4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Portions Copyright (c) 2013, Joyent, Inc. All rights reserved.
24 * Portions Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
32 /* #pragma ident "@(#)dtrace.c 1.65 08/07/02 SMI" */
35 * DTrace - Dynamic Tracing for Solaris
37 * This is the implementation of the Solaris Dynamic Tracing framework
38 * (DTrace). The user-visible interface to DTrace is described at length in
39 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
40 * library, the in-kernel DTrace framework, and the DTrace providers are
41 * described in the block comments in the <sys/dtrace.h> header file. The
42 * internal architecture of DTrace is described in the block comments in the
43 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
44 * implementation very much assume mastery of all of these sources; if one has
45 * an unanswered question about the implementation, one should consult them
48 * The functions here are ordered roughly as follows:
50 * - Probe context functions
51 * - Probe hashing functions
52 * - Non-probe context utility functions
53 * - Matching functions
54 * - Provider-to-Framework API functions
55 * - Probe management functions
56 * - DIF object functions
58 * - Predicate functions
61 * - Enabling functions
63 * - Anonymous enabling functions
64 * - Consumer state functions
67 * - Driver cookbook functions
69 * Each group of functions begins with a block comment labelled the "DTrace
70 * [Group] Functions", allowing one to find each block by searching forward
71 * on capital-f functions.
73 #include <sys/errno.h>
74 #include <sys/types.h>
77 #include <sys/systm.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/param.h>
80 #include <sys/proc_internal.h>
81 #include <sys/ioctl.h>
82 #include <sys/fcntl.h>
83 #include <miscfs/devfs/devfs.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel_types.h>
86 #include <sys/proc_internal.h>
87 #include <sys/uio_internal.h>
88 #include <sys/kauth.h>
91 #include <mach/exception_types.h>
92 #include <sys/signalvar.h>
93 #include <mach/task.h>
94 #include <kern/zalloc.h>
96 #include <kern/task.h>
97 #include <netinet/in.h>
99 #include <kern/cpu_data.h>
100 extern uint32_t pmap_find_phys(void *, uint64_t);
101 extern boolean_t
pmap_valid_page(uint32_t);
102 extern void OSKextRegisterKextsWithDTrace(void);
103 extern kmod_info_t g_kernel_kmod_info
;
105 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
106 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
108 #define t_predcache t_dtrace_predcache /* Cosmetic. Helps readability of thread.h */
110 extern void dtrace_suspend(void);
111 extern void dtrace_resume(void);
112 extern void dtrace_init(void);
113 extern void helper_init(void);
114 extern void fasttrap_init(void);
115 extern void dtrace_lazy_dofs_duplicate(proc_t
*, proc_t
*);
116 extern void dtrace_lazy_dofs_destroy(proc_t
*);
117 extern void dtrace_postinit(void);
119 #include "../../../osfmk/chud/chud_dtrace.h"
121 extern kern_return_t chudxnu_dtrace_callback
122 (uint64_t selector
, uint64_t *args
, uint32_t count
);
124 /* Import this function to retrieve the physical memory. */
125 extern int kernel_sysctlbyname(const char *name
, void *oldp
,
126 size_t *oldlenp
, void *newp
, size_t newlen
);
129 * DTrace Tunable Variables
131 * The following variables may be dynamically tuned by using sysctl(8), the
132 * variables being stored in the kern.dtrace namespace. For example:
133 * sysctl kern.dtrace.dof_maxsize = 1048575 # 1M
135 * In general, the only variables that one should be tuning this way are those
136 * that affect system-wide DTrace behavior, and for which the default behavior
137 * is undesirable. Most of these variables are tunable on a per-consumer
138 * basis using DTrace options, and need not be tuned on a system-wide basis.
139 * When tuning these variables, avoid pathological values; while some attempt
140 * is made to verify the integrity of these variables, they are not considered
141 * part of the supported interface to DTrace, and they are therefore not
142 * checked comprehensively.
144 uint64_t dtrace_buffer_memory_maxsize
= 0; /* initialized in dtrace_init */
145 uint64_t dtrace_buffer_memory_inuse
= 0;
146 int dtrace_destructive_disallow
= 0;
147 dtrace_optval_t dtrace_nonroot_maxsize
= (16 * 1024 * 1024);
148 size_t dtrace_difo_maxsize
= (256 * 1024);
149 dtrace_optval_t dtrace_dof_maxsize
= (384 * 1024);
150 size_t dtrace_global_maxsize
= (16 * 1024);
151 size_t dtrace_actions_max
= (16 * 1024);
152 size_t dtrace_retain_max
= 1024;
153 dtrace_optval_t dtrace_helper_actions_max
= 32;
154 dtrace_optval_t dtrace_helper_providers_max
= 64;
155 dtrace_optval_t dtrace_dstate_defsize
= (1 * 1024 * 1024);
156 size_t dtrace_strsize_default
= 256;
157 dtrace_optval_t dtrace_cleanrate_default
= 990099000; /* 1.1 hz */
158 dtrace_optval_t dtrace_cleanrate_min
= 20000000; /* 50 hz */
159 dtrace_optval_t dtrace_cleanrate_max
= (uint64_t)60 * NANOSEC
; /* 1/minute */
160 dtrace_optval_t dtrace_aggrate_default
= NANOSEC
; /* 1 hz */
161 dtrace_optval_t dtrace_statusrate_default
= NANOSEC
; /* 1 hz */
162 dtrace_optval_t dtrace_statusrate_max
= (hrtime_t
)10 * NANOSEC
; /* 6/minute */
163 dtrace_optval_t dtrace_switchrate_default
= NANOSEC
; /* 1 hz */
164 dtrace_optval_t dtrace_nspec_default
= 1;
165 dtrace_optval_t dtrace_specsize_default
= 32 * 1024;
166 dtrace_optval_t dtrace_stackframes_default
= 20;
167 dtrace_optval_t dtrace_ustackframes_default
= 20;
168 dtrace_optval_t dtrace_jstackframes_default
= 50;
169 dtrace_optval_t dtrace_jstackstrsize_default
= 512;
170 int dtrace_msgdsize_max
= 128;
171 hrtime_t dtrace_chill_max
= 500 * (NANOSEC
/ MILLISEC
); /* 500 ms */
172 hrtime_t dtrace_chill_interval
= NANOSEC
; /* 1000 ms */
173 int dtrace_devdepth_max
= 32;
174 int dtrace_err_verbose
;
175 int dtrace_provide_private_probes
= 0;
176 hrtime_t dtrace_deadman_interval
= NANOSEC
;
177 hrtime_t dtrace_deadman_timeout
= (hrtime_t
)10 * NANOSEC
;
178 hrtime_t dtrace_deadman_user
= (hrtime_t
)30 * NANOSEC
;
181 * DTrace External Variables
183 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
184 * available to DTrace consumers via the backtick (`) syntax. One of these,
185 * dtrace_zero, is made deliberately so: it is provided as a source of
186 * well-known, zero-filled memory. While this variable is not documented,
187 * it is used by some translators as an implementation detail.
189 const char dtrace_zero
[256] = { 0 }; /* zero-filled memory */
190 unsigned int dtrace_max_cpus
= 0; /* number of enabled cpus */
192 * DTrace Internal Variables
194 static dev_info_t
*dtrace_devi
; /* device info */
195 static vmem_t
*dtrace_arena
; /* probe ID arena */
196 static vmem_t
*dtrace_minor
; /* minor number arena */
197 static taskq_t
*dtrace_taskq
; /* task queue */
198 static dtrace_probe_t
**dtrace_probes
; /* array of all probes */
199 static int dtrace_nprobes
; /* number of probes */
200 static dtrace_provider_t
*dtrace_provider
; /* provider list */
201 static dtrace_meta_t
*dtrace_meta_pid
; /* user-land meta provider */
202 static int dtrace_opens
; /* number of opens */
203 static int dtrace_helpers
; /* number of helpers */
204 static void *dtrace_softstate
; /* softstate pointer */
205 static dtrace_hash_t
*dtrace_bymod
; /* probes hashed by module */
206 static dtrace_hash_t
*dtrace_byfunc
; /* probes hashed by function */
207 static dtrace_hash_t
*dtrace_byname
; /* probes hashed by name */
208 static dtrace_toxrange_t
*dtrace_toxrange
; /* toxic range array */
209 static int dtrace_toxranges
; /* number of toxic ranges */
210 static int dtrace_toxranges_max
; /* size of toxic range array */
211 static dtrace_anon_t dtrace_anon
; /* anonymous enabling */
212 static kmem_cache_t
*dtrace_state_cache
; /* cache for dynamic state */
213 static uint64_t dtrace_vtime_references
; /* number of vtimestamp refs */
214 static kthread_t
*dtrace_panicked
; /* panicking thread */
215 static dtrace_ecb_t
*dtrace_ecb_create_cache
; /* cached created ECB */
216 static dtrace_genid_t dtrace_probegen
; /* current probe generation */
217 static dtrace_helpers_t
*dtrace_deferred_pid
; /* deferred helper list */
218 static dtrace_enabling_t
*dtrace_retained
; /* list of retained enablings */
219 static dtrace_genid_t dtrace_retained_gen
; /* current retained enab gen */
220 static dtrace_dynvar_t dtrace_dynhash_sink
; /* end of dynamic hash chains */
222 static int dtrace_dof_mode
; /* See dtrace_impl.h for a description of Darwin's dof modes. */
225 * This does't quite fit as an internal variable, as it must be accessed in
226 * fbt_provide and sdt_provide. Its clearly not a dtrace tunable variable either...
228 int dtrace_kernel_symbol_mode
; /* See dtrace_impl.h for a description of Darwin's kernel symbol modes. */
232 * To save memory, some common memory allocations are given a
233 * unique zone. For example, dtrace_probe_t is 72 bytes in size,
234 * which means it would fall into the kalloc.128 bucket. With
235 * 20k elements allocated, the space saved is substantial.
238 struct zone
*dtrace_probe_t_zone
;
240 static int dtrace_module_unloaded(struct kmod_info
*kmod
);
244 * DTrace is protected by three (relatively coarse-grained) locks:
246 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
247 * including enabling state, probes, ECBs, consumer state, helper state,
248 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
249 * probe context is lock-free -- synchronization is handled via the
250 * dtrace_sync() cross call mechanism.
252 * (2) dtrace_provider_lock is required when manipulating provider state, or
253 * when provider state must be held constant.
255 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
256 * when meta provider state must be held constant.
258 * The lock ordering between these three locks is dtrace_meta_lock before
259 * dtrace_provider_lock before dtrace_lock. (In particular, there are
260 * several places where dtrace_provider_lock is held by the framework as it
261 * calls into the providers -- which then call back into the framework,
262 * grabbing dtrace_lock.)
264 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
265 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
266 * role as a coarse-grained lock; it is acquired before both of these locks.
267 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
268 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
269 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
270 * acquired _between_ dtrace_provider_lock and dtrace_lock.
277 * For porting purposes, all kmutex_t vars have been changed
278 * to lck_mtx_t, which require explicit initialization.
280 * kmutex_t becomes lck_mtx_t
281 * mutex_enter() becomes lck_mtx_lock()
282 * mutex_exit() becomes lck_mtx_unlock()
284 * Lock asserts are changed like this:
286 * ASSERT(MUTEX_HELD(&cpu_lock));
288 * lck_mtx_assert(&cpu_lock, LCK_MTX_ASSERT_OWNED);
291 static lck_mtx_t dtrace_lock
; /* probe state lock */
292 static lck_mtx_t dtrace_provider_lock
; /* provider state lock */
293 static lck_mtx_t dtrace_meta_lock
; /* meta-provider state lock */
294 static lck_rw_t dtrace_dof_mode_lock
; /* dof mode lock */
297 * DTrace Provider Variables
299 * These are the variables relating to DTrace as a provider (that is, the
300 * provider of the BEGIN, END, and ERROR probes).
302 static dtrace_pattr_t dtrace_provider_attr
= {
303 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
304 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
305 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
306 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
307 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
315 dtrace_enable_nullop(void)
320 static dtrace_pops_t dtrace_provider_ops
= {
321 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
,
322 (void (*)(void *, struct modctl
*))dtrace_nullop
,
323 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
,
324 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
325 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
326 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
330 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
333 static dtrace_id_t dtrace_probeid_begin
; /* special BEGIN probe */
334 static dtrace_id_t dtrace_probeid_end
; /* special END probe */
335 dtrace_id_t dtrace_probeid_error
; /* special ERROR probe */
338 * DTrace Helper Tracing Variables
340 uint32_t dtrace_helptrace_next
= 0;
341 uint32_t dtrace_helptrace_nlocals
;
342 char *dtrace_helptrace_buffer
;
343 size_t dtrace_helptrace_bufsize
= 512 * 1024;
346 int dtrace_helptrace_enabled
= 1;
348 int dtrace_helptrace_enabled
= 0;
353 * DTrace Error Hashing
355 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
356 * table. This is very useful for checking coverage of tests that are
357 * expected to induce DIF or DOF processing errors, and may be useful for
358 * debugging problems in the DIF code generator or in DOF generation . The
359 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
362 static dtrace_errhash_t dtrace_errhash
[DTRACE_ERRHASHSZ
];
363 static const char *dtrace_errlast
;
364 static kthread_t
*dtrace_errthread
;
365 static lck_mtx_t dtrace_errlock
;
369 * DTrace Macros and Constants
371 * These are various macros that are useful in various spots in the
372 * implementation, along with a few random constants that have no meaning
373 * outside of the implementation. There is no real structure to this cpp
374 * mishmash -- but is there ever?
376 #define DTRACE_HASHSTR(hash, probe) \
377 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
379 #define DTRACE_HASHNEXT(hash, probe) \
380 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
382 #define DTRACE_HASHPREV(hash, probe) \
383 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
385 #define DTRACE_HASHEQ(hash, lhs, rhs) \
386 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
387 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
389 #define DTRACE_AGGHASHSIZE_SLEW 17
391 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
394 * The key for a thread-local variable consists of the lower 61 bits of the
395 * current_thread(), plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
396 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
397 * equal to a variable identifier. This is necessary (but not sufficient) to
398 * assure that global associative arrays never collide with thread-local
399 * variables. To guarantee that they cannot collide, we must also define the
400 * order for keying dynamic variables. That order is:
402 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
404 * Because the variable-key and the tls-key are in orthogonal spaces, there is
405 * no way for a global variable key signature to match a thread-local key
408 #if defined (__x86_64__)
409 /* FIXME: two function calls!! */
410 #define DTRACE_TLS_THRKEY(where) { \
411 uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
412 uint64_t thr = (uintptr_t)current_thread(); \
413 ASSERT(intr < (1 << 3)); \
414 (where) = ((thr + DIF_VARIABLE_MAX) & \
415 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
418 #error Unknown architecture
421 #define DT_BSWAP_8(x) ((x) & 0xff)
422 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
423 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
424 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
426 #define DT_MASK_LO 0x00000000FFFFFFFFULL
428 #define DTRACE_STORE(type, tomax, offset, what) \
429 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
432 #define DTRACE_ALIGNCHECK(addr, size, flags) \
433 if (addr & (MIN(size,4) - 1)) { \
434 *flags |= CPU_DTRACE_BADALIGN; \
435 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
440 * Test whether a range of memory starting at testaddr of size testsz falls
441 * within the range of memory described by addr, sz. We take care to avoid
442 * problems with overflow and underflow of the unsigned quantities, and
443 * disallow all negative sizes. Ranges of size 0 are allowed.
445 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
446 ((testaddr) - (baseaddr) < (basesz) && \
447 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
448 (testaddr) + (testsz) >= (testaddr))
451 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
452 * alloc_sz on the righthand side of the comparison in order to avoid overflow
453 * or underflow in the comparison with it. This is simpler than the INRANGE
454 * check above, because we know that the dtms_scratch_ptr is valid in the
455 * range. Allocations of size zero are allowed.
457 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
458 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
459 (mstate)->dtms_scratch_ptr >= (alloc_sz))
461 #define RECOVER_LABEL(bits) dtraceLoadRecover##bits:
463 #if defined (__x86_64__)
464 #define DTRACE_LOADFUNC(bits) \
466 uint##bits##_t dtrace_load##bits(uintptr_t addr); \
469 dtrace_load##bits(uintptr_t addr) \
471 size_t size = bits / NBBY; \
473 uint##bits##_t rval = 0; \
475 volatile uint16_t *flags = (volatile uint16_t *) \
476 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
478 DTRACE_ALIGNCHECK(addr, size, flags); \
480 for (i = 0; i < dtrace_toxranges; i++) { \
481 if (addr >= dtrace_toxrange[i].dtt_limit) \
484 if (addr + size <= dtrace_toxrange[i].dtt_base) \
488 * This address falls within a toxic region; return 0. \
490 *flags |= CPU_DTRACE_BADADDR; \
491 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
496 volatile vm_offset_t recover = (vm_offset_t)&&dtraceLoadRecover##bits; \
497 *flags |= CPU_DTRACE_NOFAULT; \
498 recover = dtrace_set_thread_recover(current_thread(), recover); \
501 * PR6394061 - avoid device memory that is unpredictably \
502 * mapped and unmapped \
504 if (pmap_valid_page(pmap_find_phys(kernel_pmap, addr))) \
505 rval = *((volatile uint##bits##_t *)addr); \
506 RECOVER_LABEL(bits); \
507 (void)dtrace_set_thread_recover(current_thread(), recover); \
508 *flags &= ~CPU_DTRACE_NOFAULT; \
513 #else /* all other architectures */
514 #error Unknown Architecture
518 #define dtrace_loadptr dtrace_load64
520 #define dtrace_loadptr dtrace_load32
523 #define DTRACE_DYNHASH_FREE 0
524 #define DTRACE_DYNHASH_SINK 1
525 #define DTRACE_DYNHASH_VALID 2
527 #define DTRACE_MATCH_FAIL -1
528 #define DTRACE_MATCH_NEXT 0
529 #define DTRACE_MATCH_DONE 1
530 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
531 #define DTRACE_STATE_ALIGN 64
533 #define DTRACE_FLAGS2FLT(flags) \
534 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
535 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
536 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
537 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
538 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
539 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
540 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
541 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
542 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
545 #define DTRACEACT_ISSTRING(act) \
546 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
547 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
550 static size_t dtrace_strlen(const char *, size_t);
551 static dtrace_probe_t
*dtrace_probe_lookup_id(dtrace_id_t id
);
552 static void dtrace_enabling_provide(dtrace_provider_t
*);
553 static int dtrace_enabling_match(dtrace_enabling_t
*, int *);
554 static void dtrace_enabling_matchall(void);
555 static dtrace_state_t
*dtrace_anon_grab(void);
556 static uint64_t dtrace_helper(int, dtrace_mstate_t
*,
557 dtrace_state_t
*, uint64_t, uint64_t);
558 static dtrace_helpers_t
*dtrace_helpers_create(proc_t
*);
559 static void dtrace_buffer_drop(dtrace_buffer_t
*);
560 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t
*, size_t, size_t,
561 dtrace_state_t
*, dtrace_mstate_t
*);
562 static int dtrace_state_option(dtrace_state_t
*, dtrace_optid_t
,
564 static int dtrace_ecb_create_enable(dtrace_probe_t
*, void *);
565 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t
*);
569 * DTrace sysctl handlers
571 * These declarations and functions are used for a deeper DTrace configuration.
572 * Most of them are not per-consumer basis and may impact the other DTrace
573 * consumers. Correctness may not be supported for all the variables, so you
574 * should be careful about what values you are using.
577 SYSCTL_DECL(_kern_dtrace
);
578 SYSCTL_NODE(_kern
, OID_AUTO
, dtrace
, CTLFLAG_RW
| CTLFLAG_LOCKED
, 0, "dtrace");
581 sysctl_dtrace_err_verbose SYSCTL_HANDLER_ARGS
583 #pragma unused(oidp, arg2)
585 int value
= *(int *) arg1
;
587 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
588 if (error
|| !changed
)
591 if (value
!= 0 && value
!= 1)
594 lck_mtx_lock(&dtrace_lock
);
595 dtrace_err_verbose
= value
;
596 lck_mtx_unlock(&dtrace_lock
);
602 * kern.dtrace.err_verbose
604 * Set DTrace verbosity when an error occured (0 = disabled, 1 = enabld).
605 * Errors are reported when a DIFO or a DOF has been rejected by the kernel.
607 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, err_verbose
,
608 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
609 &dtrace_err_verbose
, 0,
610 sysctl_dtrace_err_verbose
, "I", "dtrace error verbose");
613 sysctl_dtrace_buffer_memory_maxsize SYSCTL_HANDLER_ARGS
615 #pragma unused(oidp, arg2, req)
617 uint64_t value
= *(uint64_t *) arg1
;
619 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
620 if (error
|| !changed
)
623 if (value
<= dtrace_buffer_memory_inuse
)
626 lck_mtx_lock(&dtrace_lock
);
627 dtrace_buffer_memory_maxsize
= value
;
628 lck_mtx_unlock(&dtrace_lock
);
634 * kern.dtrace.buffer_memory_maxsize
636 * Set DTrace maximal size in bytes used by all the consumers' state buffers. By default
637 * the limit is PHYS_MEM / 3 for *all* consumers. Attempting to set a null, a negative value
638 * or a value <= to dtrace_buffer_memory_inuse will result in a failure.
640 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, buffer_memory_maxsize
,
641 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
642 &dtrace_buffer_memory_maxsize
, 0,
643 sysctl_dtrace_buffer_memory_maxsize
, "Q", "dtrace state buffer memory maxsize");
646 * kern.dtrace.buffer_memory_inuse
648 * Current state buffer memory used, in bytes, by all the DTrace consumers.
649 * This value is read-only.
651 SYSCTL_QUAD(_kern_dtrace
, OID_AUTO
, buffer_memory_inuse
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
652 &dtrace_buffer_memory_inuse
, "dtrace state buffer memory in-use");
655 sysctl_dtrace_difo_maxsize SYSCTL_HANDLER_ARGS
657 #pragma unused(oidp, arg2, req)
659 size_t value
= *(size_t*) arg1
;
661 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
662 if (error
|| !changed
)
668 lck_mtx_lock(&dtrace_lock
);
669 dtrace_difo_maxsize
= value
;
670 lck_mtx_unlock(&dtrace_lock
);
676 * kern.dtrace.difo_maxsize
678 * Set the DIFO max size in bytes, check the definition of dtrace_difo_maxsize
679 * to get the default value. Attempting to set a null or negative size will
680 * result in a failure.
682 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, difo_maxsize
,
683 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
684 &dtrace_difo_maxsize
, 0,
685 sysctl_dtrace_difo_maxsize
, "Q", "dtrace difo maxsize");
688 sysctl_dtrace_dof_maxsize SYSCTL_HANDLER_ARGS
690 #pragma unused(oidp, arg2, req)
692 dtrace_optval_t value
= *(dtrace_optval_t
*) arg1
;
694 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
695 if (error
|| !changed
)
701 lck_mtx_lock(&dtrace_lock
);
702 dtrace_dof_maxsize
= value
;
703 lck_mtx_unlock(&dtrace_lock
);
709 * kern.dtrace.dof_maxsize
711 * Set the DOF max size in bytes, check the definition of dtrace_dof_maxsize to
712 * get the default value. Attempting to set a null or negative size will result
715 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, dof_maxsize
,
716 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
717 &dtrace_dof_maxsize
, 0,
718 sysctl_dtrace_dof_maxsize
, "Q", "dtrace dof maxsize");
721 sysctl_dtrace_global_maxsize SYSCTL_HANDLER_ARGS
723 #pragma unused(oidp, arg2, req)
725 dtrace_optval_t value
= *(dtrace_optval_t
*) arg1
;
727 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
728 if (error
|| !changed
)
734 lck_mtx_lock(&dtrace_lock
);
735 dtrace_global_maxsize
= value
;
736 lck_mtx_unlock(&dtrace_lock
);
742 * kern.dtrace.global_maxsize
744 * Set the global variable max size in bytes, check the definition of
745 * dtrace_global_maxsize to get the default value. Attempting to set a null or
746 * negative size will result in a failure.
748 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, global_maxsize
,
749 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
750 &dtrace_global_maxsize
, 0,
751 sysctl_dtrace_global_maxsize
, "Q", "dtrace global maxsize");
754 sysctl_dtrace_provide_private_probes SYSCTL_HANDLER_ARGS
756 #pragma unused(oidp, arg2)
758 int value
= *(int *) arg1
;
760 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, NULL
);
764 if (value
!= 0 && value
!= 1)
767 lck_mtx_lock(&dtrace_lock
);
768 dtrace_provide_private_probes
= value
;
769 lck_mtx_unlock(&dtrace_lock
);
775 * kern.dtrace.provide_private_probes
777 * Set whether the providers must provide the private probes. This is
778 * mainly used by the FBT provider to request probes for the private/static
781 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, provide_private_probes
,
782 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
783 &dtrace_provide_private_probes
, 0,
784 sysctl_dtrace_provide_private_probes
, "I", "provider must provide the private probes");
787 * DTrace Probe Context Functions
789 * These functions are called from probe context. Because probe context is
790 * any context in which C may be called, arbitrarily locks may be held,
791 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
792 * As a result, functions called from probe context may only call other DTrace
793 * support functions -- they may not interact at all with the system at large.
794 * (Note that the ASSERT macro is made probe-context safe by redefining it in
795 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
796 * loads are to be performed from probe context, they _must_ be in terms of
797 * the safe dtrace_load*() variants.
799 * Some functions in this block are not actually called from probe context;
800 * for these functions, there will be a comment above the function reading
801 * "Note: not called from probe context."
805 dtrace_assfail(const char *a
, const char *f
, int l
)
807 panic("dtrace: assertion failed: %s, file: %s, line: %d", a
, f
, l
);
810 * We just need something here that even the most clever compiler
811 * cannot optimize away.
813 return (a
[(uintptr_t)f
]);
817 * Atomically increment a specified error counter from probe context.
820 dtrace_error(uint32_t *counter
)
823 * Most counters stored to in probe context are per-CPU counters.
824 * However, there are some error conditions that are sufficiently
825 * arcane that they don't merit per-CPU storage. If these counters
826 * are incremented concurrently on different CPUs, scalability will be
827 * adversely affected -- but we don't expect them to be white-hot in a
828 * correctly constructed enabling...
835 if ((nval
= oval
+ 1) == 0) {
837 * If the counter would wrap, set it to 1 -- assuring
838 * that the counter is never zero when we have seen
839 * errors. (The counter must be 32-bits because we
840 * aren't guaranteed a 64-bit compare&swap operation.)
841 * To save this code both the infamy of being fingered
842 * by a priggish news story and the indignity of being
843 * the target of a neo-puritan witch trial, we're
844 * carefully avoiding any colorful description of the
845 * likelihood of this condition -- but suffice it to
846 * say that it is only slightly more likely than the
847 * overflow of predicate cache IDs, as discussed in
848 * dtrace_predicate_create().
852 } while (dtrace_cas32(counter
, oval
, nval
) != oval
);
856 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
857 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
865 dtrace_inscratch(uintptr_t dest
, size_t size
, dtrace_mstate_t
*mstate
)
867 if (dest
< mstate
->dtms_scratch_base
)
870 if (dest
+ size
< dest
)
873 if (dest
+ size
> mstate
->dtms_scratch_ptr
)
880 dtrace_canstore_statvar(uint64_t addr
, size_t sz
,
881 dtrace_statvar_t
**svars
, int nsvars
)
885 for (i
= 0; i
< nsvars
; i
++) {
886 dtrace_statvar_t
*svar
= svars
[i
];
888 if (svar
== NULL
|| svar
->dtsv_size
== 0)
891 if (DTRACE_INRANGE(addr
, sz
, svar
->dtsv_data
, svar
->dtsv_size
))
899 * Check to see if the address is within a memory region to which a store may
900 * be issued. This includes the DTrace scratch areas, and any DTrace variable
901 * region. The caller of dtrace_canstore() is responsible for performing any
902 * alignment checks that are needed before stores are actually executed.
905 dtrace_canstore(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
906 dtrace_vstate_t
*vstate
)
909 * First, check to see if the address is in scratch space...
911 if (DTRACE_INRANGE(addr
, sz
, mstate
->dtms_scratch_base
,
912 mstate
->dtms_scratch_size
))
916 * Now check to see if it's a dynamic variable. This check will pick
917 * up both thread-local variables and any global dynamically-allocated
920 if (DTRACE_INRANGE(addr
, sz
, (uintptr_t)vstate
->dtvs_dynvars
.dtds_base
,
921 vstate
->dtvs_dynvars
.dtds_size
)) {
922 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
923 uintptr_t base
= (uintptr_t)dstate
->dtds_base
+
924 (dstate
->dtds_hashsize
* sizeof (dtrace_dynhash_t
));
928 * Before we assume that we can store here, we need to make
929 * sure that it isn't in our metadata -- storing to our
930 * dynamic variable metadata would corrupt our state. For
931 * the range to not include any dynamic variable metadata,
934 * (1) Start above the hash table that is at the base of
935 * the dynamic variable space
937 * (2) Have a starting chunk offset that is beyond the
938 * dtrace_dynvar_t that is at the base of every chunk
940 * (3) Not span a chunk boundary
946 chunkoffs
= (addr
- base
) % dstate
->dtds_chunksize
;
948 if (chunkoffs
< sizeof (dtrace_dynvar_t
))
951 if (chunkoffs
+ sz
> dstate
->dtds_chunksize
)
958 * Finally, check the static local and global variables. These checks
959 * take the longest, so we perform them last.
961 if (dtrace_canstore_statvar(addr
, sz
,
962 vstate
->dtvs_locals
, vstate
->dtvs_nlocals
))
965 if (dtrace_canstore_statvar(addr
, sz
,
966 vstate
->dtvs_globals
, vstate
->dtvs_nglobals
))
974 * Convenience routine to check to see if the address is within a memory
975 * region in which a load may be issued given the user's privilege level;
976 * if not, it sets the appropriate error flags and loads 'addr' into the
977 * illegal value slot.
979 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
980 * appropriate memory access protection.
983 dtrace_canload(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
984 dtrace_vstate_t
*vstate
)
986 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
989 * If we hold the privilege to read from kernel memory, then
990 * everything is readable.
992 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0)
996 * You can obviously read that which you can store.
998 if (dtrace_canstore(addr
, sz
, mstate
, vstate
))
1002 * We're allowed to read from our own string table.
1004 if (DTRACE_INRANGE(addr
, sz
, (uintptr_t)mstate
->dtms_difo
->dtdo_strtab
,
1005 mstate
->dtms_difo
->dtdo_strlen
))
1008 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV
);
1014 * Convenience routine to check to see if a given string is within a memory
1015 * region in which a load may be issued given the user's privilege level;
1016 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1017 * calls in the event that the user has all privileges.
1020 dtrace_strcanload(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
1021 dtrace_vstate_t
*vstate
)
1026 * If we hold the privilege to read from kernel memory, then
1027 * everything is readable.
1029 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0)
1032 strsz
= 1 + dtrace_strlen((char *)(uintptr_t)addr
, sz
);
1033 if (dtrace_canload(addr
, strsz
, mstate
, vstate
))
1040 * Convenience routine to check to see if a given variable is within a memory
1041 * region in which a load may be issued given the user's privilege level.
1044 dtrace_vcanload(void *src
, dtrace_diftype_t
*type
, dtrace_mstate_t
*mstate
,
1045 dtrace_vstate_t
*vstate
)
1048 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
1051 * If we hold the privilege to read from kernel memory, then
1052 * everything is readable.
1054 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0)
1057 if (type
->dtdt_kind
== DIF_TYPE_STRING
)
1058 sz
= dtrace_strlen(src
,
1059 vstate
->dtvs_state
->dts_options
[DTRACEOPT_STRSIZE
]) + 1;
1061 sz
= type
->dtdt_size
;
1063 return (dtrace_canload((uintptr_t)src
, sz
, mstate
, vstate
));
1067 * Compare two strings using safe loads.
1070 dtrace_strncmp(char *s1
, char *s2
, size_t limit
)
1073 volatile uint16_t *flags
;
1075 if (s1
== s2
|| limit
== 0)
1078 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1084 c1
= dtrace_load8((uintptr_t)s1
++);
1090 c2
= dtrace_load8((uintptr_t)s2
++);
1095 } while (--limit
&& c1
!= '\0' && !(*flags
& CPU_DTRACE_FAULT
));
1101 * Compute strlen(s) for a string using safe memory accesses. The additional
1102 * len parameter is used to specify a maximum length to ensure completion.
1105 dtrace_strlen(const char *s
, size_t lim
)
1109 for (len
= 0; len
!= lim
; len
++) {
1110 if (dtrace_load8((uintptr_t)s
++) == '\0')
1118 * Check if an address falls within a toxic region.
1121 dtrace_istoxic(uintptr_t kaddr
, size_t size
)
1123 uintptr_t taddr
, tsize
;
1126 for (i
= 0; i
< dtrace_toxranges
; i
++) {
1127 taddr
= dtrace_toxrange
[i
].dtt_base
;
1128 tsize
= dtrace_toxrange
[i
].dtt_limit
- taddr
;
1130 if (kaddr
- taddr
< tsize
) {
1131 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1132 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= kaddr
;
1136 if (taddr
- kaddr
< size
) {
1137 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1138 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= taddr
;
1147 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1148 * memory specified by the DIF program. The dst is assumed to be safe memory
1149 * that we can store to directly because it is managed by DTrace. As with
1150 * standard bcopy, overlapping copies are handled properly.
1153 dtrace_bcopy(const void *src
, void *dst
, size_t len
)
1157 const uint8_t *s2
= src
;
1161 *s1
++ = dtrace_load8((uintptr_t)s2
++);
1162 } while (--len
!= 0);
1168 *--s1
= dtrace_load8((uintptr_t)--s2
);
1169 } while (--len
!= 0);
1175 * Copy src to dst using safe memory accesses, up to either the specified
1176 * length, or the point that a nul byte is encountered. The src is assumed to
1177 * be unsafe memory specified by the DIF program. The dst is assumed to be
1178 * safe memory that we can store to directly because it is managed by DTrace.
1179 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1182 dtrace_strcpy(const void *src
, void *dst
, size_t len
)
1185 uint8_t *s1
= dst
, c
;
1186 const uint8_t *s2
= src
;
1189 *s1
++ = c
= dtrace_load8((uintptr_t)s2
++);
1190 } while (--len
!= 0 && c
!= '\0');
1195 * Copy src to dst, deriving the size and type from the specified (BYREF)
1196 * variable type. The src is assumed to be unsafe memory specified by the DIF
1197 * program. The dst is assumed to be DTrace variable memory that is of the
1198 * specified type; we assume that we can store to directly.
1201 dtrace_vcopy(void *src
, void *dst
, dtrace_diftype_t
*type
)
1203 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
1205 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1206 dtrace_strcpy(src
, dst
, type
->dtdt_size
);
1208 dtrace_bcopy(src
, dst
, type
->dtdt_size
);
1213 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1214 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1215 * safe memory that we can access directly because it is managed by DTrace.
1218 dtrace_bcmp(const void *s1
, const void *s2
, size_t len
)
1220 volatile uint16_t *flags
;
1222 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1227 if (s1
== NULL
|| s2
== NULL
)
1230 if (s1
!= s2
&& len
!= 0) {
1231 const uint8_t *ps1
= s1
;
1232 const uint8_t *ps2
= s2
;
1235 if (dtrace_load8((uintptr_t)ps1
++) != *ps2
++)
1237 } while (--len
!= 0 && !(*flags
& CPU_DTRACE_FAULT
));
1243 * Zero the specified region using a simple byte-by-byte loop. Note that this
1244 * is for safe DTrace-managed memory only.
1247 dtrace_bzero(void *dst
, size_t len
)
1251 for (cp
= dst
; len
!= 0; len
--)
1256 dtrace_add_128(uint64_t *addend1
, uint64_t *addend2
, uint64_t *sum
)
1260 result
[0] = addend1
[0] + addend2
[0];
1261 result
[1] = addend1
[1] + addend2
[1] +
1262 (result
[0] < addend1
[0] || result
[0] < addend2
[0] ? 1 : 0);
1269 * Shift the 128-bit value in a by b. If b is positive, shift left.
1270 * If b is negative, shift right.
1273 dtrace_shift_128(uint64_t *a
, int b
)
1283 a
[0] = a
[1] >> (b
- 64);
1287 mask
= 1LL << (64 - b
);
1289 a
[0] |= ((a
[1] & mask
) << (64 - b
));
1294 a
[1] = a
[0] << (b
- 64);
1298 mask
= a
[0] >> (64 - b
);
1306 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1307 * use native multiplication on those, and then re-combine into the
1308 * resulting 128-bit value.
1310 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1317 dtrace_multiply_128(uint64_t factor1
, uint64_t factor2
, uint64_t *product
)
1319 uint64_t hi1
, hi2
, lo1
, lo2
;
1322 hi1
= factor1
>> 32;
1323 hi2
= factor2
>> 32;
1325 lo1
= factor1
& DT_MASK_LO
;
1326 lo2
= factor2
& DT_MASK_LO
;
1328 product
[0] = lo1
* lo2
;
1329 product
[1] = hi1
* hi2
;
1333 dtrace_shift_128(tmp
, 32);
1334 dtrace_add_128(product
, tmp
, product
);
1338 dtrace_shift_128(tmp
, 32);
1339 dtrace_add_128(product
, tmp
, product
);
1343 * This privilege check should be used by actions and subroutines to
1344 * verify that the user credentials of the process that enabled the
1345 * invoking ECB match the target credentials
1348 dtrace_priv_proc_common_user(dtrace_state_t
*state
)
1350 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1353 * We should always have a non-NULL state cred here, since if cred
1354 * is null (anonymous tracing), we fast-path bypass this routine.
1356 ASSERT(s_cr
!= NULL
);
1358 if ((cr
= dtrace_CRED()) != NULL
&&
1359 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_uid
&&
1360 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_ruid
&&
1361 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_suid
&&
1362 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_gid
&&
1363 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_rgid
&&
1364 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_sgid
)
1371 * This privilege check should be used by actions and subroutines to
1372 * verify that the zone of the process that enabled the invoking ECB
1373 * matches the target credentials
1376 dtrace_priv_proc_common_zone(dtrace_state_t
*state
)
1378 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1379 #pragma unused(cr, s_cr, state) /* __APPLE__ */
1382 * We should always have a non-NULL state cred here, since if cred
1383 * is null (anonymous tracing), we fast-path bypass this routine.
1385 ASSERT(s_cr
!= NULL
);
1387 return 1; /* APPLE NOTE: Darwin doesn't do zones. */
1391 * This privilege check should be used by actions and subroutines to
1392 * verify that the process has not setuid or changed credentials.
1395 dtrace_priv_proc_common_nocd(void)
1397 return 1; /* Darwin omits "No Core Dump" flag. */
1401 dtrace_priv_proc_destructive(dtrace_state_t
*state
)
1403 int action
= state
->dts_cred
.dcr_action
;
1405 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1408 if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1411 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
) == 0) &&
1412 dtrace_priv_proc_common_zone(state
) == 0)
1415 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
) == 0) &&
1416 dtrace_priv_proc_common_user(state
) == 0)
1419 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
) == 0) &&
1420 dtrace_priv_proc_common_nocd() == 0)
1426 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1432 dtrace_priv_proc_control(dtrace_state_t
*state
)
1434 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1437 if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1440 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC_CONTROL
)
1443 if (dtrace_priv_proc_common_zone(state
) &&
1444 dtrace_priv_proc_common_user(state
) &&
1445 dtrace_priv_proc_common_nocd())
1449 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1455 dtrace_priv_proc(dtrace_state_t
*state
)
1457 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1460 if (dtrace_is_restricted() && !dtrace_is_running_apple_internal() && !dtrace_can_attach_to_proc(current_proc()))
1463 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC
)
1467 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1473 * The P_LNOATTACH check is an Apple specific check.
1474 * We need a version of dtrace_priv_proc() that omits
1475 * that check for PID and EXECNAME accesses
1478 dtrace_priv_proc_relaxed(dtrace_state_t
*state
)
1481 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC
)
1484 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1490 dtrace_priv_kernel(dtrace_state_t
*state
)
1492 if (dtrace_is_restricted() && !dtrace_is_running_apple_internal())
1495 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL
)
1499 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1505 dtrace_priv_kernel_destructive(dtrace_state_t
*state
)
1507 if (dtrace_is_restricted())
1510 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL_DESTRUCTIVE
)
1514 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1520 * Note: not called from probe context. This function is called
1521 * asynchronously (and at a regular interval) from outside of probe context to
1522 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1523 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1526 dtrace_dynvar_clean(dtrace_dstate_t
*dstate
)
1528 dtrace_dynvar_t
*dirty
;
1529 dtrace_dstate_percpu_t
*dcpu
;
1532 for (i
= 0; i
< (int)NCPU
; i
++) {
1533 dcpu
= &dstate
->dtds_percpu
[i
];
1535 ASSERT(dcpu
->dtdsc_rinsing
== NULL
);
1538 * If the dirty list is NULL, there is no dirty work to do.
1540 if (dcpu
->dtdsc_dirty
== NULL
)
1544 * If the clean list is non-NULL, then we're not going to do
1545 * any work for this CPU -- it means that there has not been
1546 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1547 * since the last time we cleaned house.
1549 if (dcpu
->dtdsc_clean
!= NULL
)
1555 * Atomically move the dirty list aside.
1558 dirty
= dcpu
->dtdsc_dirty
;
1561 * Before we zap the dirty list, set the rinsing list.
1562 * (This allows for a potential assertion in
1563 * dtrace_dynvar(): if a free dynamic variable appears
1564 * on a hash chain, either the dirty list or the
1565 * rinsing list for some CPU must be non-NULL.)
1567 dcpu
->dtdsc_rinsing
= dirty
;
1568 dtrace_membar_producer();
1569 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
,
1570 dirty
, NULL
) != dirty
);
1575 * We have no work to do; we can simply return.
1582 for (i
= 0; i
< (int)NCPU
; i
++) {
1583 dcpu
= &dstate
->dtds_percpu
[i
];
1585 if (dcpu
->dtdsc_rinsing
== NULL
)
1589 * We are now guaranteed that no hash chain contains a pointer
1590 * into this dirty list; we can make it clean.
1592 ASSERT(dcpu
->dtdsc_clean
== NULL
);
1593 dcpu
->dtdsc_clean
= dcpu
->dtdsc_rinsing
;
1594 dcpu
->dtdsc_rinsing
= NULL
;
1598 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1599 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1600 * This prevents a race whereby a CPU incorrectly decides that
1601 * the state should be something other than DTRACE_DSTATE_CLEAN
1602 * after dtrace_dynvar_clean() has completed.
1606 dstate
->dtds_state
= DTRACE_DSTATE_CLEAN
;
1610 * Depending on the value of the op parameter, this function looks-up,
1611 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1612 * allocation is requested, this function will return a pointer to a
1613 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1614 * variable can be allocated. If NULL is returned, the appropriate counter
1615 * will be incremented.
1617 static dtrace_dynvar_t
*
1618 dtrace_dynvar(dtrace_dstate_t
*dstate
, uint_t nkeys
,
1619 dtrace_key_t
*key
, size_t dsize
, dtrace_dynvar_op_t op
,
1620 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1622 uint64_t hashval
= DTRACE_DYNHASH_VALID
;
1623 dtrace_dynhash_t
*hash
= dstate
->dtds_hash
;
1624 dtrace_dynvar_t
*free
, *new_free
, *next
, *dvar
, *start
, *prev
= NULL
;
1625 processorid_t me
= CPU
->cpu_id
, cpu
= me
;
1626 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[me
];
1627 size_t bucket
, ksize
;
1628 size_t chunksize
= dstate
->dtds_chunksize
;
1629 uintptr_t kdata
, lock
, nstate
;
1635 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1636 * algorithm. For the by-value portions, we perform the algorithm in
1637 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1638 * bit, and seems to have only a minute effect on distribution. For
1639 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1640 * over each referenced byte. It's painful to do this, but it's much
1641 * better than pathological hash distribution. The efficacy of the
1642 * hashing algorithm (and a comparison with other algorithms) may be
1643 * found by running the ::dtrace_dynstat MDB dcmd.
1645 for (i
= 0; i
< nkeys
; i
++) {
1646 if (key
[i
].dttk_size
== 0) {
1647 uint64_t val
= key
[i
].dttk_value
;
1649 hashval
+= (val
>> 48) & 0xffff;
1650 hashval
+= (hashval
<< 10);
1651 hashval
^= (hashval
>> 6);
1653 hashval
+= (val
>> 32) & 0xffff;
1654 hashval
+= (hashval
<< 10);
1655 hashval
^= (hashval
>> 6);
1657 hashval
+= (val
>> 16) & 0xffff;
1658 hashval
+= (hashval
<< 10);
1659 hashval
^= (hashval
>> 6);
1661 hashval
+= val
& 0xffff;
1662 hashval
+= (hashval
<< 10);
1663 hashval
^= (hashval
>> 6);
1666 * This is incredibly painful, but it beats the hell
1667 * out of the alternative.
1669 uint64_t j
, size
= key
[i
].dttk_size
;
1670 uintptr_t base
= (uintptr_t)key
[i
].dttk_value
;
1672 if (!dtrace_canload(base
, size
, mstate
, vstate
))
1675 for (j
= 0; j
< size
; j
++) {
1676 hashval
+= dtrace_load8(base
+ j
);
1677 hashval
+= (hashval
<< 10);
1678 hashval
^= (hashval
>> 6);
1683 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT
))
1686 hashval
+= (hashval
<< 3);
1687 hashval
^= (hashval
>> 11);
1688 hashval
+= (hashval
<< 15);
1691 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1692 * comes out to be one of our two sentinel hash values. If this
1693 * actually happens, we set the hashval to be a value known to be a
1694 * non-sentinel value.
1696 if (hashval
== DTRACE_DYNHASH_FREE
|| hashval
== DTRACE_DYNHASH_SINK
)
1697 hashval
= DTRACE_DYNHASH_VALID
;
1700 * Yes, it's painful to do a divide here. If the cycle count becomes
1701 * important here, tricks can be pulled to reduce it. (However, it's
1702 * critical that hash collisions be kept to an absolute minimum;
1703 * they're much more painful than a divide.) It's better to have a
1704 * solution that generates few collisions and still keeps things
1705 * relatively simple.
1707 bucket
= hashval
% dstate
->dtds_hashsize
;
1709 if (op
== DTRACE_DYNVAR_DEALLOC
) {
1710 volatile uintptr_t *lockp
= &hash
[bucket
].dtdh_lock
;
1713 while ((lock
= *lockp
) & 1)
1716 if (dtrace_casptr((void *)(uintptr_t)lockp
,
1717 (void *)lock
, (void *)(lock
+ 1)) == (void *)lock
)
1721 dtrace_membar_producer();
1726 lock
= hash
[bucket
].dtdh_lock
;
1728 dtrace_membar_consumer();
1730 start
= hash
[bucket
].dtdh_chain
;
1731 ASSERT(start
!= NULL
&& (start
->dtdv_hashval
== DTRACE_DYNHASH_SINK
||
1732 start
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
||
1733 op
!= DTRACE_DYNVAR_DEALLOC
));
1735 for (dvar
= start
; dvar
!= NULL
; dvar
= dvar
->dtdv_next
) {
1736 dtrace_tuple_t
*dtuple
= &dvar
->dtdv_tuple
;
1737 dtrace_key_t
*dkey
= &dtuple
->dtt_key
[0];
1739 if (dvar
->dtdv_hashval
!= hashval
) {
1740 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_SINK
) {
1742 * We've reached the sink, and therefore the
1743 * end of the hash chain; we can kick out of
1744 * the loop knowing that we have seen a valid
1745 * snapshot of state.
1747 ASSERT(dvar
->dtdv_next
== NULL
);
1748 ASSERT(dvar
== &dtrace_dynhash_sink
);
1752 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
) {
1754 * We've gone off the rails: somewhere along
1755 * the line, one of the members of this hash
1756 * chain was deleted. Note that we could also
1757 * detect this by simply letting this loop run
1758 * to completion, as we would eventually hit
1759 * the end of the dirty list. However, we
1760 * want to avoid running the length of the
1761 * dirty list unnecessarily (it might be quite
1762 * long), so we catch this as early as
1763 * possible by detecting the hash marker. In
1764 * this case, we simply set dvar to NULL and
1765 * break; the conditional after the loop will
1766 * send us back to top.
1775 if (dtuple
->dtt_nkeys
!= nkeys
)
1778 for (i
= 0; i
< nkeys
; i
++, dkey
++) {
1779 if (dkey
->dttk_size
!= key
[i
].dttk_size
)
1780 goto next
; /* size or type mismatch */
1782 if (dkey
->dttk_size
!= 0) {
1784 (void *)(uintptr_t)key
[i
].dttk_value
,
1785 (void *)(uintptr_t)dkey
->dttk_value
,
1789 if (dkey
->dttk_value
!= key
[i
].dttk_value
)
1794 if (op
!= DTRACE_DYNVAR_DEALLOC
)
1797 ASSERT(dvar
->dtdv_next
== NULL
||
1798 dvar
->dtdv_next
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
);
1801 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1802 ASSERT(start
!= dvar
);
1803 ASSERT(prev
->dtdv_next
== dvar
);
1804 prev
->dtdv_next
= dvar
->dtdv_next
;
1806 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
,
1807 start
, dvar
->dtdv_next
) != start
) {
1809 * We have failed to atomically swing the
1810 * hash table head pointer, presumably because
1811 * of a conflicting allocation on another CPU.
1812 * We need to reread the hash chain and try
1819 dtrace_membar_producer();
1822 * Now set the hash value to indicate that it's free.
1824 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1825 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
1827 dtrace_membar_producer();
1830 * Set the next pointer to point at the dirty list, and
1831 * atomically swing the dirty pointer to the newly freed dvar.
1834 next
= dcpu
->dtdsc_dirty
;
1835 dvar
->dtdv_next
= next
;
1836 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, next
, dvar
) != next
);
1839 * Finally, unlock this hash bucket.
1841 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
1843 hash
[bucket
].dtdh_lock
++;
1853 * If dvar is NULL, it is because we went off the rails:
1854 * one of the elements that we traversed in the hash chain
1855 * was deleted while we were traversing it. In this case,
1856 * we assert that we aren't doing a dealloc (deallocs lock
1857 * the hash bucket to prevent themselves from racing with
1858 * one another), and retry the hash chain traversal.
1860 ASSERT(op
!= DTRACE_DYNVAR_DEALLOC
);
1864 if (op
!= DTRACE_DYNVAR_ALLOC
) {
1866 * If we are not to allocate a new variable, we want to
1867 * return NULL now. Before we return, check that the value
1868 * of the lock word hasn't changed. If it has, we may have
1869 * seen an inconsistent snapshot.
1871 if (op
== DTRACE_DYNVAR_NOALLOC
) {
1872 if (hash
[bucket
].dtdh_lock
!= lock
)
1875 ASSERT(op
== DTRACE_DYNVAR_DEALLOC
);
1876 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
1878 hash
[bucket
].dtdh_lock
++;
1885 * We need to allocate a new dynamic variable. The size we need is the
1886 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1887 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1888 * the size of any referred-to data (dsize). We then round the final
1889 * size up to the chunksize for allocation.
1891 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
1892 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
1895 * This should be pretty much impossible, but could happen if, say,
1896 * strange DIF specified the tuple. Ideally, this should be an
1897 * assertion and not an error condition -- but that requires that the
1898 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1899 * bullet-proof. (That is, it must not be able to be fooled by
1900 * malicious DIF.) Given the lack of backwards branches in DIF,
1901 * solving this would presumably not amount to solving the Halting
1902 * Problem -- but it still seems awfully hard.
1904 if (sizeof (dtrace_dynvar_t
) + sizeof (dtrace_key_t
) * (nkeys
- 1) +
1905 ksize
+ dsize
> chunksize
) {
1906 dcpu
->dtdsc_drops
++;
1910 nstate
= DTRACE_DSTATE_EMPTY
;
1914 free
= dcpu
->dtdsc_free
;
1917 dtrace_dynvar_t
*clean
= dcpu
->dtdsc_clean
;
1920 if (clean
== NULL
) {
1922 * We're out of dynamic variable space on
1923 * this CPU. Unless we have tried all CPUs,
1924 * we'll try to allocate from a different
1927 switch (dstate
->dtds_state
) {
1928 case DTRACE_DSTATE_CLEAN
: {
1929 void *sp
= &dstate
->dtds_state
;
1931 if (++cpu
>= (int)NCPU
)
1934 if (dcpu
->dtdsc_dirty
!= NULL
&&
1935 nstate
== DTRACE_DSTATE_EMPTY
)
1936 nstate
= DTRACE_DSTATE_DIRTY
;
1938 if (dcpu
->dtdsc_rinsing
!= NULL
)
1939 nstate
= DTRACE_DSTATE_RINSING
;
1941 dcpu
= &dstate
->dtds_percpu
[cpu
];
1946 (void) dtrace_cas32(sp
,
1947 DTRACE_DSTATE_CLEAN
, nstate
);
1950 * To increment the correct bean
1951 * counter, take another lap.
1956 case DTRACE_DSTATE_DIRTY
:
1957 dcpu
->dtdsc_dirty_drops
++;
1960 case DTRACE_DSTATE_RINSING
:
1961 dcpu
->dtdsc_rinsing_drops
++;
1964 case DTRACE_DSTATE_EMPTY
:
1965 dcpu
->dtdsc_drops
++;
1969 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP
);
1974 * The clean list appears to be non-empty. We want to
1975 * move the clean list to the free list; we start by
1976 * moving the clean pointer aside.
1978 if (dtrace_casptr(&dcpu
->dtdsc_clean
,
1979 clean
, NULL
) != clean
) {
1981 * We are in one of two situations:
1983 * (a) The clean list was switched to the
1984 * free list by another CPU.
1986 * (b) The clean list was added to by the
1989 * In either of these situations, we can
1990 * just reattempt the free list allocation.
1995 ASSERT(clean
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
1998 * Now we'll move the clean list to the free list.
1999 * It's impossible for this to fail: the only way
2000 * the free list can be updated is through this
2001 * code path, and only one CPU can own the clean list.
2002 * Thus, it would only be possible for this to fail if
2003 * this code were racing with dtrace_dynvar_clean().
2004 * (That is, if dtrace_dynvar_clean() updated the clean
2005 * list, and we ended up racing to update the free
2006 * list.) This race is prevented by the dtrace_sync()
2007 * in dtrace_dynvar_clean() -- which flushes the
2008 * owners of the clean lists out before resetting
2011 rval
= dtrace_casptr(&dcpu
->dtdsc_free
, NULL
, clean
);
2012 ASSERT(rval
== NULL
);
2017 new_free
= dvar
->dtdv_next
;
2018 } while (dtrace_casptr(&dcpu
->dtdsc_free
, free
, new_free
) != free
);
2021 * We have now allocated a new chunk. We copy the tuple keys into the
2022 * tuple array and copy any referenced key data into the data space
2023 * following the tuple array. As we do this, we relocate dttk_value
2024 * in the final tuple to point to the key data address in the chunk.
2026 kdata
= (uintptr_t)&dvar
->dtdv_tuple
.dtt_key
[nkeys
];
2027 dvar
->dtdv_data
= (void *)(kdata
+ ksize
);
2028 dvar
->dtdv_tuple
.dtt_nkeys
= nkeys
;
2030 for (i
= 0; i
< nkeys
; i
++) {
2031 dtrace_key_t
*dkey
= &dvar
->dtdv_tuple
.dtt_key
[i
];
2032 size_t kesize
= key
[i
].dttk_size
;
2036 (const void *)(uintptr_t)key
[i
].dttk_value
,
2037 (void *)kdata
, kesize
);
2038 dkey
->dttk_value
= kdata
;
2039 kdata
+= P2ROUNDUP(kesize
, sizeof (uint64_t));
2041 dkey
->dttk_value
= key
[i
].dttk_value
;
2044 dkey
->dttk_size
= kesize
;
2047 ASSERT(dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2048 dvar
->dtdv_hashval
= hashval
;
2049 dvar
->dtdv_next
= start
;
2051 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
, start
, dvar
) == start
)
2055 * The cas has failed. Either another CPU is adding an element to
2056 * this hash chain, or another CPU is deleting an element from this
2057 * hash chain. The simplest way to deal with both of these cases
2058 * (though not necessarily the most efficient) is to free our
2059 * allocated block and tail-call ourselves. Note that the free is
2060 * to the dirty list and _not_ to the free list. This is to prevent
2061 * races with allocators, above.
2063 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
2065 dtrace_membar_producer();
2068 free
= dcpu
->dtdsc_dirty
;
2069 dvar
->dtdv_next
= free
;
2070 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, free
, dvar
) != free
);
2072 return (dtrace_dynvar(dstate
, nkeys
, key
, dsize
, op
, mstate
, vstate
));
2077 dtrace_aggregate_min(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2079 #pragma unused(arg) /* __APPLE__ */
2080 if ((int64_t)nval
< (int64_t)*oval
)
2086 dtrace_aggregate_max(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2088 #pragma unused(arg) /* __APPLE__ */
2089 if ((int64_t)nval
> (int64_t)*oval
)
2094 dtrace_aggregate_quantize(uint64_t *quanta
, uint64_t nval
, uint64_t incr
)
2096 int i
, zero
= DTRACE_QUANTIZE_ZEROBUCKET
;
2097 int64_t val
= (int64_t)nval
;
2100 for (i
= 0; i
< zero
; i
++) {
2101 if (val
<= DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2107 for (i
= zero
+ 1; i
< DTRACE_QUANTIZE_NBUCKETS
; i
++) {
2108 if (val
< DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2109 quanta
[i
- 1] += incr
;
2114 quanta
[DTRACE_QUANTIZE_NBUCKETS
- 1] += incr
;
2122 dtrace_aggregate_lquantize(uint64_t *lquanta
, uint64_t nval
, uint64_t incr
)
2124 uint64_t arg
= *lquanta
++;
2125 int32_t base
= DTRACE_LQUANTIZE_BASE(arg
);
2126 uint16_t step
= DTRACE_LQUANTIZE_STEP(arg
);
2127 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(arg
);
2128 int32_t val
= (int32_t)nval
, level
;
2131 ASSERT(levels
!= 0);
2135 * This is an underflow.
2141 level
= (val
- base
) / step
;
2143 if (level
< levels
) {
2144 lquanta
[level
+ 1] += incr
;
2149 * This is an overflow.
2151 lquanta
[levels
+ 1] += incr
;
2155 dtrace_aggregate_llquantize_bucket(int16_t factor
, int16_t low
, int16_t high
,
2156 int16_t nsteps
, int64_t value
)
2158 int64_t this = 1, last
, next
;
2159 int base
= 1, order
;
2161 for (order
= 0; order
< low
; ++order
)
2165 * If our value is less than our factor taken to the power of the
2166 * low order of magnitude, it goes into the zeroth bucket.
2173 for (this *= factor
; order
<= high
; ++order
) {
2174 int nbuckets
= this > nsteps
? nsteps
: this;
2177 * We should not generally get log/linear quantizations
2178 * with a high magnitude that allows 64-bits to
2179 * overflow, but we nonetheless protect against this
2180 * by explicitly checking for overflow, and clamping
2181 * our value accordingly.
2183 next
= this * factor
;
2189 * If our value lies within this order of magnitude,
2190 * determine its position by taking the offset within
2191 * the order of magnitude, dividing by the bucket
2192 * width, and adding to our (accumulated) base.
2195 return (base
+ (value
- last
) / (this / nbuckets
));
2198 base
+= nbuckets
- (nbuckets
/ factor
);
2204 * Our value is greater than or equal to our factor taken to the
2205 * power of one plus the high magnitude -- return the top bucket.
2211 dtrace_aggregate_llquantize(uint64_t *llquanta
, uint64_t nval
, uint64_t incr
)
2213 uint64_t arg
= *llquanta
++;
2214 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(arg
);
2215 uint16_t low
= DTRACE_LLQUANTIZE_LOW(arg
);
2216 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(arg
);
2217 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(arg
);
2219 llquanta
[dtrace_aggregate_llquantize_bucket(factor
, low
, high
, nsteps
, nval
)] += incr
;
2224 dtrace_aggregate_avg(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2226 #pragma unused(arg) /* __APPLE__ */
2233 dtrace_aggregate_stddev(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2235 #pragma unused(arg) /* __APPLE__ */
2236 int64_t snval
= (int64_t)nval
;
2243 * What we want to say here is:
2245 * data[2] += nval * nval;
2247 * But given that nval is 64-bit, we could easily overflow, so
2248 * we do this as 128-bit arithmetic.
2253 dtrace_multiply_128((uint64_t)snval
, (uint64_t)snval
, tmp
);
2254 dtrace_add_128(data
+ 2, tmp
, data
+ 2);
2259 dtrace_aggregate_count(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2261 #pragma unused(nval, arg) /* __APPLE__ */
2267 dtrace_aggregate_sum(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2269 #pragma unused(arg) /* __APPLE__ */
2274 * Aggregate given the tuple in the principal data buffer, and the aggregating
2275 * action denoted by the specified dtrace_aggregation_t. The aggregation
2276 * buffer is specified as the buf parameter. This routine does not return
2277 * failure; if there is no space in the aggregation buffer, the data will be
2278 * dropped, and a corresponding counter incremented.
2281 dtrace_aggregate(dtrace_aggregation_t
*agg
, dtrace_buffer_t
*dbuf
,
2282 intptr_t offset
, dtrace_buffer_t
*buf
, uint64_t expr
, uint64_t arg
)
2285 dtrace_recdesc_t
*rec
= &agg
->dtag_action
.dta_rec
;
2286 uint32_t i
, ndx
, size
, fsize
;
2287 uint32_t align
= sizeof (uint64_t) - 1;
2288 dtrace_aggbuffer_t
*agb
;
2289 dtrace_aggkey_t
*key
;
2290 uint32_t hashval
= 0, limit
, isstr
;
2291 caddr_t tomax
, data
, kdata
;
2292 dtrace_actkind_t action
;
2293 dtrace_action_t
*act
;
2299 if (!agg
->dtag_hasarg
) {
2301 * Currently, only quantize() and lquantize() take additional
2302 * arguments, and they have the same semantics: an increment
2303 * value that defaults to 1 when not present. If additional
2304 * aggregating actions take arguments, the setting of the
2305 * default argument value will presumably have to become more
2311 action
= agg
->dtag_action
.dta_kind
- DTRACEACT_AGGREGATION
;
2312 size
= rec
->dtrd_offset
- agg
->dtag_base
;
2313 fsize
= size
+ rec
->dtrd_size
;
2315 ASSERT(dbuf
->dtb_tomax
!= NULL
);
2316 data
= dbuf
->dtb_tomax
+ offset
+ agg
->dtag_base
;
2318 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
2319 dtrace_buffer_drop(buf
);
2324 * The metastructure is always at the bottom of the buffer.
2326 agb
= (dtrace_aggbuffer_t
*)(tomax
+ buf
->dtb_size
-
2327 sizeof (dtrace_aggbuffer_t
));
2329 if (buf
->dtb_offset
== 0) {
2331 * We just kludge up approximately 1/8th of the size to be
2332 * buckets. If this guess ends up being routinely
2333 * off-the-mark, we may need to dynamically readjust this
2334 * based on past performance.
2336 uintptr_t hashsize
= (buf
->dtb_size
>> 3) / sizeof (uintptr_t);
2338 if ((uintptr_t)agb
- hashsize
* sizeof (dtrace_aggkey_t
*) <
2339 (uintptr_t)tomax
|| hashsize
== 0) {
2341 * We've been given a ludicrously small buffer;
2342 * increment our drop count and leave.
2344 dtrace_buffer_drop(buf
);
2349 * And now, a pathetic attempt to try to get a an odd (or
2350 * perchance, a prime) hash size for better hash distribution.
2352 if (hashsize
> (DTRACE_AGGHASHSIZE_SLEW
<< 3))
2353 hashsize
-= DTRACE_AGGHASHSIZE_SLEW
;
2355 agb
->dtagb_hashsize
= hashsize
;
2356 agb
->dtagb_hash
= (dtrace_aggkey_t
**)((uintptr_t)agb
-
2357 agb
->dtagb_hashsize
* sizeof (dtrace_aggkey_t
*));
2358 agb
->dtagb_free
= (uintptr_t)agb
->dtagb_hash
;
2360 for (i
= 0; i
< agb
->dtagb_hashsize
; i
++)
2361 agb
->dtagb_hash
[i
] = NULL
;
2364 ASSERT(agg
->dtag_first
!= NULL
);
2365 ASSERT(agg
->dtag_first
->dta_intuple
);
2368 * Calculate the hash value based on the key. Note that we _don't_
2369 * include the aggid in the hashing (but we will store it as part of
2370 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2371 * algorithm: a simple, quick algorithm that has no known funnels, and
2372 * gets good distribution in practice. The efficacy of the hashing
2373 * algorithm (and a comparison with other algorithms) may be found by
2374 * running the ::dtrace_aggstat MDB dcmd.
2376 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2377 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2378 limit
= i
+ act
->dta_rec
.dtrd_size
;
2379 ASSERT(limit
<= size
);
2380 isstr
= DTRACEACT_ISSTRING(act
);
2382 for (; i
< limit
; i
++) {
2384 hashval
+= (hashval
<< 10);
2385 hashval
^= (hashval
>> 6);
2387 if (isstr
&& data
[i
] == '\0')
2392 hashval
+= (hashval
<< 3);
2393 hashval
^= (hashval
>> 11);
2394 hashval
+= (hashval
<< 15);
2397 * Yes, the divide here is expensive -- but it's generally the least
2398 * of the performance issues given the amount of data that we iterate
2399 * over to compute hash values, compare data, etc.
2401 ndx
= hashval
% agb
->dtagb_hashsize
;
2403 for (key
= agb
->dtagb_hash
[ndx
]; key
!= NULL
; key
= key
->dtak_next
) {
2404 ASSERT((caddr_t
)key
>= tomax
);
2405 ASSERT((caddr_t
)key
< tomax
+ buf
->dtb_size
);
2407 if (hashval
!= key
->dtak_hashval
|| key
->dtak_size
!= size
)
2410 kdata
= key
->dtak_data
;
2411 ASSERT(kdata
>= tomax
&& kdata
< tomax
+ buf
->dtb_size
);
2413 for (act
= agg
->dtag_first
; act
->dta_intuple
;
2414 act
= act
->dta_next
) {
2415 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2416 limit
= i
+ act
->dta_rec
.dtrd_size
;
2417 ASSERT(limit
<= size
);
2418 isstr
= DTRACEACT_ISSTRING(act
);
2420 for (; i
< limit
; i
++) {
2421 if (kdata
[i
] != data
[i
])
2424 if (isstr
&& data
[i
] == '\0')
2429 if (action
!= key
->dtak_action
) {
2431 * We are aggregating on the same value in the same
2432 * aggregation with two different aggregating actions.
2433 * (This should have been picked up in the compiler,
2434 * so we may be dealing with errant or devious DIF.)
2435 * This is an error condition; we indicate as much,
2438 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
2443 * This is a hit: we need to apply the aggregator to
2444 * the value at this key.
2446 agg
->dtag_aggregate((uint64_t *)(kdata
+ size
), expr
, arg
);
2453 * We didn't find it. We need to allocate some zero-filled space,
2454 * link it into the hash table appropriately, and apply the aggregator
2455 * to the (zero-filled) value.
2457 offs
= buf
->dtb_offset
;
2458 while (offs
& (align
- 1))
2459 offs
+= sizeof (uint32_t);
2462 * If we don't have enough room to both allocate a new key _and_
2463 * its associated data, increment the drop count and return.
2465 if ((uintptr_t)tomax
+ offs
+ fsize
>
2466 agb
->dtagb_free
- sizeof (dtrace_aggkey_t
)) {
2467 dtrace_buffer_drop(buf
);
2472 ASSERT(!(sizeof (dtrace_aggkey_t
) & (sizeof (uintptr_t) - 1)));
2473 key
= (dtrace_aggkey_t
*)(agb
->dtagb_free
- sizeof (dtrace_aggkey_t
));
2474 agb
->dtagb_free
-= sizeof (dtrace_aggkey_t
);
2476 key
->dtak_data
= kdata
= tomax
+ offs
;
2477 buf
->dtb_offset
= offs
+ fsize
;
2480 * Now copy the data across.
2482 *((dtrace_aggid_t
*)kdata
) = agg
->dtag_id
;
2484 for (i
= sizeof (dtrace_aggid_t
); i
< size
; i
++)
2488 * Because strings are not zeroed out by default, we need to iterate
2489 * looking for actions that store strings, and we need to explicitly
2490 * pad these strings out with zeroes.
2492 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2495 if (!DTRACEACT_ISSTRING(act
))
2498 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2499 limit
= i
+ act
->dta_rec
.dtrd_size
;
2500 ASSERT(limit
<= size
);
2502 for (nul
= 0; i
< limit
; i
++) {
2508 if (data
[i
] != '\0')
2515 for (i
= size
; i
< fsize
; i
++)
2518 key
->dtak_hashval
= hashval
;
2519 key
->dtak_size
= size
;
2520 key
->dtak_action
= action
;
2521 key
->dtak_next
= agb
->dtagb_hash
[ndx
];
2522 agb
->dtagb_hash
[ndx
] = key
;
2525 * Finally, apply the aggregator.
2527 *((uint64_t *)(key
->dtak_data
+ size
)) = agg
->dtag_initial
;
2528 agg
->dtag_aggregate((uint64_t *)(key
->dtak_data
+ size
), expr
, arg
);
2532 * Given consumer state, this routine finds a speculation in the INACTIVE
2533 * state and transitions it into the ACTIVE state. If there is no speculation
2534 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2535 * incremented -- it is up to the caller to take appropriate action.
2538 dtrace_speculation(dtrace_state_t
*state
)
2541 dtrace_speculation_state_t current
;
2542 uint32_t *stat
= &state
->dts_speculations_unavail
, count
;
2544 while (i
< state
->dts_nspeculations
) {
2545 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2547 current
= spec
->dtsp_state
;
2549 if (current
!= DTRACESPEC_INACTIVE
) {
2550 if (current
== DTRACESPEC_COMMITTINGMANY
||
2551 current
== DTRACESPEC_COMMITTING
||
2552 current
== DTRACESPEC_DISCARDING
)
2553 stat
= &state
->dts_speculations_busy
;
2558 if (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2559 current
, DTRACESPEC_ACTIVE
) == current
)
2564 * We couldn't find a speculation. If we found as much as a single
2565 * busy speculation buffer, we'll attribute this failure as "busy"
2566 * instead of "unavail".
2570 } while (dtrace_cas32(stat
, count
, count
+ 1) != count
);
2576 * This routine commits an active speculation. If the specified speculation
2577 * is not in a valid state to perform a commit(), this routine will silently do
2578 * nothing. The state of the specified speculation is transitioned according
2579 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2582 dtrace_speculation_commit(dtrace_state_t
*state
, processorid_t cpu
,
2583 dtrace_specid_t which
)
2585 dtrace_speculation_t
*spec
;
2586 dtrace_buffer_t
*src
, *dest
;
2587 uintptr_t daddr
, saddr
, dlimit
, slimit
;
2588 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
2595 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
2596 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2600 spec
= &state
->dts_speculations
[which
- 1];
2601 src
= &spec
->dtsp_buffer
[cpu
];
2602 dest
= &state
->dts_buffer
[cpu
];
2605 current
= spec
->dtsp_state
;
2607 if (current
== DTRACESPEC_COMMITTINGMANY
)
2611 case DTRACESPEC_INACTIVE
:
2612 case DTRACESPEC_DISCARDING
:
2615 case DTRACESPEC_COMMITTING
:
2617 * This is only possible if we are (a) commit()'ing
2618 * without having done a prior speculate() on this CPU
2619 * and (b) racing with another commit() on a different
2620 * CPU. There's nothing to do -- we just assert that
2623 ASSERT(src
->dtb_offset
== 0);
2626 case DTRACESPEC_ACTIVE
:
2627 new = DTRACESPEC_COMMITTING
;
2630 case DTRACESPEC_ACTIVEONE
:
2632 * This speculation is active on one CPU. If our
2633 * buffer offset is non-zero, we know that the one CPU
2634 * must be us. Otherwise, we are committing on a
2635 * different CPU from the speculate(), and we must
2636 * rely on being asynchronously cleaned.
2638 if (src
->dtb_offset
!= 0) {
2639 new = DTRACESPEC_COMMITTING
;
2644 case DTRACESPEC_ACTIVEMANY
:
2645 new = DTRACESPEC_COMMITTINGMANY
;
2651 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2652 current
, new) != current
);
2655 * We have set the state to indicate that we are committing this
2656 * speculation. Now reserve the necessary space in the destination
2659 if ((offs
= dtrace_buffer_reserve(dest
, src
->dtb_offset
,
2660 sizeof (uint64_t), state
, NULL
)) < 0) {
2661 dtrace_buffer_drop(dest
);
2666 * We have sufficient space to copy the speculative buffer into the
2667 * primary buffer. First, modify the speculative buffer, filling
2668 * in the timestamp of all entries with the current time. The data
2669 * must have the commit() time rather than the time it was traced,
2670 * so that all entries in the primary buffer are in timestamp order.
2672 timestamp
= dtrace_gethrtime();
2673 saddr
= (uintptr_t)src
->dtb_tomax
;
2674 slimit
= saddr
+ src
->dtb_offset
;
2675 while (saddr
< slimit
) {
2677 dtrace_rechdr_t
*dtrh
= (dtrace_rechdr_t
*)saddr
;
2679 if (dtrh
->dtrh_epid
== DTRACE_EPIDNONE
) {
2680 saddr
+= sizeof (dtrace_epid_t
);
2684 ASSERT(dtrh
->dtrh_epid
<= ((dtrace_epid_t
) state
->dts_necbs
));
2685 size
= state
->dts_ecbs
[dtrh
->dtrh_epid
- 1]->dte_size
;
2687 ASSERT(saddr
+ size
<= slimit
);
2688 ASSERT(size
>= sizeof(dtrace_rechdr_t
));
2689 ASSERT(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh
) == UINT64_MAX
);
2691 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, timestamp
);
2697 * Copy the buffer across. (Note that this is a
2698 * highly subobtimal bcopy(); in the unlikely event that this becomes
2699 * a serious performance issue, a high-performance DTrace-specific
2700 * bcopy() should obviously be invented.)
2702 daddr
= (uintptr_t)dest
->dtb_tomax
+ offs
;
2703 dlimit
= daddr
+ src
->dtb_offset
;
2704 saddr
= (uintptr_t)src
->dtb_tomax
;
2707 * First, the aligned portion.
2709 while (dlimit
- daddr
>= sizeof (uint64_t)) {
2710 *((uint64_t *)daddr
) = *((uint64_t *)saddr
);
2712 daddr
+= sizeof (uint64_t);
2713 saddr
+= sizeof (uint64_t);
2717 * Now any left-over bit...
2719 while (dlimit
- daddr
)
2720 *((uint8_t *)daddr
++) = *((uint8_t *)saddr
++);
2723 * Finally, commit the reserved space in the destination buffer.
2725 dest
->dtb_offset
= offs
+ src
->dtb_offset
;
2729 * If we're lucky enough to be the only active CPU on this speculation
2730 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2732 if (current
== DTRACESPEC_ACTIVE
||
2733 (current
== DTRACESPEC_ACTIVEONE
&& new == DTRACESPEC_COMMITTING
)) {
2734 uint32_t rval
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2735 DTRACESPEC_COMMITTING
, DTRACESPEC_INACTIVE
);
2736 #pragma unused(rval) /* __APPLE__ */
2738 ASSERT(rval
== DTRACESPEC_COMMITTING
);
2741 src
->dtb_offset
= 0;
2742 src
->dtb_xamot_drops
+= src
->dtb_drops
;
2747 * This routine discards an active speculation. If the specified speculation
2748 * is not in a valid state to perform a discard(), this routine will silently
2749 * do nothing. The state of the specified speculation is transitioned
2750 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2753 dtrace_speculation_discard(dtrace_state_t
*state
, processorid_t cpu
,
2754 dtrace_specid_t which
)
2756 dtrace_speculation_t
*spec
;
2757 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
2758 dtrace_buffer_t
*buf
;
2763 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
2764 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2768 spec
= &state
->dts_speculations
[which
- 1];
2769 buf
= &spec
->dtsp_buffer
[cpu
];
2772 current
= spec
->dtsp_state
;
2775 case DTRACESPEC_INACTIVE
:
2776 case DTRACESPEC_COMMITTINGMANY
:
2777 case DTRACESPEC_COMMITTING
:
2778 case DTRACESPEC_DISCARDING
:
2781 case DTRACESPEC_ACTIVE
:
2782 case DTRACESPEC_ACTIVEMANY
:
2783 new = DTRACESPEC_DISCARDING
;
2786 case DTRACESPEC_ACTIVEONE
:
2787 if (buf
->dtb_offset
!= 0) {
2788 new = DTRACESPEC_INACTIVE
;
2790 new = DTRACESPEC_DISCARDING
;
2797 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2798 current
, new) != current
);
2800 buf
->dtb_offset
= 0;
2805 * Note: not called from probe context. This function is called
2806 * asynchronously from cross call context to clean any speculations that are
2807 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2808 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2812 dtrace_speculation_clean_here(dtrace_state_t
*state
)
2814 dtrace_icookie_t cookie
;
2815 processorid_t cpu
= CPU
->cpu_id
;
2816 dtrace_buffer_t
*dest
= &state
->dts_buffer
[cpu
];
2819 cookie
= dtrace_interrupt_disable();
2821 if (dest
->dtb_tomax
== NULL
) {
2822 dtrace_interrupt_enable(cookie
);
2826 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
2827 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2828 dtrace_buffer_t
*src
= &spec
->dtsp_buffer
[cpu
];
2830 if (src
->dtb_tomax
== NULL
)
2833 if (spec
->dtsp_state
== DTRACESPEC_DISCARDING
) {
2834 src
->dtb_offset
= 0;
2838 if (spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
2841 if (src
->dtb_offset
== 0)
2844 dtrace_speculation_commit(state
, cpu
, i
+ 1);
2847 dtrace_interrupt_enable(cookie
);
2851 * Note: not called from probe context. This function is called
2852 * asynchronously (and at a regular interval) to clean any speculations that
2853 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2854 * is work to be done, it cross calls all CPUs to perform that work;
2855 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2856 * INACTIVE state until they have been cleaned by all CPUs.
2859 dtrace_speculation_clean(dtrace_state_t
*state
)
2865 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
2866 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2868 ASSERT(!spec
->dtsp_cleaning
);
2870 if (spec
->dtsp_state
!= DTRACESPEC_DISCARDING
&&
2871 spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
2875 spec
->dtsp_cleaning
= 1;
2881 dtrace_xcall(DTRACE_CPUALL
,
2882 (dtrace_xcall_t
)dtrace_speculation_clean_here
, state
);
2885 * We now know that all CPUs have committed or discarded their
2886 * speculation buffers, as appropriate. We can now set the state
2889 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
2890 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2891 dtrace_speculation_state_t current
, new;
2893 if (!spec
->dtsp_cleaning
)
2896 current
= spec
->dtsp_state
;
2897 ASSERT(current
== DTRACESPEC_DISCARDING
||
2898 current
== DTRACESPEC_COMMITTINGMANY
);
2900 new = DTRACESPEC_INACTIVE
;
2902 rv
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
, current
, new);
2903 ASSERT(rv
== current
);
2904 spec
->dtsp_cleaning
= 0;
2909 * Called as part of a speculate() to get the speculative buffer associated
2910 * with a given speculation. Returns NULL if the specified speculation is not
2911 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
2912 * the active CPU is not the specified CPU -- the speculation will be
2913 * atomically transitioned into the ACTIVEMANY state.
2915 static dtrace_buffer_t
*
2916 dtrace_speculation_buffer(dtrace_state_t
*state
, processorid_t cpuid
,
2917 dtrace_specid_t which
)
2919 dtrace_speculation_t
*spec
;
2920 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
2921 dtrace_buffer_t
*buf
;
2926 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
2927 cpu_core
[cpuid
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2931 spec
= &state
->dts_speculations
[which
- 1];
2932 buf
= &spec
->dtsp_buffer
[cpuid
];
2935 current
= spec
->dtsp_state
;
2938 case DTRACESPEC_INACTIVE
:
2939 case DTRACESPEC_COMMITTINGMANY
:
2940 case DTRACESPEC_DISCARDING
:
2943 case DTRACESPEC_COMMITTING
:
2944 ASSERT(buf
->dtb_offset
== 0);
2947 case DTRACESPEC_ACTIVEONE
:
2949 * This speculation is currently active on one CPU.
2950 * Check the offset in the buffer; if it's non-zero,
2951 * that CPU must be us (and we leave the state alone).
2952 * If it's zero, assume that we're starting on a new
2953 * CPU -- and change the state to indicate that the
2954 * speculation is active on more than one CPU.
2956 if (buf
->dtb_offset
!= 0)
2959 new = DTRACESPEC_ACTIVEMANY
;
2962 case DTRACESPEC_ACTIVEMANY
:
2965 case DTRACESPEC_ACTIVE
:
2966 new = DTRACESPEC_ACTIVEONE
;
2972 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2973 current
, new) != current
);
2975 ASSERT(new == DTRACESPEC_ACTIVEONE
|| new == DTRACESPEC_ACTIVEMANY
);
2980 * Return a string. In the event that the user lacks the privilege to access
2981 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2982 * don't fail access checking.
2984 * dtrace_dif_variable() uses this routine as a helper for various
2985 * builtin values such as 'execname' and 'probefunc.'
2989 dtrace_dif_varstr(uintptr_t addr
, dtrace_state_t
*state
,
2990 dtrace_mstate_t
*mstate
)
2992 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
2997 * The easy case: this probe is allowed to read all of memory, so
2998 * we can just return this as a vanilla pointer.
3000 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0)
3004 * This is the tougher case: we copy the string in question from
3005 * kernel memory into scratch memory and return it that way: this
3006 * ensures that we won't trip up when access checking tests the
3007 * BYREF return value.
3009 strsz
= dtrace_strlen((char *)addr
, size
) + 1;
3011 if (mstate
->dtms_scratch_ptr
+ strsz
>
3012 mstate
->dtms_scratch_base
+ mstate
->dtms_scratch_size
) {
3013 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3017 dtrace_strcpy((const void *)addr
, (void *)mstate
->dtms_scratch_ptr
,
3019 ret
= mstate
->dtms_scratch_ptr
;
3020 mstate
->dtms_scratch_ptr
+= strsz
;
3025 * This function implements the DIF emulator's variable lookups. The emulator
3026 * passes a reserved variable identifier and optional built-in array index.
3029 dtrace_dif_variable(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
, uint64_t v
,
3033 * If we're accessing one of the uncached arguments, we'll turn this
3034 * into a reference in the args array.
3036 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
) {
3037 ndx
= v
- DIF_VAR_ARG0
;
3043 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_ARGS
);
3044 if (ndx
>= sizeof (mstate
->dtms_arg
) /
3045 sizeof (mstate
->dtms_arg
[0])) {
3047 * APPLE NOTE: Account for introduction of __dtrace_probe()
3049 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3050 dtrace_provider_t
*pv
;
3053 pv
= mstate
->dtms_probe
->dtpr_provider
;
3054 if (pv
->dtpv_pops
.dtps_getargval
!= NULL
)
3055 val
= pv
->dtpv_pops
.dtps_getargval(pv
->dtpv_arg
,
3056 mstate
->dtms_probe
->dtpr_id
,
3057 mstate
->dtms_probe
->dtpr_arg
, ndx
, aframes
);
3058 /* Special case access of arg5 as passed to dtrace_probe_error() (which see.) */
3059 else if (mstate
->dtms_probe
->dtpr_id
== dtrace_probeid_error
&& ndx
== 5) {
3060 return ((dtrace_state_t
*)(uintptr_t)(mstate
->dtms_arg
[0]))->dts_arg_error_illval
;
3064 val
= dtrace_getarg(ndx
, aframes
);
3067 * This is regrettably required to keep the compiler
3068 * from tail-optimizing the call to dtrace_getarg().
3069 * The condition always evaluates to true, but the
3070 * compiler has no way of figuring that out a priori.
3071 * (None of this would be necessary if the compiler
3072 * could be relied upon to _always_ tail-optimize
3073 * the call to dtrace_getarg() -- but it can't.)
3075 if (mstate
->dtms_probe
!= NULL
)
3081 return (mstate
->dtms_arg
[ndx
]);
3083 case DIF_VAR_UREGS
: {
3086 if (!dtrace_priv_proc(state
))
3089 if ((thread
= current_thread()) == NULL
) {
3090 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
3091 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= 0;
3095 return (dtrace_getreg(find_user_regs(thread
), ndx
));
3099 case DIF_VAR_CURTHREAD
:
3100 if (!dtrace_priv_kernel(state
))
3103 return ((uint64_t)(uintptr_t)current_thread());
3105 case DIF_VAR_TIMESTAMP
:
3106 if (!(mstate
->dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
3107 mstate
->dtms_timestamp
= dtrace_gethrtime();
3108 mstate
->dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
3110 return (mstate
->dtms_timestamp
);
3112 case DIF_VAR_VTIMESTAMP
:
3113 ASSERT(dtrace_vtime_references
!= 0);
3114 return (dtrace_get_thread_vtime(current_thread()));
3116 case DIF_VAR_WALLTIMESTAMP
:
3117 if (!(mstate
->dtms_present
& DTRACE_MSTATE_WALLTIMESTAMP
)) {
3118 mstate
->dtms_walltimestamp
= dtrace_gethrestime();
3119 mstate
->dtms_present
|= DTRACE_MSTATE_WALLTIMESTAMP
;
3121 return (mstate
->dtms_walltimestamp
);
3123 case DIF_VAR_MACHTIMESTAMP
:
3124 if (!(mstate
->dtms_present
& DTRACE_MSTATE_MACHTIMESTAMP
)) {
3125 mstate
->dtms_machtimestamp
= mach_absolute_time();
3126 mstate
->dtms_present
|= DTRACE_MSTATE_MACHTIMESTAMP
;
3128 return (mstate
->dtms_machtimestamp
);
3131 return ((uint64_t) dtrace_get_thread_last_cpu_id(current_thread()));
3134 if (!dtrace_priv_kernel(state
))
3136 if (!(mstate
->dtms_present
& DTRACE_MSTATE_IPL
)) {
3137 mstate
->dtms_ipl
= dtrace_getipl();
3138 mstate
->dtms_present
|= DTRACE_MSTATE_IPL
;
3140 return (mstate
->dtms_ipl
);
3143 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_EPID
);
3144 return (mstate
->dtms_epid
);
3147 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3148 return (mstate
->dtms_probe
->dtpr_id
);
3150 case DIF_VAR_STACKDEPTH
:
3151 if (!dtrace_priv_kernel(state
))
3153 if (!(mstate
->dtms_present
& DTRACE_MSTATE_STACKDEPTH
)) {
3155 * APPLE NOTE: Account for introduction of __dtrace_probe()
3157 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3159 mstate
->dtms_stackdepth
= dtrace_getstackdepth(aframes
);
3160 mstate
->dtms_present
|= DTRACE_MSTATE_STACKDEPTH
;
3162 return (mstate
->dtms_stackdepth
);
3164 case DIF_VAR_USTACKDEPTH
:
3165 if (!dtrace_priv_proc(state
))
3167 if (!(mstate
->dtms_present
& DTRACE_MSTATE_USTACKDEPTH
)) {
3169 * See comment in DIF_VAR_PID.
3171 if (DTRACE_ANCHORED(mstate
->dtms_probe
) &&
3173 mstate
->dtms_ustackdepth
= 0;
3175 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3176 mstate
->dtms_ustackdepth
=
3177 dtrace_getustackdepth();
3178 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3180 mstate
->dtms_present
|= DTRACE_MSTATE_USTACKDEPTH
;
3182 return (mstate
->dtms_ustackdepth
);
3184 case DIF_VAR_CALLER
:
3185 if (!dtrace_priv_kernel(state
))
3187 if (!(mstate
->dtms_present
& DTRACE_MSTATE_CALLER
)) {
3189 * APPLE NOTE: Account for introduction of __dtrace_probe()
3191 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3193 if (!DTRACE_ANCHORED(mstate
->dtms_probe
)) {
3195 * If this is an unanchored probe, we are
3196 * required to go through the slow path:
3197 * dtrace_caller() only guarantees correct
3198 * results for anchored probes.
3202 dtrace_getpcstack(caller
, 2, aframes
,
3203 (uint32_t *)(uintptr_t)mstate
->dtms_arg
[0]);
3204 mstate
->dtms_caller
= caller
[1];
3205 } else if ((mstate
->dtms_caller
=
3206 dtrace_caller(aframes
)) == (uintptr_t)-1) {
3208 * We have failed to do this the quick way;
3209 * we must resort to the slower approach of
3210 * calling dtrace_getpcstack().
3214 dtrace_getpcstack(&caller
, 1, aframes
, NULL
);
3215 mstate
->dtms_caller
= caller
;
3218 mstate
->dtms_present
|= DTRACE_MSTATE_CALLER
;
3220 return (mstate
->dtms_caller
);
3222 case DIF_VAR_UCALLER
:
3223 if (!dtrace_priv_proc(state
))
3226 if (!(mstate
->dtms_present
& DTRACE_MSTATE_UCALLER
)) {
3230 * dtrace_getupcstack() fills in the first uint64_t
3231 * with the current PID. The second uint64_t will
3232 * be the program counter at user-level. The third
3233 * uint64_t will contain the caller, which is what
3237 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3238 dtrace_getupcstack(ustack
, 3);
3239 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3240 mstate
->dtms_ucaller
= ustack
[2];
3241 mstate
->dtms_present
|= DTRACE_MSTATE_UCALLER
;
3244 return (mstate
->dtms_ucaller
);
3246 case DIF_VAR_PROBEPROV
:
3247 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3248 return (dtrace_dif_varstr(
3249 (uintptr_t)mstate
->dtms_probe
->dtpr_provider
->dtpv_name
,
3252 case DIF_VAR_PROBEMOD
:
3253 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3254 return (dtrace_dif_varstr(
3255 (uintptr_t)mstate
->dtms_probe
->dtpr_mod
,
3258 case DIF_VAR_PROBEFUNC
:
3259 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3260 return (dtrace_dif_varstr(
3261 (uintptr_t)mstate
->dtms_probe
->dtpr_func
,
3264 case DIF_VAR_PROBENAME
:
3265 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3266 return (dtrace_dif_varstr(
3267 (uintptr_t)mstate
->dtms_probe
->dtpr_name
,
3271 if (!dtrace_priv_proc_relaxed(state
))
3275 * Note that we are assuming that an unanchored probe is
3276 * always due to a high-level interrupt. (And we're assuming
3277 * that there is only a single high level interrupt.)
3279 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3280 /* Anchored probe that fires while on an interrupt accrues to process 0 */
3283 return ((uint64_t)dtrace_proc_selfpid());
3286 if (!dtrace_priv_proc_relaxed(state
))
3290 * See comment in DIF_VAR_PID.
3292 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3295 return ((uint64_t)dtrace_proc_selfppid());
3298 /* We do not need to check for null current_thread() */
3299 return thread_tid(current_thread()); /* globally unique */
3301 case DIF_VAR_PTHREAD_SELF
:
3302 if (!dtrace_priv_proc(state
))
3305 /* Not currently supported, but we should be able to delta the dispatchqaddr and dispatchqoffset to get pthread_self */
3308 case DIF_VAR_DISPATCHQADDR
:
3309 if (!dtrace_priv_proc(state
))
3312 /* We do not need to check for null current_thread() */
3313 return thread_dispatchqaddr(current_thread());
3315 case DIF_VAR_EXECNAME
:
3317 char *xname
= (char *)mstate
->dtms_scratch_ptr
;
3318 size_t scratch_size
= MAXCOMLEN
+1;
3320 /* The scratch allocation's lifetime is that of the clause. */
3321 if (!DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3322 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3326 if (!dtrace_priv_proc_relaxed(state
))
3329 mstate
->dtms_scratch_ptr
+= scratch_size
;
3330 proc_selfname( xname
, scratch_size
);
3332 return ((uint64_t)(uintptr_t)xname
);
3336 case DIF_VAR_ZONENAME
:
3338 /* scratch_size is equal to length('global') + 1 for the null-terminator. */
3339 char *zname
= (char *)mstate
->dtms_scratch_ptr
;
3340 size_t scratch_size
= 6 + 1;
3342 if (!dtrace_priv_proc(state
))
3345 /* The scratch allocation's lifetime is that of the clause. */
3346 if (!DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3347 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3351 mstate
->dtms_scratch_ptr
+= scratch_size
;
3353 /* The kernel does not provide zonename, it will always return 'global'. */
3354 strlcpy(zname
, "global", scratch_size
);
3356 return ((uint64_t)(uintptr_t)zname
);
3360 if (!dtrace_priv_proc_relaxed(state
))
3364 * See comment in DIF_VAR_PID.
3366 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3369 return ((uint64_t) dtrace_proc_selfruid());
3372 if (!dtrace_priv_proc(state
))
3376 * See comment in DIF_VAR_PID.
3378 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3381 if (dtrace_CRED() != NULL
)
3382 /* Credential does not require lazy initialization. */
3383 return ((uint64_t)kauth_getgid());
3385 /* proc_lock would be taken under kauth_cred_proc_ref() in kauth_cred_get(). */
3386 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3390 case DIF_VAR_ERRNO
: {
3391 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
3392 if (!dtrace_priv_proc(state
))
3396 * See comment in DIF_VAR_PID.
3398 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3402 return (uint64_t)uthread
->t_dtrace_errno
;
3404 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3410 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3416 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3417 * Notice that we don't bother validating the proper number of arguments or
3418 * their types in the tuple stack. This isn't needed because all argument
3419 * interpretation is safe because of our load safety -- the worst that can
3420 * happen is that a bogus program can obtain bogus results.
3423 dtrace_dif_subr(uint_t subr
, uint_t rd
, uint64_t *regs
,
3424 dtrace_key_t
*tupregs
, int nargs
,
3425 dtrace_mstate_t
*mstate
, dtrace_state_t
*state
)
3427 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
3428 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
3429 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
3431 #if !defined(__APPLE__)
3442 /* FIXME: awaits lock/mutex work */
3443 #endif /* __APPLE__ */
3447 regs
[rd
] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3450 #if !defined(__APPLE__)
3451 case DIF_SUBR_MUTEX_OWNED
:
3452 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3458 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3459 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
))
3460 regs
[rd
] = MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
;
3462 regs
[rd
] = LOCK_HELD(&m
.mi
.m_spin
.m_spinlock
);
3465 case DIF_SUBR_MUTEX_OWNER
:
3466 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3472 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3473 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
) &&
3474 MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
)
3475 regs
[rd
] = (uintptr_t)MUTEX_OWNER(&m
.mi
);
3480 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE
:
3481 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3487 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3488 regs
[rd
] = MUTEX_TYPE_ADAPTIVE(&m
.mi
);
3491 case DIF_SUBR_MUTEX_TYPE_SPIN
:
3492 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3498 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3499 regs
[rd
] = MUTEX_TYPE_SPIN(&m
.mi
);
3502 case DIF_SUBR_RW_READ_HELD
: {
3505 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (uintptr_t),
3511 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3512 regs
[rd
] = _RW_READ_HELD(&r
.ri
, tmp
);
3516 case DIF_SUBR_RW_WRITE_HELD
:
3517 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
3523 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3524 regs
[rd
] = _RW_WRITE_HELD(&r
.ri
);
3527 case DIF_SUBR_RW_ISWRITER
:
3528 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
3534 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3535 regs
[rd
] = _RW_ISWRITER(&r
.ri
);
3538 /* FIXME: awaits lock/mutex work */
3539 #endif /* __APPLE__ */
3541 case DIF_SUBR_BCOPY
: {
3543 * We need to be sure that the destination is in the scratch
3544 * region -- no other region is allowed.
3546 uintptr_t src
= tupregs
[0].dttk_value
;
3547 uintptr_t dest
= tupregs
[1].dttk_value
;
3548 size_t size
= tupregs
[2].dttk_value
;
3550 if (!dtrace_inscratch(dest
, size
, mstate
)) {
3551 *flags
|= CPU_DTRACE_BADADDR
;
3556 if (!dtrace_canload(src
, size
, mstate
, vstate
)) {
3561 dtrace_bcopy((void *)src
, (void *)dest
, size
);
3565 case DIF_SUBR_ALLOCA
:
3566 case DIF_SUBR_COPYIN
: {
3567 uintptr_t dest
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
3569 tupregs
[subr
== DIF_SUBR_ALLOCA
? 0 : 1].dttk_value
;
3570 size_t scratch_size
= (dest
- mstate
->dtms_scratch_ptr
) + size
;
3573 * This action doesn't require any credential checks since
3574 * probes will not activate in user contexts to which the
3575 * enabling user does not have permissions.
3579 * Rounding up the user allocation size could have overflowed
3580 * a large, bogus allocation (like -1ULL) to 0.
3582 if (scratch_size
< size
||
3583 !DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3584 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3589 if (subr
== DIF_SUBR_COPYIN
) {
3590 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3591 if (dtrace_priv_proc(state
))
3592 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
3593 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3596 mstate
->dtms_scratch_ptr
+= scratch_size
;
3601 case DIF_SUBR_COPYINTO
: {
3602 uint64_t size
= tupregs
[1].dttk_value
;
3603 uintptr_t dest
= tupregs
[2].dttk_value
;
3606 * This action doesn't require any credential checks since
3607 * probes will not activate in user contexts to which the
3608 * enabling user does not have permissions.
3610 if (!dtrace_inscratch(dest
, size
, mstate
)) {
3611 *flags
|= CPU_DTRACE_BADADDR
;
3616 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3617 if (dtrace_priv_proc(state
))
3618 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
3619 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3623 case DIF_SUBR_COPYINSTR
: {
3624 uintptr_t dest
= mstate
->dtms_scratch_ptr
;
3625 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3627 if (nargs
> 1 && tupregs
[1].dttk_value
< size
)
3628 size
= tupregs
[1].dttk_value
+ 1;
3631 * This action doesn't require any credential checks since
3632 * probes will not activate in user contexts to which the
3633 * enabling user does not have permissions.
3635 if (!DTRACE_INSCRATCH(mstate
, size
)) {
3636 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3641 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3642 if (dtrace_priv_proc(state
))
3643 dtrace_copyinstr(tupregs
[0].dttk_value
, dest
, size
, flags
);
3644 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3646 ((char *)dest
)[size
- 1] = '\0';
3647 mstate
->dtms_scratch_ptr
+= size
;
3652 case DIF_SUBR_MSGSIZE
:
3653 case DIF_SUBR_MSGDSIZE
: {
3654 /* Darwin does not implement SysV streams messages */
3655 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3660 case DIF_SUBR_PROGENYOF
: {
3661 pid_t pid
= tupregs
[0].dttk_value
;
3662 struct proc
*p
= current_proc();
3663 int rval
= 0, lim
= nprocs
;
3665 while(p
&& (lim
-- > 0)) {
3668 ppid
= (pid_t
)dtrace_load32((uintptr_t)&(p
->p_pid
));
3669 if (*flags
& CPU_DTRACE_FAULT
)
3678 break; /* Can't climb process tree any further. */
3680 p
= (struct proc
*)dtrace_loadptr((uintptr_t)&(p
->p_pptr
));
3681 if (*flags
& CPU_DTRACE_FAULT
)
3689 case DIF_SUBR_SPECULATION
:
3690 regs
[rd
] = dtrace_speculation(state
);
3694 case DIF_SUBR_COPYOUT
: {
3695 uintptr_t kaddr
= tupregs
[0].dttk_value
;
3696 user_addr_t uaddr
= tupregs
[1].dttk_value
;
3697 uint64_t size
= tupregs
[2].dttk_value
;
3699 if (!dtrace_destructive_disallow
&&
3700 dtrace_priv_proc_control(state
) &&
3701 !dtrace_istoxic(kaddr
, size
)) {
3702 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3703 dtrace_copyout(kaddr
, uaddr
, size
, flags
);
3704 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3709 case DIF_SUBR_COPYOUTSTR
: {
3710 uintptr_t kaddr
= tupregs
[0].dttk_value
;
3711 user_addr_t uaddr
= tupregs
[1].dttk_value
;
3712 uint64_t size
= tupregs
[2].dttk_value
;
3714 if (!dtrace_destructive_disallow
&&
3715 dtrace_priv_proc_control(state
) &&
3716 !dtrace_istoxic(kaddr
, size
)) {
3717 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3718 dtrace_copyoutstr(kaddr
, uaddr
, size
, flags
);
3719 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3724 case DIF_SUBR_STRLEN
: {
3726 uintptr_t addr
= (uintptr_t)tupregs
[0].dttk_value
;
3727 sz
= dtrace_strlen((char *)addr
,
3728 state
->dts_options
[DTRACEOPT_STRSIZE
]);
3730 if (!dtrace_canload(addr
, sz
+ 1, mstate
, vstate
)) {
3740 case DIF_SUBR_STRCHR
:
3741 case DIF_SUBR_STRRCHR
: {
3743 * We're going to iterate over the string looking for the
3744 * specified character. We will iterate until we have reached
3745 * the string length or we have found the character. If this
3746 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3747 * of the specified character instead of the first.
3749 uintptr_t saddr
= tupregs
[0].dttk_value
;
3750 uintptr_t addr
= tupregs
[0].dttk_value
;
3751 uintptr_t limit
= addr
+ state
->dts_options
[DTRACEOPT_STRSIZE
];
3752 char c
, target
= (char)tupregs
[1].dttk_value
;
3754 for (regs
[rd
] = 0; addr
< limit
; addr
++) {
3755 if ((c
= dtrace_load8(addr
)) == target
) {
3758 if (subr
== DIF_SUBR_STRCHR
)
3766 if (!dtrace_canload(saddr
, addr
- saddr
, mstate
, vstate
)) {
3774 case DIF_SUBR_STRSTR
:
3775 case DIF_SUBR_INDEX
:
3776 case DIF_SUBR_RINDEX
: {
3778 * We're going to iterate over the string looking for the
3779 * specified string. We will iterate until we have reached
3780 * the string length or we have found the string. (Yes, this
3781 * is done in the most naive way possible -- but considering
3782 * that the string we're searching for is likely to be
3783 * relatively short, the complexity of Rabin-Karp or similar
3784 * hardly seems merited.)
3786 char *addr
= (char *)(uintptr_t)tupregs
[0].dttk_value
;
3787 char *substr
= (char *)(uintptr_t)tupregs
[1].dttk_value
;
3788 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3789 size_t len
= dtrace_strlen(addr
, size
);
3790 size_t sublen
= dtrace_strlen(substr
, size
);
3791 char *limit
= addr
+ len
, *orig
= addr
;
3792 int notfound
= subr
== DIF_SUBR_STRSTR
? 0 : -1;
3795 regs
[rd
] = notfound
;
3797 if (!dtrace_canload((uintptr_t)addr
, len
+ 1, mstate
, vstate
)) {
3802 if (!dtrace_canload((uintptr_t)substr
, sublen
+ 1, mstate
,
3809 * strstr() and index()/rindex() have similar semantics if
3810 * both strings are the empty string: strstr() returns a
3811 * pointer to the (empty) string, and index() and rindex()
3812 * both return index 0 (regardless of any position argument).
3814 if (sublen
== 0 && len
== 0) {
3815 if (subr
== DIF_SUBR_STRSTR
)
3816 regs
[rd
] = (uintptr_t)addr
;
3822 if (subr
!= DIF_SUBR_STRSTR
) {
3823 if (subr
== DIF_SUBR_RINDEX
) {
3830 * Both index() and rindex() take an optional position
3831 * argument that denotes the starting position.
3834 int64_t pos
= (int64_t)tupregs
[2].dttk_value
;
3837 * If the position argument to index() is
3838 * negative, Perl implicitly clamps it at
3839 * zero. This semantic is a little surprising
3840 * given the special meaning of negative
3841 * positions to similar Perl functions like
3842 * substr(), but it appears to reflect a
3843 * notion that index() can start from a
3844 * negative index and increment its way up to
3845 * the string. Given this notion, Perl's
3846 * rindex() is at least self-consistent in
3847 * that it implicitly clamps positions greater
3848 * than the string length to be the string
3849 * length. Where Perl completely loses
3850 * coherence, however, is when the specified
3851 * substring is the empty string (""). In
3852 * this case, even if the position is
3853 * negative, rindex() returns 0 -- and even if
3854 * the position is greater than the length,
3855 * index() returns the string length. These
3856 * semantics violate the notion that index()
3857 * should never return a value less than the
3858 * specified position and that rindex() should
3859 * never return a value greater than the
3860 * specified position. (One assumes that
3861 * these semantics are artifacts of Perl's
3862 * implementation and not the results of
3863 * deliberate design -- it beggars belief that
3864 * even Larry Wall could desire such oddness.)
3865 * While in the abstract one would wish for
3866 * consistent position semantics across
3867 * substr(), index() and rindex() -- or at the
3868 * very least self-consistent position
3869 * semantics for index() and rindex() -- we
3870 * instead opt to keep with the extant Perl
3871 * semantics, in all their broken glory. (Do
3872 * we have more desire to maintain Perl's
3873 * semantics than Perl does? Probably.)
3875 if (subr
== DIF_SUBR_RINDEX
) {
3882 if ((size_t)pos
> len
)
3888 if ((size_t)pos
>= len
) {
3899 for (regs
[rd
] = notfound
; addr
!= limit
; addr
+= inc
) {
3900 if (dtrace_strncmp(addr
, substr
, sublen
) == 0) {
3901 if (subr
!= DIF_SUBR_STRSTR
) {
3903 * As D index() and rindex() are
3904 * modeled on Perl (and not on awk),
3905 * we return a zero-based (and not a
3906 * one-based) index. (For you Perl
3907 * weenies: no, we're not going to add
3908 * $[ -- and shouldn't you be at a con
3911 regs
[rd
] = (uintptr_t)(addr
- orig
);
3915 ASSERT(subr
== DIF_SUBR_STRSTR
);
3916 regs
[rd
] = (uintptr_t)addr
;
3924 case DIF_SUBR_STRTOK
: {
3925 uintptr_t addr
= tupregs
[0].dttk_value
;
3926 uintptr_t tokaddr
= tupregs
[1].dttk_value
;
3927 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3928 uintptr_t limit
, toklimit
= tokaddr
+ size
;
3929 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
3930 uint8_t c
='\0', tokmap
[32]; /* 256 / 8 */
3934 * Check both the token buffer and (later) the input buffer,
3935 * since both could be non-scratch addresses.
3937 if (!dtrace_strcanload(tokaddr
, size
, mstate
, vstate
)) {
3942 if (!DTRACE_INSCRATCH(mstate
, size
)) {
3943 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3950 * If the address specified is NULL, we use our saved
3951 * strtok pointer from the mstate. Note that this
3952 * means that the saved strtok pointer is _only_
3953 * valid within multiple enablings of the same probe --
3954 * it behaves like an implicit clause-local variable.
3956 addr
= mstate
->dtms_strtok
;
3959 * If the user-specified address is non-NULL we must
3960 * access check it. This is the only time we have
3961 * a chance to do so, since this address may reside
3962 * in the string table of this clause-- future calls
3963 * (when we fetch addr from mstate->dtms_strtok)
3964 * would fail this access check.
3966 if (!dtrace_strcanload(addr
, size
, mstate
, vstate
)) {
3973 * First, zero the token map, and then process the token
3974 * string -- setting a bit in the map for every character
3975 * found in the token string.
3977 for (i
= 0; i
< (int)sizeof (tokmap
); i
++)
3980 for (; tokaddr
< toklimit
; tokaddr
++) {
3981 if ((c
= dtrace_load8(tokaddr
)) == '\0')
3984 ASSERT((c
>> 3) < sizeof (tokmap
));
3985 tokmap
[c
>> 3] |= (1 << (c
& 0x7));
3988 for (limit
= addr
+ size
; addr
< limit
; addr
++) {
3990 * We're looking for a character that is _not_ contained
3991 * in the token string.
3993 if ((c
= dtrace_load8(addr
)) == '\0')
3996 if (!(tokmap
[c
>> 3] & (1 << (c
& 0x7))))
4002 * We reached the end of the string without finding
4003 * any character that was not in the token string.
4004 * We return NULL in this case, and we set the saved
4005 * address to NULL as well.
4008 mstate
->dtms_strtok
= 0;
4013 * From here on, we're copying into the destination string.
4015 for (i
= 0; addr
< limit
&& i
< size
- 1; addr
++) {
4016 if ((c
= dtrace_load8(addr
)) == '\0')
4019 if (tokmap
[c
>> 3] & (1 << (c
& 0x7)))
4028 regs
[rd
] = (uintptr_t)dest
;
4029 mstate
->dtms_scratch_ptr
+= size
;
4030 mstate
->dtms_strtok
= addr
;
4034 case DIF_SUBR_SUBSTR
: {
4035 uintptr_t s
= tupregs
[0].dttk_value
;
4036 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4037 char *d
= (char *)mstate
->dtms_scratch_ptr
;
4038 int64_t index
= (int64_t)tupregs
[1].dttk_value
;
4039 int64_t remaining
= (int64_t)tupregs
[2].dttk_value
;
4040 size_t len
= dtrace_strlen((char *)s
, size
);
4043 if (!dtrace_canload(s
, len
+ 1, mstate
, vstate
)) {
4048 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4049 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4055 remaining
= (int64_t)size
;
4060 if (index
< 0 && index
+ remaining
> 0) {
4066 if ((size_t)index
>= len
|| index
< 0) {
4068 } else if (remaining
< 0) {
4069 remaining
+= len
- index
;
4070 } else if ((uint64_t)index
+ (uint64_t)remaining
> size
) {
4071 remaining
= size
- index
;
4074 for (i
= 0; i
< remaining
; i
++) {
4075 if ((d
[i
] = dtrace_load8(s
+ index
+ i
)) == '\0')
4081 mstate
->dtms_scratch_ptr
+= size
;
4082 regs
[rd
] = (uintptr_t)d
;
4086 case DIF_SUBR_GETMAJOR
:
4087 regs
[rd
] = (uintptr_t)major( (dev_t
)tupregs
[0].dttk_value
);
4090 case DIF_SUBR_GETMINOR
:
4091 regs
[rd
] = (uintptr_t)minor( (dev_t
)tupregs
[0].dttk_value
);
4094 case DIF_SUBR_DDI_PATHNAME
: {
4095 /* APPLE NOTE: currently unsupported on Darwin */
4096 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
4101 case DIF_SUBR_STRJOIN
: {
4102 char *d
= (char *)mstate
->dtms_scratch_ptr
;
4103 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4104 uintptr_t s1
= tupregs
[0].dttk_value
;
4105 uintptr_t s2
= tupregs
[1].dttk_value
;
4108 if (!dtrace_strcanload(s1
, size
, mstate
, vstate
) ||
4109 !dtrace_strcanload(s2
, size
, mstate
, vstate
)) {
4114 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4115 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4122 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4127 if ((d
[i
++] = dtrace_load8(s1
++)) == '\0') {
4135 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4140 if ((d
[i
++] = dtrace_load8(s2
++)) == '\0')
4145 mstate
->dtms_scratch_ptr
+= i
;
4146 regs
[rd
] = (uintptr_t)d
;
4152 case DIF_SUBR_LLTOSTR
: {
4153 int64_t i
= (int64_t)tupregs
[0].dttk_value
;
4154 int64_t val
= i
< 0 ? i
* -1 : i
;
4155 uint64_t size
= 22; /* enough room for 2^64 in decimal */
4156 char *end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4158 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4159 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4164 for (*end
-- = '\0'; val
; val
/= 10)
4165 *end
-- = '0' + (val
% 10);
4173 regs
[rd
] = (uintptr_t)end
+ 1;
4174 mstate
->dtms_scratch_ptr
+= size
;
4178 case DIF_SUBR_HTONS
:
4179 case DIF_SUBR_NTOHS
:
4181 regs
[rd
] = (uint16_t)tupregs
[0].dttk_value
;
4183 regs
[rd
] = DT_BSWAP_16((uint16_t)tupregs
[0].dttk_value
);
4188 case DIF_SUBR_HTONL
:
4189 case DIF_SUBR_NTOHL
:
4191 regs
[rd
] = (uint32_t)tupregs
[0].dttk_value
;
4193 regs
[rd
] = DT_BSWAP_32((uint32_t)tupregs
[0].dttk_value
);
4198 case DIF_SUBR_HTONLL
:
4199 case DIF_SUBR_NTOHLL
:
4201 regs
[rd
] = (uint64_t)tupregs
[0].dttk_value
;
4203 regs
[rd
] = DT_BSWAP_64((uint64_t)tupregs
[0].dttk_value
);
4208 case DIF_SUBR_DIRNAME
:
4209 case DIF_SUBR_BASENAME
: {
4210 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4211 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4212 uintptr_t src
= tupregs
[0].dttk_value
;
4213 int i
, j
, len
= dtrace_strlen((char *)src
, size
);
4214 int lastbase
= -1, firstbase
= -1, lastdir
= -1;
4217 if (!dtrace_canload(src
, len
+ 1, mstate
, vstate
)) {
4222 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4223 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4229 * The basename and dirname for a zero-length string is
4234 src
= (uintptr_t)".";
4238 * Start from the back of the string, moving back toward the
4239 * front until we see a character that isn't a slash. That
4240 * character is the last character in the basename.
4242 for (i
= len
- 1; i
>= 0; i
--) {
4243 if (dtrace_load8(src
+ i
) != '/')
4251 * Starting from the last character in the basename, move
4252 * towards the front until we find a slash. The character
4253 * that we processed immediately before that is the first
4254 * character in the basename.
4256 for (; i
>= 0; i
--) {
4257 if (dtrace_load8(src
+ i
) == '/')
4265 * Now keep going until we find a non-slash character. That
4266 * character is the last character in the dirname.
4268 for (; i
>= 0; i
--) {
4269 if (dtrace_load8(src
+ i
) != '/')
4276 ASSERT(!(lastbase
== -1 && firstbase
!= -1));
4277 ASSERT(!(firstbase
== -1 && lastdir
!= -1));
4279 if (lastbase
== -1) {
4281 * We didn't find a non-slash character. We know that
4282 * the length is non-zero, so the whole string must be
4283 * slashes. In either the dirname or the basename
4284 * case, we return '/'.
4286 ASSERT(firstbase
== -1);
4287 firstbase
= lastbase
= lastdir
= 0;
4290 if (firstbase
== -1) {
4292 * The entire string consists only of a basename
4293 * component. If we're looking for dirname, we need
4294 * to change our string to be just "."; if we're
4295 * looking for a basename, we'll just set the first
4296 * character of the basename to be 0.
4298 if (subr
== DIF_SUBR_DIRNAME
) {
4299 ASSERT(lastdir
== -1);
4300 src
= (uintptr_t)".";
4307 if (subr
== DIF_SUBR_DIRNAME
) {
4308 if (lastdir
== -1) {
4310 * We know that we have a slash in the name --
4311 * or lastdir would be set to 0, above. And
4312 * because lastdir is -1, we know that this
4313 * slash must be the first character. (That
4314 * is, the full string must be of the form
4315 * "/basename".) In this case, the last
4316 * character of the directory name is 0.
4324 ASSERT(subr
== DIF_SUBR_BASENAME
);
4325 ASSERT(firstbase
!= -1 && lastbase
!= -1);
4330 for (i
= start
, j
= 0; i
<= end
&& (uint64_t)j
< size
- 1; i
++, j
++)
4331 dest
[j
] = dtrace_load8(src
+ i
);
4334 regs
[rd
] = (uintptr_t)dest
;
4335 mstate
->dtms_scratch_ptr
+= size
;
4339 case DIF_SUBR_CLEANPATH
: {
4340 char *dest
= (char *)mstate
->dtms_scratch_ptr
, c
;
4341 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4342 uintptr_t src
= tupregs
[0].dttk_value
;
4345 if (!dtrace_strcanload(src
, size
, mstate
, vstate
)) {
4350 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4357 * Move forward, loading each character.
4360 c
= dtrace_load8(src
+ i
++);
4362 if ((uint64_t)(j
+ 5) >= size
) /* 5 = strlen("/..c\0") */
4370 c
= dtrace_load8(src
+ i
++);
4374 * We have two slashes -- we can just advance
4375 * to the next character.
4382 * This is not "." and it's not ".." -- we can
4383 * just store the "/" and this character and
4391 c
= dtrace_load8(src
+ i
++);
4395 * This is a "/./" component. We're not going
4396 * to store anything in the destination buffer;
4397 * we're just going to go to the next component.
4404 * This is not ".." -- we can just store the
4405 * "/." and this character and continue
4414 c
= dtrace_load8(src
+ i
++);
4416 if (c
!= '/' && c
!= '\0') {
4418 * This is not ".." -- it's "..[mumble]".
4419 * We'll store the "/.." and this character
4420 * and continue processing.
4430 * This is "/../" or "/..\0". We need to back up
4431 * our destination pointer until we find a "/".
4434 while (j
!= 0 && dest
[--j
] != '/')
4439 } while (c
!= '\0');
4442 regs
[rd
] = (uintptr_t)dest
;
4443 mstate
->dtms_scratch_ptr
+= size
;
4447 case DIF_SUBR_INET_NTOA
:
4448 case DIF_SUBR_INET_NTOA6
:
4449 case DIF_SUBR_INET_NTOP
: {
4454 if (subr
== DIF_SUBR_INET_NTOP
) {
4455 af
= (int)tupregs
[0].dttk_value
;
4458 af
= subr
== DIF_SUBR_INET_NTOA
? AF_INET
: AF_INET6
;
4462 if (af
== AF_INET
) {
4463 #if !defined(__APPLE__)
4467 #endif /* __APPLE__ */
4471 * Safely load the IPv4 address.
4473 #if !defined(__APPLE__)
4474 ip4
= dtrace_load32(tupregs
[argi
].dttk_value
);
4477 (void *)(uintptr_t)tupregs
[argi
].dttk_value
,
4478 (void *)(uintptr_t)&ip4
, sizeof (ip4
));
4479 #endif /* __APPLE__ */
4481 * Check an IPv4 string will fit in scratch.
4483 #if !defined(__APPLE__)
4484 size
= INET_ADDRSTRLEN
;
4486 size
= MAX_IPv4_STR_LEN
;
4487 #endif /* __APPLE__ */
4488 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4489 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4493 base
= (char *)mstate
->dtms_scratch_ptr
;
4494 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4497 * Stringify as a dotted decimal quad.
4500 ptr8
= (uint8_t *)&ip4
;
4501 for (i
= 3; i
>= 0; i
--) {
4507 for (; val
; val
/= 10) {
4508 *end
-- = '0' + (val
% 10);
4515 ASSERT(end
+ 1 >= base
);
4517 } else if (af
== AF_INET6
) {
4518 #if defined(__APPLE__)
4519 #define _S6_un __u6_addr
4520 #define _S6_u8 __u6_addr8
4521 #endif /* __APPLE__ */
4522 struct in6_addr ip6
;
4523 int firstzero
, tryzero
, numzero
, v6end
;
4525 const char digits
[] = "0123456789abcdef";
4528 * Stringify using RFC 1884 convention 2 - 16 bit
4529 * hexadecimal values with a zero-run compression.
4530 * Lower case hexadecimal digits are used.
4531 * eg, fe80::214:4fff:fe0b:76c8.
4532 * The IPv4 embedded form is returned for inet_ntop,
4533 * just the IPv4 string is returned for inet_ntoa6.
4537 * Safely load the IPv6 address.
4540 (void *)(uintptr_t)tupregs
[argi
].dttk_value
,
4541 (void *)(uintptr_t)&ip6
, sizeof (struct in6_addr
));
4544 * Check an IPv6 string will fit in scratch.
4546 size
= INET6_ADDRSTRLEN
;
4547 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4548 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4552 base
= (char *)mstate
->dtms_scratch_ptr
;
4553 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4557 * Find the longest run of 16 bit zero values
4558 * for the single allowed zero compression - "::".
4563 for (i
= 0; i
< (int)sizeof (struct in6_addr
); i
++) {
4564 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
4565 tryzero
== -1 && i
% 2 == 0) {
4570 if (tryzero
!= -1 &&
4571 (ip6
._S6_un
._S6_u8
[i
] != 0 ||
4572 i
== sizeof (struct in6_addr
) - 1)) {
4574 if (i
- tryzero
<= numzero
) {
4579 firstzero
= tryzero
;
4580 numzero
= i
- i
% 2 - tryzero
;
4583 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
4584 i
== sizeof (struct in6_addr
) - 1)
4588 ASSERT(firstzero
+ numzero
<= (int)sizeof (struct in6_addr
));
4591 * Check for an IPv4 embedded address.
4593 v6end
= sizeof (struct in6_addr
) - 2;
4594 if (IN6_IS_ADDR_V4MAPPED(&ip6
) ||
4595 IN6_IS_ADDR_V4COMPAT(&ip6
)) {
4596 for (i
= sizeof (struct in6_addr
) - 1;
4597 i
>= (int)DTRACE_V4MAPPED_OFFSET
; i
--) {
4598 ASSERT(end
>= base
);
4600 val
= ip6
._S6_un
._S6_u8
[i
];
4605 for (; val
; val
/= 10) {
4606 *end
-- = '0' + val
% 10;
4610 if (i
> (int)DTRACE_V4MAPPED_OFFSET
)
4614 if (subr
== DIF_SUBR_INET_NTOA6
)
4618 * Set v6end to skip the IPv4 address that
4619 * we have already stringified.
4625 * Build the IPv6 string by working through the
4626 * address in reverse.
4628 for (i
= v6end
; i
>= 0; i
-= 2) {
4629 ASSERT(end
>= base
);
4631 if (i
== firstzero
+ numzero
- 2) {
4638 if (i
< 14 && i
!= firstzero
- 2)
4641 val
= (ip6
._S6_un
._S6_u8
[i
] << 8) +
4642 ip6
._S6_un
._S6_u8
[i
+ 1];
4647 for (; val
; val
/= 16) {
4648 *end
-- = digits
[val
% 16];
4652 ASSERT(end
+ 1 >= base
);
4654 #if defined(__APPLE__)
4657 #endif /* __APPLE__ */
4660 * The user didn't use AH_INET or AH_INET6.
4662 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
4667 inetout
: regs
[rd
] = (uintptr_t)end
+ 1;
4668 mstate
->dtms_scratch_ptr
+= size
;
4672 case DIF_SUBR_TOUPPER
:
4673 case DIF_SUBR_TOLOWER
: {
4674 uintptr_t src
= tupregs
[0].dttk_value
;
4675 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4676 char lower
, upper
, base
, c
;
4677 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4678 size_t len
= dtrace_strlen((char*) src
, size
);
4681 lower
= (subr
== DIF_SUBR_TOUPPER
) ? 'a' : 'A';
4682 upper
= (subr
== DIF_SUBR_TOUPPER
) ? 'z' : 'Z';
4683 base
= (subr
== DIF_SUBR_TOUPPER
) ? 'A' : 'a';
4685 if (!dtrace_canload(src
, len
+ 1, mstate
, vstate
)) {
4690 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4691 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4696 for (i
= 0; i
< size
- 1; ++i
) {
4697 if ((c
= dtrace_load8(src
+ i
)) == '\0')
4699 if (c
>= lower
&& c
<= upper
)
4700 c
= base
+ (c
- lower
);
4707 regs
[rd
] = (uintptr_t) dest
;
4708 mstate
->dtms_scratch_ptr
+= size
;
4713 case DIF_SUBR_VM_KERNEL_ADDRPERM
: {
4714 if (!dtrace_priv_kernel(state
)) {
4717 regs
[rd
] = VM_KERNEL_ADDRPERM((vm_offset_t
) tupregs
[0].dttk_value
);
4724 * CoreProfile callback ('core_profile (uint64_t, [uint64_t], [uint64_t] ...)')
4726 case DIF_SUBR_COREPROFILE
: {
4727 uint64_t selector
= tupregs
[0].dttk_value
;
4728 uint64_t args
[DIF_DTR_NREGS
-1] = {0ULL};
4730 uint32_t count
= (uint32_t)nargs
;
4733 regs
[rd
] = KERN_FAILURE
;
4737 if(count
> DIF_DTR_NREGS
)
4738 count
= DIF_DTR_NREGS
;
4740 /* copy in any variadic argument list, bounded by DIF_DTR_NREGS */
4741 for(ii
= 0; ii
< count
-1; ii
++) {
4742 args
[ii
] = tupregs
[ii
+1].dttk_value
;
4746 chudxnu_dtrace_callback(selector
, args
, count
-1);
4747 if(KERN_SUCCESS
!= ret
) {
4758 * Emulate the execution of DTrace IR instructions specified by the given
4759 * DIF object. This function is deliberately void of assertions as all of
4760 * the necessary checks are handled by a call to dtrace_difo_validate().
4763 dtrace_dif_emulate(dtrace_difo_t
*difo
, dtrace_mstate_t
*mstate
,
4764 dtrace_vstate_t
*vstate
, dtrace_state_t
*state
)
4766 const dif_instr_t
*text
= difo
->dtdo_buf
;
4767 const uint_t textlen
= difo
->dtdo_len
;
4768 const char *strtab
= difo
->dtdo_strtab
;
4769 const uint64_t *inttab
= difo
->dtdo_inttab
;
4772 dtrace_statvar_t
*svar
;
4773 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
4775 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
4776 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
4778 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
4779 uint64_t regs
[DIF_DIR_NREGS
];
4782 uint8_t cc_n
= 0, cc_z
= 0, cc_v
= 0, cc_c
= 0;
4784 uint_t pc
= 0, id
, opc
= 0;
4790 * We stash the current DIF object into the machine state: we need it
4791 * for subsequent access checking.
4793 mstate
->dtms_difo
= difo
;
4795 regs
[DIF_REG_R0
] = 0; /* %r0 is fixed at zero */
4797 while (pc
< textlen
&& !(*flags
& CPU_DTRACE_FAULT
)) {
4801 r1
= DIF_INSTR_R1(instr
);
4802 r2
= DIF_INSTR_R2(instr
);
4803 rd
= DIF_INSTR_RD(instr
);
4805 switch (DIF_INSTR_OP(instr
)) {
4807 regs
[rd
] = regs
[r1
] | regs
[r2
];
4810 regs
[rd
] = regs
[r1
] ^ regs
[r2
];
4813 regs
[rd
] = regs
[r1
] & regs
[r2
];
4816 regs
[rd
] = regs
[r1
] << regs
[r2
];
4819 regs
[rd
] = regs
[r1
] >> regs
[r2
];
4822 regs
[rd
] = regs
[r1
] - regs
[r2
];
4825 regs
[rd
] = regs
[r1
] + regs
[r2
];
4828 regs
[rd
] = regs
[r1
] * regs
[r2
];
4831 if (regs
[r2
] == 0) {
4833 *flags
|= CPU_DTRACE_DIVZERO
;
4835 regs
[rd
] = (int64_t)regs
[r1
] /
4841 if (regs
[r2
] == 0) {
4843 *flags
|= CPU_DTRACE_DIVZERO
;
4845 regs
[rd
] = regs
[r1
] / regs
[r2
];
4850 if (regs
[r2
] == 0) {
4852 *flags
|= CPU_DTRACE_DIVZERO
;
4854 regs
[rd
] = (int64_t)regs
[r1
] %
4860 if (regs
[r2
] == 0) {
4862 *flags
|= CPU_DTRACE_DIVZERO
;
4864 regs
[rd
] = regs
[r1
] % regs
[r2
];
4869 regs
[rd
] = ~regs
[r1
];
4872 regs
[rd
] = regs
[r1
];
4875 cc_r
= regs
[r1
] - regs
[r2
];
4879 cc_c
= regs
[r1
] < regs
[r2
];
4882 cc_n
= cc_v
= cc_c
= 0;
4883 cc_z
= regs
[r1
] == 0;
4886 pc
= DIF_INSTR_LABEL(instr
);
4890 pc
= DIF_INSTR_LABEL(instr
);
4894 pc
= DIF_INSTR_LABEL(instr
);
4897 if ((cc_z
| (cc_n
^ cc_v
)) == 0)
4898 pc
= DIF_INSTR_LABEL(instr
);
4901 if ((cc_c
| cc_z
) == 0)
4902 pc
= DIF_INSTR_LABEL(instr
);
4905 if ((cc_n
^ cc_v
) == 0)
4906 pc
= DIF_INSTR_LABEL(instr
);
4910 pc
= DIF_INSTR_LABEL(instr
);
4914 pc
= DIF_INSTR_LABEL(instr
);
4918 pc
= DIF_INSTR_LABEL(instr
);
4921 if (cc_z
| (cc_n
^ cc_v
))
4922 pc
= DIF_INSTR_LABEL(instr
);
4926 pc
= DIF_INSTR_LABEL(instr
);
4929 if (!dtrace_canstore(regs
[r1
], 1, mstate
, vstate
)) {
4930 *flags
|= CPU_DTRACE_KPRIV
;
4936 regs
[rd
] = (int8_t)dtrace_load8(regs
[r1
]);
4939 if (!dtrace_canstore(regs
[r1
], 2, mstate
, vstate
)) {
4940 *flags
|= CPU_DTRACE_KPRIV
;
4946 regs
[rd
] = (int16_t)dtrace_load16(regs
[r1
]);
4949 if (!dtrace_canstore(regs
[r1
], 4, mstate
, vstate
)) {
4950 *flags
|= CPU_DTRACE_KPRIV
;
4956 regs
[rd
] = (int32_t)dtrace_load32(regs
[r1
]);
4959 if (!dtrace_canstore(regs
[r1
], 1, mstate
, vstate
)) {
4960 *flags
|= CPU_DTRACE_KPRIV
;
4966 regs
[rd
] = dtrace_load8(regs
[r1
]);
4969 if (!dtrace_canstore(regs
[r1
], 2, mstate
, vstate
)) {
4970 *flags
|= CPU_DTRACE_KPRIV
;
4976 regs
[rd
] = dtrace_load16(regs
[r1
]);
4979 if (!dtrace_canstore(regs
[r1
], 4, mstate
, vstate
)) {
4980 *flags
|= CPU_DTRACE_KPRIV
;
4986 regs
[rd
] = dtrace_load32(regs
[r1
]);
4989 if (!dtrace_canstore(regs
[r1
], 8, mstate
, vstate
)) {
4990 *flags
|= CPU_DTRACE_KPRIV
;
4996 regs
[rd
] = dtrace_load64(regs
[r1
]);
4999 * Darwin 32-bit kernel may fetch from 64-bit user.
5000 * Do not cast regs to uintptr_t
5001 * DIF_OP_ULDSB,DIF_OP_ULDSH, DIF_OP_ULDSW, DIF_OP_ULDUB
5002 * DIF_OP_ULDUH, DIF_OP_ULDUW, DIF_OP_ULDX
5006 dtrace_fuword8(regs
[r1
]);
5009 regs
[rd
] = (int16_t)
5010 dtrace_fuword16(regs
[r1
]);
5013 regs
[rd
] = (int32_t)
5014 dtrace_fuword32(regs
[r1
]);
5018 dtrace_fuword8(regs
[r1
]);
5022 dtrace_fuword16(regs
[r1
]);
5026 dtrace_fuword32(regs
[r1
]);
5030 dtrace_fuword64(regs
[r1
]);
5039 regs
[rd
] = inttab
[DIF_INSTR_INTEGER(instr
)];
5042 regs
[rd
] = (uint64_t)(uintptr_t)
5043 (strtab
+ DIF_INSTR_STRING(instr
));
5046 size_t sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5047 uintptr_t s1
= regs
[r1
];
5048 uintptr_t s2
= regs
[r2
];
5051 !dtrace_strcanload(s1
, sz
, mstate
, vstate
))
5054 !dtrace_strcanload(s2
, sz
, mstate
, vstate
))
5057 cc_r
= dtrace_strncmp((char *)s1
, (char *)s2
, sz
);
5065 regs
[rd
] = dtrace_dif_variable(mstate
, state
,
5069 id
= DIF_INSTR_VAR(instr
);
5071 if (id
>= DIF_VAR_OTHER_UBASE
) {
5074 id
-= DIF_VAR_OTHER_UBASE
;
5075 svar
= vstate
->dtvs_globals
[id
];
5076 ASSERT(svar
!= NULL
);
5077 v
= &svar
->dtsv_var
;
5079 if (!(v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)) {
5080 regs
[rd
] = svar
->dtsv_data
;
5084 a
= (uintptr_t)svar
->dtsv_data
;
5086 if (*(uint8_t *)a
== UINT8_MAX
) {
5088 * If the 0th byte is set to UINT8_MAX
5089 * then this is to be treated as a
5090 * reference to a NULL variable.
5094 regs
[rd
] = a
+ sizeof (uint64_t);
5100 regs
[rd
] = dtrace_dif_variable(mstate
, state
, id
, 0);
5104 id
= DIF_INSTR_VAR(instr
);
5106 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5107 id
-= DIF_VAR_OTHER_UBASE
;
5109 svar
= vstate
->dtvs_globals
[id
];
5110 ASSERT(svar
!= NULL
);
5111 v
= &svar
->dtsv_var
;
5113 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5114 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5117 ASSERT(svar
->dtsv_size
!= 0);
5119 if (regs
[rd
] == 0) {
5120 *(uint8_t *)a
= UINT8_MAX
;
5124 a
+= sizeof (uint64_t);
5126 if (!dtrace_vcanload(
5127 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5131 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5132 (void *)a
, &v
->dtdv_type
);
5136 svar
->dtsv_data
= regs
[rd
];
5141 * There are no DTrace built-in thread-local arrays at
5142 * present. This opcode is saved for future work.
5144 *flags
|= CPU_DTRACE_ILLOP
;
5149 id
= DIF_INSTR_VAR(instr
);
5151 if (id
< DIF_VAR_OTHER_UBASE
) {
5153 * For now, this has no meaning.
5159 id
-= DIF_VAR_OTHER_UBASE
;
5161 ASSERT(id
< (uint_t
)vstate
->dtvs_nlocals
);
5162 ASSERT(vstate
->dtvs_locals
!= NULL
);
5163 svar
= vstate
->dtvs_locals
[id
];
5164 ASSERT(svar
!= NULL
);
5165 v
= &svar
->dtsv_var
;
5167 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5168 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5169 size_t sz
= v
->dtdv_type
.dtdt_size
;
5171 sz
+= sizeof (uint64_t);
5172 ASSERT(svar
->dtsv_size
== (int)NCPU
* sz
);
5173 a
+= CPU
->cpu_id
* sz
;
5175 if (*(uint8_t *)a
== UINT8_MAX
) {
5177 * If the 0th byte is set to UINT8_MAX
5178 * then this is to be treated as a
5179 * reference to a NULL variable.
5183 regs
[rd
] = a
+ sizeof (uint64_t);
5189 ASSERT(svar
->dtsv_size
== (int)NCPU
* sizeof (uint64_t));
5190 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
5191 regs
[rd
] = tmp
[CPU
->cpu_id
];
5195 id
= DIF_INSTR_VAR(instr
);
5197 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5198 id
-= DIF_VAR_OTHER_UBASE
;
5199 ASSERT(id
< (uint_t
)vstate
->dtvs_nlocals
);
5200 ASSERT(vstate
->dtvs_locals
!= NULL
);
5201 svar
= vstate
->dtvs_locals
[id
];
5202 ASSERT(svar
!= NULL
);
5203 v
= &svar
->dtsv_var
;
5205 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5206 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5207 size_t sz
= v
->dtdv_type
.dtdt_size
;
5209 sz
+= sizeof (uint64_t);
5210 ASSERT(svar
->dtsv_size
== (int)NCPU
* sz
);
5211 a
+= CPU
->cpu_id
* sz
;
5213 if (regs
[rd
] == 0) {
5214 *(uint8_t *)a
= UINT8_MAX
;
5218 a
+= sizeof (uint64_t);
5221 if (!dtrace_vcanload(
5222 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5226 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5227 (void *)a
, &v
->dtdv_type
);
5231 ASSERT(svar
->dtsv_size
== (int)NCPU
* sizeof (uint64_t));
5232 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
5233 tmp
[CPU
->cpu_id
] = regs
[rd
];
5237 dtrace_dynvar_t
*dvar
;
5240 id
= DIF_INSTR_VAR(instr
);
5241 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5242 id
-= DIF_VAR_OTHER_UBASE
;
5243 v
= &vstate
->dtvs_tlocals
[id
];
5245 key
= &tupregs
[DIF_DTR_NREGS
];
5246 key
[0].dttk_value
= (uint64_t)id
;
5247 key
[0].dttk_size
= 0;
5248 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
5249 key
[1].dttk_size
= 0;
5251 dvar
= dtrace_dynvar(dstate
, 2, key
,
5252 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC
,
5260 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5261 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
5263 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
5270 dtrace_dynvar_t
*dvar
;
5273 id
= DIF_INSTR_VAR(instr
);
5274 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5275 id
-= DIF_VAR_OTHER_UBASE
;
5277 key
= &tupregs
[DIF_DTR_NREGS
];
5278 key
[0].dttk_value
= (uint64_t)id
;
5279 key
[0].dttk_size
= 0;
5280 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
5281 key
[1].dttk_size
= 0;
5282 v
= &vstate
->dtvs_tlocals
[id
];
5284 dvar
= dtrace_dynvar(dstate
, 2, key
,
5285 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5286 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5287 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
5288 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
5291 * Given that we're storing to thread-local data,
5292 * we need to flush our predicate cache.
5294 dtrace_set_thread_predcache(current_thread(), 0);
5299 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5300 if (!dtrace_vcanload(
5301 (void *)(uintptr_t)regs
[rd
],
5302 &v
->dtdv_type
, mstate
, vstate
))
5305 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5306 dvar
->dtdv_data
, &v
->dtdv_type
);
5308 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
5315 regs
[rd
] = (int64_t)regs
[r1
] >> regs
[r2
];
5319 dtrace_dif_subr(DIF_INSTR_SUBR(instr
), rd
,
5320 regs
, tupregs
, ttop
, mstate
, state
);
5324 if (ttop
== DIF_DTR_NREGS
) {
5325 *flags
|= CPU_DTRACE_TUPOFLOW
;
5329 if (r1
== DIF_TYPE_STRING
) {
5331 * If this is a string type and the size is 0,
5332 * we'll use the system-wide default string
5333 * size. Note that we are _not_ looking at
5334 * the value of the DTRACEOPT_STRSIZE option;
5335 * had this been set, we would expect to have
5336 * a non-zero size value in the "pushtr".
5338 tupregs
[ttop
].dttk_size
=
5339 dtrace_strlen((char *)(uintptr_t)regs
[rd
],
5340 regs
[r2
] ? regs
[r2
] :
5341 dtrace_strsize_default
) + 1;
5343 tupregs
[ttop
].dttk_size
= regs
[r2
];
5346 tupregs
[ttop
++].dttk_value
= regs
[rd
];
5350 if (ttop
== DIF_DTR_NREGS
) {
5351 *flags
|= CPU_DTRACE_TUPOFLOW
;
5355 tupregs
[ttop
].dttk_value
= regs
[rd
];
5356 tupregs
[ttop
++].dttk_size
= 0;
5364 case DIF_OP_FLUSHTS
:
5369 case DIF_OP_LDTAA
: {
5370 dtrace_dynvar_t
*dvar
;
5371 dtrace_key_t
*key
= tupregs
;
5372 uint_t nkeys
= ttop
;
5374 id
= DIF_INSTR_VAR(instr
);
5375 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5376 id
-= DIF_VAR_OTHER_UBASE
;
5378 key
[nkeys
].dttk_value
= (uint64_t)id
;
5379 key
[nkeys
++].dttk_size
= 0;
5381 if (DIF_INSTR_OP(instr
) == DIF_OP_LDTAA
) {
5382 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
5383 key
[nkeys
++].dttk_size
= 0;
5384 v
= &vstate
->dtvs_tlocals
[id
];
5386 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
5389 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
5390 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5391 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5392 DTRACE_DYNVAR_NOALLOC
, mstate
, vstate
);
5399 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5400 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
5402 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
5409 case DIF_OP_STTAA
: {
5410 dtrace_dynvar_t
*dvar
;
5411 dtrace_key_t
*key
= tupregs
;
5412 uint_t nkeys
= ttop
;
5414 id
= DIF_INSTR_VAR(instr
);
5415 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5416 id
-= DIF_VAR_OTHER_UBASE
;
5418 key
[nkeys
].dttk_value
= (uint64_t)id
;
5419 key
[nkeys
++].dttk_size
= 0;
5421 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
) {
5422 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
5423 key
[nkeys
++].dttk_size
= 0;
5424 v
= &vstate
->dtvs_tlocals
[id
];
5426 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
5429 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
5430 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5431 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5432 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
5433 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
5438 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5439 if (!dtrace_vcanload(
5440 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5444 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5445 dvar
->dtdv_data
, &v
->dtdv_type
);
5447 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
5453 case DIF_OP_ALLOCS
: {
5454 uintptr_t ptr
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
5455 size_t size
= ptr
- mstate
->dtms_scratch_ptr
+ regs
[r1
];
5458 * Rounding up the user allocation size could have
5459 * overflowed large, bogus allocations (like -1ULL) to
5462 if (size
< regs
[r1
] ||
5463 !DTRACE_INSCRATCH(mstate
, size
)) {
5464 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5469 dtrace_bzero((void *) mstate
->dtms_scratch_ptr
, size
);
5470 mstate
->dtms_scratch_ptr
+= size
;
5476 if (!dtrace_canstore(regs
[rd
], regs
[r2
],
5478 *flags
|= CPU_DTRACE_BADADDR
;
5483 if (!dtrace_canload(regs
[r1
], regs
[r2
], mstate
, vstate
))
5486 dtrace_bcopy((void *)(uintptr_t)regs
[r1
],
5487 (void *)(uintptr_t)regs
[rd
], (size_t)regs
[r2
]);
5491 if (!dtrace_canstore(regs
[rd
], 1, mstate
, vstate
)) {
5492 *flags
|= CPU_DTRACE_BADADDR
;
5496 *((uint8_t *)(uintptr_t)regs
[rd
]) = (uint8_t)regs
[r1
];
5500 if (!dtrace_canstore(regs
[rd
], 2, mstate
, vstate
)) {
5501 *flags
|= CPU_DTRACE_BADADDR
;
5506 *flags
|= CPU_DTRACE_BADALIGN
;
5510 *((uint16_t *)(uintptr_t)regs
[rd
]) = (uint16_t)regs
[r1
];
5514 if (!dtrace_canstore(regs
[rd
], 4, mstate
, vstate
)) {
5515 *flags
|= CPU_DTRACE_BADADDR
;
5520 *flags
|= CPU_DTRACE_BADALIGN
;
5524 *((uint32_t *)(uintptr_t)regs
[rd
]) = (uint32_t)regs
[r1
];
5528 if (!dtrace_canstore(regs
[rd
], 8, mstate
, vstate
)) {
5529 *flags
|= CPU_DTRACE_BADADDR
;
5535 * Darwin kmem_zalloc() called from
5536 * dtrace_difo_init() is 4-byte aligned.
5539 *flags
|= CPU_DTRACE_BADALIGN
;
5543 *((uint64_t *)(uintptr_t)regs
[rd
]) = regs
[r1
];
5548 if (!(*flags
& CPU_DTRACE_FAULT
))
5551 mstate
->dtms_fltoffs
= opc
* sizeof (dif_instr_t
);
5552 mstate
->dtms_present
|= DTRACE_MSTATE_FLTOFFS
;
5558 dtrace_action_breakpoint(dtrace_ecb_t
*ecb
)
5560 dtrace_probe_t
*probe
= ecb
->dte_probe
;
5561 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
5562 char c
[DTRACE_FULLNAMELEN
+ 80], *str
;
5563 const char *msg
= "dtrace: breakpoint action at probe ";
5564 const char *ecbmsg
= " (ecb ";
5565 uintptr_t mask
= (0xf << (sizeof (uintptr_t) * NBBY
/ 4));
5566 uintptr_t val
= (uintptr_t)ecb
;
5567 int shift
= (sizeof (uintptr_t) * NBBY
) - 4, i
= 0;
5569 if (dtrace_destructive_disallow
)
5573 * It's impossible to be taking action on the NULL probe.
5575 ASSERT(probe
!= NULL
);
5578 * This is a poor man's (destitute man's?) sprintf(): we want to
5579 * print the provider name, module name, function name and name of
5580 * the probe, along with the hex address of the ECB with the breakpoint
5581 * action -- all of which we must place in the character buffer by
5584 while (*msg
!= '\0')
5587 for (str
= prov
->dtpv_name
; *str
!= '\0'; str
++)
5591 for (str
= probe
->dtpr_mod
; *str
!= '\0'; str
++)
5595 for (str
= probe
->dtpr_func
; *str
!= '\0'; str
++)
5599 for (str
= probe
->dtpr_name
; *str
!= '\0'; str
++)
5602 while (*ecbmsg
!= '\0')
5605 while (shift
>= 0) {
5606 mask
= (uintptr_t)0xf << shift
;
5608 if (val
>= ((uintptr_t)1 << shift
))
5609 c
[i
++] = "0123456789abcdef"[(val
& mask
) >> shift
];
5620 dtrace_action_panic(dtrace_ecb_t
*ecb
)
5622 dtrace_probe_t
*probe
= ecb
->dte_probe
;
5625 * It's impossible to be taking action on the NULL probe.
5627 ASSERT(probe
!= NULL
);
5629 if (dtrace_destructive_disallow
)
5632 if (dtrace_panicked
!= NULL
)
5635 if (dtrace_casptr(&dtrace_panicked
, NULL
, current_thread()) != NULL
)
5639 * We won the right to panic. (We want to be sure that only one
5640 * thread calls panic() from dtrace_probe(), and that panic() is
5641 * called exactly once.)
5643 panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5644 probe
->dtpr_provider
->dtpv_name
, probe
->dtpr_mod
,
5645 probe
->dtpr_func
, probe
->dtpr_name
, (void *)ecb
);
5648 * APPLE NOTE: this was for an old Mac OS X debug feature
5649 * allowing a return from panic(). Revisit someday.
5651 dtrace_panicked
= NULL
;
5655 dtrace_action_raise(uint64_t sig
)
5657 if (dtrace_destructive_disallow
)
5661 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
5666 * raise() has a queue depth of 1 -- we ignore all subsequent
5667 * invocations of the raise() action.
5670 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
5672 if (uthread
&& uthread
->t_dtrace_sig
== 0) {
5673 uthread
->t_dtrace_sig
= sig
;
5674 act_set_astbsd(current_thread());
5679 dtrace_action_stop(void)
5681 if (dtrace_destructive_disallow
)
5684 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
5687 * The currently running process will be set to task_suspend
5688 * when it next leaves the kernel.
5690 uthread
->t_dtrace_stop
= 1;
5691 act_set_astbsd(current_thread());
5697 * APPLE NOTE: pidresume works in conjunction with the dtrace stop action.
5698 * Both activate only when the currently running process next leaves the
5702 dtrace_action_pidresume(uint64_t pid
)
5704 if (dtrace_destructive_disallow
)
5707 if (kauth_cred_issuser(kauth_cred_get()) == 0) {
5708 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
5711 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
5714 * When the currently running process leaves the kernel, it attempts to
5715 * task_resume the process (denoted by pid), if that pid appears to have
5716 * been stopped by dtrace_action_stop().
5717 * The currently running process has a pidresume() queue depth of 1 --
5718 * subsequent invocations of the pidresume() action are ignored.
5721 if (pid
!= 0 && uthread
&& uthread
->t_dtrace_resumepid
== 0) {
5722 uthread
->t_dtrace_resumepid
= pid
;
5723 act_set_astbsd(current_thread());
5728 dtrace_action_chill(dtrace_mstate_t
*mstate
, hrtime_t val
)
5731 volatile uint16_t *flags
;
5732 dtrace_cpu_t
*cpu
= CPU
;
5734 if (dtrace_destructive_disallow
)
5737 flags
= (volatile uint16_t *)&cpu_core
[cpu
->cpu_id
].cpuc_dtrace_flags
;
5739 now
= dtrace_gethrtime();
5741 if (now
- cpu
->cpu_dtrace_chillmark
> dtrace_chill_interval
) {
5743 * We need to advance the mark to the current time.
5745 cpu
->cpu_dtrace_chillmark
= now
;
5746 cpu
->cpu_dtrace_chilled
= 0;
5750 * Now check to see if the requested chill time would take us over
5751 * the maximum amount of time allowed in the chill interval. (Or
5752 * worse, if the calculation itself induces overflow.)
5754 if (cpu
->cpu_dtrace_chilled
+ val
> dtrace_chill_max
||
5755 cpu
->cpu_dtrace_chilled
+ val
< cpu
->cpu_dtrace_chilled
) {
5756 *flags
|= CPU_DTRACE_ILLOP
;
5760 while (dtrace_gethrtime() - now
< val
)
5764 * Normally, we assure that the value of the variable "timestamp" does
5765 * not change within an ECB. The presence of chill() represents an
5766 * exception to this rule, however.
5768 mstate
->dtms_present
&= ~DTRACE_MSTATE_TIMESTAMP
;
5769 cpu
->cpu_dtrace_chilled
+= val
;
5773 dtrace_action_ustack(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
,
5774 uint64_t *buf
, uint64_t arg
)
5776 int nframes
= DTRACE_USTACK_NFRAMES(arg
);
5777 int strsize
= DTRACE_USTACK_STRSIZE(arg
);
5778 uint64_t *pcs
= &buf
[1], *fps
;
5779 char *str
= (char *)&pcs
[nframes
];
5780 int size
, offs
= 0, i
, j
;
5781 uintptr_t old
= mstate
->dtms_scratch_ptr
, saved
;
5782 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
5786 * Should be taking a faster path if string space has not been
5789 ASSERT(strsize
!= 0);
5792 * We will first allocate some temporary space for the frame pointers.
5794 fps
= (uint64_t *)P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
5795 size
= (uintptr_t)fps
- mstate
->dtms_scratch_ptr
+
5796 (nframes
* sizeof (uint64_t));
5798 if (!DTRACE_INSCRATCH(mstate
, (uintptr_t)size
)) {
5800 * Not enough room for our frame pointers -- need to indicate
5801 * that we ran out of scratch space.
5803 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5807 mstate
->dtms_scratch_ptr
+= size
;
5808 saved
= mstate
->dtms_scratch_ptr
;
5811 * Now get a stack with both program counters and frame pointers.
5813 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5814 dtrace_getufpstack(buf
, fps
, nframes
+ 1);
5815 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5818 * If that faulted, we're cooked.
5820 if (*flags
& CPU_DTRACE_FAULT
)
5824 * Now we want to walk up the stack, calling the USTACK helper. For
5825 * each iteration, we restore the scratch pointer.
5827 for (i
= 0; i
< nframes
; i
++) {
5828 mstate
->dtms_scratch_ptr
= saved
;
5830 if (offs
>= strsize
)
5833 sym
= (char *)(uintptr_t)dtrace_helper(
5834 DTRACE_HELPER_ACTION_USTACK
,
5835 mstate
, state
, pcs
[i
], fps
[i
]);
5838 * If we faulted while running the helper, we're going to
5839 * clear the fault and null out the corresponding string.
5841 if (*flags
& CPU_DTRACE_FAULT
) {
5842 *flags
&= ~CPU_DTRACE_FAULT
;
5852 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5855 * Now copy in the string that the helper returned to us.
5857 for (j
= 0; offs
+ j
< strsize
; j
++) {
5858 if ((str
[offs
+ j
] = sym
[j
]) == '\0')
5862 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5867 if (offs
>= strsize
) {
5869 * If we didn't have room for all of the strings, we don't
5870 * abort processing -- this needn't be a fatal error -- but we
5871 * still want to increment a counter (dts_stkstroverflows) to
5872 * allow this condition to be warned about. (If this is from
5873 * a jstack() action, it is easily tuned via jstackstrsize.)
5875 dtrace_error(&state
->dts_stkstroverflows
);
5878 while (offs
< strsize
)
5882 mstate
->dtms_scratch_ptr
= old
;
5886 dtrace_store_by_ref(dtrace_difo_t
*dp
, caddr_t tomax
, size_t size
,
5887 size_t *valoffsp
, uint64_t *valp
, uint64_t end
, int intuple
, int dtkind
)
5889 volatile uint16_t *flags
;
5890 uint64_t val
= *valp
;
5891 size_t valoffs
= *valoffsp
;
5893 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
5894 ASSERT(dtkind
== DIF_TF_BYREF
|| dtkind
== DIF_TF_BYUREF
);
5897 * If this is a string, we're going to only load until we find the zero
5898 * byte -- after which we'll store zero bytes.
5900 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
5904 for (s
= 0; s
< size
; s
++) {
5905 if (c
!= '\0' && dtkind
== DIF_TF_BYREF
) {
5906 c
= dtrace_load8(val
++);
5907 } else if (c
!= '\0' && dtkind
== DIF_TF_BYUREF
) {
5908 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5909 c
= dtrace_fuword8((user_addr_t
)(uintptr_t)val
++);
5910 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5911 if (*flags
& CPU_DTRACE_FAULT
)
5915 DTRACE_STORE(uint8_t, tomax
, valoffs
++, c
);
5917 if (c
== '\0' && intuple
)
5922 while (valoffs
< end
) {
5923 if (dtkind
== DIF_TF_BYREF
) {
5924 c
= dtrace_load8(val
++);
5925 } else if (dtkind
== DIF_TF_BYUREF
) {
5926 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5927 c
= dtrace_fuword8((user_addr_t
)(uintptr_t)val
++);
5928 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5929 if (*flags
& CPU_DTRACE_FAULT
)
5933 DTRACE_STORE(uint8_t, tomax
,
5939 *valoffsp
= valoffs
;
5943 * If you're looking for the epicenter of DTrace, you just found it. This
5944 * is the function called by the provider to fire a probe -- from which all
5945 * subsequent probe-context DTrace activity emanates.
5948 __dtrace_probe(dtrace_id_t id
, uint64_t arg0
, uint64_t arg1
,
5949 uint64_t arg2
, uint64_t arg3
, uint64_t arg4
)
5951 processorid_t cpuid
;
5952 dtrace_icookie_t cookie
;
5953 dtrace_probe_t
*probe
;
5954 dtrace_mstate_t mstate
;
5956 dtrace_action_t
*act
;
5960 volatile uint16_t *flags
;
5963 cookie
= dtrace_interrupt_disable();
5964 probe
= dtrace_probes
[id
- 1];
5965 cpuid
= CPU
->cpu_id
;
5966 onintr
= CPU_ON_INTR(CPU
);
5968 if (!onintr
&& probe
->dtpr_predcache
!= DTRACE_CACHEIDNONE
&&
5969 probe
->dtpr_predcache
== dtrace_get_thread_predcache(current_thread())) {
5971 * We have hit in the predicate cache; we know that
5972 * this predicate would evaluate to be false.
5974 dtrace_interrupt_enable(cookie
);
5978 if (panic_quiesce
) {
5980 * We don't trace anything if we're panicking.
5982 dtrace_interrupt_enable(cookie
);
5986 #if !defined(__APPLE__)
5987 now
= dtrace_gethrtime();
5988 vtime
= dtrace_vtime_references
!= 0;
5990 if (vtime
&& curthread
->t_dtrace_start
)
5991 curthread
->t_dtrace_vtime
+= now
- curthread
->t_dtrace_start
;
5994 * APPLE NOTE: The time spent entering DTrace and arriving
5995 * to this point, is attributed to the current thread.
5996 * Instead it should accrue to DTrace. FIXME
5998 vtime
= dtrace_vtime_references
!= 0;
6002 int64_t dtrace_accum_time
, recent_vtime
;
6003 thread_t thread
= current_thread();
6005 dtrace_accum_time
= dtrace_get_thread_tracing(thread
); /* Time spent inside DTrace so far (nanoseconds) */
6007 if (dtrace_accum_time
>= 0) {
6008 recent_vtime
= dtrace_abs_to_nano(dtrace_calc_thread_recent_vtime(thread
)); /* up to the moment thread vtime */
6010 recent_vtime
= recent_vtime
- dtrace_accum_time
; /* Time without DTrace contribution */
6012 dtrace_set_thread_vtime(thread
, recent_vtime
);
6016 now
= dtrace_gethrtime(); /* must not precede dtrace_calc_thread_recent_vtime() call! */
6017 #endif /* __APPLE__ */
6020 * APPLE NOTE: A provider may call dtrace_probe_error() in lieu of
6021 * dtrace_probe() in some circumstances. See, e.g. fasttrap_isa.c.
6022 * However the provider has no access to ECB context, so passes
6023 * 0 through "arg0" and the probe_id of the overridden probe as arg1.
6024 * Detect that here and cons up a viable state (from the probe_id).
6026 if (dtrace_probeid_error
== id
&& 0 == arg0
) {
6027 dtrace_id_t ftp_id
= (dtrace_id_t
)arg1
;
6028 dtrace_probe_t
*ftp_probe
= dtrace_probes
[ftp_id
- 1];
6029 dtrace_ecb_t
*ftp_ecb
= ftp_probe
->dtpr_ecb
;
6031 if (NULL
!= ftp_ecb
) {
6032 dtrace_state_t
*ftp_state
= ftp_ecb
->dte_state
;
6034 arg0
= (uint64_t)(uintptr_t)ftp_state
;
6035 arg1
= ftp_ecb
->dte_epid
;
6037 * args[2-4] established by caller.
6039 ftp_state
->dts_arg_error_illval
= -1; /* arg5 */
6043 mstate
.dtms_difo
= NULL
;
6044 mstate
.dtms_probe
= probe
;
6045 mstate
.dtms_strtok
= 0;
6046 mstate
.dtms_arg
[0] = arg0
;
6047 mstate
.dtms_arg
[1] = arg1
;
6048 mstate
.dtms_arg
[2] = arg2
;
6049 mstate
.dtms_arg
[3] = arg3
;
6050 mstate
.dtms_arg
[4] = arg4
;
6052 flags
= (volatile uint16_t *)&cpu_core
[cpuid
].cpuc_dtrace_flags
;
6054 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
6055 dtrace_predicate_t
*pred
= ecb
->dte_predicate
;
6056 dtrace_state_t
*state
= ecb
->dte_state
;
6057 dtrace_buffer_t
*buf
= &state
->dts_buffer
[cpuid
];
6058 dtrace_buffer_t
*aggbuf
= &state
->dts_aggbuffer
[cpuid
];
6059 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
6060 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
6061 uint64_t tracememsize
= 0;
6066 * A little subtlety with the following (seemingly innocuous)
6067 * declaration of the automatic 'val': by looking at the
6068 * code, you might think that it could be declared in the
6069 * action processing loop, below. (That is, it's only used in
6070 * the action processing loop.) However, it must be declared
6071 * out of that scope because in the case of DIF expression
6072 * arguments to aggregating actions, one iteration of the
6073 * action loop will use the last iteration's value.
6081 mstate
.dtms_present
= DTRACE_MSTATE_ARGS
| DTRACE_MSTATE_PROBE
;
6082 *flags
&= ~CPU_DTRACE_ERROR
;
6084 if (prov
== dtrace_provider
) {
6086 * If dtrace itself is the provider of this probe,
6087 * we're only going to continue processing the ECB if
6088 * arg0 (the dtrace_state_t) is equal to the ECB's
6089 * creating state. (This prevents disjoint consumers
6090 * from seeing one another's metaprobes.)
6092 if (arg0
!= (uint64_t)(uintptr_t)state
)
6096 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
) {
6098 * We're not currently active. If our provider isn't
6099 * the dtrace pseudo provider, we're not interested.
6101 if (prov
!= dtrace_provider
)
6105 * Now we must further check if we are in the BEGIN
6106 * probe. If we are, we will only continue processing
6107 * if we're still in WARMUP -- if one BEGIN enabling
6108 * has invoked the exit() action, we don't want to
6109 * evaluate subsequent BEGIN enablings.
6111 if (probe
->dtpr_id
== dtrace_probeid_begin
&&
6112 state
->dts_activity
!= DTRACE_ACTIVITY_WARMUP
) {
6113 ASSERT(state
->dts_activity
==
6114 DTRACE_ACTIVITY_DRAINING
);
6119 if (ecb
->dte_cond
) {
6121 * If the dte_cond bits indicate that this
6122 * consumer is only allowed to see user-mode firings
6123 * of this probe, call the provider's dtps_usermode()
6124 * entry point to check that the probe was fired
6125 * while in a user context. Skip this ECB if that's
6128 if ((ecb
->dte_cond
& DTRACE_COND_USERMODE
) &&
6129 prov
->dtpv_pops
.dtps_usermode(prov
->dtpv_arg
,
6130 probe
->dtpr_id
, probe
->dtpr_arg
) == 0)
6134 * This is more subtle than it looks. We have to be
6135 * absolutely certain that CRED() isn't going to
6136 * change out from under us so it's only legit to
6137 * examine that structure if we're in constrained
6138 * situations. Currently, the only times we'll this
6139 * check is if a non-super-user has enabled the
6140 * profile or syscall providers -- providers that
6141 * allow visibility of all processes. For the
6142 * profile case, the check above will ensure that
6143 * we're examining a user context.
6145 if (ecb
->dte_cond
& DTRACE_COND_OWNER
) {
6148 ecb
->dte_state
->dts_cred
.dcr_cred
;
6150 #pragma unused(proc) /* __APPLE__ */
6152 ASSERT(s_cr
!= NULL
);
6155 * XXX this is hackish, but so is setting a variable
6156 * XXX in a McCarthy OR...
6158 if ((cr
= dtrace_CRED()) == NULL
||
6159 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_uid
||
6160 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_ruid
||
6161 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_suid
||
6162 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_gid
||
6163 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_rgid
||
6164 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_sgid
||
6165 #if !defined(__APPLE__)
6166 (proc
= ttoproc(curthread
)) == NULL
||
6167 (proc
->p_flag
& SNOCD
))
6169 1) /* APPLE NOTE: Darwin omits "No Core Dump" flag */
6170 #endif /* __APPLE__ */
6174 if (ecb
->dte_cond
& DTRACE_COND_ZONEOWNER
) {
6177 ecb
->dte_state
->dts_cred
.dcr_cred
;
6178 #pragma unused(cr, s_cr) /* __APPLE__ */
6180 ASSERT(s_cr
!= NULL
);
6182 #if !defined(__APPLE__)
6183 if ((cr
= CRED()) == NULL
||
6184 s_cr
->cr_zone
->zone_id
!=
6185 cr
->cr_zone
->zone_id
)
6188 /* APPLE NOTE: Darwin doesn't do zones. */
6189 #endif /* __APPLE__ */
6193 if (now
- state
->dts_alive
> dtrace_deadman_timeout
) {
6195 * We seem to be dead. Unless we (a) have kernel
6196 * destructive permissions (b) have expicitly enabled
6197 * destructive actions and (c) destructive actions have
6198 * not been disabled, we're going to transition into
6199 * the KILLED state, from which no further processing
6200 * on this state will be performed.
6202 if (!dtrace_priv_kernel_destructive(state
) ||
6203 !state
->dts_cred
.dcr_destructive
||
6204 dtrace_destructive_disallow
) {
6205 void *activity
= &state
->dts_activity
;
6206 dtrace_activity_t current
;
6209 current
= state
->dts_activity
;
6210 } while (dtrace_cas32(activity
, current
,
6211 DTRACE_ACTIVITY_KILLED
) != current
);
6217 if ((offs
= dtrace_buffer_reserve(buf
, ecb
->dte_needed
,
6218 ecb
->dte_alignment
, state
, &mstate
)) < 0)
6221 tomax
= buf
->dtb_tomax
;
6222 ASSERT(tomax
!= NULL
);
6225 * Build and store the record header corresponding to the ECB.
6227 if (ecb
->dte_size
!= 0) {
6228 dtrace_rechdr_t dtrh
;
6230 if (!(mstate
.dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
6231 mstate
.dtms_timestamp
= dtrace_gethrtime();
6232 mstate
.dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
6235 ASSERT(ecb
->dte_size
>= sizeof(dtrace_rechdr_t
));
6237 dtrh
.dtrh_epid
= ecb
->dte_epid
;
6238 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh
, mstate
.dtms_timestamp
);
6239 DTRACE_STORE(dtrace_rechdr_t
, tomax
, offs
, dtrh
);
6242 mstate
.dtms_epid
= ecb
->dte_epid
;
6243 mstate
.dtms_present
|= DTRACE_MSTATE_EPID
;
6245 if (state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)
6246 mstate
.dtms_access
= DTRACE_ACCESS_KERNEL
;
6248 mstate
.dtms_access
= 0;
6251 dtrace_difo_t
*dp
= pred
->dtp_difo
;
6254 rval
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
6256 if (!(*flags
& CPU_DTRACE_ERROR
) && !rval
) {
6257 dtrace_cacheid_t cid
= probe
->dtpr_predcache
;
6259 if (cid
!= DTRACE_CACHEIDNONE
&& !onintr
) {
6261 * Update the predicate cache...
6263 ASSERT(cid
== pred
->dtp_cacheid
);
6265 dtrace_set_thread_predcache(current_thread(), cid
);
6272 for (act
= ecb
->dte_action
; !(*flags
& CPU_DTRACE_ERROR
) &&
6273 act
!= NULL
; act
= act
->dta_next
) {
6276 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
6278 size
= rec
->dtrd_size
;
6279 valoffs
= offs
+ rec
->dtrd_offset
;
6281 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
6283 dtrace_aggregation_t
*agg
;
6285 agg
= (dtrace_aggregation_t
*)act
;
6287 if ((dp
= act
->dta_difo
) != NULL
)
6288 v
= dtrace_dif_emulate(dp
,
6289 &mstate
, vstate
, state
);
6291 if (*flags
& CPU_DTRACE_ERROR
)
6295 * Note that we always pass the expression
6296 * value from the previous iteration of the
6297 * action loop. This value will only be used
6298 * if there is an expression argument to the
6299 * aggregating action, denoted by the
6300 * dtag_hasarg field.
6302 dtrace_aggregate(agg
, buf
,
6303 offs
, aggbuf
, v
, val
);
6307 switch (act
->dta_kind
) {
6308 case DTRACEACT_STOP
:
6309 if (dtrace_priv_proc_destructive(state
))
6310 dtrace_action_stop();
6313 case DTRACEACT_BREAKPOINT
:
6314 if (dtrace_priv_kernel_destructive(state
))
6315 dtrace_action_breakpoint(ecb
);
6318 case DTRACEACT_PANIC
:
6319 if (dtrace_priv_kernel_destructive(state
))
6320 dtrace_action_panic(ecb
);
6323 case DTRACEACT_STACK
:
6324 if (!dtrace_priv_kernel(state
))
6327 dtrace_getpcstack((pc_t
*)(tomax
+ valoffs
),
6328 size
/ sizeof (pc_t
), probe
->dtpr_aframes
,
6329 DTRACE_ANCHORED(probe
) ? NULL
:
6330 (uint32_t *)(uintptr_t)arg0
);
6333 case DTRACEACT_JSTACK
:
6334 case DTRACEACT_USTACK
:
6335 if (!dtrace_priv_proc(state
))
6339 * See comment in DIF_VAR_PID.
6341 if (DTRACE_ANCHORED(mstate
.dtms_probe
) &&
6343 int depth
= DTRACE_USTACK_NFRAMES(
6346 dtrace_bzero((void *)(tomax
+ valoffs
),
6347 DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
)
6348 + depth
* sizeof (uint64_t));
6353 if (DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
) != 0 &&
6354 curproc
->p_dtrace_helpers
!= NULL
) {
6356 * This is the slow path -- we have
6357 * allocated string space, and we're
6358 * getting the stack of a process that
6359 * has helpers. Call into a separate
6360 * routine to perform this processing.
6362 dtrace_action_ustack(&mstate
, state
,
6363 (uint64_t *)(tomax
+ valoffs
),
6368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6369 dtrace_getupcstack((uint64_t *)
6371 DTRACE_USTACK_NFRAMES(rec
->dtrd_arg
) + 1);
6372 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6382 val
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
6384 if (*flags
& CPU_DTRACE_ERROR
)
6387 switch (act
->dta_kind
) {
6388 case DTRACEACT_SPECULATE
: {
6389 dtrace_rechdr_t
*dtrh
= NULL
;
6391 ASSERT(buf
== &state
->dts_buffer
[cpuid
]);
6392 buf
= dtrace_speculation_buffer(state
,
6396 *flags
|= CPU_DTRACE_DROP
;
6400 offs
= dtrace_buffer_reserve(buf
,
6401 ecb
->dte_needed
, ecb
->dte_alignment
,
6405 *flags
|= CPU_DTRACE_DROP
;
6409 tomax
= buf
->dtb_tomax
;
6410 ASSERT(tomax
!= NULL
);
6412 if (ecb
->dte_size
!= 0)
6415 ASSERT(ecb
->dte_size
>= sizeof(dtrace_rechdr_t
));
6416 dtrh
= ((void *)(tomax
+ offs
));
6417 dtrh
->dtrh_epid
= ecb
->dte_epid
;
6420 * When the speculation is committed, all of
6421 * the records in the speculative buffer will
6422 * have their timestamps set to the commit
6423 * time. Until then, it is set to a sentinel
6424 * value, for debugability.
6426 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, UINT64_MAX
);
6431 case DTRACEACT_CHILL
:
6432 if (dtrace_priv_kernel_destructive(state
))
6433 dtrace_action_chill(&mstate
, val
);
6436 case DTRACEACT_RAISE
:
6437 if (dtrace_priv_proc_destructive(state
))
6438 dtrace_action_raise(val
);
6441 case DTRACEACT_PIDRESUME
: /* __APPLE__ */
6442 if (dtrace_priv_proc_destructive(state
))
6443 dtrace_action_pidresume(val
);
6446 case DTRACEACT_COMMIT
:
6450 * We need to commit our buffer state.
6453 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
6454 buf
= &state
->dts_buffer
[cpuid
];
6455 dtrace_speculation_commit(state
, cpuid
, val
);
6459 case DTRACEACT_DISCARD
:
6460 dtrace_speculation_discard(state
, cpuid
, val
);
6463 case DTRACEACT_DIFEXPR
:
6464 case DTRACEACT_LIBACT
:
6465 case DTRACEACT_PRINTF
:
6466 case DTRACEACT_PRINTA
:
6467 case DTRACEACT_SYSTEM
:
6468 case DTRACEACT_FREOPEN
:
6469 case DTRACEACT_APPLEBINARY
: /* __APPLE__ */
6470 case DTRACEACT_TRACEMEM
:
6473 case DTRACEACT_TRACEMEM_DYNSIZE
:
6479 if (!dtrace_priv_kernel(state
))
6483 case DTRACEACT_USYM
:
6484 case DTRACEACT_UMOD
:
6485 case DTRACEACT_UADDR
: {
6486 if (!dtrace_priv_proc(state
))
6489 DTRACE_STORE(uint64_t, tomax
,
6490 valoffs
, (uint64_t)dtrace_proc_selfpid());
6491 DTRACE_STORE(uint64_t, tomax
,
6492 valoffs
+ sizeof (uint64_t), val
);
6497 case DTRACEACT_EXIT
: {
6499 * For the exit action, we are going to attempt
6500 * to atomically set our activity to be
6501 * draining. If this fails (either because
6502 * another CPU has beat us to the exit action,
6503 * or because our current activity is something
6504 * other than ACTIVE or WARMUP), we will
6505 * continue. This assures that the exit action
6506 * can be successfully recorded at most once
6507 * when we're in the ACTIVE state. If we're
6508 * encountering the exit() action while in
6509 * COOLDOWN, however, we want to honor the new
6510 * status code. (We know that we're the only
6511 * thread in COOLDOWN, so there is no race.)
6513 void *activity
= &state
->dts_activity
;
6514 dtrace_activity_t current
= state
->dts_activity
;
6516 if (current
== DTRACE_ACTIVITY_COOLDOWN
)
6519 if (current
!= DTRACE_ACTIVITY_WARMUP
)
6520 current
= DTRACE_ACTIVITY_ACTIVE
;
6522 if (dtrace_cas32(activity
, current
,
6523 DTRACE_ACTIVITY_DRAINING
) != current
) {
6524 *flags
|= CPU_DTRACE_DROP
;
6535 if (dp
->dtdo_rtype
.dtdt_flags
& (DIF_TF_BYREF
| DIF_TF_BYUREF
)) {
6536 uintptr_t end
= valoffs
+ size
;
6538 if (tracememsize
!= 0 &&
6539 valoffs
+ tracememsize
< end
)
6541 end
= valoffs
+ tracememsize
;
6545 if (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
&&
6546 !dtrace_vcanload((void *)(uintptr_t)val
,
6547 &dp
->dtdo_rtype
, &mstate
, vstate
))
6552 dtrace_store_by_ref(dp
, tomax
, size
, &valoffs
,
6553 &val
, end
, act
->dta_intuple
,
6554 dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
?
6555 DIF_TF_BYREF
: DIF_TF_BYUREF
);
6564 case sizeof (uint8_t):
6565 DTRACE_STORE(uint8_t, tomax
, valoffs
, val
);
6567 case sizeof (uint16_t):
6568 DTRACE_STORE(uint16_t, tomax
, valoffs
, val
);
6570 case sizeof (uint32_t):
6571 DTRACE_STORE(uint32_t, tomax
, valoffs
, val
);
6573 case sizeof (uint64_t):
6574 DTRACE_STORE(uint64_t, tomax
, valoffs
, val
);
6578 * Any other size should have been returned by
6579 * reference, not by value.
6586 if (*flags
& CPU_DTRACE_DROP
)
6589 if (*flags
& CPU_DTRACE_FAULT
) {
6591 dtrace_action_t
*err
;
6595 if (probe
->dtpr_id
== dtrace_probeid_error
) {
6597 * There's nothing we can do -- we had an
6598 * error on the error probe. We bump an
6599 * error counter to at least indicate that
6600 * this condition happened.
6602 dtrace_error(&state
->dts_dblerrors
);
6608 * Before recursing on dtrace_probe(), we
6609 * need to explicitly clear out our start
6610 * time to prevent it from being accumulated
6611 * into t_dtrace_vtime.
6615 * Darwin sets the sign bit on t_dtrace_tracing
6616 * to suspend accumulation to it.
6618 dtrace_set_thread_tracing(current_thread(),
6619 (1ULL<<63) | dtrace_get_thread_tracing(current_thread()));
6624 * Iterate over the actions to figure out which action
6625 * we were processing when we experienced the error.
6626 * Note that act points _past_ the faulting action; if
6627 * act is ecb->dte_action, the fault was in the
6628 * predicate, if it's ecb->dte_action->dta_next it's
6629 * in action #1, and so on.
6631 for (err
= ecb
->dte_action
, ndx
= 0;
6632 err
!= act
; err
= err
->dta_next
, ndx
++)
6635 dtrace_probe_error(state
, ecb
->dte_epid
, ndx
,
6636 (mstate
.dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
6637 mstate
.dtms_fltoffs
: -1, DTRACE_FLAGS2FLT(*flags
),
6638 cpu_core
[cpuid
].cpuc_dtrace_illval
);
6644 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
6647 /* FIXME: On Darwin the time spent leaving DTrace from this point to the rti is attributed
6648 to the current thread. Instead it should accrue to DTrace. */
6650 thread_t thread
= current_thread();
6651 int64_t t
= dtrace_get_thread_tracing(thread
);
6654 /* Usual case, accumulate time spent here into t_dtrace_tracing */
6655 dtrace_set_thread_tracing(thread
, t
+ (dtrace_gethrtime() - now
));
6657 /* Return from error recursion. No accumulation, just clear the sign bit on t_dtrace_tracing. */
6658 dtrace_set_thread_tracing(thread
, (~(1ULL<<63)) & t
);
6662 dtrace_interrupt_enable(cookie
);
6666 * APPLE NOTE: Don't allow a thread to re-enter dtrace_probe().
6667 * This could occur if a probe is encountered on some function in the
6668 * transitive closure of the call to dtrace_probe().
6669 * Solaris has some strong guarantees that this won't happen.
6670 * The Darwin implementation is not so mature as to make those guarantees.
6671 * Hence, the introduction of __dtrace_probe() on xnu.
6675 dtrace_probe(dtrace_id_t id
, uint64_t arg0
, uint64_t arg1
,
6676 uint64_t arg2
, uint64_t arg3
, uint64_t arg4
)
6678 thread_t thread
= current_thread();
6679 disable_preemption();
6680 if (id
== dtrace_probeid_error
) {
6681 __dtrace_probe(id
, arg0
, arg1
, arg2
, arg3
, arg4
);
6682 dtrace_getipl(); /* Defeat tail-call optimization of __dtrace_probe() */
6683 } else if (!dtrace_get_thread_reentering(thread
)) {
6684 dtrace_set_thread_reentering(thread
, TRUE
);
6685 __dtrace_probe(id
, arg0
, arg1
, arg2
, arg3
, arg4
);
6686 dtrace_set_thread_reentering(thread
, FALSE
);
6689 else __dtrace_probe(dtrace_probeid_error
, 0, id
, 1, -1, DTRACEFLT_UNKNOWN
);
6691 enable_preemption();
6695 * DTrace Probe Hashing Functions
6697 * The functions in this section (and indeed, the functions in remaining
6698 * sections) are not _called_ from probe context. (Any exceptions to this are
6699 * marked with a "Note:".) Rather, they are called from elsewhere in the
6700 * DTrace framework to look-up probes in, add probes to and remove probes from
6701 * the DTrace probe hashes. (Each probe is hashed by each element of the
6702 * probe tuple -- allowing for fast lookups, regardless of what was
6706 dtrace_hash_str(const char *p
)
6712 hval
= (hval
<< 4) + *p
++;
6713 if ((g
= (hval
& 0xf0000000)) != 0)
6720 static dtrace_hash_t
*
6721 dtrace_hash_create(uintptr_t stroffs
, uintptr_t nextoffs
, uintptr_t prevoffs
)
6723 dtrace_hash_t
*hash
= kmem_zalloc(sizeof (dtrace_hash_t
), KM_SLEEP
);
6725 hash
->dth_stroffs
= stroffs
;
6726 hash
->dth_nextoffs
= nextoffs
;
6727 hash
->dth_prevoffs
= prevoffs
;
6730 hash
->dth_mask
= hash
->dth_size
- 1;
6732 hash
->dth_tab
= kmem_zalloc(hash
->dth_size
*
6733 sizeof (dtrace_hashbucket_t
*), KM_SLEEP
);
6739 * APPLE NOTE: dtrace_hash_destroy is not used.
6740 * It is called by dtrace_detach which is not
6741 * currently implemented. Revisit someday.
6743 #if !defined(__APPLE__)
6745 dtrace_hash_destroy(dtrace_hash_t
*hash
)
6750 for (i
= 0; i
< hash
->dth_size
; i
++)
6751 ASSERT(hash
->dth_tab
[i
] == NULL
);
6754 kmem_free(hash
->dth_tab
,
6755 hash
->dth_size
* sizeof (dtrace_hashbucket_t
*));
6756 kmem_free(hash
, sizeof (dtrace_hash_t
));
6758 #endif /* __APPLE__ */
6761 dtrace_hash_resize(dtrace_hash_t
*hash
)
6763 int size
= hash
->dth_size
, i
, ndx
;
6764 int new_size
= hash
->dth_size
<< 1;
6765 int new_mask
= new_size
- 1;
6766 dtrace_hashbucket_t
**new_tab
, *bucket
, *next
;
6768 ASSERT((new_size
& new_mask
) == 0);
6770 new_tab
= kmem_zalloc(new_size
* sizeof (void *), KM_SLEEP
);
6772 for (i
= 0; i
< size
; i
++) {
6773 for (bucket
= hash
->dth_tab
[i
]; bucket
!= NULL
; bucket
= next
) {
6774 dtrace_probe_t
*probe
= bucket
->dthb_chain
;
6776 ASSERT(probe
!= NULL
);
6777 ndx
= DTRACE_HASHSTR(hash
, probe
) & new_mask
;
6779 next
= bucket
->dthb_next
;
6780 bucket
->dthb_next
= new_tab
[ndx
];
6781 new_tab
[ndx
] = bucket
;
6785 kmem_free(hash
->dth_tab
, hash
->dth_size
* sizeof (void *));
6786 hash
->dth_tab
= new_tab
;
6787 hash
->dth_size
= new_size
;
6788 hash
->dth_mask
= new_mask
;
6792 dtrace_hash_add(dtrace_hash_t
*hash
, dtrace_probe_t
*new)
6794 int hashval
= DTRACE_HASHSTR(hash
, new);
6795 int ndx
= hashval
& hash
->dth_mask
;
6796 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
6797 dtrace_probe_t
**nextp
, **prevp
;
6799 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
6800 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, new))
6804 if ((hash
->dth_nbuckets
>> 1) > hash
->dth_size
) {
6805 dtrace_hash_resize(hash
);
6806 dtrace_hash_add(hash
, new);
6810 bucket
= kmem_zalloc(sizeof (dtrace_hashbucket_t
), KM_SLEEP
);
6811 bucket
->dthb_next
= hash
->dth_tab
[ndx
];
6812 hash
->dth_tab
[ndx
] = bucket
;
6813 hash
->dth_nbuckets
++;
6816 nextp
= DTRACE_HASHNEXT(hash
, new);
6817 ASSERT(*nextp
== NULL
&& *(DTRACE_HASHPREV(hash
, new)) == NULL
);
6818 *nextp
= bucket
->dthb_chain
;
6820 if (bucket
->dthb_chain
!= NULL
) {
6821 prevp
= DTRACE_HASHPREV(hash
, bucket
->dthb_chain
);
6822 ASSERT(*prevp
== NULL
);
6826 bucket
->dthb_chain
= new;
6830 static dtrace_probe_t
*
6831 dtrace_hash_lookup(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
6833 int hashval
= DTRACE_HASHSTR(hash
, template);
6834 int ndx
= hashval
& hash
->dth_mask
;
6835 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
6837 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
6838 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
6839 return (bucket
->dthb_chain
);
6846 dtrace_hash_collisions(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
6848 int hashval
= DTRACE_HASHSTR(hash
, template);
6849 int ndx
= hashval
& hash
->dth_mask
;
6850 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
6852 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
6853 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
6854 return (bucket
->dthb_len
);
6861 dtrace_hash_remove(dtrace_hash_t
*hash
, dtrace_probe_t
*probe
)
6863 int ndx
= DTRACE_HASHSTR(hash
, probe
) & hash
->dth_mask
;
6864 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
6866 dtrace_probe_t
**prevp
= DTRACE_HASHPREV(hash
, probe
);
6867 dtrace_probe_t
**nextp
= DTRACE_HASHNEXT(hash
, probe
);
6870 * Find the bucket that we're removing this probe from.
6872 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
6873 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, probe
))
6877 ASSERT(bucket
!= NULL
);
6879 if (*prevp
== NULL
) {
6880 if (*nextp
== NULL
) {
6882 * The removed probe was the only probe on this
6883 * bucket; we need to remove the bucket.
6885 dtrace_hashbucket_t
*b
= hash
->dth_tab
[ndx
];
6887 ASSERT(bucket
->dthb_chain
== probe
);
6891 hash
->dth_tab
[ndx
] = bucket
->dthb_next
;
6893 while (b
->dthb_next
!= bucket
)
6895 b
->dthb_next
= bucket
->dthb_next
;
6898 ASSERT(hash
->dth_nbuckets
> 0);
6899 hash
->dth_nbuckets
--;
6900 kmem_free(bucket
, sizeof (dtrace_hashbucket_t
));
6904 bucket
->dthb_chain
= *nextp
;
6906 *(DTRACE_HASHNEXT(hash
, *prevp
)) = *nextp
;
6910 *(DTRACE_HASHPREV(hash
, *nextp
)) = *prevp
;
6914 * DTrace Utility Functions
6916 * These are random utility functions that are _not_ called from probe context.
6919 dtrace_badattr(const dtrace_attribute_t
*a
)
6921 return (a
->dtat_name
> DTRACE_STABILITY_MAX
||
6922 a
->dtat_data
> DTRACE_STABILITY_MAX
||
6923 a
->dtat_class
> DTRACE_CLASS_MAX
);
6927 * Return a duplicate copy of a string. If the specified string is NULL,
6928 * this function returns a zero-length string.
6929 * APPLE NOTE: Darwin employs size bounded string operation.
6932 dtrace_strdup(const char *str
)
6934 size_t bufsize
= (str
!= NULL
? strlen(str
) : 0) + 1;
6935 char *new = kmem_zalloc(bufsize
, KM_SLEEP
);
6938 (void) strlcpy(new, str
, bufsize
);
6943 #define DTRACE_ISALPHA(c) \
6944 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6947 dtrace_badname(const char *s
)
6951 if (s
== NULL
|| (c
= *s
++) == '\0')
6954 if (!DTRACE_ISALPHA(c
) && c
!= '-' && c
!= '_' && c
!= '.')
6957 while ((c
= *s
++) != '\0') {
6958 if (!DTRACE_ISALPHA(c
) && (c
< '0' || c
> '9') &&
6959 c
!= '-' && c
!= '_' && c
!= '.' && c
!= '`')
6967 dtrace_cred2priv(cred_t
*cr
, uint32_t *privp
, uid_t
*uidp
, zoneid_t
*zoneidp
)
6971 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
6973 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6975 priv
= DTRACE_PRIV_ALL
;
6977 *uidp
= crgetuid(cr
);
6978 *zoneidp
= crgetzoneid(cr
);
6981 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
))
6982 priv
|= DTRACE_PRIV_KERNEL
| DTRACE_PRIV_USER
;
6983 else if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
))
6984 priv
|= DTRACE_PRIV_USER
;
6985 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
))
6986 priv
|= DTRACE_PRIV_PROC
;
6987 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
6988 priv
|= DTRACE_PRIV_OWNER
;
6989 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
6990 priv
|= DTRACE_PRIV_ZONEOWNER
;
6996 #ifdef DTRACE_ERRDEBUG
6998 dtrace_errdebug(const char *str
)
7000 int hval
= dtrace_hash_str(str
) % DTRACE_ERRHASHSZ
;
7003 lck_mtx_lock(&dtrace_errlock
);
7004 dtrace_errlast
= str
;
7005 dtrace_errthread
= (kthread_t
*)current_thread();
7007 while (occupied
++ < DTRACE_ERRHASHSZ
) {
7008 if (dtrace_errhash
[hval
].dter_msg
== str
) {
7009 dtrace_errhash
[hval
].dter_count
++;
7013 if (dtrace_errhash
[hval
].dter_msg
!= NULL
) {
7014 hval
= (hval
+ 1) % DTRACE_ERRHASHSZ
;
7018 dtrace_errhash
[hval
].dter_msg
= str
;
7019 dtrace_errhash
[hval
].dter_count
= 1;
7023 panic("dtrace: undersized error hash");
7025 lck_mtx_unlock(&dtrace_errlock
);
7030 * DTrace Matching Functions
7032 * These functions are used to match groups of probes, given some elements of
7033 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7036 dtrace_match_priv(const dtrace_probe_t
*prp
, uint32_t priv
, uid_t uid
,
7039 if (priv
!= DTRACE_PRIV_ALL
) {
7040 uint32_t ppriv
= prp
->dtpr_provider
->dtpv_priv
.dtpp_flags
;
7041 uint32_t match
= priv
& ppriv
;
7044 * No PRIV_DTRACE_* privileges...
7046 if ((priv
& (DTRACE_PRIV_PROC
| DTRACE_PRIV_USER
|
7047 DTRACE_PRIV_KERNEL
)) == 0)
7051 * No matching bits, but there were bits to match...
7053 if (match
== 0 && ppriv
!= 0)
7057 * Need to have permissions to the process, but don't...
7059 if (((ppriv
& ~match
) & DTRACE_PRIV_OWNER
) != 0 &&
7060 uid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_uid
) {
7065 * Need to be in the same zone unless we possess the
7066 * privilege to examine all zones.
7068 if (((ppriv
& ~match
) & DTRACE_PRIV_ZONEOWNER
) != 0 &&
7069 zoneid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_zoneid
) {
7078 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7079 * consists of input pattern strings and an ops-vector to evaluate them.
7080 * This function returns >0 for match, 0 for no match, and <0 for error.
7083 dtrace_match_probe(const dtrace_probe_t
*prp
, const dtrace_probekey_t
*pkp
,
7084 uint32_t priv
, uid_t uid
, zoneid_t zoneid
)
7086 dtrace_provider_t
*pvp
= prp
->dtpr_provider
;
7089 if (pvp
->dtpv_defunct
)
7092 if ((rv
= pkp
->dtpk_pmatch(pvp
->dtpv_name
, pkp
->dtpk_prov
, 0)) <= 0)
7095 if ((rv
= pkp
->dtpk_mmatch(prp
->dtpr_mod
, pkp
->dtpk_mod
, 0)) <= 0)
7098 if ((rv
= pkp
->dtpk_fmatch(prp
->dtpr_func
, pkp
->dtpk_func
, 0)) <= 0)
7101 if ((rv
= pkp
->dtpk_nmatch(prp
->dtpr_name
, pkp
->dtpk_name
, 0)) <= 0)
7104 if (dtrace_match_priv(prp
, priv
, uid
, zoneid
) == 0)
7111 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7112 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7113 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7114 * In addition, all of the recursion cases except for '*' matching have been
7115 * unwound. For '*', we still implement recursive evaluation, but a depth
7116 * counter is maintained and matching is aborted if we recurse too deep.
7117 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7120 dtrace_match_glob(const char *s
, const char *p
, int depth
)
7126 if (depth
> DTRACE_PROBEKEY_MAXDEPTH
)
7130 s
= ""; /* treat NULL as empty string */
7139 if ((c
= *p
++) == '\0')
7140 return (s1
== '\0');
7144 int ok
= 0, notflag
= 0;
7155 if ((c
= *p
++) == '\0')
7159 if (c
== '-' && lc
!= '\0' && *p
!= ']') {
7160 if ((c
= *p
++) == '\0')
7162 if (c
== '\\' && (c
= *p
++) == '\0')
7166 if (s1
< lc
|| s1
> c
)
7170 } else if (lc
<= s1
&& s1
<= c
)
7173 } else if (c
== '\\' && (c
= *p
++) == '\0')
7176 lc
= c
; /* save left-hand 'c' for next iteration */
7186 if ((c
= *p
++) == '\0')
7198 if ((c
= *p
++) == '\0')
7214 p
++; /* consecutive *'s are identical to a single one */
7219 for (s
= olds
; *s
!= '\0'; s
++) {
7220 if ((gs
= dtrace_match_glob(s
, p
, depth
+ 1)) != 0)
7230 dtrace_match_string(const char *s
, const char *p
, int depth
)
7232 #pragma unused(depth) /* __APPLE__ */
7234 /* APPLE NOTE: Darwin employs size bounded string operation. */
7235 return (s
!= NULL
&& strncmp(s
, p
, strlen(s
) + 1) == 0);
7240 dtrace_match_nul(const char *s
, const char *p
, int depth
)
7242 #pragma unused(s, p, depth) /* __APPLE__ */
7243 return (1); /* always match the empty pattern */
7248 dtrace_match_nonzero(const char *s
, const char *p
, int depth
)
7250 #pragma unused(p, depth) /* __APPLE__ */
7251 return (s
!= NULL
&& s
[0] != '\0');
7255 dtrace_match(const dtrace_probekey_t
*pkp
, uint32_t priv
, uid_t uid
,
7256 zoneid_t zoneid
, int (*matched
)(dtrace_probe_t
*, void *), void *arg
)
7258 dtrace_probe_t
template, *probe
;
7259 dtrace_hash_t
*hash
= NULL
;
7260 int len
, rc
, best
= INT_MAX
, nmatched
= 0;
7263 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7266 * If the probe ID is specified in the key, just lookup by ID and
7267 * invoke the match callback once if a matching probe is found.
7269 if (pkp
->dtpk_id
!= DTRACE_IDNONE
) {
7270 if ((probe
= dtrace_probe_lookup_id(pkp
->dtpk_id
)) != NULL
&&
7271 dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) > 0) {
7272 if ((*matched
)(probe
, arg
) == DTRACE_MATCH_FAIL
)
7273 return (DTRACE_MATCH_FAIL
);
7279 template.dtpr_mod
= (char *)(uintptr_t)pkp
->dtpk_mod
;
7280 template.dtpr_func
= (char *)(uintptr_t)pkp
->dtpk_func
;
7281 template.dtpr_name
= (char *)(uintptr_t)pkp
->dtpk_name
;
7284 * We want to find the most distinct of the module name, function
7285 * name, and name. So for each one that is not a glob pattern or
7286 * empty string, we perform a lookup in the corresponding hash and
7287 * use the hash table with the fewest collisions to do our search.
7289 if (pkp
->dtpk_mmatch
== &dtrace_match_string
&&
7290 (len
= dtrace_hash_collisions(dtrace_bymod
, &template)) < best
) {
7292 hash
= dtrace_bymod
;
7295 if (pkp
->dtpk_fmatch
== &dtrace_match_string
&&
7296 (len
= dtrace_hash_collisions(dtrace_byfunc
, &template)) < best
) {
7298 hash
= dtrace_byfunc
;
7301 if (pkp
->dtpk_nmatch
== &dtrace_match_string
&&
7302 (len
= dtrace_hash_collisions(dtrace_byname
, &template)) < best
) {
7304 hash
= dtrace_byname
;
7308 * If we did not select a hash table, iterate over every probe and
7309 * invoke our callback for each one that matches our input probe key.
7312 for (i
= 0; i
< (dtrace_id_t
)dtrace_nprobes
; i
++) {
7313 if ((probe
= dtrace_probes
[i
]) == NULL
||
7314 dtrace_match_probe(probe
, pkp
, priv
, uid
,
7320 if ((rc
= (*matched
)(probe
, arg
)) != DTRACE_MATCH_NEXT
) {
7321 if (rc
== DTRACE_MATCH_FAIL
)
7322 return (DTRACE_MATCH_FAIL
);
7331 * If we selected a hash table, iterate over each probe of the same key
7332 * name and invoke the callback for every probe that matches the other
7333 * attributes of our input probe key.
7335 for (probe
= dtrace_hash_lookup(hash
, &template); probe
!= NULL
;
7336 probe
= *(DTRACE_HASHNEXT(hash
, probe
))) {
7338 if (dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) <= 0)
7343 if ((rc
= (*matched
)(probe
, arg
)) != DTRACE_MATCH_NEXT
) {
7344 if (rc
== DTRACE_MATCH_FAIL
)
7345 return (DTRACE_MATCH_FAIL
);
7354 * Return the function pointer dtrace_probecmp() should use to compare the
7355 * specified pattern with a string. For NULL or empty patterns, we select
7356 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
7357 * For non-empty non-glob strings, we use dtrace_match_string().
7359 static dtrace_probekey_f
*
7360 dtrace_probekey_func(const char *p
)
7364 if (p
== NULL
|| *p
== '\0')
7365 return (&dtrace_match_nul
);
7367 while ((c
= *p
++) != '\0') {
7368 if (c
== '[' || c
== '?' || c
== '*' || c
== '\\')
7369 return (&dtrace_match_glob
);
7372 return (&dtrace_match_string
);
7376 * Build a probe comparison key for use with dtrace_match_probe() from the
7377 * given probe description. By convention, a null key only matches anchored
7378 * probes: if each field is the empty string, reset dtpk_fmatch to
7379 * dtrace_match_nonzero().
7382 dtrace_probekey(const dtrace_probedesc_t
*pdp
, dtrace_probekey_t
*pkp
)
7384 pkp
->dtpk_prov
= pdp
->dtpd_provider
;
7385 pkp
->dtpk_pmatch
= dtrace_probekey_func(pdp
->dtpd_provider
);
7387 pkp
->dtpk_mod
= pdp
->dtpd_mod
;
7388 pkp
->dtpk_mmatch
= dtrace_probekey_func(pdp
->dtpd_mod
);
7390 pkp
->dtpk_func
= pdp
->dtpd_func
;
7391 pkp
->dtpk_fmatch
= dtrace_probekey_func(pdp
->dtpd_func
);
7393 pkp
->dtpk_name
= pdp
->dtpd_name
;
7394 pkp
->dtpk_nmatch
= dtrace_probekey_func(pdp
->dtpd_name
);
7396 pkp
->dtpk_id
= pdp
->dtpd_id
;
7398 if (pkp
->dtpk_id
== DTRACE_IDNONE
&&
7399 pkp
->dtpk_pmatch
== &dtrace_match_nul
&&
7400 pkp
->dtpk_mmatch
== &dtrace_match_nul
&&
7401 pkp
->dtpk_fmatch
== &dtrace_match_nul
&&
7402 pkp
->dtpk_nmatch
== &dtrace_match_nul
)
7403 pkp
->dtpk_fmatch
= &dtrace_match_nonzero
;
7407 * DTrace Provider-to-Framework API Functions
7409 * These functions implement much of the Provider-to-Framework API, as
7410 * described in <sys/dtrace.h>. The parts of the API not in this section are
7411 * the functions in the API for probe management (found below), and
7412 * dtrace_probe() itself (found above).
7416 * Register the calling provider with the DTrace framework. This should
7417 * generally be called by DTrace providers in their attach(9E) entry point.
7420 dtrace_register(const char *name
, const dtrace_pattr_t
*pap
, uint32_t priv
,
7421 cred_t
*cr
, const dtrace_pops_t
*pops
, void *arg
, dtrace_provider_id_t
*idp
)
7423 dtrace_provider_t
*provider
;
7425 if (name
== NULL
|| pap
== NULL
|| pops
== NULL
|| idp
== NULL
) {
7426 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7427 "arguments", name
? name
: "<NULL>");
7431 if (name
[0] == '\0' || dtrace_badname(name
)) {
7432 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7433 "provider name", name
);
7437 if ((pops
->dtps_provide
== NULL
&& pops
->dtps_provide_module
== NULL
) ||
7438 pops
->dtps_enable
== NULL
|| pops
->dtps_disable
== NULL
||
7439 pops
->dtps_destroy
== NULL
||
7440 ((pops
->dtps_resume
== NULL
) != (pops
->dtps_suspend
== NULL
))) {
7441 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7442 "provider ops", name
);
7446 if (dtrace_badattr(&pap
->dtpa_provider
) ||
7447 dtrace_badattr(&pap
->dtpa_mod
) ||
7448 dtrace_badattr(&pap
->dtpa_func
) ||
7449 dtrace_badattr(&pap
->dtpa_name
) ||
7450 dtrace_badattr(&pap
->dtpa_args
)) {
7451 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7452 "provider attributes", name
);
7456 if (priv
& ~DTRACE_PRIV_ALL
) {
7457 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7458 "privilege attributes", name
);
7462 if ((priv
& DTRACE_PRIV_KERNEL
) &&
7463 (priv
& (DTRACE_PRIV_USER
| DTRACE_PRIV_OWNER
)) &&
7464 pops
->dtps_usermode
== NULL
) {
7465 cmn_err(CE_WARN
, "failed to register provider '%s': need "
7466 "dtps_usermode() op for given privilege attributes", name
);
7470 provider
= kmem_zalloc(sizeof (dtrace_provider_t
), KM_SLEEP
);
7472 /* APPLE NOTE: Darwin employs size bounded string operation. */
7474 size_t bufsize
= strlen(name
) + 1;
7475 provider
->dtpv_name
= kmem_alloc(bufsize
, KM_SLEEP
);
7476 (void) strlcpy(provider
->dtpv_name
, name
, bufsize
);
7479 provider
->dtpv_attr
= *pap
;
7480 provider
->dtpv_priv
.dtpp_flags
= priv
;
7482 provider
->dtpv_priv
.dtpp_uid
= crgetuid(cr
);
7483 provider
->dtpv_priv
.dtpp_zoneid
= crgetzoneid(cr
);
7485 provider
->dtpv_pops
= *pops
;
7487 if (pops
->dtps_provide
== NULL
) {
7488 ASSERT(pops
->dtps_provide_module
!= NULL
);
7489 provider
->dtpv_pops
.dtps_provide
=
7490 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
;
7493 if (pops
->dtps_provide_module
== NULL
) {
7494 ASSERT(pops
->dtps_provide
!= NULL
);
7495 provider
->dtpv_pops
.dtps_provide_module
=
7496 (void (*)(void *, struct modctl
*))dtrace_nullop
;
7499 if (pops
->dtps_suspend
== NULL
) {
7500 ASSERT(pops
->dtps_resume
== NULL
);
7501 provider
->dtpv_pops
.dtps_suspend
=
7502 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
7503 provider
->dtpv_pops
.dtps_resume
=
7504 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
7507 provider
->dtpv_arg
= arg
;
7508 *idp
= (dtrace_provider_id_t
)provider
;
7510 if (pops
== &dtrace_provider_ops
) {
7511 lck_mtx_assert(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
7512 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7513 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
7516 * We make sure that the DTrace provider is at the head of
7517 * the provider chain.
7519 provider
->dtpv_next
= dtrace_provider
;
7520 dtrace_provider
= provider
;
7524 lck_mtx_lock(&dtrace_provider_lock
);
7525 lck_mtx_lock(&dtrace_lock
);
7528 * If there is at least one provider registered, we'll add this
7529 * provider after the first provider.
7531 if (dtrace_provider
!= NULL
) {
7532 provider
->dtpv_next
= dtrace_provider
->dtpv_next
;
7533 dtrace_provider
->dtpv_next
= provider
;
7535 dtrace_provider
= provider
;
7538 if (dtrace_retained
!= NULL
) {
7539 dtrace_enabling_provide(provider
);
7542 * Now we need to call dtrace_enabling_matchall() -- which
7543 * will acquire cpu_lock and dtrace_lock. We therefore need
7544 * to drop all of our locks before calling into it...
7546 lck_mtx_unlock(&dtrace_lock
);
7547 lck_mtx_unlock(&dtrace_provider_lock
);
7548 dtrace_enabling_matchall();
7553 lck_mtx_unlock(&dtrace_lock
);
7554 lck_mtx_unlock(&dtrace_provider_lock
);
7560 * Unregister the specified provider from the DTrace framework. This should
7561 * generally be called by DTrace providers in their detach(9E) entry point.
7564 dtrace_unregister(dtrace_provider_id_t id
)
7566 dtrace_provider_t
*old
= (dtrace_provider_t
*)id
;
7567 dtrace_provider_t
*prev
= NULL
;
7569 dtrace_probe_t
*probe
, *first
= NULL
;
7571 if (old
->dtpv_pops
.dtps_enable
==
7572 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
) {
7574 * If DTrace itself is the provider, we're called with locks
7577 ASSERT(old
== dtrace_provider
);
7578 ASSERT(dtrace_devi
!= NULL
);
7579 lck_mtx_assert(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
7580 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7583 if (dtrace_provider
->dtpv_next
!= NULL
) {
7585 * There's another provider here; return failure.
7590 lck_mtx_lock(&dtrace_provider_lock
);
7591 lck_mtx_lock(&mod_lock
);
7592 lck_mtx_lock(&dtrace_lock
);
7596 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7597 * probes, we refuse to let providers slither away, unless this
7598 * provider has already been explicitly invalidated.
7600 if (!old
->dtpv_defunct
&&
7601 (dtrace_opens
|| (dtrace_anon
.dta_state
!= NULL
&&
7602 dtrace_anon
.dta_state
->dts_necbs
> 0))) {
7604 lck_mtx_unlock(&dtrace_lock
);
7605 lck_mtx_unlock(&mod_lock
);
7606 lck_mtx_unlock(&dtrace_provider_lock
);
7612 * Attempt to destroy the probes associated with this provider.
7614 if (old
->dtpv_ecb_count
!=0) {
7616 * We have at least one ECB; we can't remove this provider.
7619 lck_mtx_unlock(&dtrace_lock
);
7620 lck_mtx_unlock(&mod_lock
);
7621 lck_mtx_unlock(&dtrace_provider_lock
);
7627 * All of the probes for this provider are disabled; we can safely
7628 * remove all of them from their hash chains and from the probe array.
7630 for (i
= 0; i
< dtrace_nprobes
&& old
->dtpv_probe_count
!=0; i
++) {
7631 if ((probe
= dtrace_probes
[i
]) == NULL
)
7634 if (probe
->dtpr_provider
!= old
)
7637 dtrace_probes
[i
] = NULL
;
7638 old
->dtpv_probe_count
--;
7640 dtrace_hash_remove(dtrace_bymod
, probe
);
7641 dtrace_hash_remove(dtrace_byfunc
, probe
);
7642 dtrace_hash_remove(dtrace_byname
, probe
);
7644 if (first
== NULL
) {
7646 probe
->dtpr_nextmod
= NULL
;
7648 probe
->dtpr_nextmod
= first
;
7654 * The provider's probes have been removed from the hash chains and
7655 * from the probe array. Now issue a dtrace_sync() to be sure that
7656 * everyone has cleared out from any probe array processing.
7660 for (probe
= first
; probe
!= NULL
; probe
= first
) {
7661 first
= probe
->dtpr_nextmod
;
7663 old
->dtpv_pops
.dtps_destroy(old
->dtpv_arg
, probe
->dtpr_id
,
7665 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
7666 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
7667 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
7668 vmem_free(dtrace_arena
, (void *)(uintptr_t)(probe
->dtpr_id
), 1);
7669 zfree(dtrace_probe_t_zone
, probe
);
7672 if ((prev
= dtrace_provider
) == old
) {
7673 ASSERT(self
|| dtrace_devi
== NULL
);
7674 ASSERT(old
->dtpv_next
== NULL
|| dtrace_devi
== NULL
);
7675 dtrace_provider
= old
->dtpv_next
;
7677 while (prev
!= NULL
&& prev
->dtpv_next
!= old
)
7678 prev
= prev
->dtpv_next
;
7681 panic("attempt to unregister non-existent "
7682 "dtrace provider %p\n", (void *)id
);
7685 prev
->dtpv_next
= old
->dtpv_next
;
7689 lck_mtx_unlock(&dtrace_lock
);
7690 lck_mtx_unlock(&mod_lock
);
7691 lck_mtx_unlock(&dtrace_provider_lock
);
7694 kmem_free(old
->dtpv_name
, strlen(old
->dtpv_name
) + 1);
7695 kmem_free(old
, sizeof (dtrace_provider_t
));
7701 * Invalidate the specified provider. All subsequent probe lookups for the
7702 * specified provider will fail, but its probes will not be removed.
7705 dtrace_invalidate(dtrace_provider_id_t id
)
7707 dtrace_provider_t
*pvp
= (dtrace_provider_t
*)id
;
7709 ASSERT(pvp
->dtpv_pops
.dtps_enable
!=
7710 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
7712 lck_mtx_lock(&dtrace_provider_lock
);
7713 lck_mtx_lock(&dtrace_lock
);
7715 pvp
->dtpv_defunct
= 1;
7717 lck_mtx_unlock(&dtrace_lock
);
7718 lck_mtx_unlock(&dtrace_provider_lock
);
7722 * Indicate whether or not DTrace has attached.
7725 dtrace_attached(void)
7728 * dtrace_provider will be non-NULL iff the DTrace driver has
7729 * attached. (It's non-NULL because DTrace is always itself a
7732 return (dtrace_provider
!= NULL
);
7736 * Remove all the unenabled probes for the given provider. This function is
7737 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7738 * -- just as many of its associated probes as it can.
7741 dtrace_condense(dtrace_provider_id_t id
)
7743 dtrace_provider_t
*prov
= (dtrace_provider_t
*)id
;
7745 dtrace_probe_t
*probe
;
7748 * Make sure this isn't the dtrace provider itself.
7750 ASSERT(prov
->dtpv_pops
.dtps_enable
!=
7751 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
7753 lck_mtx_lock(&dtrace_provider_lock
);
7754 lck_mtx_lock(&dtrace_lock
);
7757 * Attempt to destroy the probes associated with this provider.
7759 for (i
= 0; i
< dtrace_nprobes
; i
++) {
7760 if ((probe
= dtrace_probes
[i
]) == NULL
)
7763 if (probe
->dtpr_provider
!= prov
)
7766 if (probe
->dtpr_ecb
!= NULL
)
7769 dtrace_probes
[i
] = NULL
;
7770 prov
->dtpv_probe_count
--;
7772 dtrace_hash_remove(dtrace_bymod
, probe
);
7773 dtrace_hash_remove(dtrace_byfunc
, probe
);
7774 dtrace_hash_remove(dtrace_byname
, probe
);
7776 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, i
+ 1,
7778 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
7779 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
7780 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
7781 zfree(dtrace_probe_t_zone
, probe
);
7782 vmem_free(dtrace_arena
, (void *)((uintptr_t)i
+ 1), 1);
7785 lck_mtx_unlock(&dtrace_lock
);
7786 lck_mtx_unlock(&dtrace_provider_lock
);
7792 * DTrace Probe Management Functions
7794 * The functions in this section perform the DTrace probe management,
7795 * including functions to create probes, look-up probes, and call into the
7796 * providers to request that probes be provided. Some of these functions are
7797 * in the Provider-to-Framework API; these functions can be identified by the
7798 * fact that they are not declared "static".
7802 * Create a probe with the specified module name, function name, and name.
7805 dtrace_probe_create(dtrace_provider_id_t prov
, const char *mod
,
7806 const char *func
, const char *name
, int aframes
, void *arg
)
7808 dtrace_probe_t
*probe
, **probes
;
7809 dtrace_provider_t
*provider
= (dtrace_provider_t
*)prov
;
7812 if (provider
== dtrace_provider
) {
7813 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7815 lck_mtx_lock(&dtrace_lock
);
7818 id
= (dtrace_id_t
)(uintptr_t)vmem_alloc(dtrace_arena
, 1,
7819 VM_BESTFIT
| VM_SLEEP
);
7821 probe
= zalloc(dtrace_probe_t_zone
);
7822 bzero(probe
, sizeof (dtrace_probe_t
));
7824 probe
->dtpr_id
= id
;
7825 probe
->dtpr_gen
= dtrace_probegen
++;
7826 probe
->dtpr_mod
= dtrace_strdup(mod
);
7827 probe
->dtpr_func
= dtrace_strdup(func
);
7828 probe
->dtpr_name
= dtrace_strdup(name
);
7829 probe
->dtpr_arg
= arg
;
7830 probe
->dtpr_aframes
= aframes
;
7831 probe
->dtpr_provider
= provider
;
7833 dtrace_hash_add(dtrace_bymod
, probe
);
7834 dtrace_hash_add(dtrace_byfunc
, probe
);
7835 dtrace_hash_add(dtrace_byname
, probe
);
7837 if (id
- 1 >= (dtrace_id_t
)dtrace_nprobes
) {
7838 size_t osize
= dtrace_nprobes
* sizeof (dtrace_probe_t
*);
7839 size_t nsize
= osize
<< 1;
7843 ASSERT(dtrace_probes
== NULL
);
7844 nsize
= sizeof (dtrace_probe_t
*);
7847 probes
= kmem_zalloc(nsize
, KM_SLEEP
);
7849 if (dtrace_probes
== NULL
) {
7851 dtrace_probes
= probes
;
7854 dtrace_probe_t
**oprobes
= dtrace_probes
;
7856 bcopy(oprobes
, probes
, osize
);
7857 dtrace_membar_producer();
7858 dtrace_probes
= probes
;
7863 * All CPUs are now seeing the new probes array; we can
7864 * safely free the old array.
7866 kmem_free(oprobes
, osize
);
7867 dtrace_nprobes
<<= 1;
7870 ASSERT(id
- 1 < (dtrace_id_t
)dtrace_nprobes
);
7873 ASSERT(dtrace_probes
[id
- 1] == NULL
);
7874 dtrace_probes
[id
- 1] = probe
;
7875 provider
->dtpv_probe_count
++;
7877 if (provider
!= dtrace_provider
)
7878 lck_mtx_unlock(&dtrace_lock
);
7883 static dtrace_probe_t
*
7884 dtrace_probe_lookup_id(dtrace_id_t id
)
7886 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7888 if (id
== 0 || id
> (dtrace_id_t
)dtrace_nprobes
)
7891 return (dtrace_probes
[id
- 1]);
7895 dtrace_probe_lookup_match(dtrace_probe_t
*probe
, void *arg
)
7897 *((dtrace_id_t
*)arg
) = probe
->dtpr_id
;
7899 return (DTRACE_MATCH_DONE
);
7903 * Look up a probe based on provider and one or more of module name, function
7904 * name and probe name.
7907 dtrace_probe_lookup(dtrace_provider_id_t prid
, const char *mod
,
7908 const char *func
, const char *name
)
7910 dtrace_probekey_t pkey
;
7914 pkey
.dtpk_prov
= ((dtrace_provider_t
*)prid
)->dtpv_name
;
7915 pkey
.dtpk_pmatch
= &dtrace_match_string
;
7916 pkey
.dtpk_mod
= mod
;
7917 pkey
.dtpk_mmatch
= mod
? &dtrace_match_string
: &dtrace_match_nul
;
7918 pkey
.dtpk_func
= func
;
7919 pkey
.dtpk_fmatch
= func
? &dtrace_match_string
: &dtrace_match_nul
;
7920 pkey
.dtpk_name
= name
;
7921 pkey
.dtpk_nmatch
= name
? &dtrace_match_string
: &dtrace_match_nul
;
7922 pkey
.dtpk_id
= DTRACE_IDNONE
;
7924 lck_mtx_lock(&dtrace_lock
);
7925 match
= dtrace_match(&pkey
, DTRACE_PRIV_ALL
, 0, 0,
7926 dtrace_probe_lookup_match
, &id
);
7927 lck_mtx_unlock(&dtrace_lock
);
7929 ASSERT(match
== 1 || match
== 0);
7930 return (match
? id
: 0);
7934 * Returns the probe argument associated with the specified probe.
7937 dtrace_probe_arg(dtrace_provider_id_t id
, dtrace_id_t pid
)
7939 dtrace_probe_t
*probe
;
7942 lck_mtx_lock(&dtrace_lock
);
7944 if ((probe
= dtrace_probe_lookup_id(pid
)) != NULL
&&
7945 probe
->dtpr_provider
== (dtrace_provider_t
*)id
)
7946 rval
= probe
->dtpr_arg
;
7948 lck_mtx_unlock(&dtrace_lock
);
7954 * Copy a probe into a probe description.
7957 dtrace_probe_description(const dtrace_probe_t
*prp
, dtrace_probedesc_t
*pdp
)
7959 bzero(pdp
, sizeof (dtrace_probedesc_t
));
7960 pdp
->dtpd_id
= prp
->dtpr_id
;
7962 /* APPLE NOTE: Darwin employs size bounded string operation. */
7963 (void) strlcpy(pdp
->dtpd_provider
,
7964 prp
->dtpr_provider
->dtpv_name
, DTRACE_PROVNAMELEN
);
7966 (void) strlcpy(pdp
->dtpd_mod
, prp
->dtpr_mod
, DTRACE_MODNAMELEN
);
7967 (void) strlcpy(pdp
->dtpd_func
, prp
->dtpr_func
, DTRACE_FUNCNAMELEN
);
7968 (void) strlcpy(pdp
->dtpd_name
, prp
->dtpr_name
, DTRACE_NAMELEN
);
7972 * Called to indicate that a probe -- or probes -- should be provided by a
7973 * specfied provider. If the specified description is NULL, the provider will
7974 * be told to provide all of its probes. (This is done whenever a new
7975 * consumer comes along, or whenever a retained enabling is to be matched.) If
7976 * the specified description is non-NULL, the provider is given the
7977 * opportunity to dynamically provide the specified probe, allowing providers
7978 * to support the creation of probes on-the-fly. (So-called _autocreated_
7979 * probes.) If the provider is NULL, the operations will be applied to all
7980 * providers; if the provider is non-NULL the operations will only be applied
7981 * to the specified provider. The dtrace_provider_lock must be held, and the
7982 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7983 * will need to grab the dtrace_lock when it reenters the framework through
7984 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7987 dtrace_probe_provide(dtrace_probedesc_t
*desc
, dtrace_provider_t
*prv
)
7992 lck_mtx_assert(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
7996 prv
= dtrace_provider
;
8001 * First, call the blanket provide operation.
8003 prv
->dtpv_pops
.dtps_provide(prv
->dtpv_arg
, desc
);
8006 * Now call the per-module provide operation. We will grab
8007 * mod_lock to prevent the list from being modified. Note
8008 * that this also prevents the mod_busy bits from changing.
8009 * (mod_busy can only be changed with mod_lock held.)
8011 lck_mtx_lock(&mod_lock
);
8013 ctl
= dtrace_modctl_list
;
8015 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
8016 ctl
= ctl
->mod_next
;
8019 lck_mtx_unlock(&mod_lock
);
8020 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
8024 * Iterate over each probe, and call the Framework-to-Provider API function
8028 dtrace_probe_foreach(uintptr_t offs
)
8030 dtrace_provider_t
*prov
;
8031 void (*func
)(void *, dtrace_id_t
, void *);
8032 dtrace_probe_t
*probe
;
8033 dtrace_icookie_t cookie
;
8037 * We disable interrupts to walk through the probe array. This is
8038 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8039 * won't see stale data.
8041 cookie
= dtrace_interrupt_disable();
8043 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8044 if ((probe
= dtrace_probes
[i
]) == NULL
)
8047 if (probe
->dtpr_ecb
== NULL
) {
8049 * This probe isn't enabled -- don't call the function.
8054 prov
= probe
->dtpr_provider
;
8055 func
= *((void(**)(void *, dtrace_id_t
, void *))
8056 ((uintptr_t)&prov
->dtpv_pops
+ offs
));
8058 func(prov
->dtpv_arg
, i
+ 1, probe
->dtpr_arg
);
8061 dtrace_interrupt_enable(cookie
);
8065 dtrace_probe_enable(const dtrace_probedesc_t
*desc
, dtrace_enabling_t
*enab
)
8067 dtrace_probekey_t pkey
;
8072 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
8074 dtrace_ecb_create_cache
= NULL
;
8078 * If we're passed a NULL description, we're being asked to
8079 * create an ECB with a NULL probe.
8081 (void) dtrace_ecb_create_enable(NULL
, enab
);
8085 dtrace_probekey(desc
, &pkey
);
8086 dtrace_cred2priv(enab
->dten_vstate
->dtvs_state
->dts_cred
.dcr_cred
,
8087 &priv
, &uid
, &zoneid
);
8089 return (dtrace_match(&pkey
, priv
, uid
, zoneid
, dtrace_ecb_create_enable
,
8094 * DTrace Helper Provider Functions
8097 dtrace_dofattr2attr(dtrace_attribute_t
*attr
, const dof_attr_t dofattr
)
8099 attr
->dtat_name
= DOF_ATTR_NAME(dofattr
);
8100 attr
->dtat_data
= DOF_ATTR_DATA(dofattr
);
8101 attr
->dtat_class
= DOF_ATTR_CLASS(dofattr
);
8105 dtrace_dofprov2hprov(dtrace_helper_provdesc_t
*hprov
,
8106 const dof_provider_t
*dofprov
, char *strtab
)
8108 hprov
->dthpv_provname
= strtab
+ dofprov
->dofpv_name
;
8109 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_provider
,
8110 dofprov
->dofpv_provattr
);
8111 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_mod
,
8112 dofprov
->dofpv_modattr
);
8113 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_func
,
8114 dofprov
->dofpv_funcattr
);
8115 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_name
,
8116 dofprov
->dofpv_nameattr
);
8117 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_args
,
8118 dofprov
->dofpv_argsattr
);
8122 dtrace_helper_provide_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, pid_t pid
)
8124 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8125 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8126 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
8127 dof_provider_t
*provider
;
8129 uint32_t *off
, *enoff
;
8133 dtrace_helper_provdesc_t dhpv
;
8134 dtrace_helper_probedesc_t dhpb
;
8135 dtrace_meta_t
*meta
= dtrace_meta_pid
;
8136 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
8139 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
8140 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8141 provider
->dofpv_strtab
* dof
->dofh_secsize
);
8142 prb_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8143 provider
->dofpv_probes
* dof
->dofh_secsize
);
8144 arg_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8145 provider
->dofpv_prargs
* dof
->dofh_secsize
);
8146 off_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8147 provider
->dofpv_proffs
* dof
->dofh_secsize
);
8149 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
8150 off
= (uint32_t *)(uintptr_t)(daddr
+ off_sec
->dofs_offset
);
8151 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
8155 * See dtrace_helper_provider_validate().
8157 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
8158 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
) {
8159 enoff_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8160 provider
->dofpv_prenoffs
* dof
->dofh_secsize
);
8161 enoff
= (uint32_t *)(uintptr_t)(daddr
+ enoff_sec
->dofs_offset
);
8164 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
8167 * Create the provider.
8169 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
8171 if ((parg
= mops
->dtms_provide_pid(meta
->dtm_arg
, &dhpv
, pid
)) == NULL
)
8177 * Create the probes.
8179 for (i
= 0; i
< nprobes
; i
++) {
8180 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
8181 prb_sec
->dofs_offset
+ i
* prb_sec
->dofs_entsize
);
8183 dhpb
.dthpb_mod
= dhp
->dofhp_mod
;
8184 dhpb
.dthpb_func
= strtab
+ probe
->dofpr_func
;
8185 dhpb
.dthpb_name
= strtab
+ probe
->dofpr_name
;
8186 #if !defined(__APPLE__)
8187 dhpb
.dthpb_base
= probe
->dofpr_addr
;
8189 dhpb
.dthpb_base
= dhp
->dofhp_addr
; /* FIXME: James, why? */
8191 dhpb
.dthpb_offs
= (int32_t *)(off
+ probe
->dofpr_offidx
);
8192 dhpb
.dthpb_noffs
= probe
->dofpr_noffs
;
8193 if (enoff
!= NULL
) {
8194 dhpb
.dthpb_enoffs
= (int32_t *)(enoff
+ probe
->dofpr_enoffidx
);
8195 dhpb
.dthpb_nenoffs
= probe
->dofpr_nenoffs
;
8197 dhpb
.dthpb_enoffs
= NULL
;
8198 dhpb
.dthpb_nenoffs
= 0;
8200 dhpb
.dthpb_args
= arg
+ probe
->dofpr_argidx
;
8201 dhpb
.dthpb_nargc
= probe
->dofpr_nargc
;
8202 dhpb
.dthpb_xargc
= probe
->dofpr_xargc
;
8203 dhpb
.dthpb_ntypes
= strtab
+ probe
->dofpr_nargv
;
8204 dhpb
.dthpb_xtypes
= strtab
+ probe
->dofpr_xargv
;
8206 mops
->dtms_create_probe(meta
->dtm_arg
, parg
, &dhpb
);
8211 dtrace_helper_provide(dof_helper_t
*dhp
, pid_t pid
)
8213 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8214 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8217 lck_mtx_assert(&dtrace_meta_lock
, LCK_MTX_ASSERT_OWNED
);
8219 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
8220 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
8221 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
8223 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
8226 dtrace_helper_provide_one(dhp
, sec
, pid
);
8230 * We may have just created probes, so we must now rematch against
8231 * any retained enablings. Note that this call will acquire both
8232 * cpu_lock and dtrace_lock; the fact that we are holding
8233 * dtrace_meta_lock now is what defines the ordering with respect to
8234 * these three locks.
8236 dtrace_enabling_matchall();
8240 dtrace_helper_provider_remove_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, pid_t pid
)
8242 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8243 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8245 dof_provider_t
*provider
;
8247 dtrace_helper_provdesc_t dhpv
;
8248 dtrace_meta_t
*meta
= dtrace_meta_pid
;
8249 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
8251 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
8252 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8253 provider
->dofpv_strtab
* dof
->dofh_secsize
);
8255 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
8258 * Create the provider.
8260 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
8262 mops
->dtms_remove_pid(meta
->dtm_arg
, &dhpv
, pid
);
8268 dtrace_helper_provider_remove(dof_helper_t
*dhp
, pid_t pid
)
8270 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8271 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8274 lck_mtx_assert(&dtrace_meta_lock
, LCK_MTX_ASSERT_OWNED
);
8276 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
8277 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
8278 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
8280 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
8283 dtrace_helper_provider_remove_one(dhp
, sec
, pid
);
8288 * DTrace Meta Provider-to-Framework API Functions
8290 * These functions implement the Meta Provider-to-Framework API, as described
8291 * in <sys/dtrace.h>.
8294 dtrace_meta_register(const char *name
, const dtrace_mops_t
*mops
, void *arg
,
8295 dtrace_meta_provider_id_t
*idp
)
8297 dtrace_meta_t
*meta
;
8298 dtrace_helpers_t
*help
, *next
;
8301 *idp
= DTRACE_METAPROVNONE
;
8304 * We strictly don't need the name, but we hold onto it for
8305 * debuggability. All hail error queues!
8308 cmn_err(CE_WARN
, "failed to register meta-provider: "
8314 mops
->dtms_create_probe
== NULL
||
8315 mops
->dtms_provide_pid
== NULL
||
8316 mops
->dtms_remove_pid
== NULL
) {
8317 cmn_err(CE_WARN
, "failed to register meta-register %s: "
8318 "invalid ops", name
);
8322 meta
= kmem_zalloc(sizeof (dtrace_meta_t
), KM_SLEEP
);
8323 meta
->dtm_mops
= *mops
;
8325 /* APPLE NOTE: Darwin employs size bounded string operation. */
8327 size_t bufsize
= strlen(name
) + 1;
8328 meta
->dtm_name
= kmem_alloc(bufsize
, KM_SLEEP
);
8329 (void) strlcpy(meta
->dtm_name
, name
, bufsize
);
8332 meta
->dtm_arg
= arg
;
8334 lck_mtx_lock(&dtrace_meta_lock
);
8335 lck_mtx_lock(&dtrace_lock
);
8337 if (dtrace_meta_pid
!= NULL
) {
8338 lck_mtx_unlock(&dtrace_lock
);
8339 lck_mtx_unlock(&dtrace_meta_lock
);
8340 cmn_err(CE_WARN
, "failed to register meta-register %s: "
8341 "user-land meta-provider exists", name
);
8342 kmem_free(meta
->dtm_name
, strlen(meta
->dtm_name
) + 1);
8343 kmem_free(meta
, sizeof (dtrace_meta_t
));
8347 dtrace_meta_pid
= meta
;
8348 *idp
= (dtrace_meta_provider_id_t
)meta
;
8351 * If there are providers and probes ready to go, pass them
8352 * off to the new meta provider now.
8355 help
= dtrace_deferred_pid
;
8356 dtrace_deferred_pid
= NULL
;
8358 lck_mtx_unlock(&dtrace_lock
);
8360 while (help
!= NULL
) {
8361 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
8362 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
8366 next
= help
->dthps_next
;
8367 help
->dthps_next
= NULL
;
8368 help
->dthps_prev
= NULL
;
8369 help
->dthps_deferred
= 0;
8373 lck_mtx_unlock(&dtrace_meta_lock
);
8379 dtrace_meta_unregister(dtrace_meta_provider_id_t id
)
8381 dtrace_meta_t
**pp
, *old
= (dtrace_meta_t
*)id
;
8383 lck_mtx_lock(&dtrace_meta_lock
);
8384 lck_mtx_lock(&dtrace_lock
);
8386 if (old
== dtrace_meta_pid
) {
8387 pp
= &dtrace_meta_pid
;
8389 panic("attempt to unregister non-existent "
8390 "dtrace meta-provider %p\n", (void *)old
);
8393 if (old
->dtm_count
!= 0) {
8394 lck_mtx_unlock(&dtrace_lock
);
8395 lck_mtx_unlock(&dtrace_meta_lock
);
8401 lck_mtx_unlock(&dtrace_lock
);
8402 lck_mtx_unlock(&dtrace_meta_lock
);
8404 kmem_free(old
->dtm_name
, strlen(old
->dtm_name
) + 1);
8405 kmem_free(old
, sizeof (dtrace_meta_t
));
8412 * DTrace DIF Object Functions
8415 dtrace_difo_err(uint_t pc
, const char *format
, ...)
8417 if (dtrace_err_verbose
) {
8420 (void) uprintf("dtrace DIF object error: [%u]: ", pc
);
8421 va_start(alist
, format
);
8422 (void) vuprintf(format
, alist
);
8426 #ifdef DTRACE_ERRDEBUG
8427 dtrace_errdebug(format
);
8433 * Validate a DTrace DIF object by checking the IR instructions. The following
8434 * rules are currently enforced by dtrace_difo_validate():
8436 * 1. Each instruction must have a valid opcode
8437 * 2. Each register, string, variable, or subroutine reference must be valid
8438 * 3. No instruction can modify register %r0 (must be zero)
8439 * 4. All instruction reserved bits must be set to zero
8440 * 5. The last instruction must be a "ret" instruction
8441 * 6. All branch targets must reference a valid instruction _after_ the branch
8444 dtrace_difo_validate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
, uint_t nregs
,
8450 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
8454 kcheckload
= cr
== NULL
||
8455 (vstate
->dtvs_state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) == 0;
8457 dp
->dtdo_destructive
= 0;
8459 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
8460 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
8462 uint_t r1
= DIF_INSTR_R1(instr
);
8463 uint_t r2
= DIF_INSTR_R2(instr
);
8464 uint_t rd
= DIF_INSTR_RD(instr
);
8465 uint_t rs
= DIF_INSTR_RS(instr
);
8466 uint_t label
= DIF_INSTR_LABEL(instr
);
8467 uint_t v
= DIF_INSTR_VAR(instr
);
8468 uint_t subr
= DIF_INSTR_SUBR(instr
);
8469 uint_t type
= DIF_INSTR_TYPE(instr
);
8470 uint_t op
= DIF_INSTR_OP(instr
);
8488 err
+= efunc(pc
, "invalid register %u\n", r1
);
8490 err
+= efunc(pc
, "invalid register %u\n", r2
);
8492 err
+= efunc(pc
, "invalid register %u\n", rd
);
8494 err
+= efunc(pc
, "cannot write to %r0\n");
8500 err
+= efunc(pc
, "invalid register %u\n", r1
);
8502 err
+= efunc(pc
, "non-zero reserved bits\n");
8504 err
+= efunc(pc
, "invalid register %u\n", rd
);
8506 err
+= efunc(pc
, "cannot write to %r0\n");
8516 err
+= efunc(pc
, "invalid register %u\n", r1
);
8518 err
+= efunc(pc
, "non-zero reserved bits\n");
8520 err
+= efunc(pc
, "invalid register %u\n", rd
);
8522 err
+= efunc(pc
, "cannot write to %r0\n");
8524 dp
->dtdo_buf
[pc
] = DIF_INSTR_LOAD(op
+
8525 DIF_OP_RLDSB
- DIF_OP_LDSB
, r1
, rd
);
8535 err
+= efunc(pc
, "invalid register %u\n", r1
);
8537 err
+= efunc(pc
, "non-zero reserved bits\n");
8539 err
+= efunc(pc
, "invalid register %u\n", rd
);
8541 err
+= efunc(pc
, "cannot write to %r0\n");
8551 err
+= efunc(pc
, "invalid register %u\n", r1
);
8553 err
+= efunc(pc
, "non-zero reserved bits\n");
8555 err
+= efunc(pc
, "invalid register %u\n", rd
);
8557 err
+= efunc(pc
, "cannot write to %r0\n");
8564 err
+= efunc(pc
, "invalid register %u\n", r1
);
8566 err
+= efunc(pc
, "non-zero reserved bits\n");
8568 err
+= efunc(pc
, "invalid register %u\n", rd
);
8570 err
+= efunc(pc
, "cannot write to 0 address\n");
8575 err
+= efunc(pc
, "invalid register %u\n", r1
);
8577 err
+= efunc(pc
, "invalid register %u\n", r2
);
8579 err
+= efunc(pc
, "non-zero reserved bits\n");
8583 err
+= efunc(pc
, "invalid register %u\n", r1
);
8584 if (r2
!= 0 || rd
!= 0)
8585 err
+= efunc(pc
, "non-zero reserved bits\n");
8598 if (label
>= dp
->dtdo_len
) {
8599 err
+= efunc(pc
, "invalid branch target %u\n",
8603 err
+= efunc(pc
, "backward branch to %u\n",
8608 if (r1
!= 0 || r2
!= 0)
8609 err
+= efunc(pc
, "non-zero reserved bits\n");
8611 err
+= efunc(pc
, "invalid register %u\n", rd
);
8615 case DIF_OP_FLUSHTS
:
8616 if (r1
!= 0 || r2
!= 0 || rd
!= 0)
8617 err
+= efunc(pc
, "non-zero reserved bits\n");
8620 if (DIF_INSTR_INTEGER(instr
) >= dp
->dtdo_intlen
) {
8621 err
+= efunc(pc
, "invalid integer ref %u\n",
8622 DIF_INSTR_INTEGER(instr
));
8625 err
+= efunc(pc
, "invalid register %u\n", rd
);
8627 err
+= efunc(pc
, "cannot write to %r0\n");
8630 if (DIF_INSTR_STRING(instr
) >= dp
->dtdo_strlen
) {
8631 err
+= efunc(pc
, "invalid string ref %u\n",
8632 DIF_INSTR_STRING(instr
));
8635 err
+= efunc(pc
, "invalid register %u\n", rd
);
8637 err
+= efunc(pc
, "cannot write to %r0\n");
8641 if (r1
> DIF_VAR_ARRAY_MAX
)
8642 err
+= efunc(pc
, "invalid array %u\n", r1
);
8644 err
+= efunc(pc
, "invalid register %u\n", r2
);
8646 err
+= efunc(pc
, "invalid register %u\n", rd
);
8648 err
+= efunc(pc
, "cannot write to %r0\n");
8655 if (v
< DIF_VAR_OTHER_MIN
|| v
> DIF_VAR_OTHER_MAX
)
8656 err
+= efunc(pc
, "invalid variable %u\n", v
);
8658 err
+= efunc(pc
, "invalid register %u\n", rd
);
8660 err
+= efunc(pc
, "cannot write to %r0\n");
8667 if (v
< DIF_VAR_OTHER_UBASE
|| v
> DIF_VAR_OTHER_MAX
)
8668 err
+= efunc(pc
, "invalid variable %u\n", v
);
8670 err
+= efunc(pc
, "invalid register %u\n", rd
);
8673 if (subr
> DIF_SUBR_MAX
)
8674 err
+= efunc(pc
, "invalid subr %u\n", subr
);
8676 err
+= efunc(pc
, "invalid register %u\n", rd
);
8678 err
+= efunc(pc
, "cannot write to %r0\n");
8680 if (subr
== DIF_SUBR_COPYOUT
||
8681 subr
== DIF_SUBR_COPYOUTSTR
) {
8682 dp
->dtdo_destructive
= 1;
8686 if (type
!= DIF_TYPE_STRING
&& type
!= DIF_TYPE_CTF
)
8687 err
+= efunc(pc
, "invalid ref type %u\n", type
);
8689 err
+= efunc(pc
, "invalid register %u\n", r2
);
8691 err
+= efunc(pc
, "invalid register %u\n", rs
);
8694 if (type
!= DIF_TYPE_CTF
)
8695 err
+= efunc(pc
, "invalid val type %u\n", type
);
8697 err
+= efunc(pc
, "invalid register %u\n", r2
);
8699 err
+= efunc(pc
, "invalid register %u\n", rs
);
8702 err
+= efunc(pc
, "invalid opcode %u\n",
8703 DIF_INSTR_OP(instr
));
8707 if (dp
->dtdo_len
!= 0 &&
8708 DIF_INSTR_OP(dp
->dtdo_buf
[dp
->dtdo_len
- 1]) != DIF_OP_RET
) {
8709 err
+= efunc(dp
->dtdo_len
- 1,
8710 "expected 'ret' as last DIF instruction\n");
8713 if (!(dp
->dtdo_rtype
.dtdt_flags
& (DIF_TF_BYREF
| DIF_TF_BYUREF
))) {
8715 * If we're not returning by reference, the size must be either
8716 * 0 or the size of one of the base types.
8718 switch (dp
->dtdo_rtype
.dtdt_size
) {
8720 case sizeof (uint8_t):
8721 case sizeof (uint16_t):
8722 case sizeof (uint32_t):
8723 case sizeof (uint64_t):
8727 err
+= efunc(dp
->dtdo_len
- 1, "bad return size\n");
8731 for (i
= 0; i
< dp
->dtdo_varlen
&& err
== 0; i
++) {
8732 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
], *existing
= NULL
;
8733 dtrace_diftype_t
*vt
, *et
;
8737 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
&&
8738 v
->dtdv_scope
!= DIFV_SCOPE_THREAD
&&
8739 v
->dtdv_scope
!= DIFV_SCOPE_LOCAL
) {
8740 err
+= efunc(i
, "unrecognized variable scope %d\n",
8745 if (v
->dtdv_kind
!= DIFV_KIND_ARRAY
&&
8746 v
->dtdv_kind
!= DIFV_KIND_SCALAR
) {
8747 err
+= efunc(i
, "unrecognized variable type %d\n",
8752 if ((id
= v
->dtdv_id
) > DIF_VARIABLE_MAX
) {
8753 err
+= efunc(i
, "%d exceeds variable id limit\n", id
);
8757 if (id
< DIF_VAR_OTHER_UBASE
)
8761 * For user-defined variables, we need to check that this
8762 * definition is identical to any previous definition that we
8765 ndx
= id
- DIF_VAR_OTHER_UBASE
;
8767 switch (v
->dtdv_scope
) {
8768 case DIFV_SCOPE_GLOBAL
:
8769 if (ndx
< vstate
->dtvs_nglobals
) {
8770 dtrace_statvar_t
*svar
;
8772 if ((svar
= vstate
->dtvs_globals
[ndx
]) != NULL
)
8773 existing
= &svar
->dtsv_var
;
8778 case DIFV_SCOPE_THREAD
:
8779 if (ndx
< vstate
->dtvs_ntlocals
)
8780 existing
= &vstate
->dtvs_tlocals
[ndx
];
8783 case DIFV_SCOPE_LOCAL
:
8784 if (ndx
< vstate
->dtvs_nlocals
) {
8785 dtrace_statvar_t
*svar
;
8787 if ((svar
= vstate
->dtvs_locals
[ndx
]) != NULL
)
8788 existing
= &svar
->dtsv_var
;
8796 if (vt
->dtdt_flags
& DIF_TF_BYREF
) {
8797 if (vt
->dtdt_size
== 0) {
8798 err
+= efunc(i
, "zero-sized variable\n");
8802 if (v
->dtdv_scope
== DIFV_SCOPE_GLOBAL
&&
8803 vt
->dtdt_size
> dtrace_global_maxsize
) {
8804 err
+= efunc(i
, "oversized by-ref global\n");
8809 if (existing
== NULL
|| existing
->dtdv_id
== 0)
8812 ASSERT(existing
->dtdv_id
== v
->dtdv_id
);
8813 ASSERT(existing
->dtdv_scope
== v
->dtdv_scope
);
8815 if (existing
->dtdv_kind
!= v
->dtdv_kind
)
8816 err
+= efunc(i
, "%d changed variable kind\n", id
);
8818 et
= &existing
->dtdv_type
;
8820 if (vt
->dtdt_flags
!= et
->dtdt_flags
) {
8821 err
+= efunc(i
, "%d changed variable type flags\n", id
);
8825 if (vt
->dtdt_size
!= 0 && vt
->dtdt_size
!= et
->dtdt_size
) {
8826 err
+= efunc(i
, "%d changed variable type size\n", id
);
8835 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
8836 * are much more constrained than normal DIFOs. Specifically, they may
8839 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8840 * miscellaneous string routines
8841 * 2. Access DTrace variables other than the args[] array, and the
8842 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8843 * 3. Have thread-local variables.
8844 * 4. Have dynamic variables.
8847 dtrace_difo_validate_helper(dtrace_difo_t
*dp
)
8849 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
8853 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
8854 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
8856 uint_t v
= DIF_INSTR_VAR(instr
);
8857 uint_t subr
= DIF_INSTR_SUBR(instr
);
8858 uint_t op
= DIF_INSTR_OP(instr
);
8913 case DIF_OP_FLUSHTS
:
8925 if (v
>= DIF_VAR_OTHER_UBASE
)
8928 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
)
8931 if (v
== DIF_VAR_CURTHREAD
|| v
== DIF_VAR_PID
||
8932 v
== DIF_VAR_PPID
|| v
== DIF_VAR_TID
||
8933 v
== DIF_VAR_EXECNAME
|| v
== DIF_VAR_ZONENAME
||
8934 v
== DIF_VAR_UID
|| v
== DIF_VAR_GID
)
8937 err
+= efunc(pc
, "illegal variable %u\n", v
);
8944 err
+= efunc(pc
, "illegal dynamic variable load\n");
8950 err
+= efunc(pc
, "illegal dynamic variable store\n");
8954 if (subr
== DIF_SUBR_ALLOCA
||
8955 subr
== DIF_SUBR_BCOPY
||
8956 subr
== DIF_SUBR_COPYIN
||
8957 subr
== DIF_SUBR_COPYINTO
||
8958 subr
== DIF_SUBR_COPYINSTR
||
8959 subr
== DIF_SUBR_INDEX
||
8960 subr
== DIF_SUBR_INET_NTOA
||
8961 subr
== DIF_SUBR_INET_NTOA6
||
8962 subr
== DIF_SUBR_INET_NTOP
||
8963 subr
== DIF_SUBR_LLTOSTR
||
8964 subr
== DIF_SUBR_RINDEX
||
8965 subr
== DIF_SUBR_STRCHR
||
8966 subr
== DIF_SUBR_STRJOIN
||
8967 subr
== DIF_SUBR_STRRCHR
||
8968 subr
== DIF_SUBR_STRSTR
||
8969 subr
== DIF_SUBR_COREPROFILE
||
8970 subr
== DIF_SUBR_HTONS
||
8971 subr
== DIF_SUBR_HTONL
||
8972 subr
== DIF_SUBR_HTONLL
||
8973 subr
== DIF_SUBR_NTOHS
||
8974 subr
== DIF_SUBR_NTOHL
||
8975 subr
== DIF_SUBR_NTOHLL
)
8978 err
+= efunc(pc
, "invalid subr %u\n", subr
);
8982 err
+= efunc(pc
, "invalid opcode %u\n",
8983 DIF_INSTR_OP(instr
));
8991 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8995 dtrace_difo_cacheable(dtrace_difo_t
*dp
)
9002 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9003 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9005 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
)
9008 switch (v
->dtdv_id
) {
9009 case DIF_VAR_CURTHREAD
:
9012 case DIF_VAR_EXECNAME
:
9013 case DIF_VAR_ZONENAME
:
9022 * This DIF object may be cacheable. Now we need to look for any
9023 * array loading instructions, any memory loading instructions, or
9024 * any stores to thread-local variables.
9026 for (i
= 0; i
< dp
->dtdo_len
; i
++) {
9027 uint_t op
= DIF_INSTR_OP(dp
->dtdo_buf
[i
]);
9029 if ((op
>= DIF_OP_LDSB
&& op
<= DIF_OP_LDX
) ||
9030 (op
>= DIF_OP_ULDSB
&& op
<= DIF_OP_ULDX
) ||
9031 (op
>= DIF_OP_RLDSB
&& op
<= DIF_OP_RLDX
) ||
9032 op
== DIF_OP_LDGA
|| op
== DIF_OP_STTS
)
9040 dtrace_difo_hold(dtrace_difo_t
*dp
)
9044 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9047 ASSERT(dp
->dtdo_refcnt
!= 0);
9050 * We need to check this DIF object for references to the variable
9051 * DIF_VAR_VTIMESTAMP.
9053 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9054 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9056 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
9059 if (dtrace_vtime_references
++ == 0)
9060 dtrace_vtime_enable();
9065 * This routine calculates the dynamic variable chunksize for a given DIF
9066 * object. The calculation is not fool-proof, and can probably be tricked by
9067 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9068 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9069 * if a dynamic variable size exceeds the chunksize.
9072 dtrace_difo_chunksize(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9075 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
9076 const dif_instr_t
*text
= dp
->dtdo_buf
;
9082 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9083 dif_instr_t instr
= text
[pc
];
9084 uint_t op
= DIF_INSTR_OP(instr
);
9085 uint_t rd
= DIF_INSTR_RD(instr
);
9086 uint_t r1
= DIF_INSTR_R1(instr
);
9090 dtrace_key_t
*key
= tupregs
;
9094 sval
= dp
->dtdo_inttab
[DIF_INSTR_INTEGER(instr
)];
9099 key
= &tupregs
[DIF_DTR_NREGS
];
9100 key
[0].dttk_size
= 0;
9101 key
[1].dttk_size
= 0;
9103 scope
= DIFV_SCOPE_THREAD
;
9110 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
)
9111 key
[nkeys
++].dttk_size
= 0;
9113 key
[nkeys
++].dttk_size
= 0;
9115 if (op
== DIF_OP_STTAA
) {
9116 scope
= DIFV_SCOPE_THREAD
;
9118 scope
= DIFV_SCOPE_GLOBAL
;
9124 if (ttop
== DIF_DTR_NREGS
)
9127 if ((srd
== 0 || sval
== 0) && r1
== DIF_TYPE_STRING
) {
9129 * If the register for the size of the "pushtr"
9130 * is %r0 (or the value is 0) and the type is
9131 * a string, we'll use the system-wide default
9134 tupregs
[ttop
++].dttk_size
=
9135 dtrace_strsize_default
;
9140 tupregs
[ttop
++].dttk_size
= sval
;
9146 if (ttop
== DIF_DTR_NREGS
)
9149 tupregs
[ttop
++].dttk_size
= 0;
9152 case DIF_OP_FLUSHTS
:
9169 * We have a dynamic variable allocation; calculate its size.
9171 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
9172 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
9174 size
= sizeof (dtrace_dynvar_t
);
9175 size
+= sizeof (dtrace_key_t
) * (nkeys
- 1);
9179 * Now we need to determine the size of the stored data.
9181 id
= DIF_INSTR_VAR(instr
);
9183 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9184 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9186 if (v
->dtdv_id
== id
&& v
->dtdv_scope
== scope
) {
9187 size
+= v
->dtdv_type
.dtdt_size
;
9192 if (i
== dp
->dtdo_varlen
)
9196 * We have the size. If this is larger than the chunk size
9197 * for our dynamic variable state, reset the chunk size.
9199 size
= P2ROUNDUP(size
, sizeof (uint64_t));
9201 if (size
> vstate
->dtvs_dynvars
.dtds_chunksize
)
9202 vstate
->dtvs_dynvars
.dtds_chunksize
= size
;
9207 dtrace_difo_init(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9209 int oldsvars
, osz
, nsz
, otlocals
, ntlocals
;
9212 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9213 ASSERT(dp
->dtdo_buf
!= NULL
&& dp
->dtdo_len
!= 0);
9215 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9216 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9217 dtrace_statvar_t
*svar
;
9218 dtrace_statvar_t
***svarp
= NULL
;
9220 uint8_t scope
= v
->dtdv_scope
;
9221 int *np
= (int *)NULL
;
9223 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
9226 id
-= DIF_VAR_OTHER_UBASE
;
9229 case DIFV_SCOPE_THREAD
:
9230 while (id
>= (uint_t
)(otlocals
= vstate
->dtvs_ntlocals
)) {
9231 dtrace_difv_t
*tlocals
;
9233 if ((ntlocals
= (otlocals
<< 1)) == 0)
9236 osz
= otlocals
* sizeof (dtrace_difv_t
);
9237 nsz
= ntlocals
* sizeof (dtrace_difv_t
);
9239 tlocals
= kmem_zalloc(nsz
, KM_SLEEP
);
9242 bcopy(vstate
->dtvs_tlocals
,
9244 kmem_free(vstate
->dtvs_tlocals
, osz
);
9247 vstate
->dtvs_tlocals
= tlocals
;
9248 vstate
->dtvs_ntlocals
= ntlocals
;
9251 vstate
->dtvs_tlocals
[id
] = *v
;
9254 case DIFV_SCOPE_LOCAL
:
9255 np
= &vstate
->dtvs_nlocals
;
9256 svarp
= &vstate
->dtvs_locals
;
9258 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
9259 dsize
= (int)NCPU
* (v
->dtdv_type
.dtdt_size
+
9262 dsize
= (int)NCPU
* sizeof (uint64_t);
9266 case DIFV_SCOPE_GLOBAL
:
9267 np
= &vstate
->dtvs_nglobals
;
9268 svarp
= &vstate
->dtvs_globals
;
9270 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
9271 dsize
= v
->dtdv_type
.dtdt_size
+
9280 while (id
>= (uint_t
)(oldsvars
= *np
)) {
9281 dtrace_statvar_t
**statics
;
9282 int newsvars
, oldsize
, newsize
;
9284 if ((newsvars
= (oldsvars
<< 1)) == 0)
9287 oldsize
= oldsvars
* sizeof (dtrace_statvar_t
*);
9288 newsize
= newsvars
* sizeof (dtrace_statvar_t
*);
9290 statics
= kmem_zalloc(newsize
, KM_SLEEP
);
9293 bcopy(*svarp
, statics
, oldsize
);
9294 kmem_free(*svarp
, oldsize
);
9301 if ((svar
= (*svarp
)[id
]) == NULL
) {
9302 svar
= kmem_zalloc(sizeof (dtrace_statvar_t
), KM_SLEEP
);
9303 svar
->dtsv_var
= *v
;
9305 if ((svar
->dtsv_size
= dsize
) != 0) {
9306 svar
->dtsv_data
= (uint64_t)(uintptr_t)
9307 kmem_zalloc(dsize
, KM_SLEEP
);
9310 (*svarp
)[id
] = svar
;
9313 svar
->dtsv_refcnt
++;
9316 dtrace_difo_chunksize(dp
, vstate
);
9317 dtrace_difo_hold(dp
);
9320 static dtrace_difo_t
*
9321 dtrace_difo_duplicate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9326 ASSERT(dp
->dtdo_buf
!= NULL
);
9327 ASSERT(dp
->dtdo_refcnt
!= 0);
9329 new = kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
9331 ASSERT(dp
->dtdo_buf
!= NULL
);
9332 sz
= dp
->dtdo_len
* sizeof (dif_instr_t
);
9333 new->dtdo_buf
= kmem_alloc(sz
, KM_SLEEP
);
9334 bcopy(dp
->dtdo_buf
, new->dtdo_buf
, sz
);
9335 new->dtdo_len
= dp
->dtdo_len
;
9337 if (dp
->dtdo_strtab
!= NULL
) {
9338 ASSERT(dp
->dtdo_strlen
!= 0);
9339 new->dtdo_strtab
= kmem_alloc(dp
->dtdo_strlen
, KM_SLEEP
);
9340 bcopy(dp
->dtdo_strtab
, new->dtdo_strtab
, dp
->dtdo_strlen
);
9341 new->dtdo_strlen
= dp
->dtdo_strlen
;
9344 if (dp
->dtdo_inttab
!= NULL
) {
9345 ASSERT(dp
->dtdo_intlen
!= 0);
9346 sz
= dp
->dtdo_intlen
* sizeof (uint64_t);
9347 new->dtdo_inttab
= kmem_alloc(sz
, KM_SLEEP
);
9348 bcopy(dp
->dtdo_inttab
, new->dtdo_inttab
, sz
);
9349 new->dtdo_intlen
= dp
->dtdo_intlen
;
9352 if (dp
->dtdo_vartab
!= NULL
) {
9353 ASSERT(dp
->dtdo_varlen
!= 0);
9354 sz
= dp
->dtdo_varlen
* sizeof (dtrace_difv_t
);
9355 new->dtdo_vartab
= kmem_alloc(sz
, KM_SLEEP
);
9356 bcopy(dp
->dtdo_vartab
, new->dtdo_vartab
, sz
);
9357 new->dtdo_varlen
= dp
->dtdo_varlen
;
9360 dtrace_difo_init(new, vstate
);
9365 dtrace_difo_destroy(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9369 ASSERT(dp
->dtdo_refcnt
== 0);
9371 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9372 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9373 dtrace_statvar_t
*svar
;
9374 dtrace_statvar_t
**svarp
= NULL
;
9376 uint8_t scope
= v
->dtdv_scope
;
9380 case DIFV_SCOPE_THREAD
:
9383 case DIFV_SCOPE_LOCAL
:
9384 np
= &vstate
->dtvs_nlocals
;
9385 svarp
= vstate
->dtvs_locals
;
9388 case DIFV_SCOPE_GLOBAL
:
9389 np
= &vstate
->dtvs_nglobals
;
9390 svarp
= vstate
->dtvs_globals
;
9397 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
9400 id
-= DIF_VAR_OTHER_UBASE
;
9402 ASSERT(id
< (uint_t
)*np
);
9405 ASSERT(svar
!= NULL
);
9406 ASSERT(svar
->dtsv_refcnt
> 0);
9408 if (--svar
->dtsv_refcnt
> 0)
9411 if (svar
->dtsv_size
!= 0) {
9412 ASSERT(svar
->dtsv_data
!= 0);
9413 kmem_free((void *)(uintptr_t)svar
->dtsv_data
,
9417 kmem_free(svar
, sizeof (dtrace_statvar_t
));
9421 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
9422 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
9423 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
9424 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
9426 kmem_free(dp
, sizeof (dtrace_difo_t
));
9430 dtrace_difo_release(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9434 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9435 ASSERT(dp
->dtdo_refcnt
!= 0);
9437 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9438 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9440 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
9443 ASSERT(dtrace_vtime_references
> 0);
9444 if (--dtrace_vtime_references
== 0)
9445 dtrace_vtime_disable();
9448 if (--dp
->dtdo_refcnt
== 0)
9449 dtrace_difo_destroy(dp
, vstate
);
9453 * DTrace Format Functions
9456 dtrace_format_add(dtrace_state_t
*state
, char *str
)
9459 uint16_t ndx
, len
= strlen(str
) + 1;
9461 fmt
= kmem_zalloc(len
, KM_SLEEP
);
9462 bcopy(str
, fmt
, len
);
9464 for (ndx
= 0; ndx
< state
->dts_nformats
; ndx
++) {
9465 if (state
->dts_formats
[ndx
] == NULL
) {
9466 state
->dts_formats
[ndx
] = fmt
;
9471 if (state
->dts_nformats
== USHRT_MAX
) {
9473 * This is only likely if a denial-of-service attack is being
9474 * attempted. As such, it's okay to fail silently here.
9476 kmem_free(fmt
, len
);
9481 * For simplicity, we always resize the formats array to be exactly the
9482 * number of formats.
9484 ndx
= state
->dts_nformats
++;
9485 new = kmem_alloc((ndx
+ 1) * sizeof (char *), KM_SLEEP
);
9487 if (state
->dts_formats
!= NULL
) {
9489 bcopy(state
->dts_formats
, new, ndx
* sizeof (char *));
9490 kmem_free(state
->dts_formats
, ndx
* sizeof (char *));
9493 state
->dts_formats
= new;
9494 state
->dts_formats
[ndx
] = fmt
;
9500 dtrace_format_remove(dtrace_state_t
*state
, uint16_t format
)
9504 ASSERT(state
->dts_formats
!= NULL
);
9505 ASSERT(format
<= state
->dts_nformats
);
9506 ASSERT(state
->dts_formats
[format
- 1] != NULL
);
9508 fmt
= state
->dts_formats
[format
- 1];
9509 kmem_free(fmt
, strlen(fmt
) + 1);
9510 state
->dts_formats
[format
- 1] = NULL
;
9514 dtrace_format_destroy(dtrace_state_t
*state
)
9518 if (state
->dts_nformats
== 0) {
9519 ASSERT(state
->dts_formats
== NULL
);
9523 ASSERT(state
->dts_formats
!= NULL
);
9525 for (i
= 0; i
< state
->dts_nformats
; i
++) {
9526 char *fmt
= state
->dts_formats
[i
];
9531 kmem_free(fmt
, strlen(fmt
) + 1);
9534 kmem_free(state
->dts_formats
, state
->dts_nformats
* sizeof (char *));
9535 state
->dts_nformats
= 0;
9536 state
->dts_formats
= NULL
;
9540 * DTrace Predicate Functions
9542 static dtrace_predicate_t
*
9543 dtrace_predicate_create(dtrace_difo_t
*dp
)
9545 dtrace_predicate_t
*pred
;
9547 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9548 ASSERT(dp
->dtdo_refcnt
!= 0);
9550 pred
= kmem_zalloc(sizeof (dtrace_predicate_t
), KM_SLEEP
);
9551 pred
->dtp_difo
= dp
;
9552 pred
->dtp_refcnt
= 1;
9554 if (!dtrace_difo_cacheable(dp
))
9557 if (dtrace_predcache_id
== DTRACE_CACHEIDNONE
) {
9559 * This is only theoretically possible -- we have had 2^32
9560 * cacheable predicates on this machine. We cannot allow any
9561 * more predicates to become cacheable: as unlikely as it is,
9562 * there may be a thread caching a (now stale) predicate cache
9563 * ID. (N.B.: the temptation is being successfully resisted to
9564 * have this cmn_err() "Holy shit -- we executed this code!")
9569 pred
->dtp_cacheid
= dtrace_predcache_id
++;
9575 dtrace_predicate_hold(dtrace_predicate_t
*pred
)
9577 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9578 ASSERT(pred
->dtp_difo
!= NULL
&& pred
->dtp_difo
->dtdo_refcnt
!= 0);
9579 ASSERT(pred
->dtp_refcnt
> 0);
9585 dtrace_predicate_release(dtrace_predicate_t
*pred
, dtrace_vstate_t
*vstate
)
9587 dtrace_difo_t
*dp
= pred
->dtp_difo
;
9588 #pragma unused(dp) /* __APPLE__ */
9590 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9591 ASSERT(dp
!= NULL
&& dp
->dtdo_refcnt
!= 0);
9592 ASSERT(pred
->dtp_refcnt
> 0);
9594 if (--pred
->dtp_refcnt
== 0) {
9595 dtrace_difo_release(pred
->dtp_difo
, vstate
);
9596 kmem_free(pred
, sizeof (dtrace_predicate_t
));
9601 * DTrace Action Description Functions
9603 static dtrace_actdesc_t
*
9604 dtrace_actdesc_create(dtrace_actkind_t kind
, uint32_t ntuple
,
9605 uint64_t uarg
, uint64_t arg
)
9607 dtrace_actdesc_t
*act
;
9609 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind
) || (arg
!= 0 &&
9610 arg
>= KERNELBASE
) || (arg
== 0 && kind
== DTRACEACT_PRINTA
));
9612 act
= kmem_zalloc(sizeof (dtrace_actdesc_t
), KM_SLEEP
);
9613 act
->dtad_kind
= kind
;
9614 act
->dtad_ntuple
= ntuple
;
9615 act
->dtad_uarg
= uarg
;
9616 act
->dtad_arg
= arg
;
9617 act
->dtad_refcnt
= 1;
9623 dtrace_actdesc_hold(dtrace_actdesc_t
*act
)
9625 ASSERT(act
->dtad_refcnt
>= 1);
9630 dtrace_actdesc_release(dtrace_actdesc_t
*act
, dtrace_vstate_t
*vstate
)
9632 dtrace_actkind_t kind
= act
->dtad_kind
;
9635 ASSERT(act
->dtad_refcnt
>= 1);
9637 if (--act
->dtad_refcnt
!= 0)
9640 if ((dp
= act
->dtad_difo
) != NULL
)
9641 dtrace_difo_release(dp
, vstate
);
9643 if (DTRACEACT_ISPRINTFLIKE(kind
)) {
9644 char *str
= (char *)(uintptr_t)act
->dtad_arg
;
9646 ASSERT((str
!= NULL
&& (uintptr_t)str
>= KERNELBASE
) ||
9647 (str
== NULL
&& act
->dtad_kind
== DTRACEACT_PRINTA
));
9650 kmem_free(str
, strlen(str
) + 1);
9653 kmem_free(act
, sizeof (dtrace_actdesc_t
));
9657 * DTrace ECB Functions
9659 static dtrace_ecb_t
*
9660 dtrace_ecb_add(dtrace_state_t
*state
, dtrace_probe_t
*probe
)
9665 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9667 ecb
= kmem_zalloc(sizeof (dtrace_ecb_t
), KM_SLEEP
);
9668 ecb
->dte_predicate
= NULL
;
9669 ecb
->dte_probe
= probe
;
9672 * The default size is the size of the default action: recording
9675 ecb
->dte_size
= ecb
->dte_needed
= sizeof (dtrace_rechdr_t
);
9676 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
9678 epid
= state
->dts_epid
++;
9680 if (epid
- 1 >= (dtrace_epid_t
)state
->dts_necbs
) {
9681 dtrace_ecb_t
**oecbs
= state
->dts_ecbs
, **ecbs
;
9682 int necbs
= state
->dts_necbs
<< 1;
9684 ASSERT(epid
== (dtrace_epid_t
)state
->dts_necbs
+ 1);
9687 ASSERT(oecbs
== NULL
);
9691 ecbs
= kmem_zalloc(necbs
* sizeof (*ecbs
), KM_SLEEP
);
9694 bcopy(oecbs
, ecbs
, state
->dts_necbs
* sizeof (*ecbs
));
9696 dtrace_membar_producer();
9697 state
->dts_ecbs
= ecbs
;
9699 if (oecbs
!= NULL
) {
9701 * If this state is active, we must dtrace_sync()
9702 * before we can free the old dts_ecbs array: we're
9703 * coming in hot, and there may be active ring
9704 * buffer processing (which indexes into the dts_ecbs
9705 * array) on another CPU.
9707 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
9710 kmem_free(oecbs
, state
->dts_necbs
* sizeof (*ecbs
));
9713 dtrace_membar_producer();
9714 state
->dts_necbs
= necbs
;
9717 ecb
->dte_state
= state
;
9719 ASSERT(state
->dts_ecbs
[epid
- 1] == NULL
);
9720 dtrace_membar_producer();
9721 state
->dts_ecbs
[(ecb
->dte_epid
= epid
) - 1] = ecb
;
9727 dtrace_ecb_enable(dtrace_ecb_t
*ecb
)
9729 dtrace_probe_t
*probe
= ecb
->dte_probe
;
9731 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
9732 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9733 ASSERT(ecb
->dte_next
== NULL
);
9735 if (probe
== NULL
) {
9737 * This is the NULL probe -- there's nothing to do.
9742 probe
->dtpr_provider
->dtpv_ecb_count
++;
9743 if (probe
->dtpr_ecb
== NULL
) {
9744 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
9747 * We're the first ECB on this probe.
9749 probe
->dtpr_ecb
= probe
->dtpr_ecb_last
= ecb
;
9751 if (ecb
->dte_predicate
!= NULL
)
9752 probe
->dtpr_predcache
= ecb
->dte_predicate
->dtp_cacheid
;
9754 return (prov
->dtpv_pops
.dtps_enable(prov
->dtpv_arg
,
9755 probe
->dtpr_id
, probe
->dtpr_arg
));
9758 * This probe is already active. Swing the last pointer to
9759 * point to the new ECB, and issue a dtrace_sync() to assure
9760 * that all CPUs have seen the change.
9762 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
9763 probe
->dtpr_ecb_last
->dte_next
= ecb
;
9764 probe
->dtpr_ecb_last
= ecb
;
9765 probe
->dtpr_predcache
= 0;
9773 dtrace_ecb_resize(dtrace_ecb_t
*ecb
)
9775 dtrace_action_t
*act
;
9776 uint32_t curneeded
= UINT32_MAX
;
9777 uint32_t aggbase
= UINT32_MAX
;
9780 * If we record anything, we always record the dtrace_rechdr_t. (And
9781 * we always record it first.)
9783 ecb
->dte_size
= sizeof (dtrace_rechdr_t
);
9784 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
9786 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
9787 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
9788 ASSERT(rec
->dtrd_size
> 0 || rec
->dtrd_alignment
== 1);
9790 ecb
->dte_alignment
= MAX(ecb
->dte_alignment
, rec
->dtrd_alignment
);
9792 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
9793 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
9795 ASSERT(rec
->dtrd_size
!= 0);
9796 ASSERT(agg
->dtag_first
!= NULL
);
9797 ASSERT(act
->dta_prev
->dta_intuple
);
9798 ASSERT(aggbase
!= UINT32_MAX
);
9799 ASSERT(curneeded
!= UINT32_MAX
);
9801 agg
->dtag_base
= aggbase
;
9803 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
9804 rec
->dtrd_offset
= curneeded
;
9805 curneeded
+= rec
->dtrd_size
;
9806 ecb
->dte_needed
= MAX(ecb
->dte_needed
, curneeded
);
9808 aggbase
= UINT32_MAX
;
9809 curneeded
= UINT32_MAX
;
9810 } else if (act
->dta_intuple
) {
9811 if (curneeded
== UINT32_MAX
) {
9813 * This is the first record in a tuple. Align
9814 * curneeded to be at offset 4 in an 8-byte
9817 ASSERT(act
->dta_prev
== NULL
|| !act
->dta_prev
->dta_intuple
);
9818 ASSERT(aggbase
== UINT32_MAX
);
9820 curneeded
= P2PHASEUP(ecb
->dte_size
,
9821 sizeof (uint64_t), sizeof (dtrace_aggid_t
));
9823 aggbase
= curneeded
- sizeof (dtrace_aggid_t
);
9824 ASSERT(IS_P2ALIGNED(aggbase
,
9825 sizeof (uint64_t)));
9828 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
9829 rec
->dtrd_offset
= curneeded
;
9830 curneeded
+= rec
->dtrd_size
;
9832 /* tuples must be followed by an aggregation */
9833 ASSERT(act
->dta_prev
== NULL
|| !act
->dta_prev
->dta_intuple
);
9834 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
, rec
->dtrd_alignment
);
9835 rec
->dtrd_offset
= ecb
->dte_size
;
9836 ecb
->dte_size
+= rec
->dtrd_size
;
9837 ecb
->dte_needed
= MAX(ecb
->dte_needed
, ecb
->dte_size
);
9841 if ((act
= ecb
->dte_action
) != NULL
&&
9842 !(act
->dta_kind
== DTRACEACT_SPECULATE
&& act
->dta_next
== NULL
) &&
9843 ecb
->dte_size
== sizeof (dtrace_rechdr_t
)) {
9845 * If the size is still sizeof (dtrace_rechdr_t), then all
9846 * actions store no data; set the size to 0.
9851 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
, sizeof (dtrace_epid_t
));
9852 ecb
->dte_needed
= P2ROUNDUP(ecb
->dte_needed
, (sizeof (dtrace_epid_t
)));
9853 ecb
->dte_state
->dts_needed
= MAX(ecb
->dte_state
->dts_needed
, ecb
->dte_needed
);
9856 static dtrace_action_t
*
9857 dtrace_ecb_aggregation_create(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
9859 dtrace_aggregation_t
*agg
;
9860 size_t size
= sizeof (uint64_t);
9861 int ntuple
= desc
->dtad_ntuple
;
9862 dtrace_action_t
*act
;
9863 dtrace_recdesc_t
*frec
;
9864 dtrace_aggid_t aggid
;
9865 dtrace_state_t
*state
= ecb
->dte_state
;
9867 agg
= kmem_zalloc(sizeof (dtrace_aggregation_t
), KM_SLEEP
);
9868 agg
->dtag_ecb
= ecb
;
9870 ASSERT(DTRACEACT_ISAGG(desc
->dtad_kind
));
9872 switch (desc
->dtad_kind
) {
9874 agg
->dtag_initial
= INT64_MAX
;
9875 agg
->dtag_aggregate
= dtrace_aggregate_min
;
9879 agg
->dtag_initial
= INT64_MIN
;
9880 agg
->dtag_aggregate
= dtrace_aggregate_max
;
9883 case DTRACEAGG_COUNT
:
9884 agg
->dtag_aggregate
= dtrace_aggregate_count
;
9887 case DTRACEAGG_QUANTIZE
:
9888 agg
->dtag_aggregate
= dtrace_aggregate_quantize
;
9889 size
= (((sizeof (uint64_t) * NBBY
) - 1) * 2 + 1) *
9893 case DTRACEAGG_LQUANTIZE
: {
9894 uint16_t step
= DTRACE_LQUANTIZE_STEP(desc
->dtad_arg
);
9895 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(desc
->dtad_arg
);
9897 agg
->dtag_initial
= desc
->dtad_arg
;
9898 agg
->dtag_aggregate
= dtrace_aggregate_lquantize
;
9900 if (step
== 0 || levels
== 0)
9903 size
= levels
* sizeof (uint64_t) + 3 * sizeof (uint64_t);
9907 case DTRACEAGG_LLQUANTIZE
: {
9908 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(desc
->dtad_arg
);
9909 uint16_t low
= DTRACE_LLQUANTIZE_LOW(desc
->dtad_arg
);
9910 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(desc
->dtad_arg
);
9911 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(desc
->dtad_arg
);
9914 agg
->dtag_initial
= desc
->dtad_arg
;
9915 agg
->dtag_aggregate
= dtrace_aggregate_llquantize
;
9917 if (factor
< 2 || low
>= high
|| nsteps
< factor
)
9921 * Now check that the number of steps evenly divides a power
9922 * of the factor. (This assures both integer bucket size and
9923 * linearity within each magnitude.)
9925 for (v
= factor
; v
< nsteps
; v
*= factor
)
9928 if ((v
% nsteps
) || (nsteps
% factor
))
9931 size
= (dtrace_aggregate_llquantize_bucket(factor
, low
, high
, nsteps
, INT64_MAX
) + 2) * sizeof (uint64_t);
9936 agg
->dtag_aggregate
= dtrace_aggregate_avg
;
9937 size
= sizeof (uint64_t) * 2;
9940 case DTRACEAGG_STDDEV
:
9941 agg
->dtag_aggregate
= dtrace_aggregate_stddev
;
9942 size
= sizeof (uint64_t) * 4;
9946 agg
->dtag_aggregate
= dtrace_aggregate_sum
;
9953 agg
->dtag_action
.dta_rec
.dtrd_size
= size
;
9959 * We must make sure that we have enough actions for the n-tuple.
9961 for (act
= ecb
->dte_action_last
; act
!= NULL
; act
= act
->dta_prev
) {
9962 if (DTRACEACT_ISAGG(act
->dta_kind
))
9965 if (--ntuple
== 0) {
9967 * This is the action with which our n-tuple begins.
9969 agg
->dtag_first
= act
;
9975 * This n-tuple is short by ntuple elements. Return failure.
9977 ASSERT(ntuple
!= 0);
9979 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
9984 * If the last action in the tuple has a size of zero, it's actually
9985 * an expression argument for the aggregating action.
9987 ASSERT(ecb
->dte_action_last
!= NULL
);
9988 act
= ecb
->dte_action_last
;
9990 if (act
->dta_kind
== DTRACEACT_DIFEXPR
) {
9991 ASSERT(act
->dta_difo
!= NULL
);
9993 if (act
->dta_difo
->dtdo_rtype
.dtdt_size
== 0)
9994 agg
->dtag_hasarg
= 1;
9998 * We need to allocate an id for this aggregation.
10000 aggid
= (dtrace_aggid_t
)(uintptr_t)vmem_alloc(state
->dts_aggid_arena
, 1,
10001 VM_BESTFIT
| VM_SLEEP
);
10003 if (aggid
- 1 >= (dtrace_aggid_t
)state
->dts_naggregations
) {
10004 dtrace_aggregation_t
**oaggs
= state
->dts_aggregations
;
10005 dtrace_aggregation_t
**aggs
;
10006 int naggs
= state
->dts_naggregations
<< 1;
10007 int onaggs
= state
->dts_naggregations
;
10009 ASSERT(aggid
== (dtrace_aggid_t
)state
->dts_naggregations
+ 1);
10012 ASSERT(oaggs
== NULL
);
10016 aggs
= kmem_zalloc(naggs
* sizeof (*aggs
), KM_SLEEP
);
10018 if (oaggs
!= NULL
) {
10019 bcopy(oaggs
, aggs
, onaggs
* sizeof (*aggs
));
10020 kmem_free(oaggs
, onaggs
* sizeof (*aggs
));
10023 state
->dts_aggregations
= aggs
;
10024 state
->dts_naggregations
= naggs
;
10027 ASSERT(state
->dts_aggregations
[aggid
- 1] == NULL
);
10028 state
->dts_aggregations
[(agg
->dtag_id
= aggid
) - 1] = agg
;
10030 frec
= &agg
->dtag_first
->dta_rec
;
10031 if (frec
->dtrd_alignment
< sizeof (dtrace_aggid_t
))
10032 frec
->dtrd_alignment
= sizeof (dtrace_aggid_t
);
10034 for (act
= agg
->dtag_first
; act
!= NULL
; act
= act
->dta_next
) {
10035 ASSERT(!act
->dta_intuple
);
10036 act
->dta_intuple
= 1;
10039 return (&agg
->dtag_action
);
10043 dtrace_ecb_aggregation_destroy(dtrace_ecb_t
*ecb
, dtrace_action_t
*act
)
10045 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10046 dtrace_state_t
*state
= ecb
->dte_state
;
10047 dtrace_aggid_t aggid
= agg
->dtag_id
;
10049 ASSERT(DTRACEACT_ISAGG(act
->dta_kind
));
10050 vmem_free(state
->dts_aggid_arena
, (void *)(uintptr_t)aggid
, 1);
10052 ASSERT(state
->dts_aggregations
[aggid
- 1] == agg
);
10053 state
->dts_aggregations
[aggid
- 1] = NULL
;
10055 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10059 dtrace_ecb_action_add(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10061 dtrace_action_t
*action
, *last
;
10062 dtrace_difo_t
*dp
= desc
->dtad_difo
;
10063 uint32_t size
= 0, align
= sizeof (uint8_t), mask
;
10064 uint16_t format
= 0;
10065 dtrace_recdesc_t
*rec
;
10066 dtrace_state_t
*state
= ecb
->dte_state
;
10067 dtrace_optval_t
*opt
= state
->dts_options
;
10068 dtrace_optval_t nframes
=0, strsize
;
10069 uint64_t arg
= desc
->dtad_arg
;
10071 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10072 ASSERT(ecb
->dte_action
== NULL
|| ecb
->dte_action
->dta_refcnt
== 1);
10074 if (DTRACEACT_ISAGG(desc
->dtad_kind
)) {
10076 * If this is an aggregating action, there must be neither
10077 * a speculate nor a commit on the action chain.
10079 dtrace_action_t
*act
;
10081 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10082 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10085 if (act
->dta_kind
== DTRACEACT_SPECULATE
)
10089 action
= dtrace_ecb_aggregation_create(ecb
, desc
);
10091 if (action
== NULL
)
10094 if (DTRACEACT_ISDESTRUCTIVE(desc
->dtad_kind
) ||
10095 (desc
->dtad_kind
== DTRACEACT_DIFEXPR
&&
10096 dp
!= NULL
&& dp
->dtdo_destructive
)) {
10097 state
->dts_destructive
= 1;
10100 switch (desc
->dtad_kind
) {
10101 case DTRACEACT_PRINTF
:
10102 case DTRACEACT_PRINTA
:
10103 case DTRACEACT_SYSTEM
:
10104 case DTRACEACT_FREOPEN
:
10105 case DTRACEACT_DIFEXPR
:
10107 * We know that our arg is a string -- turn it into a
10111 ASSERT(desc
->dtad_kind
== DTRACEACT_PRINTA
||
10112 desc
->dtad_kind
== DTRACEACT_DIFEXPR
);
10116 ASSERT(arg
> KERNELBASE
);
10117 format
= dtrace_format_add(state
,
10118 (char *)(uintptr_t)arg
);
10122 case DTRACEACT_LIBACT
:
10123 case DTRACEACT_TRACEMEM
:
10124 case DTRACEACT_TRACEMEM_DYNSIZE
:
10125 case DTRACEACT_APPLEBINARY
: /* __APPLE__ */
10129 if ((size
= dp
->dtdo_rtype
.dtdt_size
) != 0)
10132 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
10133 if (!(dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10136 size
= opt
[DTRACEOPT_STRSIZE
];
10141 case DTRACEACT_STACK
:
10142 if ((nframes
= arg
) == 0) {
10143 nframes
= opt
[DTRACEOPT_STACKFRAMES
];
10144 ASSERT(nframes
> 0);
10148 size
= nframes
* sizeof (pc_t
);
10151 case DTRACEACT_JSTACK
:
10152 if ((strsize
= DTRACE_USTACK_STRSIZE(arg
)) == 0)
10153 strsize
= opt
[DTRACEOPT_JSTACKSTRSIZE
];
10155 if ((nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0)
10156 nframes
= opt
[DTRACEOPT_JSTACKFRAMES
];
10158 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
10161 case DTRACEACT_USTACK
:
10162 if (desc
->dtad_kind
!= DTRACEACT_JSTACK
&&
10163 (nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0) {
10164 strsize
= DTRACE_USTACK_STRSIZE(arg
);
10165 nframes
= opt
[DTRACEOPT_USTACKFRAMES
];
10166 ASSERT(nframes
> 0);
10167 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
10171 * Save a slot for the pid.
10173 size
= (nframes
+ 1) * sizeof (uint64_t);
10174 size
+= DTRACE_USTACK_STRSIZE(arg
);
10175 size
= P2ROUNDUP(size
, (uint32_t)(sizeof (uintptr_t)));
10179 case DTRACEACT_SYM
:
10180 case DTRACEACT_MOD
:
10181 if (dp
== NULL
|| ((size
= dp
->dtdo_rtype
.dtdt_size
) !=
10182 sizeof (uint64_t)) ||
10183 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10187 case DTRACEACT_USYM
:
10188 case DTRACEACT_UMOD
:
10189 case DTRACEACT_UADDR
:
10191 (dp
->dtdo_rtype
.dtdt_size
!= sizeof (uint64_t)) ||
10192 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10196 * We have a slot for the pid, plus a slot for the
10197 * argument. To keep things simple (aligned with
10198 * bitness-neutral sizing), we store each as a 64-bit
10201 size
= 2 * sizeof (uint64_t);
10204 case DTRACEACT_STOP
:
10205 case DTRACEACT_BREAKPOINT
:
10206 case DTRACEACT_PANIC
:
10209 case DTRACEACT_CHILL
:
10210 case DTRACEACT_DISCARD
:
10211 case DTRACEACT_RAISE
:
10212 case DTRACEACT_PIDRESUME
: /* __APPLE__ */
10217 case DTRACEACT_EXIT
:
10219 (size
= dp
->dtdo_rtype
.dtdt_size
) != sizeof (int) ||
10220 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10224 case DTRACEACT_SPECULATE
:
10225 if (ecb
->dte_size
> sizeof (dtrace_rechdr_t
))
10231 state
->dts_speculates
= 1;
10234 case DTRACEACT_COMMIT
: {
10235 dtrace_action_t
*act
= ecb
->dte_action
;
10237 for (; act
!= NULL
; act
= act
->dta_next
) {
10238 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10251 if (size
!= 0 || desc
->dtad_kind
== DTRACEACT_SPECULATE
) {
10253 * If this is a data-storing action or a speculate,
10254 * we must be sure that there isn't a commit on the
10257 dtrace_action_t
*act
= ecb
->dte_action
;
10259 for (; act
!= NULL
; act
= act
->dta_next
) {
10260 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10265 action
= kmem_zalloc(sizeof (dtrace_action_t
), KM_SLEEP
);
10266 action
->dta_rec
.dtrd_size
= size
;
10269 action
->dta_refcnt
= 1;
10270 rec
= &action
->dta_rec
;
10271 size
= rec
->dtrd_size
;
10273 for (mask
= sizeof (uint64_t) - 1; size
!= 0 && mask
> 0; mask
>>= 1) {
10274 if (!(size
& mask
)) {
10280 action
->dta_kind
= desc
->dtad_kind
;
10282 if ((action
->dta_difo
= dp
) != NULL
)
10283 dtrace_difo_hold(dp
);
10285 rec
->dtrd_action
= action
->dta_kind
;
10286 rec
->dtrd_arg
= arg
;
10287 rec
->dtrd_uarg
= desc
->dtad_uarg
;
10288 rec
->dtrd_alignment
= (uint16_t)align
;
10289 rec
->dtrd_format
= format
;
10291 if ((last
= ecb
->dte_action_last
) != NULL
) {
10292 ASSERT(ecb
->dte_action
!= NULL
);
10293 action
->dta_prev
= last
;
10294 last
->dta_next
= action
;
10296 ASSERT(ecb
->dte_action
== NULL
);
10297 ecb
->dte_action
= action
;
10300 ecb
->dte_action_last
= action
;
10306 dtrace_ecb_action_remove(dtrace_ecb_t
*ecb
)
10308 dtrace_action_t
*act
= ecb
->dte_action
, *next
;
10309 dtrace_vstate_t
*vstate
= &ecb
->dte_state
->dts_vstate
;
10313 if (act
!= NULL
&& act
->dta_refcnt
> 1) {
10314 ASSERT(act
->dta_next
== NULL
|| act
->dta_next
->dta_refcnt
== 1);
10317 for (; act
!= NULL
; act
= next
) {
10318 next
= act
->dta_next
;
10319 ASSERT(next
!= NULL
|| act
== ecb
->dte_action_last
);
10320 ASSERT(act
->dta_refcnt
== 1);
10322 if ((format
= act
->dta_rec
.dtrd_format
) != 0)
10323 dtrace_format_remove(ecb
->dte_state
, format
);
10325 if ((dp
= act
->dta_difo
) != NULL
)
10326 dtrace_difo_release(dp
, vstate
);
10328 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
10329 dtrace_ecb_aggregation_destroy(ecb
, act
);
10331 kmem_free(act
, sizeof (dtrace_action_t
));
10336 ecb
->dte_action
= NULL
;
10337 ecb
->dte_action_last
= NULL
;
10342 dtrace_ecb_disable(dtrace_ecb_t
*ecb
)
10345 * We disable the ECB by removing it from its probe.
10347 dtrace_ecb_t
*pecb
, *prev
= NULL
;
10348 dtrace_probe_t
*probe
= ecb
->dte_probe
;
10350 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10352 if (probe
== NULL
) {
10354 * This is the NULL probe; there is nothing to disable.
10359 for (pecb
= probe
->dtpr_ecb
; pecb
!= NULL
; pecb
= pecb
->dte_next
) {
10365 ASSERT(pecb
!= NULL
);
10367 if (prev
== NULL
) {
10368 probe
->dtpr_ecb
= ecb
->dte_next
;
10370 prev
->dte_next
= ecb
->dte_next
;
10373 if (ecb
== probe
->dtpr_ecb_last
) {
10374 ASSERT(ecb
->dte_next
== NULL
);
10375 probe
->dtpr_ecb_last
= prev
;
10378 probe
->dtpr_provider
->dtpv_ecb_count
--;
10380 * The ECB has been disconnected from the probe; now sync to assure
10381 * that all CPUs have seen the change before returning.
10385 if (probe
->dtpr_ecb
== NULL
) {
10387 * That was the last ECB on the probe; clear the predicate
10388 * cache ID for the probe, disable it and sync one more time
10389 * to assure that we'll never hit it again.
10391 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
10393 ASSERT(ecb
->dte_next
== NULL
);
10394 ASSERT(probe
->dtpr_ecb_last
== NULL
);
10395 probe
->dtpr_predcache
= DTRACE_CACHEIDNONE
;
10396 prov
->dtpv_pops
.dtps_disable(prov
->dtpv_arg
,
10397 probe
->dtpr_id
, probe
->dtpr_arg
);
10401 * There is at least one ECB remaining on the probe. If there
10402 * is _exactly_ one, set the probe's predicate cache ID to be
10403 * the predicate cache ID of the remaining ECB.
10405 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
10406 ASSERT(probe
->dtpr_predcache
== DTRACE_CACHEIDNONE
);
10408 if (probe
->dtpr_ecb
== probe
->dtpr_ecb_last
) {
10409 dtrace_predicate_t
*p
= probe
->dtpr_ecb
->dte_predicate
;
10411 ASSERT(probe
->dtpr_ecb
->dte_next
== NULL
);
10414 probe
->dtpr_predcache
= p
->dtp_cacheid
;
10417 ecb
->dte_next
= NULL
;
10422 dtrace_ecb_destroy(dtrace_ecb_t
*ecb
)
10424 dtrace_state_t
*state
= ecb
->dte_state
;
10425 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
10426 dtrace_predicate_t
*pred
;
10427 dtrace_epid_t epid
= ecb
->dte_epid
;
10429 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10430 ASSERT(ecb
->dte_next
== NULL
);
10431 ASSERT(ecb
->dte_probe
== NULL
|| ecb
->dte_probe
->dtpr_ecb
!= ecb
);
10433 if ((pred
= ecb
->dte_predicate
) != NULL
)
10434 dtrace_predicate_release(pred
, vstate
);
10436 dtrace_ecb_action_remove(ecb
);
10438 ASSERT(state
->dts_ecbs
[epid
- 1] == ecb
);
10439 state
->dts_ecbs
[epid
- 1] = NULL
;
10441 kmem_free(ecb
, sizeof (dtrace_ecb_t
));
10444 static dtrace_ecb_t
*
10445 dtrace_ecb_create(dtrace_state_t
*state
, dtrace_probe_t
*probe
,
10446 dtrace_enabling_t
*enab
)
10449 dtrace_predicate_t
*pred
;
10450 dtrace_actdesc_t
*act
;
10451 dtrace_provider_t
*prov
;
10452 dtrace_ecbdesc_t
*desc
= enab
->dten_current
;
10454 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10455 ASSERT(state
!= NULL
);
10457 ecb
= dtrace_ecb_add(state
, probe
);
10458 ecb
->dte_uarg
= desc
->dted_uarg
;
10460 if ((pred
= desc
->dted_pred
.dtpdd_predicate
) != NULL
) {
10461 dtrace_predicate_hold(pred
);
10462 ecb
->dte_predicate
= pred
;
10465 if (probe
!= NULL
) {
10467 * If the provider shows more leg than the consumer is old
10468 * enough to see, we need to enable the appropriate implicit
10469 * predicate bits to prevent the ecb from activating at
10472 * Providers specifying DTRACE_PRIV_USER at register time
10473 * are stating that they need the /proc-style privilege
10474 * model to be enforced, and this is what DTRACE_COND_OWNER
10475 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10477 prov
= probe
->dtpr_provider
;
10478 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLPROC
) &&
10479 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
10480 ecb
->dte_cond
|= DTRACE_COND_OWNER
;
10482 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLZONE
) &&
10483 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
10484 ecb
->dte_cond
|= DTRACE_COND_ZONEOWNER
;
10487 * If the provider shows us kernel innards and the user
10488 * is lacking sufficient privilege, enable the
10489 * DTRACE_COND_USERMODE implicit predicate.
10491 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) &&
10492 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_KERNEL
))
10493 ecb
->dte_cond
|= DTRACE_COND_USERMODE
;
10496 if (dtrace_ecb_create_cache
!= NULL
) {
10498 * If we have a cached ecb, we'll use its action list instead
10499 * of creating our own (saving both time and space).
10501 dtrace_ecb_t
*cached
= dtrace_ecb_create_cache
;
10502 dtrace_action_t
*act_if
= cached
->dte_action
;
10504 if (act_if
!= NULL
) {
10505 ASSERT(act_if
->dta_refcnt
> 0);
10506 act_if
->dta_refcnt
++;
10507 ecb
->dte_action
= act_if
;
10508 ecb
->dte_action_last
= cached
->dte_action_last
;
10509 ecb
->dte_needed
= cached
->dte_needed
;
10510 ecb
->dte_size
= cached
->dte_size
;
10511 ecb
->dte_alignment
= cached
->dte_alignment
;
10517 for (act
= desc
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
10518 if ((enab
->dten_error
= dtrace_ecb_action_add(ecb
, act
)) != 0) {
10519 dtrace_ecb_destroy(ecb
);
10524 dtrace_ecb_resize(ecb
);
10526 return (dtrace_ecb_create_cache
= ecb
);
10530 dtrace_ecb_create_enable(dtrace_probe_t
*probe
, void *arg
)
10533 dtrace_enabling_t
*enab
= arg
;
10534 dtrace_state_t
*state
= enab
->dten_vstate
->dtvs_state
;
10536 ASSERT(state
!= NULL
);
10538 if (probe
!= NULL
&& probe
->dtpr_gen
< enab
->dten_probegen
) {
10540 * This probe was created in a generation for which this
10541 * enabling has previously created ECBs; we don't want to
10542 * enable it again, so just kick out.
10544 return (DTRACE_MATCH_NEXT
);
10547 if ((ecb
= dtrace_ecb_create(state
, probe
, enab
)) == NULL
)
10548 return (DTRACE_MATCH_DONE
);
10550 if (dtrace_ecb_enable(ecb
) < 0)
10551 return (DTRACE_MATCH_FAIL
);
10553 return (DTRACE_MATCH_NEXT
);
10556 static dtrace_ecb_t
*
10557 dtrace_epid2ecb(dtrace_state_t
*state
, dtrace_epid_t id
)
10560 #pragma unused(ecb) /* __APPLE__ */
10562 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10564 if (id
== 0 || id
> (dtrace_epid_t
)state
->dts_necbs
)
10567 ASSERT(state
->dts_necbs
> 0 && state
->dts_ecbs
!= NULL
);
10568 ASSERT((ecb
= state
->dts_ecbs
[id
- 1]) == NULL
|| ecb
->dte_epid
== id
);
10570 return (state
->dts_ecbs
[id
- 1]);
10573 static dtrace_aggregation_t
*
10574 dtrace_aggid2agg(dtrace_state_t
*state
, dtrace_aggid_t id
)
10576 dtrace_aggregation_t
*agg
;
10577 #pragma unused(agg) /* __APPLE__ */
10579 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10581 if (id
== 0 || id
> (dtrace_aggid_t
)state
->dts_naggregations
)
10584 ASSERT(state
->dts_naggregations
> 0 && state
->dts_aggregations
!= NULL
);
10585 ASSERT((agg
= state
->dts_aggregations
[id
- 1]) == NULL
||
10586 agg
->dtag_id
== id
);
10588 return (state
->dts_aggregations
[id
- 1]);
10592 * DTrace Buffer Functions
10594 * The following functions manipulate DTrace buffers. Most of these functions
10595 * are called in the context of establishing or processing consumer state;
10596 * exceptions are explicitly noted.
10600 * Note: called from cross call context. This function switches the two
10601 * buffers on a given CPU. The atomicity of this operation is assured by
10602 * disabling interrupts while the actual switch takes place; the disabling of
10603 * interrupts serializes the execution with any execution of dtrace_probe() on
10607 dtrace_buffer_switch(dtrace_buffer_t
*buf
)
10609 caddr_t tomax
= buf
->dtb_tomax
;
10610 caddr_t xamot
= buf
->dtb_xamot
;
10611 dtrace_icookie_t cookie
;
10614 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
10615 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_RING
));
10617 cookie
= dtrace_interrupt_disable();
10618 now
= dtrace_gethrtime();
10619 buf
->dtb_tomax
= xamot
;
10620 buf
->dtb_xamot
= tomax
;
10621 buf
->dtb_xamot_drops
= buf
->dtb_drops
;
10622 buf
->dtb_xamot_offset
= buf
->dtb_offset
;
10623 buf
->dtb_xamot_errors
= buf
->dtb_errors
;
10624 buf
->dtb_xamot_flags
= buf
->dtb_flags
;
10625 buf
->dtb_offset
= 0;
10626 buf
->dtb_drops
= 0;
10627 buf
->dtb_errors
= 0;
10628 buf
->dtb_flags
&= ~(DTRACEBUF_ERROR
| DTRACEBUF_DROPPED
);
10629 buf
->dtb_interval
= now
- buf
->dtb_switched
;
10630 buf
->dtb_switched
= now
;
10631 dtrace_interrupt_enable(cookie
);
10635 * Note: called from cross call context. This function activates a buffer
10636 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
10637 * is guaranteed by the disabling of interrupts.
10640 dtrace_buffer_activate(dtrace_state_t
*state
)
10642 dtrace_buffer_t
*buf
;
10643 dtrace_icookie_t cookie
= dtrace_interrupt_disable();
10645 buf
= &state
->dts_buffer
[CPU
->cpu_id
];
10647 if (buf
->dtb_tomax
!= NULL
) {
10649 * We might like to assert that the buffer is marked inactive,
10650 * but this isn't necessarily true: the buffer for the CPU
10651 * that processes the BEGIN probe has its buffer activated
10652 * manually. In this case, we take the (harmless) action
10653 * re-clearing the bit INACTIVE bit.
10655 buf
->dtb_flags
&= ~DTRACEBUF_INACTIVE
;
10658 dtrace_interrupt_enable(cookie
);
10662 dtrace_buffer_canalloc(size_t size
)
10664 if (size
> (UINT64_MAX
- dtrace_buffer_memory_inuse
))
10666 if ((size
+ dtrace_buffer_memory_inuse
) > dtrace_buffer_memory_maxsize
)
10673 dtrace_buffer_alloc(dtrace_buffer_t
*bufs
, size_t size
, int flags
,
10677 dtrace_buffer_t
*buf
;
10678 size_t size_before_alloc
= dtrace_buffer_memory_inuse
;
10680 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
10681 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10683 if (size
> (size_t)dtrace_nonroot_maxsize
&&
10684 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL
, B_FALSE
))
10690 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
10693 buf
= &bufs
[cp
->cpu_id
];
10696 * If there is already a buffer allocated for this CPU, it
10697 * is only possible that this is a DR event. In this case,
10698 * the buffer size must match our specified size.
10700 if (buf
->dtb_tomax
!= NULL
) {
10701 ASSERT(buf
->dtb_size
== size
);
10705 ASSERT(buf
->dtb_xamot
== NULL
);
10707 /* DTrace, please do not eat all the memory. */
10708 if (dtrace_buffer_canalloc(size
) == B_FALSE
)
10710 if ((buf
->dtb_tomax
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
10712 dtrace_buffer_memory_inuse
+= size
;
10714 buf
->dtb_size
= size
;
10715 buf
->dtb_flags
= flags
;
10716 buf
->dtb_offset
= 0;
10717 buf
->dtb_drops
= 0;
10719 if (flags
& DTRACEBUF_NOSWITCH
)
10722 /* DTrace, please do not eat all the memory. */
10723 if (dtrace_buffer_canalloc(size
) == B_FALSE
)
10725 if ((buf
->dtb_xamot
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
10727 dtrace_buffer_memory_inuse
+= size
;
10728 } while ((cp
= cp
->cpu_next
) != cpu_list
);
10730 ASSERT(dtrace_buffer_memory_inuse
<= dtrace_buffer_memory_maxsize
);
10738 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
10741 buf
= &bufs
[cp
->cpu_id
];
10743 if (buf
->dtb_xamot
!= NULL
) {
10744 ASSERT(buf
->dtb_tomax
!= NULL
);
10745 ASSERT(buf
->dtb_size
== size
);
10746 kmem_free(buf
->dtb_xamot
, size
);
10749 if (buf
->dtb_tomax
!= NULL
) {
10750 ASSERT(buf
->dtb_size
== size
);
10751 kmem_free(buf
->dtb_tomax
, size
);
10754 buf
->dtb_tomax
= NULL
;
10755 buf
->dtb_xamot
= NULL
;
10757 } while ((cp
= cp
->cpu_next
) != cpu_list
);
10759 /* Restore the size saved before allocating memory */
10760 dtrace_buffer_memory_inuse
= size_before_alloc
;
10766 * Note: called from probe context. This function just increments the drop
10767 * count on a buffer. It has been made a function to allow for the
10768 * possibility of understanding the source of mysterious drop counts. (A
10769 * problem for which one may be particularly disappointed that DTrace cannot
10770 * be used to understand DTrace.)
10773 dtrace_buffer_drop(dtrace_buffer_t
*buf
)
10779 * Note: called from probe context. This function is called to reserve space
10780 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
10781 * mstate. Returns the new offset in the buffer, or a negative value if an
10782 * error has occurred.
10785 dtrace_buffer_reserve(dtrace_buffer_t
*buf
, size_t needed
, size_t align
,
10786 dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
10788 intptr_t offs
= buf
->dtb_offset
, soffs
;
10793 if (buf
->dtb_flags
& DTRACEBUF_INACTIVE
)
10796 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
10797 dtrace_buffer_drop(buf
);
10801 if (!(buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
))) {
10802 while (offs
& (align
- 1)) {
10804 * Assert that our alignment is off by a number which
10805 * is itself sizeof (uint32_t) aligned.
10807 ASSERT(!((align
- (offs
& (align
- 1))) &
10808 (sizeof (uint32_t) - 1)));
10809 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
10810 offs
+= sizeof (uint32_t);
10813 if ((uint64_t)(soffs
= offs
+ needed
) > buf
->dtb_size
) {
10814 dtrace_buffer_drop(buf
);
10818 if (mstate
== NULL
)
10821 mstate
->dtms_scratch_base
= (uintptr_t)tomax
+ soffs
;
10822 mstate
->dtms_scratch_size
= buf
->dtb_size
- soffs
;
10823 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
10828 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
10829 if (state
->dts_activity
!= DTRACE_ACTIVITY_COOLDOWN
&&
10830 (buf
->dtb_flags
& DTRACEBUF_FULL
))
10835 total_off
= needed
+ (offs
& (align
- 1));
10838 * For a ring buffer, life is quite a bit more complicated. Before
10839 * we can store any padding, we need to adjust our wrapping offset.
10840 * (If we've never before wrapped or we're not about to, no adjustment
10843 if ((buf
->dtb_flags
& DTRACEBUF_WRAPPED
) ||
10844 offs
+ total_off
> buf
->dtb_size
) {
10845 woffs
= buf
->dtb_xamot_offset
;
10847 if (offs
+ total_off
> buf
->dtb_size
) {
10849 * We can't fit in the end of the buffer. First, a
10850 * sanity check that we can fit in the buffer at all.
10852 if (total_off
> buf
->dtb_size
) {
10853 dtrace_buffer_drop(buf
);
10858 * We're going to be storing at the top of the buffer,
10859 * so now we need to deal with the wrapped offset. We
10860 * only reset our wrapped offset to 0 if it is
10861 * currently greater than the current offset. If it
10862 * is less than the current offset, it is because a
10863 * previous allocation induced a wrap -- but the
10864 * allocation didn't subsequently take the space due
10865 * to an error or false predicate evaluation. In this
10866 * case, we'll just leave the wrapped offset alone: if
10867 * the wrapped offset hasn't been advanced far enough
10868 * for this allocation, it will be adjusted in the
10871 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
10879 * Now we know that we're going to be storing to the
10880 * top of the buffer and that there is room for us
10881 * there. We need to clear the buffer from the current
10882 * offset to the end (there may be old gunk there).
10884 while ((uint64_t)offs
< buf
->dtb_size
)
10888 * We need to set our offset to zero. And because we
10889 * are wrapping, we need to set the bit indicating as
10890 * much. We can also adjust our needed space back
10891 * down to the space required by the ECB -- we know
10892 * that the top of the buffer is aligned.
10895 total_off
= needed
;
10896 buf
->dtb_flags
|= DTRACEBUF_WRAPPED
;
10899 * There is room for us in the buffer, so we simply
10900 * need to check the wrapped offset.
10902 if (woffs
< offs
) {
10904 * The wrapped offset is less than the offset.
10905 * This can happen if we allocated buffer space
10906 * that induced a wrap, but then we didn't
10907 * subsequently take the space due to an error
10908 * or false predicate evaluation. This is
10909 * okay; we know that _this_ allocation isn't
10910 * going to induce a wrap. We still can't
10911 * reset the wrapped offset to be zero,
10912 * however: the space may have been trashed in
10913 * the previous failed probe attempt. But at
10914 * least the wrapped offset doesn't need to
10915 * be adjusted at all...
10921 while (offs
+ total_off
> (size_t)woffs
) {
10922 dtrace_epid_t epid
= *(uint32_t *)(tomax
+ woffs
);
10925 if (epid
== DTRACE_EPIDNONE
) {
10926 size
= sizeof (uint32_t);
10928 ASSERT(epid
<= (dtrace_epid_t
)state
->dts_necbs
);
10929 ASSERT(state
->dts_ecbs
[epid
- 1] != NULL
);
10931 size
= state
->dts_ecbs
[epid
- 1]->dte_size
;
10934 ASSERT(woffs
+ size
<= buf
->dtb_size
);
10937 if (woffs
+ size
== buf
->dtb_size
) {
10939 * We've reached the end of the buffer; we want
10940 * to set the wrapped offset to 0 and break
10941 * out. However, if the offs is 0, then we're
10942 * in a strange edge-condition: the amount of
10943 * space that we want to reserve plus the size
10944 * of the record that we're overwriting is
10945 * greater than the size of the buffer. This
10946 * is problematic because if we reserve the
10947 * space but subsequently don't consume it (due
10948 * to a failed predicate or error) the wrapped
10949 * offset will be 0 -- yet the EPID at offset 0
10950 * will not be committed. This situation is
10951 * relatively easy to deal with: if we're in
10952 * this case, the buffer is indistinguishable
10953 * from one that hasn't wrapped; we need only
10954 * finish the job by clearing the wrapped bit,
10955 * explicitly setting the offset to be 0, and
10956 * zero'ing out the old data in the buffer.
10959 buf
->dtb_flags
&= ~DTRACEBUF_WRAPPED
;
10960 buf
->dtb_offset
= 0;
10963 while ((uint64_t)woffs
< buf
->dtb_size
)
10964 tomax
[woffs
++] = 0;
10975 * We have a wrapped offset. It may be that the wrapped offset
10976 * has become zero -- that's okay.
10978 buf
->dtb_xamot_offset
= woffs
;
10983 * Now we can plow the buffer with any necessary padding.
10985 while (offs
& (align
- 1)) {
10987 * Assert that our alignment is off by a number which
10988 * is itself sizeof (uint32_t) aligned.
10990 ASSERT(!((align
- (offs
& (align
- 1))) &
10991 (sizeof (uint32_t) - 1)));
10992 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
10993 offs
+= sizeof (uint32_t);
10996 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
10997 if (offs
+ needed
> buf
->dtb_size
- state
->dts_reserve
) {
10998 buf
->dtb_flags
|= DTRACEBUF_FULL
;
11003 if (mstate
== NULL
)
11007 * For ring buffers and fill buffers, the scratch space is always
11008 * the inactive buffer.
11010 mstate
->dtms_scratch_base
= (uintptr_t)buf
->dtb_xamot
;
11011 mstate
->dtms_scratch_size
= buf
->dtb_size
;
11012 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11018 dtrace_buffer_polish(dtrace_buffer_t
*buf
)
11020 ASSERT(buf
->dtb_flags
& DTRACEBUF_RING
);
11021 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11023 if (!(buf
->dtb_flags
& DTRACEBUF_WRAPPED
))
11027 * We need to polish the ring buffer. There are three cases:
11029 * - The first (and presumably most common) is that there is no gap
11030 * between the buffer offset and the wrapped offset. In this case,
11031 * there is nothing in the buffer that isn't valid data; we can
11032 * mark the buffer as polished and return.
11034 * - The second (less common than the first but still more common
11035 * than the third) is that there is a gap between the buffer offset
11036 * and the wrapped offset, and the wrapped offset is larger than the
11037 * buffer offset. This can happen because of an alignment issue, or
11038 * can happen because of a call to dtrace_buffer_reserve() that
11039 * didn't subsequently consume the buffer space. In this case,
11040 * we need to zero the data from the buffer offset to the wrapped
11043 * - The third (and least common) is that there is a gap between the
11044 * buffer offset and the wrapped offset, but the wrapped offset is
11045 * _less_ than the buffer offset. This can only happen because a
11046 * call to dtrace_buffer_reserve() induced a wrap, but the space
11047 * was not subsequently consumed. In this case, we need to zero the
11048 * space from the offset to the end of the buffer _and_ from the
11049 * top of the buffer to the wrapped offset.
11051 if (buf
->dtb_offset
< buf
->dtb_xamot_offset
) {
11052 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11053 buf
->dtb_xamot_offset
- buf
->dtb_offset
);
11056 if (buf
->dtb_offset
> buf
->dtb_xamot_offset
) {
11057 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11058 buf
->dtb_size
- buf
->dtb_offset
);
11059 bzero(buf
->dtb_tomax
, buf
->dtb_xamot_offset
);
11064 dtrace_buffer_free(dtrace_buffer_t
*bufs
)
11068 for (i
= 0; i
< (int)NCPU
; i
++) {
11069 dtrace_buffer_t
*buf
= &bufs
[i
];
11071 if (buf
->dtb_tomax
== NULL
) {
11072 ASSERT(buf
->dtb_xamot
== NULL
);
11073 ASSERT(buf
->dtb_size
== 0);
11077 if (buf
->dtb_xamot
!= NULL
) {
11078 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11079 kmem_free(buf
->dtb_xamot
, buf
->dtb_size
);
11081 ASSERT(dtrace_buffer_memory_inuse
>= buf
->dtb_size
);
11082 dtrace_buffer_memory_inuse
-= buf
->dtb_size
;
11085 kmem_free(buf
->dtb_tomax
, buf
->dtb_size
);
11086 ASSERT(dtrace_buffer_memory_inuse
>= buf
->dtb_size
);
11087 dtrace_buffer_memory_inuse
-= buf
->dtb_size
;
11090 buf
->dtb_tomax
= NULL
;
11091 buf
->dtb_xamot
= NULL
;
11096 * DTrace Enabling Functions
11098 static dtrace_enabling_t
*
11099 dtrace_enabling_create(dtrace_vstate_t
*vstate
)
11101 dtrace_enabling_t
*enab
;
11103 enab
= kmem_zalloc(sizeof (dtrace_enabling_t
), KM_SLEEP
);
11104 enab
->dten_vstate
= vstate
;
11110 dtrace_enabling_add(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
)
11112 dtrace_ecbdesc_t
**ndesc
;
11113 size_t osize
, nsize
;
11116 * We can't add to enablings after we've enabled them, or after we've
11119 ASSERT(enab
->dten_probegen
== 0);
11120 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
11122 /* APPLE NOTE: this protects against gcc 4.0 botch on x86 */
11123 if (ecb
== NULL
) return;
11125 if (enab
->dten_ndesc
< enab
->dten_maxdesc
) {
11126 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
11130 osize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
11132 if (enab
->dten_maxdesc
== 0) {
11133 enab
->dten_maxdesc
= 1;
11135 enab
->dten_maxdesc
<<= 1;
11138 ASSERT(enab
->dten_ndesc
< enab
->dten_maxdesc
);
11140 nsize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
11141 ndesc
= kmem_zalloc(nsize
, KM_SLEEP
);
11142 bcopy(enab
->dten_desc
, ndesc
, osize
);
11143 kmem_free(enab
->dten_desc
, osize
);
11145 enab
->dten_desc
= ndesc
;
11146 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
11150 dtrace_enabling_addlike(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
,
11151 dtrace_probedesc_t
*pd
)
11153 dtrace_ecbdesc_t
*new;
11154 dtrace_predicate_t
*pred
;
11155 dtrace_actdesc_t
*act
;
11158 * We're going to create a new ECB description that matches the
11159 * specified ECB in every way, but has the specified probe description.
11161 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
11163 if ((pred
= ecb
->dted_pred
.dtpdd_predicate
) != NULL
)
11164 dtrace_predicate_hold(pred
);
11166 for (act
= ecb
->dted_action
; act
!= NULL
; act
= act
->dtad_next
)
11167 dtrace_actdesc_hold(act
);
11169 new->dted_action
= ecb
->dted_action
;
11170 new->dted_pred
= ecb
->dted_pred
;
11171 new->dted_probe
= *pd
;
11172 new->dted_uarg
= ecb
->dted_uarg
;
11174 dtrace_enabling_add(enab
, new);
11178 dtrace_enabling_dump(dtrace_enabling_t
*enab
)
11182 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11183 dtrace_probedesc_t
*desc
= &enab
->dten_desc
[i
]->dted_probe
;
11185 cmn_err(CE_NOTE
, "enabling probe %d (%s:%s:%s:%s)", i
,
11186 desc
->dtpd_provider
, desc
->dtpd_mod
,
11187 desc
->dtpd_func
, desc
->dtpd_name
);
11192 dtrace_enabling_destroy(dtrace_enabling_t
*enab
)
11195 dtrace_ecbdesc_t
*ep
;
11196 dtrace_vstate_t
*vstate
= enab
->dten_vstate
;
11198 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11200 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11201 dtrace_actdesc_t
*act
, *next
;
11202 dtrace_predicate_t
*pred
;
11204 ep
= enab
->dten_desc
[i
];
11206 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
)
11207 dtrace_predicate_release(pred
, vstate
);
11209 for (act
= ep
->dted_action
; act
!= NULL
; act
= next
) {
11210 next
= act
->dtad_next
;
11211 dtrace_actdesc_release(act
, vstate
);
11214 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
11217 kmem_free(enab
->dten_desc
,
11218 enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*));
11221 * If this was a retained enabling, decrement the dts_nretained count
11222 * and take it off of the dtrace_retained list.
11224 if (enab
->dten_prev
!= NULL
|| enab
->dten_next
!= NULL
||
11225 dtrace_retained
== enab
) {
11226 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11227 ASSERT(enab
->dten_vstate
->dtvs_state
->dts_nretained
> 0);
11228 enab
->dten_vstate
->dtvs_state
->dts_nretained
--;
11229 dtrace_retained_gen
++;
11232 if (enab
->dten_prev
== NULL
) {
11233 if (dtrace_retained
== enab
) {
11234 dtrace_retained
= enab
->dten_next
;
11236 if (dtrace_retained
!= NULL
)
11237 dtrace_retained
->dten_prev
= NULL
;
11240 ASSERT(enab
!= dtrace_retained
);
11241 ASSERT(dtrace_retained
!= NULL
);
11242 enab
->dten_prev
->dten_next
= enab
->dten_next
;
11245 if (enab
->dten_next
!= NULL
) {
11246 ASSERT(dtrace_retained
!= NULL
);
11247 enab
->dten_next
->dten_prev
= enab
->dten_prev
;
11250 kmem_free(enab
, sizeof (dtrace_enabling_t
));
11254 dtrace_enabling_retain(dtrace_enabling_t
*enab
)
11256 dtrace_state_t
*state
;
11258 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11259 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
11260 ASSERT(enab
->dten_vstate
!= NULL
);
11262 state
= enab
->dten_vstate
->dtvs_state
;
11263 ASSERT(state
!= NULL
);
11266 * We only allow each state to retain dtrace_retain_max enablings.
11268 if (state
->dts_nretained
>= dtrace_retain_max
)
11271 state
->dts_nretained
++;
11272 dtrace_retained_gen
++;
11274 if (dtrace_retained
== NULL
) {
11275 dtrace_retained
= enab
;
11279 enab
->dten_next
= dtrace_retained
;
11280 dtrace_retained
->dten_prev
= enab
;
11281 dtrace_retained
= enab
;
11287 dtrace_enabling_replicate(dtrace_state_t
*state
, dtrace_probedesc_t
*match
,
11288 dtrace_probedesc_t
*create
)
11290 dtrace_enabling_t
*new, *enab
;
11291 int found
= 0, err
= ENOENT
;
11293 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11294 ASSERT(strlen(match
->dtpd_provider
) < DTRACE_PROVNAMELEN
);
11295 ASSERT(strlen(match
->dtpd_mod
) < DTRACE_MODNAMELEN
);
11296 ASSERT(strlen(match
->dtpd_func
) < DTRACE_FUNCNAMELEN
);
11297 ASSERT(strlen(match
->dtpd_name
) < DTRACE_NAMELEN
);
11299 new = dtrace_enabling_create(&state
->dts_vstate
);
11302 * Iterate over all retained enablings, looking for enablings that
11303 * match the specified state.
11305 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11309 * dtvs_state can only be NULL for helper enablings -- and
11310 * helper enablings can't be retained.
11312 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11314 if (enab
->dten_vstate
->dtvs_state
!= state
)
11318 * Now iterate over each probe description; we're looking for
11319 * an exact match to the specified probe description.
11321 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11322 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
11323 dtrace_probedesc_t
*pd
= &ep
->dted_probe
;
11325 /* APPLE NOTE: Darwin employs size bounded string operation. */
11326 if (strncmp(pd
->dtpd_provider
, match
->dtpd_provider
, DTRACE_PROVNAMELEN
))
11329 if (strncmp(pd
->dtpd_mod
, match
->dtpd_mod
, DTRACE_MODNAMELEN
))
11332 if (strncmp(pd
->dtpd_func
, match
->dtpd_func
, DTRACE_FUNCNAMELEN
))
11335 if (strncmp(pd
->dtpd_name
, match
->dtpd_name
, DTRACE_NAMELEN
))
11339 * We have a winning probe! Add it to our growing
11343 dtrace_enabling_addlike(new, ep
, create
);
11347 if (!found
|| (err
= dtrace_enabling_retain(new)) != 0) {
11348 dtrace_enabling_destroy(new);
11356 dtrace_enabling_retract(dtrace_state_t
*state
)
11358 dtrace_enabling_t
*enab
, *next
;
11360 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11363 * Iterate over all retained enablings, destroy the enablings retained
11364 * for the specified state.
11366 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= next
) {
11367 next
= enab
->dten_next
;
11370 * dtvs_state can only be NULL for helper enablings -- and
11371 * helper enablings can't be retained.
11373 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11375 if (enab
->dten_vstate
->dtvs_state
== state
) {
11376 ASSERT(state
->dts_nretained
> 0);
11377 dtrace_enabling_destroy(enab
);
11381 ASSERT(state
->dts_nretained
== 0);
11385 dtrace_enabling_match(dtrace_enabling_t
*enab
, int *nmatched
)
11388 int total_matched
= 0, matched
= 0;
11390 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
11391 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11393 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11394 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
11396 enab
->dten_current
= ep
;
11397 enab
->dten_error
= 0;
11400 * If a provider failed to enable a probe then get out and
11401 * let the consumer know we failed.
11403 if ((matched
= dtrace_probe_enable(&ep
->dted_probe
, enab
)) < 0)
11406 total_matched
+= matched
;
11408 if (enab
->dten_error
!= 0) {
11410 * If we get an error half-way through enabling the
11411 * probes, we kick out -- perhaps with some number of
11412 * them enabled. Leaving enabled probes enabled may
11413 * be slightly confusing for user-level, but we expect
11414 * that no one will attempt to actually drive on in
11415 * the face of such errors. If this is an anonymous
11416 * enabling (indicated with a NULL nmatched pointer),
11417 * we cmn_err() a message. We aren't expecting to
11418 * get such an error -- such as it can exist at all,
11419 * it would be a result of corrupted DOF in the driver
11422 if (nmatched
== NULL
) {
11423 cmn_err(CE_WARN
, "dtrace_enabling_match() "
11424 "error on %p: %d", (void *)ep
,
11428 return (enab
->dten_error
);
11432 enab
->dten_probegen
= dtrace_probegen
;
11433 if (nmatched
!= NULL
)
11434 *nmatched
= total_matched
;
11440 dtrace_enabling_matchall(void)
11442 dtrace_enabling_t
*enab
;
11444 lck_mtx_lock(&cpu_lock
);
11445 lck_mtx_lock(&dtrace_lock
);
11448 * Iterate over all retained enablings to see if any probes match
11449 * against them. We only perform this operation on enablings for which
11450 * we have sufficient permissions by virtue of being in the global zone
11451 * or in the same zone as the DTrace client. Because we can be called
11452 * after dtrace_detach() has been called, we cannot assert that there
11453 * are retained enablings. We can safely load from dtrace_retained,
11454 * however: the taskq_destroy() at the end of dtrace_detach() will
11455 * block pending our completion.
11459 * Darwin doesn't do zones.
11460 * Behave as if always in "global" zone."
11462 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11463 (void) dtrace_enabling_match(enab
, NULL
);
11466 lck_mtx_unlock(&dtrace_lock
);
11467 lck_mtx_unlock(&cpu_lock
);
11471 * If an enabling is to be enabled without having matched probes (that is, if
11472 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11473 * enabling must be _primed_ by creating an ECB for every ECB description.
11474 * This must be done to assure that we know the number of speculations, the
11475 * number of aggregations, the minimum buffer size needed, etc. before we
11476 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
11477 * enabling any probes, we create ECBs for every ECB decription, but with a
11478 * NULL probe -- which is exactly what this function does.
11481 dtrace_enabling_prime(dtrace_state_t
*state
)
11483 dtrace_enabling_t
*enab
;
11486 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11487 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11489 if (enab
->dten_vstate
->dtvs_state
!= state
)
11493 * We don't want to prime an enabling more than once, lest
11494 * we allow a malicious user to induce resource exhaustion.
11495 * (The ECBs that result from priming an enabling aren't
11496 * leaked -- but they also aren't deallocated until the
11497 * consumer state is destroyed.)
11499 if (enab
->dten_primed
)
11502 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11503 enab
->dten_current
= enab
->dten_desc
[i
];
11504 (void) dtrace_probe_enable(NULL
, enab
);
11507 enab
->dten_primed
= 1;
11512 * Called to indicate that probes should be provided due to retained
11513 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
11514 * must take an initial lap through the enabling calling the dtps_provide()
11515 * entry point explicitly to allow for autocreated probes.
11518 dtrace_enabling_provide(dtrace_provider_t
*prv
)
11521 dtrace_probedesc_t desc
;
11522 dtrace_genid_t gen
;
11524 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11525 lck_mtx_assert(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
11529 prv
= dtrace_provider
;
11533 dtrace_enabling_t
*enab
;
11534 void *parg
= prv
->dtpv_arg
;
11537 gen
= dtrace_retained_gen
;
11538 for (enab
= dtrace_retained
; enab
!= NULL
;
11539 enab
= enab
->dten_next
) {
11540 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11541 desc
= enab
->dten_desc
[i
]->dted_probe
;
11542 lck_mtx_unlock(&dtrace_lock
);
11543 prv
->dtpv_pops
.dtps_provide(parg
, &desc
);
11544 lck_mtx_lock(&dtrace_lock
);
11546 * Process the retained enablings again if
11547 * they have changed while we weren't holding
11550 if (gen
!= dtrace_retained_gen
)
11554 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
11556 lck_mtx_unlock(&dtrace_lock
);
11557 dtrace_probe_provide(NULL
, all
? NULL
: prv
);
11558 lck_mtx_lock(&dtrace_lock
);
11562 * DTrace DOF Functions
11566 dtrace_dof_error(dof_hdr_t
*dof
, const char *str
)
11568 #pragma unused(dof) /* __APPLE__ */
11569 if (dtrace_err_verbose
)
11570 cmn_err(CE_WARN
, "failed to process DOF: %s", str
);
11572 #ifdef DTRACE_ERRDEBUG
11573 dtrace_errdebug(str
);
11578 * Create DOF out of a currently enabled state. Right now, we only create
11579 * DOF containing the run-time options -- but this could be expanded to create
11580 * complete DOF representing the enabled state.
11583 dtrace_dof_create(dtrace_state_t
*state
)
11587 dof_optdesc_t
*opt
;
11588 int i
, len
= sizeof (dof_hdr_t
) +
11589 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)) +
11590 sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
11592 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11594 dof
= dt_kmem_zalloc_aligned(len
, 8, KM_SLEEP
);
11595 dof
->dofh_ident
[DOF_ID_MAG0
] = DOF_MAG_MAG0
;
11596 dof
->dofh_ident
[DOF_ID_MAG1
] = DOF_MAG_MAG1
;
11597 dof
->dofh_ident
[DOF_ID_MAG2
] = DOF_MAG_MAG2
;
11598 dof
->dofh_ident
[DOF_ID_MAG3
] = DOF_MAG_MAG3
;
11600 dof
->dofh_ident
[DOF_ID_MODEL
] = DOF_MODEL_NATIVE
;
11601 dof
->dofh_ident
[DOF_ID_ENCODING
] = DOF_ENCODE_NATIVE
;
11602 dof
->dofh_ident
[DOF_ID_VERSION
] = DOF_VERSION
;
11603 dof
->dofh_ident
[DOF_ID_DIFVERS
] = DIF_VERSION
;
11604 dof
->dofh_ident
[DOF_ID_DIFIREG
] = DIF_DIR_NREGS
;
11605 dof
->dofh_ident
[DOF_ID_DIFTREG
] = DIF_DTR_NREGS
;
11607 dof
->dofh_flags
= 0;
11608 dof
->dofh_hdrsize
= sizeof (dof_hdr_t
);
11609 dof
->dofh_secsize
= sizeof (dof_sec_t
);
11610 dof
->dofh_secnum
= 1; /* only DOF_SECT_OPTDESC */
11611 dof
->dofh_secoff
= sizeof (dof_hdr_t
);
11612 dof
->dofh_loadsz
= len
;
11613 dof
->dofh_filesz
= len
;
11617 * Fill in the option section header...
11619 sec
= (dof_sec_t
*)((uintptr_t)dof
+ sizeof (dof_hdr_t
));
11620 sec
->dofs_type
= DOF_SECT_OPTDESC
;
11621 sec
->dofs_align
= sizeof (uint64_t);
11622 sec
->dofs_flags
= DOF_SECF_LOAD
;
11623 sec
->dofs_entsize
= sizeof (dof_optdesc_t
);
11625 opt
= (dof_optdesc_t
*)((uintptr_t)sec
+
11626 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)));
11628 sec
->dofs_offset
= (uintptr_t)opt
- (uintptr_t)dof
;
11629 sec
->dofs_size
= sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
11631 for (i
= 0; i
< DTRACEOPT_MAX
; i
++) {
11632 opt
[i
].dofo_option
= i
;
11633 opt
[i
].dofo_strtab
= DOF_SECIDX_NONE
;
11634 opt
[i
].dofo_value
= state
->dts_options
[i
];
11641 dtrace_dof_copyin(user_addr_t uarg
, int *errp
)
11643 dof_hdr_t hdr
, *dof
;
11645 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
11648 * First, we're going to copyin() the sizeof (dof_hdr_t).
11650 if (copyin(uarg
, &hdr
, sizeof (hdr
)) != 0) {
11651 dtrace_dof_error(NULL
, "failed to copyin DOF header");
11657 * Now we'll allocate the entire DOF and copy it in -- provided
11658 * that the length isn't outrageous.
11660 if (hdr
.dofh_loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
11661 dtrace_dof_error(&hdr
, "load size exceeds maximum");
11666 if (hdr
.dofh_loadsz
< sizeof (hdr
)) {
11667 dtrace_dof_error(&hdr
, "invalid load size");
11672 dof
= dt_kmem_alloc_aligned(hdr
.dofh_loadsz
, 8, KM_SLEEP
);
11674 if (copyin(uarg
, dof
, hdr
.dofh_loadsz
) != 0 ||
11675 dof
->dofh_loadsz
!= hdr
.dofh_loadsz
) {
11676 dt_kmem_free_aligned(dof
, hdr
.dofh_loadsz
);
11685 dtrace_dof_copyin_from_proc(proc_t
* p
, user_addr_t uarg
, int *errp
)
11687 dof_hdr_t hdr
, *dof
;
11689 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
11692 * First, we're going to copyin() the sizeof (dof_hdr_t).
11694 if (uread(p
, &hdr
, sizeof(hdr
), uarg
) != KERN_SUCCESS
) {
11695 dtrace_dof_error(NULL
, "failed to copyin DOF header");
11701 * Now we'll allocate the entire DOF and copy it in -- provided
11702 * that the length isn't outrageous.
11704 if (hdr
.dofh_loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
11705 dtrace_dof_error(&hdr
, "load size exceeds maximum");
11710 if (hdr
.dofh_loadsz
< sizeof (hdr
)) {
11711 dtrace_dof_error(&hdr
, "invalid load size");
11716 dof
= dt_kmem_alloc_aligned(hdr
.dofh_loadsz
, 8, KM_SLEEP
);
11718 if (uread(p
, dof
, hdr
.dofh_loadsz
, uarg
) != KERN_SUCCESS
) {
11719 dt_kmem_free_aligned(dof
, hdr
.dofh_loadsz
);
11728 dtrace_dof_property(const char *name
)
11732 unsigned int len
, i
;
11736 * Unfortunately, array of values in .conf files are always (and
11737 * only) interpreted to be integer arrays. We must read our DOF
11738 * as an integer array, and then squeeze it into a byte array.
11740 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY
, dtrace_devi
, 0,
11741 name
, (int **)&buf
, &len
) != DDI_PROP_SUCCESS
)
11744 for (i
= 0; i
< len
; i
++)
11745 buf
[i
] = (uchar_t
)(((int *)buf
)[i
]);
11747 if (len
< sizeof (dof_hdr_t
)) {
11748 ddi_prop_free(buf
);
11749 dtrace_dof_error(NULL
, "truncated header");
11753 if (len
< (loadsz
= ((dof_hdr_t
*)buf
)->dofh_loadsz
)) {
11754 ddi_prop_free(buf
);
11755 dtrace_dof_error(NULL
, "truncated DOF");
11759 if (loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
11760 ddi_prop_free(buf
);
11761 dtrace_dof_error(NULL
, "oversized DOF");
11765 dof
= dt_kmem_alloc_aligned(loadsz
, 8, KM_SLEEP
);
11766 bcopy(buf
, dof
, loadsz
);
11767 ddi_prop_free(buf
);
11773 dtrace_dof_destroy(dof_hdr_t
*dof
)
11775 dt_kmem_free_aligned(dof
, dof
->dofh_loadsz
);
11779 * Return the dof_sec_t pointer corresponding to a given section index. If the
11780 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
11781 * a type other than DOF_SECT_NONE is specified, the header is checked against
11782 * this type and NULL is returned if the types do not match.
11785 dtrace_dof_sect(dof_hdr_t
*dof
, uint32_t type
, dof_secidx_t i
)
11787 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)
11788 ((uintptr_t)dof
+ dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
11790 if (i
>= dof
->dofh_secnum
) {
11791 dtrace_dof_error(dof
, "referenced section index is invalid");
11795 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
)) {
11796 dtrace_dof_error(dof
, "referenced section is not loadable");
11800 if (type
!= DOF_SECT_NONE
&& type
!= sec
->dofs_type
) {
11801 dtrace_dof_error(dof
, "referenced section is the wrong type");
11808 static dtrace_probedesc_t
*
11809 dtrace_dof_probedesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_probedesc_t
*desc
)
11811 dof_probedesc_t
*probe
;
11813 uintptr_t daddr
= (uintptr_t)dof
;
11817 if (sec
->dofs_type
!= DOF_SECT_PROBEDESC
) {
11818 dtrace_dof_error(dof
, "invalid probe section");
11822 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
11823 dtrace_dof_error(dof
, "bad alignment in probe description");
11827 if (sec
->dofs_offset
+ sizeof (dof_probedesc_t
) > dof
->dofh_loadsz
) {
11828 dtrace_dof_error(dof
, "truncated probe description");
11832 probe
= (dof_probedesc_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
11833 strtab
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, probe
->dofp_strtab
);
11835 if (strtab
== NULL
)
11838 str
= daddr
+ strtab
->dofs_offset
;
11839 size
= strtab
->dofs_size
;
11841 if (probe
->dofp_provider
>= strtab
->dofs_size
) {
11842 dtrace_dof_error(dof
, "corrupt probe provider");
11846 (void) strncpy(desc
->dtpd_provider
,
11847 (char *)(str
+ probe
->dofp_provider
),
11848 MIN(DTRACE_PROVNAMELEN
- 1, size
- probe
->dofp_provider
));
11850 /* APPLE NOTE: Darwin employs size bounded string operation. */
11851 desc
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
11853 if (probe
->dofp_mod
>= strtab
->dofs_size
) {
11854 dtrace_dof_error(dof
, "corrupt probe module");
11858 (void) strncpy(desc
->dtpd_mod
, (char *)(str
+ probe
->dofp_mod
),
11859 MIN(DTRACE_MODNAMELEN
- 1, size
- probe
->dofp_mod
));
11861 /* APPLE NOTE: Darwin employs size bounded string operation. */
11862 desc
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
11864 if (probe
->dofp_func
>= strtab
->dofs_size
) {
11865 dtrace_dof_error(dof
, "corrupt probe function");
11869 (void) strncpy(desc
->dtpd_func
, (char *)(str
+ probe
->dofp_func
),
11870 MIN(DTRACE_FUNCNAMELEN
- 1, size
- probe
->dofp_func
));
11872 /* APPLE NOTE: Darwin employs size bounded string operation. */
11873 desc
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
11875 if (probe
->dofp_name
>= strtab
->dofs_size
) {
11876 dtrace_dof_error(dof
, "corrupt probe name");
11880 (void) strncpy(desc
->dtpd_name
, (char *)(str
+ probe
->dofp_name
),
11881 MIN(DTRACE_NAMELEN
- 1, size
- probe
->dofp_name
));
11883 /* APPLE NOTE: Darwin employs size bounded string operation. */
11884 desc
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
11889 static dtrace_difo_t
*
11890 dtrace_dof_difo(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
11895 dof_difohdr_t
*dofd
;
11896 uintptr_t daddr
= (uintptr_t)dof
;
11897 size_t max_size
= dtrace_difo_maxsize
;
11902 static const struct {
11910 { DOF_SECT_DIF
, offsetof(dtrace_difo_t
, dtdo_buf
),
11911 offsetof(dtrace_difo_t
, dtdo_len
), sizeof (dif_instr_t
),
11912 sizeof (dif_instr_t
), "multiple DIF sections" },
11914 { DOF_SECT_INTTAB
, offsetof(dtrace_difo_t
, dtdo_inttab
),
11915 offsetof(dtrace_difo_t
, dtdo_intlen
), sizeof (uint64_t),
11916 sizeof (uint64_t), "multiple integer tables" },
11918 { DOF_SECT_STRTAB
, offsetof(dtrace_difo_t
, dtdo_strtab
),
11919 offsetof(dtrace_difo_t
, dtdo_strlen
), 0,
11920 sizeof (char), "multiple string tables" },
11922 { DOF_SECT_VARTAB
, offsetof(dtrace_difo_t
, dtdo_vartab
),
11923 offsetof(dtrace_difo_t
, dtdo_varlen
), sizeof (dtrace_difv_t
),
11924 sizeof (uint_t
), "multiple variable tables" },
11926 { DOF_SECT_NONE
, 0, 0, 0, 0, NULL
}
11929 if (sec
->dofs_type
!= DOF_SECT_DIFOHDR
) {
11930 dtrace_dof_error(dof
, "invalid DIFO header section");
11934 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
11935 dtrace_dof_error(dof
, "bad alignment in DIFO header");
11939 if (sec
->dofs_size
< sizeof (dof_difohdr_t
) ||
11940 sec
->dofs_size
% sizeof (dof_secidx_t
)) {
11941 dtrace_dof_error(dof
, "bad size in DIFO header");
11945 dofd
= (dof_difohdr_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
11946 n
= (sec
->dofs_size
- sizeof (*dofd
)) / sizeof (dof_secidx_t
) + 1;
11948 dp
= kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
11949 dp
->dtdo_rtype
= dofd
->dofd_rtype
;
11951 for (l
= 0; l
< n
; l
++) {
11956 if ((subsec
= dtrace_dof_sect(dof
, DOF_SECT_NONE
,
11957 dofd
->dofd_links
[l
])) == NULL
)
11958 goto err
; /* invalid section link */
11960 if (ttl
+ subsec
->dofs_size
> max_size
) {
11961 dtrace_dof_error(dof
, "exceeds maximum size");
11965 ttl
+= subsec
->dofs_size
;
11967 for (i
= 0; difo
[i
].section
!= DOF_SECT_NONE
; i
++) {
11969 if (subsec
->dofs_type
!= (uint32_t)difo
[i
].section
)
11972 if (!(subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
11973 dtrace_dof_error(dof
, "section not loaded");
11977 if (subsec
->dofs_align
!= (uint32_t)difo
[i
].align
) {
11978 dtrace_dof_error(dof
, "bad alignment");
11982 bufp
= (void **)((uintptr_t)dp
+ difo
[i
].bufoffs
);
11983 lenp
= (uint32_t *)((uintptr_t)dp
+ difo
[i
].lenoffs
);
11985 if (*bufp
!= NULL
) {
11986 dtrace_dof_error(dof
, difo
[i
].msg
);
11990 if ((uint32_t)difo
[i
].entsize
!= subsec
->dofs_entsize
) {
11991 dtrace_dof_error(dof
, "entry size mismatch");
11995 if (subsec
->dofs_entsize
!= 0 &&
11996 (subsec
->dofs_size
% subsec
->dofs_entsize
) != 0) {
11997 dtrace_dof_error(dof
, "corrupt entry size");
12001 *lenp
= subsec
->dofs_size
;
12002 *bufp
= kmem_alloc(subsec
->dofs_size
, KM_SLEEP
);
12003 bcopy((char *)(uintptr_t)(daddr
+ subsec
->dofs_offset
),
12004 *bufp
, subsec
->dofs_size
);
12006 if (subsec
->dofs_entsize
!= 0)
12007 *lenp
/= subsec
->dofs_entsize
;
12013 * If we encounter a loadable DIFO sub-section that is not
12014 * known to us, assume this is a broken program and fail.
12016 if (difo
[i
].section
== DOF_SECT_NONE
&&
12017 (subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12018 dtrace_dof_error(dof
, "unrecognized DIFO subsection");
12023 if (dp
->dtdo_buf
== NULL
) {
12025 * We can't have a DIF object without DIF text.
12027 dtrace_dof_error(dof
, "missing DIF text");
12032 * Before we validate the DIF object, run through the variable table
12033 * looking for the strings -- if any of their size are under, we'll set
12034 * their size to be the system-wide default string size. Note that
12035 * this should _not_ happen if the "strsize" option has been set --
12036 * in this case, the compiler should have set the size to reflect the
12037 * setting of the option.
12039 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
12040 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
12041 dtrace_diftype_t
*t
= &v
->dtdv_type
;
12043 if (v
->dtdv_id
< DIF_VAR_OTHER_UBASE
)
12046 if (t
->dtdt_kind
== DIF_TYPE_STRING
&& t
->dtdt_size
== 0)
12047 t
->dtdt_size
= dtrace_strsize_default
;
12050 if (dtrace_difo_validate(dp
, vstate
, DIF_DIR_NREGS
, cr
) != 0)
12053 dtrace_difo_init(dp
, vstate
);
12057 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
12058 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
12059 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
12060 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
12062 kmem_free(dp
, sizeof (dtrace_difo_t
));
12066 static dtrace_predicate_t
*
12067 dtrace_dof_predicate(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12072 if ((dp
= dtrace_dof_difo(dof
, sec
, vstate
, cr
)) == NULL
)
12075 return (dtrace_predicate_create(dp
));
12078 static dtrace_actdesc_t
*
12079 dtrace_dof_actdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12082 dtrace_actdesc_t
*act
, *first
= NULL
, *last
= NULL
, *next
;
12083 dof_actdesc_t
*desc
;
12084 dof_sec_t
*difosec
;
12086 uintptr_t daddr
= (uintptr_t)dof
;
12088 dtrace_actkind_t kind
;
12090 if (sec
->dofs_type
!= DOF_SECT_ACTDESC
) {
12091 dtrace_dof_error(dof
, "invalid action section");
12095 if (sec
->dofs_offset
+ sizeof (dof_actdesc_t
) > dof
->dofh_loadsz
) {
12096 dtrace_dof_error(dof
, "truncated action description");
12100 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12101 dtrace_dof_error(dof
, "bad alignment in action description");
12105 if (sec
->dofs_size
< sec
->dofs_entsize
) {
12106 dtrace_dof_error(dof
, "section entry size exceeds total size");
12110 if (sec
->dofs_entsize
!= sizeof (dof_actdesc_t
)) {
12111 dtrace_dof_error(dof
, "bad entry size in action description");
12115 if (sec
->dofs_size
/ sec
->dofs_entsize
> dtrace_actions_max
) {
12116 dtrace_dof_error(dof
, "actions exceed dtrace_actions_max");
12120 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= sec
->dofs_entsize
) {
12121 desc
= (dof_actdesc_t
*)(daddr
+
12122 (uintptr_t)sec
->dofs_offset
+ offs
);
12123 kind
= (dtrace_actkind_t
)desc
->dofa_kind
;
12125 if ((DTRACEACT_ISPRINTFLIKE(kind
) &&
12126 (kind
!= DTRACEACT_PRINTA
|| desc
->dofa_strtab
!= DOF_SECIDX_NONE
)) ||
12127 (kind
== DTRACEACT_DIFEXPR
&& desc
->dofa_strtab
!= DOF_SECIDX_NONE
))
12134 * The argument to these actions is an index into the
12135 * DOF string table. For printf()-like actions, this
12136 * is the format string. For print(), this is the
12137 * CTF type of the expression result.
12139 if ((strtab
= dtrace_dof_sect(dof
,
12140 DOF_SECT_STRTAB
, desc
->dofa_strtab
)) == NULL
)
12143 str
= (char *)((uintptr_t)dof
+
12144 (uintptr_t)strtab
->dofs_offset
);
12146 for (i
= desc
->dofa_arg
; i
< strtab
->dofs_size
; i
++) {
12147 if (str
[i
] == '\0')
12151 if (i
>= strtab
->dofs_size
) {
12152 dtrace_dof_error(dof
, "bogus format string");
12156 if (i
== desc
->dofa_arg
) {
12157 dtrace_dof_error(dof
, "empty format string");
12161 i
-= desc
->dofa_arg
;
12162 fmt
= kmem_alloc(i
+ 1, KM_SLEEP
);
12163 bcopy(&str
[desc
->dofa_arg
], fmt
, i
+ 1);
12164 arg
= (uint64_t)(uintptr_t)fmt
;
12166 if (kind
== DTRACEACT_PRINTA
) {
12167 ASSERT(desc
->dofa_strtab
== DOF_SECIDX_NONE
);
12170 arg
= desc
->dofa_arg
;
12174 act
= dtrace_actdesc_create(kind
, desc
->dofa_ntuple
,
12175 desc
->dofa_uarg
, arg
);
12177 if (last
!= NULL
) {
12178 last
->dtad_next
= act
;
12185 if (desc
->dofa_difo
== DOF_SECIDX_NONE
)
12188 if ((difosec
= dtrace_dof_sect(dof
,
12189 DOF_SECT_DIFOHDR
, desc
->dofa_difo
)) == NULL
)
12192 act
->dtad_difo
= dtrace_dof_difo(dof
, difosec
, vstate
, cr
);
12194 if (act
->dtad_difo
== NULL
)
12198 ASSERT(first
!= NULL
);
12202 for (act
= first
; act
!= NULL
; act
= next
) {
12203 next
= act
->dtad_next
;
12204 dtrace_actdesc_release(act
, vstate
);
12210 static dtrace_ecbdesc_t
*
12211 dtrace_dof_ecbdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12214 dtrace_ecbdesc_t
*ep
;
12215 dof_ecbdesc_t
*ecb
;
12216 dtrace_probedesc_t
*desc
;
12217 dtrace_predicate_t
*pred
= NULL
;
12219 if (sec
->dofs_size
< sizeof (dof_ecbdesc_t
)) {
12220 dtrace_dof_error(dof
, "truncated ECB description");
12224 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12225 dtrace_dof_error(dof
, "bad alignment in ECB description");
12229 ecb
= (dof_ecbdesc_t
*)((uintptr_t)dof
+ (uintptr_t)sec
->dofs_offset
);
12230 sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBEDESC
, ecb
->dofe_probes
);
12235 ep
= kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
12236 ep
->dted_uarg
= ecb
->dofe_uarg
;
12237 desc
= &ep
->dted_probe
;
12239 if (dtrace_dof_probedesc(dof
, sec
, desc
) == NULL
)
12242 if (ecb
->dofe_pred
!= DOF_SECIDX_NONE
) {
12243 if ((sec
= dtrace_dof_sect(dof
,
12244 DOF_SECT_DIFOHDR
, ecb
->dofe_pred
)) == NULL
)
12247 if ((pred
= dtrace_dof_predicate(dof
, sec
, vstate
, cr
)) == NULL
)
12250 ep
->dted_pred
.dtpdd_predicate
= pred
;
12253 if (ecb
->dofe_actions
!= DOF_SECIDX_NONE
) {
12254 if ((sec
= dtrace_dof_sect(dof
,
12255 DOF_SECT_ACTDESC
, ecb
->dofe_actions
)) == NULL
)
12258 ep
->dted_action
= dtrace_dof_actdesc(dof
, sec
, vstate
, cr
);
12260 if (ep
->dted_action
== NULL
)
12268 dtrace_predicate_release(pred
, vstate
);
12269 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
12274 * APPLE NOTE: dyld handles dof relocation.
12275 * Darwin does not need dtrace_dof_relocate()
12279 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12280 * header: it should be at the front of a memory region that is at least
12281 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12282 * size. It need not be validated in any other way.
12285 dtrace_dof_slurp(dof_hdr_t
*dof
, dtrace_vstate_t
*vstate
, cred_t
*cr
,
12286 dtrace_enabling_t
**enabp
, uint64_t ubase
, int noprobes
)
12288 #pragma unused(ubase) /* __APPLE__ */
12289 uint64_t len
= dof
->dofh_loadsz
, seclen
;
12290 uintptr_t daddr
= (uintptr_t)dof
;
12291 dtrace_ecbdesc_t
*ep
;
12292 dtrace_enabling_t
*enab
;
12295 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12296 ASSERT(dof
->dofh_loadsz
>= sizeof (dof_hdr_t
));
12299 * Check the DOF header identification bytes. In addition to checking
12300 * valid settings, we also verify that unused bits/bytes are zeroed so
12301 * we can use them later without fear of regressing existing binaries.
12303 if (bcmp(&dof
->dofh_ident
[DOF_ID_MAG0
],
12304 DOF_MAG_STRING
, DOF_MAG_STRLEN
) != 0) {
12305 dtrace_dof_error(dof
, "DOF magic string mismatch");
12309 if (dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_ILP32
&&
12310 dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_LP64
) {
12311 dtrace_dof_error(dof
, "DOF has invalid data model");
12315 if (dof
->dofh_ident
[DOF_ID_ENCODING
] != DOF_ENCODE_NATIVE
) {
12316 dtrace_dof_error(dof
, "DOF encoding mismatch");
12321 * APPLE NOTE: Darwin only supports DOF_VERSION_3 for now.
12323 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_3
) {
12324 dtrace_dof_error(dof
, "DOF version mismatch");
12328 if (dof
->dofh_ident
[DOF_ID_DIFVERS
] != DIF_VERSION_2
) {
12329 dtrace_dof_error(dof
, "DOF uses unsupported instruction set");
12333 if (dof
->dofh_ident
[DOF_ID_DIFIREG
] > DIF_DIR_NREGS
) {
12334 dtrace_dof_error(dof
, "DOF uses too many integer registers");
12338 if (dof
->dofh_ident
[DOF_ID_DIFTREG
] > DIF_DTR_NREGS
) {
12339 dtrace_dof_error(dof
, "DOF uses too many tuple registers");
12343 for (i
= DOF_ID_PAD
; i
< DOF_ID_SIZE
; i
++) {
12344 if (dof
->dofh_ident
[i
] != 0) {
12345 dtrace_dof_error(dof
, "DOF has invalid ident byte set");
12350 if (dof
->dofh_flags
& ~DOF_FL_VALID
) {
12351 dtrace_dof_error(dof
, "DOF has invalid flag bits set");
12355 if (dof
->dofh_secsize
== 0) {
12356 dtrace_dof_error(dof
, "zero section header size");
12361 * Check that the section headers don't exceed the amount of DOF
12362 * data. Note that we cast the section size and number of sections
12363 * to uint64_t's to prevent possible overflow in the multiplication.
12365 seclen
= (uint64_t)dof
->dofh_secnum
* (uint64_t)dof
->dofh_secsize
;
12367 if (dof
->dofh_secoff
> len
|| seclen
> len
||
12368 dof
->dofh_secoff
+ seclen
> len
) {
12369 dtrace_dof_error(dof
, "truncated section headers");
12373 if (!IS_P2ALIGNED(dof
->dofh_secoff
, sizeof (uint64_t))) {
12374 dtrace_dof_error(dof
, "misaligned section headers");
12378 if (!IS_P2ALIGNED(dof
->dofh_secsize
, sizeof (uint64_t))) {
12379 dtrace_dof_error(dof
, "misaligned section size");
12384 * Take an initial pass through the section headers to be sure that
12385 * the headers don't have stray offsets. If the 'noprobes' flag is
12386 * set, do not permit sections relating to providers, probes, or args.
12388 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12389 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
12390 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12393 switch (sec
->dofs_type
) {
12394 case DOF_SECT_PROVIDER
:
12395 case DOF_SECT_PROBES
:
12396 case DOF_SECT_PRARGS
:
12397 case DOF_SECT_PROFFS
:
12398 dtrace_dof_error(dof
, "illegal sections "
12404 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
))
12405 continue; /* just ignore non-loadable sections */
12407 if (sec
->dofs_align
& (sec
->dofs_align
- 1)) {
12408 dtrace_dof_error(dof
, "bad section alignment");
12412 if (sec
->dofs_offset
& (sec
->dofs_align
- 1)) {
12413 dtrace_dof_error(dof
, "misaligned section");
12417 if (sec
->dofs_offset
> len
|| sec
->dofs_size
> len
||
12418 sec
->dofs_offset
+ sec
->dofs_size
> len
) {
12419 dtrace_dof_error(dof
, "corrupt section header");
12423 if (sec
->dofs_type
== DOF_SECT_STRTAB
&& *((char *)daddr
+
12424 sec
->dofs_offset
+ sec
->dofs_size
- 1) != '\0') {
12425 dtrace_dof_error(dof
, "non-terminating string table");
12431 * APPLE NOTE: We have no further relocation to perform.
12432 * All dof values are relative offsets.
12435 if ((enab
= *enabp
) == NULL
)
12436 enab
= *enabp
= dtrace_enabling_create(vstate
);
12438 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12439 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
12440 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12442 if (sec
->dofs_type
!= DOF_SECT_ECBDESC
)
12446 * APPLE NOTE: Defend against gcc 4.0 botch on x86.
12447 * not all paths out of inlined dtrace_dof_ecbdesc
12448 * are checked for the NULL return value.
12449 * Check for NULL explicitly here.
12451 ep
= dtrace_dof_ecbdesc(dof
, sec
, vstate
, cr
);
12453 dtrace_enabling_destroy(enab
);
12458 dtrace_enabling_add(enab
, ep
);
12465 * Process DOF for any options. This routine assumes that the DOF has been
12466 * at least processed by dtrace_dof_slurp().
12469 dtrace_dof_options(dof_hdr_t
*dof
, dtrace_state_t
*state
)
12475 dof_optdesc_t
*desc
;
12477 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12478 dof_sec_t
*sec
= (dof_sec_t
*)((uintptr_t)dof
+
12479 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12481 if (sec
->dofs_type
!= DOF_SECT_OPTDESC
)
12484 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12485 dtrace_dof_error(dof
, "bad alignment in "
12486 "option description");
12490 if ((entsize
= sec
->dofs_entsize
) == 0) {
12491 dtrace_dof_error(dof
, "zeroed option entry size");
12495 if (entsize
< sizeof (dof_optdesc_t
)) {
12496 dtrace_dof_error(dof
, "bad option entry size");
12500 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= entsize
) {
12501 desc
= (dof_optdesc_t
*)((uintptr_t)dof
+
12502 (uintptr_t)sec
->dofs_offset
+ offs
);
12504 if (desc
->dofo_strtab
!= DOF_SECIDX_NONE
) {
12505 dtrace_dof_error(dof
, "non-zero option string");
12509 if (desc
->dofo_value
== (uint64_t)DTRACEOPT_UNSET
) {
12510 dtrace_dof_error(dof
, "unset option");
12514 if ((rval
= dtrace_state_option(state
,
12515 desc
->dofo_option
, desc
->dofo_value
)) != 0) {
12516 dtrace_dof_error(dof
, "rejected option");
12526 * DTrace Consumer State Functions
12529 dtrace_dstate_init(dtrace_dstate_t
*dstate
, size_t size
)
12531 size_t hashsize
, maxper
, min_size
, chunksize
= dstate
->dtds_chunksize
;
12534 dtrace_dynvar_t
*dvar
, *next
, *start
;
12537 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12538 ASSERT(dstate
->dtds_base
== NULL
&& dstate
->dtds_percpu
== NULL
);
12540 bzero(dstate
, sizeof (dtrace_dstate_t
));
12542 if ((dstate
->dtds_chunksize
= chunksize
) == 0)
12543 dstate
->dtds_chunksize
= DTRACE_DYNVAR_CHUNKSIZE
;
12545 if (size
< (min_size
= dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
)))
12548 if ((base
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
12551 dstate
->dtds_size
= size
;
12552 dstate
->dtds_base
= base
;
12553 dstate
->dtds_percpu
= kmem_cache_alloc(dtrace_state_cache
, KM_SLEEP
);
12554 bzero(dstate
->dtds_percpu
, (int)NCPU
* sizeof (dtrace_dstate_percpu_t
));
12556 hashsize
= size
/ (dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
));
12558 if (hashsize
!= 1 && (hashsize
& 1))
12561 dstate
->dtds_hashsize
= hashsize
;
12562 dstate
->dtds_hash
= dstate
->dtds_base
;
12565 * Set all of our hash buckets to point to the single sink, and (if
12566 * it hasn't already been set), set the sink's hash value to be the
12567 * sink sentinel value. The sink is needed for dynamic variable
12568 * lookups to know that they have iterated over an entire, valid hash
12571 for (i
= 0; i
< hashsize
; i
++)
12572 dstate
->dtds_hash
[i
].dtdh_chain
= &dtrace_dynhash_sink
;
12574 if (dtrace_dynhash_sink
.dtdv_hashval
!= DTRACE_DYNHASH_SINK
)
12575 dtrace_dynhash_sink
.dtdv_hashval
= DTRACE_DYNHASH_SINK
;
12578 * Determine number of active CPUs. Divide free list evenly among
12581 start
= (dtrace_dynvar_t
*)
12582 ((uintptr_t)base
+ hashsize
* sizeof (dtrace_dynhash_t
));
12583 limit
= (uintptr_t)base
+ size
;
12585 maxper
= (limit
- (uintptr_t)start
) / (int)NCPU
;
12586 maxper
= (maxper
/ dstate
->dtds_chunksize
) * dstate
->dtds_chunksize
;
12588 for (i
= 0; i
< NCPU
; i
++) {
12589 dstate
->dtds_percpu
[i
].dtdsc_free
= dvar
= start
;
12592 * If we don't even have enough chunks to make it once through
12593 * NCPUs, we're just going to allocate everything to the first
12594 * CPU. And if we're on the last CPU, we're going to allocate
12595 * whatever is left over. In either case, we set the limit to
12596 * be the limit of the dynamic variable space.
12598 if (maxper
== 0 || i
== NCPU
- 1) {
12599 limit
= (uintptr_t)base
+ size
;
12602 limit
= (uintptr_t)start
+ maxper
;
12603 start
= (dtrace_dynvar_t
*)limit
;
12606 ASSERT(limit
<= (uintptr_t)base
+ size
);
12609 next
= (dtrace_dynvar_t
*)((uintptr_t)dvar
+
12610 dstate
->dtds_chunksize
);
12612 if ((uintptr_t)next
+ dstate
->dtds_chunksize
>= limit
)
12615 dvar
->dtdv_next
= next
;
12627 dtrace_dstate_fini(dtrace_dstate_t
*dstate
)
12629 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
12631 if (dstate
->dtds_base
== NULL
)
12634 kmem_free(dstate
->dtds_base
, dstate
->dtds_size
);
12635 kmem_cache_free(dtrace_state_cache
, dstate
->dtds_percpu
);
12639 dtrace_vstate_fini(dtrace_vstate_t
*vstate
)
12642 * Logical XOR, where are you?
12644 ASSERT((vstate
->dtvs_nglobals
== 0) ^ (vstate
->dtvs_globals
!= NULL
));
12646 if (vstate
->dtvs_nglobals
> 0) {
12647 kmem_free(vstate
->dtvs_globals
, vstate
->dtvs_nglobals
*
12648 sizeof (dtrace_statvar_t
*));
12651 if (vstate
->dtvs_ntlocals
> 0) {
12652 kmem_free(vstate
->dtvs_tlocals
, vstate
->dtvs_ntlocals
*
12653 sizeof (dtrace_difv_t
));
12656 ASSERT((vstate
->dtvs_nlocals
== 0) ^ (vstate
->dtvs_locals
!= NULL
));
12658 if (vstate
->dtvs_nlocals
> 0) {
12659 kmem_free(vstate
->dtvs_locals
, vstate
->dtvs_nlocals
*
12660 sizeof (dtrace_statvar_t
*));
12665 dtrace_state_clean(dtrace_state_t
*state
)
12667 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
)
12670 dtrace_dynvar_clean(&state
->dts_vstate
.dtvs_dynvars
);
12671 dtrace_speculation_clean(state
);
12675 dtrace_state_deadman(dtrace_state_t
*state
)
12681 now
= dtrace_gethrtime();
12683 if (state
!= dtrace_anon
.dta_state
&&
12684 now
- state
->dts_laststatus
>= dtrace_deadman_user
)
12688 * We must be sure that dts_alive never appears to be less than the
12689 * value upon entry to dtrace_state_deadman(), and because we lack a
12690 * dtrace_cas64(), we cannot store to it atomically. We thus instead
12691 * store INT64_MAX to it, followed by a memory barrier, followed by
12692 * the new value. This assures that dts_alive never appears to be
12693 * less than its true value, regardless of the order in which the
12694 * stores to the underlying storage are issued.
12696 state
->dts_alive
= INT64_MAX
;
12697 dtrace_membar_producer();
12698 state
->dts_alive
= now
;
12702 dtrace_state_create(dev_t
*devp
, cred_t
*cr
, dtrace_state_t
**new_state
)
12707 dtrace_state_t
*state
;
12708 dtrace_optval_t
*opt
;
12709 int bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
), i
;
12711 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12712 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
12714 /* Cause restart */
12718 * Darwin's DEVFS layer acquired the minor number for this "device" when it called
12719 * dtrace_devfs_clone_func(). At that time, dtrace_devfs_clone_func() proposed a minor number
12720 * (next unused according to vmem_alloc()) and then immediately put the number back in play
12721 * (by calling vmem_free()). Now that minor number is being used for an open, so committing it
12722 * to use. The following vmem_alloc() must deliver that same minor number. FIXME.
12725 minor
= (minor_t
)(uintptr_t)vmem_alloc(dtrace_minor
, 1,
12726 VM_BESTFIT
| VM_SLEEP
);
12728 if (NULL
!= devp
) {
12729 ASSERT(getminor(*devp
) == minor
);
12730 if (getminor(*devp
) != minor
) {
12731 printf("dtrace_open: couldn't re-acquire vended minor number %d. Instead got %d\n",
12732 getminor(*devp
), minor
);
12733 vmem_free(dtrace_minor
, (void *)(uintptr_t)minor
, 1);
12734 return (ERESTART
); /* can't reacquire */
12737 /* NULL==devp iff "Anonymous state" (see dtrace_anon_property),
12738 * so just vend the minor device number here de novo since no "open" has occurred. */
12741 if (ddi_soft_state_zalloc(dtrace_softstate
, minor
) != DDI_SUCCESS
) {
12742 vmem_free(dtrace_minor
, (void *)(uintptr_t)minor
, 1);
12743 return (EAGAIN
); /* temporary resource shortage */
12746 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
12747 state
->dts_epid
= DTRACE_EPIDNONE
+ 1;
12749 (void) snprintf(c
, sizeof (c
), "dtrace_aggid_%d", minor
);
12750 state
->dts_aggid_arena
= vmem_create(c
, (void *)1, UINT32_MAX
, 1,
12751 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
12753 if (devp
!= NULL
) {
12754 major
= getemajor(*devp
);
12756 major
= ddi_driver_major(dtrace_devi
);
12759 state
->dts_dev
= makedevice(major
, minor
);
12762 *devp
= state
->dts_dev
;
12765 * We allocate NCPU buffers. On the one hand, this can be quite
12766 * a bit of memory per instance (nearly 36K on a Starcat). On the
12767 * other hand, it saves an additional memory reference in the probe
12770 state
->dts_buffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
12771 state
->dts_aggbuffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
12772 state
->dts_cleaner
= CYCLIC_NONE
;
12773 state
->dts_deadman
= CYCLIC_NONE
;
12774 state
->dts_vstate
.dtvs_state
= state
;
12776 for (i
= 0; i
< DTRACEOPT_MAX
; i
++)
12777 state
->dts_options
[i
] = DTRACEOPT_UNSET
;
12780 * Set the default options.
12782 opt
= state
->dts_options
;
12783 opt
[DTRACEOPT_BUFPOLICY
] = DTRACEOPT_BUFPOLICY_SWITCH
;
12784 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_AUTO
;
12785 opt
[DTRACEOPT_NSPEC
] = dtrace_nspec_default
;
12786 opt
[DTRACEOPT_SPECSIZE
] = dtrace_specsize_default
;
12787 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)DTRACE_CPUALL
;
12788 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_default
;
12789 opt
[DTRACEOPT_STACKFRAMES
] = dtrace_stackframes_default
;
12790 opt
[DTRACEOPT_USTACKFRAMES
] = dtrace_ustackframes_default
;
12791 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_default
;
12792 opt
[DTRACEOPT_AGGRATE
] = dtrace_aggrate_default
;
12793 opt
[DTRACEOPT_SWITCHRATE
] = dtrace_switchrate_default
;
12794 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_default
;
12795 opt
[DTRACEOPT_JSTACKFRAMES
] = dtrace_jstackframes_default
;
12796 opt
[DTRACEOPT_JSTACKSTRSIZE
] = dtrace_jstackstrsize_default
;
12798 state
->dts_activity
= DTRACE_ACTIVITY_INACTIVE
;
12801 * Depending on the user credentials, we set flag bits which alter probe
12802 * visibility or the amount of destructiveness allowed. In the case of
12803 * actual anonymous tracing, or the possession of all privileges, all of
12804 * the normal checks are bypassed.
12806 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
12807 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALL
;
12808 state
->dts_cred
.dcr_action
= DTRACE_CRA_ALL
;
12811 * Set up the credentials for this instantiation. We take a
12812 * hold on the credential to prevent it from disappearing on
12813 * us; this in turn prevents the zone_t referenced by this
12814 * credential from disappearing. This means that we can
12815 * examine the credential and the zone from probe context.
12818 state
->dts_cred
.dcr_cred
= cr
;
12821 * CRA_PROC means "we have *some* privilege for dtrace" and
12822 * unlocks the use of variables like pid, zonename, etc.
12824 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
) ||
12825 PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
12826 state
->dts_cred
.dcr_action
|= DTRACE_CRA_PROC
;
12830 * dtrace_user allows use of syscall and profile providers.
12831 * If the user also has proc_owner and/or proc_zone, we
12832 * extend the scope to include additional visibility and
12833 * destructive power.
12835 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
)) {
12836 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
)) {
12837 state
->dts_cred
.dcr_visible
|=
12838 DTRACE_CRV_ALLPROC
;
12840 state
->dts_cred
.dcr_action
|=
12841 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
12844 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
)) {
12845 state
->dts_cred
.dcr_visible
|=
12846 DTRACE_CRV_ALLZONE
;
12848 state
->dts_cred
.dcr_action
|=
12849 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
12853 * If we have all privs in whatever zone this is,
12854 * we can do destructive things to processes which
12855 * have altered credentials.
12857 * APPLE NOTE: Darwin doesn't do zones.
12858 * Behave as if zone always has destructive privs.
12861 state
->dts_cred
.dcr_action
|=
12862 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
12866 * Holding the dtrace_kernel privilege also implies that
12867 * the user has the dtrace_user privilege from a visibility
12868 * perspective. But without further privileges, some
12869 * destructive actions are not available.
12871 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
)) {
12873 * Make all probes in all zones visible. However,
12874 * this doesn't mean that all actions become available
12877 state
->dts_cred
.dcr_visible
|= DTRACE_CRV_KERNEL
|
12878 DTRACE_CRV_ALLPROC
| DTRACE_CRV_ALLZONE
;
12880 state
->dts_cred
.dcr_action
|= DTRACE_CRA_KERNEL
|
12883 * Holding proc_owner means that destructive actions
12884 * for *this* zone are allowed.
12886 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
12887 state
->dts_cred
.dcr_action
|=
12888 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
12891 * Holding proc_zone means that destructive actions
12892 * for this user/group ID in all zones is allowed.
12894 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
12895 state
->dts_cred
.dcr_action
|=
12896 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
12899 * If we have all privs in whatever zone this is,
12900 * we can do destructive things to processes which
12901 * have altered credentials.
12903 * APPLE NOTE: Darwin doesn't do zones.
12904 * Behave as if zone always has destructive privs.
12906 state
->dts_cred
.dcr_action
|=
12907 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
12911 * Holding the dtrace_proc privilege gives control over fasttrap
12912 * and pid providers. We need to grant wider destructive
12913 * privileges in the event that the user has proc_owner and/or
12916 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
12917 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
12918 state
->dts_cred
.dcr_action
|=
12919 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
12921 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
12922 state
->dts_cred
.dcr_action
|=
12923 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
12927 *new_state
= state
;
12928 return(0); /* Success */
12932 dtrace_state_buffer(dtrace_state_t
*state
, dtrace_buffer_t
*buf
, int which
)
12934 dtrace_optval_t
*opt
= state
->dts_options
, size
;
12935 processorid_t cpu
= 0;
12936 int flags
= 0, rval
;
12938 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12939 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
12940 ASSERT(which
< DTRACEOPT_MAX
);
12941 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
||
12942 (state
== dtrace_anon
.dta_state
&&
12943 state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
));
12945 if (opt
[which
] == DTRACEOPT_UNSET
|| opt
[which
] == 0)
12948 if (opt
[DTRACEOPT_CPU
] != DTRACEOPT_UNSET
)
12949 cpu
= opt
[DTRACEOPT_CPU
];
12951 if (which
== DTRACEOPT_SPECSIZE
)
12952 flags
|= DTRACEBUF_NOSWITCH
;
12954 if (which
== DTRACEOPT_BUFSIZE
) {
12955 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_RING
)
12956 flags
|= DTRACEBUF_RING
;
12958 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_FILL
)
12959 flags
|= DTRACEBUF_FILL
;
12961 if (state
!= dtrace_anon
.dta_state
||
12962 state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
12963 flags
|= DTRACEBUF_INACTIVE
;
12966 for (size
= opt
[which
]; (size_t)size
>= sizeof (uint64_t); size
>>= 1) {
12968 * The size must be 8-byte aligned. If the size is not 8-byte
12969 * aligned, drop it down by the difference.
12971 if (size
& (sizeof (uint64_t) - 1))
12972 size
-= size
& (sizeof (uint64_t) - 1);
12974 if (size
< state
->dts_reserve
) {
12976 * Buffers always must be large enough to accommodate
12977 * their prereserved space. We return E2BIG instead
12978 * of ENOMEM in this case to allow for user-level
12979 * software to differentiate the cases.
12984 rval
= dtrace_buffer_alloc(buf
, size
, flags
, cpu
);
12986 if (rval
!= ENOMEM
) {
12991 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
12999 dtrace_state_buffers(dtrace_state_t
*state
)
13001 dtrace_speculation_t
*spec
= state
->dts_speculations
;
13004 if ((rval
= dtrace_state_buffer(state
, state
->dts_buffer
,
13005 DTRACEOPT_BUFSIZE
)) != 0)
13008 if ((rval
= dtrace_state_buffer(state
, state
->dts_aggbuffer
,
13009 DTRACEOPT_AGGSIZE
)) != 0)
13012 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
13013 if ((rval
= dtrace_state_buffer(state
,
13014 spec
[i
].dtsp_buffer
, DTRACEOPT_SPECSIZE
)) != 0)
13022 dtrace_state_prereserve(dtrace_state_t
*state
)
13025 dtrace_probe_t
*probe
;
13027 state
->dts_reserve
= 0;
13029 if (state
->dts_options
[DTRACEOPT_BUFPOLICY
] != DTRACEOPT_BUFPOLICY_FILL
)
13033 * If our buffer policy is a "fill" buffer policy, we need to set the
13034 * prereserved space to be the space required by the END probes.
13036 probe
= dtrace_probes
[dtrace_probeid_end
- 1];
13037 ASSERT(probe
!= NULL
);
13039 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
13040 if (ecb
->dte_state
!= state
)
13043 state
->dts_reserve
+= ecb
->dte_needed
+ ecb
->dte_alignment
;
13048 dtrace_state_go(dtrace_state_t
*state
, processorid_t
*cpu
)
13050 dtrace_optval_t
*opt
= state
->dts_options
, sz
, nspec
;
13051 dtrace_speculation_t
*spec
;
13052 dtrace_buffer_t
*buf
;
13053 cyc_handler_t hdlr
;
13055 int rval
= 0, i
, bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
);
13056 dtrace_icookie_t cookie
;
13058 lck_mtx_lock(&cpu_lock
);
13059 lck_mtx_lock(&dtrace_lock
);
13061 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
13067 * Before we can perform any checks, we must prime all of the
13068 * retained enablings that correspond to this state.
13070 dtrace_enabling_prime(state
);
13072 if (state
->dts_destructive
&& !state
->dts_cred
.dcr_destructive
) {
13077 dtrace_state_prereserve(state
);
13080 * Now we want to do is try to allocate our speculations.
13081 * We do not automatically resize the number of speculations; if
13082 * this fails, we will fail the operation.
13084 nspec
= opt
[DTRACEOPT_NSPEC
];
13085 ASSERT(nspec
!= DTRACEOPT_UNSET
);
13087 if (nspec
> INT_MAX
) {
13092 spec
= kmem_zalloc(nspec
* sizeof (dtrace_speculation_t
), KM_NOSLEEP
);
13094 if (spec
== NULL
) {
13099 state
->dts_speculations
= spec
;
13100 state
->dts_nspeculations
= (int)nspec
;
13102 for (i
= 0; i
< nspec
; i
++) {
13103 if ((buf
= kmem_zalloc(bufsize
, KM_NOSLEEP
)) == NULL
) {
13108 spec
[i
].dtsp_buffer
= buf
;
13111 if (opt
[DTRACEOPT_GRABANON
] != DTRACEOPT_UNSET
) {
13112 if (dtrace_anon
.dta_state
== NULL
) {
13117 if (state
->dts_necbs
!= 0) {
13122 state
->dts_anon
= dtrace_anon_grab();
13123 ASSERT(state
->dts_anon
!= NULL
);
13124 state
= state
->dts_anon
;
13127 * We want "grabanon" to be set in the grabbed state, so we'll
13128 * copy that option value from the grabbing state into the
13131 state
->dts_options
[DTRACEOPT_GRABANON
] =
13132 opt
[DTRACEOPT_GRABANON
];
13134 *cpu
= dtrace_anon
.dta_beganon
;
13137 * If the anonymous state is active (as it almost certainly
13138 * is if the anonymous enabling ultimately matched anything),
13139 * we don't allow any further option processing -- but we
13140 * don't return failure.
13142 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
13146 if (opt
[DTRACEOPT_AGGSIZE
] != DTRACEOPT_UNSET
&&
13147 opt
[DTRACEOPT_AGGSIZE
] != 0) {
13148 if (state
->dts_aggregations
== NULL
) {
13150 * We're not going to create an aggregation buffer
13151 * because we don't have any ECBs that contain
13152 * aggregations -- set this option to 0.
13154 opt
[DTRACEOPT_AGGSIZE
] = 0;
13157 * If we have an aggregation buffer, we must also have
13158 * a buffer to use as scratch.
13160 if (opt
[DTRACEOPT_BUFSIZE
] == DTRACEOPT_UNSET
||
13161 (size_t)opt
[DTRACEOPT_BUFSIZE
] < state
->dts_needed
) {
13162 opt
[DTRACEOPT_BUFSIZE
] = state
->dts_needed
;
13167 if (opt
[DTRACEOPT_SPECSIZE
] != DTRACEOPT_UNSET
&&
13168 opt
[DTRACEOPT_SPECSIZE
] != 0) {
13169 if (!state
->dts_speculates
) {
13171 * We're not going to create speculation buffers
13172 * because we don't have any ECBs that actually
13173 * speculate -- set the speculation size to 0.
13175 opt
[DTRACEOPT_SPECSIZE
] = 0;
13180 * The bare minimum size for any buffer that we're actually going to
13181 * do anything to is sizeof (uint64_t).
13183 sz
= sizeof (uint64_t);
13185 if ((state
->dts_needed
!= 0 && opt
[DTRACEOPT_BUFSIZE
] < sz
) ||
13186 (state
->dts_speculates
&& opt
[DTRACEOPT_SPECSIZE
] < sz
) ||
13187 (state
->dts_aggregations
!= NULL
&& opt
[DTRACEOPT_AGGSIZE
] < sz
)) {
13189 * A buffer size has been explicitly set to 0 (or to a size
13190 * that will be adjusted to 0) and we need the space -- we
13191 * need to return failure. We return ENOSPC to differentiate
13192 * it from failing to allocate a buffer due to failure to meet
13193 * the reserve (for which we return E2BIG).
13199 if ((rval
= dtrace_state_buffers(state
)) != 0)
13202 if ((sz
= opt
[DTRACEOPT_DYNVARSIZE
]) == DTRACEOPT_UNSET
)
13203 sz
= dtrace_dstate_defsize
;
13206 rval
= dtrace_dstate_init(&state
->dts_vstate
.dtvs_dynvars
, sz
);
13211 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
13213 } while (sz
>>= 1);
13215 opt
[DTRACEOPT_DYNVARSIZE
] = sz
;
13220 if (opt
[DTRACEOPT_STATUSRATE
] > dtrace_statusrate_max
)
13221 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_max
;
13223 if (opt
[DTRACEOPT_CLEANRATE
] == 0)
13224 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
13226 if (opt
[DTRACEOPT_CLEANRATE
] < dtrace_cleanrate_min
)
13227 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_min
;
13229 if (opt
[DTRACEOPT_CLEANRATE
] > dtrace_cleanrate_max
)
13230 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
13232 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_clean
;
13233 hdlr
.cyh_arg
= state
;
13234 hdlr
.cyh_level
= CY_LOW_LEVEL
;
13237 when
.cyt_interval
= opt
[DTRACEOPT_CLEANRATE
];
13239 state
->dts_cleaner
= cyclic_add(&hdlr
, &when
);
13241 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_deadman
;
13242 hdlr
.cyh_arg
= state
;
13243 hdlr
.cyh_level
= CY_LOW_LEVEL
;
13246 when
.cyt_interval
= dtrace_deadman_interval
;
13248 state
->dts_alive
= state
->dts_laststatus
= dtrace_gethrtime();
13249 state
->dts_deadman
= cyclic_add(&hdlr
, &when
);
13251 state
->dts_activity
= DTRACE_ACTIVITY_WARMUP
;
13254 * Now it's time to actually fire the BEGIN probe. We need to disable
13255 * interrupts here both to record the CPU on which we fired the BEGIN
13256 * probe (the data from this CPU will be processed first at user
13257 * level) and to manually activate the buffer for this CPU.
13259 cookie
= dtrace_interrupt_disable();
13260 *cpu
= CPU
->cpu_id
;
13261 ASSERT(state
->dts_buffer
[*cpu
].dtb_flags
& DTRACEBUF_INACTIVE
);
13262 state
->dts_buffer
[*cpu
].dtb_flags
&= ~DTRACEBUF_INACTIVE
;
13264 dtrace_probe(dtrace_probeid_begin
,
13265 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
13266 dtrace_interrupt_enable(cookie
);
13268 * We may have had an exit action from a BEGIN probe; only change our
13269 * state to ACTIVE if we're still in WARMUP.
13271 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
||
13272 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
);
13274 if (state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
)
13275 state
->dts_activity
= DTRACE_ACTIVITY_ACTIVE
;
13278 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13279 * want each CPU to transition its principal buffer out of the
13280 * INACTIVE state. Doing this assures that no CPU will suddenly begin
13281 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13282 * atomically transition from processing none of a state's ECBs to
13283 * processing all of them.
13285 dtrace_xcall(DTRACE_CPUALL
,
13286 (dtrace_xcall_t
)dtrace_buffer_activate
, state
);
13290 dtrace_buffer_free(state
->dts_buffer
);
13291 dtrace_buffer_free(state
->dts_aggbuffer
);
13293 if ((nspec
= state
->dts_nspeculations
) == 0) {
13294 ASSERT(state
->dts_speculations
== NULL
);
13298 spec
= state
->dts_speculations
;
13299 ASSERT(spec
!= NULL
);
13301 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
13302 if ((buf
= spec
[i
].dtsp_buffer
) == NULL
)
13305 dtrace_buffer_free(buf
);
13306 kmem_free(buf
, bufsize
);
13309 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
13310 state
->dts_nspeculations
= 0;
13311 state
->dts_speculations
= NULL
;
13314 lck_mtx_unlock(&dtrace_lock
);
13315 lck_mtx_unlock(&cpu_lock
);
13321 dtrace_state_stop(dtrace_state_t
*state
, processorid_t
*cpu
)
13323 dtrace_icookie_t cookie
;
13325 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13327 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
&&
13328 state
->dts_activity
!= DTRACE_ACTIVITY_DRAINING
)
13332 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13333 * to be sure that every CPU has seen it. See below for the details
13334 * on why this is done.
13336 state
->dts_activity
= DTRACE_ACTIVITY_DRAINING
;
13340 * By this point, it is impossible for any CPU to be still processing
13341 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
13342 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13343 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13344 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13345 * iff we're in the END probe.
13347 state
->dts_activity
= DTRACE_ACTIVITY_COOLDOWN
;
13349 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_COOLDOWN
);
13352 * Finally, we can release the reserve and call the END probe. We
13353 * disable interrupts across calling the END probe to allow us to
13354 * return the CPU on which we actually called the END probe. This
13355 * allows user-land to be sure that this CPU's principal buffer is
13358 state
->dts_reserve
= 0;
13360 cookie
= dtrace_interrupt_disable();
13361 *cpu
= CPU
->cpu_id
;
13362 dtrace_probe(dtrace_probeid_end
,
13363 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
13364 dtrace_interrupt_enable(cookie
);
13366 state
->dts_activity
= DTRACE_ACTIVITY_STOPPED
;
13373 dtrace_state_option(dtrace_state_t
*state
, dtrace_optid_t option
,
13374 dtrace_optval_t val
)
13376 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13378 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
13381 if (option
>= DTRACEOPT_MAX
)
13384 if (option
!= DTRACEOPT_CPU
&& val
< 0)
13388 case DTRACEOPT_DESTRUCTIVE
:
13390 * Prevent consumers from enabling destructive actions if DTrace
13391 * is running in a restricted environment, or if actions are
13394 if (dtrace_is_restricted() || dtrace_destructive_disallow
)
13397 state
->dts_cred
.dcr_destructive
= 1;
13400 case DTRACEOPT_BUFSIZE
:
13401 case DTRACEOPT_DYNVARSIZE
:
13402 case DTRACEOPT_AGGSIZE
:
13403 case DTRACEOPT_SPECSIZE
:
13404 case DTRACEOPT_STRSIZE
:
13408 if (val
>= LONG_MAX
) {
13410 * If this is an otherwise negative value, set it to
13411 * the highest multiple of 128m less than LONG_MAX.
13412 * Technically, we're adjusting the size without
13413 * regard to the buffer resizing policy, but in fact,
13414 * this has no effect -- if we set the buffer size to
13415 * ~LONG_MAX and the buffer policy is ultimately set to
13416 * be "manual", the buffer allocation is guaranteed to
13417 * fail, if only because the allocation requires two
13418 * buffers. (We set the the size to the highest
13419 * multiple of 128m because it ensures that the size
13420 * will remain a multiple of a megabyte when
13421 * repeatedly halved -- all the way down to 15m.)
13423 val
= LONG_MAX
- (1 << 27) + 1;
13427 state
->dts_options
[option
] = val
;
13433 dtrace_state_destroy(dtrace_state_t
*state
)
13436 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
13437 minor_t minor
= getminor(state
->dts_dev
);
13438 int i
, bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
);
13439 dtrace_speculation_t
*spec
= state
->dts_speculations
;
13440 int nspec
= state
->dts_nspeculations
;
13443 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13444 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13447 * First, retract any retained enablings for this state.
13449 dtrace_enabling_retract(state
);
13450 ASSERT(state
->dts_nretained
== 0);
13452 if (state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
||
13453 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
) {
13455 * We have managed to come into dtrace_state_destroy() on a
13456 * hot enabling -- almost certainly because of a disorderly
13457 * shutdown of a consumer. (That is, a consumer that is
13458 * exiting without having called dtrace_stop().) In this case,
13459 * we're going to set our activity to be KILLED, and then
13460 * issue a sync to be sure that everyone is out of probe
13461 * context before we start blowing away ECBs.
13463 state
->dts_activity
= DTRACE_ACTIVITY_KILLED
;
13468 * Release the credential hold we took in dtrace_state_create().
13470 if (state
->dts_cred
.dcr_cred
!= NULL
)
13471 crfree(state
->dts_cred
.dcr_cred
);
13474 * Now we can safely disable and destroy any enabled probes. Because
13475 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13476 * (especially if they're all enabled), we take two passes through the
13477 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13478 * in the second we disable whatever is left over.
13480 for (match
= DTRACE_PRIV_KERNEL
; ; match
= 0) {
13481 for (i
= 0; i
< state
->dts_necbs
; i
++) {
13482 if ((ecb
= state
->dts_ecbs
[i
]) == NULL
)
13485 if (match
&& ecb
->dte_probe
!= NULL
) {
13486 dtrace_probe_t
*probe
= ecb
->dte_probe
;
13487 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
13489 if (!(prov
->dtpv_priv
.dtpp_flags
& match
))
13493 dtrace_ecb_disable(ecb
);
13494 dtrace_ecb_destroy(ecb
);
13502 * Before we free the buffers, perform one more sync to assure that
13503 * every CPU is out of probe context.
13507 dtrace_buffer_free(state
->dts_buffer
);
13508 dtrace_buffer_free(state
->dts_aggbuffer
);
13510 for (i
= 0; i
< nspec
; i
++)
13511 dtrace_buffer_free(spec
[i
].dtsp_buffer
);
13513 if (state
->dts_cleaner
!= CYCLIC_NONE
)
13514 cyclic_remove(state
->dts_cleaner
);
13516 if (state
->dts_deadman
!= CYCLIC_NONE
)
13517 cyclic_remove(state
->dts_deadman
);
13519 dtrace_dstate_fini(&vstate
->dtvs_dynvars
);
13520 dtrace_vstate_fini(vstate
);
13521 kmem_free(state
->dts_ecbs
, state
->dts_necbs
* sizeof (dtrace_ecb_t
*));
13523 if (state
->dts_aggregations
!= NULL
) {
13525 for (i
= 0; i
< state
->dts_naggregations
; i
++)
13526 ASSERT(state
->dts_aggregations
[i
] == NULL
);
13528 ASSERT(state
->dts_naggregations
> 0);
13529 kmem_free(state
->dts_aggregations
,
13530 state
->dts_naggregations
* sizeof (dtrace_aggregation_t
*));
13533 kmem_free(state
->dts_buffer
, bufsize
);
13534 kmem_free(state
->dts_aggbuffer
, bufsize
);
13536 for (i
= 0; i
< nspec
; i
++)
13537 kmem_free(spec
[i
].dtsp_buffer
, bufsize
);
13539 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
13541 dtrace_format_destroy(state
);
13543 vmem_destroy(state
->dts_aggid_arena
);
13544 ddi_soft_state_free(dtrace_softstate
, minor
);
13545 vmem_free(dtrace_minor
, (void *)(uintptr_t)minor
, 1);
13549 * DTrace Anonymous Enabling Functions
13551 static dtrace_state_t
*
13552 dtrace_anon_grab(void)
13554 dtrace_state_t
*state
;
13556 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13558 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
13559 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
13563 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
13564 ASSERT(dtrace_retained
!= NULL
);
13566 dtrace_enabling_destroy(dtrace_anon
.dta_enabling
);
13567 dtrace_anon
.dta_enabling
= NULL
;
13568 dtrace_anon
.dta_state
= NULL
;
13574 dtrace_anon_property(void)
13577 dtrace_state_t
*state
;
13579 char c
[32]; /* enough for "dof-data-" + digits */
13581 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13582 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13584 for (i
= 0; ; i
++) {
13585 (void) snprintf(c
, sizeof (c
), "dof-data-%d", i
);
13587 dtrace_err_verbose
= 1;
13589 if ((dof
= dtrace_dof_property(c
)) == NULL
) {
13590 dtrace_err_verbose
= 0;
13595 * We want to create anonymous state, so we need to transition
13596 * the kernel debugger to indicate that DTrace is active. If
13597 * this fails (e.g. because the debugger has modified text in
13598 * some way), we won't continue with the processing.
13600 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
13601 cmn_err(CE_NOTE
, "kernel debugger active; anonymous "
13602 "enabling ignored.");
13603 dtrace_dof_destroy(dof
);
13608 * If we haven't allocated an anonymous state, we'll do so now.
13610 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
13611 rv
= dtrace_state_create(NULL
, NULL
, &state
);
13612 dtrace_anon
.dta_state
= state
;
13613 if (rv
!= 0 || state
== NULL
) {
13615 * This basically shouldn't happen: the only
13616 * failure mode from dtrace_state_create() is a
13617 * failure of ddi_soft_state_zalloc() that
13618 * itself should never happen. Still, the
13619 * interface allows for a failure mode, and
13620 * we want to fail as gracefully as possible:
13621 * we'll emit an error message and cease
13622 * processing anonymous state in this case.
13624 cmn_err(CE_WARN
, "failed to create "
13625 "anonymous state");
13626 dtrace_dof_destroy(dof
);
13631 rv
= dtrace_dof_slurp(dof
, &state
->dts_vstate
, CRED(),
13632 &dtrace_anon
.dta_enabling
, 0, B_TRUE
);
13635 rv
= dtrace_dof_options(dof
, state
);
13637 dtrace_err_verbose
= 0;
13638 dtrace_dof_destroy(dof
);
13642 * This is malformed DOF; chuck any anonymous state
13645 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
13646 dtrace_state_destroy(state
);
13647 dtrace_anon
.dta_state
= NULL
;
13651 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
13654 if (dtrace_anon
.dta_enabling
!= NULL
) {
13658 * dtrace_enabling_retain() can only fail because we are
13659 * trying to retain more enablings than are allowed -- but
13660 * we only have one anonymous enabling, and we are guaranteed
13661 * to be allowed at least one retained enabling; we assert
13662 * that dtrace_enabling_retain() returns success.
13664 rval
= dtrace_enabling_retain(dtrace_anon
.dta_enabling
);
13667 dtrace_enabling_dump(dtrace_anon
.dta_enabling
);
13672 * DTrace Helper Functions
13675 dtrace_helper_trace(dtrace_helper_action_t
*helper
,
13676 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
, int where
)
13678 uint32_t size
, next
, nnext
;
13680 dtrace_helptrace_t
*ent
;
13681 uint16_t flags
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
13683 if (!dtrace_helptrace_enabled
)
13686 ASSERT((uint32_t)vstate
->dtvs_nlocals
<= dtrace_helptrace_nlocals
);
13689 * What would a tracing framework be without its own tracing
13690 * framework? (Well, a hell of a lot simpler, for starters...)
13692 size
= sizeof (dtrace_helptrace_t
) + dtrace_helptrace_nlocals
*
13693 sizeof (uint64_t) - sizeof (uint64_t);
13696 * Iterate until we can allocate a slot in the trace buffer.
13699 next
= dtrace_helptrace_next
;
13701 if (next
+ size
< dtrace_helptrace_bufsize
) {
13702 nnext
= next
+ size
;
13706 } while (dtrace_cas32(&dtrace_helptrace_next
, next
, nnext
) != next
);
13709 * We have our slot; fill it in.
13714 ent
= (dtrace_helptrace_t
*)&dtrace_helptrace_buffer
[next
];
13715 ent
->dtht_helper
= helper
;
13716 ent
->dtht_where
= where
;
13717 ent
->dtht_nlocals
= vstate
->dtvs_nlocals
;
13719 ent
->dtht_fltoffs
= (mstate
->dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
13720 mstate
->dtms_fltoffs
: -1;
13721 ent
->dtht_fault
= DTRACE_FLAGS2FLT(flags
);
13722 ent
->dtht_illval
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
13724 for (i
= 0; i
< vstate
->dtvs_nlocals
; i
++) {
13725 dtrace_statvar_t
*svar
;
13727 if ((svar
= vstate
->dtvs_locals
[i
]) == NULL
)
13730 ASSERT(svar
->dtsv_size
>= (int)NCPU
* sizeof (uint64_t));
13731 ent
->dtht_locals
[i
] =
13732 ((uint64_t *)(uintptr_t)svar
->dtsv_data
)[CPU
->cpu_id
];
13737 dtrace_helper(int which
, dtrace_mstate_t
*mstate
,
13738 dtrace_state_t
*state
, uint64_t arg0
, uint64_t arg1
)
13740 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
13741 uint64_t sarg0
= mstate
->dtms_arg
[0];
13742 uint64_t sarg1
= mstate
->dtms_arg
[1];
13744 dtrace_helpers_t
*helpers
= curproc
->p_dtrace_helpers
;
13745 dtrace_helper_action_t
*helper
;
13746 dtrace_vstate_t
*vstate
;
13747 dtrace_difo_t
*pred
;
13748 int i
, trace
= dtrace_helptrace_enabled
;
13750 ASSERT(which
>= 0 && which
< DTRACE_NHELPER_ACTIONS
);
13752 if (helpers
== NULL
)
13755 if ((helper
= helpers
->dthps_actions
[which
]) == NULL
)
13758 vstate
= &helpers
->dthps_vstate
;
13759 mstate
->dtms_arg
[0] = arg0
;
13760 mstate
->dtms_arg
[1] = arg1
;
13763 * Now iterate over each helper. If its predicate evaluates to 'true',
13764 * we'll call the corresponding actions. Note that the below calls
13765 * to dtrace_dif_emulate() may set faults in machine state. This is
13766 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
13767 * the stored DIF offset with its own (which is the desired behavior).
13768 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13769 * from machine state; this is okay, too.
13771 for (; helper
!= NULL
; helper
= helper
->dtha_next
) {
13772 if ((pred
= helper
->dtha_predicate
) != NULL
) {
13774 dtrace_helper_trace(helper
, mstate
, vstate
, 0);
13776 if (!dtrace_dif_emulate(pred
, mstate
, vstate
, state
))
13779 if (*flags
& CPU_DTRACE_FAULT
)
13783 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
13785 dtrace_helper_trace(helper
,
13786 mstate
, vstate
, i
+ 1);
13788 rval
= dtrace_dif_emulate(helper
->dtha_actions
[i
],
13789 mstate
, vstate
, state
);
13791 if (*flags
& CPU_DTRACE_FAULT
)
13797 dtrace_helper_trace(helper
, mstate
, vstate
,
13798 DTRACE_HELPTRACE_NEXT
);
13802 dtrace_helper_trace(helper
, mstate
, vstate
,
13803 DTRACE_HELPTRACE_DONE
);
13806 * Restore the arg0 that we saved upon entry.
13808 mstate
->dtms_arg
[0] = sarg0
;
13809 mstate
->dtms_arg
[1] = sarg1
;
13815 dtrace_helper_trace(helper
, mstate
, vstate
,
13816 DTRACE_HELPTRACE_ERR
);
13819 * Restore the arg0 that we saved upon entry.
13821 mstate
->dtms_arg
[0] = sarg0
;
13822 mstate
->dtms_arg
[1] = sarg1
;
13828 dtrace_helper_action_destroy(dtrace_helper_action_t
*helper
,
13829 dtrace_vstate_t
*vstate
)
13833 if (helper
->dtha_predicate
!= NULL
)
13834 dtrace_difo_release(helper
->dtha_predicate
, vstate
);
13836 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
13837 ASSERT(helper
->dtha_actions
[i
] != NULL
);
13838 dtrace_difo_release(helper
->dtha_actions
[i
], vstate
);
13841 kmem_free(helper
->dtha_actions
,
13842 helper
->dtha_nactions
* sizeof (dtrace_difo_t
*));
13843 kmem_free(helper
, sizeof (dtrace_helper_action_t
));
13847 dtrace_helper_destroygen(proc_t
* p
, int gen
)
13849 dtrace_helpers_t
*help
= p
->p_dtrace_helpers
;
13850 dtrace_vstate_t
*vstate
;
13853 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13855 if (help
== NULL
|| gen
> help
->dthps_generation
)
13858 vstate
= &help
->dthps_vstate
;
13860 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
13861 dtrace_helper_action_t
*last
= NULL
, *h
, *next
;
13863 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
13864 next
= h
->dtha_next
;
13866 if (h
->dtha_generation
== gen
) {
13867 if (last
!= NULL
) {
13868 last
->dtha_next
= next
;
13870 help
->dthps_actions
[i
] = next
;
13873 dtrace_helper_action_destroy(h
, vstate
);
13881 * Interate until we've cleared out all helper providers with the
13882 * given generation number.
13885 dtrace_helper_provider_t
*prov
= NULL
;
13888 * Look for a helper provider with the right generation. We
13889 * have to start back at the beginning of the list each time
13890 * because we drop dtrace_lock. It's unlikely that we'll make
13891 * more than two passes.
13893 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
13894 prov
= help
->dthps_provs
[i
];
13896 if (prov
->dthp_generation
== gen
)
13901 * If there were no matches, we're done.
13903 if (i
== help
->dthps_nprovs
)
13907 * Move the last helper provider into this slot.
13909 help
->dthps_nprovs
--;
13910 help
->dthps_provs
[i
] = help
->dthps_provs
[help
->dthps_nprovs
];
13911 help
->dthps_provs
[help
->dthps_nprovs
] = NULL
;
13913 lck_mtx_unlock(&dtrace_lock
);
13916 * If we have a meta provider, remove this helper provider.
13918 lck_mtx_lock(&dtrace_meta_lock
);
13919 if (dtrace_meta_pid
!= NULL
) {
13920 ASSERT(dtrace_deferred_pid
== NULL
);
13921 dtrace_helper_provider_remove(&prov
->dthp_prov
,
13924 lck_mtx_unlock(&dtrace_meta_lock
);
13926 dtrace_helper_provider_destroy(prov
);
13928 lck_mtx_lock(&dtrace_lock
);
13935 dtrace_helper_validate(dtrace_helper_action_t
*helper
)
13940 if ((dp
= helper
->dtha_predicate
) != NULL
)
13941 err
+= dtrace_difo_validate_helper(dp
);
13943 for (i
= 0; i
< helper
->dtha_nactions
; i
++)
13944 err
+= dtrace_difo_validate_helper(helper
->dtha_actions
[i
]);
13950 dtrace_helper_action_add(proc_t
* p
, int which
, dtrace_ecbdesc_t
*ep
)
13952 dtrace_helpers_t
*help
;
13953 dtrace_helper_action_t
*helper
, *last
;
13954 dtrace_actdesc_t
*act
;
13955 dtrace_vstate_t
*vstate
;
13956 dtrace_predicate_t
*pred
;
13957 int count
= 0, nactions
= 0, i
;
13959 if (which
< 0 || which
>= DTRACE_NHELPER_ACTIONS
)
13962 help
= p
->p_dtrace_helpers
;
13963 last
= help
->dthps_actions
[which
];
13964 vstate
= &help
->dthps_vstate
;
13966 for (count
= 0; last
!= NULL
; last
= last
->dtha_next
) {
13968 if (last
->dtha_next
== NULL
)
13973 * If we already have dtrace_helper_actions_max helper actions for this
13974 * helper action type, we'll refuse to add a new one.
13976 if (count
>= dtrace_helper_actions_max
)
13979 helper
= kmem_zalloc(sizeof (dtrace_helper_action_t
), KM_SLEEP
);
13980 helper
->dtha_generation
= help
->dthps_generation
;
13982 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
) {
13983 ASSERT(pred
->dtp_difo
!= NULL
);
13984 dtrace_difo_hold(pred
->dtp_difo
);
13985 helper
->dtha_predicate
= pred
->dtp_difo
;
13988 for (act
= ep
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
13989 if (act
->dtad_kind
!= DTRACEACT_DIFEXPR
)
13992 if (act
->dtad_difo
== NULL
)
13998 helper
->dtha_actions
= kmem_zalloc(sizeof (dtrace_difo_t
*) *
13999 (helper
->dtha_nactions
= nactions
), KM_SLEEP
);
14001 for (act
= ep
->dted_action
, i
= 0; act
!= NULL
; act
= act
->dtad_next
) {
14002 dtrace_difo_hold(act
->dtad_difo
);
14003 helper
->dtha_actions
[i
++] = act
->dtad_difo
;
14006 if (!dtrace_helper_validate(helper
))
14009 if (last
== NULL
) {
14010 help
->dthps_actions
[which
] = helper
;
14012 last
->dtha_next
= helper
;
14015 if ((uint32_t)vstate
->dtvs_nlocals
> dtrace_helptrace_nlocals
) {
14016 dtrace_helptrace_nlocals
= vstate
->dtvs_nlocals
;
14017 dtrace_helptrace_next
= 0;
14022 dtrace_helper_action_destroy(helper
, vstate
);
14027 dtrace_helper_provider_register(proc_t
*p
, dtrace_helpers_t
*help
,
14028 dof_helper_t
*dofhp
)
14030 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
14032 lck_mtx_lock(&dtrace_meta_lock
);
14033 lck_mtx_lock(&dtrace_lock
);
14035 if (!dtrace_attached() || dtrace_meta_pid
== NULL
) {
14037 * If the dtrace module is loaded but not attached, or if
14038 * there aren't isn't a meta provider registered to deal with
14039 * these provider descriptions, we need to postpone creating
14040 * the actual providers until later.
14043 if (help
->dthps_next
== NULL
&& help
->dthps_prev
== NULL
&&
14044 dtrace_deferred_pid
!= help
) {
14045 help
->dthps_deferred
= 1;
14046 help
->dthps_pid
= p
->p_pid
;
14047 help
->dthps_next
= dtrace_deferred_pid
;
14048 help
->dthps_prev
= NULL
;
14049 if (dtrace_deferred_pid
!= NULL
)
14050 dtrace_deferred_pid
->dthps_prev
= help
;
14051 dtrace_deferred_pid
= help
;
14054 lck_mtx_unlock(&dtrace_lock
);
14056 } else if (dofhp
!= NULL
) {
14058 * If the dtrace module is loaded and we have a particular
14059 * helper provider description, pass that off to the
14063 lck_mtx_unlock(&dtrace_lock
);
14065 dtrace_helper_provide(dofhp
, p
->p_pid
);
14069 * Otherwise, just pass all the helper provider descriptions
14070 * off to the meta provider.
14074 lck_mtx_unlock(&dtrace_lock
);
14076 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14077 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
14082 lck_mtx_unlock(&dtrace_meta_lock
);
14086 dtrace_helper_provider_add(proc_t
* p
, dof_helper_t
*dofhp
, int gen
)
14088 dtrace_helpers_t
*help
;
14089 dtrace_helper_provider_t
*hprov
, **tmp_provs
;
14090 uint_t tmp_maxprovs
, i
;
14092 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14093 help
= p
->p_dtrace_helpers
;
14094 ASSERT(help
!= NULL
);
14097 * If we already have dtrace_helper_providers_max helper providers,
14098 * we're refuse to add a new one.
14100 if (help
->dthps_nprovs
>= dtrace_helper_providers_max
)
14104 * Check to make sure this isn't a duplicate.
14106 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14107 if (dofhp
->dofhp_addr
==
14108 help
->dthps_provs
[i
]->dthp_prov
.dofhp_addr
)
14112 hprov
= kmem_zalloc(sizeof (dtrace_helper_provider_t
), KM_SLEEP
);
14113 hprov
->dthp_prov
= *dofhp
;
14114 hprov
->dthp_ref
= 1;
14115 hprov
->dthp_generation
= gen
;
14118 * Allocate a bigger table for helper providers if it's already full.
14120 if (help
->dthps_maxprovs
== help
->dthps_nprovs
) {
14121 tmp_maxprovs
= help
->dthps_maxprovs
;
14122 tmp_provs
= help
->dthps_provs
;
14124 if (help
->dthps_maxprovs
== 0)
14125 help
->dthps_maxprovs
= 2;
14127 help
->dthps_maxprovs
*= 2;
14128 if (help
->dthps_maxprovs
> dtrace_helper_providers_max
)
14129 help
->dthps_maxprovs
= dtrace_helper_providers_max
;
14131 ASSERT(tmp_maxprovs
< help
->dthps_maxprovs
);
14133 help
->dthps_provs
= kmem_zalloc(help
->dthps_maxprovs
*
14134 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
14136 if (tmp_provs
!= NULL
) {
14137 bcopy(tmp_provs
, help
->dthps_provs
, tmp_maxprovs
*
14138 sizeof (dtrace_helper_provider_t
*));
14139 kmem_free(tmp_provs
, tmp_maxprovs
*
14140 sizeof (dtrace_helper_provider_t
*));
14144 help
->dthps_provs
[help
->dthps_nprovs
] = hprov
;
14145 help
->dthps_nprovs
++;
14151 dtrace_helper_provider_destroy(dtrace_helper_provider_t
*hprov
)
14153 lck_mtx_lock(&dtrace_lock
);
14155 if (--hprov
->dthp_ref
== 0) {
14157 lck_mtx_unlock(&dtrace_lock
);
14158 dof
= (dof_hdr_t
*)(uintptr_t)hprov
->dthp_prov
.dofhp_dof
;
14159 dtrace_dof_destroy(dof
);
14160 kmem_free(hprov
, sizeof (dtrace_helper_provider_t
));
14162 lck_mtx_unlock(&dtrace_lock
);
14167 dtrace_helper_provider_validate(dof_hdr_t
*dof
, dof_sec_t
*sec
)
14169 uintptr_t daddr
= (uintptr_t)dof
;
14170 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
14171 dof_provider_t
*provider
;
14172 dof_probe_t
*probe
;
14174 char *strtab
, *typestr
;
14175 dof_stridx_t typeidx
;
14177 uint_t nprobes
, j
, k
;
14179 ASSERT(sec
->dofs_type
== DOF_SECT_PROVIDER
);
14181 if (sec
->dofs_offset
& (sizeof (uint_t
) - 1)) {
14182 dtrace_dof_error(dof
, "misaligned section offset");
14187 * The section needs to be large enough to contain the DOF provider
14188 * structure appropriate for the given version.
14190 if (sec
->dofs_size
<
14191 ((dof
->dofh_ident
[DOF_ID_VERSION
] == DOF_VERSION_1
) ?
14192 offsetof(dof_provider_t
, dofpv_prenoffs
) :
14193 sizeof (dof_provider_t
))) {
14194 dtrace_dof_error(dof
, "provider section too small");
14198 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
14199 str_sec
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, provider
->dofpv_strtab
);
14200 prb_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBES
, provider
->dofpv_probes
);
14201 arg_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRARGS
, provider
->dofpv_prargs
);
14202 off_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROFFS
, provider
->dofpv_proffs
);
14204 if (str_sec
== NULL
|| prb_sec
== NULL
||
14205 arg_sec
== NULL
|| off_sec
== NULL
)
14210 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
14211 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
&&
14212 (enoff_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRENOFFS
,
14213 provider
->dofpv_prenoffs
)) == NULL
)
14216 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
14218 if (provider
->dofpv_name
>= str_sec
->dofs_size
||
14219 strlen(strtab
+ provider
->dofpv_name
) >= DTRACE_PROVNAMELEN
) {
14220 dtrace_dof_error(dof
, "invalid provider name");
14224 if (prb_sec
->dofs_entsize
== 0 ||
14225 prb_sec
->dofs_entsize
> prb_sec
->dofs_size
) {
14226 dtrace_dof_error(dof
, "invalid entry size");
14230 if (prb_sec
->dofs_entsize
& (sizeof (uintptr_t) - 1)) {
14231 dtrace_dof_error(dof
, "misaligned entry size");
14235 if (off_sec
->dofs_entsize
!= sizeof (uint32_t)) {
14236 dtrace_dof_error(dof
, "invalid entry size");
14240 if (off_sec
->dofs_offset
& (sizeof (uint32_t) - 1)) {
14241 dtrace_dof_error(dof
, "misaligned section offset");
14245 if (arg_sec
->dofs_entsize
!= sizeof (uint8_t)) {
14246 dtrace_dof_error(dof
, "invalid entry size");
14250 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
14252 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
14255 * Take a pass through the probes to check for errors.
14257 for (j
= 0; j
< nprobes
; j
++) {
14258 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
14259 prb_sec
->dofs_offset
+ j
* prb_sec
->dofs_entsize
);
14261 if (probe
->dofpr_func
>= str_sec
->dofs_size
) {
14262 dtrace_dof_error(dof
, "invalid function name");
14266 if (strlen(strtab
+ probe
->dofpr_func
) >= DTRACE_FUNCNAMELEN
) {
14267 dtrace_dof_error(dof
, "function name too long");
14271 if (probe
->dofpr_name
>= str_sec
->dofs_size
||
14272 strlen(strtab
+ probe
->dofpr_name
) >= DTRACE_NAMELEN
) {
14273 dtrace_dof_error(dof
, "invalid probe name");
14278 * The offset count must not wrap the index, and the offsets
14279 * must also not overflow the section's data.
14281 if (probe
->dofpr_offidx
+ probe
->dofpr_noffs
<
14282 probe
->dofpr_offidx
||
14283 (probe
->dofpr_offidx
+ probe
->dofpr_noffs
) *
14284 off_sec
->dofs_entsize
> off_sec
->dofs_size
) {
14285 dtrace_dof_error(dof
, "invalid probe offset");
14289 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
) {
14291 * If there's no is-enabled offset section, make sure
14292 * there aren't any is-enabled offsets. Otherwise
14293 * perform the same checks as for probe offsets
14294 * (immediately above).
14296 if (enoff_sec
== NULL
) {
14297 if (probe
->dofpr_enoffidx
!= 0 ||
14298 probe
->dofpr_nenoffs
!= 0) {
14299 dtrace_dof_error(dof
, "is-enabled "
14300 "offsets with null section");
14303 } else if (probe
->dofpr_enoffidx
+
14304 probe
->dofpr_nenoffs
< probe
->dofpr_enoffidx
||
14305 (probe
->dofpr_enoffidx
+ probe
->dofpr_nenoffs
) *
14306 enoff_sec
->dofs_entsize
> enoff_sec
->dofs_size
) {
14307 dtrace_dof_error(dof
, "invalid is-enabled "
14312 if (probe
->dofpr_noffs
+ probe
->dofpr_nenoffs
== 0) {
14313 dtrace_dof_error(dof
, "zero probe and "
14314 "is-enabled offsets");
14317 } else if (probe
->dofpr_noffs
== 0) {
14318 dtrace_dof_error(dof
, "zero probe offsets");
14322 if (probe
->dofpr_argidx
+ probe
->dofpr_xargc
<
14323 probe
->dofpr_argidx
||
14324 (probe
->dofpr_argidx
+ probe
->dofpr_xargc
) *
14325 arg_sec
->dofs_entsize
> arg_sec
->dofs_size
) {
14326 dtrace_dof_error(dof
, "invalid args");
14330 typeidx
= probe
->dofpr_nargv
;
14331 typestr
= strtab
+ probe
->dofpr_nargv
;
14332 for (k
= 0; k
< probe
->dofpr_nargc
; k
++) {
14333 if (typeidx
>= str_sec
->dofs_size
) {
14334 dtrace_dof_error(dof
, "bad "
14335 "native argument type");
14339 typesz
= strlen(typestr
) + 1;
14340 if (typesz
> DTRACE_ARGTYPELEN
) {
14341 dtrace_dof_error(dof
, "native "
14342 "argument type too long");
14349 typeidx
= probe
->dofpr_xargv
;
14350 typestr
= strtab
+ probe
->dofpr_xargv
;
14351 for (k
= 0; k
< probe
->dofpr_xargc
; k
++) {
14352 if (arg
[probe
->dofpr_argidx
+ k
] > probe
->dofpr_nargc
) {
14353 dtrace_dof_error(dof
, "bad "
14354 "native argument index");
14358 if (typeidx
>= str_sec
->dofs_size
) {
14359 dtrace_dof_error(dof
, "bad "
14360 "translated argument type");
14364 typesz
= strlen(typestr
) + 1;
14365 if (typesz
> DTRACE_ARGTYPELEN
) {
14366 dtrace_dof_error(dof
, "translated argument "
14380 dtrace_helper_slurp(proc_t
* p
, dof_hdr_t
*dof
, dof_helper_t
*dhp
)
14382 dtrace_helpers_t
*help
;
14383 dtrace_vstate_t
*vstate
;
14384 dtrace_enabling_t
*enab
= NULL
;
14385 int i
, gen
, rv
, nhelpers
= 0, nprovs
= 0, destroy
= 1;
14386 uintptr_t daddr
= (uintptr_t)dof
;
14388 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14390 if ((help
= p
->p_dtrace_helpers
) == NULL
)
14391 help
= dtrace_helpers_create(p
);
14393 vstate
= &help
->dthps_vstate
;
14395 if ((rv
= dtrace_dof_slurp(dof
, vstate
, NULL
, &enab
,
14396 dhp
!= NULL
? dhp
->dofhp_addr
: 0, B_FALSE
)) != 0) {
14397 dtrace_dof_destroy(dof
);
14402 * Look for helper providers and validate their descriptions.
14405 for (i
= 0; (uint32_t)i
< dof
->dofh_secnum
; i
++) {
14406 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
14407 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
14409 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
14412 if (dtrace_helper_provider_validate(dof
, sec
) != 0) {
14413 dtrace_enabling_destroy(enab
);
14414 dtrace_dof_destroy(dof
);
14423 * Now we need to walk through the ECB descriptions in the enabling.
14425 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
14426 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
14427 dtrace_probedesc_t
*desc
= &ep
->dted_probe
;
14429 /* APPLE NOTE: Darwin employs size bounded string operation. */
14430 if (!LIT_STRNEQL(desc
->dtpd_provider
, "dtrace"))
14433 if (!LIT_STRNEQL(desc
->dtpd_mod
, "helper"))
14436 if (!LIT_STRNEQL(desc
->dtpd_func
, "ustack"))
14439 if ((rv
= dtrace_helper_action_add(p
, DTRACE_HELPER_ACTION_USTACK
,
14442 * Adding this helper action failed -- we are now going
14443 * to rip out the entire generation and return failure.
14445 (void) dtrace_helper_destroygen(p
, help
->dthps_generation
);
14446 dtrace_enabling_destroy(enab
);
14447 dtrace_dof_destroy(dof
);
14454 if (nhelpers
< enab
->dten_ndesc
)
14455 dtrace_dof_error(dof
, "unmatched helpers");
14457 gen
= help
->dthps_generation
++;
14458 dtrace_enabling_destroy(enab
);
14460 if (dhp
!= NULL
&& nprovs
> 0) {
14461 dhp
->dofhp_dof
= (uint64_t)(uintptr_t)dof
;
14462 if (dtrace_helper_provider_add(p
, dhp
, gen
) == 0) {
14463 lck_mtx_unlock(&dtrace_lock
);
14464 dtrace_helper_provider_register(p
, help
, dhp
);
14465 lck_mtx_lock(&dtrace_lock
);
14472 dtrace_dof_destroy(dof
);
14478 * APPLE NOTE: DTrace lazy dof implementation
14480 * DTrace user static probes (USDT probes) and helper actions are loaded
14481 * in a process by proccessing dof sections. The dof sections are passed
14482 * into the kernel by dyld, in a dof_ioctl_data_t block. It is rather
14483 * expensive to process dof for a process that will never use it. There
14484 * is a memory cost (allocating the providers/probes), and a cpu cost
14485 * (creating the providers/probes).
14487 * To reduce this cost, we use "lazy dof". The normal proceedure for
14488 * dof processing is to copyin the dof(s) pointed to by the dof_ioctl_data_t
14489 * block, and invoke dof_slurp_helper() on them. When "lazy dof" is
14490 * used, each process retains the dof_ioctl_data_t block, instead of
14491 * copying in the data it points to.
14493 * The dof_ioctl_data_t blocks are managed as if they were the actual
14494 * processed dof; on fork the block is copied to the child, on exec and
14495 * exit the block is freed.
14497 * If the process loads library(s) containing additional dof, the
14498 * new dof_ioctl_data_t is merged with the existing block.
14500 * There are a few catches that make this slightly more difficult.
14501 * When dyld registers dof_ioctl_data_t blocks, it expects a unique
14502 * identifier value for each dof in the block. In non-lazy dof terms,
14503 * this is the generation that dof was loaded in. If we hand back
14504 * a UID for a lazy dof, that same UID must be able to unload the
14505 * dof once it has become non-lazy. To meet this requirement, the
14506 * code that loads lazy dof requires that the UID's for dof(s) in
14507 * the lazy dof be sorted, and in ascending order. It is okay to skip
14508 * UID's, I.E., 1 -> 5 -> 6 is legal.
14510 * Once a process has become non-lazy, it will stay non-lazy. All
14511 * future dof operations for that process will be non-lazy, even
14512 * if the dof mode transitions back to lazy.
14514 * Always do lazy dof checks before non-lazy (I.E. In fork, exit, exec.).
14515 * That way if the lazy check fails due to transitioning to non-lazy, the
14516 * right thing is done with the newly faulted in dof.
14520 * This method is a bit squicky. It must handle:
14522 * dof should not be lazy.
14523 * dof should have been handled lazily, but there was an error
14524 * dof was handled lazily, and needs to be freed.
14525 * dof was handled lazily, and must not be freed.
14528 * Returns EACCESS if dof should be handled non-lazily.
14530 * KERN_SUCCESS and all other return codes indicate lazy handling of dof.
14532 * If the dofs data is claimed by this method, dofs_claimed will be set.
14533 * Callers should not free claimed dofs.
14536 dtrace_lazy_dofs_add(proc_t
*p
, dof_ioctl_data_t
* incoming_dofs
, int *dofs_claimed
)
14539 ASSERT(incoming_dofs
&& incoming_dofs
->dofiod_count
> 0);
14544 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
14547 * If we have lazy dof, dof mode better be LAZY_ON.
14549 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
);
14550 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
14551 ASSERT(dtrace_dof_mode
!= DTRACE_DOF_MODE_NEVER
);
14554 * Any existing helpers force non-lazy behavior.
14556 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
&& (p
->p_dtrace_helpers
== NULL
)) {
14557 lck_mtx_lock(&p
->p_dtrace_sprlock
);
14559 dof_ioctl_data_t
* existing_dofs
= p
->p_dtrace_lazy_dofs
;
14560 unsigned int existing_dofs_count
= (existing_dofs
) ? existing_dofs
->dofiod_count
: 0;
14561 unsigned int i
, merged_dofs_count
= incoming_dofs
->dofiod_count
+ existing_dofs_count
;
14566 if (merged_dofs_count
== 0 || merged_dofs_count
> 1024) {
14567 dtrace_dof_error(NULL
, "lazy_dofs_add merged_dofs_count out of range");
14573 * Each dof being added must be assigned a unique generation.
14575 uint64_t generation
= (existing_dofs
) ? existing_dofs
->dofiod_helpers
[existing_dofs_count
- 1].dofhp_dof
+ 1 : 1;
14576 for (i
=0; i
<incoming_dofs
->dofiod_count
; i
++) {
14578 * We rely on these being the same so we can overwrite dofhp_dof and not lose info.
14580 ASSERT(incoming_dofs
->dofiod_helpers
[i
].dofhp_dof
== incoming_dofs
->dofiod_helpers
[i
].dofhp_addr
);
14581 incoming_dofs
->dofiod_helpers
[i
].dofhp_dof
= generation
++;
14585 if (existing_dofs
) {
14587 * Merge the existing and incoming dofs
14589 size_t merged_dofs_size
= DOF_IOCTL_DATA_T_SIZE(merged_dofs_count
);
14590 dof_ioctl_data_t
* merged_dofs
= kmem_alloc(merged_dofs_size
, KM_SLEEP
);
14592 bcopy(&existing_dofs
->dofiod_helpers
[0],
14593 &merged_dofs
->dofiod_helpers
[0],
14594 sizeof(dof_helper_t
) * existing_dofs_count
);
14595 bcopy(&incoming_dofs
->dofiod_helpers
[0],
14596 &merged_dofs
->dofiod_helpers
[existing_dofs_count
],
14597 sizeof(dof_helper_t
) * incoming_dofs
->dofiod_count
);
14599 merged_dofs
->dofiod_count
= merged_dofs_count
;
14601 kmem_free(existing_dofs
, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count
));
14603 p
->p_dtrace_lazy_dofs
= merged_dofs
;
14606 * Claim the incoming dofs
14609 p
->p_dtrace_lazy_dofs
= incoming_dofs
;
14613 dof_ioctl_data_t
* all_dofs
= p
->p_dtrace_lazy_dofs
;
14614 for (i
=0; i
<all_dofs
->dofiod_count
-1; i
++) {
14615 ASSERT(all_dofs
->dofiod_helpers
[i
].dofhp_dof
< all_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
14620 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
14625 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
14633 * EINVAL: lazy dof is enabled, but the requested generation was not found.
14634 * EACCES: This removal needs to be handled non-lazily.
14637 dtrace_lazy_dofs_remove(proc_t
*p
, int generation
)
14641 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
14644 * If we have lazy dof, dof mode better be LAZY_ON.
14646 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
);
14647 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
14648 ASSERT(dtrace_dof_mode
!= DTRACE_DOF_MODE_NEVER
);
14651 * Any existing helpers force non-lazy behavior.
14653 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
&& (p
->p_dtrace_helpers
== NULL
)) {
14654 lck_mtx_lock(&p
->p_dtrace_sprlock
);
14656 dof_ioctl_data_t
* existing_dofs
= p
->p_dtrace_lazy_dofs
;
14658 if (existing_dofs
) {
14659 int index
, existing_dofs_count
= existing_dofs
->dofiod_count
;
14660 for (index
=0; index
<existing_dofs_count
; index
++) {
14661 if ((int)existing_dofs
->dofiod_helpers
[index
].dofhp_dof
== generation
) {
14662 dof_ioctl_data_t
* removed_dofs
= NULL
;
14665 * If there is only 1 dof, we'll delete it and swap in NULL.
14667 if (existing_dofs_count
> 1) {
14668 int removed_dofs_count
= existing_dofs_count
- 1;
14669 size_t removed_dofs_size
= DOF_IOCTL_DATA_T_SIZE(removed_dofs_count
);
14671 removed_dofs
= kmem_alloc(removed_dofs_size
, KM_SLEEP
);
14672 removed_dofs
->dofiod_count
= removed_dofs_count
;
14675 * copy the remaining data.
14678 bcopy(&existing_dofs
->dofiod_helpers
[0],
14679 &removed_dofs
->dofiod_helpers
[0],
14680 index
* sizeof(dof_helper_t
));
14683 if (index
< existing_dofs_count
-1) {
14684 bcopy(&existing_dofs
->dofiod_helpers
[index
+1],
14685 &removed_dofs
->dofiod_helpers
[index
],
14686 (existing_dofs_count
- index
- 1) * sizeof(dof_helper_t
));
14690 kmem_free(existing_dofs
, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count
));
14692 p
->p_dtrace_lazy_dofs
= removed_dofs
;
14694 rval
= KERN_SUCCESS
;
14701 dof_ioctl_data_t
* all_dofs
= p
->p_dtrace_lazy_dofs
;
14704 for (i
=0; i
<all_dofs
->dofiod_count
-1; i
++) {
14705 ASSERT(all_dofs
->dofiod_helpers
[i
].dofhp_dof
< all_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
14712 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
14717 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
14723 dtrace_lazy_dofs_destroy(proc_t
*p
)
14725 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
14726 lck_mtx_lock(&p
->p_dtrace_sprlock
);
14729 * If we have lazy dof, dof mode better be LAZY_ON, or we must be exiting.
14730 * We cannot assert against DTRACE_DOF_MODE_NEVER here, because we are called from
14731 * kern_exit.c and kern_exec.c.
14733 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
|| p
->p_lflag
& P_LEXIT
);
14734 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
14736 dof_ioctl_data_t
* lazy_dofs
= p
->p_dtrace_lazy_dofs
;
14737 p
->p_dtrace_lazy_dofs
= NULL
;
14739 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
14740 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
14743 kmem_free(lazy_dofs
, DOF_IOCTL_DATA_T_SIZE(lazy_dofs
->dofiod_count
));
14748 dtrace_lazy_dofs_duplicate(proc_t
*parent
, proc_t
*child
)
14750 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
14751 lck_mtx_assert(&parent
->p_dtrace_sprlock
, LCK_MTX_ASSERT_NOTOWNED
);
14752 lck_mtx_assert(&child
->p_dtrace_sprlock
, LCK_MTX_ASSERT_NOTOWNED
);
14754 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
14755 lck_mtx_lock(&parent
->p_dtrace_sprlock
);
14758 * If we have lazy dof, dof mode better be LAZY_ON, or we must be exiting.
14759 * We cannot assert against DTRACE_DOF_MODE_NEVER here, because we are called from
14762 ASSERT(parent
->p_dtrace_lazy_dofs
== NULL
|| dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
);
14763 ASSERT(parent
->p_dtrace_lazy_dofs
== NULL
|| parent
->p_dtrace_helpers
== NULL
);
14765 * In theory we should hold the child sprlock, but this is safe...
14767 ASSERT(child
->p_dtrace_lazy_dofs
== NULL
&& child
->p_dtrace_helpers
== NULL
);
14769 dof_ioctl_data_t
* parent_dofs
= parent
->p_dtrace_lazy_dofs
;
14770 dof_ioctl_data_t
* child_dofs
= NULL
;
14772 size_t parent_dofs_size
= DOF_IOCTL_DATA_T_SIZE(parent_dofs
->dofiod_count
);
14773 child_dofs
= kmem_alloc(parent_dofs_size
, KM_SLEEP
);
14774 bcopy(parent_dofs
, child_dofs
, parent_dofs_size
);
14777 lck_mtx_unlock(&parent
->p_dtrace_sprlock
);
14780 lck_mtx_lock(&child
->p_dtrace_sprlock
);
14781 child
->p_dtrace_lazy_dofs
= child_dofs
;
14782 lck_mtx_unlock(&child
->p_dtrace_sprlock
);
14785 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
14789 dtrace_lazy_dofs_proc_iterate_filter(proc_t
*p
, void* ignored
)
14791 #pragma unused(ignored)
14793 * Okay to NULL test without taking the sprlock.
14795 return p
->p_dtrace_lazy_dofs
!= NULL
;
14799 dtrace_lazy_dofs_proc_iterate_doit(proc_t
*p
, void* ignored
)
14801 #pragma unused(ignored)
14803 * It is possible this process may exit during our attempt to
14804 * fault in the dof. We could fix this by holding locks longer,
14805 * but the errors are benign.
14807 lck_mtx_lock(&p
->p_dtrace_sprlock
);
14810 * In this case only, it is okay to have lazy dof when dof mode is DTRACE_DOF_MODE_LAZY_OFF
14812 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
14813 ASSERT(dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_OFF
);
14816 dof_ioctl_data_t
* lazy_dofs
= p
->p_dtrace_lazy_dofs
;
14817 p
->p_dtrace_lazy_dofs
= NULL
;
14819 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
14822 * Process each dof_helper_t
14824 if (lazy_dofs
!= NULL
) {
14828 for (i
=0; i
<lazy_dofs
->dofiod_count
; i
++) {
14830 * When loading lazy dof, we depend on the generations being sorted in ascending order.
14832 ASSERT(i
>= (lazy_dofs
->dofiod_count
- 1) || lazy_dofs
->dofiod_helpers
[i
].dofhp_dof
< lazy_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
14834 dof_helper_t
*dhp
= &lazy_dofs
->dofiod_helpers
[i
];
14837 * We stored the generation in dofhp_dof. Save it, and restore the original value.
14839 int generation
= dhp
->dofhp_dof
;
14840 dhp
->dofhp_dof
= dhp
->dofhp_addr
;
14842 dof_hdr_t
*dof
= dtrace_dof_copyin_from_proc(p
, dhp
->dofhp_dof
, &rval
);
14845 dtrace_helpers_t
*help
;
14847 lck_mtx_lock(&dtrace_lock
);
14850 * This must be done with the dtrace_lock held
14852 if ((help
= p
->p_dtrace_helpers
) == NULL
)
14853 help
= dtrace_helpers_create(p
);
14856 * If the generation value has been bumped, someone snuck in
14857 * when we released the dtrace lock. We have to dump this generation,
14858 * there is no safe way to load it.
14860 if (help
->dthps_generation
<= generation
) {
14861 help
->dthps_generation
= generation
;
14864 * dtrace_helper_slurp() takes responsibility for the dof --
14865 * it may free it now or it may save it and free it later.
14867 if ((rval
= dtrace_helper_slurp(p
, dof
, dhp
)) != generation
) {
14868 dtrace_dof_error(NULL
, "returned value did not match expected generation");
14872 lck_mtx_unlock(&dtrace_lock
);
14876 kmem_free(lazy_dofs
, DOF_IOCTL_DATA_T_SIZE(lazy_dofs
->dofiod_count
));
14879 return PROC_RETURNED
;
14882 static dtrace_helpers_t
*
14883 dtrace_helpers_create(proc_t
*p
)
14885 dtrace_helpers_t
*help
;
14887 lck_mtx_assert(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14888 ASSERT(p
->p_dtrace_helpers
== NULL
);
14890 help
= kmem_zalloc(sizeof (dtrace_helpers_t
), KM_SLEEP
);
14891 help
->dthps_actions
= kmem_zalloc(sizeof (dtrace_helper_action_t
*) *
14892 DTRACE_NHELPER_ACTIONS
, KM_SLEEP
);
14894 p
->p_dtrace_helpers
= help
;
14901 dtrace_helpers_destroy(proc_t
* p
)
14903 dtrace_helpers_t
*help
;
14904 dtrace_vstate_t
*vstate
;
14907 lck_mtx_lock(&dtrace_lock
);
14909 ASSERT(p
->p_dtrace_helpers
!= NULL
);
14910 ASSERT(dtrace_helpers
> 0);
14912 help
= p
->p_dtrace_helpers
;
14913 vstate
= &help
->dthps_vstate
;
14916 * We're now going to lose the help from this process.
14918 p
->p_dtrace_helpers
= NULL
;
14922 * Destory the helper actions.
14924 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
14925 dtrace_helper_action_t
*h
, *next
;
14927 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
14928 next
= h
->dtha_next
;
14929 dtrace_helper_action_destroy(h
, vstate
);
14934 lck_mtx_unlock(&dtrace_lock
);
14937 * Destroy the helper providers.
14939 if (help
->dthps_maxprovs
> 0) {
14940 lck_mtx_lock(&dtrace_meta_lock
);
14941 if (dtrace_meta_pid
!= NULL
) {
14942 ASSERT(dtrace_deferred_pid
== NULL
);
14944 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14945 dtrace_helper_provider_remove(
14946 &help
->dthps_provs
[i
]->dthp_prov
, p
->p_pid
);
14949 lck_mtx_lock(&dtrace_lock
);
14950 ASSERT(help
->dthps_deferred
== 0 ||
14951 help
->dthps_next
!= NULL
||
14952 help
->dthps_prev
!= NULL
||
14953 help
== dtrace_deferred_pid
);
14956 * Remove the helper from the deferred list.
14958 if (help
->dthps_next
!= NULL
)
14959 help
->dthps_next
->dthps_prev
= help
->dthps_prev
;
14960 if (help
->dthps_prev
!= NULL
)
14961 help
->dthps_prev
->dthps_next
= help
->dthps_next
;
14962 if (dtrace_deferred_pid
== help
) {
14963 dtrace_deferred_pid
= help
->dthps_next
;
14964 ASSERT(help
->dthps_prev
== NULL
);
14967 lck_mtx_unlock(&dtrace_lock
);
14970 lck_mtx_unlock(&dtrace_meta_lock
);
14972 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14973 dtrace_helper_provider_destroy(help
->dthps_provs
[i
]);
14976 kmem_free(help
->dthps_provs
, help
->dthps_maxprovs
*
14977 sizeof (dtrace_helper_provider_t
*));
14980 lck_mtx_lock(&dtrace_lock
);
14982 dtrace_vstate_fini(&help
->dthps_vstate
);
14983 kmem_free(help
->dthps_actions
,
14984 sizeof (dtrace_helper_action_t
*) * DTRACE_NHELPER_ACTIONS
);
14985 kmem_free(help
, sizeof (dtrace_helpers_t
));
14988 lck_mtx_unlock(&dtrace_lock
);
14992 dtrace_helpers_duplicate(proc_t
*from
, proc_t
*to
)
14994 dtrace_helpers_t
*help
, *newhelp
;
14995 dtrace_helper_action_t
*helper
, *new, *last
;
14997 dtrace_vstate_t
*vstate
;
14999 int j
, sz
, hasprovs
= 0;
15001 lck_mtx_lock(&dtrace_lock
);
15002 ASSERT(from
->p_dtrace_helpers
!= NULL
);
15003 ASSERT(dtrace_helpers
> 0);
15005 help
= from
->p_dtrace_helpers
;
15006 newhelp
= dtrace_helpers_create(to
);
15007 ASSERT(to
->p_dtrace_helpers
!= NULL
);
15009 newhelp
->dthps_generation
= help
->dthps_generation
;
15010 vstate
= &newhelp
->dthps_vstate
;
15013 * Duplicate the helper actions.
15015 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15016 if ((helper
= help
->dthps_actions
[i
]) == NULL
)
15019 for (last
= NULL
; helper
!= NULL
; helper
= helper
->dtha_next
) {
15020 new = kmem_zalloc(sizeof (dtrace_helper_action_t
),
15022 new->dtha_generation
= helper
->dtha_generation
;
15024 if ((dp
= helper
->dtha_predicate
) != NULL
) {
15025 dp
= dtrace_difo_duplicate(dp
, vstate
);
15026 new->dtha_predicate
= dp
;
15029 new->dtha_nactions
= helper
->dtha_nactions
;
15030 sz
= sizeof (dtrace_difo_t
*) * new->dtha_nactions
;
15031 new->dtha_actions
= kmem_alloc(sz
, KM_SLEEP
);
15033 for (j
= 0; j
< new->dtha_nactions
; j
++) {
15034 dtrace_difo_t
*dpj
= helper
->dtha_actions
[j
];
15036 ASSERT(dpj
!= NULL
);
15037 dpj
= dtrace_difo_duplicate(dpj
, vstate
);
15038 new->dtha_actions
[j
] = dpj
;
15041 if (last
!= NULL
) {
15042 last
->dtha_next
= new;
15044 newhelp
->dthps_actions
[i
] = new;
15052 * Duplicate the helper providers and register them with the
15053 * DTrace framework.
15055 if (help
->dthps_nprovs
> 0) {
15056 newhelp
->dthps_nprovs
= help
->dthps_nprovs
;
15057 newhelp
->dthps_maxprovs
= help
->dthps_nprovs
;
15058 newhelp
->dthps_provs
= kmem_alloc(newhelp
->dthps_nprovs
*
15059 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
15060 for (i
= 0; i
< newhelp
->dthps_nprovs
; i
++) {
15061 newhelp
->dthps_provs
[i
] = help
->dthps_provs
[i
];
15062 newhelp
->dthps_provs
[i
]->dthp_ref
++;
15068 lck_mtx_unlock(&dtrace_lock
);
15071 dtrace_helper_provider_register(to
, newhelp
, NULL
);
15075 * DTrace Hook Functions
15079 * APPLE NOTE: dtrace_modctl_* routines for kext support.
15080 * Used to manipulate the modctl list within dtrace xnu.
15083 modctl_t
*dtrace_modctl_list
;
15086 dtrace_modctl_add(struct modctl
* newctl
)
15088 struct modctl
*nextp
, *prevp
;
15090 ASSERT(newctl
!= NULL
);
15091 lck_mtx_assert(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15093 // Insert new module at the front of the list,
15095 newctl
->mod_next
= dtrace_modctl_list
;
15096 dtrace_modctl_list
= newctl
;
15099 * If a module exists with the same name, then that module
15100 * must have been unloaded with enabled probes. We will move
15101 * the unloaded module to the new module's stale chain and
15102 * then stop traversing the list.
15106 nextp
= newctl
->mod_next
;
15108 while (nextp
!= NULL
) {
15109 if (nextp
->mod_loaded
) {
15110 /* This is a loaded module. Keep traversing. */
15112 nextp
= nextp
->mod_next
;
15116 /* Found an unloaded module */
15117 if (strncmp (newctl
->mod_modname
, nextp
->mod_modname
, KMOD_MAX_NAME
)) {
15118 /* Names don't match. Keep traversing. */
15120 nextp
= nextp
->mod_next
;
15124 /* We found a stale entry, move it. We're done. */
15125 prevp
->mod_next
= nextp
->mod_next
;
15126 newctl
->mod_stale
= nextp
;
15127 nextp
->mod_next
= NULL
;
15135 dtrace_modctl_lookup(struct kmod_info
* kmod
)
15137 lck_mtx_assert(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15139 struct modctl
* ctl
;
15141 for (ctl
= dtrace_modctl_list
; ctl
; ctl
=ctl
->mod_next
) {
15142 if (ctl
->mod_id
== kmod
->id
)
15149 * This routine is called from dtrace_module_unloaded().
15150 * It removes a modctl structure and its stale chain
15151 * from the kext shadow list.
15154 dtrace_modctl_remove(struct modctl
* ctl
)
15156 ASSERT(ctl
!= NULL
);
15157 lck_mtx_assert(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15158 modctl_t
*prevp
, *nextp
, *curp
;
15160 // Remove stale chain first
15161 for (curp
=ctl
->mod_stale
; curp
!= NULL
; curp
=nextp
) {
15162 nextp
= curp
->mod_stale
;
15163 /* There should NEVER be user symbols allocated at this point */
15164 ASSERT(curp
->mod_user_symbols
== NULL
);
15165 kmem_free(curp
, sizeof(modctl_t
));
15169 curp
= dtrace_modctl_list
;
15171 while (curp
!= ctl
) {
15173 curp
= curp
->mod_next
;
15176 if (prevp
!= NULL
) {
15177 prevp
->mod_next
= ctl
->mod_next
;
15180 dtrace_modctl_list
= ctl
->mod_next
;
15183 /* There should NEVER be user symbols allocated at this point */
15184 ASSERT(ctl
->mod_user_symbols
== NULL
);
15186 kmem_free (ctl
, sizeof(modctl_t
));
15190 * APPLE NOTE: The kext loader will call dtrace_module_loaded
15191 * when the kext is loaded in memory, but before calling the
15192 * kext's start routine.
15194 * Return 0 on success
15195 * Return -1 on failure
15199 dtrace_module_loaded(struct kmod_info
*kmod
, uint32_t flag
)
15201 dtrace_provider_t
*prv
;
15204 * If kernel symbols have been disabled, return immediately
15205 * DTRACE_KERNEL_SYMBOLS_NEVER is a permanent mode, it is safe to test without holding locks
15207 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
)
15210 struct modctl
*ctl
= NULL
;
15211 if (!kmod
|| kmod
->address
== 0 || kmod
->size
== 0)
15214 lck_mtx_lock(&dtrace_provider_lock
);
15215 lck_mtx_lock(&mod_lock
);
15218 * Have we seen this kext before?
15221 ctl
= dtrace_modctl_lookup(kmod
);
15224 /* bail... we already have this kext in the modctl list */
15225 lck_mtx_unlock(&mod_lock
);
15226 lck_mtx_unlock(&dtrace_provider_lock
);
15227 if (dtrace_err_verbose
)
15228 cmn_err(CE_WARN
, "dtrace load module already exists '%s %u' is failing against '%s %u'", kmod
->name
, (uint_t
)kmod
->id
, ctl
->mod_modname
, ctl
->mod_id
);
15232 ctl
= kmem_alloc(sizeof(struct modctl
), KM_SLEEP
);
15234 if (dtrace_err_verbose
)
15235 cmn_err(CE_WARN
, "dtrace module load '%s %u' is failing ", kmod
->name
, (uint_t
)kmod
->id
);
15236 lck_mtx_unlock(&mod_lock
);
15237 lck_mtx_unlock(&dtrace_provider_lock
);
15240 ctl
->mod_next
= NULL
;
15241 ctl
->mod_stale
= NULL
;
15242 strlcpy (ctl
->mod_modname
, kmod
->name
, sizeof(ctl
->mod_modname
));
15243 ctl
->mod_loadcnt
= kmod
->id
;
15244 ctl
->mod_nenabled
= 0;
15245 ctl
->mod_address
= kmod
->address
;
15246 ctl
->mod_size
= kmod
->size
;
15247 ctl
->mod_id
= kmod
->id
;
15248 ctl
->mod_loaded
= 1;
15249 ctl
->mod_flags
= 0;
15250 ctl
->mod_user_symbols
= NULL
;
15253 * Find the UUID for this module, if it has one
15255 kernel_mach_header_t
* header
= (kernel_mach_header_t
*)ctl
->mod_address
;
15256 struct load_command
* load_cmd
= (struct load_command
*)&header
[1];
15258 for (i
= 0; i
< header
->ncmds
; i
++) {
15259 if (load_cmd
->cmd
== LC_UUID
) {
15260 struct uuid_command
* uuid_cmd
= (struct uuid_command
*)load_cmd
;
15261 memcpy(ctl
->mod_uuid
, uuid_cmd
->uuid
, sizeof(uuid_cmd
->uuid
));
15262 ctl
->mod_flags
|= MODCTL_HAS_UUID
;
15265 load_cmd
= (struct load_command
*)((caddr_t
)load_cmd
+ load_cmd
->cmdsize
);
15268 if (ctl
->mod_address
== g_kernel_kmod_info
.address
) {
15269 ctl
->mod_flags
|= MODCTL_IS_MACH_KERNEL
;
15272 dtrace_modctl_add(ctl
);
15275 * We must hold the dtrace_lock to safely test non permanent dtrace_fbt_symbol_mode(s)
15277 lck_mtx_lock(&dtrace_lock
);
15280 * DTrace must decide if it will instrument modules lazily via
15281 * userspace symbols (default mode), or instrument immediately via
15282 * kernel symbols (non-default mode)
15284 * When in default/lazy mode, DTrace will only support modules
15285 * built with a valid UUID.
15287 * Overriding the default can be done explicitly in one of
15288 * the following two ways.
15290 * A module can force symbols from kernel space using the plist key,
15291 * OSBundleForceDTraceInit (see kmod.h). If this per kext state is set,
15292 * we fall through and instrument this module now.
15294 * Or, the boot-arg, dtrace_kernel_symbol_mode, can be set to force symbols
15295 * from kernel space (see dtrace_impl.h). If this system state is set
15296 * to a non-userspace mode, we fall through and instrument the module now.
15299 if ((dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) &&
15300 (!(flag
& KMOD_DTRACE_FORCE_INIT
)))
15302 /* We will instrument the module lazily -- this is the default */
15303 lck_mtx_unlock(&dtrace_lock
);
15304 lck_mtx_unlock(&mod_lock
);
15305 lck_mtx_unlock(&dtrace_provider_lock
);
15309 /* We will instrument the module immediately using kernel symbols */
15310 ctl
->mod_flags
|= MODCTL_HAS_KERNEL_SYMBOLS
;
15312 lck_mtx_unlock(&dtrace_lock
);
15315 * We're going to call each providers per-module provide operation
15316 * specifying only this module.
15318 for (prv
= dtrace_provider
; prv
!= NULL
; prv
= prv
->dtpv_next
)
15319 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
15322 * APPLE NOTE: The contract with the kext loader is that once this function
15323 * has completed, it may delete kernel symbols at will.
15324 * We must set this while still holding the mod_lock.
15326 ctl
->mod_flags
&= ~MODCTL_HAS_KERNEL_SYMBOLS
;
15328 lck_mtx_unlock(&mod_lock
);
15329 lck_mtx_unlock(&dtrace_provider_lock
);
15332 * If we have any retained enablings, we need to match against them.
15333 * Enabling probes requires that cpu_lock be held, and we cannot hold
15334 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15335 * module. (In particular, this happens when loading scheduling
15336 * classes.) So if we have any retained enablings, we need to dispatch
15337 * our task queue to do the match for us.
15339 lck_mtx_lock(&dtrace_lock
);
15341 if (dtrace_retained
== NULL
) {
15342 lck_mtx_unlock(&dtrace_lock
);
15348 * The cpu_lock mentioned above is only held by dtrace code, Apple's xnu never actually
15349 * holds it for any reason. Thus the comment above is invalid, we can directly invoke
15350 * dtrace_enabling_matchall without jumping through all the hoops, and we can avoid
15351 * the delay call as well.
15353 lck_mtx_unlock(&dtrace_lock
);
15355 dtrace_enabling_matchall();
15361 * Return 0 on success
15362 * Return -1 on failure
15365 dtrace_module_unloaded(struct kmod_info
*kmod
)
15367 dtrace_probe_t
template, *probe
, *first
, *next
;
15368 dtrace_provider_t
*prov
;
15369 struct modctl
*ctl
= NULL
;
15370 struct modctl
*syncctl
= NULL
;
15371 struct modctl
*nextsyncctl
= NULL
;
15374 lck_mtx_lock(&dtrace_provider_lock
);
15375 lck_mtx_lock(&mod_lock
);
15376 lck_mtx_lock(&dtrace_lock
);
15378 if (kmod
== NULL
) {
15382 ctl
= dtrace_modctl_lookup(kmod
);
15385 lck_mtx_unlock(&dtrace_lock
);
15386 lck_mtx_unlock(&mod_lock
);
15387 lck_mtx_unlock(&dtrace_provider_lock
);
15390 ctl
->mod_loaded
= 0;
15391 ctl
->mod_address
= 0;
15395 if (dtrace_bymod
== NULL
) {
15397 * The DTrace module is loaded (obviously) but not attached;
15398 * we don't have any work to do.
15401 (void)dtrace_modctl_remove(ctl
);
15402 lck_mtx_unlock(&dtrace_lock
);
15403 lck_mtx_unlock(&mod_lock
);
15404 lck_mtx_unlock(&dtrace_provider_lock
);
15408 /* Syncmode set means we target and traverse entire modctl list. */
15410 nextsyncctl
= dtrace_modctl_list
;
15415 /* find a stale modctl struct */
15416 for (syncctl
= nextsyncctl
; syncctl
!= NULL
; syncctl
=syncctl
->mod_next
) {
15417 if (syncctl
->mod_address
== 0)
15422 /* We have no more work to do */
15423 lck_mtx_unlock(&dtrace_lock
);
15424 lck_mtx_unlock(&mod_lock
);
15425 lck_mtx_unlock(&dtrace_provider_lock
);
15429 /* keep track of next syncctl in case this one is removed */
15430 nextsyncctl
= syncctl
->mod_next
;
15435 template.dtpr_mod
= ctl
->mod_modname
;
15437 for (probe
= first
= dtrace_hash_lookup(dtrace_bymod
, &template);
15438 probe
!= NULL
; probe
= probe
->dtpr_nextmod
) {
15439 if (probe
->dtpr_ecb
!= NULL
) {
15441 * This shouldn't _actually_ be possible -- we're
15442 * unloading a module that has an enabled probe in it.
15443 * (It's normally up to the provider to make sure that
15444 * this can't happen.) However, because dtps_enable()
15445 * doesn't have a failure mode, there can be an
15446 * enable/unload race. Upshot: we don't want to
15447 * assert, but we're not going to disable the
15453 /* We're syncing, let's look at next in list */
15457 lck_mtx_unlock(&dtrace_lock
);
15458 lck_mtx_unlock(&mod_lock
);
15459 lck_mtx_unlock(&dtrace_provider_lock
);
15461 if (dtrace_err_verbose
) {
15462 cmn_err(CE_WARN
, "unloaded module '%s' had "
15463 "enabled probes", ctl
->mod_modname
);
15471 for (first
= NULL
; probe
!= NULL
; probe
= next
) {
15472 ASSERT(dtrace_probes
[probe
->dtpr_id
- 1] == probe
);
15474 dtrace_probes
[probe
->dtpr_id
- 1] = NULL
;
15475 probe
->dtpr_provider
->dtpv_probe_count
--;
15477 next
= probe
->dtpr_nextmod
;
15478 dtrace_hash_remove(dtrace_bymod
, probe
);
15479 dtrace_hash_remove(dtrace_byfunc
, probe
);
15480 dtrace_hash_remove(dtrace_byname
, probe
);
15482 if (first
== NULL
) {
15484 probe
->dtpr_nextmod
= NULL
;
15486 probe
->dtpr_nextmod
= first
;
15492 * We've removed all of the module's probes from the hash chains and
15493 * from the probe array. Now issue a dtrace_sync() to be sure that
15494 * everyone has cleared out from any probe array processing.
15498 for (probe
= first
; probe
!= NULL
; probe
= first
) {
15499 first
= probe
->dtpr_nextmod
;
15500 prov
= probe
->dtpr_provider
;
15501 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, probe
->dtpr_id
,
15503 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
15504 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
15505 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
15506 vmem_free(dtrace_arena
, (void *)(uintptr_t)probe
->dtpr_id
, 1);
15508 zfree(dtrace_probe_t_zone
, probe
);
15511 dtrace_modctl_remove(ctl
);
15516 lck_mtx_unlock(&dtrace_lock
);
15517 lck_mtx_unlock(&mod_lock
);
15518 lck_mtx_unlock(&dtrace_provider_lock
);
15524 dtrace_suspend(void)
15526 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_suspend
));
15530 dtrace_resume(void)
15532 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_resume
));
15536 dtrace_cpu_setup(cpu_setup_t what
, processorid_t cpu
)
15538 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
15539 lck_mtx_lock(&dtrace_lock
);
15543 dtrace_state_t
*state
;
15544 dtrace_optval_t
*opt
, rs
, c
;
15547 * For now, we only allocate a new buffer for anonymous state.
15549 if ((state
= dtrace_anon
.dta_state
) == NULL
)
15552 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
15555 opt
= state
->dts_options
;
15556 c
= opt
[DTRACEOPT_CPU
];
15558 if (c
!= DTRACE_CPUALL
&& c
!= DTRACEOPT_UNSET
&& c
!= cpu
)
15562 * Regardless of what the actual policy is, we're going to
15563 * temporarily set our resize policy to be manual. We're
15564 * also going to temporarily set our CPU option to denote
15565 * the newly configured CPU.
15567 rs
= opt
[DTRACEOPT_BUFRESIZE
];
15568 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_MANUAL
;
15569 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)cpu
;
15571 (void) dtrace_state_buffers(state
);
15573 opt
[DTRACEOPT_BUFRESIZE
] = rs
;
15574 opt
[DTRACEOPT_CPU
] = c
;
15581 * We don't free the buffer in the CPU_UNCONFIG case. (The
15582 * buffer will be freed when the consumer exits.)
15590 lck_mtx_unlock(&dtrace_lock
);
15595 dtrace_cpu_setup_initial(processorid_t cpu
)
15597 (void) dtrace_cpu_setup(CPU_CONFIG
, cpu
);
15601 dtrace_toxrange_add(uintptr_t base
, uintptr_t limit
)
15603 if (dtrace_toxranges
>= dtrace_toxranges_max
) {
15605 dtrace_toxrange_t
*range
;
15607 osize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
15610 ASSERT(dtrace_toxrange
== NULL
);
15611 ASSERT(dtrace_toxranges_max
== 0);
15612 dtrace_toxranges_max
= 1;
15614 dtrace_toxranges_max
<<= 1;
15617 nsize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
15618 range
= kmem_zalloc(nsize
, KM_SLEEP
);
15620 if (dtrace_toxrange
!= NULL
) {
15621 ASSERT(osize
!= 0);
15622 bcopy(dtrace_toxrange
, range
, osize
);
15623 kmem_free(dtrace_toxrange
, osize
);
15626 dtrace_toxrange
= range
;
15629 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_base
== 0);
15630 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_limit
== 0);
15632 dtrace_toxrange
[dtrace_toxranges
].dtt_base
= base
;
15633 dtrace_toxrange
[dtrace_toxranges
].dtt_limit
= limit
;
15634 dtrace_toxranges
++;
15638 * DTrace Driver Cookbook Functions
15642 dtrace_attach(dev_info_t
*devi
, ddi_attach_cmd_t cmd
)
15644 #pragma unused(cmd) /* __APPLE__ */
15645 dtrace_provider_id_t id
;
15646 dtrace_state_t
*state
= NULL
;
15647 dtrace_enabling_t
*enab
;
15649 lck_mtx_lock(&cpu_lock
);
15650 lck_mtx_lock(&dtrace_provider_lock
);
15651 lck_mtx_lock(&dtrace_lock
);
15653 if (ddi_soft_state_init(&dtrace_softstate
,
15654 sizeof (dtrace_state_t
), 0) != 0) {
15655 cmn_err(CE_NOTE
, "/dev/dtrace failed to initialize soft state");
15656 lck_mtx_unlock(&dtrace_lock
);
15657 lck_mtx_unlock(&dtrace_provider_lock
);
15658 lck_mtx_unlock(&cpu_lock
);
15659 return (DDI_FAILURE
);
15662 /* Darwin uses BSD cloning device driver to automagically obtain minor device number. */
15664 ddi_report_dev(devi
);
15665 dtrace_devi
= devi
;
15667 dtrace_modload
= dtrace_module_loaded
;
15668 dtrace_modunload
= dtrace_module_unloaded
;
15669 dtrace_cpu_init
= dtrace_cpu_setup_initial
;
15670 dtrace_helpers_cleanup
= dtrace_helpers_destroy
;
15671 dtrace_helpers_fork
= dtrace_helpers_duplicate
;
15672 dtrace_cpustart_init
= dtrace_suspend
;
15673 dtrace_cpustart_fini
= dtrace_resume
;
15674 dtrace_debugger_init
= dtrace_suspend
;
15675 dtrace_debugger_fini
= dtrace_resume
;
15677 register_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
15679 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
15681 dtrace_arena
= vmem_create("dtrace", (void *)1, UINT32_MAX
, 1,
15682 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
15683 dtrace_minor
= vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE
,
15684 UINT32_MAX
- DTRACEMNRN_CLONE
, 1, NULL
, NULL
, NULL
, 0,
15685 VM_SLEEP
| VMC_IDENTIFIER
);
15686 dtrace_taskq
= taskq_create("dtrace_taskq", 1, maxclsyspri
,
15689 dtrace_state_cache
= kmem_cache_create("dtrace_state_cache",
15690 sizeof (dtrace_dstate_percpu_t
) * (int)NCPU
, DTRACE_STATE_ALIGN
,
15691 NULL
, NULL
, NULL
, NULL
, NULL
, 0);
15693 lck_mtx_assert(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
15694 dtrace_bymod
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_mod
),
15695 offsetof(dtrace_probe_t
, dtpr_nextmod
),
15696 offsetof(dtrace_probe_t
, dtpr_prevmod
));
15698 dtrace_byfunc
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_func
),
15699 offsetof(dtrace_probe_t
, dtpr_nextfunc
),
15700 offsetof(dtrace_probe_t
, dtpr_prevfunc
));
15702 dtrace_byname
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_name
),
15703 offsetof(dtrace_probe_t
, dtpr_nextname
),
15704 offsetof(dtrace_probe_t
, dtpr_prevname
));
15706 if (dtrace_retain_max
< 1) {
15707 cmn_err(CE_WARN
, "illegal value (%lu) for dtrace_retain_max; "
15708 "setting to 1", dtrace_retain_max
);
15709 dtrace_retain_max
= 1;
15713 * Now discover our toxic ranges.
15715 dtrace_toxic_ranges(dtrace_toxrange_add
);
15718 * Before we register ourselves as a provider to our own framework,
15719 * we would like to assert that dtrace_provider is NULL -- but that's
15720 * not true if we were loaded as a dependency of a DTrace provider.
15721 * Once we've registered, we can assert that dtrace_provider is our
15724 (void) dtrace_register("dtrace", &dtrace_provider_attr
,
15725 DTRACE_PRIV_NONE
, 0, &dtrace_provider_ops
, NULL
, &id
);
15727 ASSERT(dtrace_provider
!= NULL
);
15728 ASSERT((dtrace_provider_id_t
)dtrace_provider
== id
);
15730 #if defined (__x86_64__)
15731 dtrace_probeid_begin
= dtrace_probe_create((dtrace_provider_id_t
)
15732 dtrace_provider
, NULL
, NULL
, "BEGIN", 1, NULL
);
15733 dtrace_probeid_end
= dtrace_probe_create((dtrace_provider_id_t
)
15734 dtrace_provider
, NULL
, NULL
, "END", 0, NULL
);
15735 dtrace_probeid_error
= dtrace_probe_create((dtrace_provider_id_t
)
15736 dtrace_provider
, NULL
, NULL
, "ERROR", 3, NULL
);
15738 #error Unknown Architecture
15741 dtrace_anon_property();
15742 lck_mtx_unlock(&cpu_lock
);
15745 * If DTrace helper tracing is enabled, we need to allocate the
15746 * trace buffer and initialize the values.
15748 if (dtrace_helptrace_enabled
) {
15749 ASSERT(dtrace_helptrace_buffer
== NULL
);
15750 dtrace_helptrace_buffer
=
15751 kmem_zalloc(dtrace_helptrace_bufsize
, KM_SLEEP
);
15752 dtrace_helptrace_next
= 0;
15756 * If there are already providers, we must ask them to provide their
15757 * probes, and then match any anonymous enabling against them. Note
15758 * that there should be no other retained enablings at this time:
15759 * the only retained enablings at this time should be the anonymous
15762 if (dtrace_anon
.dta_enabling
!= NULL
) {
15763 ASSERT(dtrace_retained
== dtrace_anon
.dta_enabling
);
15766 * APPLE NOTE: if handling anonymous dof, switch symbol modes.
15768 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) {
15769 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
;
15772 dtrace_enabling_provide(NULL
);
15773 state
= dtrace_anon
.dta_state
;
15776 * We couldn't hold cpu_lock across the above call to
15777 * dtrace_enabling_provide(), but we must hold it to actually
15778 * enable the probes. We have to drop all of our locks, pick
15779 * up cpu_lock, and regain our locks before matching the
15780 * retained anonymous enabling.
15782 lck_mtx_unlock(&dtrace_lock
);
15783 lck_mtx_unlock(&dtrace_provider_lock
);
15785 lck_mtx_lock(&cpu_lock
);
15786 lck_mtx_lock(&dtrace_provider_lock
);
15787 lck_mtx_lock(&dtrace_lock
);
15789 if ((enab
= dtrace_anon
.dta_enabling
) != NULL
)
15790 (void) dtrace_enabling_match(enab
, NULL
);
15792 lck_mtx_unlock(&cpu_lock
);
15795 lck_mtx_unlock(&dtrace_lock
);
15796 lck_mtx_unlock(&dtrace_provider_lock
);
15798 if (state
!= NULL
) {
15800 * If we created any anonymous state, set it going now.
15802 (void) dtrace_state_go(state
, &dtrace_anon
.dta_beganon
);
15805 return (DDI_SUCCESS
);
15810 dtrace_open(dev_t
*devp
, int flag
, int otyp
, cred_t
*cred_p
)
15812 #pragma unused(flag, otyp)
15813 dtrace_state_t
*state
;
15819 /* APPLE: Darwin puts Helper on its own major device. */
15822 * If no DTRACE_PRIV_* bits are set in the credential, then the
15823 * caller lacks sufficient permission to do anything with DTrace.
15825 dtrace_cred2priv(cred_p
, &priv
, &uid
, &zoneid
);
15826 if (priv
== DTRACE_PRIV_NONE
)
15830 * APPLE NOTE: We delay the initialization of fasttrap as late as possible.
15831 * It certainly can't be later than now!
15836 * Ask all providers to provide all their probes.
15838 lck_mtx_lock(&dtrace_provider_lock
);
15839 dtrace_probe_provide(NULL
, NULL
);
15840 lck_mtx_unlock(&dtrace_provider_lock
);
15842 lck_mtx_lock(&cpu_lock
);
15843 lck_mtx_lock(&dtrace_lock
);
15845 dtrace_membar_producer();
15848 * If the kernel debugger is active (that is, if the kernel debugger
15849 * modified text in some way), we won't allow the open.
15851 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
15853 lck_mtx_unlock(&dtrace_lock
);
15854 lck_mtx_unlock(&cpu_lock
);
15858 rv
= dtrace_state_create(devp
, cred_p
, &state
);
15859 lck_mtx_unlock(&cpu_lock
);
15861 if (rv
!= 0 || state
== NULL
) {
15862 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
15863 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
15864 lck_mtx_unlock(&dtrace_lock
);
15865 /* propagate EAGAIN or ERESTART */
15869 lck_mtx_unlock(&dtrace_lock
);
15871 lck_rw_lock_exclusive(&dtrace_dof_mode_lock
);
15874 * If we are currently lazy, transition states.
15876 * Unlike dtrace_close, we do not need to check the
15877 * value of dtrace_opens, as any positive value (and
15878 * we count as 1) means we transition states.
15880 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
) {
15881 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_OFF
;
15884 * Iterate all existing processes and load lazy dofs.
15886 proc_iterate(PROC_ALLPROCLIST
| PROC_NOWAITTRANS
,
15887 dtrace_lazy_dofs_proc_iterate_doit
,
15889 dtrace_lazy_dofs_proc_iterate_filter
,
15893 lck_rw_unlock_exclusive(&dtrace_dof_mode_lock
);
15896 * Update kernel symbol state.
15898 * We must own the provider and dtrace locks.
15900 * NOTE! It may appear there is a race by setting this value so late
15901 * after dtrace_probe_provide. However, any kext loaded after the
15902 * call to probe provide and before we set LAZY_OFF will be marked as
15903 * eligible for symbols from userspace. The same dtrace that is currently
15904 * calling dtrace_open() (this call!) will get a list of kexts needing
15905 * symbols and fill them in, thus closing the race window.
15907 * We want to set this value only after it certain it will succeed, as
15908 * this significantly reduces the complexity of error exits.
15910 lck_mtx_lock(&dtrace_lock
);
15911 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) {
15912 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
;
15914 lck_mtx_unlock(&dtrace_lock
);
15921 dtrace_close(dev_t dev
, int flag
, int otyp
, cred_t
*cred_p
)
15923 #pragma unused(flag, otyp, cred_p) /* __APPLE__ */
15924 minor_t minor
= getminor(dev
);
15925 dtrace_state_t
*state
;
15927 /* APPLE NOTE: Darwin puts Helper on its own major device. */
15929 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
15931 lck_mtx_lock(&cpu_lock
);
15932 lck_mtx_lock(&dtrace_lock
);
15934 if (state
->dts_anon
) {
15936 * There is anonymous state. Destroy that first.
15938 ASSERT(dtrace_anon
.dta_state
== NULL
);
15939 dtrace_state_destroy(state
->dts_anon
);
15942 dtrace_state_destroy(state
);
15943 ASSERT(dtrace_opens
> 0);
15946 * Only relinquish control of the kernel debugger interface when there
15947 * are no consumers and no anonymous enablings.
15949 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
15950 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
15952 lck_mtx_unlock(&dtrace_lock
);
15953 lck_mtx_unlock(&cpu_lock
);
15956 * Lock ordering requires the dof mode lock be taken before
15959 lck_rw_lock_exclusive(&dtrace_dof_mode_lock
);
15960 lck_mtx_lock(&dtrace_lock
);
15962 if (dtrace_opens
== 0) {
15964 * If we are currently lazy-off, and this is the last close, transition to
15967 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_OFF
) {
15968 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_ON
;
15972 * If we are the last dtrace client, switch back to lazy (from userspace) symbols
15974 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
) {
15975 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
;
15979 lck_mtx_unlock(&dtrace_lock
);
15980 lck_rw_unlock_exclusive(&dtrace_dof_mode_lock
);
15983 * Kext probes may be retained past the end of the kext's lifespan. The
15984 * probes are kept until the last reference to them has been removed.
15985 * Since closing an active dtrace context is likely to drop that last reference,
15986 * lets take a shot at cleaning out the orphaned probes now.
15988 dtrace_module_unloaded(NULL
);
15995 dtrace_ioctl_helper(u_long cmd
, caddr_t arg
, int *rv
)
15999 * Safe to check this outside the dof mode lock
16001 if (dtrace_dof_mode
== DTRACE_DOF_MODE_NEVER
)
16002 return KERN_SUCCESS
;
16005 case DTRACEHIOC_ADDDOF
:
16007 dof_helper_t
*dhp
= NULL
;
16008 size_t dof_ioctl_data_size
;
16009 dof_ioctl_data_t
* multi_dof
;
16012 user_addr_t user_address
= *(user_addr_t
*)arg
;
16013 uint64_t dof_count
;
16014 int multi_dof_claimed
= 0;
16015 proc_t
* p
= current_proc();
16018 * Read the number of DOF sections being passed in.
16020 if (copyin(user_address
+ offsetof(dof_ioctl_data_t
, dofiod_count
),
16022 sizeof(dof_count
))) {
16023 dtrace_dof_error(NULL
, "failed to copyin dofiod_count");
16028 * Range check the count.
16030 if (dof_count
== 0 || dof_count
> 1024) {
16031 dtrace_dof_error(NULL
, "dofiod_count is not valid");
16036 * Allocate a correctly sized structure and copyin the data.
16038 dof_ioctl_data_size
= DOF_IOCTL_DATA_T_SIZE(dof_count
);
16039 if ((multi_dof
= kmem_alloc(dof_ioctl_data_size
, KM_SLEEP
)) == NULL
)
16042 /* NOTE! We can no longer exit this method via return */
16043 if (copyin(user_address
, multi_dof
, dof_ioctl_data_size
) != 0) {
16044 dtrace_dof_error(NULL
, "failed copyin of dof_ioctl_data_t");
16050 * Check that the count didn't change between the first copyin and the second.
16052 if (multi_dof
->dofiod_count
!= dof_count
) {
16058 * Try to process lazily first.
16060 rval
= dtrace_lazy_dofs_add(p
, multi_dof
, &multi_dof_claimed
);
16063 * If rval is EACCES, we must be non-lazy.
16065 if (rval
== EACCES
) {
16068 * Process each dof_helper_t
16072 dhp
= &multi_dof
->dofiod_helpers
[i
];
16074 dof_hdr_t
*dof
= dtrace_dof_copyin(dhp
->dofhp_dof
, &rval
);
16077 lck_mtx_lock(&dtrace_lock
);
16080 * dtrace_helper_slurp() takes responsibility for the dof --
16081 * it may free it now or it may save it and free it later.
16083 if ((dhp
->dofhp_dof
= (uint64_t)dtrace_helper_slurp(p
, dof
, dhp
)) == -1ULL) {
16087 lck_mtx_unlock(&dtrace_lock
);
16089 } while (++i
< multi_dof
->dofiod_count
&& rval
== 0);
16093 * We need to copyout the multi_dof struct, because it contains
16094 * the generation (unique id) values needed to call DTRACEHIOC_REMOVE
16096 * This could certainly be better optimized.
16098 if (copyout(multi_dof
, user_address
, dof_ioctl_data_size
) != 0) {
16099 dtrace_dof_error(NULL
, "failed copyout of dof_ioctl_data_t");
16100 /* Don't overwrite pre-existing error code */
16101 if (rval
== 0) rval
= EFAULT
;
16106 * If we had to allocate struct memory, free it.
16108 if (multi_dof
!= NULL
&& !multi_dof_claimed
) {
16109 kmem_free(multi_dof
, dof_ioctl_data_size
);
16115 case DTRACEHIOC_REMOVE
: {
16116 int generation
= *(int*)arg
;
16117 proc_t
* p
= current_proc();
16122 int rval
= dtrace_lazy_dofs_remove(p
, generation
);
16125 * EACCES means non-lazy
16127 if (rval
== EACCES
) {
16128 lck_mtx_lock(&dtrace_lock
);
16129 rval
= dtrace_helper_destroygen(p
, generation
);
16130 lck_mtx_unlock(&dtrace_lock
);
16145 dtrace_ioctl(dev_t dev
, u_long cmd
, user_addr_t arg
, int md
, cred_t
*cr
, int *rv
)
16148 minor_t minor
= getminor(dev
);
16149 dtrace_state_t
*state
;
16152 /* Darwin puts Helper on its own major device. */
16154 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
16156 if (state
->dts_anon
) {
16157 ASSERT(dtrace_anon
.dta_state
== NULL
);
16158 state
= state
->dts_anon
;
16162 case DTRACEIOC_PROVIDER
: {
16163 dtrace_providerdesc_t pvd
;
16164 dtrace_provider_t
*pvp
;
16166 if (copyin(arg
, &pvd
, sizeof (pvd
)) != 0)
16169 pvd
.dtvd_name
[DTRACE_PROVNAMELEN
- 1] = '\0';
16170 lck_mtx_lock(&dtrace_provider_lock
);
16172 for (pvp
= dtrace_provider
; pvp
!= NULL
; pvp
= pvp
->dtpv_next
) {
16173 if (strncmp(pvp
->dtpv_name
, pvd
.dtvd_name
, DTRACE_PROVNAMELEN
) == 0)
16177 lck_mtx_unlock(&dtrace_provider_lock
);
16182 bcopy(&pvp
->dtpv_priv
, &pvd
.dtvd_priv
, sizeof (dtrace_ppriv_t
));
16183 bcopy(&pvp
->dtpv_attr
, &pvd
.dtvd_attr
, sizeof (dtrace_pattr_t
));
16184 if (copyout(&pvd
, arg
, sizeof (pvd
)) != 0)
16190 case DTRACEIOC_EPROBE
: {
16191 dtrace_eprobedesc_t epdesc
;
16193 dtrace_action_t
*act
;
16199 if (copyin(arg
, &epdesc
, sizeof (epdesc
)) != 0)
16202 lck_mtx_lock(&dtrace_lock
);
16204 if ((ecb
= dtrace_epid2ecb(state
, epdesc
.dtepd_epid
)) == NULL
) {
16205 lck_mtx_unlock(&dtrace_lock
);
16209 if (ecb
->dte_probe
== NULL
) {
16210 lck_mtx_unlock(&dtrace_lock
);
16214 epdesc
.dtepd_probeid
= ecb
->dte_probe
->dtpr_id
;
16215 epdesc
.dtepd_uarg
= ecb
->dte_uarg
;
16216 epdesc
.dtepd_size
= ecb
->dte_size
;
16218 nrecs
= epdesc
.dtepd_nrecs
;
16219 epdesc
.dtepd_nrecs
= 0;
16220 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16221 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16224 epdesc
.dtepd_nrecs
++;
16228 * Now that we have the size, we need to allocate a temporary
16229 * buffer in which to store the complete description. We need
16230 * the temporary buffer to be able to drop dtrace_lock()
16231 * across the copyout(), below.
16233 size
= sizeof (dtrace_eprobedesc_t
) +
16234 (epdesc
.dtepd_nrecs
* sizeof (dtrace_recdesc_t
));
16236 buf
= kmem_alloc(size
, KM_SLEEP
);
16237 dest
= (uintptr_t)buf
;
16239 bcopy(&epdesc
, (void *)dest
, sizeof (epdesc
));
16240 dest
+= offsetof(dtrace_eprobedesc_t
, dtepd_rec
[0]);
16242 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16243 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16249 bcopy(&act
->dta_rec
, (void *)dest
,
16250 sizeof (dtrace_recdesc_t
));
16251 dest
+= sizeof (dtrace_recdesc_t
);
16254 lck_mtx_unlock(&dtrace_lock
);
16256 if (copyout(buf
, arg
, dest
- (uintptr_t)buf
) != 0) {
16257 kmem_free(buf
, size
);
16261 kmem_free(buf
, size
);
16265 case DTRACEIOC_AGGDESC
: {
16266 dtrace_aggdesc_t aggdesc
;
16267 dtrace_action_t
*act
;
16268 dtrace_aggregation_t
*agg
;
16271 dtrace_recdesc_t
*lrec
;
16276 if (copyin(arg
, &aggdesc
, sizeof (aggdesc
)) != 0)
16279 lck_mtx_lock(&dtrace_lock
);
16281 if ((agg
= dtrace_aggid2agg(state
, aggdesc
.dtagd_id
)) == NULL
) {
16282 lck_mtx_unlock(&dtrace_lock
);
16286 aggdesc
.dtagd_epid
= agg
->dtag_ecb
->dte_epid
;
16288 nrecs
= aggdesc
.dtagd_nrecs
;
16289 aggdesc
.dtagd_nrecs
= 0;
16291 offs
= agg
->dtag_base
;
16292 lrec
= &agg
->dtag_action
.dta_rec
;
16293 aggdesc
.dtagd_size
= lrec
->dtrd_offset
+ lrec
->dtrd_size
- offs
;
16295 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16296 ASSERT(act
->dta_intuple
||
16297 DTRACEACT_ISAGG(act
->dta_kind
));
16300 * If this action has a record size of zero, it
16301 * denotes an argument to the aggregating action.
16302 * Because the presence of this record doesn't (or
16303 * shouldn't) affect the way the data is interpreted,
16304 * we don't copy it out to save user-level the
16305 * confusion of dealing with a zero-length record.
16307 if (act
->dta_rec
.dtrd_size
== 0) {
16308 ASSERT(agg
->dtag_hasarg
);
16312 aggdesc
.dtagd_nrecs
++;
16314 if (act
== &agg
->dtag_action
)
16319 * Now that we have the size, we need to allocate a temporary
16320 * buffer in which to store the complete description. We need
16321 * the temporary buffer to be able to drop dtrace_lock()
16322 * across the copyout(), below.
16324 size
= sizeof (dtrace_aggdesc_t
) +
16325 (aggdesc
.dtagd_nrecs
* sizeof (dtrace_recdesc_t
));
16327 buf
= kmem_alloc(size
, KM_SLEEP
);
16328 dest
= (uintptr_t)buf
;
16330 bcopy(&aggdesc
, (void *)dest
, sizeof (aggdesc
));
16331 dest
+= offsetof(dtrace_aggdesc_t
, dtagd_rec
[0]);
16333 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16334 dtrace_recdesc_t rec
= act
->dta_rec
;
16337 * See the comment in the above loop for why we pass
16338 * over zero-length records.
16340 if (rec
.dtrd_size
== 0) {
16341 ASSERT(agg
->dtag_hasarg
);
16348 rec
.dtrd_offset
-= offs
;
16349 bcopy(&rec
, (void *)dest
, sizeof (rec
));
16350 dest
+= sizeof (dtrace_recdesc_t
);
16352 if (act
== &agg
->dtag_action
)
16356 lck_mtx_unlock(&dtrace_lock
);
16358 if (copyout(buf
, arg
, dest
- (uintptr_t)buf
) != 0) {
16359 kmem_free(buf
, size
);
16363 kmem_free(buf
, size
);
16367 case DTRACEIOC_ENABLE
: {
16369 dtrace_enabling_t
*enab
= NULL
;
16370 dtrace_vstate_t
*vstate
;
16376 * If a NULL argument has been passed, we take this as our
16377 * cue to reevaluate our enablings.
16380 dtrace_enabling_matchall();
16385 if ((dof
= dtrace_dof_copyin(arg
, &rval
)) == NULL
)
16388 lck_mtx_lock(&cpu_lock
);
16389 lck_mtx_lock(&dtrace_lock
);
16390 vstate
= &state
->dts_vstate
;
16392 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
16393 lck_mtx_unlock(&dtrace_lock
);
16394 lck_mtx_unlock(&cpu_lock
);
16395 dtrace_dof_destroy(dof
);
16399 if (dtrace_dof_slurp(dof
, vstate
, cr
, &enab
, 0, B_TRUE
) != 0) {
16400 lck_mtx_unlock(&dtrace_lock
);
16401 lck_mtx_unlock(&cpu_lock
);
16402 dtrace_dof_destroy(dof
);
16406 if ((rval
= dtrace_dof_options(dof
, state
)) != 0) {
16407 dtrace_enabling_destroy(enab
);
16408 lck_mtx_unlock(&dtrace_lock
);
16409 lck_mtx_unlock(&cpu_lock
);
16410 dtrace_dof_destroy(dof
);
16414 if ((err
= dtrace_enabling_match(enab
, rv
)) == 0) {
16415 err
= dtrace_enabling_retain(enab
);
16417 dtrace_enabling_destroy(enab
);
16420 lck_mtx_unlock(&dtrace_lock
);
16421 lck_mtx_unlock(&cpu_lock
);
16422 dtrace_dof_destroy(dof
);
16427 case DTRACEIOC_REPLICATE
: {
16428 dtrace_repldesc_t desc
;
16429 dtrace_probedesc_t
*match
= &desc
.dtrpd_match
;
16430 dtrace_probedesc_t
*create
= &desc
.dtrpd_create
;
16433 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
16436 match
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16437 match
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16438 match
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16439 match
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16441 create
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16442 create
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16443 create
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16444 create
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16446 lck_mtx_lock(&dtrace_lock
);
16447 err
= dtrace_enabling_replicate(state
, match
, create
);
16448 lck_mtx_unlock(&dtrace_lock
);
16453 case DTRACEIOC_PROBEMATCH
:
16454 case DTRACEIOC_PROBES
: {
16455 dtrace_probe_t
*probe
= NULL
;
16456 dtrace_probedesc_t desc
;
16457 dtrace_probekey_t pkey
;
16464 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
16467 desc
.dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16468 desc
.dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16469 desc
.dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16470 desc
.dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16473 * Before we attempt to match this probe, we want to give
16474 * all providers the opportunity to provide it.
16476 if (desc
.dtpd_id
== DTRACE_IDNONE
) {
16477 lck_mtx_lock(&dtrace_provider_lock
);
16478 dtrace_probe_provide(&desc
, NULL
);
16479 lck_mtx_unlock(&dtrace_provider_lock
);
16483 if (cmd
== DTRACEIOC_PROBEMATCH
) {
16484 dtrace_probekey(&desc
, &pkey
);
16485 pkey
.dtpk_id
= DTRACE_IDNONE
;
16488 dtrace_cred2priv(cr
, &priv
, &uid
, &zoneid
);
16490 lck_mtx_lock(&dtrace_lock
);
16492 if (cmd
== DTRACEIOC_PROBEMATCH
) {
16493 /* Quiet compiler warning */
16494 for (i
= desc
.dtpd_id
; i
<= (dtrace_id_t
)dtrace_nprobes
; i
++) {
16495 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
16496 (m
= dtrace_match_probe(probe
, &pkey
,
16497 priv
, uid
, zoneid
)) != 0)
16502 lck_mtx_unlock(&dtrace_lock
);
16507 /* Quiet compiler warning */
16508 for (i
= desc
.dtpd_id
; i
<= (dtrace_id_t
)dtrace_nprobes
; i
++) {
16509 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
16510 dtrace_match_priv(probe
, priv
, uid
, zoneid
))
16515 if (probe
== NULL
) {
16516 lck_mtx_unlock(&dtrace_lock
);
16520 dtrace_probe_description(probe
, &desc
);
16521 lck_mtx_unlock(&dtrace_lock
);
16523 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
16529 case DTRACEIOC_PROBEARG
: {
16530 dtrace_argdesc_t desc
;
16531 dtrace_probe_t
*probe
;
16532 dtrace_provider_t
*prov
;
16534 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
16537 if (desc
.dtargd_id
== DTRACE_IDNONE
)
16540 if (desc
.dtargd_ndx
== DTRACE_ARGNONE
)
16543 lck_mtx_lock(&dtrace_provider_lock
);
16544 lck_mtx_lock(&mod_lock
);
16545 lck_mtx_lock(&dtrace_lock
);
16547 /* Quiet compiler warning */
16548 if (desc
.dtargd_id
> (dtrace_id_t
)dtrace_nprobes
) {
16549 lck_mtx_unlock(&dtrace_lock
);
16550 lck_mtx_unlock(&mod_lock
);
16551 lck_mtx_unlock(&dtrace_provider_lock
);
16555 if ((probe
= dtrace_probes
[desc
.dtargd_id
- 1]) == NULL
) {
16556 lck_mtx_unlock(&dtrace_lock
);
16557 lck_mtx_unlock(&mod_lock
);
16558 lck_mtx_unlock(&dtrace_provider_lock
);
16562 lck_mtx_unlock(&dtrace_lock
);
16564 prov
= probe
->dtpr_provider
;
16566 if (prov
->dtpv_pops
.dtps_getargdesc
== NULL
) {
16568 * There isn't any typed information for this probe.
16569 * Set the argument number to DTRACE_ARGNONE.
16571 desc
.dtargd_ndx
= DTRACE_ARGNONE
;
16573 desc
.dtargd_native
[0] = '\0';
16574 desc
.dtargd_xlate
[0] = '\0';
16575 desc
.dtargd_mapping
= desc
.dtargd_ndx
;
16577 prov
->dtpv_pops
.dtps_getargdesc(prov
->dtpv_arg
,
16578 probe
->dtpr_id
, probe
->dtpr_arg
, &desc
);
16581 lck_mtx_unlock(&mod_lock
);
16582 lck_mtx_unlock(&dtrace_provider_lock
);
16584 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
16590 case DTRACEIOC_GO
: {
16591 processorid_t cpuid
;
16592 rval
= dtrace_state_go(state
, &cpuid
);
16597 if (copyout(&cpuid
, arg
, sizeof (cpuid
)) != 0)
16603 case DTRACEIOC_STOP
: {
16604 processorid_t cpuid
;
16606 lck_mtx_lock(&dtrace_lock
);
16607 rval
= dtrace_state_stop(state
, &cpuid
);
16608 lck_mtx_unlock(&dtrace_lock
);
16613 if (copyout(&cpuid
, arg
, sizeof (cpuid
)) != 0)
16619 case DTRACEIOC_DOFGET
: {
16620 dof_hdr_t hdr
, *dof
;
16623 if (copyin(arg
, &hdr
, sizeof (hdr
)) != 0)
16626 lck_mtx_lock(&dtrace_lock
);
16627 dof
= dtrace_dof_create(state
);
16628 lck_mtx_unlock(&dtrace_lock
);
16630 len
= MIN(hdr
.dofh_loadsz
, dof
->dofh_loadsz
);
16631 rval
= copyout(dof
, arg
, len
);
16632 dtrace_dof_destroy(dof
);
16634 return (rval
== 0 ? 0 : EFAULT
);
16637 case DTRACEIOC_AGGSNAP
:
16638 case DTRACEIOC_BUFSNAP
: {
16639 dtrace_bufdesc_t desc
;
16641 dtrace_buffer_t
*buf
;
16643 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
16646 if ((int)desc
.dtbd_cpu
< 0 || desc
.dtbd_cpu
>= NCPU
)
16649 lck_mtx_lock(&dtrace_lock
);
16651 if (cmd
== DTRACEIOC_BUFSNAP
) {
16652 buf
= &state
->dts_buffer
[desc
.dtbd_cpu
];
16654 buf
= &state
->dts_aggbuffer
[desc
.dtbd_cpu
];
16657 if (buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
)) {
16658 size_t sz
= buf
->dtb_offset
;
16660 if (state
->dts_activity
!= DTRACE_ACTIVITY_STOPPED
) {
16661 lck_mtx_unlock(&dtrace_lock
);
16666 * If this buffer has already been consumed, we're
16667 * going to indicate that there's nothing left here
16670 if (buf
->dtb_flags
& DTRACEBUF_CONSUMED
) {
16671 lck_mtx_unlock(&dtrace_lock
);
16673 desc
.dtbd_size
= 0;
16674 desc
.dtbd_drops
= 0;
16675 desc
.dtbd_errors
= 0;
16676 desc
.dtbd_oldest
= 0;
16677 sz
= sizeof (desc
);
16679 if (copyout(&desc
, arg
, sz
) != 0)
16686 * If this is a ring buffer that has wrapped, we want
16687 * to copy the whole thing out.
16689 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
16690 dtrace_buffer_polish(buf
);
16691 sz
= buf
->dtb_size
;
16694 if (copyout(buf
->dtb_tomax
, (user_addr_t
)desc
.dtbd_data
, sz
) != 0) {
16695 lck_mtx_unlock(&dtrace_lock
);
16699 desc
.dtbd_size
= sz
;
16700 desc
.dtbd_drops
= buf
->dtb_drops
;
16701 desc
.dtbd_errors
= buf
->dtb_errors
;
16702 desc
.dtbd_oldest
= buf
->dtb_xamot_offset
;
16703 desc
.dtbd_timestamp
= dtrace_gethrtime();
16705 lck_mtx_unlock(&dtrace_lock
);
16707 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
16710 buf
->dtb_flags
|= DTRACEBUF_CONSUMED
;
16715 if (buf
->dtb_tomax
== NULL
) {
16716 ASSERT(buf
->dtb_xamot
== NULL
);
16717 lck_mtx_unlock(&dtrace_lock
);
16721 cached
= buf
->dtb_tomax
;
16722 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
16724 dtrace_xcall(desc
.dtbd_cpu
,
16725 (dtrace_xcall_t
)dtrace_buffer_switch
, buf
);
16727 state
->dts_errors
+= buf
->dtb_xamot_errors
;
16730 * If the buffers did not actually switch, then the cross call
16731 * did not take place -- presumably because the given CPU is
16732 * not in the ready set. If this is the case, we'll return
16735 if (buf
->dtb_tomax
== cached
) {
16736 ASSERT(buf
->dtb_xamot
!= cached
);
16737 lck_mtx_unlock(&dtrace_lock
);
16741 ASSERT(cached
== buf
->dtb_xamot
);
16744 * We have our snapshot; now copy it out.
16746 if (copyout(buf
->dtb_xamot
, (user_addr_t
)desc
.dtbd_data
,
16747 buf
->dtb_xamot_offset
) != 0) {
16748 lck_mtx_unlock(&dtrace_lock
);
16752 desc
.dtbd_size
= buf
->dtb_xamot_offset
;
16753 desc
.dtbd_drops
= buf
->dtb_xamot_drops
;
16754 desc
.dtbd_errors
= buf
->dtb_xamot_errors
;
16755 desc
.dtbd_oldest
= 0;
16756 desc
.dtbd_timestamp
= buf
->dtb_switched
;
16758 lck_mtx_unlock(&dtrace_lock
);
16761 * Finally, copy out the buffer description.
16763 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
16769 case DTRACEIOC_CONF
: {
16770 dtrace_conf_t conf
;
16772 bzero(&conf
, sizeof (conf
));
16773 conf
.dtc_difversion
= DIF_VERSION
;
16774 conf
.dtc_difintregs
= DIF_DIR_NREGS
;
16775 conf
.dtc_diftupregs
= DIF_DTR_NREGS
;
16776 conf
.dtc_ctfmodel
= CTF_MODEL_NATIVE
;
16778 if (copyout(&conf
, arg
, sizeof (conf
)) != 0)
16784 case DTRACEIOC_STATUS
: {
16785 dtrace_status_t stat
;
16786 dtrace_dstate_t
*dstate
;
16791 * See the comment in dtrace_state_deadman() for the reason
16792 * for setting dts_laststatus to INT64_MAX before setting
16793 * it to the correct value.
16795 state
->dts_laststatus
= INT64_MAX
;
16796 dtrace_membar_producer();
16797 state
->dts_laststatus
= dtrace_gethrtime();
16799 bzero(&stat
, sizeof (stat
));
16801 lck_mtx_lock(&dtrace_lock
);
16803 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
) {
16804 lck_mtx_unlock(&dtrace_lock
);
16808 if (state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
)
16809 stat
.dtst_exiting
= 1;
16811 nerrs
= state
->dts_errors
;
16812 dstate
= &state
->dts_vstate
.dtvs_dynvars
;
16814 for (i
= 0; i
< (int)NCPU
; i
++) {
16815 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[i
];
16817 stat
.dtst_dyndrops
+= dcpu
->dtdsc_drops
;
16818 stat
.dtst_dyndrops_dirty
+= dcpu
->dtdsc_dirty_drops
;
16819 stat
.dtst_dyndrops_rinsing
+= dcpu
->dtdsc_rinsing_drops
;
16821 if (state
->dts_buffer
[i
].dtb_flags
& DTRACEBUF_FULL
)
16822 stat
.dtst_filled
++;
16824 nerrs
+= state
->dts_buffer
[i
].dtb_errors
;
16826 for (j
= 0; j
< state
->dts_nspeculations
; j
++) {
16827 dtrace_speculation_t
*spec
;
16828 dtrace_buffer_t
*buf
;
16830 spec
= &state
->dts_speculations
[j
];
16831 buf
= &spec
->dtsp_buffer
[i
];
16832 stat
.dtst_specdrops
+= buf
->dtb_xamot_drops
;
16836 stat
.dtst_specdrops_busy
= state
->dts_speculations_busy
;
16837 stat
.dtst_specdrops_unavail
= state
->dts_speculations_unavail
;
16838 stat
.dtst_stkstroverflows
= state
->dts_stkstroverflows
;
16839 stat
.dtst_dblerrors
= state
->dts_dblerrors
;
16841 (state
->dts_activity
== DTRACE_ACTIVITY_KILLED
);
16842 stat
.dtst_errors
= nerrs
;
16844 lck_mtx_unlock(&dtrace_lock
);
16846 if (copyout(&stat
, arg
, sizeof (stat
)) != 0)
16852 case DTRACEIOC_FORMAT
: {
16853 dtrace_fmtdesc_t fmt
;
16857 if (copyin(arg
, &fmt
, sizeof (fmt
)) != 0)
16860 lck_mtx_lock(&dtrace_lock
);
16862 if (fmt
.dtfd_format
== 0 ||
16863 fmt
.dtfd_format
> state
->dts_nformats
) {
16864 lck_mtx_unlock(&dtrace_lock
);
16869 * Format strings are allocated contiguously and they are
16870 * never freed; if a format index is less than the number
16871 * of formats, we can assert that the format map is non-NULL
16872 * and that the format for the specified index is non-NULL.
16874 ASSERT(state
->dts_formats
!= NULL
);
16875 str
= state
->dts_formats
[fmt
.dtfd_format
- 1];
16876 ASSERT(str
!= NULL
);
16878 len
= strlen(str
) + 1;
16880 if (len
> fmt
.dtfd_length
) {
16881 fmt
.dtfd_length
= len
;
16883 if (copyout(&fmt
, arg
, sizeof (fmt
)) != 0) {
16884 lck_mtx_unlock(&dtrace_lock
);
16888 if (copyout(str
, (user_addr_t
)fmt
.dtfd_string
, len
) != 0) {
16889 lck_mtx_unlock(&dtrace_lock
);
16894 lck_mtx_unlock(&dtrace_lock
);
16898 case DTRACEIOC_MODUUIDSLIST
: {
16899 size_t module_uuids_list_size
;
16900 dtrace_module_uuids_list_t
* uuids_list
;
16901 uint64_t dtmul_count
;
16904 * Security restrictions make this operation illegal, if this is enabled DTrace
16905 * must refuse to provide any fbt probes.
16907 if (dtrace_fbt_probes_restricted()) {
16908 cmn_err(CE_WARN
, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
16913 * Fail if the kernel symbol mode makes this operation illegal.
16914 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
16915 * for them without holding the dtrace_lock.
16917 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
||
16918 dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL
) {
16919 cmn_err(CE_WARN
, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_MODUUIDSLIST", dtrace_kernel_symbol_mode
);
16924 * Read the number of symbolsdesc structs being passed in.
16926 if (copyin(arg
+ offsetof(dtrace_module_uuids_list_t
, dtmul_count
),
16928 sizeof(dtmul_count
))) {
16929 cmn_err(CE_WARN
, "failed to copyin dtmul_count");
16934 * Range check the count. More than 2k kexts is probably an error.
16936 if (dtmul_count
> 2048) {
16937 cmn_err(CE_WARN
, "dtmul_count is not valid");
16942 * For all queries, we return EINVAL when the user specified
16943 * count does not match the actual number of modules we find
16946 * If the user specified count is zero, then this serves as a
16947 * simple query to count the available modules in need of symbols.
16952 if (dtmul_count
== 0)
16954 lck_mtx_lock(&mod_lock
);
16955 struct modctl
* ctl
= dtrace_modctl_list
;
16957 /* Update the private probes bit */
16958 if (dtrace_provide_private_probes
)
16959 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
16961 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
16962 if (!MOD_SYMBOLS_DONE(ctl
)) {
16966 ctl
= ctl
->mod_next
;
16968 lck_mtx_unlock(&mod_lock
);
16970 if (copyout(&dtmul_count
, arg
, sizeof (dtmul_count
)) != 0)
16977 * If we reach this point, then we have a request for full list data.
16978 * Allocate a correctly sized structure and copyin the data.
16980 module_uuids_list_size
= DTRACE_MODULE_UUIDS_LIST_SIZE(dtmul_count
);
16981 if ((uuids_list
= kmem_alloc(module_uuids_list_size
, KM_SLEEP
)) == NULL
)
16984 /* NOTE! We can no longer exit this method via return */
16985 if (copyin(arg
, uuids_list
, module_uuids_list_size
) != 0) {
16986 cmn_err(CE_WARN
, "failed copyin of dtrace_module_uuids_list_t");
16988 goto moduuidslist_cleanup
;
16992 * Check that the count didn't change between the first copyin and the second.
16994 if (uuids_list
->dtmul_count
!= dtmul_count
) {
16996 goto moduuidslist_cleanup
;
17000 * Build the list of UUID's that need symbols
17002 lck_mtx_lock(&mod_lock
);
17006 struct modctl
* ctl
= dtrace_modctl_list
;
17008 /* Update the private probes bit */
17009 if (dtrace_provide_private_probes
)
17010 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
17013 * We assume that userspace symbols will be "better" than kernel level symbols,
17014 * as userspace can search for dSYM(s) and symbol'd binaries. Even if kernel syms
17015 * are available, add user syms if the module might use them.
17017 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
17018 if (!MOD_SYMBOLS_DONE(ctl
)) {
17019 UUID
* uuid
= &uuids_list
->dtmul_uuid
[dtmul_count
];
17020 if (dtmul_count
++ < uuids_list
->dtmul_count
) {
17021 memcpy(uuid
, ctl
->mod_uuid
, sizeof(UUID
));
17024 ctl
= ctl
->mod_next
;
17027 lck_mtx_unlock(&mod_lock
);
17029 if (uuids_list
->dtmul_count
< dtmul_count
)
17032 uuids_list
->dtmul_count
= dtmul_count
;
17035 * Copyout the symbols list (or at least the count!)
17037 if (copyout(uuids_list
, arg
, module_uuids_list_size
) != 0) {
17038 cmn_err(CE_WARN
, "failed copyout of dtrace_symbolsdesc_list_t");
17042 moduuidslist_cleanup
:
17044 * If we had to allocate struct memory, free it.
17046 if (uuids_list
!= NULL
) {
17047 kmem_free(uuids_list
, module_uuids_list_size
);
17053 case DTRACEIOC_PROVMODSYMS
: {
17054 size_t module_symbols_size
;
17055 dtrace_module_symbols_t
* module_symbols
;
17056 uint64_t dtmodsyms_count
;
17059 * Security restrictions make this operation illegal, if this is enabled DTrace
17060 * must refuse to provide any fbt probes.
17062 if (dtrace_fbt_probes_restricted()) {
17063 cmn_err(CE_WARN
, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
17068 * Fail if the kernel symbol mode makes this operation illegal.
17069 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
17070 * for them without holding the dtrace_lock.
17072 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
||
17073 dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL
) {
17074 cmn_err(CE_WARN
, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_PROVMODSYMS", dtrace_kernel_symbol_mode
);
17079 * Read the number of module symbols structs being passed in.
17081 if (copyin(arg
+ offsetof(dtrace_module_symbols_t
, dtmodsyms_count
),
17083 sizeof(dtmodsyms_count
))) {
17084 cmn_err(CE_WARN
, "failed to copyin dtmodsyms_count");
17089 * Range check the count. How much data can we pass around?
17092 if (dtmodsyms_count
== 0 || (dtmodsyms_count
> 100 * 1024)) {
17093 cmn_err(CE_WARN
, "dtmodsyms_count is not valid");
17098 * Allocate a correctly sized structure and copyin the data.
17100 module_symbols_size
= DTRACE_MODULE_SYMBOLS_SIZE(dtmodsyms_count
);
17101 if ((module_symbols
= kmem_alloc(module_symbols_size
, KM_SLEEP
)) == NULL
)
17106 /* NOTE! We can no longer exit this method via return */
17107 if (copyin(arg
, module_symbols
, module_symbols_size
) != 0) {
17108 cmn_err(CE_WARN
, "failed copyin of dtrace_module_symbols_t, symbol count %llu", module_symbols
->dtmodsyms_count
);
17110 goto module_symbols_cleanup
;
17114 * Check that the count didn't change between the first copyin and the second.
17116 if (module_symbols
->dtmodsyms_count
!= dtmodsyms_count
) {
17118 goto module_symbols_cleanup
;
17122 * Find the modctl to add symbols to.
17124 lck_mtx_lock(&dtrace_provider_lock
);
17125 lck_mtx_lock(&mod_lock
);
17127 struct modctl
* ctl
= dtrace_modctl_list
;
17129 /* Update the private probes bit */
17130 if (dtrace_provide_private_probes
)
17131 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
17133 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
17134 if (MOD_HAS_UUID(ctl
) && !MOD_SYMBOLS_DONE(ctl
)) {
17135 if (memcmp(module_symbols
->dtmodsyms_uuid
, ctl
->mod_uuid
, sizeof(UUID
)) == 0) {
17137 ctl
->mod_user_symbols
= module_symbols
;
17141 ctl
= ctl
->mod_next
;
17145 dtrace_provider_t
*prv
;
17148 * We're going to call each providers per-module provide operation
17149 * specifying only this module.
17151 for (prv
= dtrace_provider
; prv
!= NULL
; prv
= prv
->dtpv_next
)
17152 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
17155 * We gave every provider a chance to provide with the user syms, go ahead and clear them
17157 ctl
->mod_user_symbols
= NULL
; /* MUST reset this to clear HAS_USERSPACE_SYMBOLS */
17160 lck_mtx_unlock(&mod_lock
);
17161 lck_mtx_unlock(&dtrace_provider_lock
);
17163 module_symbols_cleanup
:
17165 * If we had to allocate struct memory, free it.
17167 if (module_symbols
!= NULL
) {
17168 kmem_free(module_symbols
, module_symbols_size
);
17174 case DTRACEIOC_PROCWAITFOR
: {
17175 dtrace_procdesc_t pdesc
= {
17180 if ((rval
= copyin(arg
, &pdesc
, sizeof(pdesc
))) != 0)
17181 goto proc_waitfor_error
;
17183 if ((rval
= dtrace_proc_waitfor(&pdesc
)) != 0)
17184 goto proc_waitfor_error
;
17186 if ((rval
= copyout(&pdesc
, arg
, sizeof(pdesc
))) != 0)
17187 goto proc_waitfor_error
;
17191 proc_waitfor_error
:
17192 /* The process was suspended, revert this since the client will not do it. */
17193 if (pdesc
.p_pid
!= -1) {
17194 proc_t
*proc
= proc_find(pdesc
.p_pid
);
17195 if (proc
!= PROC_NULL
) {
17196 task_pidresume(proc
->task
);
17212 * APPLE NOTE: dtrace_detach not implemented
17214 #if !defined(__APPLE__)
17217 dtrace_detach(dev_info_t
*dip
, ddi_detach_cmd_t cmd
)
17219 dtrace_state_t
*state
;
17226 return (DDI_SUCCESS
);
17229 return (DDI_FAILURE
);
17232 lck_mtx_lock(&cpu_lock
);
17233 lck_mtx_lock(&dtrace_provider_lock
);
17234 lck_mtx_lock(&dtrace_lock
);
17236 ASSERT(dtrace_opens
== 0);
17238 if (dtrace_helpers
> 0) {
17239 lck_mtx_unlock(&dtrace_lock
);
17240 lck_mtx_unlock(&dtrace_provider_lock
);
17241 lck_mtx_unlock(&cpu_lock
);
17242 return (DDI_FAILURE
);
17245 if (dtrace_unregister((dtrace_provider_id_t
)dtrace_provider
) != 0) {
17246 lck_mtx_unlock(&dtrace_lock
);
17247 lck_mtx_unlock(&dtrace_provider_lock
);
17248 lck_mtx_unlock(&cpu_lock
);
17249 return (DDI_FAILURE
);
17252 dtrace_provider
= NULL
;
17254 if ((state
= dtrace_anon_grab()) != NULL
) {
17256 * If there were ECBs on this state, the provider should
17257 * have not been allowed to detach; assert that there is
17260 ASSERT(state
->dts_necbs
== 0);
17261 dtrace_state_destroy(state
);
17264 * If we're being detached with anonymous state, we need to
17265 * indicate to the kernel debugger that DTrace is now inactive.
17267 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
17270 bzero(&dtrace_anon
, sizeof (dtrace_anon_t
));
17271 unregister_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
17272 dtrace_cpu_init
= NULL
;
17273 dtrace_helpers_cleanup
= NULL
;
17274 dtrace_helpers_fork
= NULL
;
17275 dtrace_cpustart_init
= NULL
;
17276 dtrace_cpustart_fini
= NULL
;
17277 dtrace_debugger_init
= NULL
;
17278 dtrace_debugger_fini
= NULL
;
17279 dtrace_kreloc_init
= NULL
;
17280 dtrace_kreloc_fini
= NULL
;
17281 dtrace_modload
= NULL
;
17282 dtrace_modunload
= NULL
;
17284 lck_mtx_unlock(&cpu_lock
);
17286 if (dtrace_helptrace_enabled
) {
17287 kmem_free(dtrace_helptrace_buffer
, dtrace_helptrace_bufsize
);
17288 dtrace_helptrace_buffer
= NULL
;
17291 kmem_free(dtrace_probes
, dtrace_nprobes
* sizeof (dtrace_probe_t
*));
17292 dtrace_probes
= NULL
;
17293 dtrace_nprobes
= 0;
17295 dtrace_hash_destroy(dtrace_bymod
);
17296 dtrace_hash_destroy(dtrace_byfunc
);
17297 dtrace_hash_destroy(dtrace_byname
);
17298 dtrace_bymod
= NULL
;
17299 dtrace_byfunc
= NULL
;
17300 dtrace_byname
= NULL
;
17302 kmem_cache_destroy(dtrace_state_cache
);
17303 vmem_destroy(dtrace_minor
);
17304 vmem_destroy(dtrace_arena
);
17306 if (dtrace_toxrange
!= NULL
) {
17307 kmem_free(dtrace_toxrange
,
17308 dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
));
17309 dtrace_toxrange
= NULL
;
17310 dtrace_toxranges
= 0;
17311 dtrace_toxranges_max
= 0;
17314 ddi_remove_minor_node(dtrace_devi
, NULL
);
17315 dtrace_devi
= NULL
;
17317 ddi_soft_state_fini(&dtrace_softstate
);
17319 ASSERT(dtrace_vtime_references
== 0);
17320 ASSERT(dtrace_opens
== 0);
17321 ASSERT(dtrace_retained
== NULL
);
17323 lck_mtx_unlock(&dtrace_lock
);
17324 lck_mtx_unlock(&dtrace_provider_lock
);
17327 * We don't destroy the task queue until after we have dropped our
17328 * locks (taskq_destroy() may block on running tasks). To prevent
17329 * attempting to do work after we have effectively detached but before
17330 * the task queue has been destroyed, all tasks dispatched via the
17331 * task queue must check that DTrace is still attached before
17332 * performing any operation.
17334 taskq_destroy(dtrace_taskq
);
17335 dtrace_taskq
= NULL
;
17337 return (DDI_SUCCESS
);
17339 #endif /* __APPLE__ */
17341 d_open_t _dtrace_open
, helper_open
;
17342 d_close_t _dtrace_close
, helper_close
;
17343 d_ioctl_t _dtrace_ioctl
, helper_ioctl
;
17346 _dtrace_open(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
17349 dev_t locdev
= dev
;
17351 return dtrace_open( &locdev
, flags
, devtype
, CRED());
17355 helper_open(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
17357 #pragma unused(dev,flags,devtype,p)
17362 _dtrace_close(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
17365 return dtrace_close( dev
, flags
, devtype
, CRED());
17369 helper_close(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
17371 #pragma unused(dev,flags,devtype,p)
17376 _dtrace_ioctl(dev_t dev
, u_long cmd
, caddr_t data
, int fflag
, struct proc
*p
)
17380 user_addr_t uaddrp
;
17382 if (proc_is64bit(p
))
17383 uaddrp
= *(user_addr_t
*)data
;
17385 uaddrp
= (user_addr_t
) *(uint32_t *)data
;
17387 err
= dtrace_ioctl(dev
, cmd
, uaddrp
, fflag
, CRED(), &rv
);
17389 /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
17391 ASSERT( (err
& 0xfffff000) == 0 );
17392 return (err
& 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
17393 } else if (rv
!= 0) {
17394 ASSERT( (rv
& 0xfff00000) == 0 );
17395 return (((rv
& 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
17401 helper_ioctl(dev_t dev
, u_long cmd
, caddr_t data
, int fflag
, struct proc
*p
)
17403 #pragma unused(dev,fflag,p)
17406 err
= dtrace_ioctl_helper(cmd
, data
, &rv
);
17407 /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
17409 ASSERT( (err
& 0xfffff000) == 0 );
17410 return (err
& 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
17411 } else if (rv
!= 0) {
17412 ASSERT( (rv
& 0xfff00000) == 0 );
17413 return (((rv
& 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
17418 #define HELPER_MAJOR -24 /* let the kernel pick the device number */
17421 * A struct describing which functions will get invoked for certain
17424 static struct cdevsw helper_cdevsw
=
17426 helper_open
, /* open */
17427 helper_close
, /* close */
17428 eno_rdwrt
, /* read */
17429 eno_rdwrt
, /* write */
17430 helper_ioctl
, /* ioctl */
17431 (stop_fcn_t
*)nulldev
, /* stop */
17432 (reset_fcn_t
*)nulldev
, /* reset */
17434 eno_select
, /* select */
17435 eno_mmap
, /* mmap */
17436 eno_strat
, /* strategy */
17437 eno_getc
, /* getc */
17438 eno_putc
, /* putc */
17442 static int helper_majdevno
= 0;
17444 static int gDTraceInited
= 0;
17447 helper_init( void )
17450 * Once the "helper" is initialized, it can take ioctl calls that use locks
17451 * and zones initialized in dtrace_init. Make certain dtrace_init was called
17455 if (!gDTraceInited
) {
17456 panic("helper_init before dtrace_init\n");
17459 if (0 >= helper_majdevno
)
17461 helper_majdevno
= cdevsw_add(HELPER_MAJOR
, &helper_cdevsw
);
17463 if (helper_majdevno
< 0) {
17464 printf("helper_init: failed to allocate a major number!\n");
17468 if (NULL
== devfs_make_node( makedev(helper_majdevno
, 0), DEVFS_CHAR
, UID_ROOT
, GID_WHEEL
, 0666,
17469 DTRACEMNR_HELPER
, 0 )) {
17470 printf("dtrace_init: failed to devfs_make_node for helper!\n");
17474 panic("helper_init: called twice!\n");
17477 #undef HELPER_MAJOR
17480 * Called with DEVFS_LOCK held, so vmem_alloc's underlying blist structures are protected.
17483 dtrace_clone_func(dev_t dev
, int action
)
17485 #pragma unused(dev)
17487 if (action
== DEVFS_CLONE_ALLOC
) {
17488 if (NULL
== dtrace_minor
) /* Arena not created yet!?! */
17492 * Propose a minor number, namely the next number that vmem_alloc() will return.
17493 * Immediately put it back in play by calling vmem_free(). FIXME.
17495 int ret
= (int)(uintptr_t)vmem_alloc(dtrace_minor
, 1, VM_BESTFIT
| VM_SLEEP
);
17497 vmem_free(dtrace_minor
, (void *)(uintptr_t)ret
, 1);
17502 else if (action
== DEVFS_CLONE_FREE
) {
17508 #define DTRACE_MAJOR -24 /* let the kernel pick the device number */
17510 static struct cdevsw dtrace_cdevsw
=
17512 _dtrace_open
, /* open */
17513 _dtrace_close
, /* close */
17514 eno_rdwrt
, /* read */
17515 eno_rdwrt
, /* write */
17516 _dtrace_ioctl
, /* ioctl */
17517 (stop_fcn_t
*)nulldev
, /* stop */
17518 (reset_fcn_t
*)nulldev
, /* reset */
17520 eno_select
, /* select */
17521 eno_mmap
, /* mmap */
17522 eno_strat
, /* strategy */
17523 eno_getc
, /* getc */
17524 eno_putc
, /* putc */
17528 lck_attr_t
* dtrace_lck_attr
;
17529 lck_grp_attr_t
* dtrace_lck_grp_attr
;
17530 lck_grp_t
* dtrace_lck_grp
;
17532 static int gMajDevNo
;
17535 dtrace_init( void )
17537 if (0 == gDTraceInited
) {
17539 size_t size
= sizeof(dtrace_buffer_memory_maxsize
);
17542 * DTrace allocates buffers based on the maximum number
17543 * of enabled cpus. This call avoids any race when finding
17546 ASSERT(dtrace_max_cpus
== 0);
17547 ncpu
= dtrace_max_cpus
= ml_get_max_cpus();
17550 * Retrieve the size of the physical memory in order to define
17551 * the state buffer memory maximal size. If we cannot retrieve
17552 * this value, we'll consider that we have 1Gb of memory per CPU, that's
17553 * still better than raising a kernel panic.
17555 if (0 != kernel_sysctlbyname("hw.memsize", &dtrace_buffer_memory_maxsize
,
17558 dtrace_buffer_memory_maxsize
= ncpu
* 1024 * 1024 * 1024;
17559 printf("dtrace_init: failed to retrieve the hw.memsize, defaulted to %lld bytes\n",
17560 dtrace_buffer_memory_maxsize
);
17564 * Finally, divide by three to prevent DTrace from eating too
17567 dtrace_buffer_memory_maxsize
/= 3;
17568 ASSERT(dtrace_buffer_memory_maxsize
> 0);
17570 gMajDevNo
= cdevsw_add(DTRACE_MAJOR
, &dtrace_cdevsw
);
17572 if (gMajDevNo
< 0) {
17573 printf("dtrace_init: failed to allocate a major number!\n");
17578 if (NULL
== devfs_make_node_clone( makedev(gMajDevNo
, 0), DEVFS_CHAR
, UID_ROOT
, GID_WHEEL
, 0666,
17579 dtrace_clone_func
, DTRACEMNR_DTRACE
, 0 )) {
17580 printf("dtrace_init: failed to devfs_make_node_clone for dtrace!\n");
17585 #if defined(DTRACE_MEMORY_ZONES)
17587 * Initialize the dtrace kalloc-emulation zones.
17589 dtrace_alloc_init();
17590 #endif /* DTRACE_MEMORY_ZONES */
17593 * Allocate the dtrace_probe_t zone
17595 dtrace_probe_t_zone
= zinit(sizeof(dtrace_probe_t
),
17596 1024 * sizeof(dtrace_probe_t
),
17597 sizeof(dtrace_probe_t
),
17598 "dtrace.dtrace_probe_t");
17601 * Create the dtrace lock group and attrs.
17603 dtrace_lck_attr
= lck_attr_alloc_init();
17604 dtrace_lck_grp_attr
= lck_grp_attr_alloc_init();
17605 dtrace_lck_grp
= lck_grp_alloc_init("dtrace", dtrace_lck_grp_attr
);
17608 * We have to initialize all locks explicitly
17610 lck_mtx_init(&dtrace_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17611 lck_mtx_init(&dtrace_provider_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17612 lck_mtx_init(&dtrace_meta_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17613 lck_mtx_init(&dtrace_procwaitfor_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17615 lck_mtx_init(&dtrace_errlock
, dtrace_lck_grp
, dtrace_lck_attr
);
17617 lck_rw_init(&dtrace_dof_mode_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17620 * The cpu_core structure consists of per-CPU state available in any context.
17621 * On some architectures, this may mean that the page(s) containing the
17622 * NCPU-sized array of cpu_core structures must be locked in the TLB -- it
17623 * is up to the platform to assure that this is performed properly. Note that
17624 * the structure is sized to avoid false sharing.
17626 lck_mtx_init(&cpu_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17627 lck_mtx_init(&cyc_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17628 lck_mtx_init(&mod_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17631 * Initialize the CPU offline/online hooks.
17633 dtrace_install_cpu_hooks();
17635 dtrace_modctl_list
= NULL
;
17637 cpu_core
= (cpu_core_t
*)kmem_zalloc( ncpu
* sizeof(cpu_core_t
), KM_SLEEP
);
17638 for (i
= 0; i
< ncpu
; ++i
) {
17639 lck_mtx_init(&cpu_core
[i
].cpuc_pid_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17642 cpu_list
= (dtrace_cpu_t
*)kmem_zalloc( ncpu
* sizeof(dtrace_cpu_t
), KM_SLEEP
);
17643 for (i
= 0; i
< ncpu
; ++i
) {
17644 cpu_list
[i
].cpu_id
= (processorid_t
)i
;
17645 cpu_list
[i
].cpu_next
= &(cpu_list
[(i
+1) % ncpu
]);
17646 LIST_INIT(&cpu_list
[i
].cpu_cyc_list
);
17647 lck_rw_init(&cpu_list
[i
].cpu_ft_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
17650 lck_mtx_lock(&cpu_lock
);
17651 for (i
= 0; i
< ncpu
; ++i
)
17652 /* FIXME: track CPU configuration a la CHUD Processor Pref Pane. */
17653 dtrace_cpu_setup_initial( (processorid_t
)i
); /* In lieu of register_cpu_setup_func() callback */
17654 lck_mtx_unlock(&cpu_lock
);
17656 (void)dtrace_abs_to_nano(0LL); /* Force once only call to clock_timebase_info (which can take a lock) */
17660 * See dtrace_impl.h for a description of dof modes.
17661 * The default is lazy dof.
17663 * FIXME: Warn if state is LAZY_OFF? It won't break anything, but
17664 * makes no sense...
17666 if (!PE_parse_boot_argn("dtrace_dof_mode", &dtrace_dof_mode
, sizeof (dtrace_dof_mode
))) {
17667 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_ON
;
17671 * Sanity check of dof mode value.
17673 switch (dtrace_dof_mode
) {
17674 case DTRACE_DOF_MODE_NEVER
:
17675 case DTRACE_DOF_MODE_LAZY_ON
:
17676 /* valid modes, but nothing else we need to do */
17679 case DTRACE_DOF_MODE_LAZY_OFF
:
17680 case DTRACE_DOF_MODE_NON_LAZY
:
17681 /* Cannot wait for a dtrace_open to init fasttrap */
17686 /* Invalid, clamp to non lazy */
17687 dtrace_dof_mode
= DTRACE_DOF_MODE_NON_LAZY
;
17693 * See dtrace_impl.h for a description of kernel symbol modes.
17694 * The default is to wait for symbols from userspace (lazy symbols).
17696 if (!PE_parse_boot_argn("dtrace_kernel_symbol_mode", &dtrace_kernel_symbol_mode
, sizeof (dtrace_kernel_symbol_mode
))) {
17697 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
;
17700 dtrace_restriction_policy_load();
17705 panic("dtrace_init: called twice!\n");
17709 dtrace_postinit(void)
17712 * Called from bsd_init after all provider's *_init() routines have been
17713 * run. That way, anonymous DOF enabled under dtrace_attach() is safe
17716 dtrace_attach( (dev_info_t
*)(uintptr_t)makedev(gMajDevNo
, 0), 0 ); /* Punning a dev_t to a dev_info_t* */
17719 * Add the mach_kernel to the module list for lazy processing
17721 struct kmod_info fake_kernel_kmod
;
17722 memset(&fake_kernel_kmod
, 0, sizeof(fake_kernel_kmod
));
17724 strlcpy(fake_kernel_kmod
.name
, "mach_kernel", sizeof(fake_kernel_kmod
.name
));
17725 fake_kernel_kmod
.id
= 1;
17726 fake_kernel_kmod
.address
= g_kernel_kmod_info
.address
;
17727 fake_kernel_kmod
.size
= g_kernel_kmod_info
.size
;
17729 if (dtrace_module_loaded(&fake_kernel_kmod
, 0) != 0) {
17730 printf("dtrace_postinit: Could not register mach_kernel modctl\n");
17733 (void)OSKextRegisterKextsWithDTrace();
17735 #undef DTRACE_MAJOR
17738 * Routines used to register interest in cpu's being added to or removed
17742 register_cpu_setup_func(cpu_setup_func_t
*ignore1
, void *ignore2
)
17744 #pragma unused(ignore1,ignore2)
17748 unregister_cpu_setup_func(cpu_setup_func_t
*ignore1
, void *ignore2
)
17750 #pragma unused(ignore1,ignore2)