330
1331 tmp[0] = hi1 * lo2;
1332 tmp[1] = 0;
1333 dtrace_shift_128(tmp, 32);
1334 dtrace_add_128(product, tmp, product);
1335
1336 tmp[0] = hi2 * lo1;
1337 tmp[1] = 0;
1338 dtrace_shift_128(tmp, 32);
1339 dtrace_add_128(product, tmp, product);
1340 }
1341
1342 /*
1343 * This privilege check should be used by actions and subroutines to
1344 * verify that the user credentials of the process that enabled the
1345 * invoking ECB match the target credentials
1346 */
1347 static int
1348 dtrace_priv_proc_common_user(dtrace_state_t *state)
1349 {
1350 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1351
1352 /*
1353 * We should always have a non-NULL state cred here, since if cred
1354 * is null (anonymous tracing), we fast-path bypass this routine.
1355 */
1356 ASSERT(s_cr != NULL);
1357
1358 if ((cr = dtrace_CRED()) != NULL &&
1359 posix_cred_get(s_cr)->cr_uid == posix_cred_get(cr)->cr_uid &&
1360 posix_cred_get(s_cr)->cr_uid == posix_cred_get(cr)->cr_ruid &&
1361 posix_cred_get(s_cr)->cr_uid == posix_cred_get(cr)->cr_suid &&
1362 posix_cred_get(s_cr)->cr_gid == posix_cred_get(cr)->cr_gid &&
1363 posix_cred_get(s_cr)->cr_gid == posix_cred_get(cr)->cr_rgid &&
1364 posix_cred_get(s_cr)->cr_gid == posix_cred_get(cr)->cr_sgid)
1365 return (1);
1366
1367 return (0);
1368 }
1369
1370 /*
1371 * This privilege check should be used by actions and subroutines to
1372 * verify that the zone of the process that enabled the invoking ECB
1373 * matches the target credentials
1374 */
1375 static int
1376 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1377 {
1378 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1379 #pragma unused(cr, s_cr, state) /* __APPLE__ */
1380
1381 /*
1382 * We should always have a non-NULL state cred here, since if cred
1383 * is null (anonymous tracing), we fast-path bypass this routine.
1384 */
1385 ASSERT(s_cr != NULL);
1386
1387 return 1; /* APPLE NOTE: Darwin doesn't do zones. */
1388 }
1389
1390 /*
1391 * This privilege check should be used by actions and subroutines to
1392 * verify that the process has not setuid or changed credentials.
1393 */
1394 static int
1395 dtrace_priv_proc_common_nocd(void)
1396 {
1397 return 1; /* Darwin omits "No Core Dump" flag. */
1398 }
1399
1400 static int
1401 dtrace_priv_proc_destructive(dtrace_state_t *state)
1402 {
1403 int action = state->dts_cred.dcr_action;
1404
1405 if (ISSET(current_proc()->p_lflag, P_LNOATTACH))
1406 goto bad;
1407
1408 if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1409 goto bad;
1410
1411 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1412 dtrace_priv_proc_common_zone(state) == 0)
1413 goto bad;
1414
1415 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1416 dtrace_priv_proc_common_user(state) == 0)
1417 goto bad;
1418
1419 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1420 dtrace_priv_proc_common_nocd() == 0)
1421 goto bad;
1422
1423 return (1);
1424
1425 bad:
1426 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1427
1428 return (0);
1429 }
1430
1431 static int
1432 dtrace_priv_proc_control(dtrace_state_t *state)
1433 {
1434 if (ISSET(current_proc()->p_lflag, P_LNOATTACH))
1435 goto bad;
1436
1437 if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1438 goto bad;
1439
1440 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1441 return (1);
1442
1443 if (dtrace_priv_proc_common_zone(state) &&
1444 dtrace_priv_proc_common_user(state) &&
1445 dtrace_priv_proc_common_nocd())
1446 return (1);
1447
1448 bad:
1449 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1450
1451 return (0);
1452 }
1453
1454 static int
1455 dtrace_priv_proc(dtrace_state_t *state)
1456 {
1457 if (ISSET(current_proc()->p_lflag, P_LNOATTACH))
1458 goto bad;
1459
1460 if (dtrace_is_restricted() && !dtrace_is_running_apple_internal() && !dtrace_can_attach_to_proc(current_proc()))
1461 goto bad;
1462
1463 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1464 return (1);
1465
1466 bad:
1467 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1468
1469 return (0);
1470 }
1471
1472 /*
1473 * The P_LNOATTACH check is an Apple specific check.
1474 * We need a version of dtrace_priv_proc() that omits
1475 * that check for PID and EXECNAME accesses
1476 */
1477 static int
1478 dtrace_priv_proc_relaxed(dtrace_state_t *state)
1479 {
1480
1481 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1482 return (1);
1483
1484 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1485
1486 return (0);
1487 }
1488
1489 static int
1490 dtrace_priv_kernel(dtrace_state_t *state)
1491 {
1492 if (dtrace_is_restricted() && !dtrace_is_running_apple_internal())
1493 goto bad;
1494
1495 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1496 return (1);
1497
1498 bad:
1499 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1500
1501 return (0);
1502 }
1503
1504 static int
1505 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1506 {
1507 if (dtrace_is_restricted())
1508 goto bad;
1509
1510 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1511 return (1);
1512
1513 bad:
1514 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1515
1516 return (0);
1517 }
1518
1519 /*
1520 * Note: not called from probe context. This function is called
1521 * asynchronously (and at a regular interval) from outside of probe context to
1522 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1523 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1524 */
1525 static void
1526 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1527 {
1528 dtrace_dynvar_t *dirty;
1529 dtrace_dstate_percpu_t *dcpu;
1530 int i, work = 0;
1531
1532 for (i = 0; i < (int)NCPU; i++) {
1533 dcpu = &dstate->dtds_percpu[i];
1534
1535 ASSERT(dcpu->dtdsc_rinsing == NULL);
1536
1537 /*
1538 * If the dirty list is NULL, there is no dirty work to do.
1539 */
1540 if (dcpu->dtdsc_dirty == NULL)
1541 continue;
1542
1543 /*
1544 * If the clean list is non-NULL, then we're not going to do
1545 * any work for this CPU -- it means that there has not been
1546 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1547 * since the last time we cleaned house.
1548 */
1549 if (dcpu->dtdsc_clean != NULL)
1550 continue;
1551
1552 work = 1;
1553
1554 /*
1555 * Atomically move the dirty list aside.
1556 */
1557 do {
1558 dirty = dcpu->dtdsc_dirty;
1559
1560 /*
1561 * Before we zap the dirty list, set the rinsing list.
1562 * (This allows for a potential assertion in
1563 * dtrace_dynvar(): if a free dynamic variable appears
1564 * on a hash chain, either the dirty list or the
1565 * rinsing list for some CPU must be non-NULL.)
1566 */
1567 dcpu->dtdsc_rinsing = dirty;
1568 dtrace_membar_producer();
1569 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1570 dirty, NULL) != dirty);
1571 }
1572
1573 if (!work) {
1574 /*
1575 * We have no work to do; we can simply return.
1576 */
1577 return;
1578 }
1579
1580 dtrace_sync();
1581
1582 for (i = 0; i < (int)NCPU; i++) {
1583 dcpu = &dstate->dtds_percpu[i];
1584
1585 if (dcpu->dtdsc_rinsing == NULL)
1586 continue;
1587
1588 /*
1589 * We are now guaranteed that no hash chain contains a pointer
1590 * into this dirty list; we can make it clean.
1591 */
1592 ASSERT(dcpu->dtdsc_clean == NULL);
1593 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1594 dcpu->dtdsc_rinsing = NULL;
1595 }
1596
1597 /*
1598 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1599 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1600 * This prevents a race whereby a CPU incorrectly decides that
1601 * the state should be something other than DTRACE_DSTATE_CLEAN
1602 * after dtrace_dynvar_clean() has completed.
1603 */
1604 dtrace_sync();
1605
1606 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1607 }
1608
1609 /*
1610 * Depending on the value of the op parameter, this function looks-up,
1611 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1612 * allocation is requested, this function will return a pointer to a
1613 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1614 * variable can be allocated. If NULL is returned, the appropriate counter
1615 * will be incremented.
1616 */
1617 static dtrace_dynvar_t *
1618 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1619 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1620 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1621 {
1622 uint64_t hashval = DTRACE_DYNHASH_VALID;
1623 dtrace_dynhash_t *hash = dstate->dtds_hash;
1624 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1625 processorid_t me = CPU->cpu_id, cpu = me;
1626 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1627 size_t bucket, ksize;
1628 size_t chunksize = dstate->dtds_chunksize;
1629 uintptr_t kdata, lock, nstate;
1630 uint_t i;
1631
1632 ASSERT(nkeys != 0);
1633
1634 /*
1635 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1636 * algorithm. For the by-value portions, we perform the algorithm in
1637 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1638 * bit, and seems to have only a minute effect on distribution. For
1639 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1640 * over each referenced byte. It's painful to do this, but it's much
1641 * better than pathological hash distribution. The efficacy of the
1642 * hashing algorithm (and a comparison with other algorithms) may be
1643 * found by running the ::dtrace_dynstat MDB dcmd.
1644 */
1645 for (i = 0; i < nkeys; i++) {
1646 if (key[i].dttk_size == 0) {
1647 uint64_t val = key[i].dttk_value;
1648
1649 hashval += (val >> 48) & 0xffff;
1650 hashval += (hashval << 10);
1651 hashval ^= (hashval >> 6);
1652
1653 hashval += (val >> 32) & 0xffff;
1654 hashval += (hashval << 10);
1655 hashval ^= (hashval >> 6);
1656
1657 hashval += (val >> 16) & 0xffff;
1658 hashval += (hashval << 10);
1659 hashval ^= (hashval >> 6);
1660
1661 hashval += val & 0xffff;
1662 hashval += (hashval << 10);
1663 hashval ^= (hashval >> 6);
1664 } else {
1665 /*
1666 * This is incredibly painful, but it beats the hell
1667 * out of the alternative.
1668 */
1669 uint64_t j, size = key[i].dttk_size;
1670 uintptr_t base = (uintptr_t)key[i].dttk_value;
1671
1672 if (!dtrace_canload(base, size, mstate, vstate))
1673 break;
1674
1675 for (j = 0; j < size; j++) {
1676 hashval += dtrace_load8(base + j);
1677 hashval += (hashval << 10);
1678 hashval ^= (hashval >> 6);
1679 }
1680 }
1681 }
1682
1683 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1684 return (NULL);
1685
1686 hashval += (hashval << 3);
1687 hashval ^= (hashval >> 11);
1688 hashval += (hashval << 15);
1689
1690 /*
1691 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1692 * comes out to be one of our two sentinel hash values. If this
1693 * actually happens, we set the hashval to be a value known to be a
1694 * non-sentinel value.
1695 */
1696 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1697 hashval = DTRACE_DYNHASH_VALID;
1698
1699 /*
1700 * Yes, it's painful to do a divide here. If the cycle count becomes
1701 * important here, tricks can be pulled to reduce it. (However, it's
1702 * critical that hash collisions be kept to an absolute minimum;
1703 * they're much more painful than a divide.) It's better to have a
1704 * solution that generates few collisions and still keeps things
1705 * relatively simple.
1706 */
1707 bucket = hashval % dstate->dtds_hashsize;
1708
1709 if (op == DTRACE_DYNVAR_DEALLOC) {
1710 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1711
1712 for (;;) {
1713 while ((lock = *lockp) & 1)
1714 continue;
1715
1716 if (dtrace_casptr((void *)(uintptr_t)lockp,
1717 (void *)lock, (void *)(lock + 1)) == (void *)lock)
1718 break;
1719 }
1720
1721 dtrace_membar_producer();
1722 }
1723
1724 top:
1725 prev = NULL;
1726 lock = hash[bucket].dtdh_lock;
1727
1728 dtrace_membar_consumer();
1729
1730 start = hash[bucket].dtdh_chain;
1731 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1732 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1733 op != DTRACE_DYNVAR_DEALLOC));
1734
1735 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1736 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1737 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1738
1739 if (dvar->dtdv_hashval != hashval) {
1740 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1741 /*
1742 * We've reached the sink, and therefore the
1743 * end of the hash chain; we can kick out of
1744 * the loop knowing that we have seen a valid
1745 * snapshot of state.
1746 */
1747 ASSERT(dvar->dtdv_next == NULL);
1748 ASSERT(dvar == &dtrace_dynhash_sink);
1749 break;
1750 }
1751
1752 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1753 /*
1754 * We've gone off the rails: somewhere along
1755 * the line, one of the members of this hash
1756 * chain was deleted. Note that we could also
1757 * detect this by simply letting this loop run
1758 * to completion, as we would eventually hit
1759 * the end of the dirty list. However, we
1760 * want to avoid running the length of the
1761 * dirty list unnecessarily (it might be quite
1762 * long), so we catch this as early as
1763 * possible by detecting the hash marker. In
1764 * this case, we simply set dvar to NULL and
1765 * break; the conditional after the loop will
1766 * send us back to top.
1767 */
1768 dvar = NULL;
1769 break;
1770 }
1771
1772 goto next;
1773 }
1774
1775 if (dtuple->dtt_nkeys != nkeys)
1776 goto next;
1777
1778 for (i = 0; i < nkeys; i++, dkey++) {
1779 if (dkey->dttk_size != key[i].dttk_size)
1780 goto next; /* size or type mismatch */
1781
1782 if (dkey->dttk_size != 0) {
1783 if (dtrace_bcmp(
1784 (void *)(uintptr_t)key[i].dttk_value,
1785 (void *)(uintptr_t)dkey->dttk_value,
1786 dkey->dttk_size))
1787 goto next;
1788 } else {
1789 if (dkey->dttk_value != key[i].dttk_value)
1790 goto next;
1791 }
1792 }
1793
1794 if (op != DTRACE_DYNVAR_DEALLOC)
1795 return (dvar);
1796
1797 ASSERT(dvar->dtdv_next == NULL ||
1798 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1799
1800 if (prev != NULL) {
1801 ASSERT(hash[bucket].dtdh_chain != dvar);
1802 ASSERT(start != dvar);
1803 ASSERT(prev->dtdv_next == dvar);
1804 prev->dtdv_next = dvar->dtdv_next;
1805 } else {
1806 if (dtrace_casptr(&hash[bucket].dtdh_chain,
1807 start, dvar->dtdv_next) != start) {
1808 /*
1809 * We have failed to atomically swing the
1810 * hash table head pointer, presumably because
1811 * of a conflicting allocation on another CPU.
1812 * We need to reread the hash chain and try
1813 * again.
1814 */
1815 goto top;
1816 }
1817 }
1818
1819 dtrace_membar_producer();
1820
1821 /*
1822 * Now set the hash value to indicate that it's free.
1823 */
1824 ASSERT(hash[bucket].dtdh_chain != dvar);
1825 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1826
1827 dtrace_membar_producer();
1828
1829 /*
1830 * Set the next pointer to point at the dirty list, and
1831 * atomically swing the dirty pointer to the newly freed dvar.
1832 */
1833 do {
1834 next = dcpu->dtdsc_dirty;
1835 dvar->dtdv_next = next;
1836 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1837
1838 /*
1839 * Finally, unlock this hash bucket.
1840 */
1841 ASSERT(hash[bucket].dtdh_lock == lock);
1842 ASSERT(lock & 1);
1843 hash[bucket].dtdh_lock++;
1844
1845 return (NULL);
1846 next:
1847 prev = dvar;
1848 continue;
1849 }
1850
1851 if (dvar == NULL) {
1852 /*
1853 * If dvar is NULL, it is because we went off the rails:
1854 * one of the elements that we traversed in the hash chain
1855 * was deleted while we were traversing it. In this case,
1856 * we assert that we aren't doing a dealloc (deallocs lock
1857 * the hash bucket to prevent themselves from racing with
1858 * one another), and retry the hash chain traversal.
1859 */
1860 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1861 goto top;
1862 }
1863
1864 if (op != DTRACE_DYNVAR_ALLOC) {
1865 /*
1866 * If we are not to allocate a new variable, we want to
1867 * return NULL now. Before we return, check that the value
1868 * of the lock word hasn't changed. If it has, we may have
1869 * seen an inconsistent snapshot.
1870 */
1871 if (op == DTRACE_DYNVAR_NOALLOC) {
1872 if (hash[bucket].dtdh_lock != lock)
1873 goto top;
1874 } else {
1875 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1876 ASSERT(hash[bucket].dtdh_lock == lock);
1877 ASSERT(lock & 1);
1878 hash[bucket].dtdh_lock++;
1879 }
1880
1881 return (NULL);
1882 }
1883
1884 /*
1885 * We need to allocate a new dynamic variable. The size we need is the
1886 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1887 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1888 * the size of any referred-to data (dsize). We then round the final
1889 * size up to the chunksize for allocation.
1890 */
1891 for (ksize = 0, i = 0; i < nkeys; i++)
1892 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1893
1894 /*
1895 * This should be pretty much impossible, but could happen if, say,
1896 * strange DIF specified the tuple. Ideally, this should be an
1897 * assertion and not an error condition -- but that requires that the
1898 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1899 * bullet-proof. (That is, it must not be able to be fooled by
1900 * malicious DIF.) Given the lack of backwards branches in DIF,
1901 * solving this would presumably not amount to solving the Halting
1902 * Problem -- but it still seems awfully hard.
1903 */
1904 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1905 ksize + dsize > chunksize) {
1906 dcpu->dtdsc_drops++;
1907 return (NULL);
1908 }
1909
1910 nstate = DTRACE_DSTATE_EMPTY;
1911
1912 do {
1913 retry:
1914 free = dcpu->dtdsc_free;
1915
1916 if (free == NULL) {
1917 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1918 void *rval;
1919
1920 if (clean == NULL) {
1921 /*
1922 * We're out of dynamic variable space on
1923 * this CPU. Unless we have tried all CPUs,
1924 * we'll try to allocate from a different
1925 * CPU.
1926 */
1927 switch (dstate->dtds_state) {
1928 case DTRACE_DSTATE_CLEAN: {
1929 void *sp = &dstate->dtds_state;
1930
1931 if (++cpu >= (int)NCPU)
1932 cpu = 0;
1933
1934 if (dcpu->dtdsc_dirty != NULL &&
1935 nstate == DTRACE_DSTATE_EMPTY)
1936 nstate = DTRACE_DSTATE_DIRTY;
1937
1938 if (dcpu->dtdsc_rinsing != NULL)
1939 nstate = DTRACE_DSTATE_RINSING;
1940
1941 dcpu = &dstate->dtds_percpu[cpu];
1942
1943 if (cpu != me)
1944 goto retry;
1945
1946 (void) dtrace_cas32(sp,
1947 DTRACE_DSTATE_CLEAN, nstate);
1948
1949 /*
1950 * To increment the correct bean
1951 * counter, take another lap.
1952 */
1953 goto retry;
1954 }
1955
1956 case DTRACE_DSTATE_DIRTY:
1957 dcpu->dtdsc_dirty_drops++;
1958 break;
1959
1960 case DTRACE_DSTATE_RINSING:
1961 dcpu->dtdsc_rinsing_drops++;
1962 break;
1963
1964 case DTRACE_DSTATE_EMPTY:
1965 dcpu->dtdsc_drops++;
1966 break;
1967 }
1968
1969 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1970 return (NULL);
1971 }
1972
1973 /*
1974 * The clean list appears to be non-empty. We want to
1975 * move the clean list to the free list; we start by
1976 * moving the clean pointer aside.
1977 */
1978 if (dtrace_casptr(&dcpu->dtdsc_clean,
1979 clean, NULL) != clean) {
1980 /*
1981 * We are in one of two situations:
1982 *
1983 * (a) The clean list was switched to the
1984 * free list by another CPU.
1985 *
1986 * (b) The clean list was added to by the
1987 * cleansing cyclic.
1988 *
1989 * In either of these situations, we can
1990 * just reattempt the free list allocation.
1991 */
1992 goto retry;
1993 }
1994
1995 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1996
1997 /*
1998 * Now we'll move the clean list to the free list.
1999 * It's impossible for this to fail: the only way
2000 * the free list can be updated is through this
2001 * code path, and only one CPU can own the clean list.
2002 * Thus, it would only be possible for this to fail if
2003 * this code were racing with dtrace_dynvar_clean().
2004 * (That is, if dtrace_dynvar_clean() updated the clean
2005 * list, and we ended up racing to update the free
2006 * list.) This race is prevented by the dtrace_sync()
2007 * in dtrace_dynvar_clean() -- which flushes the
2008 * owners of the clean lists out before resetting
2009 * the clean lists.
2010 */
2011 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2012 ASSERT(rval == NULL);
2013 goto retry;
2014 }
2015
2016 dvar = free;
2017 new_free = dvar->dtdv_next;
2018 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2019
2020 /*
2021 * We have now allocated a new chunk. We copy the tuple keys into the
2022 * tuple array and copy any referenced key data into the data space
2023 * following the tuple array. As we do this, we relocate dttk_value
2024 * in the final tuple to point to the key data address in the chunk.
2025 */
2026 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2027 dvar->dtdv_data = (void *)(kdata + ksize);
2028 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2029
2030 for (i = 0; i < nkeys; i++) {
2031 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2032 size_t kesize = key[i].dttk_size;
2033
2034 if (kesize != 0) {
2035 dtrace_bcopy(
2036 (const void *)(uintptr_t)key[i].dttk_value,
2037 (void *)kdata, kesize);
2038 dkey->dttk_value = kdata;
2039 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2040 } else {
2041 dkey->dttk_value = key[i].dttk_value;
2042 }
2043
2044 dkey->dttk_size = kesize;
2045 }
2046
2047 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2048 dvar->dtdv_hashval = hashval;
2049 dvar->dtdv_next = start;
2050
2051 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2052 return (dvar);
2053
2054 /*
2055 * The cas has failed. Either another CPU is adding an element to
2056 * this hash chain, or another CPU is deleting an element from this
2057 * hash chain. The simplest way to deal with both of these cases
2058 * (though not necessarily the most efficient) is to free our
2059 * allocated block and tail-call ourselves. Note that the free is
2060 * to the dirty list and _not_ to the free list. This is to prevent
2061 * races with allocators, above.
2062 */
2063 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2064
2065 dtrace_membar_producer();
2066
2067 do {
2068 free = dcpu->dtdsc_dirty;
2069 dvar->dtdv_next = free;
2070 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2071
2072 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2073 }
2074
2075 /*ARGSUSED*/
2076 static void
2077 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2078 {
2079 #pragma unused(arg) /* __APPLE__ */
2080 if ((int64_t)nval < (int64_t)*oval)
2081 *oval = nval;
2082 }
2083
2084 /*ARGSUSED*/
2085 static void
2086 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2087 {
2088 #pragma unused(arg) /* __APPLE__ */
2089 if ((int64_t)nval > (int64_t)*oval)
2090 *oval = nval;
2091 }
2092
2093 static void
2094 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2095 {
2096 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2097 int64_t val = (int64_t)nval;
2098
2099 if (val < 0) {
2100 for (i = 0; i < zero; i++) {
2101 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2102 quanta[i] += incr;
2103 return;
2104 }
2105 }
2106 } else {
2107 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2108 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2109 quanta[i - 1] += incr;
2110 return;
2111 }
2112 }
2113
2114 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2115 return;
2116 }
2117
2118 ASSERT(0);
2119 }
2120
2121 static void
2122 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2123 {
2124 uint64_t arg = *lquanta++;
2125 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2126 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2127 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2128 int32_t val = (int32_t)nval, level;
2129
2130 ASSERT(step != 0);
2131 ASSERT(levels != 0);
2132
2133 if (val < base) {
2134 /*
2135 * This is an underflow.
2136 */
2137 lquanta[0] += incr;
2138 return;
2139 }
2140
2141 level = (val - base) / step;
2142
2143 if (level < levels) {
2144 lquanta[level + 1] += incr;
2145 return;
2146 }
2147
2148 /*
2149 * This is an overflow.
2150 */
2151 lquanta[levels + 1] += incr;
2152 }
2153
2154 static int
2155 dtrace_aggregate_llquantize_bucket(int16_t factor, int16_t low, int16_t high,
2156 int16_t nsteps, int64_t value)
2157 {
2158 int64_t this = 1, last, next;
2159 int base = 1, order;
2160
2161 for (order = 0; order < low; ++order)
2162 this *= factor;
2163
2164 /*
2165 * If our value is less than our factor taken to the power of the
2166 * low order of magnitude, it goes into the zeroth bucket.
2167 */
2168 if (value < this)
2169 return 0;
2170 else
2171 last = this;
2172
2173 for (this *= factor; order <= high; ++order) {
2174 int nbuckets = this > nsteps ? nsteps : this;
2175
2176 /*
2177 * We should not generally get log/linear quantizations
2178 * with a high magnitude that allows 64-bits to
2179 * overflow, but we nonetheless protect against this
2180 * by explicitly checking for overflow, and clamping
2181 * our value accordingly.
2182 */
2183 next = this * factor;
2184 if (next < this) {
2185 value = this - 1;
2186 }
2187
2188 /*
2189 * If our value lies within this order of magnitude,
2190 * determine its position by taking the offset within
2191 * the order of magnitude, dividing by the bucket
2192 * width, and adding to our (accumulated) base.
2193 */
2194 if (value < this) {
2195 return (base + (value - last) / (this / nbuckets));
2196 }
2197
2198 base += nbuckets - (nbuckets / factor);
2199 last = this;
2200 this = next;
2201 }
2202
2203 /*
2204 * Our value is greater than or equal to our factor taken to the
2205 * power of one plus the high magnitude -- return the top bucket.
2206 */
2207 return base;
2208 }
2209
2210 static void
2211 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2212 {
2213 uint64_t arg = *llquanta++;
2214 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2215 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2216 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2217 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2218
2219 llquanta[dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, nval)] += incr;
2220 }
2221
2222 /*ARGSUSED*/
2223 static void
2224 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2225 {
2226 #pragma unused(arg) /* __APPLE__ */
2227 data[0]++;
2228 data[1] += nval;
2229 }
2230
2231 /*ARGSUSED*/
2232 static void
2233 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2234 {
2235 #pragma unused(arg) /* __APPLE__ */
2236 int64_t snval = (int64_t)nval;
2237 uint64_t tmp[2];
2238
2239 data[0]++;
2240 data[1] += nval;
2241
2242 /*
2243 * What we want to say here is:
2244 *
2245 * data[2] += nval * nval;
2246 *
2247 * But given that nval is 64-bit, we could easily overflow, so
2248 * we do this as 128-bit arithmetic.
2249 */
2250 if (snval < 0)
2251 snval = -snval;
2252
2253 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2254 dtrace_add_128(data + 2, tmp, data + 2);
2255 }
2256
2257 /*ARGSUSED*/
2258 static void
2259 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2260 {
2261 #pragma unused(nval, arg) /* __APPLE__ */
2262 *oval = *oval + 1;
2263 }
2264
2265 /*ARGSUSED*/
2266 static void
2267 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2268 {
2269 #pragma unused(arg) /* __APPLE__ */
2270 *oval += nval;
2271 }
2272
2273 /*
2274 * Aggregate given the tuple in the principal data buffer, and the aggregating
2275 * action denoted by the specified dtrace_aggregation_t. The aggregation
2276 * buffer is specified as the buf parameter. This routine does not return
2277 * failure; if there is no space in the aggregation buffer, the data will be
2278 * dropped, and a corresponding counter incremented.
2279 */
2280 static void
2281 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2282 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2283 {
2284 #pragma unused(arg)
2285 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2286 uint32_t i, ndx, size, fsize;
2287 uint32_t align = sizeof (uint64_t) - 1;
2288 dtrace_aggbuffer_t *agb;
2289 dtrace_aggkey_t *key;
2290 uint32_t hashval = 0, limit, isstr;
2291 caddr_t tomax, data, kdata;
2292 dtrace_actkind_t action;
2293 dtrace_action_t *act;
2294 uintptr_t offs;
2295
2296 if (buf == NULL)
2297 return;
2298
2299 if (!agg->dtag_hasarg) {
2300 /*
2301 * Currently, only quantize() and lquantize() take additional
2302 * arguments, and they have the same semantics: an increment
2303 * value that defaults to 1 when not present. If additional
2304 * aggregating actions take arguments, the setting of the
2305 * default argument value will presumably have to become more
2306 * sophisticated...
2307 */
2308 arg = 1;
2309 }
2310
2311 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2312 size = rec->dtrd_offset - agg->dtag_base;
2313 fsize = size + rec->dtrd_size;
2314
2315 ASSERT(dbuf->dtb_tomax != NULL);
2316 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2317
2318 if ((tomax = buf->dtb_tomax) == NULL) {
2319 dtrace_buffer_drop(buf);
2320 return;
2321 }
2322
2323 /*
2324 * The metastructure is always at the bottom of the buffer.
2325 */
2326 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2327 sizeof (dtrace_aggbuffer_t));
2328
2329 if (buf->dtb_offset == 0) {
2330 /*
2331 * We just kludge up approximately 1/8th of the size to be
2332 * buckets. If this guess ends up being routinely
2333 * off-the-mark, we may need to dynamically readjust this
2334 * based on past performance.
2335 */
2336 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2337
2338 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2339 (uintptr_t)tomax || hashsize == 0) {
2340 /*
2341 * We've been given a ludicrously small buffer;
2342 * increment our drop count and leave.
2343 */
2344 dtrace_buffer_drop(buf);
2345 return;
2346 }
2347
2348 /*
2349 * And now, a pathetic attempt to try to get a an odd (or
2350 * perchance, a prime) hash size for better hash distribution.
2351 */
2352 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2353 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2354
2355 agb->dtagb_hashsize = hashsize;
2356 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2357 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2358 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2359
2360 for (i = 0; i < agb->dtagb_hashsize; i++)
2361 agb->dtagb_hash[i] = NULL;
2362 }
2363
2364 ASSERT(agg->dtag_first != NULL);
2365 ASSERT(agg->dtag_first->dta_intuple);
2366
2367 /*
2368 * Calculate the hash value based on the key. Note that we _don't_
2369 * include the aggid in the hashing (but we will store it as part of
2370 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2371 * algorithm: a simple, quick algorithm that has no known funnels, and
2372 * gets good distribution in practice. The efficacy of the hashing
2373 * algorithm (and a comparison with other algorithms) may be found by
2374 * running the ::dtrace_aggstat MDB dcmd.
2375 */
2376 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2377 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2378 limit = i + act->dta_rec.dtrd_size;
2379 ASSERT(limit <= size);
2380 isstr = DTRACEACT_ISSTRING(act);
2381
2382 for (; i < limit; i++) {
2383 hashval += data[i];
2384 hashval += (hashval << 10);
2385 hashval ^= (hashval >> 6);
2386
2387 if (isstr && data[i] == '\0')
2388 break;
2389 }
2390 }
2391
2392 hashval += (hashval << 3);
2393 hashval ^= (hashval >> 11);
2394 hashval += (hashval << 15);
2395
2396 /*
2397 * Yes, the divide here is expensive -- but it's generally the least
2398 * of the performance issues given the amount of data that we iterate
2399 * over to compute hash values, compare data, etc.
2400 */
2401 ndx = hashval % agb->dtagb_hashsize;
2402
2403 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2404 ASSERT((caddr_t)key >= tomax);
2405 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2406
2407 if (hashval != key->dtak_hashval || key->dtak_size != size)
2408 continue;
2409
2410 kdata = key->dtak_data;
2411 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2412
2413 for (act = agg->dtag_first; act->dta_intuple;
2414 act = act->dta_next) {
2415 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2416 limit = i + act->dta_rec.dtrd_size;
2417 ASSERT(limit <= size);
2418 isstr = DTRACEACT_ISSTRING(act);
2419
2420 for (; i < limit; i++) {
2421 if (kdata[i] != data[i])
2422 goto next;
2423
2424 if (isstr && data[i] == '\0')
2425 break;
2426 }
2427 }
2428
2429 if (action != key->dtak_action) {
2430 /*
2431 * We are aggregating on the same value in the same
2432 * aggregation with two different aggregating actions.
2433 * (This should have been picked up in the compiler,
2434 * so we may be dealing with errant or devious DIF.)
2435 * This is an error condition; we indicate as much,
2436 * and return.
2437 */
2438 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2439 return;
2440 }
2441
2442 /*
2443 * This is a hit: we need to apply the aggregator to
2444 * the value at this key.
2445 */
2446 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2447 return;
2448 next:
2449 continue;
2450 }
2451
2452 /*
2453 * We didn't find it. We need to allocate some zero-filled space,
2454 * link it into the hash table appropriately, and apply the aggregator
2455 * to the (zero-filled) value.
2456 */
2457 offs = buf->dtb_offset;
2458 while (offs & (align - 1))
2459 offs += sizeof (uint32_t);
2460
2461 /*
2462 * If we don't have enough room to both allocate a new key _and_
2463 * its associated data, increment the drop count and return.
2464 */
2465 if ((uintptr_t)tomax + offs + fsize >
2466 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2467 dtrace_buffer_drop(buf);
2468 return;
2469 }
2470
2471 /*CONSTCOND*/
2472 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2473 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2474 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2475
2476 key->dtak_data = kdata = tomax + offs;
2477 buf->dtb_offset = offs + fsize;
2478
2479 /*
2480 * Now copy the data across.
2481 */
2482 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2483
2484 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2485 kdata[i] = data[i];
2486
2487 /*
2488 * Because strings are not zeroed out by default, we need to iterate
2489 * looking for actions that store strings, and we need to explicitly
2490 * pad these strings out with zeroes.
2491 */
2492 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2493 int nul;
2494
2495 if (!DTRACEACT_ISSTRING(act))
2496 continue;
2497
2498 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2499 limit = i + act->dta_rec.dtrd_size;
2500 ASSERT(limit <= size);
2501
2502 for (nul = 0; i < limit; i++) {
2503 if (nul) {
2504 kdata[i] = '\0';
2505 continue;
2506 }
2507
2508 if (data[i] != '\0')
2509 continue;
2510
2511 nul = 1;
2512 }
2513 }
2514
2515 for (i = size; i < fsize; i++)
2516 kdata[i] = 0;
2517
2518 key->dtak_hashval = hashval;
2519 key->dtak_size = size;
2520 key->dtak_action = action;
2521 key->dtak_next = agb->dtagb_hash[ndx];
2522 agb->dtagb_hash[ndx] = key;
2523
2524 /*
2525 * Finally, apply the aggregator.
2526 */
2527 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2528 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2529 }
2530
2531 /*
2532 * Given consumer state, this routine finds a speculation in the INACTIVE
2533 * state and transitions it into the ACTIVE state. If there is no speculation
2534 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2535 * incremented -- it is up to the caller to take appropriate action.
2536 */
2537 static int
2538 dtrace_speculation(dtrace_state_t *state)
2539 {
2540 int i = 0;
2541 dtrace_speculation_state_t current;
2542 uint32_t *stat = &state->dts_speculations_unavail, count;
2543
2544 while (i < state->dts_nspeculations) {
2545 dtrace_speculation_t *spec = &state->dts_speculations[i];
2546
2547 current = spec->dtsp_state;
2548
2549 if (current != DTRACESPEC_INACTIVE) {
2550 if (current == DTRACESPEC_COMMITTINGMANY ||
2551 current == DTRACESPEC_COMMITTING ||
2552 current == DTRACESPEC_DISCARDING)
2553 stat = &state->dts_speculations_busy;
2554 i++;
2555 continue;
2556 }
2557
2558 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2559 current, DTRACESPEC_ACTIVE) == current)
2560 return (i + 1);
2561 }
2562
2563 /*
2564 * We couldn't find a speculation. If we found as much as a single
2565 * busy speculation buffer, we'll attribute this failure as "busy"
2566 * instead of "unavail".
2567 */
2568 do {
2569 count = *stat;
2570 } while (dtrace_cas32(stat, count, count + 1) != count);
2571
2572 return (0);
2573 }
2574
2575 /*
2576 * This routine commits an active speculation. If the specified speculation
2577 * is not in a valid state to perform a commit(), this routine will silently do
2578 * nothing. The state of the specified speculation is transitioned according
2579 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2580 */
2581 static void
2582 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2583 dtrace_specid_t which)
2584 {
2585 dtrace_speculation_t *spec;
2586 dtrace_buffer_t *src, *dest;
2587 uintptr_t daddr, saddr, dlimit, slimit;
2588 dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE;
2589 intptr_t offs;
2590 uint64_t timestamp;
2591
2592 if (which == 0)
2593 return;
2594
2595 if (which > (dtrace_specid_t)state->dts_nspeculations) {
2596 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2597 return;
2598 }
2599
2600 spec = &state->dts_speculations[which - 1];
2601 src = &spec->dtsp_buffer[cpu];
2602 dest = &state->dts_buffer[cpu];
2603
2604 do {
2605 current = spec->dtsp_state;
2606
2607 if (current == DTRACESPEC_COMMITTINGMANY)
2608 break;
2609
2610 switch (current) {
2611 case DTRACESPEC_INACTIVE:
2612 case DTRACESPEC_DISCARDING:
2613 return;
2614
2615 case DTRACESPEC_COMMITTING:
2616 /*
2617 * This is only possible if we are (a) commit()'ing
2618 * without having done a prior speculate() on this CPU
2619 * and (b) racing with another commit() on a different
2620 * CPU. There's nothing to do -- we just assert that
2621 * our offset is 0.
2622 */
2623 ASSERT(src->dtb_offset == 0);
2624 return;
2625
2626 case DTRACESPEC_ACTIVE:
2627 new = DTRACESPEC_COMMITTING;
2628 break;
2629
2630 case DTRACESPEC_ACTIVEONE:
2631 /*
2632 * This speculation is active on one CPU. If our
2633 * buffer offset is non-zero, we know that the one CPU
2634 * must be us. Otherwise, we are committing on a
2635 * different CPU from the speculate(), and we must
2636 * rely on being asynchronously cleaned.
2637 */
2638 if (src->dtb_offset != 0) {
2639 new = DTRACESPEC_COMMITTING;
2640 break;
2641 }
2642 /*FALLTHROUGH*/
2643
2644 case DTRACESPEC_ACTIVEMANY:
2645 new = DTRACESPEC_COMMITTINGMANY;
2646 break;
2647
2648 default:
2649 ASSERT(0);
2650 }
2651 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2652 current, new) != current);
2653
2654 /*
2655 * We have set the state to indicate that we are committing this
2656 * speculation. Now reserve the necessary space in the destination
2657 * buffer.
2658 */
2659 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2660 sizeof (uint64_t), state, NULL)) < 0) {
2661 dtrace_buffer_drop(dest);
2662 goto out;
2663 }
2664
2665 /*
2666 * We have sufficient space to copy the speculative buffer into the
2667 * primary buffer. First, modify the speculative buffer, filling
2668 * in the timestamp of all entries with the current time. The data
2669 * must have the commit() time rather than the time it was traced,
2670 * so that all entries in the primary buffer are in timestamp order.
2671 */
2672 timestamp = dtrace_gethrtime();
2673 saddr = (uintptr_t)src->dtb_tomax;
2674 slimit = saddr + src->dtb_offset;
2675 while (saddr < slimit) {
2676 size_t size;
2677 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2678
2679 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2680 saddr += sizeof (dtrace_epid_t);
2681 continue;
2682 }
2683
2684 ASSERT(dtrh->dtrh_epid <= ((dtrace_epid_t) state->dts_necbs));
2685 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2686
2687 ASSERT(saddr + size <= slimit);
2688 ASSERT(size >= sizeof(dtrace_rechdr_t));
2689 ASSERT(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) == UINT64_MAX);
2690
2691 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2692
2693 saddr += size;
2694 }
2695
2696 /*
2697 * Copy the buffer across. (Note that this is a
2698 * highly subobtimal bcopy(); in the unlikely event that this becomes
2699 * a serious performance issue, a high-performance DTrace-specific
2700 * bcopy() should obviously be invented.)
2701 */
2702 daddr = (uintptr_t)dest->dtb_tomax + offs;
2703 dlimit = daddr + src->dtb_offset;
2704 saddr = (uintptr_t)src->dtb_tomax;
2705
2706 /*
2707 * First, the aligned portion.
2708 */
2709 while (dlimit - daddr >= sizeof (uint64_t)) {
2710 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2711
2712 daddr += sizeof (uint64_t);
2713 saddr += sizeof (uint64_t);
2714 }
2715
2716 /*
2717 * Now any left-over bit...
2718 */
2719 while (dlimit - daddr)
2720 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2721
2722 /*
2723 * Finally, commit the reserved space in the destination buffer.
2724 */
2725 dest->dtb_offset = offs + src->dtb_offset;
2726
2727 out:
2728 /*
2729 * If we're lucky enough to be the only active CPU on this speculation
2730 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2731 */
2732 if (current == DTRACESPEC_ACTIVE ||
2733 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2734 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2735 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2736 #pragma unused(rval) /* __APPLE__ */
2737
2738 ASSERT(rval == DTRACESPEC_COMMITTING);
2739 }
2740
2741 src->dtb_offset = 0;
2742 src->dtb_xamot_drops += src->dtb_drops;
2743 src->dtb_drops = 0;
2744 }
2745
2746 /*
2747 * This routine discards an active speculation. If the specified speculation
2748 * is not in a valid state to perform a discard(), this routine will silently
2749 * do nothing. The state of the specified speculation is transitioned
2750 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2751 */
2752 static void
2753 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2754 dtrace_specid_t which)
2755 {
2756 dtrace_speculation_t *spec;
2757 dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE;
2758 dtrace_buffer_t *buf;
2759
2760 if (which == 0)
2761 return;
2762
2763 if (which > (dtrace_specid_t)state->dts_nspeculations) {
2764 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2765 return;
2766 }
2767
2768 spec = &state->dts_speculations[which - 1];
2769 buf = &spec->dtsp_buffer[cpu];
2770
2771 do {
2772 current = spec->dtsp_state;
2773
2774 switch (current) {
2775 case DTRACESPEC_INACTIVE:
2776 case DTRACESPEC_COMMITTINGMANY:
2777 case DTRACESPEC_COMMITTING:
2778 case DTRACESPEC_DISCARDING:
2779 return;
2780
2781 case DTRACESPEC_ACTIVE:
2782 case DTRACESPEC_ACTIVEMANY:
2783 new = DTRACESPEC_DISCARDING;
2784 break;
2785
2786 case DTRACESPEC_ACTIVEONE:
2787 if (buf->dtb_offset != 0) {
2788 new = DTRACESPEC_INACTIVE;
2789 } else {
2790 new = DTRACESPEC_DISCARDING;
2791 }
2792 break;
2793
2794 default:
2795 ASSERT(0);
2796 }
2797 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2798 current, new) != current);
2799
2800 buf->dtb_offset = 0;
2801 buf->dtb_drops = 0;
2802 }
2803
2804 /*
2805 * Note: not called from probe context. This function is called
2806 * asynchronously from cross call context to clean any speculations that are
2807 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2808 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2809 * speculation.
2810 */
2811 static void
2812 dtrace_speculation_clean_here(dtrace_state_t *state)
2813 {
2814 dtrace_icookie_t cookie;
2815 processorid_t cpu = CPU->cpu_id;
2816 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2817 dtrace_specid_t i;
2818
2819 cookie = dtrace_interrupt_disable();
2820
2821 if (dest->dtb_tomax == NULL) {
2822 dtrace_interrupt_enable(cookie);
2823 return;
2824 }
2825
2826 for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) {
2827 dtrace_speculation_t *spec = &state->dts_speculations[i];
2828 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2829
2830 if (src->dtb_tomax == NULL)
2831 continue;
2832
2833 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2834 src->dtb_offset = 0;
2835 continue;
2836 }
2837
2838 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2839 continue;
2840
2841 if (src->dtb_offset == 0)
2842 continue;
2843
2844 dtrace_speculation_commit(state, cpu, i + 1);
2845 }
2846
2847 dtrace_interrupt_enable(cookie);
2848 }
2849
2850 /*
2851 * Note: not called from probe context. This function is called
2852 * asynchronously (and at a regular interval) to clean any speculations that
2853 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2854 * is work to be done, it cross calls all CPUs to perform that work;
2855 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2856 * INACTIVE state until they have been cleaned by all CPUs.
2857 */
2858 static void
2859 dtrace_speculation_clean(dtrace_state_t *state)
2860 {
2861 int work = 0;
2862 uint32_t rv;
2863 dtrace_specid_t i;
2864
2865 for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) {
2866 dtrace_speculation_t *spec = &state->dts_speculations[i];
2867
2868 ASSERT(!spec->dtsp_cleaning);
2869
2870 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2871 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2872 continue;
2873
2874 work++;
2875 spec->dtsp_cleaning = 1;
2876 }
2877
2878 if (!work)
2879 return;
2880
2881 dtrace_xcall(DTRACE_CPUALL,
2882 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2883
2884 /*
2885 * We now know that all CPUs have committed or discarded their
2886 * speculation buffers, as appropriate. We can now set the state
2887 * to inactive.
2888 */
2889 for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) {
2890 dtrace_speculation_t *spec = &state->dts_speculations[i];
2891 dtrace_speculation_state_t current, new;
2892
2893 if (!spec->dtsp_cleaning)
2894 continue;
2895
2896 current = spec->dtsp_state;
2897 ASSERT(current == DTRACESPEC_DISCARDING ||
2898 current == DTRACESPEC_COMMITTINGMANY);
2899
2900 new = DTRACESPEC_INACTIVE;
2901
2902 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2903 ASSERT(rv == current);
2904 spec->dtsp_cleaning = 0;
2905 }
2906 }
2907
2908 /*
2909 * Called as part of a speculate() to get the speculative buffer associated
2910 * with a given speculation. Returns NULL if the specified speculation is not
2911 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
2912 * the active CPU is not the specified CPU -- the speculation will be
2913 * atomically transitioned into the ACTIVEMANY state.
2914 */
2915 static dtrace_buffer_t *
2916 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2917 dtrace_specid_t which)
2918 {
2919 dtrace_speculation_t *spec;
2920 dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE;
2921 dtrace_buffer_t *buf;
2922
2923 if (which == 0)
2924 return (NULL);
2925
2926 if (which > (dtrace_specid_t)state->dts_nspeculations) {
2927 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2928 return (NULL);
2929 }
2930
2931 spec = &state->dts_speculations[which - 1];
2932 buf = &spec->dtsp_buffer[cpuid];
2933
2934 do {
2935 current = spec->dtsp_state;
2936
2937 switch (current) {
2938 case DTRACESPEC_INACTIVE:
2939 case DTRACESPEC_COMMITTINGMANY:
2940 case DTRACESPEC_DISCARDING:
2941 return (NULL);
2942
2943 case DTRACESPEC_COMMITTING:
2944 ASSERT(buf->dtb_offset == 0);
2945 return (NULL);
2946
2947 case DTRACESPEC_ACTIVEONE:
2948 /*
2949 * This speculation is currently active on one CPU.
2950 * Check the offset in the buffer; if it's non-zero,
2951 * that CPU must be us (and we leave the state alone).
2952 * If it's zero, assume that we're starting on a new
2953 * CPU -- and change the state to indicate that the
2954 * speculation is active on more than one CPU.
2955 */
2956 if (buf->dtb_offset != 0)
2957 return (buf);
2958
2959 new = DTRACESPEC_ACTIVEMANY;
2960 break;
2961
2962 case DTRACESPEC_ACTIVEMANY:
2963 return (buf);
2964
2965 case DTRACESPEC_ACTIVE:
2966 new = DTRACESPEC_ACTIVEONE;
2967 break;
2968
2969 default:
2970 ASSERT(0);
2971 }
2972 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2973 current, new) != current);
2974
2975 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2976 return (buf);
2977 }
2978
2979 /*
2980 * Return a string. In the event that the user lacks the privilege to access
2981 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2982 * don't fail access checking.
2983 *
2984 * dtrace_dif_variable() uses this routine as a helper for various
2985 * builtin values such as 'execname' and 'probefunc.'
2986 */
2987 static
2988 uintptr_t
2989 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2990 dtrace_mstate_t *mstate)
2991 {
2992 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2993 uintptr_t ret;
2994 size_t strsz;
2995
2996 /*
2997 * The easy case: this probe is allowed to read all of memory, so
2998 * we can just return this as a vanilla pointer.
2999 */
3000 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3001 return (addr);
3002
3003 /*
3004 * This is the tougher case: we copy the string in question from
3005 * kernel memory into scratch memory and return it that way: this
3006 * ensures that we won't trip up when access checking tests the
3007 * BYREF return value.
3008 */
3009 strsz = dtrace_strlen((char *)addr, size) + 1;
3010
3011 if (mstate->dtms_scratch_ptr + strsz >
3012 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3013 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3014 return (0);
3015 }
3016
3017 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3018 strsz);
3019 ret = mstate->dtms_scratch_ptr;
3020 mstate->dtms_scratch_ptr += strsz;
3021 return (ret);
3022 }
3023
3024 /*
3025 * This function implements the DIF emulator's variable lookups. The emulator
3026 * passes a reserved variable identifier and optional built-in array index.
3027 */
3028 static uint64_t
3029 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3030 uint64_t ndx)
3031 {
3032 /*
3033 * If we're accessing one of the uncached arguments, we'll turn this
3034 * into a reference in the args array.
3035 */
3036 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3037 ndx = v - DIF_VAR_ARG0;
3038 v = DIF_VAR_ARGS;
3039 }
3040
3041 switch (v) {
3042 case DIF_VAR_ARGS:
3043 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3044 if (ndx >= sizeof (mstate->dtms_arg) /
3045 sizeof (mstate->dtms_arg[0])) {
3046 /*
3047 * APPLE NOTE: Account for introduction of __dtrace_probe()
3048 */
3049 int aframes = mstate->dtms_probe->dtpr_aframes + 3;
3050 dtrace_provider_t *pv;
3051 uint64_t val;
3052
3053 pv = mstate->dtms_probe->dtpr_provider;
3054 if (pv->dtpv_pops.dtps_getargval != NULL)
3055 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3056 mstate->dtms_probe->dtpr_id,
3057 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3058 /* Special case access of arg5 as passed to dtrace_probe_error() (which see.) */
3059 else if (mstate->dtms_probe->dtpr_id == dtrace_probeid_error && ndx == 5) {
3060 return ((dtrace_state_t *)(uintptr_t)(mstate->dtms_arg[0]))->dts_arg_error_illval;
3061 }
3062
3063 else
3064 val = dtrace_getarg(ndx, aframes);
3065
3066 /*
3067 * This is regrettably required to keep the compiler
3068 * from tail-optimizing the call to dtrace_getarg().
3069 * The condition always evaluates to true, but the
3070 * compiler has no way of figuring that out a priori.
3071 * (None of this would be necessary if the compiler
3072 * could be relied upon to _always_ tail-optimize
3073 * the call to dtrace_getarg() -- but it can't.)
3074 */
3075 if (mstate->dtms_probe != NULL)
3076 return (val);
3077
3078 ASSERT(0);
3079 }
3080
3081 return (mstate->dtms_arg[ndx]);
3082
3083 case DIF_VAR_UREGS: {
3084 thread_t thread;
3085
3086 if (!dtrace_priv_proc(state))
3087 return (0);
3088
3089 if ((thread = current_thread()) == NULL) {
3090 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3091 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0;
3092 return (0);
3093 }
3094
3095 return (dtrace_getreg(find_user_regs(thread), ndx));
3096 }
3097
3098
3099 case DIF_VAR_CURTHREAD:
3100 if (!dtrace_priv_kernel(state))
3101 return (0);
3102
3103 return ((uint64_t)(uintptr_t)current_thread());
3104
3105 case DIF_VAR_TIMESTAMP:
3106 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3107 mstate->dtms_timestamp = dtrace_gethrtime();
3108 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3109 }
3110 return (mstate->dtms_timestamp);
3111
3112 case DIF_VAR_VTIMESTAMP:
3113 ASSERT(dtrace_vtime_references != 0);
3114 return (dtrace_get_thread_vtime(current_thread()));
3115
3116 case DIF_VAR_WALLTIMESTAMP:
3117 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3118 mstate->dtms_walltimestamp = dtrace_gethrestime();
3119 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3120 }
3121 return (mstate->dtms_walltimestamp);
3122
3123 case DIF_VAR_MACHTIMESTAMP:
3124 if (!(mstate->dtms_present & DTRACE_MSTATE_MACHTIMESTAMP)) {
3125 mstate->dtms_machtimestamp = mach_absolute_time();
3126 mstate->dtms_present |= DTRACE_MSTATE_MACHTIMESTAMP;
3127 }
3128 return (mstate->dtms_machtimestamp);
3129
3130 case DIF_VAR_CPU:
3131 return ((uint64_t) dtrace_get_thread_last_cpu_id(current_thread()));
3132
3133 case DIF_VAR_IPL:
3134 if (!dtrace_priv_kernel(state))
3135 return (0);
3136 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3137 mstate->dtms_ipl = dtrace_getipl();
3138 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3139 }
3140 return (mstate->dtms_ipl);
3141
3142 case DIF_VAR_EPID:
3143 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3144 return (mstate->dtms_epid);
3145
3146 case DIF_VAR_ID:
3147 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3148 return (mstate->dtms_probe->dtpr_id);
3149
3150 case DIF_VAR_STACKDEPTH:
3151 if (!dtrace_priv_kernel(state))
3152 return (0);
3153 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3154 /*
3155 * APPLE NOTE: Account for introduction of __dtrace_probe()
3156 */
3157 int aframes = mstate->dtms_probe->dtpr_aframes + 3;
3158
3159 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3160 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3161 }
3162 return (mstate->dtms_stackdepth);
3163
3164 case DIF_VAR_USTACKDEPTH:
3165 if (!dtrace_priv_proc(state))
3166 return (0);
3167 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3168 /*
3169 * See comment in DIF_VAR_PID.
3170 */
3171 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3172 CPU_ON_INTR(CPU)) {
3173 mstate->dtms_ustackdepth = 0;
3174 } else {
3175 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3176 mstate->dtms_ustackdepth =
3177 dtrace_getustackdepth();
3178 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3179 }
3180 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3181 }
3182 return (mstate->dtms_ustackdepth);
3183
3184 case DIF_VAR_CALLER:
3185 if (!dtrace_priv_kernel(state))
3186 return (0);
3187 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3188 /*
3189 * APPLE NOTE: Account for introduction of __dtrace_probe()
3190 */
3191 int aframes = mstate->dtms_probe->dtpr_aframes + 3;
3192
3193 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3194 /*
3195 * If this is an unanchored probe, we are
3196 * required to go through the slow path:
3197 * dtrace_caller() only guarantees correct
3198 * results for anchored probes.
3199 */
3200 pc_t caller[2];
3201
3202 dtrace_getpcstack(caller, 2, aframes,
3203 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3204 mstate->dtms_caller = caller[1];
3205 } else if ((mstate->dtms_caller =
3206 dtrace_caller(aframes)) == (uintptr_t)-1) {
3207 /*
3208 * We have failed to do this the quick way;
3209 * we must resort to the slower approach of
3210 * calling dtrace_getpcstack().
3211 */
3212 pc_t caller;
3213
3214 dtrace_getpcstack(&caller, 1, aframes, NULL);
3215 mstate->dtms_caller = caller;
3216 }
3217
3218 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3219 }
3220 return (mstate->dtms_caller);
3221
3222 case DIF_VAR_UCALLER:
3223 if (!dtrace_priv_proc(state))
3224 return (0);
3225
3226 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3227 uint64_t ustack[3];
3228
3229 /*
3230 * dtrace_getupcstack() fills in the first uint64_t
3231 * with the current PID. The second uint64_t will
3232 * be the program counter at user-level. The third
3233 * uint64_t will contain the caller, which is what
3234 * we're after.
3235 */
3236 ustack[2] = 0;
3237 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3238 dtrace_getupcstack(ustack, 3);
3239 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3240 mstate->dtms_ucaller = ustack[2];
3241 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3242 }
3243
3244 return (mstate->dtms_ucaller);
3245
3246 case DIF_VAR_PROBEPROV:
3247 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3248 return (dtrace_dif_varstr(
3249 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3250 state, mstate));
3251
3252 case DIF_VAR_PROBEMOD:
3253 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3254 return (dtrace_dif_varstr(
3255 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3256 state, mstate));
3257
3258 case DIF_VAR_PROBEFUNC:
3259 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3260 return (dtrace_dif_varstr(
3261 (uintptr_t)mstate->dtms_probe->dtpr_func,
3262 state, mstate));
3263
3264 case DIF_VAR_PROBENAME:
3265 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3266 return (dtrace_dif_varstr(
3267 (uintptr_t)mstate->dtms_probe->dtpr_name,
3268 state, mstate));
3269
3270 case DIF_VAR_PID:
3271 if (!dtrace_priv_proc_relaxed(state))
3272 return (0);
3273
3274 /*
3275 * Note that we are assuming that an unanchored probe is
3276 * always due to a high-level interrupt. (And we're assuming
3277 * that there is only a single high level interrupt.)
3278 */
3279 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3280 /* Anchored probe that fires while on an interrupt accrues to process 0 */
3281 return 0;
3282
3283 return ((uint64_t)dtrace_proc_selfpid());
3284
3285 case DIF_VAR_PPID:
3286 if (!dtrace_priv_proc_relaxed(state))
3287 return (0);
3288
3289 /*
3290 * See comment in DIF_VAR_PID.
3291 */
3292 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3293 return (0);
3294
3295 return ((uint64_t)dtrace_proc_selfppid());
3296
3297 case DIF_VAR_TID:
3298 /* We do not need to check for null current_thread() */
3299 return thread_tid(current_thread()); /* globally unique */
3300
3301 case DIF_VAR_PTHREAD_SELF:
3302 if (!dtrace_priv_proc(state))
3303 return (0);
3304
3305 /* Not currently supported, but we should be able to delta the dispatchqaddr and dispatchqoffset to get pthread_self */
3306 return 0;
3307
3308 case DIF_VAR_DISPATCHQADDR:
3309 if (!dtrace_priv_proc(state))
3310 return (0);
3311
3312 /* We do not need to check for null current_thread() */
3313 return thread_dispatchqaddr(current_thread());
3314
3315 case DIF_VAR_EXECNAME:
3316 {
3317 char *xname = (char *)mstate->dtms_scratch_ptr;
3318 size_t scratch_size = MAXCOMLEN+1;
3319
3320 /* The scratch allocation's lifetime is that of the clause. */
3321 if (!DTRACE_INSCRATCH(mstate, scratch_size)) {
3322 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3323 return 0;
3324 }
3325
3326 if (!dtrace_priv_proc_relaxed(state))
3327 return (0);
3328
3329 mstate->dtms_scratch_ptr += scratch_size;
3330 proc_selfname( xname, scratch_size );
3331
3332 return ((uint64_t)(uintptr_t)xname);
3333 }
3334
3335
3336 case DIF_VAR_ZONENAME:
3337 {
3338 /* scratch_size is equal to length('global') + 1 for the null-terminator. */
3339 char *zname = (char *)mstate->dtms_scratch_ptr;
3340 size_t scratch_size = 6 + 1;
3341
3342 if (!dtrace_priv_proc(state))
3343 return (0);
3344
3345 /* The scratch allocation's lifetime is that of the clause. */
3346 if (!DTRACE_INSCRATCH(mstate, scratch_size)) {
3347 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3348 return 0;
3349 }
3350
3351 mstate->dtms_scratch_ptr += scratch_size;
3352
3353 /* The kernel does not provide zonename, it will always return 'global'. */
3354 strlcpy(zname, "global", scratch_size);
3355
3356 return ((uint64_t)(uintptr_t)zname);
3357 }
3358
3359 case DIF_VAR_UID:
3360 if (!dtrace_priv_proc_relaxed(state))
3361 return (0);
3362
3363 /*
3364 * See comment in DIF_VAR_PID.
3365 */
3366 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3367 return (0);
3368
3369 return ((uint64_t) dtrace_proc_selfruid());
3370
3371 case DIF_VAR_GID:
3372 if (!dtrace_priv_proc(state))
3373 return (0);
3374
3375 /*
3376 * See comment in DIF_VAR_PID.
3377 */
3378 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3379 return (0);
3380
3381 if (dtrace_CRED() != NULL)
3382 /* Credential does not require lazy initialization. */
3383 return ((uint64_t)kauth_getgid());
3384 else {
3385 /* proc_lock would be taken under kauth_cred_proc_ref() in kauth_cred_get(). */
3386 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3387 return -1ULL;
3388 }
3389
3390 case DIF_VAR_ERRNO: {
3391 uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
3392 if (!dtrace_priv_proc(state))
3393 return (0);
3394
3395 /*
3396 * See comment in DIF_VAR_PID.
3397 */
3398 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3399 return (0);
3400
3401 if (uthread)
3402 return (uint64_t)uthread->t_dtrace_errno;
3403 else {
3404 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3405 return -1ULL;
3406 }
3407 }
3408
3409 default:
3410 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3411 return (0);
3412 }
3413 }
3414
3415 /*
3416 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3417 * Notice that we don't bother validating the proper number of arguments or
3418 * their types in the tuple stack. This isn't needed because all argument
3419 * interpretation is safe because of our load safety -- the worst that can
3420 * happen is that a bogus program can obtain bogus results.
3421 */
3422 static void
3423 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3424 dtrace_key_t *tupregs, int nargs,
3425 dtrace_mstate_t *mstate, dtrace_state_t *state)
3426 {
3427 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3428 volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3429 dtrace_vstate_t *vstate = &state->dts_vstate;
3430
3431 #if !defined(__APPLE__)
3432 union {
3433 mutex_impl_t mi;
3434 uint64_t mx;
3435 } m;
3436
3437 union {
3438 krwlock_t ri;
3439 uintptr_t rw;
3440 } r;
3441 #else
3442 /* FIXME: awaits lock/mutex work */
3443 #endif /* __APPLE__ */
3444
3445 switch (subr) {
3446 case DIF_SUBR_RAND:
3447 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3448 break;
3449
3450 #if !defined(__APPLE__)
3451 case DIF_SUBR_MUTEX_OWNED:
3452 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3453 mstate, vstate)) {
3454 regs[rd] = 0;
3455 break;
3456 }
3457
3458 m.mx = dtrace_load64(tupregs[0].dttk_value);
3459 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3460 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3461 else
3462 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3463 break;
3464
3465 case DIF_SUBR_MUTEX_OWNER:
3466 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3467 mstate, vstate)) {
3468 regs[rd] = 0;
3469 break;
3470 }
3471
3472 m.mx = dtrace_load64(tupregs[0].dttk_value);
3473 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3474 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3475 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3476 else
3477 regs[rd] = 0;
3478 break;
3479
3480 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3481 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3482 mstate, vstate)) {
3483 regs[rd] = 0;
3484 break;
3485 }
3486
3487 m.mx = dtrace_load64(tupregs[0].dttk_value);
3488 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3489 break;
3490
3491 case DIF_SUBR_MUTEX_TYPE_SPIN:
3492 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3493 mstate, vstate)) {
3494 regs[rd] = 0;
3495 break;
3496 }
3497
3498 m.mx = dtrace_load64(tupregs[0].dttk_value);
3499 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3500 break;
3501
3502 case DIF_SUBR_RW_READ_HELD: {
3503 uintptr_t tmp;
3504
3505 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3506 mstate, vstate)) {
3507 regs[rd] = 0;
3508 break;
3509 }
3510
3511 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3512 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3513 break;
3514 }
3515
3516 case DIF_SUBR_RW_WRITE_HELD:
3517 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3518 mstate, vstate)) {
3519 regs[rd] = 0;
3520 break;
3521 }
3522
3523 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3524 regs[rd] = _RW_WRITE_HELD(&r.ri);
3525 break;
3526
3527 case DIF_SUBR_RW_ISWRITER:
3528 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3529 mstate, vstate)) {
3530 regs[rd] = 0;
3531 break;
3532 }
3533
3534 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3535 regs[rd] = _RW_ISWRITER(&r.ri);
3536 break;
3537 #else
3538 /* FIXME: awaits lock/mutex work */
3539 #endif /* __APPLE__ */
3540
3541 case DIF_SUBR_BCOPY: {
3542 /*
3543 * We need to be sure that the destination is in the scratch
3544 * region -- no other region is allowed.
3545 */
3546 uintptr_t src = tupregs[0].dttk_value;
3547 uintptr_t dest = tupregs[1].dttk_value;
3548 size_t size = tupregs[2].dttk_value;
3549
3550 if (!dtrace_inscratch(dest, size, mstate)) {
3551 *flags |= CPU_DTRACE_BADADDR;
3552 *illval = regs[rd];
3553 break;
3554 }
3555
3556 if (!dtrace_canload(src, size, mstate, vstate)) {
3557 regs[rd] = 0;
3558 break;
3559 }
3560
3561 dtrace_bcopy((void *)src, (void *)dest, size);
3562 break;
3563 }
3564
3565 case DIF_SUBR_ALLOCA:
3566 case DIF_SUBR_COPYIN: {
3567 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3568 uint64_t size =
3569 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3570 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3571
3572 /*
3573 * This action doesn't require any credential checks since
3574 * probes will not activate in user contexts to which the
3575 * enabling user does not have permissions.
3576 */
3577
3578 /*
3579 * Rounding up the user allocation size could have overflowed
3580 * a large, bogus allocation (like -1ULL) to 0.
3581 */
3582 if (scratch_size < size ||
3583 !DTRACE_INSCRATCH(mstate, scratch_size)) {
3584 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3585 regs[rd] = 0;
3586 break;
3587 }
3588
3589 if (subr == DIF_SUBR_COPYIN) {
3590 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3591 if (dtrace_priv_proc(state))
3592 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3593 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3594 }
3595
3596 mstate->dtms_scratch_ptr += scratch_size;
3597 regs[rd] = dest;
3598 break;
3599 }
3600
3601 case DIF_SUBR_COPYINTO: {
3602 uint64_t size = tupregs[1].dttk_value;
3603 uintptr_t dest = tupregs[2].dttk_value;
3604
3605 /*
3606 * This action doesn't require any credential checks since
3607 * probes will not activate in user contexts to which the
3608 * enabling user does not have permissions.
3609 */
3610 if (!dtrace_inscratch(dest, size, mstate)) {
3611 *flags |= CPU_DTRACE_BADADDR;
3612 *illval = regs[rd];
3613 break;
3614 }
3615
3616 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3617 if (dtrace_priv_proc(state))
3618 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3619 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3620 break;
3621 }
3622
3623 case DIF_SUBR_COPYINSTR: {
3624 uintptr_t dest = mstate->dtms_scratch_ptr;
3625 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3626
3627 if (nargs > 1 && tupregs[1].dttk_value < size)
3628 size = tupregs[1].dttk_value + 1;
3629
3630 /*
3631 * This action doesn't require any credential checks since
3632 * probes will not activate in user contexts to which the
3633 * enabling user does not have permissions.
3634 */
3635 if (!DTRACE_INSCRATCH(mstate, size)) {
3636 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3637 regs[rd] = 0;
3638 break;
3639 }
3640
3641 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3642 if (dtrace_priv_proc(state))
3643 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3644 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3645
3646 ((char *)dest)[size - 1] = '\0';
3647 mstate->dtms_scratch_ptr += size;
3648 regs[rd] = dest;
3649 break;
3650 }
3651
3652 case DIF_SUBR_MSGSIZE:
3653 case DIF_SUBR_MSGDSIZE: {
3654 /* Darwin does not implement SysV streams messages */
3655 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3656 regs[rd] = 0;
3657 break;
3658 }
3659
3660 case DIF_SUBR_PROGENYOF: {
3661 pid_t pid = tupregs[0].dttk_value;
3662 struct proc *p = current_proc();
3663 int rval = 0, lim = nprocs;
3664
3665 while(p && (lim-- > 0)) {
3666 pid_t ppid;
3667
3668 ppid = (pid_t)dtrace_load32((uintptr_t)&(p->p_pid));
3669 if (*flags & CPU_DTRACE_FAULT)
3670 break;
3671
3672 if (ppid == pid) {
3673 rval = 1;
3674 break;
3675 }
3676
3677 if (ppid == 0)
3678 break; /* Can't climb process tree any further. */
3679
3680 p = (struct proc *)dtrace_loadptr((uintptr_t)&(p->p_pptr));
3681 if (*flags & CPU_DTRACE_FAULT)
3682 break;
3683 }
3684
3685 regs[rd] = rval;
3686 break;
3687 }
3688
3689 case DIF_SUBR_SPECULATION:
3690 regs[rd] = dtrace_speculation(state);
3691 break;
3692
3693
3694 case DIF_SUBR_COPYOUT: {
3695 uintptr_t kaddr = tupregs[0].dttk_value;
3696 user_addr_t uaddr = tupregs[1].dttk_value;
3697 uint64_t size = tupregs[2].dttk_value;
3698
3699 if (!dtrace_destructive_disallow &&
3700 dtrace_priv_proc_control(state) &&
3701 !dtrace_istoxic(kaddr, size)) {
3702 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3703 dtrace_copyout(kaddr, uaddr, size, flags);
3704 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3705 }
3706 break;
3707 }
3708
3709 case DIF_SUBR_COPYOUTSTR: {
3710 uintptr_t kaddr = tupregs[0].dttk_value;
3711 user_addr_t uaddr = tupregs[1].dttk_value;
3712 uint64_t size = tupregs[2].dttk_value;
3713
3714 if (!dtrace_destructive_disallow &&
3715 dtrace_priv_proc_control(state) &&
3716 !dtrace_istoxic(kaddr, size)) {
3717 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3718 dtrace_copyoutstr(kaddr, uaddr, size, flags);
3719 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3720 }
3721 break;
3722 }
3723
3724 case DIF_SUBR_STRLEN: {
3725 size_t sz;
3726 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3727 sz = dtrace_strlen((char *)addr,
3728 state->dts_options[DTRACEOPT_STRSIZE]);
3729
3730 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3731 regs[rd] = 0;
3732 break;
3733 }
3734
3735 regs[rd] = sz;
3736
3737 break;
3738 }
3739
3740 case DIF_SUBR_STRCHR:
3741 case DIF_SUBR_STRRCHR: {
3742 /*
3743 * We're going to iterate over the string looking for the
3744 * specified character. We will iterate until we have reached
3745 * the string length or we have found the character. If this
3746 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3747 * of the specified character instead of the first.
3748 */
3749 uintptr_t saddr = tupregs[0].dttk_value;
3750 uintptr_t addr = tupregs[0].dttk_value;
3751 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3752 char c, target = (char)tupregs[1].dttk_value;
3753
3754 for (regs[rd] = 0; addr < limit; addr++) {
3755 if ((c = dtrace_load8(addr)) == target) {
3756 regs[rd] = addr;
3757
3758 if (subr == DIF_SUBR_STRCHR)
3759 break;
3760 }
3761
3762 if (c == '\0')
3763 break;
3764 }
3765
3766 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3767 regs[rd] = 0;
3768 break;
3769 }
3770
3771 break;
3772 }
3773
3774 case DIF_SUBR_STRSTR:
3775 case DIF_SUBR_INDEX:
3776 case DIF_SUBR_RINDEX: {
3777 /*
3778 * We're going to iterate over the string looking for the
3779 * specified string. We will iterate until we have reached
3780 * the string length or we have found the string. (Yes, this
3781 * is done in the most naive way possible -- but considering
3782 * that the string we're searching for is likely to be
3783 * relatively short, the complexity of Rabin-Karp or similar
3784 * hardly seems merited.)
3785 */
3786 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3787 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3788 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3789 size_t len = dtrace_strlen(addr, size);
3790 size_t sublen = dtrace_strlen(substr, size);
3791 char *limit = addr + len, *orig = addr;
3792 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3793 int inc = 1;
3794
3795 regs[rd] = notfound;
3796
3797 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3798 regs[rd] = 0;
3799 break;
3800 }
3801
3802 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3803 vstate)) {
3804 regs[rd] = 0;
3805 break;
3806 }
3807
3808 /*
3809 * strstr() and index()/rindex() have similar semantics if
3810 * both strings are the empty string: strstr() returns a
3811 * pointer to the (empty) string, and index() and rindex()
3812 * both return index 0 (regardless of any position argument).
3813 */
3814 if (sublen == 0 && len == 0) {
3815 if (subr == DIF_SUBR_STRSTR)
3816 regs[rd] = (uintptr_t)addr;
3817 else
3818 regs[rd] = 0;
3819 break;
3820 }
3821
3822 if (subr != DIF_SUBR_STRSTR) {
3823 if (subr == DIF_SUBR_RINDEX) {
3824 limit = orig - 1;
3825 addr += len;
3826 inc = -1;
3827 }
3828
3829 /*
3830 * Both index() and rindex() take an optional position
3831 * argument that denotes the starting position.
3832 */
3833 if (nargs == 3) {
3834 int64_t pos = (int64_t)tupregs[2].dttk_value;
3835
3836 /*
3837 * If the position argument to index() is
3838 * negative, Perl implicitly clamps it at
3839 * zero. This semantic is a little surprising
3840 * given the special meaning of negative
3841 * positions to similar Perl functions like
3842 * substr(), but it appears to reflect a
3843 * notion that index() can start from a
3844 * negative index and increment its way up to
3845 * the string. Given this notion, Perl's
3846 * rindex() is at least self-consistent in
3847 * that it implicitly clamps positions greater
3848 * than the string length to be the string
3849 * length. Where Perl completely loses
3850 * coherence, however, is when the specified
3851 * substring is the empty string (""). In
3852 * this case, even if the position is
3853 * negative, rindex() returns 0 -- and even if
3854 * the position is greater than the length,
3855 * index() returns the string length. These
3856 * semantics violate the notion that index()
3857 * should never return a value less than the
3858 * specified position and that rindex() should
3859 * never return a value greater than the
3860 * specified position. (One assumes that
3861 * these semantics are artifacts of Perl's
3862 * implementation and not the results of
3863 * deliberate design -- it beggars belief that
3864 * even Larry Wall could desire such oddness.)
3865 * While in the abstract one would wish for
3866 * consistent position semantics across
3867 * substr(), index() and rindex() -- or at the
3868 * very least self-consistent position
3869 * semantics for index() and rindex() -- we
3870 * instead opt to keep with the extant Perl
3871 * semantics, in all their broken glory. (Do
3872 * we have more desire to maintain Perl's
3873 * semantics than Perl does? Probably.)
3874 */
3875 if (subr == DIF_SUBR_RINDEX) {
3876 if (pos < 0) {
3877 if (sublen == 0)
3878 regs[rd] = 0;
3879 break;
3880 }
3881
3882 if ((size_t)pos > len)
3883 pos = len;
3884 } else {
3885 if (pos < 0)
3886 pos = 0;
3887
3888 if ((size_t)pos >= len) {
3889 if (sublen == 0)
3890 regs[rd] = len;
3891 break;
3892 }
3893 }
3894
3895 addr = orig + pos;
3896 }
3897 }
3898
3899 for (regs[rd] = notfound; addr != limit; addr += inc) {
3900 if (dtrace_strncmp(addr, substr, sublen) == 0) {
3901 if (subr != DIF_SUBR_STRSTR) {
3902 /*
3903 * As D index() and rindex() are
3904 * modeled on Perl (and not on awk),
3905 * we return a zero-based (and not a
3906 * one-based) index. (For you Perl
3907 * weenies: no, we're not going to add
3908 * $[ -- and shouldn't you be at a con
3909 * or something?)
3910 */
3911 regs[rd] = (uintptr_t)(addr - orig);
3912 break;
3913 }
3914
3915 ASSERT(subr == DIF_SUBR_STRSTR);
3916 regs[rd] = (uintptr_t)addr;
3917 break;
3918 }
3919 }
3920
3921 break;
3922 }
3923
3924 case DIF_SUBR_STRTOK: {
3925 uintptr_t addr = tupregs[0].dttk_value;
3926 uintptr_t tokaddr = tupregs[1].dttk_value;
3927 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3928 uintptr_t limit, toklimit = tokaddr + size;
3929 char *dest = (char *)mstate->dtms_scratch_ptr;
3930 uint8_t c='\0', tokmap[32]; /* 256 / 8 */
3931 uint64_t i = 0;
3932
3933 /*
3934 * Check both the token buffer and (later) the input buffer,
3935 * since both could be non-scratch addresses.
3936 */
3937 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3938 regs[rd] = 0;
3939 break;
3940 }
3941
3942 if (!DTRACE_INSCRATCH(mstate, size)) {
3943 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3944 regs[rd] = 0;
3945 break;
3946 }
3947
3948 if (addr == 0) {
3949 /*
3950 * If the address specified is NULL, we use our saved
3951 * strtok pointer from the mstate. Note that this
3952 * means that the saved strtok pointer is _only_
3953 * valid within multiple enablings of the same probe --
3954 * it behaves like an implicit clause-local variable.
3955 */
3956 addr = mstate->dtms_strtok;
3957 } else {
3958 /*
3959 * If the user-specified address is non-NULL we must
3960 * access check it. This is the only time we have
3961 * a chance to do so, since this address may reside
3962 * in the string table of this clause-- future calls
3963 * (when we fetch addr from mstate->dtms_strtok)
3964 * would fail this access check.
3965 */
3966 if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3967 regs[rd] = 0;
3968 break;
3969 }
3970 }
3971
3972 /*
3973 * First, zero the token map, and then process the token
3974 * string -- setting a bit in the map for every character
3975 * found in the token string.
3976 */
3977 for (i = 0; i < (int)sizeof (tokmap); i++)
3978 tokmap[i] = 0;
3979
3980 for (; tokaddr < toklimit; tokaddr++) {
3981 if ((c = dtrace_load8(tokaddr)) == '\0')
3982 break;
3983
3984 ASSERT((c >> 3) < sizeof (tokmap));
3985 tokmap[c >> 3] |= (1 << (c & 0x7));
3986 }
3987
3988 for (limit = addr + size; addr < limit; addr++) {
3989 /*
3990 * We're looking for a character that is _not_ contained
3991 * in the token string.
3992 */
3993 if ((c = dtrace_load8(addr)) == '\0')
3994 break;
3995
3996 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3997 break;
3998 }
3999
4000 if (c == '\0') {
4001 /*
4002 * We reached the end of the string without finding
4003 * any character that was not in the token string.
4004 * We return NULL in this case, and we set the saved
4005 * address to NULL as well.
4006 */
4007 regs[rd] = 0;
4008 mstate->dtms_strtok = 0;
4009 break;
4010 }
4011
4012 /*
4013 * From here on, we're copying into the destination string.
4014 */
4015 for (i = 0; addr < limit && i < size - 1; addr++) {
4016 if ((c = dtrace_load8(addr)) == '\0')
4017 break;
4018
4019 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4020 break;
4021
4022 ASSERT(i < size);
4023 dest[i++] = c;
4024 }
4025
4026 ASSERT(i < size);
4027 dest[i] = '\0';
4028 regs[rd] = (uintptr_t)dest;
4029 mstate->dtms_scratch_ptr += size;
4030 mstate->dtms_strtok = addr;
4031 break;
4032 }
4033
4034 case DIF_SUBR_SUBSTR: {
4035 uintptr_t s = tupregs[0].dttk_value;
4036 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4037 char *d = (char *)mstate->dtms_scratch_ptr;
4038 int64_t index = (int64_t)tupregs[1].dttk_value;
4039 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4040 size_t len = dtrace_strlen((char *)s, size);
4041 int64_t i = 0;
4042
4043 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4044 regs[rd] = 0;
4045 break;
4046 }
4047
4048 if (!DTRACE_INSCRATCH(mstate, size)) {
4049 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4050 regs[rd] = 0;
4051 break;
4052 }
4053
4054 if (nargs <= 2)
4055 remaining = (int64_t)size;
4056
4057 if (index < 0) {
4058 index += len;
4059
4060 if (index < 0 && index + remaining > 0) {
4061 remaining += index;
4062 index = 0;
4063 }
4064 }
4065
4066 if ((size_t)index >= len || index < 0) {
4067 remaining = 0;
4068 } else if (remaining < 0) {
4069 remaining += len - index;
4070 } else if ((uint64_t)index + (uint64_t)remaining > size) {
4071 remaining = size - index;
4072 }
4073
4074 for (i = 0; i < remaining; i++) {
4075 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4076 break;
4077 }
4078
4079 d[i] = '\0';
4080
4081 mstate->dtms_scratch_ptr += size;
4082 regs[rd] = (uintptr_t)d;
4083 break;
4084 }
4085
4086 case DIF_SUBR_GETMAJOR:
4087 regs[rd] = (uintptr_t)major( (dev_t)tupregs[0].dttk_value );
4088 break;
4089
4090 case DIF_SUBR_GETMINOR:
4091 regs[rd] = (uintptr_t)minor( (dev_t)tupregs[0].dttk_value );
4092 break;
4093
4094 case DIF_SUBR_DDI_PATHNAME: {
4095 /* APPLE NOTE: currently unsupported on Darwin */
4096 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4097 regs[rd] = 0;
4098 break;
4099 }
4100
4101 case DIF_SUBR_STRJOIN: {
4102 char *d = (char *)mstate->dtms_scratch_ptr;
4103 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4104 uintptr_t s1 = tupregs[0].dttk_value;
4105 uintptr_t s2 = tupregs[1].dttk_value;
4106 uint64_t i = 0;
4107
4108 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4109 !dtrace_strcanload(s2, size, mstate, vstate)) {
4110 regs[rd] = 0;
4111 break;
4112 }
4113
4114 if (!DTRACE_INSCRATCH(mstate, size)) {
4115 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4116 regs[rd] = 0;
4117 break;
4118 }
4119
4120 for (;;) {
4121 if (i >= size) {
4122 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4123 regs[rd] = 0;
4124 break;
4125 }
4126
4127 if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4128 i--;
4129 break;
4130 }
4131 }
4132
4133 for (;;) {
4134 if (i >= size) {
4135 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4136 regs[rd] = 0;
4137 break;
4138 }
4139
4140 if ((d[i++] = dtrace_load8(s2++)) == '\0')
4141 break;
4142 }
4143
4144 if (i < size) {
4145 mstate->dtms_scratch_ptr += i;
4146 regs[rd] = (uintptr_t)d;
4147 }
4148
4149 break;
4150 }
4151
4152 case DIF_SUBR_LLTOSTR: {
4153 int64_t i = (int64_t)tupregs[0].dttk_value;
4154 int64_t val = i < 0 ? i * -1 : i;
4155 uint64_t size = 22; /* enough room for 2^64 in decimal */
4156 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4157
4158 if (!DTRACE_INSCRATCH(mstate, size)) {
4159 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4160 regs[rd] = 0;
4161 break;
4162 }
4163
4164 for (*end-- = '\0'; val; val /= 10)
4165 *end-- = '0' + (val % 10);
4166
4167 if (i == 0)
4168 *end-- = '0';
4169
4170 if (i < 0)
4171 *end-- = '-';
4172
4173 regs[rd] = (uintptr_t)end + 1;
4174 mstate->dtms_scratch_ptr += size;
4175 break;
4176 }
4177
4178 case DIF_SUBR_HTONS:
4179 case DIF_SUBR_NTOHS:
4180 #ifdef _BIG_ENDIAN
4181 regs[rd] = (uint16_t)tupregs[0].dttk_value;
4182 #else
4183 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4184 #endif
4185 break;
4186
4187
4188 case DIF_SUBR_HTONL:
4189 case DIF_SUBR_NTOHL:
4190 #ifdef _BIG_ENDIAN
4191 regs[rd] = (uint32_t)tupregs[0].dttk_value;
4192 #else
4193 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4194 #endif
4195 break;
4196
4197
4198 case DIF_SUBR_HTONLL:
4199 case DIF_SUBR_NTOHLL:
4200 #ifdef _BIG_ENDIAN
4201 regs[rd] = (uint64_t)tupregs[0].dttk_value;
4202 #else
4203 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4204 #endif
4205 break;
4206
4207
4208 case DIF_SUBR_DIRNAME:
4209 case DIF_SUBR_BASENAME: {
4210 char *dest = (char *)mstate->dtms_scratch_ptr;
4211 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4212 uintptr_t src = tupregs[0].dttk_value;
4213 int i, j, len = dtrace_strlen((char *)src, size);
4214 int lastbase = -1, firstbase = -1, lastdir = -1;
4215 int start, end;
4216
4217 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4218 regs[rd] = 0;
4219 break;
4220 }
4221
4222 if (!DTRACE_INSCRATCH(mstate, size)) {
4223 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4224 regs[rd] = 0;
4225 break;
4226 }
4227
4228 /*
4229 * The basename and dirname for a zero-length string is
4230 * defined to be "."
4231 */
4232 if (len == 0) {
4233 len = 1;
4234 src = (uintptr_t)".";
4235 }
4236
4237 /*
4238 * Start from the back of the string, moving back toward the
4239 * front until we see a character that isn't a slash. That
4240 * character is the last character in the basename.
4241 */
4242 for (i = len - 1; i >= 0; i--) {
4243 if (dtrace_load8(src + i) != '/')
4244 break;
4245 }
4246
4247 if (i >= 0)
4248 lastbase = i;
4249
4250 /*
4251 * Starting from the last character in the basename, move
4252 * towards the front until we find a slash. The character
4253 * that we processed immediately before that is the first
4254 * character in the basename.
4255 */
4256 for (; i >= 0; i--) {
4257 if (dtrace_load8(src + i) == '/')
4258 break;
4259 }
4260
4261 if (i >= 0)
4262 firstbase = i + 1;
4263
4264 /*
4265 * Now keep going until we find a non-slash character. That
4266 * character is the last character in the dirname.
4267 */
4268 for (; i >= 0; i--) {
4269 if (dtrace_load8(src + i) != '/')
4270 break;
4271 }
4272
4273 if (i >= 0)
4274 lastdir = i;
4275
4276 ASSERT(!(lastbase == -1 && firstbase != -1));
4277 ASSERT(!(firstbase == -1 && lastdir != -1));
4278
4279 if (lastbase == -1) {
4280 /*
4281 * We didn't find a non-slash character. We know that
4282 * the length is non-zero, so the whole string must be
4283 * slashes. In either the dirname or the basename
4284 * case, we return '/'.
4285 */
4286 ASSERT(firstbase == -1);
4287 firstbase = lastbase = lastdir = 0;
4288 }
4289
4290 if (firstbase == -1) {
4291 /*
4292 * The entire string consists only of a basename
4293 * component. If we're looking for dirname, we need
4294 * to change our string to be just "."; if we're
4295 * looking for a basename, we'll just set the first
4296 * character of the basename to be 0.
4297 */
4298 if (subr == DIF_SUBR_DIRNAME) {
4299 ASSERT(lastdir == -1);
4300 src = (uintptr_t)".";
4301 lastdir = 0;
4302 } else {
4303 firstbase = 0;
4304 }
4305 }
4306
4307 if (subr == DIF_SUBR_DIRNAME) {
4308 if (lastdir == -1) {
4309 /*
4310 * We know that we have a slash in the name --
4311 * or lastdir would be set to 0, above. And
4312 * because lastdir is -1, we know that this
4313 * slash must be the first character. (That
4314 * is, the full string must be of the form
4315 * "/basename".) In this case, the last
4316 * character of the directory name is 0.
4317 */
4318 lastdir = 0;
4319 }
4320
4321 start = 0;
4322 end = lastdir;
4323 } else {
4324 ASSERT(subr == DIF_SUBR_BASENAME);
4325 ASSERT(firstbase != -1 && lastbase != -1);
4326 start = firstbase;
4327 end = lastbase;
4328 }
4329
4330 for (i = start, j = 0; i <= end && (uint64_t)j < size - 1; i++, j++)
4331 dest[j] = dtrace_load8(src + i);
4332
4333 dest[j] = '\0';
4334 regs[rd] = (uintptr_t)dest;
4335 mstate->dtms_scratch_ptr += size;
4336 break;
4337 }
4338
4339 case DIF_SUBR_CLEANPATH: {
4340 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4341 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4342 uintptr_t src = tupregs[0].dttk_value;
4343 int i = 0, j = 0;
4344
4345 if (!dtrace_strcanload(src, size, mstate, vstate)) {
4346 regs[rd] = 0;
4347 break;
4348 }
4349
4350 if (!DTRACE_INSCRATCH(mstate, size)) {
4351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4352 regs[rd] = 0;
4353 break;
4354 }
4355
4356 /*
4357 * Move forward, loading each character.
4358 */
4359 do {
4360 c = dtrace_load8(src + i++);
4361 next:
4362 if ((uint64_t)(j + 5) >= size) /* 5 = strlen("/..c\0") */
4363 break;
4364
4365 if (c != '/') {
4366 dest[j++] = c;
4367 continue;
4368 }
4369
4370 c = dtrace_load8(src + i++);
4371
4372 if (c == '/') {
4373 /*
4374 * We have two slashes -- we can just advance
4375 * to the next character.
4376 */
4377 goto next;
4378 }
4379
4380 if (c != '.') {
4381 /*
4382 * This is not "." and it's not ".." -- we can
4383 * just store the "/" and this character and
4384 * drive on.
4385 */
4386 dest[j++] = '/';
4387 dest[j++] = c;
4388 continue;
4389 }
4390
4391 c = dtrace_load8(src + i++);
4392
4393 if (c == '/') {
4394 /*
4395 * This is a "/./" component. We're not going
4396 * to store anything in the destination buffer;
4397 * we're just going to go to the next component.
4398 */
4399 goto next;
4400 }
4401
4402 if (c != '.') {
4403 /*
4404 * This is not ".." -- we can just store the
4405 * "/." and this character and continue
4406 * processing.
4407 */
4408 dest[j++] = '/';
4409 dest[j++] = '.';
4410 dest[j++] = c;
4411 continue;
4412 }
4413
4414 c = dtrace_load8(src + i++);
4415
4416 if (c != '/' && c != '\0') {
4417 /*
4418 * This is not ".." -- it's "..[mumble]".
4419 * We'll store the "/.." and this character
4420 * and continue processing.
4421 */
4422 dest[j++] = '/';
4423 dest[j++] = '.';
4424 dest[j++] = '.';
4425 dest[j++] = c;
4426 continue;
4427 }
4428
4429 /*
4430 * This is "/../" or "/..\0". We need to back up
4431 * our destination pointer until we find a "/".
4432 */
4433 i--;
4434 while (j != 0 && dest[--j] != '/')
4435 continue;
4436
4437 if (c == '\0')
4438 dest[++j] = '/';
4439 } while (c != '\0');
4440
4441 dest[j] = '\0';
4442 regs[rd] = (uintptr_t)dest;
4443 mstate->dtms_scratch_ptr += size;
4444 break;
4445 }
4446
4447 case DIF_SUBR_INET_NTOA:
4448 case DIF_SUBR_INET_NTOA6:
4449 case DIF_SUBR_INET_NTOP: {
4450 size_t size;
4451 int af, argi, i;
4452 char *base, *end;
4453
4454 if (subr == DIF_SUBR_INET_NTOP) {
4455 af = (int)tupregs[0].dttk_value;
4456 argi = 1;
4457 } else {
4458 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4459 argi = 0;
4460 }
4461
4462 if (af == AF_INET) {
4463 #if !defined(__APPLE__)
4464 ipaddr_t ip4;
4465 #else
4466 uint32_t ip4;
4467 #endif /* __APPLE__ */
4468 uint8_t *ptr8, val;
4469
4470 /*
4471 * Safely load the IPv4 address.
4472 */
4473 #if !defined(__APPLE__)
4474 ip4 = dtrace_load32(tupregs[argi].dttk_value);
4475 #else
4476 dtrace_bcopy(
4477 (void *)(uintptr_t)tupregs[argi].dttk_value,
4478 (void *)(uintptr_t)&ip4, sizeof (ip4));
4479 #endif /* __APPLE__ */
4480 /*
4481 * Check an IPv4 string will fit in scratch.
4482 */
4483 #if !defined(__APPLE__)
4484 size = INET_ADDRSTRLEN;
4485 #else
4486 size = MAX_IPv4_STR_LEN;
4487 #endif /* __APPLE__ */
4488 if (!DTRACE_INSCRATCH(mstate, size)) {
4489 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4490 regs[rd] = 0;
4491 break;
4492 }
4493 base = (char *)mstate->dtms_scratch_ptr;
4494 end = (char *)mstate->dtms_scratch_ptr + size - 1;
4495
4496 /*
4497 * Stringify as a dotted decimal quad.
4498 */
4499 *end-- = '\0';
4500 ptr8 = (uint8_t *)&ip4;
4501 for (i = 3; i >= 0; i--) {
4502 val = ptr8[i];
4503
4504 if (val == 0) {
4505 *end-- = '0';
4506 } else {
4507 for (; val; val /= 10) {
4508 *end-- = '0' + (val % 10);
4509 }
4510 }
4511
4512 if (i > 0)
4513 *end-- = '.';
4514 }
4515 ASSERT(end + 1 >= base);
4516
4517 } else if (af == AF_INET6) {
4518 #if defined(__APPLE__)
4519 #define _S6_un __u6_addr
4520 #define _S6_u8 __u6_addr8
4521 #endif /* __APPLE__ */
4522 struct in6_addr ip6;
4523 int firstzero, tryzero, numzero, v6end;
4524 uint16_t val;
4525 const char digits[] = "0123456789abcdef";
4526
4527 /*
4528 * Stringify using RFC 1884 convention 2 - 16 bit
4529 * hexadecimal values with a zero-run compression.
4530 * Lower case hexadecimal digits are used.
4531 * eg, fe80::214:4fff:fe0b:76c8.
4532 * The IPv4 embedded form is returned for inet_ntop,
4533 * just the IPv4 string is returned for inet_ntoa6.
4534 */
4535
4536 /*
4537 * Safely load the IPv6 address.
4538 */
4539 dtrace_bcopy(
4540 (void *)(uintptr_t)tupregs[argi].dttk_value,
4541 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4542
4543 /*
4544 * Check an IPv6 string will fit in scratch.
4545 */
4546 size = INET6_ADDRSTRLEN;
4547 if (!DTRACE_INSCRATCH(mstate, size)) {
4548 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4549 regs[rd] = 0;
4550 break;
4551 }
4552 base = (char *)mstate->dtms_scratch_ptr;
4553 end = (char *)mstate->dtms_scratch_ptr + size - 1;
4554 *end-- = '\0';
4555
4556 /*
4557 * Find the longest run of 16 bit zero values
4558 * for the single allowed zero compression - "::".
4559 */
4560 firstzero = -1;
4561 tryzero = -1;
4562 numzero = 1;
4563 for (i = 0; i < (int)sizeof (struct in6_addr); i++) {
4564 if (ip6._S6_un._S6_u8[i] == 0 &&
4565 tryzero == -1 && i % 2 == 0) {
4566 tryzero = i;
4567 continue;
4568 }
4569
4570 if (tryzero != -1 &&
4571 (ip6._S6_un._S6_u8[i] != 0 ||
4572 i == sizeof (struct in6_addr) - 1)) {
4573
4574 if (i - tryzero <= numzero) {
4575 tryzero = -1;
4576 continue;
4577 }
4578
4579 firstzero = tryzero;
4580 numzero = i - i % 2 - tryzero;
4581 tryzero = -1;
4582
4583 if (ip6._S6_un._S6_u8[i] == 0 &&
4584 i == sizeof (struct in6_addr) - 1)
4585 numzero += 2;
4586 }
4587 }
4588 ASSERT(firstzero + numzero <= (int)sizeof (struct in6_addr));
4589
4590 /*
4591 * Check for an IPv4 embedded address.
4592 */
4593 v6end = sizeof (struct in6_addr) - 2;
4594 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4595 IN6_IS_ADDR_V4COMPAT(&ip6)) {
4596 for (i = sizeof (struct in6_addr) - 1;
4597 i >= (int)DTRACE_V4MAPPED_OFFSET; i--) {
4598 ASSERT(end >= base);
4599
4600 val = ip6._S6_un._S6_u8[i];
4601
4602 if (val == 0) {
4603 *end-- = '0';
4604 } else {
4605 for (; val; val /= 10) {
4606 *end-- = '0' + val % 10;
4607 }
4608 }
4609
4610 if (i > (int)DTRACE_V4MAPPED_OFFSET)
4611 *end-- = '.';
4612 }
4613
4614 if (subr == DIF_SUBR_INET_NTOA6)
4615 goto inetout;
4616
4617 /*
4618 * Set v6end to skip the IPv4 address that
4619 * we have already stringified.
4620 */
4621 v6end = 10;
4622 }
4623
4624 /*
4625 * Build the IPv6 string by working through the
4626 * address in reverse.
4627 */
4628 for (i = v6end; i >= 0; i -= 2) {
4629 ASSERT(end >= base);
4630
4631 if (i == firstzero + numzero - 2) {
4632 *end-- = ':';
4633 *end-- = ':';
4634 i -= numzero - 2;
4635 continue;
4636 }
4637
4638 if (i < 14 && i != firstzero - 2)
4639 *end-- = ':';
4640
4641 val = (ip6._S6_un._S6_u8[i] << 8) +
4642 ip6._S6_un._S6_u8[i + 1];
4643
4644 if (val == 0) {
4645 *end-- = '0';
4646 } else {
4647 for (; val; val /= 16) {
4648 *end-- = digits[val % 16];
4649 }
4650 }
4651 }
4652 ASSERT(end + 1 >= base);
4653
4654 #if defined(__APPLE__)
4655 #undef _S6_un
4656 #undef _S6_u8
4657 #endif /* __APPLE__ */
4658 } else {
4659 /*
4660 * The user didn't use AH_INET or AH_INET6.
4661 */
4662 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4663 regs[rd] = 0;
4664 break;
4665 }
4666
4667 inetout: regs[rd] = (uintptr_t)end + 1;
4668 mstate->dtms_scratch_ptr += size;
4669 break;
4670 }
4671
4672 case DIF_SUBR_TOUPPER:
4673 case DIF_SUBR_TOLOWER: {
4674 uintptr_t src = tupregs[0].dttk_value;
4675 char *dest = (char *)mstate->dtms_scratch_ptr;
4676 char lower, upper, base, c;
4677 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4678 size_t len = dtrace_strlen((char*) src, size);
4679 size_t i = 0;
4680
4681 lower = (subr == DIF_SUBR_TOUPPER) ? 'a' : 'A';
4682 upper = (subr == DIF_SUBR_TOUPPER) ? 'z' : 'Z';
4683 base = (subr == DIF_SUBR_TOUPPER) ? 'A' : 'a';
4684
4685 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4686 regs[rd] = 0;
4687 break;
4688 }
4689
4690 if (!DTRACE_INSCRATCH(mstate, size)) {
4691 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4692 regs[rd] = 0;
4693 break;
4694 }
4695
4696 for (i = 0; i < size - 1; ++i) {
4697 if ((c = dtrace_load8(src + i)) == '\0')
4698 break;
4699 if (c >= lower && c <= upper)
4700 c = base + (c - lower);
4701 dest[i] = c;
4702 }
4703
4704 ASSERT(i < size);
4705
4706 dest[i] = '\0';
4707 regs[rd] = (uintptr_t) dest;
4708 mstate->dtms_scratch_ptr += size;
4709
4710 break;
4711 }
4712
4713 case DIF_SUBR_VM_KERNEL_ADDRPERM: {
4714 if (!dtrace_priv_kernel(state)) {
4715 regs[rd] = 0;
4716 } else {
4717 regs[rd] = VM_KERNEL_ADDRPERM((vm_offset_t) tupregs[0].dttk_value);
4718 }
4719
4720 break;
4721 }
4722 /*
4723 * APPLE NOTE:
4724 * CoreProfile callback ('core_profile (uint64_t, [uint64_t], [uint64_t] ...)')
4725 */
4726 case DIF_SUBR_COREPROFILE: {
4727 uint64_t selector = tupregs[0].dttk_value;
4728 uint64_t args[DIF_DTR_NREGS-1] = {0ULL};
4729 uint32_t ii;
4730 uint32_t count = (uint32_t)nargs;
4731
4732 if (count < 1) {
4733 regs[rd] = KERN_FAILURE;
4734 break;
4735 }
4736
4737 if(count > DIF_DTR_NREGS)
4738 count = DIF_DTR_NREGS;
4739
4740 /* copy in any variadic argument list, bounded by DIF_DTR_NREGS */
4741 for(ii = 0; ii < count-1; ii++) {
4742 args[ii] = tupregs[ii+1].dttk_value;
4743 }
4744
4745 kern_return_t ret =
4746 chudxnu_dtrace_callback(selector, args, count-1);
4747 if(KERN_SUCCESS != ret) {
4748 /* error */
4749 }
4750
4751 regs[rd] = ret;
4752 break;
4753 }
4754 }
4755 }
4756
4757 /*
4758 * Emulate the execution of DTrace IR instructions specified by the given
4759 * DIF object. This function is deliberately void of assertions as all of
4760 * the necessary checks are handled by a call to dtrace_difo_validate().
4761 */
4762 static uint64_t
4763 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4764 dtrace_vstate_t *vstate, dtrace_state_t *state)
4765 {
4766 const dif_instr_t *text = difo->dtdo_buf;
4767 const uint_t textlen = difo->dtdo_len;
4768 const char *strtab = difo->dtdo_strtab;
4769 const uint64_t *inttab = difo->dtdo_inttab;
4770
4771 uint64_t rval = 0;
4772 dtrace_statvar_t *svar;
4773 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4774 dtrace_difv_t *v;
4775 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4776 volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4777
4778 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4779 uint64_t regs[DIF_DIR_NREGS];
4780 uint64_t *tmp;
4781
4782 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4783 int64_t cc_r;
4784 uint_t pc = 0, id, opc = 0;
4785 uint8_t ttop = 0;
4786 dif_instr_t instr;
4787 uint_t r1, r2, rd;
4788
4789 /*
4790 * We stash the current DIF object into the machine state: we need it
4791 * for subsequent access checking.
4792 */
4793 mstate->dtms_difo = difo;
4794
4795 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
4796
4797 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4798 opc = pc;
4799
4800 instr = text[pc++];
4801 r1 = DIF_INSTR_R1(instr);
4802 r2 = DIF_INSTR_R2(instr);
4803 rd = DIF_INSTR_RD(instr);
4804
4805 switch (DIF_INSTR_OP(instr)) {
4806 case DIF_OP_OR:
4807 regs[rd] = regs[r1] | regs[r2];
4808 break;
4809 case DIF_OP_XOR:
4810 regs[rd] = regs[r1] ^ regs[r2];
4811 break;
4812 case DIF_OP_AND:
4813 regs[rd] = regs[r1] & regs[r2];
4814 break;
4815 case DIF_OP_SLL:
4816 regs[rd] = regs[r1] << regs[r2];
4817 break;
4818 case DIF_OP_SRL:
4819 regs[rd] = regs[r1] >> regs[r2];
4820 break;
4821 case DIF_OP_SUB:
4822 regs[rd] = regs[r1] - regs[r2];
4823 break;
4824 case DIF_OP_ADD:
4825 regs[rd] = regs[r1] + regs[r2];
4826 break;
4827 case DIF_OP_MUL:
4828 regs[rd] = regs[r1] * regs[r2];
4829 break;
4830 case DIF_OP_SDIV:
4831 if (regs[r2] == 0) {
4832 regs[rd] = 0;
4833 *flags |= CPU_DTRACE_DIVZERO;
4834 } else {
4835 regs[rd] = (int64_t)regs[r1] /
4836 (int64_t)regs[r2];
4837 }
4838 break;
4839
4840 case DIF_OP_UDIV:
4841 if (regs[r2] == 0) {
4842 regs[rd] = 0;
4843 *flags |= CPU_DTRACE_DIVZERO;
4844 } else {
4845 regs[rd] = regs[r1] / regs[r2];
4846 }
4847 break;
4848
4849 case DIF_OP_SREM:
4850 if (regs[r2] == 0) {
4851 regs[rd] = 0;
4852 *flags |= CPU_DTRACE_DIVZERO;
4853 } else {
4854 regs[rd] = (int64_t)regs[r1] %
4855 (int64_t)regs[r2];
4856 }
4857 break;
4858
4859 case DIF_OP_UREM:
4860 if (regs[r2] == 0) {
4861 regs[rd] = 0;
4862 *flags |= CPU_DTRACE_DIVZERO;
4863 } else {
4864 regs[rd] = regs[r1] % regs[r2];
4865 }
4866 break;
4867
4868 case DIF_OP_NOT:
4869 regs[rd] = ~regs[r1];
4870 break;
4871 case DIF_OP_MOV:
4872 regs[rd] = regs[r1];
4873 break;
4874 case DIF_OP_CMP:
4875 cc_r = regs[r1] - regs[r2];
4876 cc_n = cc_r < 0;
4877 cc_z = cc_r == 0;
4878 cc_v = 0;
4879 cc_c = regs[r1] < regs[r2];
4880 break;
4881 case DIF_OP_TST:
4882 cc_n = cc_v = cc_c = 0;
4883 cc_z = regs[r1] == 0;
4884 break;
4885 case DIF_OP_BA:
4886 pc = DIF_INSTR_LABEL(instr);
4887 break;
4888 case DIF_OP_BE:
4889 if (cc_z)
4890 pc = DIF_INSTR_LABEL(instr);
4891 break;
4892 case DIF_OP_BNE:
4893 if (cc_z == 0)
4894 pc = DIF_INSTR_LABEL(instr);
4895 break;
4896 case DIF_OP_BG:
4897 if ((cc_z | (cc_n ^ cc_v)) == 0)
4898 pc = DIF_INSTR_LABEL(instr);
4899 break;
4900 case DIF_OP_BGU:
4901 if ((cc_c | cc_z) == 0)
4902 pc = DIF_INSTR_LABEL(instr);
4903 break;
4904 case DIF_OP_BGE:
4905 if ((cc_n ^ cc_v) == 0)
4906 pc = DIF_INSTR_LABEL(instr);
4907 break;
4908 case DIF_OP_BGEU:
4909 if (cc_c == 0)
4910 pc = DIF_INSTR_LABEL(instr);
4911 break;
4912 case DIF_OP_BL:
4913 if (cc_n ^ cc_v)
4914 pc = DIF_INSTR_LABEL(instr);
4915 break;
4916 case DIF_OP_BLU:
4917 if (cc_c)
4918 pc = DIF_INSTR_LABEL(instr);
4919 break;
4920 case DIF_OP_BLE:
4921 if (cc_z | (cc_n ^ cc_v))
4922 pc = DIF_INSTR_LABEL(instr);
4923 break;
4924 case DIF_OP_BLEU:
4925 if (cc_c | cc_z)
4926 pc = DIF_INSTR_LABEL(instr);
4927 break;
4928 case DIF_OP_RLDSB:
4929 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4930 *flags |= CPU_DTRACE_KPRIV;
4931 *illval = regs[r1];
4932 break;
4933 }
4934 /*FALLTHROUGH*/
4935 case DIF_OP_LDSB:
4936 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4937 break;
4938 case DIF_OP_RLDSH:
4939 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4940 *flags |= CPU_DTRACE_KPRIV;
4941 *illval = regs[r1];
4942 break;
4943 }
4944 /*FALLTHROUGH*/
4945 case DIF_OP_LDSH:
4946 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4947 break;
4948 case DIF_OP_RLDSW:
4949 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4950 *flags |= CPU_DTRACE_KPRIV;
4951 *illval = regs[r1];
4952 break;
4953 }
4954 /*FALLTHROUGH*/
4955 case DIF_OP_LDSW:
4956 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4957 break;
4958 case DIF_OP_RLDUB:
4959 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4960 *flags |= CPU_DTRACE_KPRIV;
4961 *illval = regs[r1];
4962 break;
4963 }
4964 /*FALLTHROUGH*/
4965 case DIF_OP_LDUB:
4966 regs[rd] = dtrace_load8(regs[r1]);
4967 break;
4968 case DIF_OP_RLDUH:
4969 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4970 *flags |= CPU_DTRACE_KPRIV;
4971 *illval = regs[r1];
4972 break;
4973 }
4974 /*FALLTHROUGH*/
4975 case DIF_OP_LDUH:
4976 regs[rd] = dtrace_load16(regs[r1]);
4977 break;
4978 case DIF_OP_RLDUW:
4979 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4980 *flags |= CPU_DTRACE_KPRIV;
4981 *illval = regs[r1];
4982 break;
4983 }
4984 /*FALLTHROUGH*/
4985 case DIF_OP_LDUW:
4986 regs[rd] = dtrace_load32(regs[r1]);
4987 break;
4988 case DIF_OP_RLDX:
4989 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4990 *flags |= CPU_DTRACE_KPRIV;
4991 *illval = regs[r1];
4992 break;
4993 }
4994 /*FALLTHROUGH*/
4995 case DIF_OP_LDX:
4996 regs[rd] = dtrace_load64(regs[r1]);
4997 break;
4998 /*
4999 * Darwin 32-bit kernel may fetch from 64-bit user.
5000 * Do not cast regs to uintptr_t
5001 * DIF_OP_ULDSB,DIF_OP_ULDSH, DIF_OP_ULDSW, DIF_OP_ULDUB
5002 * DIF_OP_ULDUH, DIF_OP_ULDUW, DIF_OP_ULDX
5003 */
5004 case DIF_OP_ULDSB:
5005 regs[rd] = (int8_t)
5006 dtrace_fuword8(regs[r1]);
5007 break;
5008 case DIF_OP_ULDSH:
5009 regs[rd] = (int16_t)
5010 dtrace_fuword16(regs[r1]);
5011 break;
5012 case DIF_OP_ULDSW:
5013 regs[rd] = (int32_t)
5014 dtrace_fuword32(regs[r1]);
5015 break;
5016 case DIF_OP_ULDUB:
5017 regs[rd] =
5018 dtrace_fuword8(regs[r1]);
5019 break;
5020 case DIF_OP_ULDUH:
5021 regs[rd] =
5022 dtrace_fuword16(regs[r1]);
5023 break;
5024 case DIF_OP_ULDUW:
5025 regs[rd] =
5026 dtrace_fuword32(regs[r1]);
5027 break;
5028 case DIF_OP_ULDX:
5029 regs[rd] =
5030 dtrace_fuword64(regs[r1]);
5031 break;
5032 case DIF_OP_RET:
5033 rval = regs[rd];
5034 pc = textlen;
5035 break;
5036 case DIF_OP_NOP:
5037 break;
5038 case DIF_OP_SETX:
5039 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5040 break;
5041 case DIF_OP_SETS:
5042 regs[rd] = (uint64_t)(uintptr_t)
5043 (strtab + DIF_INSTR_STRING(instr));
5044 break;
5045 case DIF_OP_SCMP: {
5046 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5047 uintptr_t s1 = regs[r1];
5048 uintptr_t s2 = regs[r2];
5049
5050 if (s1 != 0 &&
5051 !dtrace_strcanload(s1, sz, mstate, vstate))
5052 break;
5053 if (s2 != 0 &&
5054 !dtrace_strcanload(s2, sz, mstate, vstate))
5055 break;
5056
5057 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5058
5059 cc_n = cc_r < 0;
5060 cc_z = cc_r == 0;
5061 cc_v = cc_c = 0;
5062 break;
5063 }
5064 case DIF_OP_LDGA:
5065 regs[rd] = dtrace_dif_variable(mstate, state,
5066 r1, regs[r2]);
5067 break;
5068 case DIF_OP_LDGS:
5069 id = DIF_INSTR_VAR(instr);
5070
5071 if (id >= DIF_VAR_OTHER_UBASE) {
5072 uintptr_t a;
5073
5074 id -= DIF_VAR_OTHER_UBASE;
5075 svar = vstate->dtvs_globals[id];
5076 ASSERT(svar != NULL);
5077 v = &svar->dtsv_var;
5078
5079 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5080 regs[rd] = svar->dtsv_data;
5081 break;
5082 }
5083
5084 a = (uintptr_t)svar->dtsv_data;
5085
5086 if (*(uint8_t *)a == UINT8_MAX) {
5087 /*
5088 * If the 0th byte is set to UINT8_MAX
5089 * then this is to be treated as a
5090 * reference to a NULL variable.
5091 */
5092 regs[rd] = 0;
5093 } else {
5094 regs[rd] = a + sizeof (uint64_t);
5095 }
5096
5097 break;
5098 }
5099
5100 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5101 break;
5102
5103 case DIF_OP_STGS:
5104 id = DIF_INSTR_VAR(instr);
5105
5106 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5107 id -= DIF_VAR_OTHER_UBASE;
5108
5109 svar = vstate->dtvs_globals[id];
5110 ASSERT(svar != NULL);
5111 v = &svar->dtsv_var;
5112
5113 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5114 uintptr_t a = (uintptr_t)svar->dtsv_data;
5115
5116 ASSERT(a != 0);
5117 ASSERT(svar->dtsv_size != 0);
5118
5119 if (regs[rd] == 0) {
5120 *(uint8_t *)a = UINT8_MAX;
5121 break;
5122 } else {
5123 *(uint8_t *)a = 0;
5124 a += sizeof (uint64_t);
5125 }
5126 if (!dtrace_vcanload(
5127 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5128 mstate, vstate))
5129 break;
5130
5131 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5132 (void *)a, &v->dtdv_type);
5133 break;
5134 }
5135
5136 svar->dtsv_data = regs[rd];
5137 break;
5138
5139 case DIF_OP_LDTA:
5140 /*
5141 * There are no DTrace built-in thread-local arrays at
5142 * present. This opcode is saved for future work.
5143 */
5144 *flags |= CPU_DTRACE_ILLOP;
5145 regs[rd] = 0;
5146 break;
5147
5148 case DIF_OP_LDLS:
5149 id = DIF_INSTR_VAR(instr);
5150
5151 if (id < DIF_VAR_OTHER_UBASE) {
5152 /*
5153 * For now, this has no meaning.
5154 */
5155 regs[rd] = 0;
5156 break;
5157 }
5158
5159 id -= DIF_VAR_OTHER_UBASE;
5160
5161 ASSERT(id < (uint_t)vstate->dtvs_nlocals);
5162 ASSERT(vstate->dtvs_locals != NULL);
5163 svar = vstate->dtvs_locals[id];
5164 ASSERT(svar != NULL);
5165 v = &svar->dtsv_var;
5166
5167 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5168 uintptr_t a = (uintptr_t)svar->dtsv_data;
5169 size_t sz = v->dtdv_type.dtdt_size;
5170
5171 sz += sizeof (uint64_t);
5172 ASSERT(svar->dtsv_size == (int)NCPU * sz);
5173 a += CPU->cpu_id * sz;
5174
5175 if (*(uint8_t *)a == UINT8_MAX) {
5176 /*
5177 * If the 0th byte is set to UINT8_MAX
5178 * then this is to be treated as a
5179 * reference to a NULL variable.
5180 */
5181 regs[rd] = 0;
5182 } else {
5183 regs[rd] = a + sizeof (uint64_t);
5184 }
5185
5186 break;
5187 }
5188
5189 ASSERT(svar->dtsv_size == (int)NCPU * sizeof (uint64_t));
5190 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5191 regs[rd] = tmp[CPU->cpu_id];
5192 break;
5193
5194 case DIF_OP_STLS:
5195 id = DIF_INSTR_VAR(instr);
5196
5197 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5198 id -= DIF_VAR_OTHER_UBASE;
5199 ASSERT(id < (uint_t)vstate->dtvs_nlocals);
5200 ASSERT(vstate->dtvs_locals != NULL);
5201 svar = vstate->dtvs_locals[id];
5202 ASSERT(svar != NULL);
5203 v = &svar->dtsv_var;
5204
5205 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5206 uintptr_t a = (uintptr_t)svar->dtsv_data;
5207 size_t sz = v->dtdv_type.dtdt_size;
5208
5209 sz += sizeof (uint64_t);
5210 ASSERT(svar->dtsv_size == (int)NCPU * sz);
5211 a += CPU->cpu_id * sz;
5212
5213 if (regs[rd] == 0) {
5214 *(uint8_t *)a = UINT8_MAX;
5215 break;
5216 } else {
5217 *(uint8_t *)a = 0;
5218 a += sizeof (uint64_t);
5219 }
5220
5221 if (!dtrace_vcanload(
5222 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5223 mstate, vstate))
5224 break;
5225
5226 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5227 (void *)a, &v->dtdv_type);
5228 break;
5229 }
5230
5231 ASSERT(svar->dtsv_size == (int)NCPU * sizeof (uint64_t));
5232 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5233 tmp[CPU->cpu_id] = regs[rd];
5234 break;
5235
5236 case DIF_OP_LDTS: {
5237 dtrace_dynvar_t *dvar;
5238 dtrace_key_t *key;
5239
5240 id = DIF_INSTR_VAR(instr);
5241 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5242 id -= DIF_VAR_OTHER_UBASE;
5243 v = &vstate->dtvs_tlocals[id];
5244
5245 key = &tupregs[DIF_DTR_NREGS];
5246 key[0].dttk_value = (uint64_t)id;
5247 key[0].dttk_size = 0;
5248 DTRACE_TLS_THRKEY(key[1].dttk_value);
5249 key[1].dttk_size = 0;
5250
5251 dvar = dtrace_dynvar(dstate, 2, key,
5252 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5253 mstate, vstate);
5254
5255 if (dvar == NULL) {
5256 regs[rd] = 0;
5257 break;
5258 }
5259
5260 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5261 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5262 } else {
5263 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5264 }
5265
5266 break;
5267 }
5268
5269 case DIF_OP_STTS: {
5270 dtrace_dynvar_t *dvar;
5271 dtrace_key_t *key;
5272
5273 id = DIF_INSTR_VAR(instr);
5274 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5275 id -= DIF_VAR_OTHER_UBASE;
5276
5277 key = &tupregs[DIF_DTR_NREGS];
5278 key[0].dttk_value = (uint64_t)id;
5279 key[0].dttk_size = 0;
5280 DTRACE_TLS_THRKEY(key[1].dttk_value);
5281 key[1].dttk_size = 0;
5282 v = &vstate->dtvs_tlocals[id];
5283
5284 dvar = dtrace_dynvar(dstate, 2, key,
5285 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5286 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5287 regs[rd] ? DTRACE_DYNVAR_ALLOC :
5288 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5289
5290 /*
5291 * Given that we're storing to thread-local data,
5292 * we need to flush our predicate cache.
5293 */
5294 dtrace_set_thread_predcache(current_thread(), 0);
5295
5296 if (dvar == NULL)
5297 break;
5298
5299 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5300 if (!dtrace_vcanload(
5301 (void *)(uintptr_t)regs[rd],
5302 &v->dtdv_type, mstate, vstate))
5303 break;
5304
5305 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5306 dvar->dtdv_data, &v->dtdv_type);
5307 } else {
5308 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5309 }
5310
5311 break;
5312 }
5313
5314 case DIF_OP_SRA:
5315 regs[rd] = (int64_t)regs[r1] >> regs[r2];
5316 break;
5317
5318 case DIF_OP_CALL:
5319 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5320 regs, tupregs, ttop, mstate, state);
5321 break;
5322
5323 case DIF_OP_PUSHTR:
5324 if (ttop == DIF_DTR_NREGS) {
5325 *flags |= CPU_DTRACE_TUPOFLOW;
5326 break;
5327 }
5328
5329 if (r1 == DIF_TYPE_STRING) {
5330 /*
5331 * If this is a string type and the size is 0,
5332 * we'll use the system-wide default string
5333 * size. Note that we are _not_ looking at
5334 * the value of the DTRACEOPT_STRSIZE option;
5335 * had this been set, we would expect to have
5336 * a non-zero size value in the "pushtr".
5337 */
5338 tupregs[ttop].dttk_size =
5339 dtrace_strlen((char *)(uintptr_t)regs[rd],
5340 regs[r2] ? regs[r2] :
5341 dtrace_strsize_default) + 1;
5342 } else {
5343 tupregs[ttop].dttk_size = regs[r2];
5344 }
5345
5346 tupregs[ttop++].dttk_value = regs[rd];
5347 break;
5348
5349 case DIF_OP_PUSHTV:
5350 if (ttop == DIF_DTR_NREGS) {
5351 *flags |= CPU_DTRACE_TUPOFLOW;
5352 break;
5353 }
5354
5355 tupregs[ttop].dttk_value = regs[rd];
5356 tupregs[ttop++].dttk_size = 0;
5357 break;
5358
5359 case DIF_OP_POPTS:
5360 if (ttop != 0)
5361 ttop--;
5362 break;
5363
5364 case DIF_OP_FLUSHTS:
5365 ttop = 0;
5366 break;
5367
5368 case DIF_OP_LDGAA:
5369 case DIF_OP_LDTAA: {
5370 dtrace_dynvar_t *dvar;
5371 dtrace_key_t *key = tupregs;
5372 uint_t nkeys = ttop;
5373
5374 id = DIF_INSTR_VAR(instr);
5375 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5376 id -= DIF_VAR_OTHER_UBASE;
5377
5378 key[nkeys].dttk_value = (uint64_t)id;
5379 key[nkeys++].dttk_size = 0;
5380
5381 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5382 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5383 key[nkeys++].dttk_size = 0;
5384 v = &vstate->dtvs_tlocals[id];
5385 } else {
5386 v = &vstate->dtvs_globals[id]->dtsv_var;
5387 }
5388
5389 dvar = dtrace_dynvar(dstate, nkeys, key,
5390 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5391 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5392 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5393
5394 if (dvar == NULL) {
5395 regs[rd] = 0;
5396 break;
5397 }
5398
5399 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5400 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5401 } else {
5402 regs[rd] = *((uint64_t *)dvar->dtdv_data);
5403 }
5404
5405 break;
5406 }
5407
5408 case DIF_OP_STGAA:
5409 case DIF_OP_STTAA: {
5410 dtrace_dynvar_t *dvar;
5411 dtrace_key_t *key = tupregs;
5412 uint_t nkeys = ttop;
5413
5414 id = DIF_INSTR_VAR(instr);
5415 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5416 id -= DIF_VAR_OTHER_UBASE;
5417
5418 key[nkeys].dttk_value = (uint64_t)id;
5419 key[nkeys++].dttk_size = 0;
5420
5421 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5422 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5423 key[nkeys++].dttk_size = 0;
5424 v = &vstate->dtvs_tlocals[id];
5425 } else {
5426 v = &vstate->dtvs_globals[id]->dtsv_var;
5427 }
5428
5429 dvar = dtrace_dynvar(dstate, nkeys, key,
5430 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5431 v->dtdv_type.dtdt_size : sizeof (uint64_t),
5432 regs[rd] ? DTRACE_DYNVAR_ALLOC :
5433 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5434
5435 if (dvar == NULL)
5436 break;
5437
5438 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5439 if (!dtrace_vcanload(
5440 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5441 mstate, vstate))
5442 break;
5443
5444 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5445 dvar->dtdv_data, &v->dtdv_type);
5446 } else {
5447 *((uint64_t *)dvar->dtdv_data) = regs[rd];
5448 }
5449
5450 break;
5451 }
5452
5453 case DIF_OP_ALLOCS: {
5454 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5455 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5456
5457 /*
5458 * Rounding up the user allocation size could have
5459 * overflowed large, bogus allocations (like -1ULL) to
5460 * 0.
5461 */
5462 if (size < regs[r1] ||
5463 !DTRACE_INSCRATCH(mstate, size)) {
5464 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5465 regs[rd] = 0;
5466 break;
5467 }
5468
5469 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5470 mstate->dtms_scratch_ptr += size;
5471 regs[rd] = ptr;
5472 break;
5473 }
5474
5475 case DIF_OP_COPYS:
5476 if (!dtrace_canstore(regs[rd], regs[r2],
5477 mstate, vstate)) {
5478 *flags |= CPU_DTRACE_BADADDR;
5479 *illval = regs[rd];
5480 break;
5481 }
5482
5483 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5484 break;
5485
5486 dtrace_bcopy((void *)(uintptr_t)regs[r1],
5487 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5488 break;
5489
5490 case DIF_OP_STB:
5491 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5492 *flags |= CPU_DTRACE_BADADDR;
5493 *illval = regs[rd];
5494 break;
5495 }
5496 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5497 break;
5498
5499 case DIF_OP_STH:
5500 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5501 *flags |= CPU_DTRACE_BADADDR;
5502 *illval = regs[rd];
5503 break;
5504 }
5505 if (regs[rd] & 1) {
5506 *flags |= CPU_DTRACE_BADALIGN;
5507 *illval = regs[rd];
5508 break;
5509 }
5510 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5511 break;
5512
5513 case DIF_OP_STW:
5514 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5515 *flags |= CPU_DTRACE_BADADDR;
5516 *illval = regs[rd];
5517 break;
5518 }
5519 if (regs[rd] & 3) {
5520 *flags |= CPU_DTRACE_BADALIGN;
5521 *illval = regs[rd];
5522 break;
5523 }
5524 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5525 break;
5526
5527 case DIF_OP_STX:
5528 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5529 *flags |= CPU_DTRACE_BADADDR;
5530 *illval = regs[rd];
5531 break;
5532 }
5533
5534 /*
5535 * Darwin kmem_zalloc() called from
5536 * dtrace_difo_init() is 4-byte aligned.
5537 */
5538 if (regs[rd] & 3) {
5539 *flags |= CPU_DTRACE_BADALIGN;
5540 *illval = regs[rd];
5541 break;
5542 }
5543 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5544 break;
5545 }
5546 }
5547
5548 if (!(*flags & CPU_DTRACE_FAULT))
5549 return (rval);
5550
5551 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5552 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5553
5554 return (0);
5555 }
5556
5557 static void
5558 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5559 {
5560 dtrace_probe_t *probe = ecb->dte_probe;
5561 dtrace_provider_t *prov = probe->dtpr_provider;
5562 char c[DTRACE_FULLNAMELEN + 80], *str;
5563 const char *msg = "dtrace: breakpoint action at probe ";
5564 const char *ecbmsg = " (ecb ";
5565 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5566 uintptr_t val = (uintptr_t)ecb;
5567 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5568
5569 if (dtrace_destructive_disallow)
5570 return;
5571
5572 /*
5573 * It's impossible to be taking action on the NULL probe.
5574 */
5575 ASSERT(probe != NULL);
5576
5577 /*
5578 * This is a poor man's (destitute man's?) sprintf(): we want to
5579 * print the provider name, module name, function name and name of
5580 * the probe, along with the hex address of the ECB with the breakpoint
5581 * action -- all of which we must place in the character buffer by
5582 * hand.
5583 */
5584 while (*msg != '\0')
5585 c[i++] = *msg++;
5586
5587 for (str = prov->dtpv_name; *str != '\0'; str++)
5588 c[i++] = *str;
5589 c[i++] = ':';
5590
5591 for (str = probe->dtpr_mod; *str != '\0'; str++)
5592 c[i++] = *str;
5593 c[i++] = ':';
5594
5595 for (str = probe->dtpr_func; *str != '\0'; str++)
5596 c[i++] = *str;
5597 c[i++] = ':';
5598
5599 for (str = probe->dtpr_name; *str != '\0'; str++)
5600 c[i++] = *str;
5601
5602 while (*ecbmsg != '\0')
5603 c[i++] = *ecbmsg++;
5604
5605 while (shift >= 0) {
5606 mask = (uintptr_t)0xf << shift;
5607
5608 if (val >= ((uintptr_t)1 << shift))
5609 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5610 shift -= 4;
5611 }
5612
5613 c[i++] = ')';
5614 c[i] = '\0';
5615
5616 debug_enter(c);
5617 }
5618
5619 static void
5620 dtrace_action_panic(dtrace_ecb_t *ecb)
5621 {
5622 dtrace_probe_t *probe = ecb->dte_probe;
5623
5624 /*
5625 * It's impossible to be taking action on the NULL probe.
5626 */
5627 ASSERT(probe != NULL);
5628
5629 if (dtrace_destructive_disallow)
5630 return;
5631
5632 if (dtrace_panicked != NULL)
5633 return;
5634
5635 if (dtrace_casptr(&dtrace_panicked, NULL, current_thread()) != NULL)
5636 return;
5637
5638 /*
5639 * We won the right to panic. (We want to be sure that only one
5640 * thread calls panic() from dtrace_probe(), and that panic() is
5641 * called exactly once.)
5642 */
5643 panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5644 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5645 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5646
5647 /*
5648 * APPLE NOTE: this was for an old Mac OS X debug feature
5649 * allowing a return from panic(). Revisit someday.
5650 */
5651 dtrace_panicked = NULL;
5652 }
5653
5654 static void
5655 dtrace_action_raise(uint64_t sig)
5656 {
5657 if (dtrace_destructive_disallow)
5658 return;
5659
5660 if (sig >= NSIG) {
5661 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5662 return;
5663 }
5664
5665 /*
5666 * raise() has a queue depth of 1 -- we ignore all subsequent
5667 * invocations of the raise() action.
5668 */
5669
5670 uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
5671
5672 if (uthread && uthread->t_dtrace_sig == 0) {
5673 uthread->t_dtrace_sig = sig;
5674 act_set_astbsd(current_thread());
5675 }
5676 }
5677
5678 static void
5679 dtrace_action_stop(void)
5680 {
5681 if (dtrace_destructive_disallow)
5682 return;
5683
5684 uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
5685 if (uthread) {
5686 /*
5687 * The currently running process will be set to task_suspend
5688 * when it next leaves the kernel.
5689 */
5690 uthread->t_dtrace_stop = 1;
5691 act_set_astbsd(current_thread());
5692 }
5693 }
5694
5695
5696 /*
5697 * APPLE NOTE: pidresume works in conjunction with the dtrace stop action.
5698 * Both activate only when the currently running process next leaves the
5699 * kernel.
5700 */
5701 static void
5702 dtrace_action_pidresume(uint64_t pid)
5703 {
5704 if (dtrace_destructive_disallow)
5705 return;
5706
5707 if (kauth_cred_issuser(kauth_cred_get()) == 0) {
5708 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5709 return;
5710 }
5711 uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
5712
5713 /*
5714 * When the currently running process leaves the kernel, it attempts to
5715 * task_resume the process (denoted by pid), if that pid appears to have
5716 * been stopped by dtrace_action_stop().
5717 * The currently running process has a pidresume() queue depth of 1 --
5718 * subsequent invocations of the pidresume() action are ignored.
5719 */
5720
5721 if (pid != 0 && uthread && uthread->t_dtrace_resumepid == 0) {
5722 uthread->t_dtrace_resumepid = pid;
5723 act_set_astbsd(current_thread());
5724 }
5725 }
5726
5727 static void
5728 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5729 {
5730 hrtime_t now;
5731 volatile uint16_t *flags;
5732 dtrace_cpu_t *cpu = CPU;
5733
5734 if (dtrace_destructive_disallow)
5735 return;
5736
5737 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5738
5739 now = dtrace_gethrtime();
5740
5741 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5742 /*
5743 * We need to advance the mark to the current time.
5744 */
5745 cpu->cpu_dtrace_chillmark = now;
5746 cpu->cpu_dtrace_chilled = 0;
5747 }
5748
5749 /*
5750 * Now check to see if the requested chill time would take us over
5751 * the maximum amount of time allowed in the chill interval. (Or
5752 * worse, if the calculation itself induces overflow.)
5753 */
5754 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5755 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5756 *flags |= CPU_DTRACE_ILLOP;
5757 return;
5758 }
5759
5760 while (dtrace_gethrtime() - now < val)
5761 continue;
5762
5763 /*
5764 * Normally, we assure that the value of the variable "timestamp" does
5765 * not change within an ECB. The presence of chill() represents an
5766 * exception to this rule, however.
5767 */
5768 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5769 cpu->cpu_dtrace_chilled += val;
5770 }
5771
5772 static void
5773 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5774 uint64_t *buf, uint64_t arg)
5775 {
5776 int nframes = DTRACE_USTACK_NFRAMES(arg);
5777 int strsize = DTRACE_USTACK_STRSIZE(arg);
5778 uint64_t *pcs = &buf[1], *fps;
5779 char *str = (char *)&pcs[nframes];
5780 int size, offs = 0, i, j;
5781 uintptr_t old = mstate->dtms_scratch_ptr, saved;
5782 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5783 char *sym;
5784
5785 /*
5786 * Should be taking a faster path if string space has not been
5787 * allocated.
5788 */
5789 ASSERT(strsize != 0);
5790
5791 /*
5792 * We will first allocate some temporary space for the frame pointers.
5793 */
5794 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5795 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5796 (nframes * sizeof (uint64_t));
5797
5798 if (!DTRACE_INSCRATCH(mstate, (uintptr_t)size)) {
5799 /*
5800 * Not enough room for our frame pointers -- need to indicate
5801 * that we ran out of scratch space.
5802 */
5803 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5804 return;
5805 }
5806
5807 mstate->dtms_scratch_ptr += size;
5808 saved = mstate->dtms_scratch_ptr;
5809
5810 /*
5811 * Now get a stack with both program counters and frame pointers.
5812 */
5813 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5814 dtrace_getufpstack(buf, fps, nframes + 1);
5815 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5816
5817 /*
5818 * If that faulted, we're cooked.
5819 */
5820 if (*flags & CPU_DTRACE_FAULT)
5821 goto out;
5822
5823 /*
5824 * Now we want to walk up the stack, calling the USTACK helper. For
5825 * each iteration, we restore the scratch pointer.
5826 */
5827 for (i = 0; i < nframes; i++) {
5828 mstate->dtms_scratch_ptr = saved;
5829
5830 if (offs >= strsize)
5831 break;
5832
5833 sym = (char *)(uintptr_t)dtrace_helper(
5834 DTRACE_HELPER_ACTION_USTACK,
5835 mstate, state, pcs[i], fps[i]);
5836
5837 /*
5838 * If we faulted while running the helper, we're going to
5839 * clear the fault and null out the corresponding string.
5840 */
5841 if (*flags & CPU_DTRACE_FAULT) {
5842 *flags &= ~CPU_DTRACE_FAULT;
5843 str[offs++] = '\0';
5844 continue;
5845 }
5846
5847 if (sym == NULL) {
5848 str[offs++] = '\0';
5849 continue;
5850 }
5851
5852 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5853
5854 /*
5855 * Now copy in the string that the helper returned to us.
5856 */
5857 for (j = 0; offs + j < strsize; j++) {
5858 if ((str[offs + j] = sym[j]) == '\0')
5859 break;
5860 }
5861
5862 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5863
5864 offs += j + 1;
5865 }
5866
5867 if (offs >= strsize) {
5868 /*
5869 * If we didn't have room for all of the strings, we don't
5870 * abort processing -- this needn't be a fatal error -- but we
5871 * still want to increment a counter (dts_stkstroverflows) to
5872 * allow this condition to be warned about. (If this is from
5873 * a jstack() action, it is easily tuned via jstackstrsize.)
5874 */
5875 dtrace_error(&state->dts_stkstroverflows);
5876 }
5877
5878 while (offs < strsize)
5879 str[offs++] = '\0';
5880
5881 out:
5882 mstate->dtms_scratch_ptr = old;
5883 }
5884
5885 static void
5886 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
5887 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
5888 {
5889 volatile uint16_t *flags;
5890 uint64_t val = *valp;
5891 size_t valoffs = *valoffsp;
5892
5893 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5894 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
5895
5896 /*
5897 * If this is a string, we're going to only load until we find the zero
5898 * byte -- after which we'll store zero bytes.
5899 */
5900 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
5901 char c = '\0' + 1;
5902 size_t s;
5903
5904 for (s = 0; s < size; s++) {
5905 if (c != '\0' && dtkind == DIF_TF_BYREF) {
5906 c = dtrace_load8(val++);
5907 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
5908 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5909 c = dtrace_fuword8((user_addr_t)(uintptr_t)val++);
5910 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5911 if (*flags & CPU_DTRACE_FAULT)
5912 break;
5913 }
5914
5915 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
5916
5917 if (c == '\0' && intuple)
5918 break;
5919 }
5920 } else {
5921 uint8_t c;
5922 while (valoffs < end) {
5923 if (dtkind == DIF_TF_BYREF) {
5924 c = dtrace_load8(val++);
5925 } else if (dtkind == DIF_TF_BYUREF) {
5926 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5927 c = dtrace_fuword8((user_addr_t)(uintptr_t)val++);
5928 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5929 if (*flags & CPU_DTRACE_FAULT)
5930 break;
5931 }
5932
5933 DTRACE_STORE(uint8_t, tomax,
5934 valoffs++, c);
5935 }
5936 }
5937
5938 *valp = val;
5939 *valoffsp = valoffs;
5940 }
5941
5942 /*
5943 * If you're looking for the epicenter of DTrace, you just found it. This
5944 * is the function called by the provider to fire a probe -- from which all
5945 * subsequent probe-context DTrace activity emanates.
5946 */
5947 static void
5948 __dtrace_probe(dtrace_id_t id, uint64_t arg0, uint64_t arg1,
5949 uint64_t arg2, uint64_t arg3, uint64_t arg4)
5950 {
5951 processorid_t cpuid;
5952 dtrace_icookie_t cookie;
5953 dtrace_probe_t *probe;
5954 dtrace_mstate_t mstate;
5955 dtrace_ecb_t *ecb;
5956 dtrace_action_t *act;
5957 intptr_t offs;
5958 size_t size;
5959 int vtime, onintr;
5960 volatile uint16_t *flags;
5961 hrtime_t now;
5962
5963 cookie = dtrace_interrupt_disable();
5964 probe = dtrace_probes[id - 1];
5965 cpuid = CPU->cpu_id;
5966 onintr = CPU_ON_INTR(CPU);
5967
5968 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5969 probe->dtpr_predcache == dtrace_get_thread_predcache(current_thread())) {
5970 /*
5971 * We have hit in the predicate cache; we know that
5972 * this predicate would evaluate to be false.
5973 */
5974 dtrace_interrupt_enable(cookie);
5975 return;
5976 }
5977
5978 if (panic_quiesce) {
5979 /*
5980 * We don't trace anything if we're panicking.
5981 */
5982 dtrace_interrupt_enable(cookie);
5983 return;
5984 }
5985
5986 #if !defined(__APPLE__)
5987 now = dtrace_gethrtime();
5988 vtime = dtrace_vtime_references != 0;
5989
5990 if (vtime && curthread->t_dtrace_start)
5991 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5992 #else
5993 /*
5994 * APPLE NOTE: The time spent entering DTrace and arriving
5995 * to this point, is attributed to the current thread.
5996 * Instead it should accrue to DTrace. FIXME
5997 */
5998 vtime = dtrace_vtime_references != 0;
5999
6000 if (vtime)
6001 {
6002 int64_t dtrace_accum_time, recent_vtime;
6003 thread_t thread = current_thread();
6004
6005 dtrace_accum_time = dtrace_get_thread_tracing(thread); /* Time spent inside DTrace so far (nanoseconds) */
6006
6007 if (dtrace_accum_time >= 0) {
6008 recent_vtime = dtrace_abs_to_nano(dtrace_calc_thread_recent_vtime(thread)); /* up to the moment thread vtime */
6009
6010 recent_vtime = recent_vtime - dtrace_accum_time; /* Time without DTrace contribution */
6011
6012 dtrace_set_thread_vtime(thread, recent_vtime);
6013 }
6014 }
6015
6016 now = dtrace_gethrtime(); /* must not precede dtrace_calc_thread_recent_vtime() call! */
6017 #endif /* __APPLE__ */
6018
6019 /*
6020 * APPLE NOTE: A provider may call dtrace_probe_error() in lieu of
6021 * dtrace_probe() in some circumstances. See, e.g. fasttrap_isa.c.
6022 * However the provider has no access to ECB context, so passes
6023 * 0 through "arg0" and the probe_id of the overridden probe as arg1.
6024 * Detect that here and cons up a viable state (from the probe_id).
6025 */
6026 if (dtrace_probeid_error == id && 0 == arg0) {
6027 dtrace_id_t ftp_id = (dtrace_id_t)arg1;
6028 dtrace_probe_t *ftp_probe = dtrace_probes[ftp_id - 1];
6029 dtrace_ecb_t *ftp_ecb = ftp_probe->dtpr_ecb;
6030
6031 if (NULL != ftp_ecb) {
6032 dtrace_state_t *ftp_state = ftp_ecb->dte_state;
6033
6034 arg0 = (uint64_t)(uintptr_t)ftp_state;
6035 arg1 = ftp_ecb->dte_epid;
6036 /*
6037 * args[2-4] established by caller.
6038 */
6039 ftp_state->dts_arg_error_illval = -1; /* arg5 */
6040 }
6041 }
6042
6043 mstate.dtms_difo = NULL;
6044 mstate.dtms_probe = probe;
6045 mstate.dtms_strtok = 0;
6046 mstate.dtms_arg[0] = arg0;
6047 mstate.dtms_arg[1] = arg1;
6048 mstate.dtms_arg[2] = arg2;
6049 mstate.dtms_arg[3] = arg3;
6050 mstate.dtms_arg[4] = arg4;
6051
6052 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6053
6054 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6055 dtrace_predicate_t *pred = ecb->dte_predicate;
6056 dtrace_state_t *state = ecb->dte_state;
6057 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6058 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6059 dtrace_vstate_t *vstate = &state->dts_vstate;
6060 dtrace_provider_t *prov = probe->dtpr_provider;
6061 uint64_t tracememsize = 0;
6062 int committed = 0;
6063 caddr_t tomax;
6064
6065 /*
6066 * A little subtlety with the following (seemingly innocuous)
6067 * declaration of the automatic 'val': by looking at the
6068 * code, you might think that it could be declared in the
6069 * action processing loop, below. (That is, it's only used in
6070 * the action processing loop.) However, it must be declared
6071 * out of that scope because in the case of DIF expression
6072 * arguments to aggregating actions, one iteration of the
6073 * action loop will use the last iteration's value.
6074 */
6075 #ifdef lint
6076 uint64_t val = 0;
6077 #else
6078 uint64_t val = 0;
6079 #endif
6080
6081 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6082 *flags &= ~CPU_DTRACE_ERROR;
6083
6084 if (prov == dtrace_provider) {
6085 /*
6086 * If dtrace itself is the provider of this probe,
6087 * we're only going to continue processing the ECB if
6088 * arg0 (the dtrace_state_t) is equal to the ECB's
6089 * creating state. (This prevents disjoint consumers
6090 * from seeing one another's metaprobes.)
6091 */
6092 if (arg0 != (uint64_t)(uintptr_t)state)
6093 continue;
6094 }
6095
6096 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6097 /*
6098 * We're not currently active. If our provider isn't
6099 * the dtrace pseudo provider, we're not interested.
6100 */
6101 if (prov != dtrace_provider)
6102 continue;
6103
6104 /*
6105 * Now we must further check if we are in the BEGIN
6106 * probe. If we are, we will only continue processing
6107 * if we're still in WARMUP -- if one BEGIN enabling
6108 * has invoked the exit() action, we don't want to
6109 * evaluate subsequent BEGIN enablings.
6110 */
6111 if (probe->dtpr_id == dtrace_probeid_begin &&
6112 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6113 ASSERT(state->dts_activity ==
6114 DTRACE_ACTIVITY_DRAINING);
6115 continue;
6116 }
6117 }
6118
6119 if (ecb->dte_cond) {
6120 /*
6121 * If the dte_cond bits indicate that this
6122 * consumer is only allowed to see user-mode firings
6123 * of this probe, call the provider's dtps_usermode()
6124 * entry point to check that the probe was fired
6125 * while in a user context. Skip this ECB if that's
6126 * not the case.
6127 */
6128 if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6129 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6130 probe->dtpr_id, probe->dtpr_arg) == 0)
6131 continue;
6132
6133 /*
6134 * This is more subtle than it looks. We have to be
6135 * absolutely certain that CRED() isn't going to
6136 * change out from under us so it's only legit to
6137 * examine that structure if we're in constrained
6138 * situations. Currently, the only times we'll this
6139 * check is if a non-super-user has enabled the
6140 * profile or syscall providers -- providers that
6141 * allow visibility of all processes. For the
6142 * profile case, the check above will ensure that
6143 * we're examining a user context.
6144 */
6145 if (ecb->dte_cond & DTRACE_COND_OWNER) {
6146 cred_t *cr;
6147 cred_t *s_cr =
6148 ecb->dte_state->dts_cred.dcr_cred;
6149 proc_t *proc;
6150 #pragma unused(proc) /* __APPLE__ */
6151
6152 ASSERT(s_cr != NULL);
6153
6154 /*
6155 * XXX this is hackish, but so is setting a variable
6156 * XXX in a McCarthy OR...
6157 */
6158 if ((cr = dtrace_CRED()) == NULL ||
6159 posix_cred_get(s_cr)->cr_uid != posix_cred_get(cr)->cr_uid ||
6160 posix_cred_get(s_cr)->cr_uid != posix_cred_get(cr)->cr_ruid ||
6161 posix_cred_get(s_cr)->cr_uid != posix_cred_get(cr)->cr_suid ||
6162 posix_cred_get(s_cr)->cr_gid != posix_cred_get(cr)->cr_gid ||
6163 posix_cred_get(s_cr)->cr_gid != posix_cred_get(cr)->cr_rgid ||
6164 posix_cred_get(s_cr)->cr_gid != posix_cred_get(cr)->cr_sgid ||
6165 #if !defined(__APPLE__)
6166 (proc = ttoproc(curthread)) == NULL ||
6167 (proc->p_flag & SNOCD))
6168 #else
6169 1) /* APPLE NOTE: Darwin omits "No Core Dump" flag */
6170 #endif /* __APPLE__ */
6171 continue;
6172 }
6173
6174 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6175 cred_t *cr;
6176 cred_t *s_cr =
6177 ecb->dte_state->dts_cred.dcr_cred;
6178 #pragma unused(cr, s_cr) /* __APPLE__ */
6179
6180 ASSERT(s_cr != NULL);
6181
6182 #if !defined(__APPLE__)
6183 if ((cr = CRED()) == NULL ||
6184 s_cr->cr_zone->zone_id !=
6185 cr->cr_zone->zone_id)
6186 continue;
6187 #else
6188 /* APPLE NOTE: Darwin doesn't do zones. */
6189 #endif /* __APPLE__ */
6190 }
6191 }
6192
6193 if (now - state->dts_alive > dtrace_deadman_timeout) {
6194 /*
6195 * We seem to be dead. Unless we (a) have kernel
6196 * destructive permissions (b) have expicitly enabled
6197 * destructive actions and (c) destructive actions have
6198 * not been disabled, we're going to transition into
6199 * the KILLED state, from which no further processing
6200 * on this state will be performed.
6201 */
6202 if (!dtrace_priv_kernel_destructive(state) ||
6203 !state->dts_cred.dcr_destructive ||
6204 dtrace_destructive_disallow) {
6205 void *activity = &state->dts_activity;
6206 dtrace_activity_t current;
6207
6208 do {
6209 current = state->dts_activity;
6210 } while (dtrace_cas32(activity, current,
6211 DTRACE_ACTIVITY_KILLED) != current);
6212
6213 continue;
6214 }
6215 }
6216
6217 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6218 ecb->dte_alignment, state, &mstate)) < 0)
6219 continue;
6220
6221 tomax = buf->dtb_tomax;
6222 ASSERT(tomax != NULL);
6223
6224 /*
6225 * Build and store the record header corresponding to the ECB.
6226 */
6227 if (ecb->dte_size != 0) {
6228 dtrace_rechdr_t dtrh;
6229
6230 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6231 mstate.dtms_timestamp = dtrace_gethrtime();
6232 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6233 }
6234
6235 ASSERT(ecb->dte_size >= sizeof(dtrace_rechdr_t));
6236
6237 dtrh.dtrh_epid = ecb->dte_epid;
6238 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, mstate.dtms_timestamp);
6239 DTRACE_STORE(dtrace_rechdr_t, tomax, offs, dtrh);
6240 }
6241
6242 mstate.dtms_epid = ecb->dte_epid;
6243 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6244
6245 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6246 mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6247 else
6248 mstate.dtms_access = 0;
6249
6250 if (pred != NULL) {
6251 dtrace_difo_t *dp = pred->dtp_difo;
6252 int rval;
6253
6254 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6255
6256 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6257 dtrace_cacheid_t cid = probe->dtpr_predcache;
6258
6259 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6260 /*
6261 * Update the predicate cache...
6262 */
6263 ASSERT(cid == pred->dtp_cacheid);
6264
6265 dtrace_set_thread_predcache(current_thread(), cid);
6266 }
6267
6268 continue;
6269 }
6270 }
6271
6272 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6273 act != NULL; act = act->dta_next) {
6274 size_t valoffs;
6275 dtrace_difo_t *dp;
6276 dtrace_recdesc_t *rec = &act->dta_rec;
6277
6278 size = rec->dtrd_size;
6279 valoffs = offs + rec->dtrd_offset;
6280
6281 if (DTRACEACT_ISAGG(act->dta_kind)) {
6282 uint64_t v = 0xbad;
6283 dtrace_aggregation_t *agg;
6284
6285 agg = (dtrace_aggregation_t *)act;
6286
6287 if ((dp = act->dta_difo) != NULL)
6288 v = dtrace_dif_emulate(dp,
6289 &mstate, vstate, state);
6290
6291 if (*flags & CPU_DTRACE_ERROR)
6292 continue;
6293
6294 /*
6295 * Note that we always pass the expression
6296 * value from the previous iteration of the
6297 * action loop. This value will only be used
6298 * if there is an expression argument to the
6299 * aggregating action, denoted by the
6300 * dtag_hasarg field.
6301 */
6302 dtrace_aggregate(agg, buf,
6303 offs, aggbuf, v, val);
6304 continue;
6305 }
6306
6307 switch (act->dta_kind) {
6308 case DTRACEACT_STOP:
6309 if (dtrace_priv_proc_destructive(state))
6310 dtrace_action_stop();
6311 continue;
6312
6313 case DTRACEACT_BREAKPOINT:
6314 if (dtrace_priv_kernel_destructive(state))
6315 dtrace_action_breakpoint(ecb);
6316 continue;
6317
6318 case DTRACEACT_PANIC:
6319 if (dtrace_priv_kernel_destructive(state))
6320 dtrace_action_panic(ecb);
6321 continue;
6322
6323 case DTRACEACT_STACK:
6324 if (!dtrace_priv_kernel(state))
6325 continue;
6326
6327 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6328 size / sizeof (pc_t), probe->dtpr_aframes,
6329 DTRACE_ANCHORED(probe) ? NULL :
6330 (uint32_t *)(uintptr_t)arg0);
6331 continue;
6332
6333 case DTRACEACT_JSTACK:
6334 case DTRACEACT_USTACK:
6335 if (!dtrace_priv_proc(state))
6336 continue;
6337
6338 /*
6339 * See comment in DIF_VAR_PID.
6340 */
6341 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6342 CPU_ON_INTR(CPU)) {
6343 int depth = DTRACE_USTACK_NFRAMES(
6344 rec->dtrd_arg) + 1;
6345
6346 dtrace_bzero((void *)(tomax + valoffs),
6347 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6348 + depth * sizeof (uint64_t));
6349
6350 continue;
6351 }
6352
6353 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6354 curproc->p_dtrace_helpers != NULL) {
6355 /*
6356 * This is the slow path -- we have
6357 * allocated string space, and we're
6358 * getting the stack of a process that
6359 * has helpers. Call into a separate
6360 * routine to perform this processing.
6361 */
6362 dtrace_action_ustack(&mstate, state,
6363 (uint64_t *)(tomax + valoffs),
6364 rec->dtrd_arg);
6365 continue;
6366 }
6367
6368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6369 dtrace_getupcstack((uint64_t *)
6370 (tomax + valoffs),
6371 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6372 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6373 continue;
6374
6375 default:
6376 break;
6377 }
6378
6379 dp = act->dta_difo;
6380 ASSERT(dp != NULL);
6381
6382 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6383
6384 if (*flags & CPU_DTRACE_ERROR)
6385 continue;
6386
6387 switch (act->dta_kind) {
6388 case DTRACEACT_SPECULATE: {
6389 dtrace_rechdr_t *dtrh = NULL;
6390
6391 ASSERT(buf == &state->dts_buffer[cpuid]);
6392 buf = dtrace_speculation_buffer(state,
6393 cpuid, val);
6394
6395 if (buf == NULL) {
6396 *flags |= CPU_DTRACE_DROP;
6397 continue;
6398 }
6399
6400 offs = dtrace_buffer_reserve(buf,
6401 ecb->dte_needed, ecb->dte_alignment,
6402 state, NULL);
6403
6404 if (offs < 0) {
6405 *flags |= CPU_DTRACE_DROP;
6406 continue;
6407 }
6408
6409 tomax = buf->dtb_tomax;
6410 ASSERT(tomax != NULL);
6411
6412 if (ecb->dte_size != 0)
6413 continue;
6414
6415 ASSERT(ecb->dte_size >= sizeof(dtrace_rechdr_t));
6416 dtrh = ((void *)(tomax + offs));
6417 dtrh->dtrh_epid = ecb->dte_epid;
6418
6419 /*
6420 * When the speculation is committed, all of
6421 * the records in the speculative buffer will
6422 * have their timestamps set to the commit
6423 * time. Until then, it is set to a sentinel
6424 * value, for debugability.
6425 */
6426 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6427
6428 continue;
6429 }
6430
6431 case DTRACEACT_CHILL:
6432 if (dtrace_priv_kernel_destructive(state))
6433 dtrace_action_chill(&mstate, val);
6434 continue;
6435
6436 case DTRACEACT_RAISE:
6437 if (dtrace_priv_proc_destructive(state))
6438 dtrace_action_raise(val);
6439 continue;
6440
6441 case DTRACEACT_PIDRESUME: /* __APPLE__ */
6442 if (dtrace_priv_proc_destructive(state))
6443 dtrace_action_pidresume(val);
6444 continue;
6445
6446 case DTRACEACT_COMMIT:
6447 ASSERT(!committed);
6448
6449 /*
6450 * We need to commit our buffer state.
6451 */
6452 if (ecb->dte_size)
6453 buf->dtb_offset = offs + ecb->dte_size;
6454 buf = &state->dts_buffer[cpuid];
6455 dtrace_speculation_commit(state, cpuid, val);
6456 committed = 1;
6457 continue;
6458
6459 case DTRACEACT_DISCARD:
6460 dtrace_speculation_discard(state, cpuid, val);
6461 continue;
6462
6463 case DTRACEACT_DIFEXPR:
6464 case DTRACEACT_LIBACT:
6465 case DTRACEACT_PRINTF:
6466 case DTRACEACT_PRINTA:
6467 case DTRACEACT_SYSTEM:
6468 case DTRACEACT_FREOPEN:
6469 case DTRACEACT_APPLEBINARY: /* __APPLE__ */
6470 case DTRACEACT_TRACEMEM:
6471 break;
6472
6473 case DTRACEACT_TRACEMEM_DYNSIZE:
6474 tracememsize = val;
6475 break;
6476
6477 case DTRACEACT_SYM:
6478 case DTRACEACT_MOD:
6479 if (!dtrace_priv_kernel(state))
6480 continue;
6481 break;
6482
6483 case DTRACEACT_USYM:
6484 case DTRACEACT_UMOD:
6485 case DTRACEACT_UADDR: {
6486 if (!dtrace_priv_proc(state))
6487 continue;
6488
6489 DTRACE_STORE(uint64_t, tomax,
6490 valoffs, (uint64_t)dtrace_proc_selfpid());
6491 DTRACE_STORE(uint64_t, tomax,
6492 valoffs + sizeof (uint64_t), val);
6493
6494 continue;
6495 }
6496
6497 case DTRACEACT_EXIT: {
6498 /*
6499 * For the exit action, we are going to attempt
6500 * to atomically set our activity to be
6501 * draining. If this fails (either because
6502 * another CPU has beat us to the exit action,
6503 * or because our current activity is something
6504 * other than ACTIVE or WARMUP), we will
6505 * continue. This assures that the exit action
6506 * can be successfully recorded at most once
6507 * when we're in the ACTIVE state. If we're
6508 * encountering the exit() action while in
6509 * COOLDOWN, however, we want to honor the new
6510 * status code. (We know that we're the only
6511 * thread in COOLDOWN, so there is no race.)
6512 */
6513 void *activity = &state->dts_activity;
6514 dtrace_activity_t current = state->dts_activity;
6515
6516 if (current == DTRACE_ACTIVITY_COOLDOWN)
6517 break;
6518
6519 if (current != DTRACE_ACTIVITY_WARMUP)
6520 current = DTRACE_ACTIVITY_ACTIVE;
6521
6522 if (dtrace_cas32(activity, current,
6523 DTRACE_ACTIVITY_DRAINING) != current) {
6524 *flags |= CPU_DTRACE_DROP;
6525 continue;
6526 }
6527
6528 break;
6529 }
6530
6531 default:
6532 ASSERT(0);
6533 }
6534
6535 if (dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF)) {
6536 uintptr_t end = valoffs + size;
6537
6538 if (tracememsize != 0 &&
6539 valoffs + tracememsize < end)
6540 {
6541 end = valoffs + tracememsize;
6542 tracememsize = 0;
6543 }
6544
6545 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
6546 !dtrace_vcanload((void *)(uintptr_t)val,
6547 &dp->dtdo_rtype, &mstate, vstate))
6548 {
6549 continue;
6550 }
6551
6552 dtrace_store_by_ref(dp, tomax, size, &valoffs,
6553 &val, end, act->dta_intuple,
6554 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
6555 DIF_TF_BYREF: DIF_TF_BYUREF);
6556
6557 continue;
6558 }
6559
6560 switch (size) {
6561 case 0:
6562 break;
6563
6564 case sizeof (uint8_t):
6565 DTRACE_STORE(uint8_t, tomax, valoffs, val);
6566 break;
6567 case sizeof (uint16_t):
6568 DTRACE_STORE(uint16_t, tomax, valoffs, val);
6569 break;
6570 case sizeof (uint32_t):
6571 DTRACE_STORE(uint32_t, tomax, valoffs, val);
6572 break;
6573 case sizeof (uint64_t):
6574 DTRACE_STORE(uint64_t, tomax, valoffs, val);
6575 break;
6576 default:
6577 /*
6578 * Any other size should have been returned by
6579 * reference, not by value.
6580 */
6581 ASSERT(0);
6582 break;
6583 }
6584 }
6585
6586 if (*flags & CPU_DTRACE_DROP)
6587 continue;
6588
6589 if (*flags & CPU_DTRACE_FAULT) {
6590 int ndx;
6591 dtrace_action_t *err;
6592
6593 buf->dtb_errors++;
6594
6595 if (probe->dtpr_id == dtrace_probeid_error) {
6596 /*
6597 * There's nothing we can do -- we had an
6598 * error on the error probe. We bump an
6599 * error counter to at least indicate that
6600 * this condition happened.
6601 */
6602 dtrace_error(&state->dts_dblerrors);
6603 continue;
6604 }
6605
6606 if (vtime) {
6607 /*
6608 * Before recursing on dtrace_probe(), we
6609 * need to explicitly clear out our start
6610 * time to prevent it from being accumulated
6611 * into t_dtrace_vtime.
6612 */
6613
6614 /*
6615 * Darwin sets the sign bit on t_dtrace_tracing
6616 * to suspend accumulation to it.
6617 */
6618 dtrace_set_thread_tracing(current_thread(),
6619 (1ULL<<63) | dtrace_get_thread_tracing(current_thread()));
6620
6621 }
6622
6623 /*
6624 * Iterate over the actions to figure out which action
6625 * we were processing when we experienced the error.
6626 * Note that act points _past_ the faulting action; if
6627 * act is ecb->dte_action, the fault was in the
6628 * predicate, if it's ecb->dte_action->dta_next it's
6629 * in action #1, and so on.
6630 */
6631 for (err = ecb->dte_action, ndx = 0;
6632 err != act; err = err->dta_next, ndx++)
6633 continue;
6634
6635 dtrace_probe_error(state, ecb->dte_epid, ndx,
6636 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6637 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6638 cpu_core[cpuid].cpuc_dtrace_illval);
6639
6640 continue;
6641 }
6642
6643 if (!committed)
6644 buf->dtb_offset = offs + ecb->dte_size;
6645 }
6646
6647 /* FIXME: On Darwin the time spent leaving DTrace from this point to the rti is attributed
6648 to the current thread. Instead it should accrue to DTrace. */
6649 if (vtime) {
6650 thread_t thread = current_thread();
6651 int64_t t = dtrace_get_thread_tracing(thread);
6652
6653 if (t >= 0) {
6654 /* Usual case, accumulate time spent here into t_dtrace_tracing */
6655 dtrace_set_thread_tracing(thread, t + (dtrace_gethrtime() - now));
6656 } else {
6657 /* Return from error recursion. No accumulation, just clear the sign bit on t_dtrace_tracing. */
6658 dtrace_set_thread_tracing(thread, (~(1ULL<<63)) & t);
6659 }
6660 }
6661
6662 dtrace_interrupt_enable(cookie);
6663 }
6664
6665 /*
6666 * APPLE NOTE: Don't allow a thread to re-enter dtrace_probe().
6667 * This could occur if a probe is encountered on some function in the
6668 * transitive closure of the call to dtrace_probe().
6669 * Solaris has some strong guarantees that this won't happen.
6670 * The Darwin implementation is not so mature as to make those guarantees.
6671 * Hence, the introduction of __dtrace_probe() on xnu.
6672 */
6673
6674 void
6675 dtrace_probe(dtrace_id_t id, uint64_t arg0, uint64_t arg1,
6676 uint64_t arg2, uint64_t arg3, uint64_t arg4)
6677 {
6678 thread_t thread = current_thread();
6679 disable_preemption();
6680 if (id == dtrace_probeid_error) {
6681 __dtrace_probe(id, arg0, arg1, arg2, arg3, arg4);
6682 dtrace_getipl(); /* Defeat tail-call optimization of __dtrace_probe() */
6683 } else if (!dtrace_get_thread_reentering(thread)) {
6684 dtrace_set_thread_reentering(thread, TRUE);
6685 __dtrace_probe(id, arg0, arg1, arg2, arg3, arg4);
6686 dtrace_set_thread_reentering(thread, FALSE);
6687 }
6688 #if DEBUG
6689 else __dtrace_probe(dtrace_probeid_error, 0, id, 1, -1, DTRACEFLT_UNKNOWN);
6690 #endif
6691 enable_preemption();
6692 }
6693
6694 /*
6695 * DTrace Probe Hashing Functions
6696 *
6697 * The functions in this section (and indeed, the functions in remaining
6698 * sections) are not _called_ from probe context. (Any exceptions to this are
6699 * marked with a "Note:".) Rather, they are called from elsewhere in the
6700 * DTrace framework to look-up probes in, add probes to and remove probes from
6701 * the DTrace probe hashes. (Each probe is hashed by each element of the
6702 * probe tuple -- allowing for fast lookups, regardless of what was
6703 * specified.)
6704 */
6705 static uint_t
6706 dtrace_hash_str(const char *p)
6707 {
6708 unsigned int g;
6709 uint_t hval = 0;
6710
6711 while (*p) {
6712 hval = (hval << 4) + *p++;
6713 if ((g = (hval & 0xf0000000)) != 0)
6714 hval ^= g >> 24;
6715 hval &= ~g;
6716 }
6717 return (hval);
6718 }
6719
6720 static dtrace_hash_t *
6721 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6722 {
6723 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6724
6725 hash->dth_stroffs = stroffs;
6726 hash->dth_nextoffs = nextoffs;
6727 hash->dth_prevoffs = prevoffs;
6728
6729 hash->dth_size = 1;
6730 hash->dth_mask = hash->dth_size - 1;
6731
6732 hash->dth_tab = kmem_zalloc(hash->dth_size *
6733 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6734
6735 return (hash);
6736 }
6737
6738 /*
6739 * APPLE NOTE: dtrace_hash_destroy is not used.
6740 * It is called by dtrace_detach which is not
6741 * currently implemented. Revisit someday.
6742 */
6743 #if !defined(__APPLE__)
6744 static void
6745 dtrace_hash_destroy(dtrace_hash_t *hash)
6746 {
6747 #if DEBUG
6748 int i;
6749
6750 for (i = 0; i < hash->dth_size; i++)
6751 ASSERT(hash->dth_tab[i] == NULL);
6752 #endif
6753
6754 kmem_free(hash->dth_tab,
6755 hash->dth_size * sizeof (dtrace_hashbucket_t *));
6756 kmem_free(hash, sizeof (dtrace_hash_t));
6757 }
6758 #endif /* __APPLE__ */
6759
6760 static void
6761 dtrace_hash_resize(dtrace_hash_t *hash)
6762 {
6763 int size = hash->dth_size, i, ndx;
6764 int new_size = hash->dth_size << 1;
6765 int new_mask = new_size - 1;
6766 dtrace_hashbucket_t **new_tab, *bucket, *next;
6767
6768 ASSERT((new_size & new_mask) == 0);
6769
6770 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6771
6772 for (i = 0; i < size; i++) {
6773 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6774 dtrace_probe_t *probe = bucket->dthb_chain;
6775
6776 ASSERT(probe != NULL);
6777 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6778
6779 next = bucket->dthb_next;
6780 bucket->dthb_next = new_tab[ndx];
6781 new_tab[ndx] = bucket;
6782 }
6783 }
6784
6785 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6786 hash->dth_tab = new_tab;
6787 hash->dth_size = new_size;
6788 hash->dth_mask = new_mask;
6789 }
6790
6791 static void
6792 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6793 {
6794 int hashval = DTRACE_HASHSTR(hash, new);
6795 int ndx = hashval & hash->dth_mask;
6796 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6797 dtrace_probe_t **nextp, **prevp;
6798
6799 for (; bucket != NULL; bucket = bucket->dthb_next) {
6800 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6801 goto add;
6802 }
6803
6804 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6805 dtrace_hash_resize(hash);
6806 dtrace_hash_add(hash, new);
6807 return;
6808 }
6809
6810 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6811 bucket->dthb_next = hash->dth_tab[ndx];
6812 hash->dth_tab[ndx] = bucket;
6813 hash->dth_nbuckets++;
6814
6815 add:
6816 nextp = DTRACE_HASHNEXT(hash, new);
6817 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6818 *nextp = bucket->dthb_chain;
6819
6820 if (bucket->dthb_chain != NULL) {
6821 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6822 ASSERT(*prevp == NULL);
6823 *prevp = new;
6824 }
6825
6826 bucket->dthb_chain = new;
6827 bucket->dthb_len++;
6828 }
6829
6830 static dtrace_probe_t *
6831 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6832 {
6833 int hashval = DTRACE_HASHSTR(hash, template);
6834 int ndx = hashval & hash->dth_mask;
6835 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6836
6837 for (; bucket != NULL; bucket = bucket->dthb_next) {
6838 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6839 return (bucket->dthb_chain);
6840 }
6841
6842 return (NULL);
6843 }
6844
6845 static int
6846 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6847 {
6848 int hashval = DTRACE_HASHSTR(hash, template);
6849 int ndx = hashval & hash->dth_mask;
6850 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6851
6852 for (; bucket != NULL; bucket = bucket->dthb_next) {
6853 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6854 return (bucket->dthb_len);
6855 }
6856
6857 return (0);
6858 }
6859
6860 static void
6861 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6862 {
6863 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6864 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6865
6866 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6867 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6868
6869 /*
6870 * Find the bucket that we're removing this probe from.
6871 */
6872 for (; bucket != NULL; bucket = bucket->dthb_next) {
6873 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6874 break;
6875 }
6876
6877 ASSERT(bucket != NULL);
6878
6879 if (*prevp == NULL) {
6880 if (*nextp == NULL) {
6881 /*
6882 * The removed probe was the only probe on this
6883 * bucket; we need to remove the bucket.
6884 */
6885 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6886
6887 ASSERT(bucket->dthb_chain == probe);
6888 ASSERT(b != NULL);
6889
6890 if (b == bucket) {
6891 hash->dth_tab[ndx] = bucket->dthb_next;
6892 } else {
6893 while (b->dthb_next != bucket)
6894 b = b->dthb_next;
6895 b->dthb_next = bucket->dthb_next;
6896 }
6897
6898 ASSERT(hash->dth_nbuckets > 0);
6899 hash->dth_nbuckets--;
6900 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6901 return;
6902 }
6903
6904 bucket->dthb_chain = *nextp;
6905 } else {
6906 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6907 }
6908
6909 if (*nextp != NULL)
6910 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6911 }
6912
6913 /*
6914 * DTrace Utility Functions
6915 *
6916 * These are random utility functions that are _not_ called from probe context.
6917 */
6918 static int
6919 dtrace_badattr(const dtrace_attribute_t *a)
6920 {
6921 return (a->dtat_name > DTRACE_STABILITY_MAX ||
6922 a->dtat_data > DTRACE_STABILITY_MAX ||
6923 a->dtat_class > DTRACE_CLASS_MAX);
6924 }
6925
6926 /*
6927 * Return a duplicate copy of a string. If the specified string is NULL,
6928 * this function returns a zero-length string.
6929 * APPLE NOTE: Darwin employs size bounded string operation.
6930 */
6931 static char *
6932 dtrace_strdup(const char *str)
6933 {
6934 size_t bufsize = (str != NULL ? strlen(str) : 0) + 1;
6935 char *new = kmem_zalloc(bufsize, KM_SLEEP);
6936
6937 if (str != NULL)
6938 (void) strlcpy(new, str, bufsize);
6939
6940 return (new);
6941 }
6942
6943 #define DTRACE_ISALPHA(c) \
6944 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6945
6946 static int
6947 dtrace_badname(const char *s)
6948 {
6949 char c;
6950
6951 if (s == NULL || (c = *s++) == '\0')
6952 return (0);
6953
6954 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6955 return (1);
6956
6957 while ((c = *s++) != '\0') {
6958 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6959 c != '-' && c != '_' && c != '.' && c != '`')
6960 return (1);
6961 }
6962
6963 return (0);
6964 }
6965
6966 static void
6967 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6968 {
6969 uint32_t priv;
6970
6971 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6972 /*
6973 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6974 */
6975 priv = DTRACE_PRIV_ALL;
6976 } else {
6977 *uidp = crgetuid(cr);
6978 *zoneidp = crgetzoneid(cr);
6979
6980 priv = 0;
6981 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6982 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6983 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6984 priv |= DTRACE_PRIV_USER;
6985 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6986 priv |= DTRACE_PRIV_PROC;
6987 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6988 priv |= DTRACE_PRIV_OWNER;
6989 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6990 priv |= DTRACE_PRIV_ZONEOWNER;
6991 }
6992
6993 *privp = priv;
6994 }
6995
6996 #ifdef DTRACE_ERRDEBUG
6997 static void
6998 dtrace_errdebug(const char *str)
6999 {
7000 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7001 int occupied = 0;
7002
7003 lck_mtx_lock(&dtrace_errlock);
7004 dtrace_errlast = str;
7005 dtrace_errthread = (kthread_t *)current_thread();
7006
7007 while (occupied++ < DTRACE_ERRHASHSZ) {
7008 if (dtrace_errhash[hval].dter_msg == str) {
7009 dtrace_errhash[hval].dter_count++;
7010 goto out;
7011 }
7012
7013 if (dtrace_errhash[hval].dter_msg != NULL) {
7014 hval = (hval + 1) % DTRACE_ERRHASHSZ;
7015 continue;
7016 }
7017
7018 dtrace_errhash[hval].dter_msg = str;
7019 dtrace_errhash[hval].dter_count = 1;
7020 goto out;
7021 }
7022
7023 panic("dtrace: undersized error hash");
7024 out:
7025 lck_mtx_unlock(&dtrace_errlock);
7026 }
7027 #endif
7028
7029 /*
7030 * DTrace Matching Functions
7031 *
7032 * These functions are used to match groups of probes, given some elements of
7033 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7034 */
7035 static int
7036 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7037 zoneid_t zoneid)
7038 {
7039 if (priv != DTRACE_PRIV_ALL) {
7040 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7041 uint32_t match = priv & ppriv;
7042
7043 /*
7044 * No PRIV_DTRACE_* privileges...
7045 */
7046 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7047 DTRACE_PRIV_KERNEL)) == 0)
7048 return (0);
7049
7050 /*
7051 * No matching bits, but there were bits to match...
7052 */
7053 if (match == 0 && ppriv != 0)
7054 return (0);
7055
7056 /*
7057 * Need to have permissions to the process, but don't...
7058 */
7059 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7060 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7061 return (0);
7062 }
7063
7064 /*
7065 * Need to be in the same zone unless we possess the
7066 * privilege to examine all zones.
7067 */
7068 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7069 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7070 return (0);
7071 }
7072 }
7073
7074 return (1);
7075 }
7076
7077 /*
7078 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7079 * consists of input pattern strings and an ops-vector to evaluate them.
7080 * This function returns >0 for match, 0 for no match, and <0 for error.
7081 */
7082 static int
7083 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7084 uint32_t priv, uid_t uid, zoneid_t zoneid)
7085 {
7086 dtrace_provider_t *pvp = prp->dtpr_provider;
7087 int rv;
7088
7089 if (pvp->dtpv_defunct)
7090 return (0);
7091
7092 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7093 return (rv);
7094
7095 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7096 return (rv);
7097
7098 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7099 return (rv);
7100
7101 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7102 return (rv);
7103
7104 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7105 return (0);
7106
7107 return (rv);
7108 }
7109
7110 /*
7111 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7112 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7113 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7114 * In addition, all of the recursion cases except for '*' matching have been
7115 * unwound. For '*', we still implement recursive evaluation, but a depth
7116 * counter is maintained and matching is aborted if we recurse too deep.
7117 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7118 */
7119 static int
7120 dtrace_match_glob(const char *s, const char *p, int depth)
7121 {
7122 const char *olds;
7123 char s1, c;
7124 int gs;
7125
7126 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7127 return (-1);
7128
7129 if (s == NULL)
7130 s = ""; /* treat NULL as empty string */
7131
7132 top:
7133 olds = s;
7134 s1 = *s++;
7135
7136 if (p == NULL)
7137 return (0);
7138
7139 if ((c = *p++) == '\0')
7140 return (s1 == '\0');
7141
7142 switch (c) {
7143 case '[': {
7144 int ok = 0, notflag = 0;
7145 char lc = '\0';
7146
7147 if (s1 == '\0')
7148 return (0);
7149
7150 if (*p == '!') {
7151 notflag = 1;
7152 p++;
7153 }
7154
7155 if ((c = *p++) == '\0')
7156 return (0);
7157
7158 do {
7159 if (c == '-' && lc != '\0' && *p != ']') {
7160 if ((c = *p++) == '\0')
7161 return (0);
7162 if (c == '\\' && (c = *p++) == '\0')
7163 return (0);
7164
7165 if (notflag) {
7166 if (s1 < lc || s1 > c)
7167 ok++;
7168 else
7169 return (0);
7170 } else if (lc <= s1 && s1 <= c)
7171 ok++;
7172
7173 } else if (c == '\\' && (c = *p++) == '\0')
7174 return (0);
7175
7176 lc = c; /* save left-hand 'c' for next iteration */
7177
7178 if (notflag) {
7179 if (s1 != c)
7180 ok++;
7181 else
7182 return (0);
7183 } else if (s1 == c)
7184 ok++;
7185
7186 if ((c = *p++) == '\0')
7187 return (0);
7188
7189 } while (c != ']');
7190
7191 if (ok)
7192 goto top;
7193
7194 return (0);
7195 }
7196
7197 case '\\':
7198 if ((c = *p++) == '\0')
7199 return (0);
7200 /*FALLTHRU*/
7201
7202 default:
7203 if (c != s1)
7204 return (0);
7205 /*FALLTHRU*/
7206
7207 case '?':
7208 if (s1 != '\0')
7209 goto top;
7210 return (0);
7211
7212 case '*':
7213 while (*p == '*')
7214 p++; /* consecutive *'s are identical to a single one */
7215
7216 if (*p == '\0')
7217 return (1);
7218
7219 for (s = olds; *s != '\0'; s++) {
7220 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7221 return (gs);
7222 }
7223
7224 return (0);
7225 }
7226 }
7227
7228 /*ARGSUSED*/
7229 static int
7230 dtrace_match_string(const char *s, const char *p, int depth)
7231 {
7232 #pragma unused(depth) /* __APPLE__ */
7233
7234 /* APPLE NOTE: Darwin employs size bounded string operation. */
7235 return (s != NULL && strncmp(s, p, strlen(s) + 1) == 0);
7236 }
7237
7238 /*ARGSUSED*/
7239 static int
7240 dtrace_match_nul(const char *s, const char *p, int depth)
7241 {
7242 #pragma unused(s, p, depth) /* __APPLE__ */
7243 return (1); /* always match the empty pattern */
7244 }
7245
7246 /*ARGSUSED*/
7247 static int
7248 dtrace_match_nonzero(const char *s, const char *p, int depth)
7249 {
7250 #pragma unused(p, depth) /* __APPLE__ */
7251 return (s != NULL && s[0] != '\0');
7252 }
7253
7254 static int
7255 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7256 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7257 {
7258 dtrace_probe_t template, *probe;
7259 dtrace_hash_t *hash = NULL;
7260 int len, rc, best = INT_MAX, nmatched = 0;
7261 dtrace_id_t i;
7262
7263 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7264
7265 /*
7266 * If the probe ID is specified in the key, just lookup by ID and
7267 * invoke the match callback once if a matching probe is found.
7268 */
7269 if (pkp->dtpk_id != DTRACE_IDNONE) {
7270 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7271 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7272 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7273 return (DTRACE_MATCH_FAIL);
7274 nmatched++;
7275 }
7276 return (nmatched);
7277 }
7278
7279 template.dtpr_mod = (char *)(uintptr_t)pkp->dtpk_mod;
7280 template.dtpr_func = (char *)(uintptr_t)pkp->dtpk_func;
7281 template.dtpr_name = (char *)(uintptr_t)pkp->dtpk_name;
7282
7283 /*
7284 * We want to find the most distinct of the module name, function
7285 * name, and name. So for each one that is not a glob pattern or
7286 * empty string, we perform a lookup in the corresponding hash and
7287 * use the hash table with the fewest collisions to do our search.
7288 */
7289 if (pkp->dtpk_mmatch == &dtrace_match_string &&
7290 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7291 best = len;
7292 hash = dtrace_bymod;
7293 }
7294
7295 if (pkp->dtpk_fmatch == &dtrace_match_string &&
7296 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7297 best = len;
7298 hash = dtrace_byfunc;
7299 }
7300
7301 if (pkp->dtpk_nmatch == &dtrace_match_string &&
7302 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7303 best = len;
7304 hash = dtrace_byname;
7305 }
7306
7307 /*
7308 * If we did not select a hash table, iterate over every probe and
7309 * invoke our callback for each one that matches our input probe key.
7310 */
7311 if (hash == NULL) {
7312 for (i = 0; i < (dtrace_id_t)dtrace_nprobes; i++) {
7313 if ((probe = dtrace_probes[i]) == NULL ||
7314 dtrace_match_probe(probe, pkp, priv, uid,
7315 zoneid) <= 0)
7316 continue;
7317
7318 nmatched++;
7319
7320 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7321 if (rc == DTRACE_MATCH_FAIL)
7322 return (DTRACE_MATCH_FAIL);
7323 break;
7324 }
7325 }
7326
7327 return (nmatched);
7328 }
7329
7330 /*
7331 * If we selected a hash table, iterate over each probe of the same key
7332 * name and invoke the callback for every probe that matches the other
7333 * attributes of our input probe key.
7334 */
7335 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7336 probe = *(DTRACE_HASHNEXT(hash, probe))) {
7337
7338 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7339 continue;
7340
7341 nmatched++;
7342
7343 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7344 if (rc == DTRACE_MATCH_FAIL)
7345 return (DTRACE_MATCH_FAIL);
7346 break;
7347 }
7348 }
7349
7350 return (nmatched);
7351 }
7352
7353 /*
7354 * Return the function pointer dtrace_probecmp() should use to compare the
7355 * specified pattern with a string. For NULL or empty patterns, we select
7356 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
7357 * For non-empty non-glob strings, we use dtrace_match_string().
7358 */
7359 static dtrace_probekey_f *
7360 dtrace_probekey_func(const char *p)
7361 {
7362 char c;
7363
7364 if (p == NULL || *p == '\0')
7365 return (&dtrace_match_nul);
7366
7367 while ((c = *p++) != '\0') {
7368 if (c == '[' || c == '?' || c == '*' || c == '\\')
7369 return (&dtrace_match_glob);
7370 }
7371
7372 return (&dtrace_match_string);
7373 }
7374
7375 /*
7376 * Build a probe comparison key for use with dtrace_match_probe() from the
7377 * given probe description. By convention, a null key only matches anchored
7378 * probes: if each field is the empty string, reset dtpk_fmatch to
7379 * dtrace_match_nonzero().
7380 */
7381 static void
7382 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7383 {
7384 pkp->dtpk_prov = pdp->dtpd_provider;
7385 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7386
7387 pkp->dtpk_mod = pdp->dtpd_mod;
7388 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7389
7390 pkp->dtpk_func = pdp->dtpd_func;
7391 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7392
7393 pkp->dtpk_name = pdp->dtpd_name;
7394 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7395
7396 pkp->dtpk_id = pdp->dtpd_id;
7397
7398 if (pkp->dtpk_id == DTRACE_IDNONE &&
7399 pkp->dtpk_pmatch == &dtrace_match_nul &&
7400 pkp->dtpk_mmatch == &dtrace_match_nul &&
7401 pkp->dtpk_fmatch == &dtrace_match_nul &&
7402 pkp->dtpk_nmatch == &dtrace_match_nul)
7403 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7404 }
7405
7406 /*
7407 * DTrace Provider-to-Framework API Functions
7408 *
7409 * These functions implement much of the Provider-to-Framework API, as
7410 * described in <sys/dtrace.h>. The parts of the API not in this section are
7411 * the functions in the API for probe management (found below), and
7412 * dtrace_probe() itself (found above).
7413 */
7414
7415 /*
7416 * Register the calling provider with the DTrace framework. This should
7417 * generally be called by DTrace providers in their attach(9E) entry point.
7418 */
7419 int
7420 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7421 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7422 {
7423 dtrace_provider_t *provider;
7424
7425 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7426 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7427 "arguments", name ? name : "<NULL>");
7428 return (EINVAL);
7429 }
7430
7431 if (name[0] == '\0' || dtrace_badname(name)) {
7432 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7433 "provider name", name);
7434 return (EINVAL);
7435 }
7436
7437 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7438 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7439 pops->dtps_destroy == NULL ||
7440 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7441 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7442 "provider ops", name);
7443 return (EINVAL);
7444 }
7445
7446 if (dtrace_badattr(&pap->dtpa_provider) ||
7447 dtrace_badattr(&pap->dtpa_mod) ||
7448 dtrace_badattr(&pap->dtpa_func) ||
7449 dtrace_badattr(&pap->dtpa_name) ||
7450 dtrace_badattr(&pap->dtpa_args)) {
7451 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7452 "provider attributes", name);
7453 return (EINVAL);
7454 }
7455
7456 if (priv & ~DTRACE_PRIV_ALL) {
7457 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7458 "privilege attributes", name);
7459 return (EINVAL);
7460 }
7461
7462 if ((priv & DTRACE_PRIV_KERNEL) &&
7463 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7464 pops->dtps_usermode == NULL) {
7465 cmn_err(CE_WARN, "failed to register provider '%s': need "
7466 "dtps_usermode() op for given privilege attributes", name);
7467 return (EINVAL);
7468 }
7469
7470 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7471
7472 /* APPLE NOTE: Darwin employs size bounded string operation. */
7473 {
7474 size_t bufsize = strlen(name) + 1;
7475 provider->dtpv_name = kmem_alloc(bufsize, KM_SLEEP);
7476 (void) strlcpy(provider->dtpv_name, name, bufsize);
7477 }
7478
7479 provider->dtpv_attr = *pap;
7480 provider->dtpv_priv.dtpp_flags = priv;
7481 if (cr != NULL) {
7482 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7483 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7484 }
7485 provider->dtpv_pops = *pops;
7486
7487 if (pops->dtps_provide == NULL) {
7488 ASSERT(pops->dtps_provide_module != NULL);
7489 provider->dtpv_pops.dtps_provide =
7490 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7491 }
7492
7493 if (pops->dtps_provide_module == NULL) {
7494 ASSERT(pops->dtps_provide != NULL);
7495 provider->dtpv_pops.dtps_provide_module =
7496 (void (*)(void *, struct modctl *))dtrace_nullop;
7497 }
7498
7499 if (pops->dtps_suspend == NULL) {
7500 ASSERT(pops->dtps_resume == NULL);
7501 provider->dtpv_pops.dtps_suspend =
7502 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7503 provider->dtpv_pops.dtps_resume =
7504 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7505 }
7506
7507 provider->dtpv_arg = arg;
7508 *idp = (dtrace_provider_id_t)provider;
7509
7510 if (pops == &dtrace_provider_ops) {
7511 lck_mtx_assert(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED);
7512 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7513 ASSERT(dtrace_anon.dta_enabling == NULL);
7514
7515 /*
7516 * We make sure that the DTrace provider is at the head of
7517 * the provider chain.
7518 */
7519 provider->dtpv_next = dtrace_provider;
7520 dtrace_provider = provider;
7521 return (0);
7522 }
7523
7524 lck_mtx_lock(&dtrace_provider_lock);
7525 lck_mtx_lock(&dtrace_lock);
7526
7527 /*
7528 * If there is at least one provider registered, we'll add this
7529 * provider after the first provider.
7530 */
7531 if (dtrace_provider != NULL) {
7532 provider->dtpv_next = dtrace_provider->dtpv_next;
7533 dtrace_provider->dtpv_next = provider;
7534 } else {
7535 dtrace_provider = provider;
7536 }
7537
7538 if (dtrace_retained != NULL) {
7539 dtrace_enabling_provide(provider);
7540
7541 /*
7542 * Now we need to call dtrace_enabling_matchall() -- which
7543 * will acquire cpu_lock and dtrace_lock. We therefore need
7544 * to drop all of our locks before calling into it...
7545 */
7546 lck_mtx_unlock(&dtrace_lock);
7547 lck_mtx_unlock(&dtrace_provider_lock);
7548 dtrace_enabling_matchall();
7549
7550 return (0);
7551 }
7552
7553 lck_mtx_unlock(&dtrace_lock);
7554 lck_mtx_unlock(&dtrace_provider_lock);
7555
7556 return (0);
7557 }
7558
7559 /*
7560 * Unregister the specified provider from the DTrace framework. This should
7561 * generally be called by DTrace providers in their detach(9E) entry point.
7562 */
7563 int
7564 dtrace_unregister(dtrace_provider_id_t id)
7565 {
7566 dtrace_provider_t *old = (dtrace_provider_t *)id;
7567 dtrace_provider_t *prev = NULL;
7568 int i, self = 0;
7569 dtrace_probe_t *probe, *first = NULL;
7570
7571 if (old->dtpv_pops.dtps_enable ==
7572 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7573 /*
7574 * If DTrace itself is the provider, we're called with locks
7575 * already held.
7576 */
7577 ASSERT(old == dtrace_provider);
7578 ASSERT(dtrace_devi != NULL);
7579 lck_mtx_assert(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED);
7580 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7581 self = 1;
7582
7583 if (dtrace_provider->dtpv_next != NULL) {
7584 /*
7585 * There's another provider here; return failure.
7586 */
7587 return (EBUSY);
7588 }
7589 } else {
7590 lck_mtx_lock(&dtrace_provider_lock);
7591 lck_mtx_lock(&mod_lock);
7592 lck_mtx_lock(&dtrace_lock);
7593 }
7594
7595 /*
7596 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7597 * probes, we refuse to let providers slither away, unless this
7598 * provider has already been explicitly invalidated.
7599 */
7600 if (!old->dtpv_defunct &&
7601 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7602 dtrace_anon.dta_state->dts_necbs > 0))) {
7603 if (!self) {
7604 lck_mtx_unlock(&dtrace_lock);
7605 lck_mtx_unlock(&mod_lock);
7606 lck_mtx_unlock(&dtrace_provider_lock);
7607 }
7608 return (EBUSY);
7609 }
7610
7611 /*
7612 * Attempt to destroy the probes associated with this provider.
7613 */
7614 if (old->dtpv_ecb_count!=0) {
7615 /*
7616 * We have at least one ECB; we can't remove this provider.
7617 */
7618 if (!self) {
7619 lck_mtx_unlock(&dtrace_lock);
7620 lck_mtx_unlock(&mod_lock);
7621 lck_mtx_unlock(&dtrace_provider_lock);
7622 }
7623 return (EBUSY);
7624 }
7625
7626 /*
7627 * All of the probes for this provider are disabled; we can safely
7628 * remove all of them from their hash chains and from the probe array.
7629 */
7630 for (i = 0; i < dtrace_nprobes && old->dtpv_probe_count!=0; i++) {
7631 if ((probe = dtrace_probes[i]) == NULL)
7632 continue;
7633
7634 if (probe->dtpr_provider != old)
7635 continue;
7636
7637 dtrace_probes[i] = NULL;
7638 old->dtpv_probe_count--;
7639
7640 dtrace_hash_remove(dtrace_bymod, probe);
7641 dtrace_hash_remove(dtrace_byfunc, probe);
7642 dtrace_hash_remove(dtrace_byname, probe);
7643
7644 if (first == NULL) {
7645 first = probe;
7646 probe->dtpr_nextmod = NULL;
7647 } else {
7648 probe->dtpr_nextmod = first;
7649 first = probe;
7650 }
7651 }
7652
7653 /*
7654 * The provider's probes have been removed from the hash chains and
7655 * from the probe array. Now issue a dtrace_sync() to be sure that
7656 * everyone has cleared out from any probe array processing.
7657 */
7658 dtrace_sync();
7659
7660 for (probe = first; probe != NULL; probe = first) {
7661 first = probe->dtpr_nextmod;
7662
7663 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7664 probe->dtpr_arg);
7665 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7666 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7667 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7668 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7669 zfree(dtrace_probe_t_zone, probe);
7670 }
7671
7672 if ((prev = dtrace_provider) == old) {
7673 ASSERT(self || dtrace_devi == NULL);
7674 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7675 dtrace_provider = old->dtpv_next;
7676 } else {
7677 while (prev != NULL && prev->dtpv_next != old)
7678 prev = prev->dtpv_next;
7679
7680 if (prev == NULL) {
7681 panic("attempt to unregister non-existent "
7682 "dtrace provider %p\n", (void *)id);
7683 }
7684
7685 prev->dtpv_next = old->dtpv_next;
7686 }
7687
7688 if (!self) {
7689 lck_mtx_unlock(&dtrace_lock);
7690 lck_mtx_unlock(&mod_lock);
7691 lck_mtx_unlock(&dtrace_provider_lock);
7692 }
7693
7694 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7695 kmem_free(old, sizeof (dtrace_provider_t));
7696
7697 return (0);
7698 }
7699
7700 /*
7701 * Invalidate the specified provider. All subsequent probe lookups for the
7702 * specified provider will fail, but its probes will not be removed.
7703 */
7704 void
7705 dtrace_invalidate(dtrace_provider_id_t id)
7706 {
7707 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7708
7709 ASSERT(pvp->dtpv_pops.dtps_enable !=
7710 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7711
7712 lck_mtx_lock(&dtrace_provider_lock);
7713 lck_mtx_lock(&dtrace_lock);
7714
7715 pvp->dtpv_defunct = 1;
7716
7717 lck_mtx_unlock(&dtrace_lock);
7718 lck_mtx_unlock(&dtrace_provider_lock);
7719 }
7720
7721 /*
7722 * Indicate whether or not DTrace has attached.
7723 */
7724 int
7725 dtrace_attached(void)
7726 {
7727 /*
7728 * dtrace_provider will be non-NULL iff the DTrace driver has
7729 * attached. (It's non-NULL because DTrace is always itself a
7730 * provider.)
7731 */
7732 return (dtrace_provider != NULL);
7733 }
7734
7735 /*
7736 * Remove all the unenabled probes for the given provider. This function is
7737 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7738 * -- just as many of its associated probes as it can.
7739 */
7740 int
7741 dtrace_condense(dtrace_provider_id_t id)
7742 {
7743 dtrace_provider_t *prov = (dtrace_provider_t *)id;
7744 int i;
7745 dtrace_probe_t *probe;
7746
7747 /*
7748 * Make sure this isn't the dtrace provider itself.
7749 */
7750 ASSERT(prov->dtpv_pops.dtps_enable !=
7751 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7752
7753 lck_mtx_lock(&dtrace_provider_lock);
7754 lck_mtx_lock(&dtrace_lock);
7755
7756 /*
7757 * Attempt to destroy the probes associated with this provider.
7758 */
7759 for (i = 0; i < dtrace_nprobes; i++) {
7760 if ((probe = dtrace_probes[i]) == NULL)
7761 continue;
7762
7763 if (probe->dtpr_provider != prov)
7764 continue;
7765
7766 if (probe->dtpr_ecb != NULL)
7767 continue;
7768
7769 dtrace_probes[i] = NULL;
7770 prov->dtpv_probe_count--;
7771
7772 dtrace_hash_remove(dtrace_bymod, probe);
7773 dtrace_hash_remove(dtrace_byfunc, probe);
7774 dtrace_hash_remove(dtrace_byname, probe);
7775
7776 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7777 probe->dtpr_arg);
7778 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7779 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7780 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7781 zfree(dtrace_probe_t_zone, probe);
7782 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7783 }
7784
7785 lck_mtx_unlock(&dtrace_lock);
7786 lck_mtx_unlock(&dtrace_provider_lock);
7787
7788 return (0);
7789 }
7790
7791 /*
7792 * DTrace Probe Management Functions
7793 *
7794 * The functions in this section perform the DTrace probe management,
7795 * including functions to create probes, look-up probes, and call into the
7796 * providers to request that probes be provided. Some of these functions are
7797 * in the Provider-to-Framework API; these functions can be identified by the
7798 * fact that they are not declared "static".
7799 */
7800
7801 /*
7802 * Create a probe with the specified module name, function name, and name.
7803 */
7804 dtrace_id_t
7805 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7806 const char *func, const char *name, int aframes, void *arg)
7807 {
7808 dtrace_probe_t *probe, **probes;
7809 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7810 dtrace_id_t id;
7811
7812 if (provider == dtrace_provider) {
7813 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7814 } else {
7815 lck_mtx_lock(&dtrace_lock);
7816 }
7817
7818 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7819 VM_BESTFIT | VM_SLEEP);
7820
7821 probe = zalloc(dtrace_probe_t_zone);
7822 bzero(probe, sizeof (dtrace_probe_t));
7823
7824 probe->dtpr_id = id;
7825 probe->dtpr_gen = dtrace_probegen++;
7826 probe->dtpr_mod = dtrace_strdup(mod);
7827 probe->dtpr_func = dtrace_strdup(func);
7828 probe->dtpr_name = dtrace_strdup(name);
7829 probe->dtpr_arg = arg;
7830 probe->dtpr_aframes = aframes;
7831 probe->dtpr_provider = provider;
7832
7833 dtrace_hash_add(dtrace_bymod, probe);
7834 dtrace_hash_add(dtrace_byfunc, probe);
7835 dtrace_hash_add(dtrace_byname, probe);
7836
7837 if (id - 1 >= (dtrace_id_t)dtrace_nprobes) {
7838 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7839 size_t nsize = osize << 1;
7840
7841 if (nsize == 0) {
7842 ASSERT(osize == 0);
7843 ASSERT(dtrace_probes == NULL);
7844 nsize = sizeof (dtrace_probe_t *);
7845 }
7846
7847 probes = kmem_zalloc(nsize, KM_SLEEP);
7848
7849 if (dtrace_probes == NULL) {
7850 ASSERT(osize == 0);
7851 dtrace_probes = probes;
7852 dtrace_nprobes = 1;
7853 } else {
7854 dtrace_probe_t **oprobes = dtrace_probes;
7855
7856 bcopy(oprobes, probes, osize);
7857 dtrace_membar_producer();
7858 dtrace_probes = probes;
7859
7860 dtrace_sync();
7861
7862 /*
7863 * All CPUs are now seeing the new probes array; we can
7864 * safely free the old array.
7865 */
7866 kmem_free(oprobes, osize);
7867 dtrace_nprobes <<= 1;
7868 }
7869
7870 ASSERT(id - 1 < (dtrace_id_t)dtrace_nprobes);
7871 }
7872
7873 ASSERT(dtrace_probes[id - 1] == NULL);
7874 dtrace_probes[id - 1] = probe;
7875 provider->dtpv_probe_count++;
7876
7877 if (provider != dtrace_provider)
7878 lck_mtx_unlock(&dtrace_lock);
7879
7880 return (id);
7881 }
7882
7883 static dtrace_probe_t *
7884 dtrace_probe_lookup_id(dtrace_id_t id)
7885 {
7886 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
7887
7888 if (id == 0 || id > (dtrace_id_t)dtrace_nprobes)
7889 return (NULL);
7890
7891 return (dtrace_probes[id - 1]);
7892 }
7893
7894 static int
7895 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7896 {
7897 *((dtrace_id_t *)arg) = probe->dtpr_id;
7898
7899 return (DTRACE_MATCH_DONE);
7900 }
7901
7902 /*
7903 * Look up a probe based on provider and one or more of module name, function
7904 * name and probe name.
7905 */
7906 dtrace_id_t
7907 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7908 const char *func, const char *name)
7909 {
7910 dtrace_probekey_t pkey;
7911 dtrace_id_t id;
7912 int match;
7913
7914 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7915 pkey.dtpk_pmatch = &dtrace_match_string;
7916 pkey.dtpk_mod = mod;
7917 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7918 pkey.dtpk_func = func;
7919 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7920 pkey.dtpk_name = name;
7921 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7922 pkey.dtpk_id = DTRACE_IDNONE;
7923
7924 lck_mtx_lock(&dtrace_lock);
7925 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7926 dtrace_probe_lookup_match, &id);
7927 lck_mtx_unlock(&dtrace_lock);
7928
7929 ASSERT(match == 1 || match == 0);
7930 return (match ? id : 0);
7931 }
7932
7933 /*
7934 * Returns the probe argument associated with the specified probe.
7935 */
7936 void *
7937 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7938 {
7939 dtrace_probe_t *probe;
7940 void *rval = NULL;
7941
7942 lck_mtx_lock(&dtrace_lock);
7943
7944 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7945 probe->dtpr_provider == (dtrace_provider_t *)id)
7946 rval = probe->dtpr_arg;
7947
7948 lck_mtx_unlock(&dtrace_lock);
7949
7950 return (rval);
7951 }
7952
7953 /*
7954 * Copy a probe into a probe description.
7955 */
7956 static void
7957 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7958 {
7959 bzero(pdp, sizeof (dtrace_probedesc_t));
7960 pdp->dtpd_id = prp->dtpr_id;
7961
7962 /* APPLE NOTE: Darwin employs size bounded string operation. */
7963 (void) strlcpy(pdp->dtpd_provider,
7964 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN);
7965
7966 (void) strlcpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN);
7967 (void) strlcpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN);
7968 (void) strlcpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN);
7969 }
7970
7971 /*
7972 * Called to indicate that a probe -- or probes -- should be provided by a
7973 * specfied provider. If the specified description is NULL, the provider will
7974 * be told to provide all of its probes. (This is done whenever a new
7975 * consumer comes along, or whenever a retained enabling is to be matched.) If
7976 * the specified description is non-NULL, the provider is given the
7977 * opportunity to dynamically provide the specified probe, allowing providers
7978 * to support the creation of probes on-the-fly. (So-called _autocreated_
7979 * probes.) If the provider is NULL, the operations will be applied to all
7980 * providers; if the provider is non-NULL the operations will only be applied
7981 * to the specified provider. The dtrace_provider_lock must be held, and the
7982 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7983 * will need to grab the dtrace_lock when it reenters the framework through
7984 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7985 */
7986 static void
7987 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7988 {
7989 struct modctl *ctl;
7990 int all = 0;
7991
7992 lck_mtx_assert(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED);
7993
7994 if (prv == NULL) {
7995 all = 1;
7996 prv = dtrace_provider;
7997 }
7998
7999 do {
8000 /*
8001 * First, call the blanket provide operation.
8002 */
8003 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8004
8005 /*
8006 * Now call the per-module provide operation. We will grab
8007 * mod_lock to prevent the list from being modified. Note
8008 * that this also prevents the mod_busy bits from changing.
8009 * (mod_busy can only be changed with mod_lock held.)
8010 */
8011 lck_mtx_lock(&mod_lock);
8012
8013 ctl = dtrace_modctl_list;
8014 while (ctl) {
8015 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8016 ctl = ctl->mod_next;
8017 }
8018
8019 lck_mtx_unlock(&mod_lock);
8020 } while (all && (prv = prv->dtpv_next) != NULL);
8021 }
8022
8023 /*
8024 * Iterate over each probe, and call the Framework-to-Provider API function
8025 * denoted by offs.
8026 */
8027 static void
8028 dtrace_probe_foreach(uintptr_t offs)
8029 {
8030 dtrace_provider_t *prov;
8031 void (*func)(void *, dtrace_id_t, void *);
8032 dtrace_probe_t *probe;
8033 dtrace_icookie_t cookie;
8034 int i;
8035
8036 /*
8037 * We disable interrupts to walk through the probe array. This is
8038 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8039 * won't see stale data.
8040 */
8041 cookie = dtrace_interrupt_disable();
8042
8043 for (i = 0; i < dtrace_nprobes; i++) {
8044 if ((probe = dtrace_probes[i]) == NULL)
8045 continue;
8046
8047 if (probe->dtpr_ecb == NULL) {
8048 /*
8049 * This probe isn't enabled -- don't call the function.
8050 */
8051 continue;
8052 }
8053
8054 prov = probe->dtpr_provider;
8055 func = *((void(**)(void *, dtrace_id_t, void *))
8056 ((uintptr_t)&prov->dtpv_pops + offs));
8057
8058 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8059 }
8060
8061 dtrace_interrupt_enable(cookie);
8062 }
8063
8064 static int
8065 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8066 {
8067 dtrace_probekey_t pkey;
8068 uint32_t priv;
8069 uid_t uid;
8070 zoneid_t zoneid;
8071
8072 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
8073
8074 dtrace_ecb_create_cache = NULL;
8075
8076 if (desc == NULL) {
8077 /*
8078 * If we're passed a NULL description, we're being asked to
8079 * create an ECB with a NULL probe.
8080 */
8081 (void) dtrace_ecb_create_enable(NULL, enab);
8082 return (0);
8083 }
8084
8085 dtrace_probekey(desc, &pkey);
8086 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8087 &priv, &uid, &zoneid);
8088
8089 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8090 enab));
8091 }
8092
8093 /*
8094 * DTrace Helper Provider Functions
8095 */
8096 static void
8097 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8098 {
8099 attr->dtat_name = DOF_ATTR_NAME(dofattr);
8100 attr->dtat_data = DOF_ATTR_DATA(dofattr);
8101 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8102 }
8103
8104 static void
8105 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8106 const dof_provider_t *dofprov, char *strtab)
8107 {
8108 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8109 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8110 dofprov->dofpv_provattr);
8111 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8112 dofprov->dofpv_modattr);
8113 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8114 dofprov->dofpv_funcattr);
8115 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8116 dofprov->dofpv_nameattr);
8117 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8118 dofprov->dofpv_argsattr);
8119 }
8120
8121 static void
8122 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8123 {
8124 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8125 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8126 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8127 dof_provider_t *provider;
8128 dof_probe_t *probe;
8129 uint32_t *off, *enoff;
8130 uint8_t *arg;
8131 char *strtab;
8132 uint_t i, nprobes;
8133 dtrace_helper_provdesc_t dhpv;
8134 dtrace_helper_probedesc_t dhpb;
8135 dtrace_meta_t *meta = dtrace_meta_pid;
8136 dtrace_mops_t *mops = &meta->dtm_mops;
8137 void *parg;
8138
8139 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8140 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8141 provider->dofpv_strtab * dof->dofh_secsize);
8142 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8143 provider->dofpv_probes * dof->dofh_secsize);
8144 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8145 provider->dofpv_prargs * dof->dofh_secsize);
8146 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8147 provider->dofpv_proffs * dof->dofh_secsize);
8148
8149 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8150 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8151 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8152 enoff = NULL;
8153
8154 /*
8155 * See dtrace_helper_provider_validate().
8156 */
8157 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8158 provider->dofpv_prenoffs != DOF_SECT_NONE) {
8159 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8160 provider->dofpv_prenoffs * dof->dofh_secsize);
8161 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8162 }
8163
8164 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8165
8166 /*
8167 * Create the provider.
8168 */
8169 dtrace_dofprov2hprov(&dhpv, provider, strtab);
8170
8171 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8172 return;
8173
8174 meta->dtm_count++;
8175
8176 /*
8177 * Create the probes.
8178 */
8179 for (i = 0; i < nprobes; i++) {
8180 probe = (dof_probe_t *)(uintptr_t)(daddr +
8181 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8182
8183 dhpb.dthpb_mod = dhp->dofhp_mod;
8184 dhpb.dthpb_func = strtab + probe->dofpr_func;
8185 dhpb.dthpb_name = strtab + probe->dofpr_name;
8186 #if !defined(__APPLE__)
8187 dhpb.dthpb_base = probe->dofpr_addr;
8188 #else
8189 dhpb.dthpb_base = dhp->dofhp_addr; /* FIXME: James, why? */
8190 #endif
8191 dhpb.dthpb_offs = (int32_t *)(off + probe->dofpr_offidx);
8192 dhpb.dthpb_noffs = probe->dofpr_noffs;
8193 if (enoff != NULL) {
8194 dhpb.dthpb_enoffs = (int32_t *)(enoff + probe->dofpr_enoffidx);
8195 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8196 } else {
8197 dhpb.dthpb_enoffs = NULL;
8198 dhpb.dthpb_nenoffs = 0;
8199 }
8200 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8201 dhpb.dthpb_nargc = probe->dofpr_nargc;
8202 dhpb.dthpb_xargc = probe->dofpr_xargc;
8203 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8204 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8205
8206 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8207 }
8208 }
8209
8210 static void
8211 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8212 {
8213 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8214 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8215 uint32_t i;
8216
8217 lck_mtx_assert(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED);
8218
8219 for (i = 0; i < dof->dofh_secnum; i++) {
8220 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8221 dof->dofh_secoff + i * dof->dofh_secsize);
8222
8223 if (sec->dofs_type != DOF_SECT_PROVIDER)
8224 continue;
8225
8226 dtrace_helper_provide_one(dhp, sec, pid);
8227 }
8228
8229 /*
8230 * We may have just created probes, so we must now rematch against
8231 * any retained enablings. Note that this call will acquire both
8232 * cpu_lock and dtrace_lock; the fact that we are holding
8233 * dtrace_meta_lock now is what defines the ordering with respect to
8234 * these three locks.
8235 */
8236 dtrace_enabling_matchall();
8237 }
8238
8239 static void
8240 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8241 {
8242 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8243 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8244 dof_sec_t *str_sec;
8245 dof_provider_t *provider;
8246 char *strtab;
8247 dtrace_helper_provdesc_t dhpv;
8248 dtrace_meta_t *meta = dtrace_meta_pid;
8249 dtrace_mops_t *mops = &meta->dtm_mops;
8250
8251 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8252 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8253 provider->dofpv_strtab * dof->dofh_secsize);
8254
8255 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8256
8257 /*
8258 * Create the provider.
8259 */
8260 dtrace_dofprov2hprov(&dhpv, provider, strtab);
8261
8262 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8263
8264 meta->dtm_count--;
8265 }
8266
8267 static void
8268 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8269 {
8270 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8271 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8272 uint32_t i;
8273
8274 lck_mtx_assert(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED);
8275
8276 for (i = 0; i < dof->dofh_secnum; i++) {
8277 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8278 dof->dofh_secoff + i * dof->dofh_secsize);
8279
8280 if (sec->dofs_type != DOF_SECT_PROVIDER)
8281 continue;
8282
8283 dtrace_helper_provider_remove_one(dhp, sec, pid);
8284 }
8285 }
8286
8287 /*
8288 * DTrace Meta Provider-to-Framework API Functions
8289 *
8290 * These functions implement the Meta Provider-to-Framework API, as described
8291 * in <sys/dtrace.h>.
8292 */
8293 int
8294 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8295 dtrace_meta_provider_id_t *idp)
8296 {
8297 dtrace_meta_t *meta;
8298 dtrace_helpers_t *help, *next;
8299 uint_t i;
8300
8301 *idp = DTRACE_METAPROVNONE;
8302
8303 /*
8304 * We strictly don't need the name, but we hold onto it for
8305 * debuggability. All hail error queues!
8306 */
8307 if (name == NULL) {
8308 cmn_err(CE_WARN, "failed to register meta-provider: "
8309 "invalid name");
8310 return (EINVAL);
8311 }
8312
8313 if (mops == NULL ||
8314 mops->dtms_create_probe == NULL ||
8315 mops->dtms_provide_pid == NULL ||
8316 mops->dtms_remove_pid == NULL) {
8317 cmn_err(CE_WARN, "failed to register meta-register %s: "
8318 "invalid ops", name);
8319 return (EINVAL);
8320 }
8321
8322 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8323 meta->dtm_mops = *mops;
8324
8325 /* APPLE NOTE: Darwin employs size bounded string operation. */
8326 {
8327 size_t bufsize = strlen(name) + 1;
8328 meta->dtm_name = kmem_alloc(bufsize, KM_SLEEP);
8329 (void) strlcpy(meta->dtm_name, name, bufsize);
8330 }
8331
8332 meta->dtm_arg = arg;
8333
8334 lck_mtx_lock(&dtrace_meta_lock);
8335 lck_mtx_lock(&dtrace_lock);
8336
8337 if (dtrace_meta_pid != NULL) {
8338 lck_mtx_unlock(&dtrace_lock);
8339 lck_mtx_unlock(&dtrace_meta_lock);
8340 cmn_err(CE_WARN, "failed to register meta-register %s: "
8341 "user-land meta-provider exists", name);
8342 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8343 kmem_free(meta, sizeof (dtrace_meta_t));
8344 return (EINVAL);
8345 }
8346
8347 dtrace_meta_pid = meta;
8348 *idp = (dtrace_meta_provider_id_t)meta;
8349
8350 /*
8351 * If there are providers and probes ready to go, pass them
8352 * off to the new meta provider now.
8353 */
8354
8355 help = dtrace_deferred_pid;
8356 dtrace_deferred_pid = NULL;
8357
8358 lck_mtx_unlock(&dtrace_lock);
8359
8360 while (help != NULL) {
8361 for (i = 0; i < help->dthps_nprovs; i++) {
8362 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8363 help->dthps_pid);
8364 }
8365
8366 next = help->dthps_next;
8367 help->dthps_next = NULL;
8368 help->dthps_prev = NULL;
8369 help->dthps_deferred = 0;
8370 help = next;
8371 }
8372
8373 lck_mtx_unlock(&dtrace_meta_lock);
8374
8375 return (0);
8376 }
8377
8378 int
8379 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8380 {
8381 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8382
8383 lck_mtx_lock(&dtrace_meta_lock);
8384 lck_mtx_lock(&dtrace_lock);
8385
8386 if (old == dtrace_meta_pid) {
8387 pp = &dtrace_meta_pid;
8388 } else {
8389 panic("attempt to unregister non-existent "
8390 "dtrace meta-provider %p\n", (void *)old);
8391 }
8392
8393 if (old->dtm_count != 0) {
8394 lck_mtx_unlock(&dtrace_lock);
8395 lck_mtx_unlock(&dtrace_meta_lock);
8396 return (EBUSY);
8397 }
8398
8399 *pp = NULL;
8400
8401 lck_mtx_unlock(&dtrace_lock);
8402 lck_mtx_unlock(&dtrace_meta_lock);
8403
8404 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8405 kmem_free(old, sizeof (dtrace_meta_t));
8406
8407 return (0);
8408 }
8409
8410
8411 /*
8412 * DTrace DIF Object Functions
8413 */
8414 static int
8415 dtrace_difo_err(uint_t pc, const char *format, ...)
8416 {
8417 if (dtrace_err_verbose) {
8418 va_list alist;
8419
8420 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
8421 va_start(alist, format);
8422 (void) vuprintf(format, alist);
8423 va_end(alist);
8424 }
8425
8426 #ifdef DTRACE_ERRDEBUG
8427 dtrace_errdebug(format);
8428 #endif
8429 return (1);
8430 }
8431
8432 /*
8433 * Validate a DTrace DIF object by checking the IR instructions. The following
8434 * rules are currently enforced by dtrace_difo_validate():
8435 *
8436 * 1. Each instruction must have a valid opcode
8437 * 2. Each register, string, variable, or subroutine reference must be valid
8438 * 3. No instruction can modify register %r0 (must be zero)
8439 * 4. All instruction reserved bits must be set to zero
8440 * 5. The last instruction must be a "ret" instruction
8441 * 6. All branch targets must reference a valid instruction _after_ the branch
8442 */
8443 static int
8444 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8445 cred_t *cr)
8446 {
8447 int err = 0;
8448 uint_t i;
8449
8450 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8451 int kcheckload;
8452 uint_t pc;
8453
8454 kcheckload = cr == NULL ||
8455 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8456
8457 dp->dtdo_destructive = 0;
8458
8459 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8460 dif_instr_t instr = dp->dtdo_buf[pc];
8461
8462 uint_t r1 = DIF_INSTR_R1(instr);
8463 uint_t r2 = DIF_INSTR_R2(instr);
8464 uint_t rd = DIF_INSTR_RD(instr);
8465 uint_t rs = DIF_INSTR_RS(instr);
8466 uint_t label = DIF_INSTR_LABEL(instr);
8467 uint_t v = DIF_INSTR_VAR(instr);
8468 uint_t subr = DIF_INSTR_SUBR(instr);
8469 uint_t type = DIF_INSTR_TYPE(instr);
8470 uint_t op = DIF_INSTR_OP(instr);
8471
8472 switch (op) {
8473 case DIF_OP_OR:
8474 case DIF_OP_XOR:
8475 case DIF_OP_AND:
8476 case DIF_OP_SLL:
8477 case DIF_OP_SRL:
8478 case DIF_OP_SRA:
8479 case DIF_OP_SUB:
8480 case DIF_OP_ADD:
8481 case DIF_OP_MUL:
8482 case DIF_OP_SDIV:
8483 case DIF_OP_UDIV:
8484 case DIF_OP_SREM:
8485 case DIF_OP_UREM:
8486 case DIF_OP_COPYS:
8487 if (r1 >= nregs)
8488 err += efunc(pc, "invalid register %u\n", r1);
8489 if (r2 >= nregs)
8490 err += efunc(pc, "invalid register %u\n", r2);
8491 if (rd >= nregs)
8492 err += efunc(pc, "invalid register %u\n", rd);
8493 if (rd == 0)
8494 err += efunc(pc, "cannot write to %r0\n");
8495 break;
8496 case DIF_OP_NOT:
8497 case DIF_OP_MOV:
8498 case DIF_OP_ALLOCS:
8499 if (r1 >= nregs)
8500 err += efunc(pc, "invalid register %u\n", r1);
8501 if (r2 != 0)
8502 err += efunc(pc, "non-zero reserved bits\n");
8503 if (rd >= nregs)
8504 err += efunc(pc, "invalid register %u\n", rd);
8505 if (rd == 0)
8506 err += efunc(pc, "cannot write to %r0\n");
8507 break;
8508 case DIF_OP_LDSB:
8509 case DIF_OP_LDSH:
8510 case DIF_OP_LDSW:
8511 case DIF_OP_LDUB:
8512 case DIF_OP_LDUH:
8513 case DIF_OP_LDUW:
8514 case DIF_OP_LDX:
8515 if (r1 >= nregs)
8516 err += efunc(pc, "invalid register %u\n", r1);
8517 if (r2 != 0)
8518 err += efunc(pc, "non-zero reserved bits\n");
8519 if (rd >= nregs)
8520 err += efunc(pc, "invalid register %u\n", rd);
8521 if (rd == 0)
8522 err += efunc(pc, "cannot write to %r0\n");
8523 if (kcheckload)
8524 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8525 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8526 break;
8527 case DIF_OP_RLDSB:
8528 case DIF_OP_RLDSH:
8529 case DIF_OP_RLDSW:
8530 case DIF_OP_RLDUB:
8531 case DIF_OP_RLDUH:
8532 case DIF_OP_RLDUW:
8533 case DIF_OP_RLDX:
8534 if (r1 >= nregs)
8535 err += efunc(pc, "invalid register %u\n", r1);
8536 if (r2 != 0)
8537 err += efunc(pc, "non-zero reserved bits\n");
8538 if (rd >= nregs)
8539 err += efunc(pc, "invalid register %u\n", rd);
8540 if (rd == 0)
8541 err += efunc(pc, "cannot write to %r0\n");
8542 break;
8543 case DIF_OP_ULDSB:
8544 case DIF_OP_ULDSH:
8545 case DIF_OP_ULDSW:
8546 case DIF_OP_ULDUB:
8547 case DIF_OP_ULDUH:
8548 case DIF_OP_ULDUW:
8549 case DIF_OP_ULDX:
8550 if (r1 >= nregs)
8551 err += efunc(pc, "invalid register %u\n", r1);
8552 if (r2 != 0)
8553 err += efunc(pc, "non-zero reserved bits\n");
8554 if (rd >= nregs)
8555 err += efunc(pc, "invalid register %u\n", rd);
8556 if (rd == 0)
8557 err += efunc(pc, "cannot write to %r0\n");
8558 break;
8559 case DIF_OP_STB:
8560 case DIF_OP_STH:
8561 case DIF_OP_STW:
8562 case DIF_OP_STX:
8563 if (r1 >= nregs)
8564 err += efunc(pc, "invalid register %u\n", r1);
8565 if (r2 != 0)
8566 err += efunc(pc, "non-zero reserved bits\n");
8567 if (rd >= nregs)
8568 err += efunc(pc, "invalid register %u\n", rd);
8569 if (rd == 0)
8570 err += efunc(pc, "cannot write to 0 address\n");
8571 break;
8572 case DIF_OP_CMP:
8573 case DIF_OP_SCMP:
8574 if (r1 >= nregs)
8575 err += efunc(pc, "invalid register %u\n", r1);
8576 if (r2 >= nregs)
8577 err += efunc(pc, "invalid register %u\n", r2);
8578 if (rd != 0)
8579 err += efunc(pc, "non-zero reserved bits\n");
8580 break;
8581 case DIF_OP_TST:
8582 if (r1 >= nregs)
8583 err += efunc(pc, "invalid register %u\n", r1);
8584 if (r2 != 0 || rd != 0)
8585 err += efunc(pc, "non-zero reserved bits\n");
8586 break;
8587 case DIF_OP_BA:
8588 case DIF_OP_BE:
8589 case DIF_OP_BNE:
8590 case DIF_OP_BG:
8591 case DIF_OP_BGU:
8592 case DIF_OP_BGE:
8593 case DIF_OP_BGEU:
8594 case DIF_OP_BL:
8595 case DIF_OP_BLU:
8596 case DIF_OP_BLE:
8597 case DIF_OP_BLEU:
8598 if (label >= dp->dtdo_len) {
8599 err += efunc(pc, "invalid branch target %u\n",
8600 label);
8601 }
8602 if (label <= pc) {
8603 err += efunc(pc, "backward branch to %u\n",
8604 label);
8605 }
8606 break;
8607 case DIF_OP_RET:
8608 if (r1 != 0 || r2 != 0)
8609 err += efunc(pc, "non-zero reserved bits\n");
8610 if (rd >= nregs)
8611 err += efunc(pc, "invalid register %u\n", rd);
8612 break;
8613 case DIF_OP_NOP:
8614 case DIF_OP_POPTS:
8615 case DIF_OP_FLUSHTS:
8616 if (r1 != 0 || r2 != 0 || rd != 0)
8617 err += efunc(pc, "non-zero reserved bits\n");
8618 break;
8619 case DIF_OP_SETX:
8620 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8621 err += efunc(pc, "invalid integer ref %u\n",
8622 DIF_INSTR_INTEGER(instr));
8623 }
8624 if (rd >= nregs)
8625 err += efunc(pc, "invalid register %u\n", rd);
8626 if (rd == 0)
8627 err += efunc(pc, "cannot write to %r0\n");
8628 break;
8629 case DIF_OP_SETS:
8630 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8631 err += efunc(pc, "invalid string ref %u\n",
8632 DIF_INSTR_STRING(instr));
8633 }
8634 if (rd >= nregs)
8635 err += efunc(pc, "invalid register %u\n", rd);
8636 if (rd == 0)
8637 err += efunc(pc, "cannot write to %r0\n");
8638 break;
8639 case DIF_OP_LDGA:
8640 case DIF_OP_LDTA:
8641 if (r1 > DIF_VAR_ARRAY_MAX)
8642 err += efunc(pc, "invalid array %u\n", r1);
8643 if (r2 >= nregs)
8644 err += efunc(pc, "invalid register %u\n", r2);
8645 if (rd >= nregs)
8646 err += efunc(pc, "invalid register %u\n", rd);
8647 if (rd == 0)
8648 err += efunc(pc, "cannot write to %r0\n");
8649 break;
8650 case DIF_OP_LDGS:
8651 case DIF_OP_LDTS:
8652 case DIF_OP_LDLS:
8653 case DIF_OP_LDGAA:
8654 case DIF_OP_LDTAA:
8655 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8656 err += efunc(pc, "invalid variable %u\n", v);
8657 if (rd >= nregs)
8658 err += efunc(pc, "invalid register %u\n", rd);
8659 if (rd == 0)
8660 err += efunc(pc, "cannot write to %r0\n");
8661 break;
8662 case DIF_OP_STGS:
8663 case DIF_OP_STTS:
8664 case DIF_OP_STLS:
8665 case DIF_OP_STGAA:
8666 case DIF_OP_STTAA:
8667 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8668 err += efunc(pc, "invalid variable %u\n", v);
8669 if (rs >= nregs)
8670 err += efunc(pc, "invalid register %u\n", rd);
8671 break;
8672 case DIF_OP_CALL:
8673 if (subr > DIF_SUBR_MAX)
8674 err += efunc(pc, "invalid subr %u\n", subr);
8675 if (rd >= nregs)
8676 err += efunc(pc, "invalid register %u\n", rd);
8677 if (rd == 0)
8678 err += efunc(pc, "cannot write to %r0\n");
8679
8680 if (subr == DIF_SUBR_COPYOUT ||
8681 subr == DIF_SUBR_COPYOUTSTR) {
8682 dp->dtdo_destructive = 1;
8683 }
8684 break;
8685 case DIF_OP_PUSHTR:
8686 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8687 err += efunc(pc, "invalid ref type %u\n", type);
8688 if (r2 >= nregs)
8689 err += efunc(pc, "invalid register %u\n", r2);
8690 if (rs >= nregs)
8691 err += efunc(pc, "invalid register %u\n", rs);
8692 break;
8693 case DIF_OP_PUSHTV:
8694 if (type != DIF_TYPE_CTF)
8695 err += efunc(pc, "invalid val type %u\n", type);
8696 if (r2 >= nregs)
8697 err += efunc(pc, "invalid register %u\n", r2);
8698 if (rs >= nregs)
8699 err += efunc(pc, "invalid register %u\n", rs);
8700 break;
8701 default:
8702 err += efunc(pc, "invalid opcode %u\n",
8703 DIF_INSTR_OP(instr));
8704 }
8705 }
8706
8707 if (dp->dtdo_len != 0 &&
8708 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8709 err += efunc(dp->dtdo_len - 1,
8710 "expected 'ret' as last DIF instruction\n");
8711 }
8712
8713 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
8714 /*
8715 * If we're not returning by reference, the size must be either
8716 * 0 or the size of one of the base types.
8717 */
8718 switch (dp->dtdo_rtype.dtdt_size) {
8719 case 0:
8720 case sizeof (uint8_t):
8721 case sizeof (uint16_t):
8722 case sizeof (uint32_t):
8723 case sizeof (uint64_t):
8724 break;
8725
8726 default:
8727 err += efunc(dp->dtdo_len - 1, "bad return size\n");
8728 }
8729 }
8730
8731 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8732 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8733 dtrace_diftype_t *vt, *et;
8734 uint_t id;
8735 int ndx;
8736
8737 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8738 v->dtdv_scope != DIFV_SCOPE_THREAD &&
8739 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8740 err += efunc(i, "unrecognized variable scope %d\n",
8741 v->dtdv_scope);
8742 break;
8743 }
8744
8745 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8746 v->dtdv_kind != DIFV_KIND_SCALAR) {
8747 err += efunc(i, "unrecognized variable type %d\n",
8748 v->dtdv_kind);
8749 break;
8750 }
8751
8752 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8753 err += efunc(i, "%d exceeds variable id limit\n", id);
8754 break;
8755 }
8756
8757 if (id < DIF_VAR_OTHER_UBASE)
8758 continue;
8759
8760 /*
8761 * For user-defined variables, we need to check that this
8762 * definition is identical to any previous definition that we
8763 * encountered.
8764 */
8765 ndx = id - DIF_VAR_OTHER_UBASE;
8766
8767 switch (v->dtdv_scope) {
8768 case DIFV_SCOPE_GLOBAL:
8769 if (ndx < vstate->dtvs_nglobals) {
8770 dtrace_statvar_t *svar;
8771
8772 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8773 existing = &svar->dtsv_var;
8774 }
8775
8776 break;
8777
8778 case DIFV_SCOPE_THREAD:
8779 if (ndx < vstate->dtvs_ntlocals)
8780 existing = &vstate->dtvs_tlocals[ndx];
8781 break;
8782
8783 case DIFV_SCOPE_LOCAL:
8784 if (ndx < vstate->dtvs_nlocals) {
8785 dtrace_statvar_t *svar;
8786
8787 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8788 existing = &svar->dtsv_var;
8789 }
8790
8791 break;
8792 }
8793
8794 vt = &v->dtdv_type;
8795
8796 if (vt->dtdt_flags & DIF_TF_BYREF) {
8797 if (vt->dtdt_size == 0) {
8798 err += efunc(i, "zero-sized variable\n");
8799 break;
8800 }
8801
8802 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8803 vt->dtdt_size > dtrace_global_maxsize) {
8804 err += efunc(i, "oversized by-ref global\n");
8805 break;
8806 }
8807 }
8808
8809 if (existing == NULL || existing->dtdv_id == 0)
8810 continue;
8811
8812 ASSERT(existing->dtdv_id == v->dtdv_id);
8813 ASSERT(existing->dtdv_scope == v->dtdv_scope);
8814
8815 if (existing->dtdv_kind != v->dtdv_kind)
8816 err += efunc(i, "%d changed variable kind\n", id);
8817
8818 et = &existing->dtdv_type;
8819
8820 if (vt->dtdt_flags != et->dtdt_flags) {
8821 err += efunc(i, "%d changed variable type flags\n", id);
8822 break;
8823 }
8824
8825 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8826 err += efunc(i, "%d changed variable type size\n", id);
8827 break;
8828 }
8829 }
8830
8831 return (err);
8832 }
8833
8834 /*
8835 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
8836 * are much more constrained than normal DIFOs. Specifically, they may
8837 * not:
8838 *
8839 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8840 * miscellaneous string routines
8841 * 2. Access DTrace variables other than the args[] array, and the
8842 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8843 * 3. Have thread-local variables.
8844 * 4. Have dynamic variables.
8845 */
8846 static int
8847 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8848 {
8849 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8850 int err = 0;
8851 uint_t pc;
8852
8853 for (pc = 0; pc < dp->dtdo_len; pc++) {
8854 dif_instr_t instr = dp->dtdo_buf[pc];
8855
8856 uint_t v = DIF_INSTR_VAR(instr);
8857 uint_t subr = DIF_INSTR_SUBR(instr);
8858 uint_t op = DIF_INSTR_OP(instr);
8859
8860 switch (op) {
8861 case DIF_OP_OR:
8862 case DIF_OP_XOR:
8863 case DIF_OP_AND:
8864 case DIF_OP_SLL:
8865 case DIF_OP_SRL:
8866 case DIF_OP_SRA:
8867 case DIF_OP_SUB:
8868 case DIF_OP_ADD:
8869 case DIF_OP_MUL:
8870 case DIF_OP_SDIV:
8871 case DIF_OP_UDIV:
8872 case DIF_OP_SREM:
8873 case DIF_OP_UREM:
8874 case DIF_OP_COPYS:
8875 case DIF_OP_NOT:
8876 case DIF_OP_MOV:
8877 case DIF_OP_RLDSB:
8878 case DIF_OP_RLDSH:
8879 case DIF_OP_RLDSW:
8880 case DIF_OP_RLDUB:
8881 case DIF_OP_RLDUH:
8882 case DIF_OP_RLDUW:
8883 case DIF_OP_RLDX:
8884 case DIF_OP_ULDSB:
8885 case DIF_OP_ULDSH:
8886 case DIF_OP_ULDSW:
8887 case DIF_OP_ULDUB:
8888 case DIF_OP_ULDUH:
8889 case DIF_OP_ULDUW:
8890 case DIF_OP_ULDX:
8891 case DIF_OP_STB:
8892 case DIF_OP_STH:
8893 case DIF_OP_STW:
8894 case DIF_OP_STX:
8895 case DIF_OP_ALLOCS:
8896 case DIF_OP_CMP:
8897 case DIF_OP_SCMP:
8898 case DIF_OP_TST:
8899 case DIF_OP_BA:
8900 case DIF_OP_BE:
8901 case DIF_OP_BNE:
8902 case DIF_OP_BG:
8903 case DIF_OP_BGU:
8904 case DIF_OP_BGE:
8905 case DIF_OP_BGEU:
8906 case DIF_OP_BL:
8907 case DIF_OP_BLU:
8908 case DIF_OP_BLE:
8909 case DIF_OP_BLEU:
8910 case DIF_OP_RET:
8911 case DIF_OP_NOP:
8912 case DIF_OP_POPTS:
8913 case DIF_OP_FLUSHTS:
8914 case DIF_OP_SETX:
8915 case DIF_OP_SETS:
8916 case DIF_OP_LDGA:
8917 case DIF_OP_LDLS:
8918 case DIF_OP_STGS:
8919 case DIF_OP_STLS:
8920 case DIF_OP_PUSHTR:
8921 case DIF_OP_PUSHTV:
8922 break;
8923
8924 case DIF_OP_LDGS:
8925 if (v >= DIF_VAR_OTHER_UBASE)
8926 break;
8927
8928 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8929 break;
8930
8931 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8932 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8933 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8934 v == DIF_VAR_UID || v == DIF_VAR_GID)
8935 break;
8936
8937 err += efunc(pc, "illegal variable %u\n", v);
8938 break;
8939
8940 case DIF_OP_LDTA:
8941 case DIF_OP_LDTS:
8942 case DIF_OP_LDGAA:
8943 case DIF_OP_LDTAA:
8944 err += efunc(pc, "illegal dynamic variable load\n");
8945 break;
8946
8947 case DIF_OP_STTS:
8948 case DIF_OP_STGAA:
8949 case DIF_OP_STTAA:
8950 err += efunc(pc, "illegal dynamic variable store\n");
8951 break;
8952
8953 case DIF_OP_CALL:
8954 if (subr == DIF_SUBR_ALLOCA ||
8955 subr == DIF_SUBR_BCOPY ||
8956 subr == DIF_SUBR_COPYIN ||
8957 subr == DIF_SUBR_COPYINTO ||
8958 subr == DIF_SUBR_COPYINSTR ||
8959 subr == DIF_SUBR_INDEX ||
8960 subr == DIF_SUBR_INET_NTOA ||
8961 subr == DIF_SUBR_INET_NTOA6 ||
8962 subr == DIF_SUBR_INET_NTOP ||
8963 subr == DIF_SUBR_LLTOSTR ||
8964 subr == DIF_SUBR_RINDEX ||
8965 subr == DIF_SUBR_STRCHR ||
8966 subr == DIF_SUBR_STRJOIN ||
8967 subr == DIF_SUBR_STRRCHR ||
8968 subr == DIF_SUBR_STRSTR ||
8969 subr == DIF_SUBR_COREPROFILE ||
8970 subr == DIF_SUBR_HTONS ||
8971 subr == DIF_SUBR_HTONL ||
8972 subr == DIF_SUBR_HTONLL ||
8973 subr == DIF_SUBR_NTOHS ||
8974 subr == DIF_SUBR_NTOHL ||
8975 subr == DIF_SUBR_NTOHLL)
8976 break;
8977
8978 err += efunc(pc, "invalid subr %u\n", subr);
8979 break;
8980
8981 default:
8982 err += efunc(pc, "invalid opcode %u\n",
8983 DIF_INSTR_OP(instr));
8984 }
8985 }
8986
8987 return (err);
8988 }
8989
8990 /*
8991 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8992 * basis; 0 if not.
8993 */
8994 static int
8995 dtrace_difo_cacheable(dtrace_difo_t *dp)
8996 {
8997 uint_t i;
8998
8999 if (dp == NULL)
9000 return (0);
9001
9002 for (i = 0; i < dp->dtdo_varlen; i++) {
9003 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9004
9005 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9006 continue;
9007
9008 switch (v->dtdv_id) {
9009 case DIF_VAR_CURTHREAD:
9010 case DIF_VAR_PID:
9011 case DIF_VAR_TID:
9012 case DIF_VAR_EXECNAME:
9013 case DIF_VAR_ZONENAME:
9014 break;
9015
9016 default:
9017 return (0);
9018 }
9019 }
9020
9021 /*
9022 * This DIF object may be cacheable. Now we need to look for any
9023 * array loading instructions, any memory loading instructions, or
9024 * any stores to thread-local variables.
9025 */
9026 for (i = 0; i < dp->dtdo_len; i++) {
9027 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9028
9029 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9030 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9031 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9032 op == DIF_OP_LDGA || op == DIF_OP_STTS)
9033 return (0);
9034 }
9035
9036 return (1);
9037 }
9038
9039 static void
9040 dtrace_difo_hold(dtrace_difo_t *dp)
9041 {
9042 uint_t i;
9043
9044 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9045
9046 dp->dtdo_refcnt++;
9047 ASSERT(dp->dtdo_refcnt != 0);
9048
9049 /*
9050 * We need to check this DIF object for references to the variable
9051 * DIF_VAR_VTIMESTAMP.
9052 */
9053 for (i = 0; i < dp->dtdo_varlen; i++) {
9054 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9055
9056 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9057 continue;
9058
9059 if (dtrace_vtime_references++ == 0)
9060 dtrace_vtime_enable();
9061 }
9062 }
9063
9064 /*
9065 * This routine calculates the dynamic variable chunksize for a given DIF
9066 * object. The calculation is not fool-proof, and can probably be tricked by
9067 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9068 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9069 * if a dynamic variable size exceeds the chunksize.
9070 */
9071 static void
9072 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9073 {
9074 uint64_t sval = 0;
9075 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9076 const dif_instr_t *text = dp->dtdo_buf;
9077 uint_t pc, srd = 0;
9078 uint_t ttop = 0;
9079 size_t size, ksize;
9080 uint_t id, i;
9081
9082 for (pc = 0; pc < dp->dtdo_len; pc++) {
9083 dif_instr_t instr = text[pc];
9084 uint_t op = DIF_INSTR_OP(instr);
9085 uint_t rd = DIF_INSTR_RD(instr);
9086 uint_t r1 = DIF_INSTR_R1(instr);
9087 uint_t nkeys = 0;
9088 uchar_t scope;
9089
9090 dtrace_key_t *key = tupregs;
9091
9092 switch (op) {
9093 case DIF_OP_SETX:
9094 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9095 srd = rd;
9096 continue;
9097
9098 case DIF_OP_STTS:
9099 key = &tupregs[DIF_DTR_NREGS];
9100 key[0].dttk_size = 0;
9101 key[1].dttk_size = 0;
9102 nkeys = 2;
9103 scope = DIFV_SCOPE_THREAD;
9104 break;
9105
9106 case DIF_OP_STGAA:
9107 case DIF_OP_STTAA:
9108 nkeys = ttop;
9109
9110 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9111 key[nkeys++].dttk_size = 0;
9112
9113 key[nkeys++].dttk_size = 0;
9114
9115 if (op == DIF_OP_STTAA) {
9116 scope = DIFV_SCOPE_THREAD;
9117 } else {
9118 scope = DIFV_SCOPE_GLOBAL;
9119 }
9120
9121 break;
9122
9123 case DIF_OP_PUSHTR:
9124 if (ttop == DIF_DTR_NREGS)
9125 return;
9126
9127 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9128 /*
9129 * If the register for the size of the "pushtr"
9130 * is %r0 (or the value is 0) and the type is
9131 * a string, we'll use the system-wide default
9132 * string size.
9133 */
9134 tupregs[ttop++].dttk_size =
9135 dtrace_strsize_default;
9136 } else {
9137 if (srd == 0)
9138 return;
9139
9140 tupregs[ttop++].dttk_size = sval;
9141 }
9142
9143 break;
9144
9145 case DIF_OP_PUSHTV:
9146 if (ttop == DIF_DTR_NREGS)
9147 return;
9148
9149 tupregs[ttop++].dttk_size = 0;
9150 break;
9151
9152 case DIF_OP_FLUSHTS:
9153 ttop = 0;
9154 break;
9155
9156 case DIF_OP_POPTS:
9157 if (ttop != 0)
9158 ttop--;
9159 break;
9160 }
9161
9162 sval = 0;
9163 srd = 0;
9164
9165 if (nkeys == 0)
9166 continue;
9167
9168 /*
9169 * We have a dynamic variable allocation; calculate its size.
9170 */
9171 for (ksize = 0, i = 0; i < nkeys; i++)
9172 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9173
9174 size = sizeof (dtrace_dynvar_t);
9175 size += sizeof (dtrace_key_t) * (nkeys - 1);
9176 size += ksize;
9177
9178 /*
9179 * Now we need to determine the size of the stored data.
9180 */
9181 id = DIF_INSTR_VAR(instr);
9182
9183 for (i = 0; i < dp->dtdo_varlen; i++) {
9184 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9185
9186 if (v->dtdv_id == id && v->dtdv_scope == scope) {
9187 size += v->dtdv_type.dtdt_size;
9188 break;
9189 }
9190 }
9191
9192 if (i == dp->dtdo_varlen)
9193 return;
9194
9195 /*
9196 * We have the size. If this is larger than the chunk size
9197 * for our dynamic variable state, reset the chunk size.
9198 */
9199 size = P2ROUNDUP(size, sizeof (uint64_t));
9200
9201 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9202 vstate->dtvs_dynvars.dtds_chunksize = size;
9203 }
9204 }
9205
9206 static void
9207 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9208 {
9209 int oldsvars, osz, nsz, otlocals, ntlocals;
9210 uint_t i, id;
9211
9212 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9213 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9214
9215 for (i = 0; i < dp->dtdo_varlen; i++) {
9216 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9217 dtrace_statvar_t *svar;
9218 dtrace_statvar_t ***svarp = NULL;
9219 size_t dsize = 0;
9220 uint8_t scope = v->dtdv_scope;
9221 int *np = (int *)NULL;
9222
9223 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9224 continue;
9225
9226 id -= DIF_VAR_OTHER_UBASE;
9227
9228 switch (scope) {
9229 case DIFV_SCOPE_THREAD:
9230 while (id >= (uint_t)(otlocals = vstate->dtvs_ntlocals)) {
9231 dtrace_difv_t *tlocals;
9232
9233 if ((ntlocals = (otlocals << 1)) == 0)
9234 ntlocals = 1;
9235
9236 osz = otlocals * sizeof (dtrace_difv_t);
9237 nsz = ntlocals * sizeof (dtrace_difv_t);
9238
9239 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9240
9241 if (osz != 0) {
9242 bcopy(vstate->dtvs_tlocals,
9243 tlocals, osz);
9244 kmem_free(vstate->dtvs_tlocals, osz);
9245 }
9246
9247 vstate->dtvs_tlocals = tlocals;
9248 vstate->dtvs_ntlocals = ntlocals;
9249 }
9250
9251 vstate->dtvs_tlocals[id] = *v;
9252 continue;
9253
9254 case DIFV_SCOPE_LOCAL:
9255 np = &vstate->dtvs_nlocals;
9256 svarp = &vstate->dtvs_locals;
9257
9258 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9259 dsize = (int)NCPU * (v->dtdv_type.dtdt_size +
9260 sizeof (uint64_t));
9261 else
9262 dsize = (int)NCPU * sizeof (uint64_t);
9263
9264 break;
9265
9266 case DIFV_SCOPE_GLOBAL:
9267 np = &vstate->dtvs_nglobals;
9268 svarp = &vstate->dtvs_globals;
9269
9270 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9271 dsize = v->dtdv_type.dtdt_size +
9272 sizeof (uint64_t);
9273
9274 break;
9275
9276 default:
9277 ASSERT(0);
9278 }
9279
9280 while (id >= (uint_t)(oldsvars = *np)) {
9281 dtrace_statvar_t **statics;
9282 int newsvars, oldsize, newsize;
9283
9284 if ((newsvars = (oldsvars << 1)) == 0)
9285 newsvars = 1;
9286
9287 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9288 newsize = newsvars * sizeof (dtrace_statvar_t *);
9289
9290 statics = kmem_zalloc(newsize, KM_SLEEP);
9291
9292 if (oldsize != 0) {
9293 bcopy(*svarp, statics, oldsize);
9294 kmem_free(*svarp, oldsize);
9295 }
9296
9297 *svarp = statics;
9298 *np = newsvars;
9299 }
9300
9301 if ((svar = (*svarp)[id]) == NULL) {
9302 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9303 svar->dtsv_var = *v;
9304
9305 if ((svar->dtsv_size = dsize) != 0) {
9306 svar->dtsv_data = (uint64_t)(uintptr_t)
9307 kmem_zalloc(dsize, KM_SLEEP);
9308 }
9309
9310 (*svarp)[id] = svar;
9311 }
9312
9313 svar->dtsv_refcnt++;
9314 }
9315
9316 dtrace_difo_chunksize(dp, vstate);
9317 dtrace_difo_hold(dp);
9318 }
9319
9320 static dtrace_difo_t *
9321 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9322 {
9323 dtrace_difo_t *new;
9324 size_t sz;
9325
9326 ASSERT(dp->dtdo_buf != NULL);
9327 ASSERT(dp->dtdo_refcnt != 0);
9328
9329 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9330
9331 ASSERT(dp->dtdo_buf != NULL);
9332 sz = dp->dtdo_len * sizeof (dif_instr_t);
9333 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9334 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9335 new->dtdo_len = dp->dtdo_len;
9336
9337 if (dp->dtdo_strtab != NULL) {
9338 ASSERT(dp->dtdo_strlen != 0);
9339 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9340 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9341 new->dtdo_strlen = dp->dtdo_strlen;
9342 }
9343
9344 if (dp->dtdo_inttab != NULL) {
9345 ASSERT(dp->dtdo_intlen != 0);
9346 sz = dp->dtdo_intlen * sizeof (uint64_t);
9347 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9348 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9349 new->dtdo_intlen = dp->dtdo_intlen;
9350 }
9351
9352 if (dp->dtdo_vartab != NULL) {
9353 ASSERT(dp->dtdo_varlen != 0);
9354 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9355 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9356 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9357 new->dtdo_varlen = dp->dtdo_varlen;
9358 }
9359
9360 dtrace_difo_init(new, vstate);
9361 return (new);
9362 }
9363
9364 static void
9365 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9366 {
9367 uint_t i;
9368
9369 ASSERT(dp->dtdo_refcnt == 0);
9370
9371 for (i = 0; i < dp->dtdo_varlen; i++) {
9372 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9373 dtrace_statvar_t *svar;
9374 dtrace_statvar_t **svarp = NULL;
9375 uint_t id;
9376 uint8_t scope = v->dtdv_scope;
9377 int *np = NULL;
9378
9379 switch (scope) {
9380 case DIFV_SCOPE_THREAD:
9381 continue;
9382
9383 case DIFV_SCOPE_LOCAL:
9384 np = &vstate->dtvs_nlocals;
9385 svarp = vstate->dtvs_locals;
9386 break;
9387
9388 case DIFV_SCOPE_GLOBAL:
9389 np = &vstate->dtvs_nglobals;
9390 svarp = vstate->dtvs_globals;
9391 break;
9392
9393 default:
9394 ASSERT(0);
9395 }
9396
9397 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9398 continue;
9399
9400 id -= DIF_VAR_OTHER_UBASE;
9401
9402 ASSERT(id < (uint_t)*np);
9403
9404 svar = svarp[id];
9405 ASSERT(svar != NULL);
9406 ASSERT(svar->dtsv_refcnt > 0);
9407
9408 if (--svar->dtsv_refcnt > 0)
9409 continue;
9410
9411 if (svar->dtsv_size != 0) {
9412 ASSERT(svar->dtsv_data != 0);
9413 kmem_free((void *)(uintptr_t)svar->dtsv_data,
9414 svar->dtsv_size);
9415 }
9416
9417 kmem_free(svar, sizeof (dtrace_statvar_t));
9418 svarp[id] = NULL;
9419 }
9420
9421 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9422 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9423 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9424 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9425
9426 kmem_free(dp, sizeof (dtrace_difo_t));
9427 }
9428
9429 static void
9430 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9431 {
9432 uint_t i;
9433
9434 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9435 ASSERT(dp->dtdo_refcnt != 0);
9436
9437 for (i = 0; i < dp->dtdo_varlen; i++) {
9438 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9439
9440 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9441 continue;
9442
9443 ASSERT(dtrace_vtime_references > 0);
9444 if (--dtrace_vtime_references == 0)
9445 dtrace_vtime_disable();
9446 }
9447
9448 if (--dp->dtdo_refcnt == 0)
9449 dtrace_difo_destroy(dp, vstate);
9450 }
9451
9452 /*
9453 * DTrace Format Functions
9454 */
9455 static uint16_t
9456 dtrace_format_add(dtrace_state_t *state, char *str)
9457 {
9458 char *fmt, **new;
9459 uint16_t ndx, len = strlen(str) + 1;
9460
9461 fmt = kmem_zalloc(len, KM_SLEEP);
9462 bcopy(str, fmt, len);
9463
9464 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9465 if (state->dts_formats[ndx] == NULL) {
9466 state->dts_formats[ndx] = fmt;
9467 return (ndx + 1);
9468 }
9469 }
9470
9471 if (state->dts_nformats == USHRT_MAX) {
9472 /*
9473 * This is only likely if a denial-of-service attack is being
9474 * attempted. As such, it's okay to fail silently here.
9475 */
9476 kmem_free(fmt, len);
9477 return (0);
9478 }
9479
9480 /*
9481 * For simplicity, we always resize the formats array to be exactly the
9482 * number of formats.
9483 */
9484 ndx = state->dts_nformats++;
9485 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9486
9487 if (state->dts_formats != NULL) {
9488 ASSERT(ndx != 0);
9489 bcopy(state->dts_formats, new, ndx * sizeof (char *));
9490 kmem_free(state->dts_formats, ndx * sizeof (char *));
9491 }
9492
9493 state->dts_formats = new;
9494 state->dts_formats[ndx] = fmt;
9495
9496 return (ndx + 1);
9497 }
9498
9499 static void
9500 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9501 {
9502 char *fmt;
9503
9504 ASSERT(state->dts_formats != NULL);
9505 ASSERT(format <= state->dts_nformats);
9506 ASSERT(state->dts_formats[format - 1] != NULL);
9507
9508 fmt = state->dts_formats[format - 1];
9509 kmem_free(fmt, strlen(fmt) + 1);
9510 state->dts_formats[format - 1] = NULL;
9511 }
9512
9513 static void
9514 dtrace_format_destroy(dtrace_state_t *state)
9515 {
9516 int i;
9517
9518 if (state->dts_nformats == 0) {
9519 ASSERT(state->dts_formats == NULL);
9520 return;
9521 }
9522
9523 ASSERT(state->dts_formats != NULL);
9524
9525 for (i = 0; i < state->dts_nformats; i++) {
9526 char *fmt = state->dts_formats[i];
9527
9528 if (fmt == NULL)
9529 continue;
9530
9531 kmem_free(fmt, strlen(fmt) + 1);
9532 }
9533
9534 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9535 state->dts_nformats = 0;
9536 state->dts_formats = NULL;
9537 }
9538
9539 /*
9540 * DTrace Predicate Functions
9541 */
9542 static dtrace_predicate_t *
9543 dtrace_predicate_create(dtrace_difo_t *dp)
9544 {
9545 dtrace_predicate_t *pred;
9546
9547 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9548 ASSERT(dp->dtdo_refcnt != 0);
9549
9550 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9551 pred->dtp_difo = dp;
9552 pred->dtp_refcnt = 1;
9553
9554 if (!dtrace_difo_cacheable(dp))
9555 return (pred);
9556
9557 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9558 /*
9559 * This is only theoretically possible -- we have had 2^32
9560 * cacheable predicates on this machine. We cannot allow any
9561 * more predicates to become cacheable: as unlikely as it is,
9562 * there may be a thread caching a (now stale) predicate cache
9563 * ID. (N.B.: the temptation is being successfully resisted to
9564 * have this cmn_err() "Holy shit -- we executed this code!")
9565 */
9566 return (pred);
9567 }
9568
9569 pred->dtp_cacheid = dtrace_predcache_id++;
9570
9571 return (pred);
9572 }
9573
9574 static void
9575 dtrace_predicate_hold(dtrace_predicate_t *pred)
9576 {
9577 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9578 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9579 ASSERT(pred->dtp_refcnt > 0);
9580
9581 pred->dtp_refcnt++;
9582 }
9583
9584 static void
9585 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9586 {
9587 dtrace_difo_t *dp = pred->dtp_difo;
9588 #pragma unused(dp) /* __APPLE__ */
9589
9590 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9591 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9592 ASSERT(pred->dtp_refcnt > 0);
9593
9594 if (--pred->dtp_refcnt == 0) {
9595 dtrace_difo_release(pred->dtp_difo, vstate);
9596 kmem_free(pred, sizeof (dtrace_predicate_t));
9597 }
9598 }
9599
9600 /*
9601 * DTrace Action Description Functions
9602 */
9603 static dtrace_actdesc_t *
9604 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9605 uint64_t uarg, uint64_t arg)
9606 {
9607 dtrace_actdesc_t *act;
9608
9609 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 &&
9610 arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA));
9611
9612 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9613 act->dtad_kind = kind;
9614 act->dtad_ntuple = ntuple;
9615 act->dtad_uarg = uarg;
9616 act->dtad_arg = arg;
9617 act->dtad_refcnt = 1;
9618
9619 return (act);
9620 }
9621
9622 static void
9623 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9624 {
9625 ASSERT(act->dtad_refcnt >= 1);
9626 act->dtad_refcnt++;
9627 }
9628
9629 static void
9630 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9631 {
9632 dtrace_actkind_t kind = act->dtad_kind;
9633 dtrace_difo_t *dp;
9634
9635 ASSERT(act->dtad_refcnt >= 1);
9636
9637 if (--act->dtad_refcnt != 0)
9638 return;
9639
9640 if ((dp = act->dtad_difo) != NULL)
9641 dtrace_difo_release(dp, vstate);
9642
9643 if (DTRACEACT_ISPRINTFLIKE(kind)) {
9644 char *str = (char *)(uintptr_t)act->dtad_arg;
9645
9646 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9647 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9648
9649 if (str != NULL)
9650 kmem_free(str, strlen(str) + 1);
9651 }
9652
9653 kmem_free(act, sizeof (dtrace_actdesc_t));
9654 }
9655
9656 /*
9657 * DTrace ECB Functions
9658 */
9659 static dtrace_ecb_t *
9660 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9661 {
9662 dtrace_ecb_t *ecb;
9663 dtrace_epid_t epid;
9664
9665 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9666
9667 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9668 ecb->dte_predicate = NULL;
9669 ecb->dte_probe = probe;
9670
9671 /*
9672 * The default size is the size of the default action: recording
9673 * the header.
9674 */
9675 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9676 ecb->dte_alignment = sizeof (dtrace_epid_t);
9677
9678 epid = state->dts_epid++;
9679
9680 if (epid - 1 >= (dtrace_epid_t)state->dts_necbs) {
9681 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9682 int necbs = state->dts_necbs << 1;
9683
9684 ASSERT(epid == (dtrace_epid_t)state->dts_necbs + 1);
9685
9686 if (necbs == 0) {
9687 ASSERT(oecbs == NULL);
9688 necbs = 1;
9689 }
9690
9691 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9692
9693 if (oecbs != NULL)
9694 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9695
9696 dtrace_membar_producer();
9697 state->dts_ecbs = ecbs;
9698
9699 if (oecbs != NULL) {
9700 /*
9701 * If this state is active, we must dtrace_sync()
9702 * before we can free the old dts_ecbs array: we're
9703 * coming in hot, and there may be active ring
9704 * buffer processing (which indexes into the dts_ecbs
9705 * array) on another CPU.
9706 */
9707 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9708 dtrace_sync();
9709
9710 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9711 }
9712
9713 dtrace_membar_producer();
9714 state->dts_necbs = necbs;
9715 }
9716
9717 ecb->dte_state = state;
9718
9719 ASSERT(state->dts_ecbs[epid - 1] == NULL);
9720 dtrace_membar_producer();
9721 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9722
9723 return (ecb);
9724 }
9725
9726 static int
9727 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9728 {
9729 dtrace_probe_t *probe = ecb->dte_probe;
9730
9731 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
9732 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
9733 ASSERT(ecb->dte_next == NULL);
9734
9735 if (probe == NULL) {
9736 /*
9737 * This is the NULL probe -- there's nothing to do.
9738 */
9739 return(0);
9740 }
9741
9742 probe->dtpr_provider->dtpv_ecb_count++;
9743 if (probe->dtpr_ecb == NULL) {
9744 dtrace_provider_t *prov = probe->dtpr_provider;
9745
9746 /*
9747 * We're the first ECB on this probe.
9748 */
9749 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9750
9751 if (ecb->dte_predicate != NULL)
9752 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9753
9754 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9755 probe->dtpr_id, probe->dtpr_arg));
9756 } else {
9757 /*
9758 * This probe is already active. Swing the last pointer to
9759 * point to the new ECB, and issue a dtrace_sync() to assure
9760 * that all CPUs have seen the change.
9761 */
9762 ASSERT(probe->dtpr_ecb_last != NULL);
9763 probe->dtpr_ecb_last->dte_next = ecb;
9764 probe->dtpr_ecb_last = ecb;
9765 probe->dtpr_predcache = 0;
9766
9767 dtrace_sync();
9768 return(0);
9769 }
9770 }
9771
9772 static void
9773 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9774 {
9775 dtrace_action_t *act;
9776 uint32_t curneeded = UINT32_MAX;
9777 uint32_t aggbase = UINT32_MAX;
9778
9779 /*
9780 * If we record anything, we always record the dtrace_rechdr_t. (And
9781 * we always record it first.)
9782 */
9783 ecb->dte_size = sizeof (dtrace_rechdr_t);
9784 ecb->dte_alignment = sizeof (dtrace_epid_t);
9785
9786 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9787 dtrace_recdesc_t *rec = &act->dta_rec;
9788 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9789
9790 ecb->dte_alignment = MAX(ecb->dte_alignment, rec->dtrd_alignment);
9791
9792 if (DTRACEACT_ISAGG(act->dta_kind)) {
9793 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9794
9795 ASSERT(rec->dtrd_size != 0);
9796 ASSERT(agg->dtag_first != NULL);
9797 ASSERT(act->dta_prev->dta_intuple);
9798 ASSERT(aggbase != UINT32_MAX);
9799 ASSERT(curneeded != UINT32_MAX);
9800
9801 agg->dtag_base = aggbase;
9802
9803 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9804 rec->dtrd_offset = curneeded;
9805 curneeded += rec->dtrd_size;
9806 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9807
9808 aggbase = UINT32_MAX;
9809 curneeded = UINT32_MAX;
9810 } else if (act->dta_intuple) {
9811 if (curneeded == UINT32_MAX) {
9812 /*
9813 * This is the first record in a tuple. Align
9814 * curneeded to be at offset 4 in an 8-byte
9815 * aligned block.
9816 */
9817 ASSERT(act->dta_prev == NULL || !act->dta_prev->dta_intuple);
9818 ASSERT(aggbase == UINT32_MAX);
9819
9820 curneeded = P2PHASEUP(ecb->dte_size,
9821 sizeof (uint64_t), sizeof (dtrace_aggid_t));
9822
9823 aggbase = curneeded - sizeof (dtrace_aggid_t);
9824 ASSERT(IS_P2ALIGNED(aggbase,
9825 sizeof (uint64_t)));
9826 }
9827
9828 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9829 rec->dtrd_offset = curneeded;
9830 curneeded += rec->dtrd_size;
9831 } else {
9832 /* tuples must be followed by an aggregation */
9833 ASSERT(act->dta_prev == NULL || !act->dta_prev->dta_intuple);
9834 ecb->dte_size = P2ROUNDUP(ecb->dte_size, rec->dtrd_alignment);
9835 rec->dtrd_offset = ecb->dte_size;
9836 ecb->dte_size += rec->dtrd_size;
9837 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9838 }
9839 }
9840
9841 if ((act = ecb->dte_action) != NULL &&
9842 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9843 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9844 /*
9845 * If the size is still sizeof (dtrace_rechdr_t), then all
9846 * actions store no data; set the size to 0.
9847 */
9848 ecb->dte_size = 0;
9849 }
9850
9851 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9852 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9853 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, ecb->dte_needed);
9854 }
9855
9856 static dtrace_action_t *
9857 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9858 {
9859 dtrace_aggregation_t *agg;
9860 size_t size = sizeof (uint64_t);
9861 int ntuple = desc->dtad_ntuple;
9862 dtrace_action_t *act;
9863 dtrace_recdesc_t *frec;
9864 dtrace_aggid_t aggid;
9865 dtrace_state_t *state = ecb->dte_state;
9866
9867 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9868 agg->dtag_ecb = ecb;
9869
9870 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9871
9872 switch (desc->dtad_kind) {
9873 case DTRACEAGG_MIN:
9874 agg->dtag_initial = INT64_MAX;
9875 agg->dtag_aggregate = dtrace_aggregate_min;
9876 break;
9877
9878 case DTRACEAGG_MAX:
9879 agg->dtag_initial = INT64_MIN;
9880 agg->dtag_aggregate = dtrace_aggregate_max;
9881 break;
9882
9883 case DTRACEAGG_COUNT:
9884 agg->dtag_aggregate = dtrace_aggregate_count;
9885 break;
9886
9887 case DTRACEAGG_QUANTIZE:
9888 agg->dtag_aggregate = dtrace_aggregate_quantize;
9889 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9890 sizeof (uint64_t);
9891 break;
9892
9893 case DTRACEAGG_LQUANTIZE: {
9894 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9895 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9896
9897 agg->dtag_initial = desc->dtad_arg;
9898 agg->dtag_aggregate = dtrace_aggregate_lquantize;
9899
9900 if (step == 0 || levels == 0)
9901 goto err;
9902
9903 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9904 break;
9905 }
9906
9907 case DTRACEAGG_LLQUANTIZE: {
9908 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9909 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9910 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9911 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9912 int64_t v;
9913
9914 agg->dtag_initial = desc->dtad_arg;
9915 agg->dtag_aggregate = dtrace_aggregate_llquantize;
9916
9917 if (factor < 2 || low >= high || nsteps < factor)
9918 goto err;
9919
9920 /*
9921 * Now check that the number of steps evenly divides a power
9922 * of the factor. (This assures both integer bucket size and
9923 * linearity within each magnitude.)
9924 */
9925 for (v = factor; v < nsteps; v *= factor)
9926 continue;
9927
9928 if ((v % nsteps) || (nsteps % factor))
9929 goto err;
9930
9931 size = (dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9932 break;
9933 }
9934
9935 case DTRACEAGG_AVG:
9936 agg->dtag_aggregate = dtrace_aggregate_avg;
9937 size = sizeof (uint64_t) * 2;
9938 break;
9939
9940 case DTRACEAGG_STDDEV:
9941 agg->dtag_aggregate = dtrace_aggregate_stddev;
9942 size = sizeof (uint64_t) * 4;
9943 break;
9944
9945 case DTRACEAGG_SUM:
9946 agg->dtag_aggregate = dtrace_aggregate_sum;
9947 break;
9948
9949 default:
9950 goto err;
9951 }
9952
9953 agg->dtag_action.dta_rec.dtrd_size = size;
9954
9955 if (ntuple == 0)
9956 goto err;
9957
9958 /*
9959 * We must make sure that we have enough actions for the n-tuple.
9960 */
9961 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9962 if (DTRACEACT_ISAGG(act->dta_kind))
9963 break;
9964
9965 if (--ntuple == 0) {
9966 /*
9967 * This is the action with which our n-tuple begins.
9968 */
9969 agg->dtag_first = act;
9970 goto success;
9971 }
9972 }
9973
9974 /*
9975 * This n-tuple is short by ntuple elements. Return failure.
9976 */
9977 ASSERT(ntuple != 0);
9978 err:
9979 kmem_free(agg, sizeof (dtrace_aggregation_t));
9980 return (NULL);
9981
9982 success:
9983 /*
9984 * If the last action in the tuple has a size of zero, it's actually
9985 * an expression argument for the aggregating action.
9986 */
9987 ASSERT(ecb->dte_action_last != NULL);
9988 act = ecb->dte_action_last;
9989
9990 if (act->dta_kind == DTRACEACT_DIFEXPR) {
9991 ASSERT(act->dta_difo != NULL);
9992
9993 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9994 agg->dtag_hasarg = 1;
9995 }
9996
9997 /*
9998 * We need to allocate an id for this aggregation.
9999 */
10000 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10001 VM_BESTFIT | VM_SLEEP);
10002
10003 if (aggid - 1 >= (dtrace_aggid_t)state->dts_naggregations) {
10004 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10005 dtrace_aggregation_t **aggs;
10006 int naggs = state->dts_naggregations << 1;
10007 int onaggs = state->dts_naggregations;
10008
10009 ASSERT(aggid == (dtrace_aggid_t)state->dts_naggregations + 1);
10010
10011 if (naggs == 0) {
10012 ASSERT(oaggs == NULL);
10013 naggs = 1;
10014 }
10015
10016 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10017
10018 if (oaggs != NULL) {
10019 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10020 kmem_free(oaggs, onaggs * sizeof (*aggs));
10021 }
10022
10023 state->dts_aggregations = aggs;
10024 state->dts_naggregations = naggs;
10025 }
10026
10027 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10028 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10029
10030 frec = &agg->dtag_first->dta_rec;
10031 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10032 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10033
10034 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10035 ASSERT(!act->dta_intuple);
10036 act->dta_intuple = 1;
10037 }
10038
10039 return (&agg->dtag_action);
10040 }
10041
10042 static void
10043 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10044 {
10045 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10046 dtrace_state_t *state = ecb->dte_state;
10047 dtrace_aggid_t aggid = agg->dtag_id;
10048
10049 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10050 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10051
10052 ASSERT(state->dts_aggregations[aggid - 1] == agg);
10053 state->dts_aggregations[aggid - 1] = NULL;
10054
10055 kmem_free(agg, sizeof (dtrace_aggregation_t));
10056 }
10057
10058 static int
10059 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10060 {
10061 dtrace_action_t *action, *last;
10062 dtrace_difo_t *dp = desc->dtad_difo;
10063 uint32_t size = 0, align = sizeof (uint8_t), mask;
10064 uint16_t format = 0;
10065 dtrace_recdesc_t *rec;
10066 dtrace_state_t *state = ecb->dte_state;
10067 dtrace_optval_t *opt = state->dts_options;
10068 dtrace_optval_t nframes=0, strsize;
10069 uint64_t arg = desc->dtad_arg;
10070
10071 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10072 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10073
10074 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10075 /*
10076 * If this is an aggregating action, there must be neither
10077 * a speculate nor a commit on the action chain.
10078 */
10079 dtrace_action_t *act;
10080
10081 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10082 if (act->dta_kind == DTRACEACT_COMMIT)
10083 return (EINVAL);
10084
10085 if (act->dta_kind == DTRACEACT_SPECULATE)
10086 return (EINVAL);
10087 }
10088
10089 action = dtrace_ecb_aggregation_create(ecb, desc);
10090
10091 if (action == NULL)
10092 return (EINVAL);
10093 } else {
10094 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10095 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10096 dp != NULL && dp->dtdo_destructive)) {
10097 state->dts_destructive = 1;
10098 }
10099
10100 switch (desc->dtad_kind) {
10101 case DTRACEACT_PRINTF:
10102 case DTRACEACT_PRINTA:
10103 case DTRACEACT_SYSTEM:
10104 case DTRACEACT_FREOPEN:
10105 case DTRACEACT_DIFEXPR:
10106 /*
10107 * We know that our arg is a string -- turn it into a
10108 * format.
10109 */
10110 if (arg == 0) {
10111 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10112 desc->dtad_kind == DTRACEACT_DIFEXPR);
10113 format = 0;
10114 } else {
10115 ASSERT(arg != 0);
10116 ASSERT(arg > KERNELBASE);
10117 format = dtrace_format_add(state,
10118 (char *)(uintptr_t)arg);
10119 }
10120
10121 /*FALLTHROUGH*/
10122 case DTRACEACT_LIBACT:
10123 case DTRACEACT_TRACEMEM:
10124 case DTRACEACT_TRACEMEM_DYNSIZE:
10125 case DTRACEACT_APPLEBINARY: /* __APPLE__ */
10126 if (dp == NULL)
10127 return (EINVAL);
10128
10129 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10130 break;
10131
10132 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10133 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10134 return (EINVAL);
10135
10136 size = opt[DTRACEOPT_STRSIZE];
10137 }
10138
10139 break;
10140
10141 case DTRACEACT_STACK:
10142 if ((nframes = arg) == 0) {
10143 nframes = opt[DTRACEOPT_STACKFRAMES];
10144 ASSERT(nframes > 0);
10145 arg = nframes;
10146 }
10147
10148 size = nframes * sizeof (pc_t);
10149 break;
10150
10151 case DTRACEACT_JSTACK:
10152 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10153 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10154
10155 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10156 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10157
10158 arg = DTRACE_USTACK_ARG(nframes, strsize);
10159
10160 /*FALLTHROUGH*/
10161 case DTRACEACT_USTACK:
10162 if (desc->dtad_kind != DTRACEACT_JSTACK &&
10163 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10164 strsize = DTRACE_USTACK_STRSIZE(arg);
10165 nframes = opt[DTRACEOPT_USTACKFRAMES];
10166 ASSERT(nframes > 0);
10167 arg = DTRACE_USTACK_ARG(nframes, strsize);
10168 }
10169
10170 /*
10171 * Save a slot for the pid.
10172 */
10173 size = (nframes + 1) * sizeof (uint64_t);
10174 size += DTRACE_USTACK_STRSIZE(arg);
10175 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10176
10177 break;
10178
10179 case DTRACEACT_SYM:
10180 case DTRACEACT_MOD:
10181 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10182 sizeof (uint64_t)) ||
10183 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10184 return (EINVAL);
10185 break;
10186
10187 case DTRACEACT_USYM:
10188 case DTRACEACT_UMOD:
10189 case DTRACEACT_UADDR:
10190 if (dp == NULL ||
10191 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10192 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10193 return (EINVAL);
10194
10195 /*
10196 * We have a slot for the pid, plus a slot for the
10197 * argument. To keep things simple (aligned with
10198 * bitness-neutral sizing), we store each as a 64-bit
10199 * quantity.
10200 */
10201 size = 2 * sizeof (uint64_t);
10202 break;
10203
10204 case DTRACEACT_STOP:
10205 case DTRACEACT_BREAKPOINT:
10206 case DTRACEACT_PANIC:
10207 break;
10208
10209 case DTRACEACT_CHILL:
10210 case DTRACEACT_DISCARD:
10211 case DTRACEACT_RAISE:
10212 case DTRACEACT_PIDRESUME: /* __APPLE__ */
10213 if (dp == NULL)
10214 return (EINVAL);
10215 break;
10216
10217 case DTRACEACT_EXIT:
10218 if (dp == NULL ||
10219 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10220 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10221 return (EINVAL);
10222 break;
10223
10224 case DTRACEACT_SPECULATE:
10225 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10226 return (EINVAL);
10227
10228 if (dp == NULL)
10229 return (EINVAL);
10230
10231 state->dts_speculates = 1;
10232 break;
10233
10234 case DTRACEACT_COMMIT: {
10235 dtrace_action_t *act = ecb->dte_action;
10236
10237 for (; act != NULL; act = act->dta_next) {
10238 if (act->dta_kind == DTRACEACT_COMMIT)
10239 return (EINVAL);
10240 }
10241
10242 if (dp == NULL)
10243 return (EINVAL);
10244 break;
10245 }
10246
10247 default:
10248 return (EINVAL);
10249 }
10250
10251 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10252 /*
10253 * If this is a data-storing action or a speculate,
10254 * we must be sure that there isn't a commit on the
10255 * action chain.
10256 */
10257 dtrace_action_t *act = ecb->dte_action;
10258
10259 for (; act != NULL; act = act->dta_next) {
10260 if (act->dta_kind == DTRACEACT_COMMIT)
10261 return (EINVAL);
10262 }
10263 }
10264
10265 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10266 action->dta_rec.dtrd_size = size;
10267 }
10268
10269 action->dta_refcnt = 1;
10270 rec = &action->dta_rec;
10271 size = rec->dtrd_size;
10272
10273 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10274 if (!(size & mask)) {
10275 align = mask + 1;
10276 break;
10277 }
10278 }
10279
10280 action->dta_kind = desc->dtad_kind;
10281
10282 if ((action->dta_difo = dp) != NULL)
10283 dtrace_difo_hold(dp);
10284
10285 rec->dtrd_action = action->dta_kind;
10286 rec->dtrd_arg = arg;
10287 rec->dtrd_uarg = desc->dtad_uarg;
10288 rec->dtrd_alignment = (uint16_t)align;
10289 rec->dtrd_format = format;
10290
10291 if ((last = ecb->dte_action_last) != NULL) {
10292 ASSERT(ecb->dte_action != NULL);
10293 action->dta_prev = last;
10294 last->dta_next = action;
10295 } else {
10296 ASSERT(ecb->dte_action == NULL);
10297 ecb->dte_action = action;
10298 }
10299
10300 ecb->dte_action_last = action;
10301
10302 return (0);
10303 }
10304
10305 static void
10306 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10307 {
10308 dtrace_action_t *act = ecb->dte_action, *next;
10309 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10310 dtrace_difo_t *dp;
10311 uint16_t format;
10312
10313 if (act != NULL && act->dta_refcnt > 1) {
10314 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10315 act->dta_refcnt--;
10316 } else {
10317 for (; act != NULL; act = next) {
10318 next = act->dta_next;
10319 ASSERT(next != NULL || act == ecb->dte_action_last);
10320 ASSERT(act->dta_refcnt == 1);
10321
10322 if ((format = act->dta_rec.dtrd_format) != 0)
10323 dtrace_format_remove(ecb->dte_state, format);
10324
10325 if ((dp = act->dta_difo) != NULL)
10326 dtrace_difo_release(dp, vstate);
10327
10328 if (DTRACEACT_ISAGG(act->dta_kind)) {
10329 dtrace_ecb_aggregation_destroy(ecb, act);
10330 } else {
10331 kmem_free(act, sizeof (dtrace_action_t));
10332 }
10333 }
10334 }
10335
10336 ecb->dte_action = NULL;
10337 ecb->dte_action_last = NULL;
10338 ecb->dte_size = 0;
10339 }
10340
10341 static void
10342 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10343 {
10344 /*
10345 * We disable the ECB by removing it from its probe.
10346 */
10347 dtrace_ecb_t *pecb, *prev = NULL;
10348 dtrace_probe_t *probe = ecb->dte_probe;
10349
10350 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10351
10352 if (probe == NULL) {
10353 /*
10354 * This is the NULL probe; there is nothing to disable.
10355 */
10356 return;
10357 }
10358
10359 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10360 if (pecb == ecb)
10361 break;
10362 prev = pecb;
10363 }
10364
10365 ASSERT(pecb != NULL);
10366
10367 if (prev == NULL) {
10368 probe->dtpr_ecb = ecb->dte_next;
10369 } else {
10370 prev->dte_next = ecb->dte_next;
10371 }
10372
10373 if (ecb == probe->dtpr_ecb_last) {
10374 ASSERT(ecb->dte_next == NULL);
10375 probe->dtpr_ecb_last = prev;
10376 }
10377
10378 probe->dtpr_provider->dtpv_ecb_count--;
10379 /*
10380 * The ECB has been disconnected from the probe; now sync to assure
10381 * that all CPUs have seen the change before returning.
10382 */
10383 dtrace_sync();
10384
10385 if (probe->dtpr_ecb == NULL) {
10386 /*
10387 * That was the last ECB on the probe; clear the predicate
10388 * cache ID for the probe, disable it and sync one more time
10389 * to assure that we'll never hit it again.
10390 */
10391 dtrace_provider_t *prov = probe->dtpr_provider;
10392
10393 ASSERT(ecb->dte_next == NULL);
10394 ASSERT(probe->dtpr_ecb_last == NULL);
10395 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10396 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10397 probe->dtpr_id, probe->dtpr_arg);
10398 dtrace_sync();
10399 } else {
10400 /*
10401 * There is at least one ECB remaining on the probe. If there
10402 * is _exactly_ one, set the probe's predicate cache ID to be
10403 * the predicate cache ID of the remaining ECB.
10404 */
10405 ASSERT(probe->dtpr_ecb_last != NULL);
10406 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10407
10408 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10409 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10410
10411 ASSERT(probe->dtpr_ecb->dte_next == NULL);
10412
10413 if (p != NULL)
10414 probe->dtpr_predcache = p->dtp_cacheid;
10415 }
10416
10417 ecb->dte_next = NULL;
10418 }
10419 }
10420
10421 static void
10422 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10423 {
10424 dtrace_state_t *state = ecb->dte_state;
10425 dtrace_vstate_t *vstate = &state->dts_vstate;
10426 dtrace_predicate_t *pred;
10427 dtrace_epid_t epid = ecb->dte_epid;
10428
10429 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10430 ASSERT(ecb->dte_next == NULL);
10431 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10432
10433 if ((pred = ecb->dte_predicate) != NULL)
10434 dtrace_predicate_release(pred, vstate);
10435
10436 dtrace_ecb_action_remove(ecb);
10437
10438 ASSERT(state->dts_ecbs[epid - 1] == ecb);
10439 state->dts_ecbs[epid - 1] = NULL;
10440
10441 kmem_free(ecb, sizeof (dtrace_ecb_t));
10442 }
10443
10444 static dtrace_ecb_t *
10445 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10446 dtrace_enabling_t *enab)
10447 {
10448 dtrace_ecb_t *ecb;
10449 dtrace_predicate_t *pred;
10450 dtrace_actdesc_t *act;
10451 dtrace_provider_t *prov;
10452 dtrace_ecbdesc_t *desc = enab->dten_current;
10453
10454 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10455 ASSERT(state != NULL);
10456
10457 ecb = dtrace_ecb_add(state, probe);
10458 ecb->dte_uarg = desc->dted_uarg;
10459
10460 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10461 dtrace_predicate_hold(pred);
10462 ecb->dte_predicate = pred;
10463 }
10464
10465 if (probe != NULL) {
10466 /*
10467 * If the provider shows more leg than the consumer is old
10468 * enough to see, we need to enable the appropriate implicit
10469 * predicate bits to prevent the ecb from activating at
10470 * revealing times.
10471 *
10472 * Providers specifying DTRACE_PRIV_USER at register time
10473 * are stating that they need the /proc-style privilege
10474 * model to be enforced, and this is what DTRACE_COND_OWNER
10475 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10476 */
10477 prov = probe->dtpr_provider;
10478 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10479 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10480 ecb->dte_cond |= DTRACE_COND_OWNER;
10481
10482 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10483 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10484 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10485
10486 /*
10487 * If the provider shows us kernel innards and the user
10488 * is lacking sufficient privilege, enable the
10489 * DTRACE_COND_USERMODE implicit predicate.
10490 */
10491 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10492 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10493 ecb->dte_cond |= DTRACE_COND_USERMODE;
10494 }
10495
10496 if (dtrace_ecb_create_cache != NULL) {
10497 /*
10498 * If we have a cached ecb, we'll use its action list instead
10499 * of creating our own (saving both time and space).
10500 */
10501 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10502 dtrace_action_t *act_if = cached->dte_action;
10503
10504 if (act_if != NULL) {
10505 ASSERT(act_if->dta_refcnt > 0);
10506 act_if->dta_refcnt++;
10507 ecb->dte_action = act_if;
10508 ecb->dte_action_last = cached->dte_action_last;
10509 ecb->dte_needed = cached->dte_needed;
10510 ecb->dte_size = cached->dte_size;
10511 ecb->dte_alignment = cached->dte_alignment;
10512 }
10513
10514 return (ecb);
10515 }
10516
10517 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10518 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10519 dtrace_ecb_destroy(ecb);
10520 return (NULL);
10521 }
10522 }
10523
10524 dtrace_ecb_resize(ecb);
10525
10526 return (dtrace_ecb_create_cache = ecb);
10527 }
10528
10529 static int
10530 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10531 {
10532 dtrace_ecb_t *ecb;
10533 dtrace_enabling_t *enab = arg;
10534 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10535
10536 ASSERT(state != NULL);
10537
10538 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10539 /*
10540 * This probe was created in a generation for which this
10541 * enabling has previously created ECBs; we don't want to
10542 * enable it again, so just kick out.
10543 */
10544 return (DTRACE_MATCH_NEXT);
10545 }
10546
10547 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10548 return (DTRACE_MATCH_DONE);
10549
10550 if (dtrace_ecb_enable(ecb) < 0)
10551 return (DTRACE_MATCH_FAIL);
10552
10553 return (DTRACE_MATCH_NEXT);
10554 }
10555
10556 static dtrace_ecb_t *
10557 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10558 {
10559 dtrace_ecb_t *ecb;
10560 #pragma unused(ecb) /* __APPLE__ */
10561
10562 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10563
10564 if (id == 0 || id > (dtrace_epid_t)state->dts_necbs)
10565 return (NULL);
10566
10567 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10568 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10569
10570 return (state->dts_ecbs[id - 1]);
10571 }
10572
10573 static dtrace_aggregation_t *
10574 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10575 {
10576 dtrace_aggregation_t *agg;
10577 #pragma unused(agg) /* __APPLE__ */
10578
10579 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10580
10581 if (id == 0 || id > (dtrace_aggid_t)state->dts_naggregations)
10582 return (NULL);
10583
10584 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10585 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10586 agg->dtag_id == id);
10587
10588 return (state->dts_aggregations[id - 1]);
10589 }
10590
10591 /*
10592 * DTrace Buffer Functions
10593 *
10594 * The following functions manipulate DTrace buffers. Most of these functions
10595 * are called in the context of establishing or processing consumer state;
10596 * exceptions are explicitly noted.
10597 */
10598
10599 /*
10600 * Note: called from cross call context. This function switches the two
10601 * buffers on a given CPU. The atomicity of this operation is assured by
10602 * disabling interrupts while the actual switch takes place; the disabling of
10603 * interrupts serializes the execution with any execution of dtrace_probe() on
10604 * the same CPU.
10605 */
10606 static void
10607 dtrace_buffer_switch(dtrace_buffer_t *buf)
10608 {
10609 caddr_t tomax = buf->dtb_tomax;
10610 caddr_t xamot = buf->dtb_xamot;
10611 dtrace_icookie_t cookie;
10612 hrtime_t now;
10613
10614 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10615 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10616
10617 cookie = dtrace_interrupt_disable();
10618 now = dtrace_gethrtime();
10619 buf->dtb_tomax = xamot;
10620 buf->dtb_xamot = tomax;
10621 buf->dtb_xamot_drops = buf->dtb_drops;
10622 buf->dtb_xamot_offset = buf->dtb_offset;
10623 buf->dtb_xamot_errors = buf->dtb_errors;
10624 buf->dtb_xamot_flags = buf->dtb_flags;
10625 buf->dtb_offset = 0;
10626 buf->dtb_drops = 0;
10627 buf->dtb_errors = 0;
10628 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10629 buf->dtb_interval = now - buf->dtb_switched;
10630 buf->dtb_switched = now;
10631 dtrace_interrupt_enable(cookie);
10632 }
10633
10634 /*
10635 * Note: called from cross call context. This function activates a buffer
10636 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
10637 * is guaranteed by the disabling of interrupts.
10638 */
10639 static void
10640 dtrace_buffer_activate(dtrace_state_t *state)
10641 {
10642 dtrace_buffer_t *buf;
10643 dtrace_icookie_t cookie = dtrace_interrupt_disable();
10644
10645 buf = &state->dts_buffer[CPU->cpu_id];
10646
10647 if (buf->dtb_tomax != NULL) {
10648 /*
10649 * We might like to assert that the buffer is marked inactive,
10650 * but this isn't necessarily true: the buffer for the CPU
10651 * that processes the BEGIN probe has its buffer activated
10652 * manually. In this case, we take the (harmless) action
10653 * re-clearing the bit INACTIVE bit.
10654 */
10655 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10656 }
10657
10658 dtrace_interrupt_enable(cookie);
10659 }
10660
10661 static int
10662 dtrace_buffer_canalloc(size_t size)
10663 {
10664 if (size > (UINT64_MAX - dtrace_buffer_memory_inuse))
10665 return (B_FALSE);
10666 if ((size + dtrace_buffer_memory_inuse) > dtrace_buffer_memory_maxsize)
10667 return (B_FALSE);
10668
10669 return (B_TRUE);
10670 }
10671
10672 static int
10673 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10674 processorid_t cpu)
10675 {
10676 dtrace_cpu_t *cp;
10677 dtrace_buffer_t *buf;
10678 size_t size_before_alloc = dtrace_buffer_memory_inuse;
10679
10680 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
10681 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
10682
10683 if (size > (size_t)dtrace_nonroot_maxsize &&
10684 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10685 return (EFBIG);
10686
10687 cp = cpu_list;
10688
10689 do {
10690 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10691 continue;
10692
10693 buf = &bufs[cp->cpu_id];
10694
10695 /*
10696 * If there is already a buffer allocated for this CPU, it
10697 * is only possible that this is a DR event. In this case,
10698 * the buffer size must match our specified size.
10699 */
10700 if (buf->dtb_tomax != NULL) {
10701 ASSERT(buf->dtb_size == size);
10702 continue;
10703 }
10704
10705 ASSERT(buf->dtb_xamot == NULL);
10706
10707 /* DTrace, please do not eat all the memory. */
10708 if (dtrace_buffer_canalloc(size) == B_FALSE)
10709 goto err;
10710 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10711 goto err;
10712 dtrace_buffer_memory_inuse += size;
10713
10714 buf->dtb_size = size;
10715 buf->dtb_flags = flags;
10716 buf->dtb_offset = 0;
10717 buf->dtb_drops = 0;
10718
10719 if (flags & DTRACEBUF_NOSWITCH)
10720 continue;
10721
10722 /* DTrace, please do not eat all the memory. */
10723 if (dtrace_buffer_canalloc(size) == B_FALSE)
10724 goto err;
10725 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10726 goto err;
10727 dtrace_buffer_memory_inuse += size;
10728 } while ((cp = cp->cpu_next) != cpu_list);
10729
10730 ASSERT(dtrace_buffer_memory_inuse <= dtrace_buffer_memory_maxsize);
10731
10732 return (0);
10733
10734 err:
10735 cp = cpu_list;
10736
10737 do {
10738 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10739 continue;
10740
10741 buf = &bufs[cp->cpu_id];
10742
10743 if (buf->dtb_xamot != NULL) {
10744 ASSERT(buf->dtb_tomax != NULL);
10745 ASSERT(buf->dtb_size == size);
10746 kmem_free(buf->dtb_xamot, size);
10747 }
10748
10749 if (buf->dtb_tomax != NULL) {
10750 ASSERT(buf->dtb_size == size);
10751 kmem_free(buf->dtb_tomax, size);
10752 }
10753
10754 buf->dtb_tomax = NULL;
10755 buf->dtb_xamot = NULL;
10756 buf->dtb_size = 0;
10757 } while ((cp = cp->cpu_next) != cpu_list);
10758
10759 /* Restore the size saved before allocating memory */
10760 dtrace_buffer_memory_inuse = size_before_alloc;
10761
10762 return (ENOMEM);
10763 }
10764
10765 /*
10766 * Note: called from probe context. This function just increments the drop
10767 * count on a buffer. It has been made a function to allow for the
10768 * possibility of understanding the source of mysterious drop counts. (A
10769 * problem for which one may be particularly disappointed that DTrace cannot
10770 * be used to understand DTrace.)
10771 */
10772 static void
10773 dtrace_buffer_drop(dtrace_buffer_t *buf)
10774 {
10775 buf->dtb_drops++;
10776 }
10777
10778 /*
10779 * Note: called from probe context. This function is called to reserve space
10780 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
10781 * mstate. Returns the new offset in the buffer, or a negative value if an
10782 * error has occurred.
10783 */
10784 static intptr_t
10785 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10786 dtrace_state_t *state, dtrace_mstate_t *mstate)
10787 {
10788 intptr_t offs = buf->dtb_offset, soffs;
10789 intptr_t woffs;
10790 caddr_t tomax;
10791 size_t total_off;
10792
10793 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10794 return (-1);
10795
10796 if ((tomax = buf->dtb_tomax) == NULL) {
10797 dtrace_buffer_drop(buf);
10798 return (-1);
10799 }
10800
10801 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10802 while (offs & (align - 1)) {
10803 /*
10804 * Assert that our alignment is off by a number which
10805 * is itself sizeof (uint32_t) aligned.
10806 */
10807 ASSERT(!((align - (offs & (align - 1))) &
10808 (sizeof (uint32_t) - 1)));
10809 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10810 offs += sizeof (uint32_t);
10811 }
10812
10813 if ((uint64_t)(soffs = offs + needed) > buf->dtb_size) {
10814 dtrace_buffer_drop(buf);
10815 return (-1);
10816 }
10817
10818 if (mstate == NULL)
10819 return (offs);
10820
10821 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10822 mstate->dtms_scratch_size = buf->dtb_size - soffs;
10823 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10824
10825 return (offs);
10826 }
10827
10828 if (buf->dtb_flags & DTRACEBUF_FILL) {
10829 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10830 (buf->dtb_flags & DTRACEBUF_FULL))
10831 return (-1);
10832 goto out;
10833 }
10834
10835 total_off = needed + (offs & (align - 1));
10836
10837 /*
10838 * For a ring buffer, life is quite a bit more complicated. Before
10839 * we can store any padding, we need to adjust our wrapping offset.
10840 * (If we've never before wrapped or we're not about to, no adjustment
10841 * is required.)
10842 */
10843 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10844 offs + total_off > buf->dtb_size) {
10845 woffs = buf->dtb_xamot_offset;
10846
10847 if (offs + total_off > buf->dtb_size) {
10848 /*
10849 * We can't fit in the end of the buffer. First, a
10850 * sanity check that we can fit in the buffer at all.
10851 */
10852 if (total_off > buf->dtb_size) {
10853 dtrace_buffer_drop(buf);
10854 return (-1);
10855 }
10856
10857 /*
10858 * We're going to be storing at the top of the buffer,
10859 * so now we need to deal with the wrapped offset. We
10860 * only reset our wrapped offset to 0 if it is
10861 * currently greater than the current offset. If it
10862 * is less than the current offset, it is because a
10863 * previous allocation induced a wrap -- but the
10864 * allocation didn't subsequently take the space due
10865 * to an error or false predicate evaluation. In this
10866 * case, we'll just leave the wrapped offset alone: if
10867 * the wrapped offset hasn't been advanced far enough
10868 * for this allocation, it will be adjusted in the
10869 * lower loop.
10870 */
10871 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10872 if (woffs >= offs)
10873 woffs = 0;
10874 } else {
10875 woffs = 0;
10876 }
10877
10878 /*
10879 * Now we know that we're going to be storing to the
10880 * top of the buffer and that there is room for us
10881 * there. We need to clear the buffer from the current
10882 * offset to the end (there may be old gunk there).
10883 */
10884 while ((uint64_t)offs < buf->dtb_size)
10885 tomax[offs++] = 0;
10886
10887 /*
10888 * We need to set our offset to zero. And because we
10889 * are wrapping, we need to set the bit indicating as
10890 * much. We can also adjust our needed space back
10891 * down to the space required by the ECB -- we know
10892 * that the top of the buffer is aligned.
10893 */
10894 offs = 0;
10895 total_off = needed;
10896 buf->dtb_flags |= DTRACEBUF_WRAPPED;
10897 } else {
10898 /*
10899 * There is room for us in the buffer, so we simply
10900 * need to check the wrapped offset.
10901 */
10902 if (woffs < offs) {
10903 /*
10904 * The wrapped offset is less than the offset.
10905 * This can happen if we allocated buffer space
10906 * that induced a wrap, but then we didn't
10907 * subsequently take the space due to an error
10908 * or false predicate evaluation. This is
10909 * okay; we know that _this_ allocation isn't
10910 * going to induce a wrap. We still can't
10911 * reset the wrapped offset to be zero,
10912 * however: the space may have been trashed in
10913 * the previous failed probe attempt. But at
10914 * least the wrapped offset doesn't need to
10915 * be adjusted at all...
10916 */
10917 goto out;
10918 }
10919 }
10920
10921 while (offs + total_off > (size_t)woffs) {
10922 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10923 size_t size;
10924
10925 if (epid == DTRACE_EPIDNONE) {
10926 size = sizeof (uint32_t);
10927 } else {
10928 ASSERT(epid <= (dtrace_epid_t)state->dts_necbs);
10929 ASSERT(state->dts_ecbs[epid - 1] != NULL);
10930
10931 size = state->dts_ecbs[epid - 1]->dte_size;
10932 }
10933
10934 ASSERT(woffs + size <= buf->dtb_size);
10935 ASSERT(size != 0);
10936
10937 if (woffs + size == buf->dtb_size) {
10938 /*
10939 * We've reached the end of the buffer; we want
10940 * to set the wrapped offset to 0 and break
10941 * out. However, if the offs is 0, then we're
10942 * in a strange edge-condition: the amount of
10943 * space that we want to reserve plus the size
10944 * of the record that we're overwriting is
10945 * greater than the size of the buffer. This
10946 * is problematic because if we reserve the
10947 * space but subsequently don't consume it (due
10948 * to a failed predicate or error) the wrapped
10949 * offset will be 0 -- yet the EPID at offset 0
10950 * will not be committed. This situation is
10951 * relatively easy to deal with: if we're in
10952 * this case, the buffer is indistinguishable
10953 * from one that hasn't wrapped; we need only
10954 * finish the job by clearing the wrapped bit,
10955 * explicitly setting the offset to be 0, and
10956 * zero'ing out the old data in the buffer.
10957 */
10958 if (offs == 0) {
10959 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10960 buf->dtb_offset = 0;
10961 woffs = total_off;
10962
10963 while ((uint64_t)woffs < buf->dtb_size)
10964 tomax[woffs++] = 0;
10965 }
10966
10967 woffs = 0;
10968 break;
10969 }
10970
10971 woffs += size;
10972 }
10973
10974 /*
10975 * We have a wrapped offset. It may be that the wrapped offset
10976 * has become zero -- that's okay.
10977 */
10978 buf->dtb_xamot_offset = woffs;
10979 }
10980
10981 out:
10982 /*
10983 * Now we can plow the buffer with any necessary padding.
10984 */
10985 while (offs & (align - 1)) {
10986 /*
10987 * Assert that our alignment is off by a number which
10988 * is itself sizeof (uint32_t) aligned.
10989 */
10990 ASSERT(!((align - (offs & (align - 1))) &
10991 (sizeof (uint32_t) - 1)));
10992 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10993 offs += sizeof (uint32_t);
10994 }
10995
10996 if (buf->dtb_flags & DTRACEBUF_FILL) {
10997 if (offs + needed > buf->dtb_size - state->dts_reserve) {
10998 buf->dtb_flags |= DTRACEBUF_FULL;
10999 return (-1);
11000 }
11001 }
11002
11003 if (mstate == NULL)
11004 return (offs);
11005
11006 /*
11007 * For ring buffers and fill buffers, the scratch space is always
11008 * the inactive buffer.
11009 */
11010 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11011 mstate->dtms_scratch_size = buf->dtb_size;
11012 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11013
11014 return (offs);
11015 }
11016
11017 static void
11018 dtrace_buffer_polish(dtrace_buffer_t *buf)
11019 {
11020 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11021 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11022
11023 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11024 return;
11025
11026 /*
11027 * We need to polish the ring buffer. There are three cases:
11028 *
11029 * - The first (and presumably most common) is that there is no gap
11030 * between the buffer offset and the wrapped offset. In this case,
11031 * there is nothing in the buffer that isn't valid data; we can
11032 * mark the buffer as polished and return.
11033 *
11034 * - The second (less common than the first but still more common
11035 * than the third) is that there is a gap between the buffer offset
11036 * and the wrapped offset, and the wrapped offset is larger than the
11037 * buffer offset. This can happen because of an alignment issue, or
11038 * can happen because of a call to dtrace_buffer_reserve() that
11039 * didn't subsequently consume the buffer space. In this case,
11040 * we need to zero the data from the buffer offset to the wrapped
11041 * offset.
11042 *
11043 * - The third (and least common) is that there is a gap between the
11044 * buffer offset and the wrapped offset, but the wrapped offset is
11045 * _less_ than the buffer offset. This can only happen because a
11046 * call to dtrace_buffer_reserve() induced a wrap, but the space
11047 * was not subsequently consumed. In this case, we need to zero the
11048 * space from the offset to the end of the buffer _and_ from the
11049 * top of the buffer to the wrapped offset.
11050 */
11051 if (buf->dtb_offset < buf->dtb_xamot_offset) {
11052 bzero(buf->dtb_tomax + buf->dtb_offset,
11053 buf->dtb_xamot_offset - buf->dtb_offset);
11054 }
11055
11056 if (buf->dtb_offset > buf->dtb_xamot_offset) {
11057 bzero(buf->dtb_tomax + buf->dtb_offset,
11058 buf->dtb_size - buf->dtb_offset);
11059 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11060 }
11061 }
11062
11063 static void
11064 dtrace_buffer_free(dtrace_buffer_t *bufs)
11065 {
11066 int i;
11067
11068 for (i = 0; i < (int)NCPU; i++) {
11069 dtrace_buffer_t *buf = &bufs[i];
11070
11071 if (buf->dtb_tomax == NULL) {
11072 ASSERT(buf->dtb_xamot == NULL);
11073 ASSERT(buf->dtb_size == 0);
11074 continue;
11075 }
11076
11077 if (buf->dtb_xamot != NULL) {
11078 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11079 kmem_free(buf->dtb_xamot, buf->dtb_size);
11080
11081 ASSERT(dtrace_buffer_memory_inuse >= buf->dtb_size);
11082 dtrace_buffer_memory_inuse -= buf->dtb_size;
11083 }
11084
11085 kmem_free(buf->dtb_tomax, buf->dtb_size);
11086 ASSERT(dtrace_buffer_memory_inuse >= buf->dtb_size);
11087 dtrace_buffer_memory_inuse -= buf->dtb_size;
11088
11089 buf->dtb_size = 0;
11090 buf->dtb_tomax = NULL;
11091 buf->dtb_xamot = NULL;
11092 }
11093 }
11094
11095 /*
11096 * DTrace Enabling Functions
11097 */
11098 static dtrace_enabling_t *
11099 dtrace_enabling_create(dtrace_vstate_t *vstate)
11100 {
11101 dtrace_enabling_t *enab;
11102
11103 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11104 enab->dten_vstate = vstate;
11105
11106 return (enab);
11107 }
11108
11109 static void
11110 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11111 {
11112 dtrace_ecbdesc_t **ndesc;
11113 size_t osize, nsize;
11114
11115 /*
11116 * We can't add to enablings after we've enabled them, or after we've
11117 * retained them.
11118 */
11119 ASSERT(enab->dten_probegen == 0);
11120 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11121
11122 /* APPLE NOTE: this protects against gcc 4.0 botch on x86 */
11123 if (ecb == NULL) return;
11124
11125 if (enab->dten_ndesc < enab->dten_maxdesc) {
11126 enab->dten_desc[enab->dten_ndesc++] = ecb;
11127 return;
11128 }
11129
11130 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11131
11132 if (enab->dten_maxdesc == 0) {
11133 enab->dten_maxdesc = 1;
11134 } else {
11135 enab->dten_maxdesc <<= 1;
11136 }
11137
11138 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11139
11140 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11141 ndesc = kmem_zalloc(nsize, KM_SLEEP);
11142 bcopy(enab->dten_desc, ndesc, osize);
11143 kmem_free(enab->dten_desc, osize);
11144
11145 enab->dten_desc = ndesc;
11146 enab->dten_desc[enab->dten_ndesc++] = ecb;
11147 }
11148
11149 static void
11150 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11151 dtrace_probedesc_t *pd)
11152 {
11153 dtrace_ecbdesc_t *new;
11154 dtrace_predicate_t *pred;
11155 dtrace_actdesc_t *act;
11156
11157 /*
11158 * We're going to create a new ECB description that matches the
11159 * specified ECB in every way, but has the specified probe description.
11160 */
11161 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11162
11163 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11164 dtrace_predicate_hold(pred);
11165
11166 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11167 dtrace_actdesc_hold(act);
11168
11169 new->dted_action = ecb->dted_action;
11170 new->dted_pred = ecb->dted_pred;
11171 new->dted_probe = *pd;
11172 new->dted_uarg = ecb->dted_uarg;
11173
11174 dtrace_enabling_add(enab, new);
11175 }
11176
11177 static void
11178 dtrace_enabling_dump(dtrace_enabling_t *enab)
11179 {
11180 int i;
11181
11182 for (i = 0; i < enab->dten_ndesc; i++) {
11183 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11184
11185 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11186 desc->dtpd_provider, desc->dtpd_mod,
11187 desc->dtpd_func, desc->dtpd_name);
11188 }
11189 }
11190
11191 static void
11192 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11193 {
11194 int i;
11195 dtrace_ecbdesc_t *ep;
11196 dtrace_vstate_t *vstate = enab->dten_vstate;
11197
11198 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11199
11200 for (i = 0; i < enab->dten_ndesc; i++) {
11201 dtrace_actdesc_t *act, *next;
11202 dtrace_predicate_t *pred;
11203
11204 ep = enab->dten_desc[i];
11205
11206 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11207 dtrace_predicate_release(pred, vstate);
11208
11209 for (act = ep->dted_action; act != NULL; act = next) {
11210 next = act->dtad_next;
11211 dtrace_actdesc_release(act, vstate);
11212 }
11213
11214 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11215 }
11216
11217 kmem_free(enab->dten_desc,
11218 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11219
11220 /*
11221 * If this was a retained enabling, decrement the dts_nretained count
11222 * and take it off of the dtrace_retained list.
11223 */
11224 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11225 dtrace_retained == enab) {
11226 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11227 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11228 enab->dten_vstate->dtvs_state->dts_nretained--;
11229 dtrace_retained_gen++;
11230 }
11231
11232 if (enab->dten_prev == NULL) {
11233 if (dtrace_retained == enab) {
11234 dtrace_retained = enab->dten_next;
11235
11236 if (dtrace_retained != NULL)
11237 dtrace_retained->dten_prev = NULL;
11238 }
11239 } else {
11240 ASSERT(enab != dtrace_retained);
11241 ASSERT(dtrace_retained != NULL);
11242 enab->dten_prev->dten_next = enab->dten_next;
11243 }
11244
11245 if (enab->dten_next != NULL) {
11246 ASSERT(dtrace_retained != NULL);
11247 enab->dten_next->dten_prev = enab->dten_prev;
11248 }
11249
11250 kmem_free(enab, sizeof (dtrace_enabling_t));
11251 }
11252
11253 static int
11254 dtrace_enabling_retain(dtrace_enabling_t *enab)
11255 {
11256 dtrace_state_t *state;
11257
11258 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11259 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11260 ASSERT(enab->dten_vstate != NULL);
11261
11262 state = enab->dten_vstate->dtvs_state;
11263 ASSERT(state != NULL);
11264
11265 /*
11266 * We only allow each state to retain dtrace_retain_max enablings.
11267 */
11268 if (state->dts_nretained >= dtrace_retain_max)
11269 return (ENOSPC);
11270
11271 state->dts_nretained++;
11272 dtrace_retained_gen++;
11273
11274 if (dtrace_retained == NULL) {
11275 dtrace_retained = enab;
11276 return (0);
11277 }
11278
11279 enab->dten_next = dtrace_retained;
11280 dtrace_retained->dten_prev = enab;
11281 dtrace_retained = enab;
11282
11283 return (0);
11284 }
11285
11286 static int
11287 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11288 dtrace_probedesc_t *create)
11289 {
11290 dtrace_enabling_t *new, *enab;
11291 int found = 0, err = ENOENT;
11292
11293 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11294 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11295 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11296 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11297 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11298
11299 new = dtrace_enabling_create(&state->dts_vstate);
11300
11301 /*
11302 * Iterate over all retained enablings, looking for enablings that
11303 * match the specified state.
11304 */
11305 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11306 int i;
11307
11308 /*
11309 * dtvs_state can only be NULL for helper enablings -- and
11310 * helper enablings can't be retained.
11311 */
11312 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11313
11314 if (enab->dten_vstate->dtvs_state != state)
11315 continue;
11316
11317 /*
11318 * Now iterate over each probe description; we're looking for
11319 * an exact match to the specified probe description.
11320 */
11321 for (i = 0; i < enab->dten_ndesc; i++) {
11322 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11323 dtrace_probedesc_t *pd = &ep->dted_probe;
11324
11325 /* APPLE NOTE: Darwin employs size bounded string operation. */
11326 if (strncmp(pd->dtpd_provider, match->dtpd_provider, DTRACE_PROVNAMELEN))
11327 continue;
11328
11329 if (strncmp(pd->dtpd_mod, match->dtpd_mod, DTRACE_MODNAMELEN))
11330 continue;
11331
11332 if (strncmp(pd->dtpd_func, match->dtpd_func, DTRACE_FUNCNAMELEN))
11333 continue;
11334
11335 if (strncmp(pd->dtpd_name, match->dtpd_name, DTRACE_NAMELEN))
11336 continue;
11337
11338 /*
11339 * We have a winning probe! Add it to our growing
11340 * enabling.
11341 */
11342 found = 1;
11343 dtrace_enabling_addlike(new, ep, create);
11344 }
11345 }
11346
11347 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11348 dtrace_enabling_destroy(new);
11349 return (err);
11350 }
11351
11352 return (0);
11353 }
11354
11355 static void
11356 dtrace_enabling_retract(dtrace_state_t *state)
11357 {
11358 dtrace_enabling_t *enab, *next;
11359
11360 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11361
11362 /*
11363 * Iterate over all retained enablings, destroy the enablings retained
11364 * for the specified state.
11365 */
11366 for (enab = dtrace_retained; enab != NULL; enab = next) {
11367 next = enab->dten_next;
11368
11369 /*
11370 * dtvs_state can only be NULL for helper enablings -- and
11371 * helper enablings can't be retained.
11372 */
11373 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11374
11375 if (enab->dten_vstate->dtvs_state == state) {
11376 ASSERT(state->dts_nretained > 0);
11377 dtrace_enabling_destroy(enab);
11378 }
11379 }
11380
11381 ASSERT(state->dts_nretained == 0);
11382 }
11383
11384 static int
11385 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11386 {
11387 int i = 0;
11388 int total_matched = 0, matched = 0;
11389
11390 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
11391 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11392
11393 for (i = 0; i < enab->dten_ndesc; i++) {
11394 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11395
11396 enab->dten_current = ep;
11397 enab->dten_error = 0;
11398
11399 /*
11400 * If a provider failed to enable a probe then get out and
11401 * let the consumer know we failed.
11402 */
11403 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11404 return (EBUSY);
11405
11406 total_matched += matched;
11407
11408 if (enab->dten_error != 0) {
11409 /*
11410 * If we get an error half-way through enabling the
11411 * probes, we kick out -- perhaps with some number of
11412 * them enabled. Leaving enabled probes enabled may
11413 * be slightly confusing for user-level, but we expect
11414 * that no one will attempt to actually drive on in
11415 * the face of such errors. If this is an anonymous
11416 * enabling (indicated with a NULL nmatched pointer),
11417 * we cmn_err() a message. We aren't expecting to
11418 * get such an error -- such as it can exist at all,
11419 * it would be a result of corrupted DOF in the driver
11420 * properties.
11421 */
11422 if (nmatched == NULL) {
11423 cmn_err(CE_WARN, "dtrace_enabling_match() "
11424 "error on %p: %d", (void *)ep,
11425 enab->dten_error);
11426 }
11427
11428 return (enab->dten_error);
11429 }
11430 }
11431
11432 enab->dten_probegen = dtrace_probegen;
11433 if (nmatched != NULL)
11434 *nmatched = total_matched;
11435
11436 return (0);
11437 }
11438
11439 static void
11440 dtrace_enabling_matchall(void)
11441 {
11442 dtrace_enabling_t *enab;
11443
11444 lck_mtx_lock(&cpu_lock);
11445 lck_mtx_lock(&dtrace_lock);
11446
11447 /*
11448 * Iterate over all retained enablings to see if any probes match
11449 * against them. We only perform this operation on enablings for which
11450 * we have sufficient permissions by virtue of being in the global zone
11451 * or in the same zone as the DTrace client. Because we can be called
11452 * after dtrace_detach() has been called, we cannot assert that there
11453 * are retained enablings. We can safely load from dtrace_retained,
11454 * however: the taskq_destroy() at the end of dtrace_detach() will
11455 * block pending our completion.
11456 */
11457
11458 /*
11459 * Darwin doesn't do zones.
11460 * Behave as if always in "global" zone."
11461 */
11462 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11463 (void) dtrace_enabling_match(enab, NULL);
11464 }
11465
11466 lck_mtx_unlock(&dtrace_lock);
11467 lck_mtx_unlock(&cpu_lock);
11468 }
11469
11470 /*
11471 * If an enabling is to be enabled without having matched probes (that is, if
11472 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11473 * enabling must be _primed_ by creating an ECB for every ECB description.
11474 * This must be done to assure that we know the number of speculations, the
11475 * number of aggregations, the minimum buffer size needed, etc. before we
11476 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
11477 * enabling any probes, we create ECBs for every ECB decription, but with a
11478 * NULL probe -- which is exactly what this function does.
11479 */
11480 static void
11481 dtrace_enabling_prime(dtrace_state_t *state)
11482 {
11483 dtrace_enabling_t *enab;
11484 int i;
11485
11486 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11487 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11488
11489 if (enab->dten_vstate->dtvs_state != state)
11490 continue;
11491
11492 /*
11493 * We don't want to prime an enabling more than once, lest
11494 * we allow a malicious user to induce resource exhaustion.
11495 * (The ECBs that result from priming an enabling aren't
11496 * leaked -- but they also aren't deallocated until the
11497 * consumer state is destroyed.)
11498 */
11499 if (enab->dten_primed)
11500 continue;
11501
11502 for (i = 0; i < enab->dten_ndesc; i++) {
11503 enab->dten_current = enab->dten_desc[i];
11504 (void) dtrace_probe_enable(NULL, enab);
11505 }
11506
11507 enab->dten_primed = 1;
11508 }
11509 }
11510
11511 /*
11512 * Called to indicate that probes should be provided due to retained
11513 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
11514 * must take an initial lap through the enabling calling the dtps_provide()
11515 * entry point explicitly to allow for autocreated probes.
11516 */
11517 static void
11518 dtrace_enabling_provide(dtrace_provider_t *prv)
11519 {
11520 int i, all = 0;
11521 dtrace_probedesc_t desc;
11522 dtrace_genid_t gen;
11523
11524 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11525 lck_mtx_assert(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED);
11526
11527 if (prv == NULL) {
11528 all = 1;
11529 prv = dtrace_provider;
11530 }
11531
11532 do {
11533 dtrace_enabling_t *enab;
11534 void *parg = prv->dtpv_arg;
11535
11536 retry:
11537 gen = dtrace_retained_gen;
11538 for (enab = dtrace_retained; enab != NULL;
11539 enab = enab->dten_next) {
11540 for (i = 0; i < enab->dten_ndesc; i++) {
11541 desc = enab->dten_desc[i]->dted_probe;
11542 lck_mtx_unlock(&dtrace_lock);
11543 prv->dtpv_pops.dtps_provide(parg, &desc);
11544 lck_mtx_lock(&dtrace_lock);
11545 /*
11546 * Process the retained enablings again if
11547 * they have changed while we weren't holding
11548 * dtrace_lock.
11549 */
11550 if (gen != dtrace_retained_gen)
11551 goto retry;
11552 }
11553 }
11554 } while (all && (prv = prv->dtpv_next) != NULL);
11555
11556 lck_mtx_unlock(&dtrace_lock);
11557 dtrace_probe_provide(NULL, all ? NULL : prv);
11558 lck_mtx_lock(&dtrace_lock);
11559 }
11560
11561 /*
11562 * DTrace DOF Functions
11563 */
11564 /*ARGSUSED*/
11565 static void
11566 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11567 {
11568 #pragma unused(dof) /* __APPLE__ */
11569 if (dtrace_err_verbose)
11570 cmn_err(CE_WARN, "failed to process DOF: %s", str);
11571
11572 #ifdef DTRACE_ERRDEBUG
11573 dtrace_errdebug(str);
11574 #endif
11575 }
11576
11577 /*
11578 * Create DOF out of a currently enabled state. Right now, we only create
11579 * DOF containing the run-time options -- but this could be expanded to create
11580 * complete DOF representing the enabled state.
11581 */
11582 static dof_hdr_t *
11583 dtrace_dof_create(dtrace_state_t *state)
11584 {
11585 dof_hdr_t *dof;
11586 dof_sec_t *sec;
11587 dof_optdesc_t *opt;
11588 int i, len = sizeof (dof_hdr_t) +
11589 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11590 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11591
11592 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
11593
11594 dof = dt_kmem_zalloc_aligned(len, 8, KM_SLEEP);
11595 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11596 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11597 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11598 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11599
11600 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11601 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11602 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11603 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11604 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11605 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11606
11607 dof->dofh_flags = 0;
11608 dof->dofh_hdrsize = sizeof (dof_hdr_t);
11609 dof->dofh_secsize = sizeof (dof_sec_t);
11610 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
11611 dof->dofh_secoff = sizeof (dof_hdr_t);
11612 dof->dofh_loadsz = len;
11613 dof->dofh_filesz = len;
11614 dof->dofh_pad = 0;
11615
11616 /*
11617 * Fill in the option section header...
11618 */
11619 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11620 sec->dofs_type = DOF_SECT_OPTDESC;
11621 sec->dofs_align = sizeof (uint64_t);
11622 sec->dofs_flags = DOF_SECF_LOAD;
11623 sec->dofs_entsize = sizeof (dof_optdesc_t);
11624
11625 opt = (dof_optdesc_t *)((uintptr_t)sec +
11626 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11627
11628 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11629 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11630
11631 for (i = 0; i < DTRACEOPT_MAX; i++) {
11632 opt[i].dofo_option = i;
11633 opt[i].dofo_strtab = DOF_SECIDX_NONE;
11634 opt[i].dofo_value = state->dts_options[i];
11635 }
11636
11637 return (dof);
11638 }
11639
11640 static dof_hdr_t *
11641 dtrace_dof_copyin(user_addr_t uarg, int *errp)
11642 {
11643 dof_hdr_t hdr, *dof;
11644
11645 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED);
11646
11647 /*
11648 * First, we're going to copyin() the sizeof (dof_hdr_t).
11649 */
11650 if (copyin(uarg, &hdr, sizeof (hdr)) != 0) {
11651 dtrace_dof_error(NULL, "failed to copyin DOF header");
11652 *errp = EFAULT;
11653 return (NULL);
11654 }
11655
11656 /*
11657 * Now we'll allocate the entire DOF and copy it in -- provided
11658 * that the length isn't outrageous.
11659 */
11660 if (hdr.dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) {
11661 dtrace_dof_error(&hdr, "load size exceeds maximum");
11662 *errp = E2BIG;
11663 return (NULL);
11664 }
11665
11666 if (hdr.dofh_loadsz < sizeof (hdr)) {
11667 dtrace_dof_error(&hdr, "invalid load size");
11668 *errp = EINVAL;
11669 return (NULL);
11670 }
11671
11672 dof = dt_kmem_alloc_aligned(hdr.dofh_loadsz, 8, KM_SLEEP);
11673
11674 if (copyin(uarg, dof, hdr.dofh_loadsz) != 0 ||
11675 dof->dofh_loadsz != hdr.dofh_loadsz) {
11676 dt_kmem_free_aligned(dof, hdr.dofh_loadsz);
11677 *errp = EFAULT;
11678 return (NULL);
11679 }
11680
11681 return (dof);
11682 }
11683
11684 static dof_hdr_t *
11685 dtrace_dof_copyin_from_proc(proc_t* p, user_addr_t uarg, int *errp)
11686 {
11687 dof_hdr_t hdr, *dof;
11688
11689 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED);
11690
11691 /*
11692 * First, we're going to copyin() the sizeof (dof_hdr_t).
11693 */
11694 if (uread(p, &hdr, sizeof(hdr), uarg) != KERN_SUCCESS) {
11695 dtrace_dof_error(NULL, "failed to copyin DOF header");
11696 *errp = EFAULT;
11697 return (NULL);
11698 }
11699
11700 /*
11701 * Now we'll allocate the entire DOF and copy it in -- provided
11702 * that the length isn't outrageous.
11703 */
11704 if (hdr.dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) {
11705 dtrace_dof_error(&hdr, "load size exceeds maximum");
11706 *errp = E2BIG;
11707 return (NULL);
11708 }
11709
11710 if (hdr.dofh_loadsz < sizeof (hdr)) {
11711 dtrace_dof_error(&hdr, "invalid load size");
11712 *errp = EINVAL;
11713 return (NULL);
11714 }
11715
11716 dof = dt_kmem_alloc_aligned(hdr.dofh_loadsz, 8, KM_SLEEP);
11717
11718 if (uread(p, dof, hdr.dofh_loadsz, uarg) != KERN_SUCCESS) {
11719 dt_kmem_free_aligned(dof, hdr.dofh_loadsz);
11720 *errp = EFAULT;
11721 return (NULL);
11722 }
11723
11724 return (dof);
11725 }
11726
11727 static dof_hdr_t *
11728 dtrace_dof_property(const char *name)
11729 {
11730 uchar_t *buf;
11731 uint64_t loadsz;
11732 unsigned int len, i;
11733 dof_hdr_t *dof;
11734
11735 /*
11736 * Unfortunately, array of values in .conf files are always (and
11737 * only) interpreted to be integer arrays. We must read our DOF
11738 * as an integer array, and then squeeze it into a byte array.
11739 */
11740 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11741 name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11742 return (NULL);
11743
11744 for (i = 0; i < len; i++)
11745 buf[i] = (uchar_t)(((int *)buf)[i]);
11746
11747 if (len < sizeof (dof_hdr_t)) {
11748 ddi_prop_free(buf);
11749 dtrace_dof_error(NULL, "truncated header");
11750 return (NULL);
11751 }
11752
11753 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11754 ddi_prop_free(buf);
11755 dtrace_dof_error(NULL, "truncated DOF");
11756 return (NULL);
11757 }
11758
11759 if (loadsz >= (uint64_t)dtrace_dof_maxsize) {
11760 ddi_prop_free(buf);
11761 dtrace_dof_error(NULL, "oversized DOF");
11762 return (NULL);
11763 }
11764
11765 dof = dt_kmem_alloc_aligned(loadsz, 8, KM_SLEEP);
11766 bcopy(buf, dof, loadsz);
11767 ddi_prop_free(buf);
11768
11769 return (dof);
11770 }
11771
11772 static void
11773 dtrace_dof_destroy(dof_hdr_t *dof)
11774 {
11775 dt_kmem_free_aligned(dof, dof->dofh_loadsz);
11776 }
11777
11778 /*
11779 * Return the dof_sec_t pointer corresponding to a given section index. If the
11780 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
11781 * a type other than DOF_SECT_NONE is specified, the header is checked against
11782 * this type and NULL is returned if the types do not match.
11783 */
11784 static dof_sec_t *
11785 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11786 {
11787 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11788 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11789
11790 if (i >= dof->dofh_secnum) {
11791 dtrace_dof_error(dof, "referenced section index is invalid");
11792 return (NULL);
11793 }
11794
11795 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11796 dtrace_dof_error(dof, "referenced section is not loadable");
11797 return (NULL);
11798 }
11799
11800 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11801 dtrace_dof_error(dof, "referenced section is the wrong type");
11802 return (NULL);
11803 }
11804
11805 return (sec);
11806 }
11807
11808 static dtrace_probedesc_t *
11809 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11810 {
11811 dof_probedesc_t *probe;
11812 dof_sec_t *strtab;
11813 uintptr_t daddr = (uintptr_t)dof;
11814 uintptr_t str;
11815 size_t size;
11816
11817 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11818 dtrace_dof_error(dof, "invalid probe section");
11819 return (NULL);
11820 }
11821
11822 if (sec->dofs_align != sizeof (dof_secidx_t)) {
11823 dtrace_dof_error(dof, "bad alignment in probe description");
11824 return (NULL);
11825 }
11826
11827 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11828 dtrace_dof_error(dof, "truncated probe description");
11829 return (NULL);
11830 }
11831
11832 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11833 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11834
11835 if (strtab == NULL)
11836 return (NULL);
11837
11838 str = daddr + strtab->dofs_offset;
11839 size = strtab->dofs_size;
11840
11841 if (probe->dofp_provider >= strtab->dofs_size) {
11842 dtrace_dof_error(dof, "corrupt probe provider");
11843 return (NULL);
11844 }
11845
11846 (void) strncpy(desc->dtpd_provider,
11847 (char *)(str + probe->dofp_provider),
11848 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11849
11850 /* APPLE NOTE: Darwin employs size bounded string operation. */
11851 desc->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
11852
11853 if (probe->dofp_mod >= strtab->dofs_size) {
11854 dtrace_dof_error(dof, "corrupt probe module");
11855 return (NULL);
11856 }
11857
11858 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11859 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11860
11861 /* APPLE NOTE: Darwin employs size bounded string operation. */
11862 desc->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
11863
11864 if (probe->dofp_func >= strtab->dofs_size) {
11865 dtrace_dof_error(dof, "corrupt probe function");
11866 return (NULL);
11867 }
11868
11869 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11870 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11871
11872 /* APPLE NOTE: Darwin employs size bounded string operation. */
11873 desc->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
11874
11875 if (probe->dofp_name >= strtab->dofs_size) {
11876 dtrace_dof_error(dof, "corrupt probe name");
11877 return (NULL);
11878 }
11879
11880 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11881 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11882
11883 /* APPLE NOTE: Darwin employs size bounded string operation. */
11884 desc->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
11885
11886 return (desc);
11887 }
11888
11889 static dtrace_difo_t *
11890 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11891 cred_t *cr)
11892 {
11893 dtrace_difo_t *dp;
11894 size_t ttl = 0;
11895 dof_difohdr_t *dofd;
11896 uintptr_t daddr = (uintptr_t)dof;
11897 size_t max_size = dtrace_difo_maxsize;
11898 uint_t i;
11899 int l, n;
11900
11901
11902 static const struct {
11903 int section;
11904 int bufoffs;
11905 int lenoffs;
11906 int entsize;
11907 int align;
11908 const char *msg;
11909 } difo[] = {
11910 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11911 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11912 sizeof (dif_instr_t), "multiple DIF sections" },
11913
11914 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11915 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11916 sizeof (uint64_t), "multiple integer tables" },
11917
11918 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11919 offsetof(dtrace_difo_t, dtdo_strlen), 0,
11920 sizeof (char), "multiple string tables" },
11921
11922 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11923 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11924 sizeof (uint_t), "multiple variable tables" },
11925
11926 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11927 };
11928
11929 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11930 dtrace_dof_error(dof, "invalid DIFO header section");
11931 return (NULL);
11932 }
11933
11934 if (sec->dofs_align != sizeof (dof_secidx_t)) {
11935 dtrace_dof_error(dof, "bad alignment in DIFO header");
11936 return (NULL);
11937 }
11938
11939 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11940 sec->dofs_size % sizeof (dof_secidx_t)) {
11941 dtrace_dof_error(dof, "bad size in DIFO header");
11942 return (NULL);
11943 }
11944
11945 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11946 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11947
11948 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11949 dp->dtdo_rtype = dofd->dofd_rtype;
11950
11951 for (l = 0; l < n; l++) {
11952 dof_sec_t *subsec;
11953 void **bufp;
11954 uint32_t *lenp;
11955
11956 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11957 dofd->dofd_links[l])) == NULL)
11958 goto err; /* invalid section link */
11959
11960 if (ttl + subsec->dofs_size > max_size) {
11961 dtrace_dof_error(dof, "exceeds maximum size");
11962 goto err;
11963 }
11964
11965 ttl += subsec->dofs_size;
11966
11967 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11968
11969 if (subsec->dofs_type != (uint32_t)difo[i].section)
11970 continue;
11971
11972 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11973 dtrace_dof_error(dof, "section not loaded");
11974 goto err;
11975 }
11976
11977 if (subsec->dofs_align != (uint32_t)difo[i].align) {
11978 dtrace_dof_error(dof, "bad alignment");
11979 goto err;
11980 }
11981
11982 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11983 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11984
11985 if (*bufp != NULL) {
11986 dtrace_dof_error(dof, difo[i].msg);
11987 goto err;
11988 }
11989
11990 if ((uint32_t)difo[i].entsize != subsec->dofs_entsize) {
11991 dtrace_dof_error(dof, "entry size mismatch");
11992 goto err;
11993 }
11994
11995 if (subsec->dofs_entsize != 0 &&
11996 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11997 dtrace_dof_error(dof, "corrupt entry size");
11998 goto err;
11999 }
12000
12001 *lenp = subsec->dofs_size;
12002 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12003 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12004 *bufp, subsec->dofs_size);
12005
12006 if (subsec->dofs_entsize != 0)
12007 *lenp /= subsec->dofs_entsize;
12008
12009 break;
12010 }
12011
12012 /*
12013 * If we encounter a loadable DIFO sub-section that is not
12014 * known to us, assume this is a broken program and fail.
12015 */
12016 if (difo[i].section == DOF_SECT_NONE &&
12017 (subsec->dofs_flags & DOF_SECF_LOAD)) {
12018 dtrace_dof_error(dof, "unrecognized DIFO subsection");
12019 goto err;
12020 }
12021 }
12022
12023 if (dp->dtdo_buf == NULL) {
12024 /*
12025 * We can't have a DIF object without DIF text.
12026 */
12027 dtrace_dof_error(dof, "missing DIF text");
12028 goto err;
12029 }
12030
12031 /*
12032 * Before we validate the DIF object, run through the variable table
12033 * looking for the strings -- if any of their size are under, we'll set
12034 * their size to be the system-wide default string size. Note that
12035 * this should _not_ happen if the "strsize" option has been set --
12036 * in this case, the compiler should have set the size to reflect the
12037 * setting of the option.
12038 */
12039 for (i = 0; i < dp->dtdo_varlen; i++) {
12040 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12041 dtrace_diftype_t *t = &v->dtdv_type;
12042
12043 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12044 continue;
12045
12046 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12047 t->dtdt_size = dtrace_strsize_default;
12048 }
12049
12050 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12051 goto err;
12052
12053 dtrace_difo_init(dp, vstate);
12054 return (dp);
12055
12056 err:
12057 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12058 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12059 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12060 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12061
12062 kmem_free(dp, sizeof (dtrace_difo_t));
12063 return (NULL);
12064 }
12065
12066 static dtrace_predicate_t *
12067 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12068 cred_t *cr)
12069 {
12070 dtrace_difo_t *dp;
12071
12072 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12073 return (NULL);
12074
12075 return (dtrace_predicate_create(dp));
12076 }
12077
12078 static dtrace_actdesc_t *
12079 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12080 cred_t *cr)
12081 {
12082 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12083 dof_actdesc_t *desc;
12084 dof_sec_t *difosec;
12085 size_t offs;
12086 uintptr_t daddr = (uintptr_t)dof;
12087 uint64_t arg;
12088 dtrace_actkind_t kind;
12089
12090 if (sec->dofs_type != DOF_SECT_ACTDESC) {
12091 dtrace_dof_error(dof, "invalid action section");
12092 return (NULL);
12093 }
12094
12095 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12096 dtrace_dof_error(dof, "truncated action description");
12097 return (NULL);
12098 }
12099
12100 if (sec->dofs_align != sizeof (uint64_t)) {
12101 dtrace_dof_error(dof, "bad alignment in action description");
12102 return (NULL);
12103 }
12104
12105 if (sec->dofs_size < sec->dofs_entsize) {
12106 dtrace_dof_error(dof, "section entry size exceeds total size");
12107 return (NULL);
12108 }
12109
12110 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12111 dtrace_dof_error(dof, "bad entry size in action description");
12112 return (NULL);
12113 }
12114
12115 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12116 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12117 return (NULL);
12118 }
12119
12120 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12121 desc = (dof_actdesc_t *)(daddr +
12122 (uintptr_t)sec->dofs_offset + offs);
12123 kind = (dtrace_actkind_t)desc->dofa_kind;
12124
12125 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12126 (kind != DTRACEACT_PRINTA || desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12127 (kind == DTRACEACT_DIFEXPR && desc->dofa_strtab != DOF_SECIDX_NONE))
12128 {
12129 dof_sec_t *strtab;
12130 char *str, *fmt;
12131 uint64_t i;
12132
12133 /*
12134 * The argument to these actions is an index into the
12135 * DOF string table. For printf()-like actions, this
12136 * is the format string. For print(), this is the
12137 * CTF type of the expression result.
12138 */
12139 if ((strtab = dtrace_dof_sect(dof,
12140 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12141 goto err;
12142
12143 str = (char *)((uintptr_t)dof +
12144 (uintptr_t)strtab->dofs_offset);
12145
12146 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12147 if (str[i] == '\0')
12148 break;
12149 }
12150
12151 if (i >= strtab->dofs_size) {
12152 dtrace_dof_error(dof, "bogus format string");
12153 goto err;
12154 }
12155
12156 if (i == desc->dofa_arg) {
12157 dtrace_dof_error(dof, "empty format string");
12158 goto err;
12159 }
12160
12161 i -= desc->dofa_arg;
12162 fmt = kmem_alloc(i + 1, KM_SLEEP);
12163 bcopy(&str[desc->dofa_arg], fmt, i + 1);
12164 arg = (uint64_t)(uintptr_t)fmt;
12165 } else {
12166 if (kind == DTRACEACT_PRINTA) {
12167 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12168 arg = 0;
12169 } else {
12170 arg = desc->dofa_arg;
12171 }
12172 }
12173
12174 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12175 desc->dofa_uarg, arg);
12176
12177 if (last != NULL) {
12178 last->dtad_next = act;
12179 } else {
12180 first = act;
12181 }
12182
12183 last = act;
12184
12185 if (desc->dofa_difo == DOF_SECIDX_NONE)
12186 continue;
12187
12188 if ((difosec = dtrace_dof_sect(dof,
12189 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12190 goto err;
12191
12192 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12193
12194 if (act->dtad_difo == NULL)
12195 goto err;
12196 }
12197
12198 ASSERT(first != NULL);
12199 return (first);
12200
12201 err:
12202 for (act = first; act != NULL; act = next) {
12203 next = act->dtad_next;
12204 dtrace_actdesc_release(act, vstate);
12205 }
12206
12207 return (NULL);
12208 }
12209
12210 static dtrace_ecbdesc_t *
12211 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12212 cred_t *cr)
12213 {
12214 dtrace_ecbdesc_t *ep;
12215 dof_ecbdesc_t *ecb;
12216 dtrace_probedesc_t *desc;
12217 dtrace_predicate_t *pred = NULL;
12218
12219 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12220 dtrace_dof_error(dof, "truncated ECB description");
12221 return (NULL);
12222 }
12223
12224 if (sec->dofs_align != sizeof (uint64_t)) {
12225 dtrace_dof_error(dof, "bad alignment in ECB description");
12226 return (NULL);
12227 }
12228
12229 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12230 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12231
12232 if (sec == NULL)
12233 return (NULL);
12234
12235 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12236 ep->dted_uarg = ecb->dofe_uarg;
12237 desc = &ep->dted_probe;
12238
12239 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12240 goto err;
12241
12242 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12243 if ((sec = dtrace_dof_sect(dof,
12244 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12245 goto err;
12246
12247 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12248 goto err;
12249
12250 ep->dted_pred.dtpdd_predicate = pred;
12251 }
12252
12253 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12254 if ((sec = dtrace_dof_sect(dof,
12255 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12256 goto err;
12257
12258 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12259
12260 if (ep->dted_action == NULL)
12261 goto err;
12262 }
12263
12264 return (ep);
12265
12266 err:
12267 if (pred != NULL)
12268 dtrace_predicate_release(pred, vstate);
12269 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12270 return (NULL);
12271 }
12272
12273 /*
12274 * APPLE NOTE: dyld handles dof relocation.
12275 * Darwin does not need dtrace_dof_relocate()
12276 */
12277
12278 /*
12279 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12280 * header: it should be at the front of a memory region that is at least
12281 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12282 * size. It need not be validated in any other way.
12283 */
12284 static int
12285 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12286 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12287 {
12288 #pragma unused(ubase) /* __APPLE__ */
12289 uint64_t len = dof->dofh_loadsz, seclen;
12290 uintptr_t daddr = (uintptr_t)dof;
12291 dtrace_ecbdesc_t *ep;
12292 dtrace_enabling_t *enab;
12293 uint_t i;
12294
12295 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
12296 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12297
12298 /*
12299 * Check the DOF header identification bytes. In addition to checking
12300 * valid settings, we also verify that unused bits/bytes are zeroed so
12301 * we can use them later without fear of regressing existing binaries.
12302 */
12303 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12304 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12305 dtrace_dof_error(dof, "DOF magic string mismatch");
12306 return (-1);
12307 }
12308
12309 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12310 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12311 dtrace_dof_error(dof, "DOF has invalid data model");
12312 return (-1);
12313 }
12314
12315 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12316 dtrace_dof_error(dof, "DOF encoding mismatch");
12317 return (-1);
12318 }
12319
12320 /*
12321 * APPLE NOTE: Darwin only supports DOF_VERSION_3 for now.
12322 */
12323 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_3) {
12324 dtrace_dof_error(dof, "DOF version mismatch");
12325 return (-1);
12326 }
12327
12328 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12329 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12330 return (-1);
12331 }
12332
12333 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12334 dtrace_dof_error(dof, "DOF uses too many integer registers");
12335 return (-1);
12336 }
12337
12338 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12339 dtrace_dof_error(dof, "DOF uses too many tuple registers");
12340 return (-1);
12341 }
12342
12343 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12344 if (dof->dofh_ident[i] != 0) {
12345 dtrace_dof_error(dof, "DOF has invalid ident byte set");
12346 return (-1);
12347 }
12348 }
12349
12350 if (dof->dofh_flags & ~DOF_FL_VALID) {
12351 dtrace_dof_error(dof, "DOF has invalid flag bits set");
12352 return (-1);
12353 }
12354
12355 if (dof->dofh_secsize == 0) {
12356 dtrace_dof_error(dof, "zero section header size");
12357 return (-1);
12358 }
12359
12360 /*
12361 * Check that the section headers don't exceed the amount of DOF
12362 * data. Note that we cast the section size and number of sections
12363 * to uint64_t's to prevent possible overflow in the multiplication.
12364 */
12365 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12366
12367 if (dof->dofh_secoff > len || seclen > len ||
12368 dof->dofh_secoff + seclen > len) {
12369 dtrace_dof_error(dof, "truncated section headers");
12370 return (-1);
12371 }
12372
12373 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12374 dtrace_dof_error(dof, "misaligned section headers");
12375 return (-1);
12376 }
12377
12378 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12379 dtrace_dof_error(dof, "misaligned section size");
12380 return (-1);
12381 }
12382
12383 /*
12384 * Take an initial pass through the section headers to be sure that
12385 * the headers don't have stray offsets. If the 'noprobes' flag is
12386 * set, do not permit sections relating to providers, probes, or args.
12387 */
12388 for (i = 0; i < dof->dofh_secnum; i++) {
12389 dof_sec_t *sec = (dof_sec_t *)(daddr +
12390 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12391
12392 if (noprobes) {
12393 switch (sec->dofs_type) {
12394 case DOF_SECT_PROVIDER:
12395 case DOF_SECT_PROBES:
12396 case DOF_SECT_PRARGS:
12397 case DOF_SECT_PROFFS:
12398 dtrace_dof_error(dof, "illegal sections "
12399 "for enabling");
12400 return (-1);
12401 }
12402 }
12403
12404 if (!(sec->dofs_flags & DOF_SECF_LOAD))
12405 continue; /* just ignore non-loadable sections */
12406
12407 if (sec->dofs_align & (sec->dofs_align - 1)) {
12408 dtrace_dof_error(dof, "bad section alignment");
12409 return (-1);
12410 }
12411
12412 if (sec->dofs_offset & (sec->dofs_align - 1)) {
12413 dtrace_dof_error(dof, "misaligned section");
12414 return (-1);
12415 }
12416
12417 if (sec->dofs_offset > len || sec->dofs_size > len ||
12418 sec->dofs_offset + sec->dofs_size > len) {
12419 dtrace_dof_error(dof, "corrupt section header");
12420 return (-1);
12421 }
12422
12423 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12424 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12425 dtrace_dof_error(dof, "non-terminating string table");
12426 return (-1);
12427 }
12428 }
12429
12430 /*
12431 * APPLE NOTE: We have no further relocation to perform.
12432 * All dof values are relative offsets.
12433 */
12434
12435 if ((enab = *enabp) == NULL)
12436 enab = *enabp = dtrace_enabling_create(vstate);
12437
12438 for (i = 0; i < dof->dofh_secnum; i++) {
12439 dof_sec_t *sec = (dof_sec_t *)(daddr +
12440 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12441
12442 if (sec->dofs_type != DOF_SECT_ECBDESC)
12443 continue;
12444
12445 /*
12446 * APPLE NOTE: Defend against gcc 4.0 botch on x86.
12447 * not all paths out of inlined dtrace_dof_ecbdesc
12448 * are checked for the NULL return value.
12449 * Check for NULL explicitly here.
12450 */
12451 ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr);
12452 if (ep == NULL) {
12453 dtrace_enabling_destroy(enab);
12454 *enabp = NULL;
12455 return (-1);
12456 }
12457
12458 dtrace_enabling_add(enab, ep);
12459 }
12460
12461 return (0);
12462 }
12463
12464 /*
12465 * Process DOF for any options. This routine assumes that the DOF has been
12466 * at least processed by dtrace_dof_slurp().
12467 */
12468 static int
12469 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12470 {
12471 uint_t i;
12472 int rval;
12473 uint32_t entsize;
12474 size_t offs;
12475 dof_optdesc_t *desc;
12476
12477 for (i = 0; i < dof->dofh_secnum; i++) {
12478 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12479 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12480
12481 if (sec->dofs_type != DOF_SECT_OPTDESC)
12482 continue;
12483
12484 if (sec->dofs_align != sizeof (uint64_t)) {
12485 dtrace_dof_error(dof, "bad alignment in "
12486 "option description");
12487 return (EINVAL);
12488 }
12489
12490 if ((entsize = sec->dofs_entsize) == 0) {
12491 dtrace_dof_error(dof, "zeroed option entry size");
12492 return (EINVAL);
12493 }
12494
12495 if (entsize < sizeof (dof_optdesc_t)) {
12496 dtrace_dof_error(dof, "bad option entry size");
12497 return (EINVAL);
12498 }
12499
12500 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12501 desc = (dof_optdesc_t *)((uintptr_t)dof +
12502 (uintptr_t)sec->dofs_offset + offs);
12503
12504 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12505 dtrace_dof_error(dof, "non-zero option string");
12506 return (EINVAL);
12507 }
12508
12509 if (desc->dofo_value == (uint64_t)DTRACEOPT_UNSET) {
12510 dtrace_dof_error(dof, "unset option");
12511 return (EINVAL);
12512 }
12513
12514 if ((rval = dtrace_state_option(state,
12515 desc->dofo_option, desc->dofo_value)) != 0) {
12516 dtrace_dof_error(dof, "rejected option");
12517 return (rval);
12518 }
12519 }
12520 }
12521
12522 return (0);
12523 }
12524
12525 /*
12526 * DTrace Consumer State Functions
12527 */
12528 static int
12529 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12530 {
12531 size_t hashsize, maxper, min_size, chunksize = dstate->dtds_chunksize;
12532 void *base;
12533 uintptr_t limit;
12534 dtrace_dynvar_t *dvar, *next, *start;
12535 size_t i;
12536
12537 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
12538 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12539
12540 bzero(dstate, sizeof (dtrace_dstate_t));
12541
12542 if ((dstate->dtds_chunksize = chunksize) == 0)
12543 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12544
12545 if (size < (min_size = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12546 size = min_size;
12547
12548 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12549 return (ENOMEM);
12550
12551 dstate->dtds_size = size;
12552 dstate->dtds_base = base;
12553 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12554 bzero(dstate->dtds_percpu, (int)NCPU * sizeof (dtrace_dstate_percpu_t));
12555
12556 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12557
12558 if (hashsize != 1 && (hashsize & 1))
12559 hashsize--;
12560
12561 dstate->dtds_hashsize = hashsize;
12562 dstate->dtds_hash = dstate->dtds_base;
12563
12564 /*
12565 * Set all of our hash buckets to point to the single sink, and (if
12566 * it hasn't already been set), set the sink's hash value to be the
12567 * sink sentinel value. The sink is needed for dynamic variable
12568 * lookups to know that they have iterated over an entire, valid hash
12569 * chain.
12570 */
12571 for (i = 0; i < hashsize; i++)
12572 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12573
12574 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12575 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12576
12577 /*
12578 * Determine number of active CPUs. Divide free list evenly among
12579 * active CPUs.
12580 */
12581 start = (dtrace_dynvar_t *)
12582 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12583 limit = (uintptr_t)base + size;
12584
12585 maxper = (limit - (uintptr_t)start) / (int)NCPU;
12586 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12587
12588 for (i = 0; i < NCPU; i++) {
12589 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12590
12591 /*
12592 * If we don't even have enough chunks to make it once through
12593 * NCPUs, we're just going to allocate everything to the first
12594 * CPU. And if we're on the last CPU, we're going to allocate
12595 * whatever is left over. In either case, we set the limit to
12596 * be the limit of the dynamic variable space.
12597 */
12598 if (maxper == 0 || i == NCPU - 1) {
12599 limit = (uintptr_t)base + size;
12600 start = NULL;
12601 } else {
12602 limit = (uintptr_t)start + maxper;
12603 start = (dtrace_dynvar_t *)limit;
12604 }
12605
12606 ASSERT(limit <= (uintptr_t)base + size);
12607
12608 for (;;) {
12609 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12610 dstate->dtds_chunksize);
12611
12612 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12613 break;
12614
12615 dvar->dtdv_next = next;
12616 dvar = next;
12617 }
12618
12619 if (maxper == 0)
12620 break;
12621 }
12622
12623 return (0);
12624 }
12625
12626 static void
12627 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12628 {
12629 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
12630
12631 if (dstate->dtds_base == NULL)
12632 return;
12633
12634 kmem_free(dstate->dtds_base, dstate->dtds_size);
12635 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12636 }
12637
12638 static void
12639 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12640 {
12641 /*
12642 * Logical XOR, where are you?
12643 */
12644 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12645
12646 if (vstate->dtvs_nglobals > 0) {
12647 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12648 sizeof (dtrace_statvar_t *));
12649 }
12650
12651 if (vstate->dtvs_ntlocals > 0) {
12652 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12653 sizeof (dtrace_difv_t));
12654 }
12655
12656 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12657
12658 if (vstate->dtvs_nlocals > 0) {
12659 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12660 sizeof (dtrace_statvar_t *));
12661 }
12662 }
12663
12664 static void
12665 dtrace_state_clean(dtrace_state_t *state)
12666 {
12667 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12668 return;
12669
12670 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12671 dtrace_speculation_clean(state);
12672 }
12673
12674 static void
12675 dtrace_state_deadman(dtrace_state_t *state)
12676 {
12677 hrtime_t now;
12678
12679 dtrace_sync();
12680
12681 now = dtrace_gethrtime();
12682
12683 if (state != dtrace_anon.dta_state &&
12684 now - state->dts_laststatus >= dtrace_deadman_user)
12685 return;
12686
12687 /*
12688 * We must be sure that dts_alive never appears to be less than the
12689 * value upon entry to dtrace_state_deadman(), and because we lack a
12690 * dtrace_cas64(), we cannot store to it atomically. We thus instead
12691 * store INT64_MAX to it, followed by a memory barrier, followed by
12692 * the new value. This assures that dts_alive never appears to be
12693 * less than its true value, regardless of the order in which the
12694 * stores to the underlying storage are issued.
12695 */
12696 state->dts_alive = INT64_MAX;
12697 dtrace_membar_producer();
12698 state->dts_alive = now;
12699 }
12700
12701 static int
12702 dtrace_state_create(dev_t *devp, cred_t *cr, dtrace_state_t **new_state)
12703 {
12704 minor_t minor;
12705 major_t major;
12706 char c[30];
12707 dtrace_state_t *state;
12708 dtrace_optval_t *opt;
12709 int bufsize = (int)NCPU * sizeof (dtrace_buffer_t), i;
12710
12711 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
12712 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
12713
12714 /* Cause restart */
12715 *new_state = NULL;
12716
12717 /*
12718 * Darwin's DEVFS layer acquired the minor number for this "device" when it called
12719 * dtrace_devfs_clone_func(). At that time, dtrace_devfs_clone_func() proposed a minor number
12720 * (next unused according to vmem_alloc()) and then immediately put the number back in play
12721 * (by calling vmem_free()). Now that minor number is being used for an open, so committing it
12722 * to use. The following vmem_alloc() must deliver that same minor number. FIXME.
12723 */
12724
12725 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12726 VM_BESTFIT | VM_SLEEP);
12727
12728 if (NULL != devp) {
12729 ASSERT(getminor(*devp) == minor);
12730 if (getminor(*devp) != minor) {
12731 printf("dtrace_open: couldn't re-acquire vended minor number %d. Instead got %d\n",
12732 getminor(*devp), minor);
12733 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12734 return (ERESTART); /* can't reacquire */
12735 }
12736 } else {
12737 /* NULL==devp iff "Anonymous state" (see dtrace_anon_property),
12738 * so just vend the minor device number here de novo since no "open" has occurred. */
12739 }
12740
12741 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12742 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12743 return (EAGAIN); /* temporary resource shortage */
12744 }
12745
12746 state = ddi_get_soft_state(dtrace_softstate, minor);
12747 state->dts_epid = DTRACE_EPIDNONE + 1;
12748
12749 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12750 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12751 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12752
12753 if (devp != NULL) {
12754 major = getemajor(*devp);
12755 } else {
12756 major = ddi_driver_major(dtrace_devi);
12757 }
12758
12759 state->dts_dev = makedevice(major, minor);
12760
12761 if (devp != NULL)
12762 *devp = state->dts_dev;
12763
12764 /*
12765 * We allocate NCPU buffers. On the one hand, this can be quite
12766 * a bit of memory per instance (nearly 36K on a Starcat). On the
12767 * other hand, it saves an additional memory reference in the probe
12768 * path.
12769 */
12770 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12771 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12772 state->dts_cleaner = CYCLIC_NONE;
12773 state->dts_deadman = CYCLIC_NONE;
12774 state->dts_vstate.dtvs_state = state;
12775
12776 for (i = 0; i < DTRACEOPT_MAX; i++)
12777 state->dts_options[i] = DTRACEOPT_UNSET;
12778
12779 /*
12780 * Set the default options.
12781 */
12782 opt = state->dts_options;
12783 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12784 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12785 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12786 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12787 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12788 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12789 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12790 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12791 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12792 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12793 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12794 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12795 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12796 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12797
12798 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12799
12800 /*
12801 * Depending on the user credentials, we set flag bits which alter probe
12802 * visibility or the amount of destructiveness allowed. In the case of
12803 * actual anonymous tracing, or the possession of all privileges, all of
12804 * the normal checks are bypassed.
12805 */
12806 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12807 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12808 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12809 } else {
12810 /*
12811 * Set up the credentials for this instantiation. We take a
12812 * hold on the credential to prevent it from disappearing on
12813 * us; this in turn prevents the zone_t referenced by this
12814 * credential from disappearing. This means that we can
12815 * examine the credential and the zone from probe context.
12816 */
12817 crhold(cr);
12818 state->dts_cred.dcr_cred = cr;
12819
12820 /*
12821 * CRA_PROC means "we have *some* privilege for dtrace" and
12822 * unlocks the use of variables like pid, zonename, etc.
12823 */
12824 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12825 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12826 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12827 }
12828
12829 /*
12830 * dtrace_user allows use of syscall and profile providers.
12831 * If the user also has proc_owner and/or proc_zone, we
12832 * extend the scope to include additional visibility and
12833 * destructive power.
12834 */
12835 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12836 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12837 state->dts_cred.dcr_visible |=
12838 DTRACE_CRV_ALLPROC;
12839
12840 state->dts_cred.dcr_action |=
12841 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12842 }
12843
12844 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12845 state->dts_cred.dcr_visible |=
12846 DTRACE_CRV_ALLZONE;
12847
12848 state->dts_cred.dcr_action |=
12849 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12850 }
12851
12852 /*
12853 * If we have all privs in whatever zone this is,
12854 * we can do destructive things to processes which
12855 * have altered credentials.
12856 *
12857 * APPLE NOTE: Darwin doesn't do zones.
12858 * Behave as if zone always has destructive privs.
12859 */
12860
12861 state->dts_cred.dcr_action |=
12862 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12863 }
12864
12865 /*
12866 * Holding the dtrace_kernel privilege also implies that
12867 * the user has the dtrace_user privilege from a visibility
12868 * perspective. But without further privileges, some
12869 * destructive actions are not available.
12870 */
12871 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12872 /*
12873 * Make all probes in all zones visible. However,
12874 * this doesn't mean that all actions become available
12875 * to all zones.
12876 */
12877 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12878 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12879
12880 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12881 DTRACE_CRA_PROC;
12882 /*
12883 * Holding proc_owner means that destructive actions
12884 * for *this* zone are allowed.
12885 */
12886 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12887 state->dts_cred.dcr_action |=
12888 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12889
12890 /*
12891 * Holding proc_zone means that destructive actions
12892 * for this user/group ID in all zones is allowed.
12893 */
12894 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12895 state->dts_cred.dcr_action |=
12896 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12897
12898 /*
12899 * If we have all privs in whatever zone this is,
12900 * we can do destructive things to processes which
12901 * have altered credentials.
12902 *
12903 * APPLE NOTE: Darwin doesn't do zones.
12904 * Behave as if zone always has destructive privs.
12905 */
12906 state->dts_cred.dcr_action |=
12907 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12908 }
12909
12910 /*
12911 * Holding the dtrace_proc privilege gives control over fasttrap
12912 * and pid providers. We need to grant wider destructive
12913 * privileges in the event that the user has proc_owner and/or
12914 * proc_zone.
12915 */
12916 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12917 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12918 state->dts_cred.dcr_action |=
12919 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12920
12921 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12922 state->dts_cred.dcr_action |=
12923 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12924 }
12925 }
12926
12927 *new_state = state;
12928 return(0); /* Success */
12929 }
12930
12931 static int
12932 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12933 {
12934 dtrace_optval_t *opt = state->dts_options, size;
12935 processorid_t cpu = 0;
12936 int flags = 0, rval;
12937
12938 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
12939 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
12940 ASSERT(which < DTRACEOPT_MAX);
12941 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12942 (state == dtrace_anon.dta_state &&
12943 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12944
12945 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12946 return (0);
12947
12948 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12949 cpu = opt[DTRACEOPT_CPU];
12950
12951 if (which == DTRACEOPT_SPECSIZE)
12952 flags |= DTRACEBUF_NOSWITCH;
12953
12954 if (which == DTRACEOPT_BUFSIZE) {
12955 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12956 flags |= DTRACEBUF_RING;
12957
12958 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12959 flags |= DTRACEBUF_FILL;
12960
12961 if (state != dtrace_anon.dta_state ||
12962 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12963 flags |= DTRACEBUF_INACTIVE;
12964 }
12965
12966 for (size = opt[which]; (size_t)size >= sizeof (uint64_t); size >>= 1) {
12967 /*
12968 * The size must be 8-byte aligned. If the size is not 8-byte
12969 * aligned, drop it down by the difference.
12970 */
12971 if (size & (sizeof (uint64_t) - 1))
12972 size -= size & (sizeof (uint64_t) - 1);
12973
12974 if (size < state->dts_reserve) {
12975 /*
12976 * Buffers always must be large enough to accommodate
12977 * their prereserved space. We return E2BIG instead
12978 * of ENOMEM in this case to allow for user-level
12979 * software to differentiate the cases.
12980 */
12981 return (E2BIG);
12982 }
12983
12984 rval = dtrace_buffer_alloc(buf, size, flags, cpu);
12985
12986 if (rval != ENOMEM) {
12987 opt[which] = size;
12988 return (rval);
12989 }
12990
12991 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12992 return (rval);
12993 }
12994
12995 return (ENOMEM);
12996 }
12997
12998 static int
12999 dtrace_state_buffers(dtrace_state_t *state)
13000 {
13001 dtrace_speculation_t *spec = state->dts_speculations;
13002 int rval, i;
13003
13004 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13005 DTRACEOPT_BUFSIZE)) != 0)
13006 return (rval);
13007
13008 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13009 DTRACEOPT_AGGSIZE)) != 0)
13010 return (rval);
13011
13012 for (i = 0; i < state->dts_nspeculations; i++) {
13013 if ((rval = dtrace_state_buffer(state,
13014 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13015 return (rval);
13016 }
13017
13018 return (0);
13019 }
13020
13021 static void
13022 dtrace_state_prereserve(dtrace_state_t *state)
13023 {
13024 dtrace_ecb_t *ecb;
13025 dtrace_probe_t *probe;
13026
13027 state->dts_reserve = 0;
13028
13029 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13030 return;
13031
13032 /*
13033 * If our buffer policy is a "fill" buffer policy, we need to set the
13034 * prereserved space to be the space required by the END probes.
13035 */
13036 probe = dtrace_probes[dtrace_probeid_end - 1];
13037 ASSERT(probe != NULL);
13038
13039 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13040 if (ecb->dte_state != state)
13041 continue;
13042
13043 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13044 }
13045 }
13046
13047 static int
13048 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13049 {
13050 dtrace_optval_t *opt = state->dts_options, sz, nspec;
13051 dtrace_speculation_t *spec;
13052 dtrace_buffer_t *buf;
13053 cyc_handler_t hdlr;
13054 cyc_time_t when;
13055 int rval = 0, i, bufsize = (int)NCPU * sizeof (dtrace_buffer_t);
13056 dtrace_icookie_t cookie;
13057
13058 lck_mtx_lock(&cpu_lock);
13059 lck_mtx_lock(&dtrace_lock);
13060
13061 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13062 rval = EBUSY;
13063 goto out;
13064 }
13065
13066 /*
13067 * Before we can perform any checks, we must prime all of the
13068 * retained enablings that correspond to this state.
13069 */
13070 dtrace_enabling_prime(state);
13071
13072 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13073 rval = EACCES;
13074 goto out;
13075 }
13076
13077 dtrace_state_prereserve(state);
13078
13079 /*
13080 * Now we want to do is try to allocate our speculations.
13081 * We do not automatically resize the number of speculations; if
13082 * this fails, we will fail the operation.
13083 */
13084 nspec = opt[DTRACEOPT_NSPEC];
13085 ASSERT(nspec != DTRACEOPT_UNSET);
13086
13087 if (nspec > INT_MAX) {
13088 rval = ENOMEM;
13089 goto out;
13090 }
13091
13092 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13093
13094 if (spec == NULL) {
13095 rval = ENOMEM;
13096 goto out;
13097 }
13098
13099 state->dts_speculations = spec;
13100 state->dts_nspeculations = (int)nspec;
13101
13102 for (i = 0; i < nspec; i++) {
13103 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13104 rval = ENOMEM;
13105 goto err;
13106 }
13107
13108 spec[i].dtsp_buffer = buf;
13109 }
13110
13111 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13112 if (dtrace_anon.dta_state == NULL) {
13113 rval = ENOENT;
13114 goto out;
13115 }
13116
13117 if (state->dts_necbs != 0) {
13118 rval = EALREADY;
13119 goto out;
13120 }
13121
13122 state->dts_anon = dtrace_anon_grab();
13123 ASSERT(state->dts_anon != NULL);
13124 state = state->dts_anon;
13125
13126 /*
13127 * We want "grabanon" to be set in the grabbed state, so we'll
13128 * copy that option value from the grabbing state into the
13129 * grabbed state.
13130 */
13131 state->dts_options[DTRACEOPT_GRABANON] =
13132 opt[DTRACEOPT_GRABANON];
13133
13134 *cpu = dtrace_anon.dta_beganon;
13135
13136 /*
13137 * If the anonymous state is active (as it almost certainly
13138 * is if the anonymous enabling ultimately matched anything),
13139 * we don't allow any further option processing -- but we
13140 * don't return failure.
13141 */
13142 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13143 goto out;
13144 }
13145
13146 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13147 opt[DTRACEOPT_AGGSIZE] != 0) {
13148 if (state->dts_aggregations == NULL) {
13149 /*
13150 * We're not going to create an aggregation buffer
13151 * because we don't have any ECBs that contain
13152 * aggregations -- set this option to 0.
13153 */
13154 opt[DTRACEOPT_AGGSIZE] = 0;
13155 } else {
13156 /*
13157 * If we have an aggregation buffer, we must also have
13158 * a buffer to use as scratch.
13159 */
13160 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13161 (size_t)opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13162 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13163 }
13164 }
13165 }
13166
13167 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13168 opt[DTRACEOPT_SPECSIZE] != 0) {
13169 if (!state->dts_speculates) {
13170 /*
13171 * We're not going to create speculation buffers
13172 * because we don't have any ECBs that actually
13173 * speculate -- set the speculation size to 0.
13174 */
13175 opt[DTRACEOPT_SPECSIZE] = 0;
13176 }
13177 }
13178
13179 /*
13180 * The bare minimum size for any buffer that we're actually going to
13181 * do anything to is sizeof (uint64_t).
13182 */
13183 sz = sizeof (uint64_t);
13184
13185 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13186 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13187 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13188 /*
13189 * A buffer size has been explicitly set to 0 (or to a size
13190 * that will be adjusted to 0) and we need the space -- we
13191 * need to return failure. We return ENOSPC to differentiate
13192 * it from failing to allocate a buffer due to failure to meet
13193 * the reserve (for which we return E2BIG).
13194 */
13195 rval = ENOSPC;
13196 goto out;
13197 }
13198
13199 if ((rval = dtrace_state_buffers(state)) != 0)
13200 goto err;
13201
13202 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13203 sz = dtrace_dstate_defsize;
13204
13205 do {
13206 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13207
13208 if (rval == 0)
13209 break;
13210
13211 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13212 goto err;
13213 } while (sz >>= 1);
13214
13215 opt[DTRACEOPT_DYNVARSIZE] = sz;
13216
13217 if (rval != 0)
13218 goto err;
13219
13220 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13221 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13222
13223 if (opt[DTRACEOPT_CLEANRATE] == 0)
13224 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13225
13226 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13227 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13228
13229 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13230 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13231
13232 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13233 hdlr.cyh_arg = state;
13234 hdlr.cyh_level = CY_LOW_LEVEL;
13235
13236 when.cyt_when = 0;
13237 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13238
13239 state->dts_cleaner = cyclic_add(&hdlr, &when);
13240
13241 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13242 hdlr.cyh_arg = state;
13243 hdlr.cyh_level = CY_LOW_LEVEL;
13244
13245 when.cyt_when = 0;
13246 when.cyt_interval = dtrace_deadman_interval;
13247
13248 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13249 state->dts_deadman = cyclic_add(&hdlr, &when);
13250
13251 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13252
13253 /*
13254 * Now it's time to actually fire the BEGIN probe. We need to disable
13255 * interrupts here both to record the CPU on which we fired the BEGIN
13256 * probe (the data from this CPU will be processed first at user
13257 * level) and to manually activate the buffer for this CPU.
13258 */
13259 cookie = dtrace_interrupt_disable();
13260 *cpu = CPU->cpu_id;
13261 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13262 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13263
13264 dtrace_probe(dtrace_probeid_begin,
13265 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13266 dtrace_interrupt_enable(cookie);
13267 /*
13268 * We may have had an exit action from a BEGIN probe; only change our
13269 * state to ACTIVE if we're still in WARMUP.
13270 */
13271 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13272 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13273
13274 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13275 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13276
13277 /*
13278 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13279 * want each CPU to transition its principal buffer out of the
13280 * INACTIVE state. Doing this assures that no CPU will suddenly begin
13281 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13282 * atomically transition from processing none of a state's ECBs to
13283 * processing all of them.
13284 */
13285 dtrace_xcall(DTRACE_CPUALL,
13286 (dtrace_xcall_t)dtrace_buffer_activate, state);
13287 goto out;
13288
13289 err:
13290 dtrace_buffer_free(state->dts_buffer);
13291 dtrace_buffer_free(state->dts_aggbuffer);
13292
13293 if ((nspec = state->dts_nspeculations) == 0) {
13294 ASSERT(state->dts_speculations == NULL);
13295 goto out;
13296 }
13297
13298 spec = state->dts_speculations;
13299 ASSERT(spec != NULL);
13300
13301 for (i = 0; i < state->dts_nspeculations; i++) {
13302 if ((buf = spec[i].dtsp_buffer) == NULL)
13303 break;
13304
13305 dtrace_buffer_free(buf);
13306 kmem_free(buf, bufsize);
13307 }
13308
13309 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13310 state->dts_nspeculations = 0;
13311 state->dts_speculations = NULL;
13312
13313 out:
13314 lck_mtx_unlock(&dtrace_lock);
13315 lck_mtx_unlock(&cpu_lock);
13316
13317 return (rval);
13318 }
13319
13320 static int
13321 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13322 {
13323 dtrace_icookie_t cookie;
13324
13325 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13326
13327 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13328 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13329 return (EINVAL);
13330
13331 /*
13332 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13333 * to be sure that every CPU has seen it. See below for the details
13334 * on why this is done.
13335 */
13336 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13337 dtrace_sync();
13338
13339 /*
13340 * By this point, it is impossible for any CPU to be still processing
13341 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
13342 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13343 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13344 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13345 * iff we're in the END probe.
13346 */
13347 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13348 dtrace_sync();
13349 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13350
13351 /*
13352 * Finally, we can release the reserve and call the END probe. We
13353 * disable interrupts across calling the END probe to allow us to
13354 * return the CPU on which we actually called the END probe. This
13355 * allows user-land to be sure that this CPU's principal buffer is
13356 * processed last.
13357 */
13358 state->dts_reserve = 0;
13359
13360 cookie = dtrace_interrupt_disable();
13361 *cpu = CPU->cpu_id;
13362 dtrace_probe(dtrace_probeid_end,
13363 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13364 dtrace_interrupt_enable(cookie);
13365
13366 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13367 dtrace_sync();
13368
13369 return (0);
13370 }
13371
13372 static int
13373 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13374 dtrace_optval_t val)
13375 {
13376 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13377
13378 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13379 return (EBUSY);
13380
13381 if (option >= DTRACEOPT_MAX)
13382 return (EINVAL);
13383
13384 if (option != DTRACEOPT_CPU && val < 0)
13385 return (EINVAL);
13386
13387 switch (option) {
13388 case DTRACEOPT_DESTRUCTIVE:
13389 /*
13390 * Prevent consumers from enabling destructive actions if DTrace
13391 * is running in a restricted environment, or if actions are
13392 * disallowed.
13393 */
13394 if (dtrace_is_restricted() || dtrace_destructive_disallow)
13395 return (EACCES);
13396
13397 state->dts_cred.dcr_destructive = 1;
13398 break;
13399
13400 case DTRACEOPT_BUFSIZE:
13401 case DTRACEOPT_DYNVARSIZE:
13402 case DTRACEOPT_AGGSIZE:
13403 case DTRACEOPT_SPECSIZE:
13404 case DTRACEOPT_STRSIZE:
13405 if (val < 0)
13406 return (EINVAL);
13407
13408 if (val >= LONG_MAX) {
13409 /*
13410 * If this is an otherwise negative value, set it to
13411 * the highest multiple of 128m less than LONG_MAX.
13412 * Technically, we're adjusting the size without
13413 * regard to the buffer resizing policy, but in fact,
13414 * this has no effect -- if we set the buffer size to
13415 * ~LONG_MAX and the buffer policy is ultimately set to
13416 * be "manual", the buffer allocation is guaranteed to
13417 * fail, if only because the allocation requires two
13418 * buffers. (We set the the size to the highest
13419 * multiple of 128m because it ensures that the size
13420 * will remain a multiple of a megabyte when
13421 * repeatedly halved -- all the way down to 15m.)
13422 */
13423 val = LONG_MAX - (1 << 27) + 1;
13424 }
13425 }
13426
13427 state->dts_options[option] = val;
13428
13429 return (0);
13430 }
13431
13432 static void
13433 dtrace_state_destroy(dtrace_state_t *state)
13434 {
13435 dtrace_ecb_t *ecb;
13436 dtrace_vstate_t *vstate = &state->dts_vstate;
13437 minor_t minor = getminor(state->dts_dev);
13438 int i, bufsize = (int)NCPU * sizeof (dtrace_buffer_t);
13439 dtrace_speculation_t *spec = state->dts_speculations;
13440 int nspec = state->dts_nspeculations;
13441 uint32_t match;
13442
13443 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13444 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
13445
13446 /*
13447 * First, retract any retained enablings for this state.
13448 */
13449 dtrace_enabling_retract(state);
13450 ASSERT(state->dts_nretained == 0);
13451
13452 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13453 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13454 /*
13455 * We have managed to come into dtrace_state_destroy() on a
13456 * hot enabling -- almost certainly because of a disorderly
13457 * shutdown of a consumer. (That is, a consumer that is
13458 * exiting without having called dtrace_stop().) In this case,
13459 * we're going to set our activity to be KILLED, and then
13460 * issue a sync to be sure that everyone is out of probe
13461 * context before we start blowing away ECBs.
13462 */
13463 state->dts_activity = DTRACE_ACTIVITY_KILLED;
13464 dtrace_sync();
13465 }
13466
13467 /*
13468 * Release the credential hold we took in dtrace_state_create().
13469 */
13470 if (state->dts_cred.dcr_cred != NULL)
13471 crfree(state->dts_cred.dcr_cred);
13472
13473 /*
13474 * Now we can safely disable and destroy any enabled probes. Because
13475 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13476 * (especially if they're all enabled), we take two passes through the
13477 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13478 * in the second we disable whatever is left over.
13479 */
13480 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13481 for (i = 0; i < state->dts_necbs; i++) {
13482 if ((ecb = state->dts_ecbs[i]) == NULL)
13483 continue;
13484
13485 if (match && ecb->dte_probe != NULL) {
13486 dtrace_probe_t *probe = ecb->dte_probe;
13487 dtrace_provider_t *prov = probe->dtpr_provider;
13488
13489 if (!(prov->dtpv_priv.dtpp_flags & match))
13490 continue;
13491 }
13492
13493 dtrace_ecb_disable(ecb);
13494 dtrace_ecb_destroy(ecb);
13495 }
13496
13497 if (!match)
13498 break;
13499 }
13500
13501 /*
13502 * Before we free the buffers, perform one more sync to assure that
13503 * every CPU is out of probe context.
13504 */
13505 dtrace_sync();
13506
13507 dtrace_buffer_free(state->dts_buffer);
13508 dtrace_buffer_free(state->dts_aggbuffer);
13509
13510 for (i = 0; i < nspec; i++)
13511 dtrace_buffer_free(spec[i].dtsp_buffer);
13512
13513 if (state->dts_cleaner != CYCLIC_NONE)
13514 cyclic_remove(state->dts_cleaner);
13515
13516 if (state->dts_deadman != CYCLIC_NONE)
13517 cyclic_remove(state->dts_deadman);
13518
13519 dtrace_dstate_fini(&vstate->dtvs_dynvars);
13520 dtrace_vstate_fini(vstate);
13521 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13522
13523 if (state->dts_aggregations != NULL) {
13524 #if DEBUG
13525 for (i = 0; i < state->dts_naggregations; i++)
13526 ASSERT(state->dts_aggregations[i] == NULL);
13527 #endif
13528 ASSERT(state->dts_naggregations > 0);
13529 kmem_free(state->dts_aggregations,
13530 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13531 }
13532
13533 kmem_free(state->dts_buffer, bufsize);
13534 kmem_free(state->dts_aggbuffer, bufsize);
13535
13536 for (i = 0; i < nspec; i++)
13537 kmem_free(spec[i].dtsp_buffer, bufsize);
13538
13539 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13540
13541 dtrace_format_destroy(state);
13542
13543 vmem_destroy(state->dts_aggid_arena);
13544 ddi_soft_state_free(dtrace_softstate, minor);
13545 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13546 }
13547
13548 /*
13549 * DTrace Anonymous Enabling Functions
13550 */
13551 static dtrace_state_t *
13552 dtrace_anon_grab(void)
13553 {
13554 dtrace_state_t *state;
13555
13556 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13557
13558 if ((state = dtrace_anon.dta_state) == NULL) {
13559 ASSERT(dtrace_anon.dta_enabling == NULL);
13560 return (NULL);
13561 }
13562
13563 ASSERT(dtrace_anon.dta_enabling != NULL);
13564 ASSERT(dtrace_retained != NULL);
13565
13566 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13567 dtrace_anon.dta_enabling = NULL;
13568 dtrace_anon.dta_state = NULL;
13569
13570 return (state);
13571 }
13572
13573 static void
13574 dtrace_anon_property(void)
13575 {
13576 int i, rv;
13577 dtrace_state_t *state;
13578 dof_hdr_t *dof;
13579 char c[32]; /* enough for "dof-data-" + digits */
13580
13581 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13582 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
13583
13584 for (i = 0; ; i++) {
13585 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
13586
13587 dtrace_err_verbose = 1;
13588
13589 if ((dof = dtrace_dof_property(c)) == NULL) {
13590 dtrace_err_verbose = 0;
13591 break;
13592 }
13593
13594 /*
13595 * We want to create anonymous state, so we need to transition
13596 * the kernel debugger to indicate that DTrace is active. If
13597 * this fails (e.g. because the debugger has modified text in
13598 * some way), we won't continue with the processing.
13599 */
13600 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13601 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13602 "enabling ignored.");
13603 dtrace_dof_destroy(dof);
13604 break;
13605 }
13606
13607 /*
13608 * If we haven't allocated an anonymous state, we'll do so now.
13609 */
13610 if ((state = dtrace_anon.dta_state) == NULL) {
13611 rv = dtrace_state_create(NULL, NULL, &state);
13612 dtrace_anon.dta_state = state;
13613 if (rv != 0 || state == NULL) {
13614 /*
13615 * This basically shouldn't happen: the only
13616 * failure mode from dtrace_state_create() is a
13617 * failure of ddi_soft_state_zalloc() that
13618 * itself should never happen. Still, the
13619 * interface allows for a failure mode, and
13620 * we want to fail as gracefully as possible:
13621 * we'll emit an error message and cease
13622 * processing anonymous state in this case.
13623 */
13624 cmn_err(CE_WARN, "failed to create "
13625 "anonymous state");
13626 dtrace_dof_destroy(dof);
13627 break;
13628 }
13629 }
13630
13631 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13632 &dtrace_anon.dta_enabling, 0, B_TRUE);
13633
13634 if (rv == 0)
13635 rv = dtrace_dof_options(dof, state);
13636
13637 dtrace_err_verbose = 0;
13638 dtrace_dof_destroy(dof);
13639
13640 if (rv != 0) {
13641 /*
13642 * This is malformed DOF; chuck any anonymous state
13643 * that we created.
13644 */
13645 ASSERT(dtrace_anon.dta_enabling == NULL);
13646 dtrace_state_destroy(state);
13647 dtrace_anon.dta_state = NULL;
13648 break;
13649 }
13650
13651 ASSERT(dtrace_anon.dta_enabling != NULL);
13652 }
13653
13654 if (dtrace_anon.dta_enabling != NULL) {
13655 int rval;
13656
13657 /*
13658 * dtrace_enabling_retain() can only fail because we are
13659 * trying to retain more enablings than are allowed -- but
13660 * we only have one anonymous enabling, and we are guaranteed
13661 * to be allowed at least one retained enabling; we assert
13662 * that dtrace_enabling_retain() returns success.
13663 */
13664 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13665 ASSERT(rval == 0);
13666
13667 dtrace_enabling_dump(dtrace_anon.dta_enabling);
13668 }
13669 }
13670
13671 /*
13672 * DTrace Helper Functions
13673 */
13674 static void
13675 dtrace_helper_trace(dtrace_helper_action_t *helper,
13676 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13677 {
13678 uint32_t size, next, nnext;
13679 int i;
13680 dtrace_helptrace_t *ent;
13681 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13682
13683 if (!dtrace_helptrace_enabled)
13684 return;
13685
13686 ASSERT((uint32_t)vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13687
13688 /*
13689 * What would a tracing framework be without its own tracing
13690 * framework? (Well, a hell of a lot simpler, for starters...)
13691 */
13692 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13693 sizeof (uint64_t) - sizeof (uint64_t);
13694
13695 /*
13696 * Iterate until we can allocate a slot in the trace buffer.
13697 */
13698 do {
13699 next = dtrace_helptrace_next;
13700
13701 if (next + size < dtrace_helptrace_bufsize) {
13702 nnext = next + size;
13703 } else {
13704 nnext = size;
13705 }
13706 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13707
13708 /*
13709 * We have our slot; fill it in.
13710 */
13711 if (nnext == size)
13712 next = 0;
13713
13714 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13715 ent->dtht_helper = helper;
13716 ent->dtht_where = where;
13717 ent->dtht_nlocals = vstate->dtvs_nlocals;
13718
13719 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13720 mstate->dtms_fltoffs : -1;
13721 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13722 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13723
13724 for (i = 0; i < vstate->dtvs_nlocals; i++) {
13725 dtrace_statvar_t *svar;
13726
13727 if ((svar = vstate->dtvs_locals[i]) == NULL)
13728 continue;
13729
13730 ASSERT(svar->dtsv_size >= (int)NCPU * sizeof (uint64_t));
13731 ent->dtht_locals[i] =
13732 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13733 }
13734 }
13735
13736 static uint64_t
13737 dtrace_helper(int which, dtrace_mstate_t *mstate,
13738 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13739 {
13740 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13741 uint64_t sarg0 = mstate->dtms_arg[0];
13742 uint64_t sarg1 = mstate->dtms_arg[1];
13743 uint64_t rval = 0;
13744 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13745 dtrace_helper_action_t *helper;
13746 dtrace_vstate_t *vstate;
13747 dtrace_difo_t *pred;
13748 int i, trace = dtrace_helptrace_enabled;
13749
13750 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13751
13752 if (helpers == NULL)
13753 return (0);
13754
13755 if ((helper = helpers->dthps_actions[which]) == NULL)
13756 return (0);
13757
13758 vstate = &helpers->dthps_vstate;
13759 mstate->dtms_arg[0] = arg0;
13760 mstate->dtms_arg[1] = arg1;
13761
13762 /*
13763 * Now iterate over each helper. If its predicate evaluates to 'true',
13764 * we'll call the corresponding actions. Note that the below calls
13765 * to dtrace_dif_emulate() may set faults in machine state. This is
13766 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
13767 * the stored DIF offset with its own (which is the desired behavior).
13768 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13769 * from machine state; this is okay, too.
13770 */
13771 for (; helper != NULL; helper = helper->dtha_next) {
13772 if ((pred = helper->dtha_predicate) != NULL) {
13773 if (trace)
13774 dtrace_helper_trace(helper, mstate, vstate, 0);
13775
13776 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13777 goto next;
13778
13779 if (*flags & CPU_DTRACE_FAULT)
13780 goto err;
13781 }
13782
13783 for (i = 0; i < helper->dtha_nactions; i++) {
13784 if (trace)
13785 dtrace_helper_trace(helper,
13786 mstate, vstate, i + 1);
13787
13788 rval = dtrace_dif_emulate(helper->dtha_actions[i],
13789 mstate, vstate, state);
13790
13791 if (*flags & CPU_DTRACE_FAULT)
13792 goto err;
13793 }
13794
13795 next:
13796 if (trace)
13797 dtrace_helper_trace(helper, mstate, vstate,
13798 DTRACE_HELPTRACE_NEXT);
13799 }
13800
13801 if (trace)
13802 dtrace_helper_trace(helper, mstate, vstate,
13803 DTRACE_HELPTRACE_DONE);
13804
13805 /*
13806 * Restore the arg0 that we saved upon entry.
13807 */
13808 mstate->dtms_arg[0] = sarg0;
13809 mstate->dtms_arg[1] = sarg1;
13810
13811 return (rval);
13812
13813 err:
13814 if (trace)
13815 dtrace_helper_trace(helper, mstate, vstate,
13816 DTRACE_HELPTRACE_ERR);
13817
13818 /*
13819 * Restore the arg0 that we saved upon entry.
13820 */
13821 mstate->dtms_arg[0] = sarg0;
13822 mstate->dtms_arg[1] = sarg1;
13823
13824 return (0);
13825 }
13826
13827 static void
13828 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13829 dtrace_vstate_t *vstate)
13830 {
13831 int i;
13832
13833 if (helper->dtha_predicate != NULL)
13834 dtrace_difo_release(helper->dtha_predicate, vstate);
13835
13836 for (i = 0; i < helper->dtha_nactions; i++) {
13837 ASSERT(helper->dtha_actions[i] != NULL);
13838 dtrace_difo_release(helper->dtha_actions[i], vstate);
13839 }
13840
13841 kmem_free(helper->dtha_actions,
13842 helper->dtha_nactions * sizeof (dtrace_difo_t *));
13843 kmem_free(helper, sizeof (dtrace_helper_action_t));
13844 }
13845
13846 static int
13847 dtrace_helper_destroygen(proc_t* p, int gen)
13848 {
13849 dtrace_helpers_t *help = p->p_dtrace_helpers;
13850 dtrace_vstate_t *vstate;
13851 uint_t i;
13852
13853 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
13854
13855 if (help == NULL || gen > help->dthps_generation)
13856 return (EINVAL);
13857
13858 vstate = &help->dthps_vstate;
13859
13860 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13861 dtrace_helper_action_t *last = NULL, *h, *next;
13862
13863 for (h = help->dthps_actions[i]; h != NULL; h = next) {
13864 next = h->dtha_next;
13865
13866 if (h->dtha_generation == gen) {
13867 if (last != NULL) {
13868 last->dtha_next = next;
13869 } else {
13870 help->dthps_actions[i] = next;
13871 }
13872
13873 dtrace_helper_action_destroy(h, vstate);
13874 } else {
13875 last = h;
13876 }
13877 }
13878 }
13879
13880 /*
13881 * Interate until we've cleared out all helper providers with the
13882 * given generation number.
13883 */
13884 for (;;) {
13885 dtrace_helper_provider_t *prov = NULL;
13886
13887 /*
13888 * Look for a helper provider with the right generation. We
13889 * have to start back at the beginning of the list each time
13890 * because we drop dtrace_lock. It's unlikely that we'll make
13891 * more than two passes.
13892 */
13893 for (i = 0; i < help->dthps_nprovs; i++) {
13894 prov = help->dthps_provs[i];
13895
13896 if (prov->dthp_generation == gen)
13897 break;
13898 }
13899
13900 /*
13901 * If there were no matches, we're done.
13902 */
13903 if (i == help->dthps_nprovs)
13904 break;
13905
13906 /*
13907 * Move the last helper provider into this slot.
13908 */
13909 help->dthps_nprovs--;
13910 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13911 help->dthps_provs[help->dthps_nprovs] = NULL;
13912
13913 lck_mtx_unlock(&dtrace_lock);
13914
13915 /*
13916 * If we have a meta provider, remove this helper provider.
13917 */
13918 lck_mtx_lock(&dtrace_meta_lock);
13919 if (dtrace_meta_pid != NULL) {
13920 ASSERT(dtrace_deferred_pid == NULL);
13921 dtrace_helper_provider_remove(&prov->dthp_prov,
13922 p->p_pid);
13923 }
13924 lck_mtx_unlock(&dtrace_meta_lock);
13925
13926 dtrace_helper_provider_destroy(prov);
13927
13928 lck_mtx_lock(&dtrace_lock);
13929 }
13930
13931 return (0);
13932 }
13933
13934 static int
13935 dtrace_helper_validate(dtrace_helper_action_t *helper)
13936 {
13937 int err = 0, i;
13938 dtrace_difo_t *dp;
13939
13940 if ((dp = helper->dtha_predicate) != NULL)
13941 err += dtrace_difo_validate_helper(dp);
13942
13943 for (i = 0; i < helper->dtha_nactions; i++)
13944 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13945
13946 return (err == 0);
13947 }
13948
13949 static int
13950 dtrace_helper_action_add(proc_t* p, int which, dtrace_ecbdesc_t *ep)
13951 {
13952 dtrace_helpers_t *help;
13953 dtrace_helper_action_t *helper, *last;
13954 dtrace_actdesc_t *act;
13955 dtrace_vstate_t *vstate;
13956 dtrace_predicate_t *pred;
13957 int count = 0, nactions = 0, i;
13958
13959 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13960 return (EINVAL);
13961
13962 help = p->p_dtrace_helpers;
13963 last = help->dthps_actions[which];
13964 vstate = &help->dthps_vstate;
13965
13966 for (count = 0; last != NULL; last = last->dtha_next) {
13967 count++;
13968 if (last->dtha_next == NULL)
13969 break;
13970 }
13971
13972 /*
13973 * If we already have dtrace_helper_actions_max helper actions for this
13974 * helper action type, we'll refuse to add a new one.
13975 */
13976 if (count >= dtrace_helper_actions_max)
13977 return (ENOSPC);
13978
13979 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13980 helper->dtha_generation = help->dthps_generation;
13981
13982 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13983 ASSERT(pred->dtp_difo != NULL);
13984 dtrace_difo_hold(pred->dtp_difo);
13985 helper->dtha_predicate = pred->dtp_difo;
13986 }
13987
13988 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13989 if (act->dtad_kind != DTRACEACT_DIFEXPR)
13990 goto err;
13991
13992 if (act->dtad_difo == NULL)
13993 goto err;
13994
13995 nactions++;
13996 }
13997
13998 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13999 (helper->dtha_nactions = nactions), KM_SLEEP);
14000
14001 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14002 dtrace_difo_hold(act->dtad_difo);
14003 helper->dtha_actions[i++] = act->dtad_difo;
14004 }
14005
14006 if (!dtrace_helper_validate(helper))
14007 goto err;
14008
14009 if (last == NULL) {
14010 help->dthps_actions[which] = helper;
14011 } else {
14012 last->dtha_next = helper;
14013 }
14014
14015 if ((uint32_t)vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14016 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14017 dtrace_helptrace_next = 0;
14018 }
14019
14020 return (0);
14021 err:
14022 dtrace_helper_action_destroy(helper, vstate);
14023 return (EINVAL);
14024 }
14025
14026 static void
14027 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14028 dof_helper_t *dofhp)
14029 {
14030 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED);
14031
14032 lck_mtx_lock(&dtrace_meta_lock);
14033 lck_mtx_lock(&dtrace_lock);
14034
14035 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14036 /*
14037 * If the dtrace module is loaded but not attached, or if
14038 * there aren't isn't a meta provider registered to deal with
14039 * these provider descriptions, we need to postpone creating
14040 * the actual providers until later.
14041 */
14042
14043 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14044 dtrace_deferred_pid != help) {
14045 help->dthps_deferred = 1;
14046 help->dthps_pid = p->p_pid;
14047 help->dthps_next = dtrace_deferred_pid;
14048 help->dthps_prev = NULL;
14049 if (dtrace_deferred_pid != NULL)
14050 dtrace_deferred_pid->dthps_prev = help;
14051 dtrace_deferred_pid = help;
14052 }
14053
14054 lck_mtx_unlock(&dtrace_lock);
14055
14056 } else if (dofhp != NULL) {
14057 /*
14058 * If the dtrace module is loaded and we have a particular
14059 * helper provider description, pass that off to the
14060 * meta provider.
14061 */
14062
14063 lck_mtx_unlock(&dtrace_lock);
14064
14065 dtrace_helper_provide(dofhp, p->p_pid);
14066
14067 } else {
14068 /*
14069 * Otherwise, just pass all the helper provider descriptions
14070 * off to the meta provider.
14071 */
14072
14073 uint_t i;
14074 lck_mtx_unlock(&dtrace_lock);
14075
14076 for (i = 0; i < help->dthps_nprovs; i++) {
14077 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14078 p->p_pid);
14079 }
14080 }
14081
14082 lck_mtx_unlock(&dtrace_meta_lock);
14083 }
14084
14085 static int
14086 dtrace_helper_provider_add(proc_t* p, dof_helper_t *dofhp, int gen)
14087 {
14088 dtrace_helpers_t *help;
14089 dtrace_helper_provider_t *hprov, **tmp_provs;
14090 uint_t tmp_maxprovs, i;
14091
14092 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
14093 help = p->p_dtrace_helpers;
14094 ASSERT(help != NULL);
14095
14096 /*
14097 * If we already have dtrace_helper_providers_max helper providers,
14098 * we're refuse to add a new one.
14099 */
14100 if (help->dthps_nprovs >= dtrace_helper_providers_max)
14101 return (ENOSPC);
14102
14103 /*
14104 * Check to make sure this isn't a duplicate.
14105 */
14106 for (i = 0; i < help->dthps_nprovs; i++) {
14107 if (dofhp->dofhp_addr ==
14108 help->dthps_provs[i]->dthp_prov.dofhp_addr)
14109 return (EALREADY);
14110 }
14111
14112 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14113 hprov->dthp_prov = *dofhp;
14114 hprov->dthp_ref = 1;
14115 hprov->dthp_generation = gen;
14116
14117 /*
14118 * Allocate a bigger table for helper providers if it's already full.
14119 */
14120 if (help->dthps_maxprovs == help->dthps_nprovs) {
14121 tmp_maxprovs = help->dthps_maxprovs;
14122 tmp_provs = help->dthps_provs;
14123
14124 if (help->dthps_maxprovs == 0)
14125 help->dthps_maxprovs = 2;
14126 else
14127 help->dthps_maxprovs *= 2;
14128 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14129 help->dthps_maxprovs = dtrace_helper_providers_max;
14130
14131 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14132
14133 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14134 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14135
14136 if (tmp_provs != NULL) {
14137 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14138 sizeof (dtrace_helper_provider_t *));
14139 kmem_free(tmp_provs, tmp_maxprovs *
14140 sizeof (dtrace_helper_provider_t *));
14141 }
14142 }
14143
14144 help->dthps_provs[help->dthps_nprovs] = hprov;
14145 help->dthps_nprovs++;
14146
14147 return (0);
14148 }
14149
14150 static void
14151 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14152 {
14153 lck_mtx_lock(&dtrace_lock);
14154
14155 if (--hprov->dthp_ref == 0) {
14156 dof_hdr_t *dof;
14157 lck_mtx_unlock(&dtrace_lock);
14158 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14159 dtrace_dof_destroy(dof);
14160 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14161 } else {
14162 lck_mtx_unlock(&dtrace_lock);
14163 }
14164 }
14165
14166 static int
14167 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14168 {
14169 uintptr_t daddr = (uintptr_t)dof;
14170 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14171 dof_provider_t *provider;
14172 dof_probe_t *probe;
14173 uint8_t *arg;
14174 char *strtab, *typestr;
14175 dof_stridx_t typeidx;
14176 size_t typesz;
14177 uint_t nprobes, j, k;
14178
14179 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14180
14181 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14182 dtrace_dof_error(dof, "misaligned section offset");
14183 return (-1);
14184 }
14185
14186 /*
14187 * The section needs to be large enough to contain the DOF provider
14188 * structure appropriate for the given version.
14189 */
14190 if (sec->dofs_size <
14191 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14192 offsetof(dof_provider_t, dofpv_prenoffs) :
14193 sizeof (dof_provider_t))) {
14194 dtrace_dof_error(dof, "provider section too small");
14195 return (-1);
14196 }
14197
14198 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14199 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14200 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14201 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14202 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14203
14204 if (str_sec == NULL || prb_sec == NULL ||
14205 arg_sec == NULL || off_sec == NULL)
14206 return (-1);
14207
14208 enoff_sec = NULL;
14209
14210 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14211 provider->dofpv_prenoffs != DOF_SECT_NONE &&
14212 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14213 provider->dofpv_prenoffs)) == NULL)
14214 return (-1);
14215
14216 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14217
14218 if (provider->dofpv_name >= str_sec->dofs_size ||
14219 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14220 dtrace_dof_error(dof, "invalid provider name");
14221 return (-1);
14222 }
14223
14224 if (prb_sec->dofs_entsize == 0 ||
14225 prb_sec->dofs_entsize > prb_sec->dofs_size) {
14226 dtrace_dof_error(dof, "invalid entry size");
14227 return (-1);
14228 }
14229
14230 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14231 dtrace_dof_error(dof, "misaligned entry size");
14232 return (-1);
14233 }
14234
14235 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14236 dtrace_dof_error(dof, "invalid entry size");
14237 return (-1);
14238 }
14239
14240 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14241 dtrace_dof_error(dof, "misaligned section offset");
14242 return (-1);
14243 }
14244
14245 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14246 dtrace_dof_error(dof, "invalid entry size");
14247 return (-1);
14248 }
14249
14250 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14251
14252 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14253
14254 /*
14255 * Take a pass through the probes to check for errors.
14256 */
14257 for (j = 0; j < nprobes; j++) {
14258 probe = (dof_probe_t *)(uintptr_t)(daddr +
14259 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14260
14261 if (probe->dofpr_func >= str_sec->dofs_size) {
14262 dtrace_dof_error(dof, "invalid function name");
14263 return (-1);
14264 }
14265
14266 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14267 dtrace_dof_error(dof, "function name too long");
14268 return (-1);
14269 }
14270
14271 if (probe->dofpr_name >= str_sec->dofs_size ||
14272 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14273 dtrace_dof_error(dof, "invalid probe name");
14274 return (-1);
14275 }
14276
14277 /*
14278 * The offset count must not wrap the index, and the offsets
14279 * must also not overflow the section's data.
14280 */
14281 if (probe->dofpr_offidx + probe->dofpr_noffs <
14282 probe->dofpr_offidx ||
14283 (probe->dofpr_offidx + probe->dofpr_noffs) *
14284 off_sec->dofs_entsize > off_sec->dofs_size) {
14285 dtrace_dof_error(dof, "invalid probe offset");
14286 return (-1);
14287 }
14288
14289 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14290 /*
14291 * If there's no is-enabled offset section, make sure
14292 * there aren't any is-enabled offsets. Otherwise
14293 * perform the same checks as for probe offsets
14294 * (immediately above).
14295 */
14296 if (enoff_sec == NULL) {
14297 if (probe->dofpr_enoffidx != 0 ||
14298 probe->dofpr_nenoffs != 0) {
14299 dtrace_dof_error(dof, "is-enabled "
14300 "offsets with null section");
14301 return (-1);
14302 }
14303 } else if (probe->dofpr_enoffidx +
14304 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14305 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14306 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14307 dtrace_dof_error(dof, "invalid is-enabled "
14308 "offset");
14309 return (-1);
14310 }
14311
14312 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14313 dtrace_dof_error(dof, "zero probe and "
14314 "is-enabled offsets");
14315 return (-1);
14316 }
14317 } else if (probe->dofpr_noffs == 0) {
14318 dtrace_dof_error(dof, "zero probe offsets");
14319 return (-1);
14320 }
14321
14322 if (probe->dofpr_argidx + probe->dofpr_xargc <
14323 probe->dofpr_argidx ||
14324 (probe->dofpr_argidx + probe->dofpr_xargc) *
14325 arg_sec->dofs_entsize > arg_sec->dofs_size) {
14326 dtrace_dof_error(dof, "invalid args");
14327 return (-1);
14328 }
14329
14330 typeidx = probe->dofpr_nargv;
14331 typestr = strtab + probe->dofpr_nargv;
14332 for (k = 0; k < probe->dofpr_nargc; k++) {
14333 if (typeidx >= str_sec->dofs_size) {
14334 dtrace_dof_error(dof, "bad "
14335 "native argument type");
14336 return (-1);
14337 }
14338
14339 typesz = strlen(typestr) + 1;
14340 if (typesz > DTRACE_ARGTYPELEN) {
14341 dtrace_dof_error(dof, "native "
14342 "argument type too long");
14343 return (-1);
14344 }
14345 typeidx += typesz;
14346 typestr += typesz;
14347 }
14348
14349 typeidx = probe->dofpr_xargv;
14350 typestr = strtab + probe->dofpr_xargv;
14351 for (k = 0; k < probe->dofpr_xargc; k++) {
14352 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14353 dtrace_dof_error(dof, "bad "
14354 "native argument index");
14355 return (-1);
14356 }
14357
14358 if (typeidx >= str_sec->dofs_size) {
14359 dtrace_dof_error(dof, "bad "
14360 "translated argument type");
14361 return (-1);
14362 }
14363
14364 typesz = strlen(typestr) + 1;
14365 if (typesz > DTRACE_ARGTYPELEN) {
14366 dtrace_dof_error(dof, "translated argument "
14367 "type too long");
14368 return (-1);
14369 }
14370
14371 typeidx += typesz;
14372 typestr += typesz;
14373 }
14374 }
14375
14376 return (0);
14377 }
14378
14379 static int
14380 dtrace_helper_slurp(proc_t* p, dof_hdr_t *dof, dof_helper_t *dhp)
14381 {
14382 dtrace_helpers_t *help;
14383 dtrace_vstate_t *vstate;
14384 dtrace_enabling_t *enab = NULL;
14385 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14386 uintptr_t daddr = (uintptr_t)dof;
14387
14388 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
14389
14390 if ((help = p->p_dtrace_helpers) == NULL)
14391 help = dtrace_helpers_create(p);
14392
14393 vstate = &help->dthps_vstate;
14394
14395 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14396 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14397 dtrace_dof_destroy(dof);
14398 return (rv);
14399 }
14400
14401 /*
14402 * Look for helper providers and validate their descriptions.
14403 */
14404 if (dhp != NULL) {
14405 for (i = 0; (uint32_t)i < dof->dofh_secnum; i++) {
14406 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14407 dof->dofh_secoff + i * dof->dofh_secsize);
14408
14409 if (sec->dofs_type != DOF_SECT_PROVIDER)
14410 continue;
14411
14412 if (dtrace_helper_provider_validate(dof, sec) != 0) {
14413 dtrace_enabling_destroy(enab);
14414 dtrace_dof_destroy(dof);
14415 return (-1);
14416 }
14417
14418 nprovs++;
14419 }
14420 }
14421
14422 /*
14423 * Now we need to walk through the ECB descriptions in the enabling.
14424 */
14425 for (i = 0; i < enab->dten_ndesc; i++) {
14426 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14427 dtrace_probedesc_t *desc = &ep->dted_probe;
14428
14429 /* APPLE NOTE: Darwin employs size bounded string operation. */
14430 if (!LIT_STRNEQL(desc->dtpd_provider, "dtrace"))
14431 continue;
14432
14433 if (!LIT_STRNEQL(desc->dtpd_mod, "helper"))
14434 continue;
14435
14436 if (!LIT_STRNEQL(desc->dtpd_func, "ustack"))
14437 continue;
14438
14439 if ((rv = dtrace_helper_action_add(p, DTRACE_HELPER_ACTION_USTACK,
14440 ep)) != 0) {
14441 /*
14442 * Adding this helper action failed -- we are now going
14443 * to rip out the entire generation and return failure.
14444 */
14445 (void) dtrace_helper_destroygen(p, help->dthps_generation);
14446 dtrace_enabling_destroy(enab);
14447 dtrace_dof_destroy(dof);
14448 return (-1);
14449 }
14450
14451 nhelpers++;
14452 }
14453
14454 if (nhelpers < enab->dten_ndesc)
14455 dtrace_dof_error(dof, "unmatched helpers");
14456
14457 gen = help->dthps_generation++;
14458 dtrace_enabling_destroy(enab);
14459
14460 if (dhp != NULL && nprovs > 0) {
14461 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14462 if (dtrace_helper_provider_add(p, dhp, gen) == 0) {
14463 lck_mtx_unlock(&dtrace_lock);
14464 dtrace_helper_provider_register(p, help, dhp);
14465 lck_mtx_lock(&dtrace_lock);
14466
14467 destroy = 0;
14468 }
14469 }
14470
14471 if (destroy)
14472 dtrace_dof_destroy(dof);
14473
14474 return (gen);
14475 }
14476
14477 /*
14478 * APPLE NOTE: DTrace lazy dof implementation
14479 *
14480 * DTrace user static probes (USDT probes) and helper actions are loaded
14481 * in a process by proccessing dof sections. The dof sections are passed
14482 * into the kernel by dyld, in a dof_ioctl_data_t block. It is rather
14483 * expensive to process dof for a process that will never use it. There
14484 * is a memory cost (allocating the providers/probes), and a cpu cost
14485 * (creating the providers/probes).
14486 *
14487 * To reduce this cost, we use "lazy dof". The normal proceedure for
14488 * dof processing is to copyin the dof(s) pointed to by the dof_ioctl_data_t
14489 * block, and invoke dof_slurp_helper() on them. When "lazy dof" is
14490 * used, each process retains the dof_ioctl_data_t block, instead of
14491 * copying in the data it points to.
14492 *
14493 * The dof_ioctl_data_t blocks are managed as if they were the actual
14494 * processed dof; on fork the block is copied to the child, on exec and
14495 * exit the block is freed.
14496 *
14497 * If the process loads library(s) containing additional dof, the
14498 * new dof_ioctl_data_t is merged with the existing block.
14499 *
14500 * There are a few catches that make this slightly more difficult.
14501 * When dyld registers dof_ioctl_data_t blocks, it expects a unique
14502 * identifier value for each dof in the block. In non-lazy dof terms,
14503 * this is the generation that dof was loaded in. If we hand back
14504 * a UID for a lazy dof, that same UID must be able to unload the
14505 * dof once it has become non-lazy. To meet this requirement, the
14506 * code that loads lazy dof requires that the UID's for dof(s) in
14507 * the lazy dof be sorted, and in ascending order. It is okay to skip
14508 * UID's, I.E., 1 -> 5 -> 6 is legal.
14509 *
14510 * Once a process has become non-lazy, it will stay non-lazy. All
14511 * future dof operations for that process will be non-lazy, even
14512 * if the dof mode transitions back to lazy.
14513 *
14514 * Always do lazy dof checks before non-lazy (I.E. In fork, exit, exec.).
14515 * That way if the lazy check fails due to transitioning to non-lazy, the
14516 * right thing is done with the newly faulted in dof.
14517 */
14518
14519 /*
14520 * This method is a bit squicky. It must handle:
14521 *
14522 * dof should not be lazy.
14523 * dof should have been handled lazily, but there was an error
14524 * dof was handled lazily, and needs to be freed.
14525 * dof was handled lazily, and must not be freed.
14526 *
14527 *
14528 * Returns EACCESS if dof should be handled non-lazily.
14529 *
14530 * KERN_SUCCESS and all other return codes indicate lazy handling of dof.
14531 *
14532 * If the dofs data is claimed by this method, dofs_claimed will be set.
14533 * Callers should not free claimed dofs.
14534 */
14535 static int
14536 dtrace_lazy_dofs_add(proc_t *p, dof_ioctl_data_t* incoming_dofs, int *dofs_claimed)
14537 {
14538 ASSERT(p);
14539 ASSERT(incoming_dofs && incoming_dofs->dofiod_count > 0);
14540
14541 int rval = 0;
14542 *dofs_claimed = 0;
14543
14544 lck_rw_lock_shared(&dtrace_dof_mode_lock);
14545
14546 /*
14547 * If we have lazy dof, dof mode better be LAZY_ON.
14548 */
14549 ASSERT(p->p_dtrace_lazy_dofs == NULL || dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON);
14550 ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL);
14551 ASSERT(dtrace_dof_mode != DTRACE_DOF_MODE_NEVER);
14552
14553 /*
14554 * Any existing helpers force non-lazy behavior.
14555 */
14556 if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON && (p->p_dtrace_helpers == NULL)) {
14557 lck_mtx_lock(&p->p_dtrace_sprlock);
14558
14559 dof_ioctl_data_t* existing_dofs = p->p_dtrace_lazy_dofs;
14560 unsigned int existing_dofs_count = (existing_dofs) ? existing_dofs->dofiod_count : 0;
14561 unsigned int i, merged_dofs_count = incoming_dofs->dofiod_count + existing_dofs_count;
14562
14563 /*
14564 * Range check...
14565 */
14566 if (merged_dofs_count == 0 || merged_dofs_count > 1024) {
14567 dtrace_dof_error(NULL, "lazy_dofs_add merged_dofs_count out of range");
14568 rval = EINVAL;
14569 goto unlock;
14570 }
14571
14572 /*
14573 * Each dof being added must be assigned a unique generation.
14574 */
14575 uint64_t generation = (existing_dofs) ? existing_dofs->dofiod_helpers[existing_dofs_count - 1].dofhp_dof + 1 : 1;
14576 for (i=0; i<incoming_dofs->dofiod_count; i++) {
14577 /*
14578 * We rely on these being the same so we can overwrite dofhp_dof and not lose info.
14579 */
14580 ASSERT(incoming_dofs->dofiod_helpers[i].dofhp_dof == incoming_dofs->dofiod_helpers[i].dofhp_addr);
14581 incoming_dofs->dofiod_helpers[i].dofhp_dof = generation++;
14582 }
14583
14584
14585 if (existing_dofs) {
14586 /*
14587 * Merge the existing and incoming dofs
14588 */
14589 size_t merged_dofs_size = DOF_IOCTL_DATA_T_SIZE(merged_dofs_count);
14590 dof_ioctl_data_t* merged_dofs = kmem_alloc(merged_dofs_size, KM_SLEEP);
14591
14592 bcopy(&existing_dofs->dofiod_helpers[0],
14593 &merged_dofs->dofiod_helpers[0],
14594 sizeof(dof_helper_t) * existing_dofs_count);
14595 bcopy(&incoming_dofs->dofiod_helpers[0],
14596 &merged_dofs->dofiod_helpers[existing_dofs_count],
14597 sizeof(dof_helper_t) * incoming_dofs->dofiod_count);
14598
14599 merged_dofs->dofiod_count = merged_dofs_count;
14600
14601 kmem_free(existing_dofs, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count));
14602
14603 p->p_dtrace_lazy_dofs = merged_dofs;
14604 } else {
14605 /*
14606 * Claim the incoming dofs
14607 */
14608 *dofs_claimed = 1;
14609 p->p_dtrace_lazy_dofs = incoming_dofs;
14610 }
14611
14612 #if DEBUG
14613 dof_ioctl_data_t* all_dofs = p->p_dtrace_lazy_dofs;
14614 for (i=0; i<all_dofs->dofiod_count-1; i++) {
14615 ASSERT(all_dofs->dofiod_helpers[i].dofhp_dof < all_dofs->dofiod_helpers[i+1].dofhp_dof);
14616 }
14617 #endif /* DEBUG */
14618
14619 unlock:
14620 lck_mtx_unlock(&p->p_dtrace_sprlock);
14621 } else {
14622 rval = EACCES;
14623 }
14624
14625 lck_rw_unlock_shared(&dtrace_dof_mode_lock);
14626
14627 return rval;
14628 }
14629
14630 /*
14631 * Returns:
14632 *
14633 * EINVAL: lazy dof is enabled, but the requested generation was not found.
14634 * EACCES: This removal needs to be handled non-lazily.
14635 */
14636 static int
14637 dtrace_lazy_dofs_remove(proc_t *p, int generation)
14638 {
14639 int rval = EINVAL;
14640
14641 lck_rw_lock_shared(&dtrace_dof_mode_lock);
14642
14643 /*
14644 * If we have lazy dof, dof mode better be LAZY_ON.
14645 */
14646 ASSERT(p->p_dtrace_lazy_dofs == NULL || dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON);
14647 ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL);
14648 ASSERT(dtrace_dof_mode != DTRACE_DOF_MODE_NEVER);
14649
14650 /*
14651 * Any existing helpers force non-lazy behavior.
14652 */
14653 if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON && (p->p_dtrace_helpers == NULL)) {
14654 lck_mtx_lock(&p->p_dtrace_sprlock);
14655
14656 dof_ioctl_data_t* existing_dofs = p->p_dtrace_lazy_dofs;
14657
14658 if (existing_dofs) {
14659 int index, existing_dofs_count = existing_dofs->dofiod_count;
14660 for (index=0; index<existing_dofs_count; index++) {
14661 if ((int)existing_dofs->dofiod_helpers[index].dofhp_dof == generation) {
14662 dof_ioctl_data_t* removed_dofs = NULL;
14663
14664 /*
14665 * If there is only 1 dof, we'll delete it and swap in NULL.
14666 */
14667 if (existing_dofs_count > 1) {
14668 int removed_dofs_count = existing_dofs_count - 1;
14669 size_t removed_dofs_size = DOF_IOCTL_DATA_T_SIZE(removed_dofs_count);
14670
14671 removed_dofs = kmem_alloc(removed_dofs_size, KM_SLEEP);
14672 removed_dofs->dofiod_count = removed_dofs_count;
14673
14674 /*
14675 * copy the remaining data.
14676 */
14677 if (index > 0) {
14678 bcopy(&existing_dofs->dofiod_helpers[0],
14679 &removed_dofs->dofiod_helpers[0],
14680 index * sizeof(dof_helper_t));
14681 }
14682
14683 if (index < existing_dofs_count-1) {
14684 bcopy(&existing_dofs->dofiod_helpers[index+1],
14685 &removed_dofs->dofiod_helpers[index],
14686 (existing_dofs_count - index - 1) * sizeof(dof_helper_t));
14687 }
14688 }
14689
14690 kmem_free(existing_dofs, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count));
14691
14692 p->p_dtrace_lazy_dofs = removed_dofs;
14693
14694 rval = KERN_SUCCESS;
14695
14696 break;
14697 }
14698 }
14699
14700 #if DEBUG
14701 dof_ioctl_data_t* all_dofs = p->p_dtrace_lazy_dofs;
14702 if (all_dofs) {
14703 unsigned int i;
14704 for (i=0; i<all_dofs->dofiod_count-1; i++) {
14705 ASSERT(all_dofs->dofiod_helpers[i].dofhp_dof < all_dofs->dofiod_helpers[i+1].dofhp_dof);
14706 }
14707 }
14708 #endif
14709
14710 }
14711
14712 lck_mtx_unlock(&p->p_dtrace_sprlock);
14713 } else {
14714 rval = EACCES;
14715 }
14716
14717 lck_rw_unlock_shared(&dtrace_dof_mode_lock);
14718
14719 return rval;
14720 }
14721
14722 void
14723 dtrace_lazy_dofs_destroy(proc_t *p)
14724 {
14725 lck_rw_lock_shared(&dtrace_dof_mode_lock);
14726 lck_mtx_lock(&p->p_dtrace_sprlock);
14727
14728 /*
14729 * If we have lazy dof, dof mode better be LAZY_ON, or we must be exiting.
14730 * We cannot assert against DTRACE_DOF_MODE_NEVER here, because we are called from
14731 * kern_exit.c and kern_exec.c.
14732 */
14733 ASSERT(p->p_dtrace_lazy_dofs == NULL || dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON || p->p_lflag & P_LEXIT);
14734 ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL);
14735
14736 dof_ioctl_data_t* lazy_dofs = p->p_dtrace_lazy_dofs;
14737 p->p_dtrace_lazy_dofs = NULL;
14738
14739 lck_mtx_unlock(&p->p_dtrace_sprlock);
14740 lck_rw_unlock_shared(&dtrace_dof_mode_lock);
14741
14742 if (lazy_dofs) {
14743 kmem_free(lazy_dofs, DOF_IOCTL_DATA_T_SIZE(lazy_dofs->dofiod_count));
14744 }
14745 }
14746
14747 void
14748 dtrace_lazy_dofs_duplicate(proc_t *parent, proc_t *child)
14749 {
14750 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED);
14751 lck_mtx_assert(&parent->p_dtrace_sprlock, LCK_MTX_ASSERT_NOTOWNED);
14752 lck_mtx_assert(&child->p_dtrace_sprlock, LCK_MTX_ASSERT_NOTOWNED);
14753
14754 lck_rw_lock_shared(&dtrace_dof_mode_lock);
14755 lck_mtx_lock(&parent->p_dtrace_sprlock);
14756
14757 /*
14758 * If we have lazy dof, dof mode better be LAZY_ON, or we must be exiting.
14759 * We cannot assert against DTRACE_DOF_MODE_NEVER here, because we are called from
14760 * kern_fork.c
14761 */
14762 ASSERT(parent->p_dtrace_lazy_dofs == NULL || dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON);
14763 ASSERT(parent->p_dtrace_lazy_dofs == NULL || parent->p_dtrace_helpers == NULL);
14764 /*
14765 * In theory we should hold the child sprlock, but this is safe...
14766 */
14767 ASSERT(child->p_dtrace_lazy_dofs == NULL && child->p_dtrace_helpers == NULL);
14768
14769 dof_ioctl_data_t* parent_dofs = parent->p_dtrace_lazy_dofs;
14770 dof_ioctl_data_t* child_dofs = NULL;
14771 if (parent_dofs) {
14772 size_t parent_dofs_size = DOF_IOCTL_DATA_T_SIZE(parent_dofs->dofiod_count);
14773 child_dofs = kmem_alloc(parent_dofs_size, KM_SLEEP);
14774 bcopy(parent_dofs, child_dofs, parent_dofs_size);
14775 }
14776
14777 lck_mtx_unlock(&parent->p_dtrace_sprlock);
14778
14779 if (child_dofs) {
14780 lck_mtx_lock(&child->p_dtrace_sprlock);
14781 child->p_dtrace_lazy_dofs = child_dofs;
14782 lck_mtx_unlock(&child->p_dtrace_sprlock);
14783 }
14784
14785 lck_rw_unlock_shared(&dtrace_dof_mode_lock);
14786 }
14787
14788 static int
14789 dtrace_lazy_dofs_proc_iterate_filter(proc_t *p, void* ignored)
14790 {
14791 #pragma unused(ignored)
14792 /*
14793 * Okay to NULL test without taking the sprlock.
14794 */
14795 return p->p_dtrace_lazy_dofs != NULL;
14796 }
14797
14798 static int
14799 dtrace_lazy_dofs_proc_iterate_doit(proc_t *p, void* ignored)
14800 {
14801 #pragma unused(ignored)
14802 /*
14803 * It is possible this process may exit during our attempt to
14804 * fault in the dof. We could fix this by holding locks longer,
14805 * but the errors are benign.
14806 */
14807 lck_mtx_lock(&p->p_dtrace_sprlock);
14808
14809 /*
14810 * In this case only, it is okay to have lazy dof when dof mode is DTRACE_DOF_MODE_LAZY_OFF
14811 */
14812 ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL);
14813 ASSERT(dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF);
14814
14815
14816 dof_ioctl_data_t* lazy_dofs = p->p_dtrace_lazy_dofs;
14817 p->p_dtrace_lazy_dofs = NULL;
14818
14819 lck_mtx_unlock(&p->p_dtrace_sprlock);
14820
14821 /*
14822 * Process each dof_helper_t
14823 */
14824 if (lazy_dofs != NULL) {
14825 unsigned int i;
14826 int rval;
14827
14828 for (i=0; i<lazy_dofs->dofiod_count; i++) {
14829 /*
14830 * When loading lazy dof, we depend on the generations being sorted in ascending order.
14831 */
14832 ASSERT(i >= (lazy_dofs->dofiod_count - 1) || lazy_dofs->dofiod_helpers[i].dofhp_dof < lazy_dofs->dofiod_helpers[i+1].dofhp_dof);
14833
14834 dof_helper_t *dhp = &lazy_dofs->dofiod_helpers[i];
14835
14836 /*
14837 * We stored the generation in dofhp_dof. Save it, and restore the original value.
14838 */
14839 int generation = dhp->dofhp_dof;
14840 dhp->dofhp_dof = dhp->dofhp_addr;
14841
14842 dof_hdr_t *dof = dtrace_dof_copyin_from_proc(p, dhp->dofhp_dof, &rval);
14843
14844 if (dof != NULL) {
14845 dtrace_helpers_t *help;
14846
14847 lck_mtx_lock(&dtrace_lock);
14848
14849 /*
14850 * This must be done with the dtrace_lock held
14851 */
14852 if ((help = p->p_dtrace_helpers) == NULL)
14853 help = dtrace_helpers_create(p);
14854
14855 /*
14856 * If the generation value has been bumped, someone snuck in
14857 * when we released the dtrace lock. We have to dump this generation,
14858 * there is no safe way to load it.
14859 */
14860 if (help->dthps_generation <= generation) {
14861 help->dthps_generation = generation;
14862
14863 /*
14864 * dtrace_helper_slurp() takes responsibility for the dof --
14865 * it may free it now or it may save it and free it later.
14866 */
14867 if ((rval = dtrace_helper_slurp(p, dof, dhp)) != generation) {
14868 dtrace_dof_error(NULL, "returned value did not match expected generation");
14869 }
14870 }
14871
14872 lck_mtx_unlock(&dtrace_lock);
14873 }
14874 }
14875
14876 kmem_free(lazy_dofs, DOF_IOCTL_DATA_T_SIZE(lazy_dofs->dofiod_count));
14877 }
14878
14879 return PROC_RETURNED;
14880 }
14881
14882 static dtrace_helpers_t *
14883 dtrace_helpers_create(proc_t *p)
14884 {
14885 dtrace_helpers_t *help;
14886
14887 lck_mtx_assert(&dtrace_lock, LCK_MTX_ASSERT_OWNED);
14888 ASSERT(p->p_dtrace_helpers == NULL);
14889
14890 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14891 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14892 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14893
14894 p->p_dtrace_helpers = help;
14895 dtrace_helpers++;
14896
14897 return (help);
14898 }
14899
14900 static void
14901 dtrace_helpers_destroy(proc_t* p)
14902 {
14903 dtrace_helpers_t *help;
14904 dtrace_vstate_t *vstate;
14905 uint_t i;
14906
14907 lck_mtx_lock(&dtrace_lock);
14908
14909 ASSERT(p->p_dtrace_helpers != NULL);
14910 ASSERT(dtrace_helpers > 0);
14911
14912 help = p->p_dtrace_helpers;
14913 vstate = &help->dthps_vstate;
14914
14915 /*
14916 * We're now going to lose the help from this process.
14917 */
14918 p->p_dtrace_helpers = NULL;
14919 dtrace_sync();
14920
14921 /*
14922 * Destory the helper actions.
14923 */
14924 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14925 dtrace_helper_action_t *h, *next;
14926
14927 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14928 next = h->dtha_next;
14929 dtrace_helper_action_destroy(h, vstate);
14930 h = next;
14931 }
14932 }
14933
14934 lck_mtx_unlock(&dtrace_lock);
14935
14936 /*
14937 * Destroy the helper providers.
14938 */
14939 if (help->dthps_maxprovs > 0) {
14940 lck_mtx_lock(&dtrace_meta_lock);
14941 if (dtrace_meta_pid != NULL) {
14942 ASSERT(dtrace_deferred_pid == NULL);
14943
14944 for (i = 0; i < help->dthps_nprovs; i++) {
14945 dtrace_helper_provider_remove(
14946 &help->dthps_provs[i]->dthp_prov, p->p_pid);
14947 }
14948 } else {
14949 lck_mtx_lock(&dtrace_lock);
14950 ASSERT(help->dthps_deferred == 0 ||
14951 help->dthps_next != NULL ||
14952 help->dthps_prev != NULL ||
14953 help == dtrace_deferred_pid);
14954
14955 /*
14956 * Remove the helper from the deferred list.
14957 */
14958 if (help->dthps_next != NULL)
14959 help->dthps_next->dthps_prev = help->dthps_prev;
14960 if (help->dthps_prev != NULL)
14961 help->dthps_prev->dthps_next = help->dthps_next;
14962 if (dtrace_deferred_pid == help) {
14963 dtrace_deferred_pid = help->dthps_next;
14964 ASSERT(help->dthps_prev == NULL);
14965 }
14966
14967 lck_mtx_unlock(&dtrace_lock);
14968 }
14969
14970 lck_mtx_unlock(&dtrace_meta_lock);
14971
14972 for (i = 0; i < help->dthps_nprovs; i++) {
14973 dtrace_helper_provider_destroy(help->dthps_provs[i]);
14974 }
14975
14976 kmem_free(help->dthps_provs, help->dthps_maxprovs *
14977 sizeof (dtrace_helper_provider_t *));
14978 }
14979
14980 lck_mtx_lock(&dtrace_lock);
14981
14982 dtrace_vstate_fini(&help->dthps_vstate);
14983 kmem_free(help->dthps_actions,
14984 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14985 kmem_free(help, sizeof (dtrace_helpers_t));
14986
14987 --dtrace_helpers;
14988 lck_mtx_unlock(&dtrace_lock);
14989 }
14990
14991 static void
14992 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14993 {
14994 dtrace_helpers_t *help, *newhelp;
14995 dtrace_helper_action_t *helper, *new, *last;
14996 dtrace_difo_t *dp;
14997 dtrace_vstate_t *vstate;
14998 uint_t i;
14999 int j, sz, hasprovs = 0;
15000
15001 lck_mtx_lock(&dtrace_lock);
15002 ASSERT(from->p_dtrace_helpers != NULL);
15003 ASSERT(dtrace_helpers > 0);
15004
15005 help = from->p_dtrace_helpers;
15006 newhelp = dtrace_helpers_create(to);
15007 ASSERT(to->p_dtrace_helpers != NULL);
15008
15009 newhelp->dthps_generation = help->dthps_generation;
15010 vstate = &newhelp->dthps_vstate;
15011
15012 /*
15013 * Duplicate the helper actions.
15014 */
15015 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15016 if ((helper = help->dthps_actions[i]) == NULL)
15017 continue;
15018
15019 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15020 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15021 KM_SLEEP);
15022 new->dtha_generation = helper->dtha_generation;
15023
15024 if ((dp = helper->dtha_predicate) != NULL) {
15025 dp = dtrace_difo_duplicate(dp, vstate);
15026 new->dtha_predicate = dp;
15027 }
15028
15029 new->dtha_nactions = helper->dtha_nactions;
15030 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15031 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15032
15033 for (j = 0; j < new->dtha_nactions; j++) {
15034 dtrace_difo_t *dpj = helper->dtha_actions[j];
15035
15036 ASSERT(dpj != NULL);
15037 dpj = dtrace_difo_duplicate(dpj, vstate);
15038 new->dtha_actions[j] = dpj;
15039 }
15040
15041 if (last != NULL) {
15042 last->dtha_next = new;
15043 } else {
15044 newhelp->dthps_actions[i] = new;
15045 }
15046
15047 last = new;
15048 }
15049 }
15050
15051 /*
15052 * Duplicate the helper providers and register them with the
15053 * DTrace framework.
15054 */
15055 if (help->dthps_nprovs > 0) {
15056 newhelp->dthps_nprovs = help->dthps_nprovs;
15057 newhelp->dthps_maxprovs = help->dthps_nprovs;
15058 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15059 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15060 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15061 newhelp->dthps_provs[i] = help->dthps_provs[i];
15062 newhelp->dthps_provs[i]->dthp_ref++;
15063 }
15064
15065 hasprovs = 1;
15066 }
15067
15068 lck_mtx_unlock(&dtrace_lock);
15069
15070 if (hasprovs)
15071 dtrace_helper_provider_register(to, newhelp, NULL);
15072 }
15073
15074 /*
15075 * DTrace Hook Functions
15076 */
15077
15078 /*
15079 * APPLE NOTE: dtrace_modctl_* routines for kext support.
15080 * Used to manipulate the modctl list within dtrace xnu.
15081 */
15082
15083 modctl_t *dtrace_modctl_list;
15084
15085 static void
15086 dtrace_modctl_add(struct modctl * newctl)
15087 {
15088 struct modctl *nextp, *prevp;
15089
15090 ASSERT(newctl != NULL);
15091 lck_mtx_assert(&mod_lock, LCK_MTX_ASSERT_OWNED);
15092
15093 // Insert new module at the front of the list,
15094
15095 newctl->mod_next = dtrace_modctl_list;
15096 dtrace_modctl_list = newctl;
15097
15098 /*
15099 * If a module exists with the same name, then that module
15100 * must have been unloaded with enabled probes. We will move
15101 * the unloaded module to the new module's stale chain and
15102 * then stop traversing the list.
15103 */
15104
15105 prevp = newctl;
15106 nextp = newctl->mod_next;
15107
15108 while (nextp != NULL) {
15109 if (nextp->mod_loaded) {
15110 /* This is a loaded module. Keep traversing. */
15111 prevp = nextp;
15112 nextp = nextp->mod_next;
15113 continue;
15114 }
15115 else {
15116 /* Found an unloaded module */
15117 if (strncmp (newctl->mod_modname, nextp->mod_modname, KMOD_MAX_NAME)) {
15118 /* Names don't match. Keep traversing. */
15119 prevp = nextp;
15120 nextp = nextp->mod_next;
15121 continue;
15122 }
15123 else {
15124 /* We found a stale entry, move it. We're done. */
15125 prevp->mod_next = nextp->mod_next;
15126 newctl->mod_stale = nextp;
15127 nextp->mod_next = NULL;
15128 break;
15129 }
15130 }
15131 }
15132 }
15133
15134 static modctl_t *
15135 dtrace_modctl_lookup(struct kmod_info * kmod)
15136 {
15137 lck_mtx_assert(&mod_lock, LCK_MTX_ASSERT_OWNED);
15138
15139 struct modctl * ctl;
15140
15141 for (ctl = dtrace_modctl_list; ctl; ctl=ctl->mod_next) {
15142 if (ctl->mod_id == kmod->id)
15143 return(ctl);
15144 }
15145 return (NULL);
15146 }
15147
15148 /*
15149 * This routine is called from dtrace_module_unloaded().
15150 * It removes a modctl structure and its stale chain
15151 * from the kext shadow list.
15152 */
15153 static void
15154 dtrace_modctl_remove(struct modctl * ctl)
15155 {
15156 ASSERT(ctl != NULL);
15157 lck_mtx_assert(&mod_lock, LCK_MTX_ASSERT_OWNED);
15158 modctl_t *prevp, *nextp, *curp;
15159
15160 // Remove stale chain first
15161 for (curp=ctl->mod_stale; curp != NULL; curp=nextp) {
15162 nextp = curp->mod_stale;
15163 /* There should NEVER be user symbols allocated at this point */
15164 ASSERT(curp->mod_user_symbols == NULL);
15165 kmem_free(curp, sizeof(modctl_t));
15166 }
15167
15168 prevp = NULL;
15169 curp = dtrace_modctl_list;
15170
15171 while (curp != ctl) {
15172 prevp = curp;
15173 curp = curp->mod_next;
15174 }
15175
15176 if (prevp != NULL) {
15177 prevp->mod_next = ctl->mod_next;
15178 }
15179 else {
15180 dtrace_modctl_list = ctl->mod_next;
15181 }
15182
15183 /* There should NEVER be user symbols allocated at this point */
15184 ASSERT(ctl->mod_user_symbols == NULL);
15185
15186 kmem_free (ctl, sizeof(modctl_t));
15187 }
15188
15189 /*
15190 * APPLE NOTE: The kext loader will call dtrace_module_loaded
15191 * when the kext is loaded in memory, but before calling the
15192 * kext's start routine.
15193 *
15194 * Return 0 on success
15195 * Return -1 on failure
15196 */
15197
15198 static int
15199 dtrace_module_loaded(struct kmod_info *kmod, uint32_t flag)
15200 {
15201 dtrace_provider_t *prv;
15202
15203 /*
15204 * If kernel symbols have been disabled, return immediately
15205 * DTRACE_KERNEL_SYMBOLS_NEVER is a permanent mode, it is safe to test without holding locks
15206 */
15207 if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER)
15208 return 0;
15209
15210 struct modctl *ctl = NULL;
15211 if (!kmod || kmod->address == 0 || kmod->size == 0)
15212 return(-1);
15213
15214 lck_mtx_lock(&dtrace_provider_lock);
15215 lck_mtx_lock(&mod_lock);
15216
15217 /*
15218 * Have we seen this kext before?
15219 */
15220
15221 ctl = dtrace_modctl_lookup(kmod);
15222
15223 if (ctl != NULL) {
15224 /* bail... we already have this kext in the modctl list */
15225 lck_mtx_unlock(&mod_lock);
15226 lck_mtx_unlock(&dtrace_provider_lock);
15227 if (dtrace_err_verbose)
15228 cmn_err(CE_WARN, "dtrace load module already exists '%s %u' is failing against '%s %u'", kmod->name, (uint_t)kmod->id, ctl->mod_modname, ctl->mod_id);
15229 return(-1);
15230 }
15231 else {
15232 ctl = kmem_alloc(sizeof(struct modctl), KM_SLEEP);
15233 if (ctl == NULL) {
15234 if (dtrace_err_verbose)
15235 cmn_err(CE_WARN, "dtrace module load '%s %u' is failing ", kmod->name, (uint_t)kmod->id);
15236 lck_mtx_unlock(&mod_lock);
15237 lck_mtx_unlock(&dtrace_provider_lock);
15238 return (-1);
15239 }
15240 ctl->mod_next = NULL;
15241 ctl->mod_stale = NULL;
15242 strlcpy (ctl->mod_modname, kmod->name, sizeof(ctl->mod_modname));
15243 ctl->mod_loadcnt = kmod->id;
15244 ctl->mod_nenabled = 0;
15245 ctl->mod_address = kmod->address;
15246 ctl->mod_size = kmod->size;
15247 ctl->mod_id = kmod->id;
15248 ctl->mod_loaded = 1;
15249 ctl->mod_flags = 0;
15250 ctl->mod_user_symbols = NULL;
15251
15252 /*
15253 * Find the UUID for this module, if it has one
15254 */
15255 kernel_mach_header_t* header = (kernel_mach_header_t *)ctl->mod_address;
15256 struct load_command* load_cmd = (struct load_command *)&header[1];
15257 uint32_t i;
15258 for (i = 0; i < header->ncmds; i++) {
15259 if (load_cmd->cmd == LC_UUID) {
15260 struct uuid_command* uuid_cmd = (struct uuid_command *)load_cmd;
15261 memcpy(ctl->mod_uuid, uuid_cmd->uuid, sizeof(uuid_cmd->uuid));
15262 ctl->mod_flags |= MODCTL_HAS_UUID;
15263 break;
15264 }
15265 load_cmd = (struct load_command *)((caddr_t)load_cmd + load_cmd->cmdsize);
15266 }
15267
15268 if (ctl->mod_address == g_kernel_kmod_info.address) {
15269 ctl->mod_flags |= MODCTL_IS_MACH_KERNEL;
15270 }
15271 }
15272 dtrace_modctl_add(ctl);
15273
15274 /*
15275 * We must hold the dtrace_lock to safely test non permanent dtrace_fbt_symbol_mode(s)
15276 */
15277 lck_mtx_lock(&dtrace_lock);
15278
15279 /*
15280 * DTrace must decide if it will instrument modules lazily via
15281 * userspace symbols (default mode), or instrument immediately via
15282 * kernel symbols (non-default mode)
15283 *
15284 * When in default/lazy mode, DTrace will only support modules
15285 * built with a valid UUID.
15286 *
15287 * Overriding the default can be done explicitly in one of
15288 * the following two ways.
15289 *
15290 * A module can force symbols from kernel space using the plist key,
15291 * OSBundleForceDTraceInit (see kmod.h). If this per kext state is set,
15292 * we fall through and instrument this module now.
15293 *
15294 * Or, the boot-arg, dtrace_kernel_symbol_mode, can be set to force symbols
15295 * from kernel space (see dtrace_impl.h). If this system state is set
15296 * to a non-userspace mode, we fall through and instrument the module now.
15297 */
15298
15299 if ((dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) &&
15300 (!(flag & KMOD_DTRACE_FORCE_INIT)))
15301 {
15302 /* We will instrument the module lazily -- this is the default */
15303 lck_mtx_unlock(&dtrace_lock);
15304 lck_mtx_unlock(&mod_lock);
15305 lck_mtx_unlock(&dtrace_provider_lock);
15306 return 0;
15307 }
15308
15309 /* We will instrument the module immediately using kernel symbols */
15310 ctl->mod_flags |= MODCTL_HAS_KERNEL_SYMBOLS;
15311
15312 lck_mtx_unlock(&dtrace_lock);
15313
15314 /*
15315 * We're going to call each providers per-module provide operation
15316 * specifying only this module.
15317 */
15318 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15319 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15320
15321 /*
15322 * APPLE NOTE: The contract with the kext loader is that once this function
15323 * has completed, it may delete kernel symbols at will.
15324 * We must set this while still holding the mod_lock.
15325 */
15326 ctl->mod_flags &= ~MODCTL_HAS_KERNEL_SYMBOLS;
15327
15328 lck_mtx_unlock(&mod_lock);
15329 lck_mtx_unlock(&dtrace_provider_lock);
15330
15331 /*
15332 * If we have any retained enablings, we need to match against them.
15333 * Enabling probes requires that cpu_lock be held, and we cannot hold
15334 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15335 * module. (In particular, this happens when loading scheduling
15336 * classes.) So if we have any retained enablings, we need to dispatch
15337 * our task queue to do the match for us.
15338 */
15339 lck_mtx_lock(&dtrace_lock);
15340
15341 if (dtrace_retained == NULL) {
15342 lck_mtx_unlock(&dtrace_lock);
15343 return 0;
15344 }
15345
15346 /* APPLE NOTE!
15347 *
15348 * The cpu_lock mentioned above is only held by dtrace code, Apple's xnu never actually
15349 * holds it for any reason. Thus the comment above is invalid, we can directly invoke
15350 * dtrace_enabling_matchall without jumping through all the hoops, and we can avoid
15351 * the delay call as well.
15352 */
15353 lck_mtx_unlock(&dtrace_lock);
15354
15355 dtrace_enabling_matchall();
15356
15357 return 0;
15358 }
15359
15360 /*
15361 * Return 0 on success
15362 * Return -1 on failure
15363 */
15364 static int
15365 dtrace_module_unloaded(struct kmod_info *kmod)
15366 {
15367 dtrace_probe_t template, *probe, *first, *next;
15368 dtrace_provider_t *prov;
15369 struct modctl *ctl = NULL;
15370 struct modctl *syncctl = NULL;
15371 struct modctl *nextsyncctl = NULL;
15372 int syncmode = 0;
15373
15374 lck_mtx_lock(&dtrace_provider_lock);
15375 lck_mtx_lock(&mod_lock);
15376 lck_mtx_lock(&dtrace_lock);
15377
15378 if (kmod == NULL) {
15379 syncmode = 1;
15380 }
15381 else {
15382 ctl = dtrace_modctl_lookup(kmod);
15383 if (ctl == NULL)
15384 {
15385 lck_mtx_unlock(&dtrace_lock);
15386 lck_mtx_unlock(&mod_lock);
15387 lck_mtx_unlock(&dtrace_provider_lock);
15388 return (-1);
15389 }
15390 ctl->mod_loaded = 0;
15391 ctl->mod_address = 0;
15392 ctl->mod_size = 0;
15393 }
15394
15395 if (dtrace_bymod == NULL) {
15396 /*
15397 * The DTrace module is loaded (obviously) but not attached;
15398 * we don't have any work to do.
15399 */
15400 if (ctl != NULL)
15401 (void)dtrace_modctl_remove(ctl);
15402 lck_mtx_unlock(&dtrace_lock);
15403 lck_mtx_unlock(&mod_lock);
15404 lck_mtx_unlock(&dtrace_provider_lock);
15405 return(0);
15406 }
15407
15408 /* Syncmode set means we target and traverse entire modctl list. */
15409 if (syncmode)
15410 nextsyncctl = dtrace_modctl_list;
15411
15412 syncloop:
15413 if (syncmode)
15414 {
15415 /* find a stale modctl struct */
15416 for (syncctl = nextsyncctl; syncctl != NULL; syncctl=syncctl->mod_next) {
15417 if (syncctl->mod_address == 0)
15418 break;
15419 }
15420 if (syncctl==NULL)
15421 {
15422 /* We have no more work to do */
15423 lck_mtx_unlock(&dtrace_lock);
15424 lck_mtx_unlock(&mod_lock);
15425 lck_mtx_unlock(&dtrace_provider_lock);
15426 return(0);
15427 }
15428 else {
15429 /* keep track of next syncctl in case this one is removed */
15430 nextsyncctl = syncctl->mod_next;
15431 ctl = syncctl;
15432 }
15433 }
15434
15435 template.dtpr_mod = ctl->mod_modname;
15436
15437 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15438 probe != NULL; probe = probe->dtpr_nextmod) {
15439 if (probe->dtpr_ecb != NULL) {
15440 /*
15441 * This shouldn't _actually_ be possible -- we're
15442 * unloading a module that has an enabled probe in it.
15443 * (It's normally up to the provider to make sure that
15444 * this can't happen.) However, because dtps_enable()
15445 * doesn't have a failure mode, there can be an
15446 * enable/unload race. Upshot: we don't want to
15447 * assert, but we're not going to disable the
15448 * probe, either.
15449 */
15450
15451
15452 if (syncmode) {
15453 /* We're syncing, let's look at next in list */
15454 goto syncloop;
15455 }
15456
15457 lck_mtx_unlock(&dtrace_lock);
15458 lck_mtx_unlock(&mod_lock);
15459 lck_mtx_unlock(&dtrace_provider_lock);
15460
15461 if (dtrace_err_verbose) {
15462 cmn_err(CE_WARN, "unloaded module '%s' had "
15463 "enabled probes", ctl->mod_modname);
15464 }
15465 return(-1);
15466 }
15467 }
15468
15469 probe = first;
15470
15471 for (first = NULL; probe != NULL; probe = next) {
15472 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15473
15474 dtrace_probes[probe->dtpr_id - 1] = NULL;
15475 probe->dtpr_provider->dtpv_probe_count--;
15476
15477 next = probe->dtpr_nextmod;
15478 dtrace_hash_remove(dtrace_bymod, probe);
15479 dtrace_hash_remove(dtrace_byfunc, probe);
15480 dtrace_hash_remove(dtrace_byname, probe);
15481
15482 if (first == NULL) {
15483 first = probe;
15484 probe->dtpr_nextmod = NULL;
15485 } else {
15486 probe->dtpr_nextmod = first;
15487 first = probe;
15488 }
15489 }
15490
15491 /*
15492 * We've removed all of the module's probes from the hash chains and
15493 * from the probe array. Now issue a dtrace_sync() to be sure that
15494 * everyone has cleared out from any probe array processing.
15495 */
15496 dtrace_sync();
15497
15498 for (probe = first; probe != NULL; probe = first) {
15499 first = probe->dtpr_nextmod;
15500 prov = probe->dtpr_provider;
15501 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15502 probe->dtpr_arg);
15503 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15504 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15505 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15506 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15507
15508 zfree(dtrace_probe_t_zone, probe);
15509 }
15510
15511 dtrace_modctl_remove(ctl);
15512
15513 if (syncmode)
15514 goto syncloop;
15515
15516 lck_mtx_unlock(&dtrace_lock);
15517 lck_mtx_unlock(&mod_lock);
15518 lck_mtx_unlock(&dtrace_provider_lock);
15519
15520 return(0);
15521 }
15522
15523 void
15524 dtrace_suspend(void)
15525 {
15526 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15527 }
15528
15529 void
15530 dtrace_resume(void)
15531 {
15532 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15533 }
15534
15535 static int
15536 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15537 {
15538 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
15539 lck_mtx_lock(&dtrace_lock);
15540
15541 switch (what) {
15542 case CPU_CONFIG: {
15543 dtrace_state_t *state;
15544 dtrace_optval_t *opt, rs, c;
15545
15546 /*
15547 * For now, we only allocate a new buffer for anonymous state.
15548 */
15549 if ((state = dtrace_anon.dta_state) == NULL)
15550 break;
15551
15552 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15553 break;
15554
15555 opt = state->dts_options;
15556 c = opt[DTRACEOPT_CPU];
15557
15558 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15559 break;
15560
15561 /*
15562 * Regardless of what the actual policy is, we're going to
15563 * temporarily set our resize policy to be manual. We're
15564 * also going to temporarily set our CPU option to denote
15565 * the newly configured CPU.
15566 */
15567 rs = opt[DTRACEOPT_BUFRESIZE];
15568 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15569 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15570
15571 (void) dtrace_state_buffers(state);
15572
15573 opt[DTRACEOPT_BUFRESIZE] = rs;
15574 opt[DTRACEOPT_CPU] = c;
15575
15576 break;
15577 }
15578
15579 case CPU_UNCONFIG:
15580 /*
15581 * We don't free the buffer in the CPU_UNCONFIG case. (The
15582 * buffer will be freed when the consumer exits.)
15583 */
15584 break;
15585
15586 default:
15587 break;
15588 }
15589
15590 lck_mtx_unlock(&dtrace_lock);
15591 return (0);
15592 }
15593
15594 static void
15595 dtrace_cpu_setup_initial(processorid_t cpu)
15596 {
15597 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15598 }
15599
15600 static void
15601 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15602 {
15603 if (dtrace_toxranges >= dtrace_toxranges_max) {
15604 int osize, nsize;
15605 dtrace_toxrange_t *range;
15606
15607 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15608
15609 if (osize == 0) {
15610 ASSERT(dtrace_toxrange == NULL);
15611 ASSERT(dtrace_toxranges_max == 0);
15612 dtrace_toxranges_max = 1;
15613 } else {
15614 dtrace_toxranges_max <<= 1;
15615 }
15616
15617 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15618 range = kmem_zalloc(nsize, KM_SLEEP);
15619
15620 if (dtrace_toxrange != NULL) {
15621 ASSERT(osize != 0);
15622 bcopy(dtrace_toxrange, range, osize);
15623 kmem_free(dtrace_toxrange, osize);
15624 }
15625
15626 dtrace_toxrange = range;
15627 }
15628
15629 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15630 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15631
15632 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15633 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15634 dtrace_toxranges++;
15635 }
15636
15637 /*
15638 * DTrace Driver Cookbook Functions
15639 */
15640 /*ARGSUSED*/
15641 static int
15642 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15643 {
15644 #pragma unused(cmd) /* __APPLE__ */
15645 dtrace_provider_id_t id;
15646 dtrace_state_t *state = NULL;
15647 dtrace_enabling_t *enab;
15648
15649 lck_mtx_lock(&cpu_lock);
15650 lck_mtx_lock(&dtrace_provider_lock);
15651 lck_mtx_lock(&dtrace_lock);
15652
15653 if (ddi_soft_state_init(&dtrace_softstate,
15654 sizeof (dtrace_state_t), 0) != 0) {
15655 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15656 lck_mtx_unlock(&dtrace_lock);
15657 lck_mtx_unlock(&dtrace_provider_lock);
15658 lck_mtx_unlock(&cpu_lock);
15659 return (DDI_FAILURE);
15660 }
15661
15662 /* Darwin uses BSD cloning device driver to automagically obtain minor device number. */
15663
15664 ddi_report_dev(devi);
15665 dtrace_devi = devi;
15666
15667 dtrace_modload = dtrace_module_loaded;
15668 dtrace_modunload = dtrace_module_unloaded;
15669 dtrace_cpu_init = dtrace_cpu_setup_initial;
15670 dtrace_helpers_cleanup = dtrace_helpers_destroy;
15671 dtrace_helpers_fork = dtrace_helpers_duplicate;
15672 dtrace_cpustart_init = dtrace_suspend;
15673 dtrace_cpustart_fini = dtrace_resume;
15674 dtrace_debugger_init = dtrace_suspend;
15675 dtrace_debugger_fini = dtrace_resume;
15676
15677 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15678
15679 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
15680
15681 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15682 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15683 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15684 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15685 VM_SLEEP | VMC_IDENTIFIER);
15686 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15687 1, INT_MAX, 0);
15688
15689 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15690 sizeof (dtrace_dstate_percpu_t) * (int)NCPU, DTRACE_STATE_ALIGN,
15691 NULL, NULL, NULL, NULL, NULL, 0);
15692
15693 lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
15694 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15695 offsetof(dtrace_probe_t, dtpr_nextmod),
15696 offsetof(dtrace_probe_t, dtpr_prevmod));
15697
15698 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15699 offsetof(dtrace_probe_t, dtpr_nextfunc),
15700 offsetof(dtrace_probe_t, dtpr_prevfunc));
15701
15702 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15703 offsetof(dtrace_probe_t, dtpr_nextname),
15704 offsetof(dtrace_probe_t, dtpr_prevname));
15705
15706 if (dtrace_retain_max < 1) {
15707 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15708 "setting to 1", dtrace_retain_max);
15709 dtrace_retain_max = 1;
15710 }
15711
15712 /*
15713 * Now discover our toxic ranges.
15714 */
15715 dtrace_toxic_ranges(dtrace_toxrange_add);
15716
15717 /*
15718 * Before we register ourselves as a provider to our own framework,
15719 * we would like to assert that dtrace_provider is NULL -- but that's
15720 * not true if we were loaded as a dependency of a DTrace provider.
15721 * Once we've registered, we can assert that dtrace_provider is our
15722 * pseudo provider.
15723 */
15724 (void) dtrace_register("dtrace", &dtrace_provider_attr,
15725 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15726
15727 ASSERT(dtrace_provider != NULL);
15728 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15729
15730 #if defined (__x86_64__)
15731 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15732 dtrace_provider, NULL, NULL, "BEGIN", 1, NULL);
15733 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15734 dtrace_provider, NULL, NULL, "END", 0, NULL);
15735 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15736 dtrace_provider, NULL, NULL, "ERROR", 3, NULL);
15737 #else
15738 #error Unknown Architecture
15739 #endif
15740
15741 dtrace_anon_property();
15742 lck_mtx_unlock(&cpu_lock);
15743
15744 /*
15745 * If DTrace helper tracing is enabled, we need to allocate the
15746 * trace buffer and initialize the values.
15747 */
15748 if (dtrace_helptrace_enabled) {
15749 ASSERT(dtrace_helptrace_buffer == NULL);
15750 dtrace_helptrace_buffer =
15751 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15752 dtrace_helptrace_next = 0;
15753 }
15754
15755 /*
15756 * If there are already providers, we must ask them to provide their
15757 * probes, and then match any anonymous enabling against them. Note
15758 * that there should be no other retained enablings at this time:
15759 * the only retained enablings at this time should be the anonymous
15760 * enabling.
15761 */
15762 if (dtrace_anon.dta_enabling != NULL) {
15763 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15764
15765 /*
15766 * APPLE NOTE: if handling anonymous dof, switch symbol modes.
15767 */
15768 if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) {
15769 dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_KERNEL;
15770 }
15771
15772 dtrace_enabling_provide(NULL);
15773 state = dtrace_anon.dta_state;
15774
15775 /*
15776 * We couldn't hold cpu_lock across the above call to
15777 * dtrace_enabling_provide(), but we must hold it to actually
15778 * enable the probes. We have to drop all of our locks, pick
15779 * up cpu_lock, and regain our locks before matching the
15780 * retained anonymous enabling.
15781 */
15782 lck_mtx_unlock(&dtrace_lock);
15783 lck_mtx_unlock(&dtrace_provider_lock);
15784
15785 lck_mtx_lock(&cpu_lock);
15786 lck_mtx_lock(&dtrace_provider_lock);
15787 lck_mtx_lock(&dtrace_lock);
15788
15789 if ((enab = dtrace_anon.dta_enabling) != NULL)
15790 (void) dtrace_enabling_match(enab, NULL);
15791
15792 lck_mtx_unlock(&cpu_lock);
15793 }
15794
15795 lck_mtx_unlock(&dtrace_lock);
15796 lck_mtx_unlock(&dtrace_provider_lock);
15797
15798 if (state != NULL) {
15799 /*
15800 * If we created any anonymous state, set it going now.
15801 */
15802 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15803 }
15804
15805 return (DDI_SUCCESS);
15806 }
15807
15808 /*ARGSUSED*/
15809 static int
15810 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15811 {
15812 #pragma unused(flag, otyp)
15813 dtrace_state_t *state;
15814 uint32_t priv;
15815 uid_t uid;
15816 zoneid_t zoneid;
15817 int rv;
15818
15819 /* APPLE: Darwin puts Helper on its own major device. */
15820
15821 /*
15822 * If no DTRACE_PRIV_* bits are set in the credential, then the
15823 * caller lacks sufficient permission to do anything with DTrace.
15824 */
15825 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15826 if (priv == DTRACE_PRIV_NONE)
15827 return (EACCES);
15828
15829 /*
15830 * APPLE NOTE: We delay the initialization of fasttrap as late as possible.
15831 * It certainly can't be later than now!
15832 */
15833 fasttrap_init();
15834
15835 /*
15836 * Ask all providers to provide all their probes.
15837 */
15838 lck_mtx_lock(&dtrace_provider_lock);
15839 dtrace_probe_provide(NULL, NULL);
15840 lck_mtx_unlock(&dtrace_provider_lock);
15841
15842 lck_mtx_lock(&cpu_lock);
15843 lck_mtx_lock(&dtrace_lock);
15844 dtrace_opens++;
15845 dtrace_membar_producer();
15846
15847 /*
15848 * If the kernel debugger is active (that is, if the kernel debugger
15849 * modified text in some way), we won't allow the open.
15850 */
15851 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15852 dtrace_opens--;
15853 lck_mtx_unlock(&dtrace_lock);
15854 lck_mtx_unlock(&cpu_lock);
15855 return (EBUSY);
15856 }
15857
15858 rv = dtrace_state_create(devp, cred_p, &state);
15859 lck_mtx_unlock(&cpu_lock);
15860
15861 if (rv != 0 || state == NULL) {
15862 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15863 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15864 lck_mtx_unlock(&dtrace_lock);
15865 /* propagate EAGAIN or ERESTART */
15866 return (rv);
15867 }
15868
15869 lck_mtx_unlock(&dtrace_lock);
15870
15871 lck_rw_lock_exclusive(&dtrace_dof_mode_lock);
15872
15873 /*
15874 * If we are currently lazy, transition states.
15875 *
15876 * Unlike dtrace_close, we do not need to check the
15877 * value of dtrace_opens, as any positive value (and
15878 * we count as 1) means we transition states.
15879 */
15880 if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON) {
15881 dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_OFF;
15882
15883 /*
15884 * Iterate all existing processes and load lazy dofs.
15885 */
15886 proc_iterate(PROC_ALLPROCLIST | PROC_NOWAITTRANS,
15887 dtrace_lazy_dofs_proc_iterate_doit,
15888 NULL,
15889 dtrace_lazy_dofs_proc_iterate_filter,
15890 NULL);
15891 }
15892
15893 lck_rw_unlock_exclusive(&dtrace_dof_mode_lock);
15894
15895 /*
15896 * Update kernel symbol state.
15897 *
15898 * We must own the provider and dtrace locks.
15899 *
15900 * NOTE! It may appear there is a race by setting this value so late
15901 * after dtrace_probe_provide. However, any kext loaded after the
15902 * call to probe provide and before we set LAZY_OFF will be marked as
15903 * eligible for symbols from userspace. The same dtrace that is currently
15904 * calling dtrace_open() (this call!) will get a list of kexts needing
15905 * symbols and fill them in, thus closing the race window.
15906 *
15907 * We want to set this value only after it certain it will succeed, as
15908 * this significantly reduces the complexity of error exits.
15909 */
15910 lck_mtx_lock(&dtrace_lock);
15911 if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) {
15912 dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_KERNEL;
15913 }
15914 lck_mtx_unlock(&dtrace_lock);
15915
15916 return (0);
15917 }
15918
15919 /*ARGSUSED*/
15920 static int
15921 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15922 {
15923 #pragma unused(flag, otyp, cred_p) /* __APPLE__ */
15924 minor_t minor = getminor(dev);
15925 dtrace_state_t *state;
15926
15927 /* APPLE NOTE: Darwin puts Helper on its own major device. */
15928
15929 state = ddi_get_soft_state(dtrace_softstate, minor);
15930
15931 lck_mtx_lock(&cpu_lock);
15932 lck_mtx_lock(&dtrace_lock);
15933
15934 if (state->dts_anon) {
15935 /*
15936 * There is anonymous state. Destroy that first.
15937 */
15938 ASSERT(dtrace_anon.dta_state == NULL);
15939 dtrace_state_destroy(state->dts_anon);
15940 }
15941
15942 dtrace_state_destroy(state);
15943 ASSERT(dtrace_opens > 0);
15944
15945 /*
15946 * Only relinquish control of the kernel debugger interface when there
15947 * are no consumers and no anonymous enablings.
15948 */
15949 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15950 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15951
15952 lck_mtx_unlock(&dtrace_lock);
15953 lck_mtx_unlock(&cpu_lock);
15954
15955 /*
15956 * Lock ordering requires the dof mode lock be taken before
15957 * the dtrace_lock.
15958 */
15959 lck_rw_lock_exclusive(&dtrace_dof_mode_lock);
15960 lck_mtx_lock(&dtrace_lock);
15961
15962 if (dtrace_opens == 0) {
15963 /*
15964 * If we are currently lazy-off, and this is the last close, transition to
15965 * lazy state.
15966 */
15967 if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF) {
15968 dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_ON;
15969 }
15970
15971 /*
15972 * If we are the last dtrace client, switch back to lazy (from userspace) symbols
15973 */
15974 if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_KERNEL) {
15975 dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE;
15976 }
15977 }
15978
15979 lck_mtx_unlock(&dtrace_lock);
15980 lck_rw_unlock_exclusive(&dtrace_dof_mode_lock);
15981
15982 /*
15983 * Kext probes may be retained past the end of the kext's lifespan. The
15984 * probes are kept until the last reference to them has been removed.
15985 * Since closing an active dtrace context is likely to drop that last reference,
15986 * lets take a shot at cleaning out the orphaned probes now.
15987 */
15988 dtrace_module_unloaded(NULL);
15989
15990 return (0);
15991 }
15992
15993 /*ARGSUSED*/
15994 static int
15995 dtrace_ioctl_helper(u_long cmd, caddr_t arg, int *rv)
15996 {
15997 #pragma unused(rv)
15998 /*
15999 * Safe to check this outside the dof mode lock
16000 */
16001 if (dtrace_dof_mode == DTRACE_DOF_MODE_NEVER)
16002 return KERN_SUCCESS;
16003
16004 switch (cmd) {
16005 case DTRACEHIOC_ADDDOF:
16006 {
16007 dof_helper_t *dhp = NULL;
16008 size_t dof_ioctl_data_size;
16009 dof_ioctl_data_t* multi_dof;
16010 unsigned int i;
16011 int rval = 0;
16012 user_addr_t user_address = *(user_addr_t*)arg;
16013 uint64_t dof_count;
16014 int multi_dof_claimed = 0;
16015 proc_t* p = current_proc();
16016
16017 /*
16018 * Read the number of DOF sections being passed in.
16019 */
16020 if (copyin(user_address + offsetof(dof_ioctl_data_t, dofiod_count),
16021 &dof_count,
16022 sizeof(dof_count))) {
16023 dtrace_dof_error(NULL, "failed to copyin dofiod_count");
16024 return (EFAULT);
16025 }
16026
16027 /*
16028 * Range check the count.
16029 */
16030 if (dof_count == 0 || dof_count > 1024) {
16031 dtrace_dof_error(NULL, "dofiod_count is not valid");
16032 return (EINVAL);
16033 }
16034
16035 /*
16036 * Allocate a correctly sized structure and copyin the data.
16037 */
16038 dof_ioctl_data_size = DOF_IOCTL_DATA_T_SIZE(dof_count);
16039 if ((multi_dof = kmem_alloc(dof_ioctl_data_size, KM_SLEEP)) == NULL)
16040 return (ENOMEM);
16041
16042 /* NOTE! We can no longer exit this method via return */
16043 if (copyin(user_address, multi_dof, dof_ioctl_data_size) != 0) {
16044 dtrace_dof_error(NULL, "failed copyin of dof_ioctl_data_t");
16045 rval = EFAULT;
16046 goto cleanup;
16047 }
16048
16049 /*
16050 * Check that the count didn't change between the first copyin and the second.
16051 */
16052 if (multi_dof->dofiod_count != dof_count) {
16053 rval = EINVAL;
16054 goto cleanup;
16055 }
16056
16057 /*
16058 * Try to process lazily first.
16059 */
16060 rval = dtrace_lazy_dofs_add(p, multi_dof, &multi_dof_claimed);
16061
16062 /*
16063 * If rval is EACCES, we must be non-lazy.
16064 */
16065 if (rval == EACCES) {
16066 rval = 0;
16067 /*
16068 * Process each dof_helper_t
16069 */
16070 i = 0;
16071 do {
16072 dhp = &multi_dof->dofiod_helpers[i];
16073
16074 dof_hdr_t *dof = dtrace_dof_copyin(dhp->dofhp_dof, &rval);
16075
16076 if (dof != NULL) {
16077 lck_mtx_lock(&dtrace_lock);
16078
16079 /*
16080 * dtrace_helper_slurp() takes responsibility for the dof --
16081 * it may free it now or it may save it and free it later.
16082 */
16083 if ((dhp->dofhp_dof = (uint64_t)dtrace_helper_slurp(p, dof, dhp)) == -1ULL) {
16084 rval = EINVAL;
16085 }
16086
16087 lck_mtx_unlock(&dtrace_lock);
16088 }
16089 } while (++i < multi_dof->dofiod_count && rval == 0);
16090 }
16091
16092 /*
16093 * We need to copyout the multi_dof struct, because it contains
16094 * the generation (unique id) values needed to call DTRACEHIOC_REMOVE
16095 *
16096 * This could certainly be better optimized.
16097 */
16098 if (copyout(multi_dof, user_address, dof_ioctl_data_size) != 0) {
16099 dtrace_dof_error(NULL, "failed copyout of dof_ioctl_data_t");
16100 /* Don't overwrite pre-existing error code */
16101 if (rval == 0) rval = EFAULT;
16102 }
16103
16104 cleanup:
16105 /*
16106 * If we had to allocate struct memory, free it.
16107 */
16108 if (multi_dof != NULL && !multi_dof_claimed) {
16109 kmem_free(multi_dof, dof_ioctl_data_size);
16110 }
16111
16112 return rval;
16113 }
16114
16115 case DTRACEHIOC_REMOVE: {
16116 int generation = *(int*)arg;
16117 proc_t* p = current_proc();
16118
16119 /*
16120 * Try lazy first.
16121 */
16122 int rval = dtrace_lazy_dofs_remove(p, generation);
16123
16124 /*
16125 * EACCES means non-lazy
16126 */
16127 if (rval == EACCES) {
16128 lck_mtx_lock(&dtrace_lock);
16129 rval = dtrace_helper_destroygen(p, generation);
16130 lck_mtx_unlock(&dtrace_lock);
16131 }
16132
16133 return (rval);
16134 }
16135
16136 default:
16137 break;
16138 }
16139
16140 return ENOTTY;
16141 }
16142
16143 /*ARGSUSED*/
16144 static int
16145 dtrace_ioctl(dev_t dev, u_long cmd, user_addr_t arg, int md, cred_t *cr, int *rv)
16146 {
16147 #pragma unused(md)
16148 minor_t minor = getminor(dev);
16149 dtrace_state_t *state;
16150 int rval;
16151
16152 /* Darwin puts Helper on its own major device. */
16153
16154 state = ddi_get_soft_state(dtrace_softstate, minor);
16155
16156 if (state->dts_anon) {
16157 ASSERT(dtrace_anon.dta_state == NULL);
16158 state = state->dts_anon;
16159 }
16160
16161 switch (cmd) {
16162 case DTRACEIOC_PROVIDER: {
16163 dtrace_providerdesc_t pvd;
16164 dtrace_provider_t *pvp;
16165
16166 if (copyin(arg, &pvd, sizeof (pvd)) != 0)
16167 return (EFAULT);
16168
16169 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16170 lck_mtx_lock(&dtrace_provider_lock);
16171
16172 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16173 if (strncmp(pvp->dtpv_name, pvd.dtvd_name, DTRACE_PROVNAMELEN) == 0)
16174 break;
16175 }
16176
16177 lck_mtx_unlock(&dtrace_provider_lock);
16178
16179 if (pvp == NULL)
16180 return (ESRCH);
16181
16182 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16183 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16184 if (copyout(&pvd, arg, sizeof (pvd)) != 0)
16185 return (EFAULT);
16186
16187 return (0);
16188 }
16189
16190 case DTRACEIOC_EPROBE: {
16191 dtrace_eprobedesc_t epdesc;
16192 dtrace_ecb_t *ecb;
16193 dtrace_action_t *act;
16194 void *buf;
16195 size_t size;
16196 uintptr_t dest;
16197 int nrecs;
16198
16199 if (copyin(arg, &epdesc, sizeof (epdesc)) != 0)
16200 return (EFAULT);
16201
16202 lck_mtx_lock(&dtrace_lock);
16203
16204 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16205 lck_mtx_unlock(&dtrace_lock);
16206 return (EINVAL);
16207 }
16208
16209 if (ecb->dte_probe == NULL) {
16210 lck_mtx_unlock(&dtrace_lock);
16211 return (EINVAL);
16212 }
16213
16214 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16215 epdesc.dtepd_uarg = ecb->dte_uarg;
16216 epdesc.dtepd_size = ecb->dte_size;
16217
16218 nrecs = epdesc.dtepd_nrecs;
16219 epdesc.dtepd_nrecs = 0;
16220 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16221 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16222 continue;
16223
16224 epdesc.dtepd_nrecs++;
16225 }
16226
16227 /*
16228 * Now that we have the size, we need to allocate a temporary
16229 * buffer in which to store the complete description. We need
16230 * the temporary buffer to be able to drop dtrace_lock()
16231 * across the copyout(), below.
16232 */
16233 size = sizeof (dtrace_eprobedesc_t) +
16234 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16235
16236 buf = kmem_alloc(size, KM_SLEEP);
16237 dest = (uintptr_t)buf;
16238
16239 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16240 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16241
16242 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16243 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16244 continue;
16245
16246 if (nrecs-- == 0)
16247 break;
16248
16249 bcopy(&act->dta_rec, (void *)dest,
16250 sizeof (dtrace_recdesc_t));
16251 dest += sizeof (dtrace_recdesc_t);
16252 }
16253
16254 lck_mtx_unlock(&dtrace_lock);
16255
16256 if (copyout(buf, arg, dest - (uintptr_t)buf) != 0) {
16257 kmem_free(buf, size);
16258 return (EFAULT);
16259 }
16260
16261 kmem_free(buf, size);
16262 return (0);
16263 }
16264
16265 case DTRACEIOC_AGGDESC: {
16266 dtrace_aggdesc_t aggdesc;
16267 dtrace_action_t *act;
16268 dtrace_aggregation_t *agg;
16269 int nrecs;
16270 uint32_t offs;
16271 dtrace_recdesc_t *lrec;
16272 void *buf;
16273 size_t size;
16274 uintptr_t dest;
16275
16276 if (copyin(arg, &aggdesc, sizeof (aggdesc)) != 0)
16277 return (EFAULT);
16278
16279 lck_mtx_lock(&dtrace_lock);
16280
16281 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16282 lck_mtx_unlock(&dtrace_lock);
16283 return (EINVAL);
16284 }
16285
16286 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16287
16288 nrecs = aggdesc.dtagd_nrecs;
16289 aggdesc.dtagd_nrecs = 0;
16290
16291 offs = agg->dtag_base;
16292 lrec = &agg->dtag_action.dta_rec;
16293 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16294
16295 for (act = agg->dtag_first; ; act = act->dta_next) {
16296 ASSERT(act->dta_intuple ||
16297 DTRACEACT_ISAGG(act->dta_kind));
16298
16299 /*
16300 * If this action has a record size of zero, it
16301 * denotes an argument to the aggregating action.
16302 * Because the presence of this record doesn't (or
16303 * shouldn't) affect the way the data is interpreted,
16304 * we don't copy it out to save user-level the
16305 * confusion of dealing with a zero-length record.
16306 */
16307 if (act->dta_rec.dtrd_size == 0) {
16308 ASSERT(agg->dtag_hasarg);
16309 continue;
16310 }
16311
16312 aggdesc.dtagd_nrecs++;
16313
16314 if (act == &agg->dtag_action)
16315 break;
16316 }
16317
16318 /*
16319 * Now that we have the size, we need to allocate a temporary
16320 * buffer in which to store the complete description. We need
16321 * the temporary buffer to be able to drop dtrace_lock()
16322 * across the copyout(), below.
16323 */
16324 size = sizeof (dtrace_aggdesc_t) +
16325 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16326
16327 buf = kmem_alloc(size, KM_SLEEP);
16328 dest = (uintptr_t)buf;
16329
16330 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16331 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16332
16333 for (act = agg->dtag_first; ; act = act->dta_next) {
16334 dtrace_recdesc_t rec = act->dta_rec;
16335
16336 /*
16337 * See the comment in the above loop for why we pass
16338 * over zero-length records.
16339 */
16340 if (rec.dtrd_size == 0) {
16341 ASSERT(agg->dtag_hasarg);
16342 continue;
16343 }
16344
16345 if (nrecs-- == 0)
16346 break;
16347
16348 rec.dtrd_offset -= offs;
16349 bcopy(&rec, (void *)dest, sizeof (rec));
16350 dest += sizeof (dtrace_recdesc_t);
16351
16352 if (act == &agg->dtag_action)
16353 break;
16354 }
16355
16356 lck_mtx_unlock(&dtrace_lock);
16357
16358 if (copyout(buf, arg, dest - (uintptr_t)buf) != 0) {
16359 kmem_free(buf, size);
16360 return (EFAULT);
16361 }
16362
16363 kmem_free(buf, size);
16364 return (0);
16365 }
16366
16367 case DTRACEIOC_ENABLE: {
16368 dof_hdr_t *dof;
16369 dtrace_enabling_t *enab = NULL;
16370 dtrace_vstate_t *vstate;
16371 int err = 0;
16372
16373 *rv = 0;
16374
16375 /*
16376 * If a NULL argument has been passed, we take this as our
16377 * cue to reevaluate our enablings.
16378 */
16379 if (arg == 0) {
16380 dtrace_enabling_matchall();
16381
16382 return (0);
16383 }
16384
16385 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16386 return (rval);
16387
16388 lck_mtx_lock(&cpu_lock);
16389 lck_mtx_lock(&dtrace_lock);
16390 vstate = &state->dts_vstate;
16391
16392 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16393 lck_mtx_unlock(&dtrace_lock);
16394 lck_mtx_unlock(&cpu_lock);
16395 dtrace_dof_destroy(dof);
16396 return (EBUSY);
16397 }
16398
16399 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16400 lck_mtx_unlock(&dtrace_lock);
16401 lck_mtx_unlock(&cpu_lock);
16402 dtrace_dof_destroy(dof);
16403 return (EINVAL);
16404 }
16405
16406 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16407 dtrace_enabling_destroy(enab);
16408 lck_mtx_unlock(&dtrace_lock);
16409 lck_mtx_unlock(&cpu_lock);
16410 dtrace_dof_destroy(dof);
16411 return (rval);
16412 }
16413
16414 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16415 err = dtrace_enabling_retain(enab);
16416 } else {
16417 dtrace_enabling_destroy(enab);
16418 }
16419
16420 lck_mtx_unlock(&dtrace_lock);
16421 lck_mtx_unlock(&cpu_lock);
16422 dtrace_dof_destroy(dof);
16423
16424 return (err);
16425 }
16426
16427 case DTRACEIOC_REPLICATE: {
16428 dtrace_repldesc_t desc;
16429 dtrace_probedesc_t *match = &desc.dtrpd_match;
16430 dtrace_probedesc_t *create = &desc.dtrpd_create;
16431 int err;
16432
16433 if (copyin(arg, &desc, sizeof (desc)) != 0)
16434 return (EFAULT);
16435
16436 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16437 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16438 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16439 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16440
16441 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16442 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16443 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16444 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16445
16446 lck_mtx_lock(&dtrace_lock);
16447 err = dtrace_enabling_replicate(state, match, create);
16448 lck_mtx_unlock(&dtrace_lock);
16449
16450 return (err);
16451 }
16452
16453 case DTRACEIOC_PROBEMATCH:
16454 case DTRACEIOC_PROBES: {
16455 dtrace_probe_t *probe = NULL;
16456 dtrace_probedesc_t desc;
16457 dtrace_probekey_t pkey;
16458 dtrace_id_t i;
16459 int m = 0;
16460 uint32_t priv;
16461 uid_t uid;
16462 zoneid_t zoneid;
16463
16464 if (copyin(arg, &desc, sizeof (desc)) != 0)
16465 return (EFAULT);
16466
16467 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16468 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16469 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16470 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16471
16472 /*
16473 * Before we attempt to match this probe, we want to give
16474 * all providers the opportunity to provide it.
16475 */
16476 if (desc.dtpd_id == DTRACE_IDNONE) {
16477 lck_mtx_lock(&dtrace_provider_lock);
16478 dtrace_probe_provide(&desc, NULL);
16479 lck_mtx_unlock(&dtrace_provider_lock);
16480 desc.dtpd_id++;
16481 }
16482
16483 if (cmd == DTRACEIOC_PROBEMATCH) {
16484 dtrace_probekey(&desc, &pkey);
16485 pkey.dtpk_id = DTRACE_IDNONE;
16486 }
16487
16488 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16489
16490 lck_mtx_lock(&dtrace_lock);
16491
16492 if (cmd == DTRACEIOC_PROBEMATCH) {
16493 /* Quiet compiler warning */
16494 for (i = desc.dtpd_id; i <= (dtrace_id_t)dtrace_nprobes; i++) {
16495 if ((probe = dtrace_probes[i - 1]) != NULL &&
16496 (m = dtrace_match_probe(probe, &pkey,
16497 priv, uid, zoneid)) != 0)
16498 break;
16499 }
16500
16501 if (m < 0) {
16502 lck_mtx_unlock(&dtrace_lock);
16503 return (EINVAL);
16504 }
16505
16506 } else {
16507 /* Quiet compiler warning */
16508 for (i = desc.dtpd_id; i <= (dtrace_id_t)dtrace_nprobes; i++) {
16509 if ((probe = dtrace_probes[i - 1]) != NULL &&
16510 dtrace_match_priv(probe, priv, uid, zoneid))
16511 break;
16512 }
16513 }
16514
16515 if (probe == NULL) {
16516 lck_mtx_unlock(&dtrace_lock);
16517 return (ESRCH);
16518 }
16519
16520 dtrace_probe_description(probe, &desc);
16521 lck_mtx_unlock(&dtrace_lock);
16522
16523 if (copyout(&desc, arg, sizeof (desc)) != 0)
16524 return (EFAULT);
16525
16526 return (0);
16527 }
16528
16529 case DTRACEIOC_PROBEARG: {
16530 dtrace_argdesc_t desc;
16531 dtrace_probe_t *probe;
16532 dtrace_provider_t *prov;
16533
16534 if (copyin(arg, &desc, sizeof (desc)) != 0)
16535 return (EFAULT);
16536
16537 if (desc.dtargd_id == DTRACE_IDNONE)
16538 return (EINVAL);
16539
16540 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16541 return (EINVAL);
16542
16543 lck_mtx_lock(&dtrace_provider_lock);
16544 lck_mtx_lock(&mod_lock);
16545 lck_mtx_lock(&dtrace_lock);
16546
16547 /* Quiet compiler warning */
16548 if (desc.dtargd_id > (dtrace_id_t)dtrace_nprobes) {
16549 lck_mtx_unlock(&dtrace_lock);
16550 lck_mtx_unlock(&mod_lock);
16551 lck_mtx_unlock(&dtrace_provider_lock);
16552 return (EINVAL);
16553 }
16554
16555 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16556 lck_mtx_unlock(&dtrace_lock);
16557 lck_mtx_unlock(&mod_lock);
16558 lck_mtx_unlock(&dtrace_provider_lock);
16559 return (EINVAL);
16560 }
16561
16562 lck_mtx_unlock(&dtrace_lock);
16563
16564 prov = probe->dtpr_provider;
16565
16566 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16567 /*
16568 * There isn't any typed information for this probe.
16569 * Set the argument number to DTRACE_ARGNONE.
16570 */
16571 desc.dtargd_ndx = DTRACE_ARGNONE;
16572 } else {
16573 desc.dtargd_native[0] = '\0';
16574 desc.dtargd_xlate[0] = '\0';
16575 desc.dtargd_mapping = desc.dtargd_ndx;
16576
16577 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16578 probe->dtpr_id, probe->dtpr_arg, &desc);
16579 }
16580
16581 lck_mtx_unlock(&mod_lock);
16582 lck_mtx_unlock(&dtrace_provider_lock);
16583
16584 if (copyout(&desc, arg, sizeof (desc)) != 0)
16585 return (EFAULT);
16586
16587 return (0);
16588 }
16589
16590 case DTRACEIOC_GO: {
16591 processorid_t cpuid;
16592 rval = dtrace_state_go(state, &cpuid);
16593
16594 if (rval != 0)
16595 return (rval);
16596
16597 if (copyout(&cpuid, arg, sizeof (cpuid)) != 0)
16598 return (EFAULT);
16599
16600 return (0);
16601 }
16602
16603 case DTRACEIOC_STOP: {
16604 processorid_t cpuid;
16605
16606 lck_mtx_lock(&dtrace_lock);
16607 rval = dtrace_state_stop(state, &cpuid);
16608 lck_mtx_unlock(&dtrace_lock);
16609
16610 if (rval != 0)
16611 return (rval);
16612
16613 if (copyout(&cpuid, arg, sizeof (cpuid)) != 0)
16614 return (EFAULT);
16615
16616 return (0);
16617 }
16618
16619 case DTRACEIOC_DOFGET: {
16620 dof_hdr_t hdr, *dof;
16621 uint64_t len;
16622
16623 if (copyin(arg, &hdr, sizeof (hdr)) != 0)
16624 return (EFAULT);
16625
16626 lck_mtx_lock(&dtrace_lock);
16627 dof = dtrace_dof_create(state);
16628 lck_mtx_unlock(&dtrace_lock);
16629
16630 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16631 rval = copyout(dof, arg, len);
16632 dtrace_dof_destroy(dof);
16633
16634 return (rval == 0 ? 0 : EFAULT);
16635 }
16636
16637 case DTRACEIOC_AGGSNAP:
16638 case DTRACEIOC_BUFSNAP: {
16639 dtrace_bufdesc_t desc;
16640 caddr_t cached;
16641 dtrace_buffer_t *buf;
16642
16643 if (copyin(arg, &desc, sizeof (desc)) != 0)
16644 return (EFAULT);
16645
16646 if ((int)desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16647 return (EINVAL);
16648
16649 lck_mtx_lock(&dtrace_lock);
16650
16651 if (cmd == DTRACEIOC_BUFSNAP) {
16652 buf = &state->dts_buffer[desc.dtbd_cpu];
16653 } else {
16654 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16655 }
16656
16657 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16658 size_t sz = buf->dtb_offset;
16659
16660 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16661 lck_mtx_unlock(&dtrace_lock);
16662 return (EBUSY);
16663 }
16664
16665 /*
16666 * If this buffer has already been consumed, we're
16667 * going to indicate that there's nothing left here
16668 * to consume.
16669 */
16670 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16671 lck_mtx_unlock(&dtrace_lock);
16672
16673 desc.dtbd_size = 0;
16674 desc.dtbd_drops = 0;
16675 desc.dtbd_errors = 0;
16676 desc.dtbd_oldest = 0;
16677 sz = sizeof (desc);
16678
16679 if (copyout(&desc, arg, sz) != 0)
16680 return (EFAULT);
16681
16682 return (0);
16683 }
16684
16685 /*
16686 * If this is a ring buffer that has wrapped, we want
16687 * to copy the whole thing out.
16688 */
16689 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16690 dtrace_buffer_polish(buf);
16691 sz = buf->dtb_size;
16692 }
16693
16694 if (copyout(buf->dtb_tomax, (user_addr_t)desc.dtbd_data, sz) != 0) {
16695 lck_mtx_unlock(&dtrace_lock);
16696 return (EFAULT);
16697 }
16698
16699 desc.dtbd_size = sz;
16700 desc.dtbd_drops = buf->dtb_drops;
16701 desc.dtbd_errors = buf->dtb_errors;
16702 desc.dtbd_oldest = buf->dtb_xamot_offset;
16703 desc.dtbd_timestamp = dtrace_gethrtime();
16704
16705 lck_mtx_unlock(&dtrace_lock);
16706
16707 if (copyout(&desc, arg, sizeof (desc)) != 0)
16708 return (EFAULT);
16709
16710 buf->dtb_flags |= DTRACEBUF_CONSUMED;
16711
16712 return (0);
16713 }
16714
16715 if (buf->dtb_tomax == NULL) {
16716 ASSERT(buf->dtb_xamot == NULL);
16717 lck_mtx_unlock(&dtrace_lock);
16718 return (ENOENT);
16719 }
16720
16721 cached = buf->dtb_tomax;
16722 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16723
16724 dtrace_xcall(desc.dtbd_cpu,
16725 (dtrace_xcall_t)dtrace_buffer_switch, buf);
16726
16727 state->dts_errors += buf->dtb_xamot_errors;
16728
16729 /*
16730 * If the buffers did not actually switch, then the cross call
16731 * did not take place -- presumably because the given CPU is
16732 * not in the ready set. If this is the case, we'll return
16733 * ENOENT.
16734 */
16735 if (buf->dtb_tomax == cached) {
16736 ASSERT(buf->dtb_xamot != cached);
16737 lck_mtx_unlock(&dtrace_lock);
16738 return (ENOENT);
16739 }
16740
16741 ASSERT(cached == buf->dtb_xamot);
16742
16743 /*
16744 * We have our snapshot; now copy it out.
16745 */
16746 if (copyout(buf->dtb_xamot, (user_addr_t)desc.dtbd_data,
16747 buf->dtb_xamot_offset) != 0) {
16748 lck_mtx_unlock(&dtrace_lock);
16749 return (EFAULT);
16750 }
16751
16752 desc.dtbd_size = buf->dtb_xamot_offset;
16753 desc.dtbd_drops = buf->dtb_xamot_drops;
16754 desc.dtbd_errors = buf->dtb_xamot_errors;
16755 desc.dtbd_oldest = 0;
16756 desc.dtbd_timestamp = buf->dtb_switched;
16757
16758 lck_mtx_unlock(&dtrace_lock);
16759
16760 /*
16761 * Finally, copy out the buffer description.
16762 */
16763 if (copyout(&desc, arg, sizeof (desc)) != 0)
16764 return (EFAULT);
16765
16766 return (0);
16767 }
16768
16769 case DTRACEIOC_CONF: {
16770 dtrace_conf_t conf;
16771
16772 bzero(&conf, sizeof (conf));
16773 conf.dtc_difversion = DIF_VERSION;
16774 conf.dtc_difintregs = DIF_DIR_NREGS;
16775 conf.dtc_diftupregs = DIF_DTR_NREGS;
16776 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16777
16778 if (copyout(&conf, arg, sizeof (conf)) != 0)
16779 return (EFAULT);
16780
16781 return (0);
16782 }
16783
16784 case DTRACEIOC_STATUS: {
16785 dtrace_status_t stat;
16786 dtrace_dstate_t *dstate;
16787 int i, j;
16788 uint64_t nerrs;
16789
16790 /*
16791 * See the comment in dtrace_state_deadman() for the reason
16792 * for setting dts_laststatus to INT64_MAX before setting
16793 * it to the correct value.
16794 */
16795 state->dts_laststatus = INT64_MAX;
16796 dtrace_membar_producer();
16797 state->dts_laststatus = dtrace_gethrtime();
16798
16799 bzero(&stat, sizeof (stat));
16800
16801 lck_mtx_lock(&dtrace_lock);
16802
16803 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16804 lck_mtx_unlock(&dtrace_lock);
16805 return (ENOENT);
16806 }
16807
16808 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16809 stat.dtst_exiting = 1;
16810
16811 nerrs = state->dts_errors;
16812 dstate = &state->dts_vstate.dtvs_dynvars;
16813
16814 for (i = 0; i < (int)NCPU; i++) {
16815 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16816
16817 stat.dtst_dyndrops += dcpu->dtdsc_drops;
16818 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16819 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16820
16821 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16822 stat.dtst_filled++;
16823
16824 nerrs += state->dts_buffer[i].dtb_errors;
16825
16826 for (j = 0; j < state->dts_nspeculations; j++) {
16827 dtrace_speculation_t *spec;
16828 dtrace_buffer_t *buf;
16829
16830 spec = &state->dts_speculations[j];
16831 buf = &spec->dtsp_buffer[i];
16832 stat.dtst_specdrops += buf->dtb_xamot_drops;
16833 }
16834 }
16835
16836 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16837 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16838 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16839 stat.dtst_dblerrors = state->dts_dblerrors;
16840 stat.dtst_killed =
16841 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16842 stat.dtst_errors = nerrs;
16843
16844 lck_mtx_unlock(&dtrace_lock);
16845
16846 if (copyout(&stat, arg, sizeof (stat)) != 0)
16847 return (EFAULT);
16848
16849 return (0);
16850 }
16851
16852 case DTRACEIOC_FORMAT: {
16853 dtrace_fmtdesc_t fmt;
16854 char *str;
16855 int len;
16856
16857 if (copyin(arg, &fmt, sizeof (fmt)) != 0)
16858 return (EFAULT);
16859
16860 lck_mtx_lock(&dtrace_lock);
16861
16862 if (fmt.dtfd_format == 0 ||
16863 fmt.dtfd_format > state->dts_nformats) {
16864 lck_mtx_unlock(&dtrace_lock);
16865 return (EINVAL);
16866 }
16867
16868 /*
16869 * Format strings are allocated contiguously and they are
16870 * never freed; if a format index is less than the number
16871 * of formats, we can assert that the format map is non-NULL
16872 * and that the format for the specified index is non-NULL.
16873 */
16874 ASSERT(state->dts_formats != NULL);
16875 str = state->dts_formats[fmt.dtfd_format - 1];
16876 ASSERT(str != NULL);
16877
16878 len = strlen(str) + 1;
16879
16880 if (len > fmt.dtfd_length) {
16881 fmt.dtfd_length = len;
16882
16883 if (copyout(&fmt, arg, sizeof (fmt)) != 0) {
16884 lck_mtx_unlock(&dtrace_lock);
16885 return (EINVAL);
16886 }
16887 } else {
16888 if (copyout(str, (user_addr_t)fmt.dtfd_string, len) != 0) {
16889 lck_mtx_unlock(&dtrace_lock);
16890 return (EINVAL);
16891 }
16892 }
16893
16894 lck_mtx_unlock(&dtrace_lock);
16895 return (0);
16896 }
16897
16898 case DTRACEIOC_MODUUIDSLIST: {
16899 size_t module_uuids_list_size;
16900 dtrace_module_uuids_list_t* uuids_list;
16901 uint64_t dtmul_count;
16902
16903 /*
16904 * Security restrictions make this operation illegal, if this is enabled DTrace
16905 * must refuse to provide any fbt probes.
16906 */
16907 if (dtrace_fbt_probes_restricted()) {
16908 cmn_err(CE_WARN, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
16909 return (EPERM);
16910 }
16911
16912 /*
16913 * Fail if the kernel symbol mode makes this operation illegal.
16914 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
16915 * for them without holding the dtrace_lock.
16916 */
16917 if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER ||
16918 dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) {
16919 cmn_err(CE_WARN, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_MODUUIDSLIST", dtrace_kernel_symbol_mode);
16920 return (EPERM);
16921 }
16922
16923 /*
16924 * Read the number of symbolsdesc structs being passed in.
16925 */
16926 if (copyin(arg + offsetof(dtrace_module_uuids_list_t, dtmul_count),
16927 &dtmul_count,
16928 sizeof(dtmul_count))) {
16929 cmn_err(CE_WARN, "failed to copyin dtmul_count");
16930 return (EFAULT);
16931 }
16932
16933 /*
16934 * Range check the count. More than 2k kexts is probably an error.
16935 */
16936 if (dtmul_count > 2048) {
16937 cmn_err(CE_WARN, "dtmul_count is not valid");
16938 return (EINVAL);
16939 }
16940
16941 /*
16942 * For all queries, we return EINVAL when the user specified
16943 * count does not match the actual number of modules we find
16944 * available.
16945 *
16946 * If the user specified count is zero, then this serves as a
16947 * simple query to count the available modules in need of symbols.
16948 */
16949
16950 rval = 0;
16951
16952 if (dtmul_count == 0)
16953 {
16954 lck_mtx_lock(&mod_lock);
16955 struct modctl* ctl = dtrace_modctl_list;
16956 while (ctl) {
16957 /* Update the private probes bit */
16958 if (dtrace_provide_private_probes)
16959 ctl->mod_flags |= MODCTL_FBT_PROVIDE_PRIVATE_PROBES;
16960
16961 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl));
16962 if (!MOD_SYMBOLS_DONE(ctl)) {
16963 dtmul_count++;
16964 rval = EINVAL;
16965 }
16966 ctl = ctl->mod_next;
16967 }
16968 lck_mtx_unlock(&mod_lock);
16969
16970 if (copyout(&dtmul_count, arg, sizeof (dtmul_count)) != 0)
16971 return (EFAULT);
16972 else
16973 return (rval);
16974 }
16975
16976 /*
16977 * If we reach this point, then we have a request for full list data.
16978 * Allocate a correctly sized structure and copyin the data.
16979 */
16980 module_uuids_list_size = DTRACE_MODULE_UUIDS_LIST_SIZE(dtmul_count);
16981 if ((uuids_list = kmem_alloc(module_uuids_list_size, KM_SLEEP)) == NULL)
16982 return (ENOMEM);
16983
16984 /* NOTE! We can no longer exit this method via return */
16985 if (copyin(arg, uuids_list, module_uuids_list_size) != 0) {
16986 cmn_err(CE_WARN, "failed copyin of dtrace_module_uuids_list_t");
16987 rval = EFAULT;
16988 goto moduuidslist_cleanup;
16989 }
16990
16991 /*
16992 * Check that the count didn't change between the first copyin and the second.
16993 */
16994 if (uuids_list->dtmul_count != dtmul_count) {
16995 rval = EINVAL;
16996 goto moduuidslist_cleanup;
16997 }
16998
16999 /*
17000 * Build the list of UUID's that need symbols
17001 */
17002 lck_mtx_lock(&mod_lock);
17003
17004 dtmul_count = 0;
17005
17006 struct modctl* ctl = dtrace_modctl_list;
17007 while (ctl) {
17008 /* Update the private probes bit */
17009 if (dtrace_provide_private_probes)
17010 ctl->mod_flags |= MODCTL_FBT_PROVIDE_PRIVATE_PROBES;
17011
17012 /*
17013 * We assume that userspace symbols will be "better" than kernel level symbols,
17014 * as userspace can search for dSYM(s) and symbol'd binaries. Even if kernel syms
17015 * are available, add user syms if the module might use them.
17016 */
17017 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl));
17018 if (!MOD_SYMBOLS_DONE(ctl)) {
17019 UUID* uuid = &uuids_list->dtmul_uuid[dtmul_count];
17020 if (dtmul_count++ < uuids_list->dtmul_count) {
17021 memcpy(uuid, ctl->mod_uuid, sizeof(UUID));
17022 }
17023 }
17024 ctl = ctl->mod_next;
17025 }
17026
17027 lck_mtx_unlock(&mod_lock);
17028
17029 if (uuids_list->dtmul_count < dtmul_count)
17030 rval = EINVAL;
17031
17032 uuids_list->dtmul_count = dtmul_count;
17033
17034 /*
17035 * Copyout the symbols list (or at least the count!)
17036 */
17037 if (copyout(uuids_list, arg, module_uuids_list_size) != 0) {
17038 cmn_err(CE_WARN, "failed copyout of dtrace_symbolsdesc_list_t");
17039 rval = EFAULT;
17040 }
17041
17042 moduuidslist_cleanup:
17043 /*
17044 * If we had to allocate struct memory, free it.
17045 */
17046 if (uuids_list != NULL) {
17047 kmem_free(uuids_list, module_uuids_list_size);
17048 }
17049
17050 return rval;
17051 }
17052
17053 case DTRACEIOC_PROVMODSYMS: {
17054 size_t module_symbols_size;
17055 dtrace_module_symbols_t* module_symbols;
17056 uint64_t dtmodsyms_count;
17057
17058 /*
17059 * Security restrictions make this operation illegal, if this is enabled DTrace
17060 * must refuse to provide any fbt probes.
17061 */
17062 if (dtrace_fbt_probes_restricted()) {
17063 cmn_err(CE_WARN, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
17064 return (EPERM);
17065 }
17066
17067 /*
17068 * Fail if the kernel symbol mode makes this operation illegal.
17069 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
17070 * for them without holding the dtrace_lock.
17071 */
17072 if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER ||
17073 dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) {
17074 cmn_err(CE_WARN, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_PROVMODSYMS", dtrace_kernel_symbol_mode);
17075 return (EPERM);
17076 }
17077
17078 /*
17079 * Read the number of module symbols structs being passed in.
17080 */
17081 if (copyin(arg + offsetof(dtrace_module_symbols_t, dtmodsyms_count),
17082 &dtmodsyms_count,
17083 sizeof(dtmodsyms_count))) {
17084 cmn_err(CE_WARN, "failed to copyin dtmodsyms_count");
17085 return (EFAULT);
17086 }
17087
17088 /*
17089 * Range check the count. How much data can we pass around?
17090 * FIX ME!
17091 */
17092 if (dtmodsyms_count == 0 || (dtmodsyms_count > 100 * 1024)) {
17093 cmn_err(CE_WARN, "dtmodsyms_count is not valid");
17094 return (EINVAL);
17095 }
17096
17097 /*
17098 * Allocate a correctly sized structure and copyin the data.
17099 */
17100 module_symbols_size = DTRACE_MODULE_SYMBOLS_SIZE(dtmodsyms_count);
17101 if ((module_symbols = kmem_alloc(module_symbols_size, KM_SLEEP)) == NULL)
17102 return (ENOMEM);
17103
17104 rval = 0;
17105
17106 /* NOTE! We can no longer exit this method via return */
17107 if (copyin(arg, module_symbols, module_symbols_size) != 0) {
17108 cmn_err(CE_WARN, "failed copyin of dtrace_module_symbols_t, symbol count %llu", module_symbols->dtmodsyms_count);
17109 rval = EFAULT;
17110 goto module_symbols_cleanup;
17111 }
17112
17113 /*
17114 * Check that the count didn't change between the first copyin and the second.
17115 */
17116 if (module_symbols->dtmodsyms_count != dtmodsyms_count) {
17117 rval = EINVAL;
17118 goto module_symbols_cleanup;
17119 }
17120
17121 /*
17122 * Find the modctl to add symbols to.
17123 */
17124 lck_mtx_lock(&dtrace_provider_lock);
17125 lck_mtx_lock(&mod_lock);
17126
17127 struct modctl* ctl = dtrace_modctl_list;
17128 while (ctl) {
17129 /* Update the private probes bit */
17130 if (dtrace_provide_private_probes)
17131 ctl->mod_flags |= MODCTL_FBT_PROVIDE_PRIVATE_PROBES;
17132
17133 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl));
17134 if (MOD_HAS_UUID(ctl) && !MOD_SYMBOLS_DONE(ctl)) {
17135 if (memcmp(module_symbols->dtmodsyms_uuid, ctl->mod_uuid, sizeof(UUID)) == 0) {
17136 /* BINGO! */
17137 ctl->mod_user_symbols = module_symbols;
17138 break;
17139 }
17140 }
17141 ctl = ctl->mod_next;
17142 }
17143
17144 if (ctl) {
17145 dtrace_provider_t *prv;
17146
17147 /*
17148 * We're going to call each providers per-module provide operation
17149 * specifying only this module.
17150 */
17151 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
17152 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
17153
17154 /*
17155 * We gave every provider a chance to provide with the user syms, go ahead and clear them
17156 */
17157 ctl->mod_user_symbols = NULL; /* MUST reset this to clear HAS_USERSPACE_SYMBOLS */
17158 }
17159
17160 lck_mtx_unlock(&mod_lock);
17161 lck_mtx_unlock(&dtrace_provider_lock);
17162
17163 module_symbols_cleanup:
17164 /*
17165 * If we had to allocate struct memory, free it.
17166 */
17167 if (module_symbols != NULL) {
17168 kmem_free(module_symbols, module_symbols_size);
17169 }
17170
17171 return rval;
17172 }
17173
17174 case DTRACEIOC_PROCWAITFOR: {
17175 dtrace_procdesc_t pdesc = {
17176 .p_name = {0},
17177 .p_pid = -1
17178 };
17179
17180 if ((rval = copyin(arg, &pdesc, sizeof(pdesc))) != 0)
17181 goto proc_waitfor_error;
17182
17183 if ((rval = dtrace_proc_waitfor(&pdesc)) != 0)
17184 goto proc_waitfor_error;
17185
17186 if ((rval = copyout(&pdesc, arg, sizeof(pdesc))) != 0)
17187 goto proc_waitfor_error;
17188
17189 return 0;
17190
17191 proc_waitfor_error:
17192 /* The process was suspended, revert this since the client will not do it. */
17193 if (pdesc.p_pid != -1) {
17194 proc_t *proc = proc_find(pdesc.p_pid);
17195 if (proc != PROC_NULL) {
17196 task_pidresume(proc->task);
17197 proc_rele(proc);
17198 }
17199 }
17200
17201 return rval;
17202 }
17203
17204 default:
17205 break;
17206 }
17207
17208 return (ENOTTY);
17209 }
17210
17211 /*
17212 * APPLE NOTE: dtrace_detach not implemented
17213 */
17214 #if !defined(__APPLE__)
17215 /*ARGSUSED*/
17216 static int
17217 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17218 {
17219 dtrace_state_t *state;
17220
17221 switch (cmd) {
17222 case DDI_DETACH:
17223 break;
17224
17225 case DDI_SUSPEND:
17226 return (DDI_SUCCESS);
17227
17228 default:
17229 return (DDI_FAILURE);
17230 }
17231
17232 lck_mtx_lock(&cpu_lock);
17233 lck_mtx_lock(&dtrace_provider_lock);
17234 lck_mtx_lock(&dtrace_lock);
17235
17236 ASSERT(dtrace_opens == 0);
17237
17238 if (dtrace_helpers > 0) {
17239 lck_mtx_unlock(&dtrace_lock);
17240 lck_mtx_unlock(&dtrace_provider_lock);
17241 lck_mtx_unlock(&cpu_lock);
17242 return (DDI_FAILURE);
17243 }
17244
17245 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17246 lck_mtx_unlock(&dtrace_lock);
17247 lck_mtx_unlock(&dtrace_provider_lock);
17248 lck_mtx_unlock(&cpu_lock);
17249 return (DDI_FAILURE);
17250 }
17251
17252 dtrace_provider = NULL;
17253
17254 if ((state = dtrace_anon_grab()) != NULL) {
17255 /*
17256 * If there were ECBs on this state, the provider should
17257 * have not been allowed to detach; assert that there is
17258 * none.
17259 */
17260 ASSERT(state->dts_necbs == 0);
17261 dtrace_state_destroy(state);
17262
17263 /*
17264 * If we're being detached with anonymous state, we need to
17265 * indicate to the kernel debugger that DTrace is now inactive.
17266 */
17267 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17268 }
17269
17270 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17271 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17272 dtrace_cpu_init = NULL;
17273 dtrace_helpers_cleanup = NULL;
17274 dtrace_helpers_fork = NULL;
17275 dtrace_cpustart_init = NULL;
17276 dtrace_cpustart_fini = NULL;
17277 dtrace_debugger_init = NULL;
17278 dtrace_debugger_fini = NULL;
17279 dtrace_kreloc_init = NULL;
17280 dtrace_kreloc_fini = NULL;
17281 dtrace_modload = NULL;
17282 dtrace_modunload = NULL;
17283
17284 lck_mtx_unlock(&cpu_lock);
17285
17286 if (dtrace_helptrace_enabled) {
17287 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
17288 dtrace_helptrace_buffer = NULL;
17289 }
17290
17291 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17292 dtrace_probes = NULL;
17293 dtrace_nprobes = 0;
17294
17295 dtrace_hash_destroy(dtrace_bymod);
17296 dtrace_hash_destroy(dtrace_byfunc);
17297 dtrace_hash_destroy(dtrace_byname);
17298 dtrace_bymod = NULL;
17299 dtrace_byfunc = NULL;
17300 dtrace_byname = NULL;
17301
17302 kmem_cache_destroy(dtrace_state_cache);
17303 vmem_destroy(dtrace_minor);
17304 vmem_destroy(dtrace_arena);
17305
17306 if (dtrace_toxrange != NULL) {
17307 kmem_free(dtrace_toxrange,
17308 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17309 dtrace_toxrange = NULL;
17310 dtrace_toxranges = 0;
17311 dtrace_toxranges_max = 0;
17312 }
17313
17314 ddi_remove_minor_node(dtrace_devi, NULL);
17315 dtrace_devi = NULL;
17316
17317 ddi_soft_state_fini(&dtrace_softstate);
17318
17319 ASSERT(dtrace_vtime_references == 0);
17320 ASSERT(dtrace_opens == 0);
17321 ASSERT(dtrace_retained == NULL);
17322
17323 lck_mtx_unlock(&dtrace_lock);
17324 lck_mtx_unlock(&dtrace_provider_lock);
17325
17326 /*
17327 * We don't destroy the task queue until after we have dropped our
17328 * locks (taskq_destroy() may block on running tasks). To prevent
17329 * attempting to do work after we have effectively detached but before
17330 * the task queue has been destroyed, all tasks dispatched via the
17331 * task queue must check that DTrace is still attached before
17332 * performing any operation.
17333 */
17334 taskq_destroy(dtrace_taskq);
17335 dtrace_taskq = NULL;
17336
17337 return (DDI_SUCCESS);
17338 }
17339 #endif /* __APPLE__ */
17340
17341 d_open_t _dtrace_open, helper_open;
17342 d_close_t _dtrace_close, helper_close;
17343 d_ioctl_t _dtrace_ioctl, helper_ioctl;
17344
17345 int
17346 _dtrace_open(dev_t dev, int flags, int devtype, struct proc *p)
17347 {
17348 #pragma unused(p)
17349 dev_t locdev = dev;
17350
17351 return dtrace_open( &locdev, flags, devtype, CRED());
17352 }
17353
17354 int
17355 helper_open(dev_t dev, int flags, int devtype, struct proc *p)
17356 {
17357 #pragma unused(dev,flags,devtype,p)
17358 return 0;
17359 }
17360
17361 int
17362 _dtrace_close(dev_t dev, int flags, int devtype, struct proc *p)
17363 {
17364 #pragma unused(p)
17365 return dtrace_close( dev, flags, devtype, CRED());
17366 }
17367
17368 int
17369 helper_close(dev_t dev, int flags, int devtype, struct proc *p)
17370 {
17371 #pragma unused(dev,flags,devtype,p)
17372 return 0;
17373 }
17374
17375 int
17376 _dtrace_ioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
17377 {
17378 #pragma unused(p)
17379 int err, rv = 0;
17380 user_addr_t uaddrp;
17381
17382 if (proc_is64bit(p))
17383 uaddrp = *(user_addr_t *)data;
17384 else
17385 uaddrp = (user_addr_t) *(uint32_t *)data;
17386
17387 err = dtrace_ioctl(dev, cmd, uaddrp, fflag, CRED(), &rv);
17388
17389 /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
17390 if (err != 0) {
17391 ASSERT( (err & 0xfffff000) == 0 );
17392 return (err & 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
17393 } else if (rv != 0) {
17394 ASSERT( (rv & 0xfff00000) == 0 );
17395 return (((rv & 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
17396 } else
17397 return 0;
17398 }
17399
17400 int
17401 helper_ioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p)
17402 {
17403 #pragma unused(dev,fflag,p)
17404 int err, rv = 0;
17405
17406 err = dtrace_ioctl_helper(cmd, data, &rv);
17407 /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
17408 if (err != 0) {
17409 ASSERT( (err & 0xfffff000) == 0 );
17410 return (err & 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
17411 } else if (rv != 0) {
17412 ASSERT( (rv & 0xfff00000) == 0 );
17413 return (((rv & 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
17414 } else
17415 return 0;
17416 }
17417
17418 #define HELPER_MAJOR -24 /* let the kernel pick the device number */
17419
17420 /*
17421 * A struct describing which functions will get invoked for certain
17422 * actions.
17423 */
17424 static struct cdevsw helper_cdevsw =
17425 {
17426 helper_open, /* open */
17427 helper_close, /* close */
17428 eno_rdwrt, /* read */
17429 eno_rdwrt, /* write */
17430 helper_ioctl, /* ioctl */
17431 (stop_fcn_t *)nulldev, /* stop */
17432 (reset_fcn_t *)nulldev, /* reset */
17433 NULL, /* tty's */
17434 eno_select, /* select */
17435 eno_mmap, /* mmap */
17436 eno_strat, /* strategy */
17437 eno_getc, /* getc */
17438 eno_putc, /* putc */
17439 0 /* type */
17440 };
17441
17442 static int helper_majdevno = 0;
17443
17444 static int gDTraceInited = 0;
17445
17446 void
17447 helper_init( void )
17448 {
17449 /*
17450 * Once the "helper" is initialized, it can take ioctl calls that use locks
17451 * and zones initialized in dtrace_init. Make certain dtrace_init was called
17452 * before us.
17453 */
17454
17455 if (!gDTraceInited) {
17456 panic("helper_init before dtrace_init\n");
17457 }
17458
17459 if (0 >= helper_majdevno)
17460 {
17461 helper_majdevno = cdevsw_add(HELPER_MAJOR, &helper_cdevsw);
17462
17463 if (helper_majdevno < 0) {
17464 printf("helper_init: failed to allocate a major number!\n");
17465 return;
17466 }
17467
17468 if (NULL == devfs_make_node( makedev(helper_majdevno, 0), DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666,
17469 DTRACEMNR_HELPER, 0 )) {
17470 printf("dtrace_init: failed to devfs_make_node for helper!\n");
17471 return;
17472 }
17473 } else
17474 panic("helper_init: called twice!\n");
17475 }
17476
17477 #undef HELPER_MAJOR
17478
17479 /*
17480 * Called with DEVFS_LOCK held, so vmem_alloc's underlying blist structures are protected.
17481 */
17482 static int
17483 dtrace_clone_func(dev_t dev, int action)
17484 {
17485 #pragma unused(dev)
17486
17487 if (action == DEVFS_CLONE_ALLOC) {
17488 if (NULL == dtrace_minor) /* Arena not created yet!?! */
17489 return 0;
17490 else {
17491 /*
17492 * Propose a minor number, namely the next number that vmem_alloc() will return.
17493 * Immediately put it back in play by calling vmem_free(). FIXME.
17494 */
17495 int ret = (int)(uintptr_t)vmem_alloc(dtrace_minor, 1, VM_BESTFIT | VM_SLEEP);
17496
17497 vmem_free(dtrace_minor, (void *)(uintptr_t)ret, 1);
17498
17499 return ret;
17500 }
17501 }
17502 else if (action == DEVFS_CLONE_FREE) {
17503 return 0;
17504 }
17505 else return -1;
17506 }
17507
17508 #define DTRACE_MAJOR -24 /* let the kernel pick the device number */
17509
17510 static struct cdevsw dtrace_cdevsw =
17511 {
17512 _dtrace_open, /* open */
17513 _dtrace_close, /* close */
17514 eno_rdwrt, /* read */
17515 eno_rdwrt, /* write */
17516 _dtrace_ioctl, /* ioctl */
17517 (stop_fcn_t *)nulldev, /* stop */
17518 (reset_fcn_t *)nulldev, /* reset */
17519 NULL, /* tty's */
17520 eno_select, /* select */
17521 eno_mmap, /* mmap */
17522 eno_strat, /* strategy */
17523 eno_getc, /* getc */
17524 eno_putc, /* putc */
17525 0 /* type */
17526 };
17527
17528 lck_attr_t* dtrace_lck_attr;
17529 lck_grp_attr_t* dtrace_lck_grp_attr;
17530 lck_grp_t* dtrace_lck_grp;
17531
17532 static int gMajDevNo;
17533
17534 void
17535 dtrace_init( void )
17536 {
17537 if (0 == gDTraceInited) {
17538 int i, ncpu;
17539 size_t size = sizeof(dtrace_buffer_memory_maxsize);
17540
17541 /*
17542 * DTrace allocates buffers based on the maximum number
17543 * of enabled cpus. This call avoids any race when finding
17544 * that count.
17545 */
17546 ASSERT(dtrace_max_cpus == 0);
17547 ncpu = dtrace_max_cpus = ml_get_max_cpus();
17548
17549 /*
17550 * Retrieve the size of the physical memory in order to define
17551 * the state buffer memory maximal size. If we cannot retrieve
17552 * this value, we'll consider that we have 1Gb of memory per CPU, that's
17553 * still better than raising a kernel panic.
17554 */
17555 if (0 != kernel_sysctlbyname("hw.memsize", &dtrace_buffer_memory_maxsize,
17556 &size, NULL, 0))
17557 {
17558 dtrace_buffer_memory_maxsize = ncpu * 1024 * 1024 * 1024;
17559 printf("dtrace_init: failed to retrieve the hw.memsize, defaulted to %lld bytes\n",
17560 dtrace_buffer_memory_maxsize);
17561 }
17562
17563 /*
17564 * Finally, divide by three to prevent DTrace from eating too
17565 * much memory.
17566 */
17567 dtrace_buffer_memory_maxsize /= 3;
17568 ASSERT(dtrace_buffer_memory_maxsize > 0);
17569
17570 gMajDevNo = cdevsw_add(DTRACE_MAJOR, &dtrace_cdevsw);
17571
17572 if (gMajDevNo < 0) {
17573 printf("dtrace_init: failed to allocate a major number!\n");
17574 gDTraceInited = 0;
17575 return;
17576 }
17577
17578 if (NULL == devfs_make_node_clone( makedev(gMajDevNo, 0), DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666,
17579 dtrace_clone_func, DTRACEMNR_DTRACE, 0 )) {
17580 printf("dtrace_init: failed to devfs_make_node_clone for dtrace!\n");
17581 gDTraceInited = 0;
17582 return;
17583 }
17584
17585 #if defined(DTRACE_MEMORY_ZONES)
17586 /*
17587 * Initialize the dtrace kalloc-emulation zones.
17588 */
17589 dtrace_alloc_init();
17590 #endif /* DTRACE_MEMORY_ZONES */
17591
17592 /*
17593 * Allocate the dtrace_probe_t zone
17594 */
17595 dtrace_probe_t_zone = zinit(sizeof(dtrace_probe_t),
17596 1024 * sizeof(dtrace_probe_t),
17597 sizeof(dtrace_probe_t),
17598 "dtrace.dtrace_probe_t");
17599
17600 /*
17601 * Create the dtrace lock group and attrs.
17602 */
17603 dtrace_lck_attr = lck_attr_alloc_init();
17604 dtrace_lck_grp_attr= lck_grp_attr_alloc_init();
17605 dtrace_lck_grp = lck_grp_alloc_init("dtrace", dtrace_lck_grp_attr);
17606
17607 /*
17608 * We have to initialize all locks explicitly
17609 */
17610 lck_mtx_init(&dtrace_lock, dtrace_lck_grp, dtrace_lck_attr);
17611 lck_mtx_init(&dtrace_provider_lock, dtrace_lck_grp, dtrace_lck_attr);
17612 lck_mtx_init(&dtrace_meta_lock, dtrace_lck_grp, dtrace_lck_attr);
17613 lck_mtx_init(&dtrace_procwaitfor_lock, dtrace_lck_grp, dtrace_lck_attr);
17614 #if DEBUG
17615 lck_mtx_init(&dtrace_errlock, dtrace_lck_grp, dtrace_lck_attr);
17616 #endif
17617 lck_rw_init(&dtrace_dof_mode_lock, dtrace_lck_grp, dtrace_lck_attr);
17618
17619 /*
17620 * The cpu_core structure consists of per-CPU state available in any context.
17621 * On some architectures, this may mean that the page(s) containing the
17622 * NCPU-sized array of cpu_core structures must be locked in the TLB -- it
17623 * is up to the platform to assure that this is performed properly. Note that
17624 * the structure is sized to avoid false sharing.
17625 */
17626 lck_mtx_init(&cpu_lock, dtrace_lck_grp, dtrace_lck_attr);
17627 lck_mtx_init(&cyc_lock, dtrace_lck_grp, dtrace_lck_attr);
17628 lck_mtx_init(&mod_lock, dtrace_lck_grp, dtrace_lck_attr);
17629
17630 /*
17631 * Initialize the CPU offline/online hooks.
17632 */
17633 dtrace_install_cpu_hooks();
17634
17635 dtrace_modctl_list = NULL;
17636
17637 cpu_core = (cpu_core_t *)kmem_zalloc( ncpu * sizeof(cpu_core_t), KM_SLEEP );
17638 for (i = 0; i < ncpu; ++i) {
17639 lck_mtx_init(&cpu_core[i].cpuc_pid_lock, dtrace_lck_grp, dtrace_lck_attr);
17640 }
17641
17642 cpu_list = (dtrace_cpu_t *)kmem_zalloc( ncpu * sizeof(dtrace_cpu_t), KM_SLEEP );
17643 for (i = 0; i < ncpu; ++i) {
17644 cpu_list[i].cpu_id = (processorid_t)i;
17645 cpu_list[i].cpu_next = &(cpu_list[(i+1) % ncpu]);
17646 LIST_INIT(&cpu_list[i].cpu_cyc_list);
17647 lck_rw_init(&cpu_list[i].cpu_ft_lock, dtrace_lck_grp, dtrace_lck_attr);
17648 }
17649
17650 lck_mtx_lock(&cpu_lock);
17651 for (i = 0; i < ncpu; ++i)
17652 /* FIXME: track CPU configuration a la CHUD Processor Pref Pane. */
17653 dtrace_cpu_setup_initial( (processorid_t)i ); /* In lieu of register_cpu_setup_func() callback */
17654 lck_mtx_unlock(&cpu_lock);
17655
17656 (void)dtrace_abs_to_nano(0LL); /* Force once only call to clock_timebase_info (which can take a lock) */
17657
17658 dtrace_isa_init();
17659 /*
17660 * See dtrace_impl.h for a description of dof modes.
17661 * The default is lazy dof.
17662 *
17663 * FIXME: Warn if state is LAZY_OFF? It won't break anything, but
17664 * makes no sense...
17665 */
17666 if (!PE_parse_boot_argn("dtrace_dof_mode", &dtrace_dof_mode, sizeof (dtrace_dof_mode))) {
17667 dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_ON;
17668 }
17669
17670 /*
17671 * Sanity check of dof mode value.
17672 */
17673 switch (dtrace_dof_mode) {
17674 case DTRACE_DOF_MODE_NEVER:
17675 case DTRACE_DOF_MODE_LAZY_ON:
17676 /* valid modes, but nothing else we need to do */
17677 break;
17678
17679 case DTRACE_DOF_MODE_LAZY_OFF:
17680 case DTRACE_DOF_MODE_NON_LAZY:
17681 /* Cannot wait for a dtrace_open to init fasttrap */
17682 fasttrap_init();
17683 break;
17684
17685 default:
17686 /* Invalid, clamp to non lazy */
17687 dtrace_dof_mode = DTRACE_DOF_MODE_NON_LAZY;
17688 fasttrap_init();
17689 break;
17690 }
17691
17692 /*
17693 * See dtrace_impl.h for a description of kernel symbol modes.
17694 * The default is to wait for symbols from userspace (lazy symbols).
17695 */
17696 if (!PE_parse_boot_argn("dtrace_kernel_symbol_mode", &dtrace_kernel_symbol_mode, sizeof (dtrace_kernel_symbol_mode))) {
17697 dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE;
17698 }
17699
17700 dtrace_restriction_policy_load();
17701
17702 gDTraceInited = 1;
17703
17704 } else
17705 panic("dtrace_init: called twice!\n");
17706 }
17707
17708 void
17709 dtrace_postinit(void)
17710 {
17711 /*
17712 * Called from bsd_init after all provider's *_init() routines have been
17713 * run. That way, anonymous DOF enabled under dtrace_attach() is safe
17714 * to go.
17715 */
17716 dtrace_attach( (dev_info_t *)(uintptr_t)makedev(gMajDevNo, 0), 0 ); /* Punning a dev_t to a dev_info_t* */
17717
17718 /*
17719 * Add the mach_kernel to the module list for lazy processing
17720 */
17721 struct kmod_info fake_kernel_kmod;
17722 memset(&fake_kernel_kmod, 0, sizeof(fake_kernel_kmod));
17723
17724 strlcpy(fake_kernel_kmod.name, "mach_kernel", sizeof(fake_kernel_kmod.name));
17725 fake_kernel_kmod.id = 1;
17726 fake_kernel_kmod.address = g_kernel_kmod_info.address;
17727 fake_kernel_kmod.size = g_kernel_kmod_info.size;
17728
17729 if (dtrace_module_loaded(&fake_kernel_kmod, 0) != 0) {
17730 printf("dtrace_postinit: Could not register mach_kernel modctl\n");
17731 }
17732
17733 (void)OSKextRegisterKextsWithDTrace();
17734 }
17735 #undef DTRACE_MAJOR
17736
17737 /*
17738 * Routines used to register interest in cpu's being added to or removed
17739 * from the system.
17740 */
17741 void
17742 register_cpu_setup_func(cpu_setup_func_t *ignore1, void *ignore2)
17743 {
17744 #pragma unused(ignore1,ignore2)
17745 }
17746
17747 void
17748 unregister_cpu_setup_func(cpu_setup_func_t *ignore1, void *ignore2)
17749 {
17750 #pragma unused(ignore1,ignore2)
17751 }