2 * Copyright (c) 2000-2016 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <kern/policy_internal.h>
30 #include <mach/task_policy.h>
32 #include <mach/mach_types.h>
33 #include <mach/task_server.h>
35 #include <kern/host.h> /* host_priv_self() */
36 #include <mach/host_priv.h> /* host_get_special_port() */
37 #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
38 #include <kern/sched.h>
39 #include <kern/task.h>
40 #include <mach/thread_policy.h>
41 #include <sys/errno.h>
42 #include <sys/resource.h>
43 #include <machine/limits.h>
44 #include <kern/ledger.h>
45 #include <kern/thread_call.h>
47 #include <kern/coalition.h>
49 #include <kern/telemetry.h>
52 #include <kern/kalloc.h>
53 #include <sys/errno.h>
54 #endif /* CONFIG_EMBEDDED */
56 #if IMPORTANCE_INHERITANCE
57 #include <ipc/ipc_importance.h>
59 #include <mach/machine/sdt.h>
60 #endif /* IMPORTANCE_TRACE */
61 #endif /* IMPORTANCE_INHERITACE */
63 #include <sys/kdebug.h>
68 * This subsystem manages task and thread IO priority and backgrounding,
69 * as well as importance inheritance, process suppression, task QoS, and apptype.
70 * These properties have a suprising number of complex interactions, so they are
71 * centralized here in one state machine to simplify the implementation of those interactions.
74 * Threads and tasks have two policy fields: requested, effective.
75 * Requested represents the wishes of each interface that influences task policy.
76 * Effective represents the distillation of that policy into a set of behaviors.
78 * Each thread making a modification in the policy system passes a 'pending' struct,
79 * which tracks updates that will be applied after dropping the policy engine lock.
81 * Each interface that has an input into the task policy state machine controls a field in requested.
82 * If the interface has a getter, it returns what is in the field in requested, but that is
83 * not necessarily what is actually in effect.
85 * All kernel subsystems that behave differently based on task policy call into
86 * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
87 * for that subsystem by querying only the 'effective' field.
89 * Policy change operations:
90 * Here are the steps to change a policy on a task or thread:
92 * 2) Change requested field for the relevant policy
93 * 3) Run a task policy update, which recalculates effective based on requested,
94 * then takes a diff between the old and new versions of requested and calls the relevant
95 * other subsystems to apply these changes, and updates the pending field.
97 * 5) Run task policy update complete, which looks at the pending field to update
98 * subsystems which cannot be touched while holding the task lock.
100 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
101 * the setter and getter in proc_(set|get)_task_policy*,
102 * then set up the effects of that behavior in task_policy_update*. If the policy manifests
103 * itself as a distinct effective policy, add it to the effective struct and add it to the
104 * proc_get_effective_task_policy accessor.
106 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
107 * roll their own lock/set/update/unlock/complete code inside this file.
112 * These are a set of behaviors that can be requested for a task. They currently have specific
113 * implied actions when they're enabled, but they may be made customizable in the future.
115 * When the affected task is boosted, we temporarily disable the suppression behaviors
116 * so that the affected process has a chance to run so it can call the API to permanently
117 * disable the suppression behaviors.
121 * Changing task policy on a task takes the task lock.
122 * Changing task policy on a thread takes the thread mutex.
123 * Task policy changes that affect threads will take each thread's mutex to update it if necessary.
125 * Querying the effective policy does not take a lock, because callers
126 * may run in interrupt context or other place where locks are not OK.
128 * This means that any notification of state change needs to be externally synchronized.
129 * We do this by idempotent callouts after the state has changed to ask
130 * other subsystems to update their view of the world.
132 * TODO: Move all cpu/wakes/io monitor code into a separate file
133 * TODO: Move all importance code over to importance subsystem
134 * TODO: Move all taskwatch code into a separate file
135 * TODO: Move all VM importance code into a separate file
138 /* Task policy related helper functions */
139 static void proc_set_task_policy_locked(task_t task
, int category
, int flavor
, int value
, int value2
);
141 static void task_policy_update_locked(task_t task
, task_pend_token_t pend_token
);
142 static void task_policy_update_internal_locked(task_t task
, boolean_t in_create
, task_pend_token_t pend_token
);
144 /* For attributes that have two scalars as input/output */
145 static void proc_set_task_policy2(task_t task
, int category
, int flavor
, int value1
, int value2
);
146 static void proc_get_task_policy2(task_t task
, int category
, int flavor
, int *value1
, int *value2
);
148 static boolean_t
task_policy_update_coalition_focal_tasks(task_t task
, int prev_role
, int next_role
, task_pend_token_t pend_token
);
150 static uint64_t task_requested_bitfield(task_t task
);
151 static uint64_t task_effective_bitfield(task_t task
);
153 /* Convenience functions for munging a policy bitfield into a tracepoint */
154 static uintptr_t trequested_0(task_t task
);
155 static uintptr_t trequested_1(task_t task
);
156 static uintptr_t teffective_0(task_t task
);
157 static uintptr_t teffective_1(task_t task
);
159 /* CPU limits helper functions */
160 static int task_set_cpuusage(task_t task
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
, int scope
, int entitled
);
161 static int task_get_cpuusage(task_t task
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
, int *scope
);
162 static int task_enable_cpumon_locked(task_t task
);
163 static int task_disable_cpumon(task_t task
);
164 static int task_clear_cpuusage_locked(task_t task
, int cpumon_entitled
);
165 static int task_apply_resource_actions(task_t task
, int type
);
166 static void task_action_cpuusage(thread_call_param_t param0
, thread_call_param_t param1
);
169 typedef struct proc
* proc_t
;
170 int proc_pid(void *proc
);
171 extern int proc_selfpid(void);
172 extern char * proc_name_address(void *p
);
173 extern char * proc_best_name(proc_t proc
);
175 extern int proc_pidpathinfo_internal(proc_t p
, uint64_t arg
,
176 char *buffer
, uint32_t buffersize
,
178 #endif /* MACH_BSD */
182 /* TODO: make CONFIG_TASKWATCH */
183 /* Taskwatch related helper functions */
184 static void set_thread_appbg(thread_t thread
, int setbg
, int importance
);
185 static void add_taskwatch_locked(task_t task
, task_watch_t
* twp
);
186 static void remove_taskwatch_locked(task_t task
, task_watch_t
* twp
);
187 static void task_watch_lock(void);
188 static void task_watch_unlock(void);
189 static void apply_appstate_watchers(task_t task
);
191 typedef struct task_watcher
{
192 queue_chain_t tw_links
; /* queueing of threads */
193 task_t tw_task
; /* task that is being watched */
194 thread_t tw_thread
; /* thread that is watching the watch_task */
195 int tw_state
; /* the current app state of the thread */
196 int tw_importance
; /* importance prior to backgrounding */
199 typedef struct thread_watchlist
{
200 thread_t thread
; /* thread being worked on for taskwatch action */
201 int importance
; /* importance to be restored if thread is being made active */
202 } thread_watchlist_t
;
204 #endif /* CONFIG_EMBEDDED */
206 extern int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
208 /* Importance Inheritance related helper functions */
210 #if IMPORTANCE_INHERITANCE
212 static void task_importance_mark_live_donor(task_t task
, boolean_t donating
);
213 static void task_importance_mark_receiver(task_t task
, boolean_t receiving
);
214 static void task_importance_mark_denap_receiver(task_t task
, boolean_t denap
);
216 static boolean_t
task_is_marked_live_importance_donor(task_t task
);
217 static boolean_t
task_is_importance_receiver(task_t task
);
218 static boolean_t
task_is_importance_denap_receiver(task_t task
);
220 static int task_importance_hold_internal_assertion(task_t target_task
, uint32_t count
);
222 static void task_add_importance_watchport(task_t task
, mach_port_t port
, int *boostp
);
223 static void task_importance_update_live_donor(task_t target_task
);
225 static void task_set_boost_locked(task_t task
, boolean_t boost_active
);
227 #endif /* IMPORTANCE_INHERITANCE */
230 #define __imptrace_only
231 #else /* IMPORTANCE_TRACE */
232 #define __imptrace_only __unused
233 #endif /* !IMPORTANCE_TRACE */
235 #if IMPORTANCE_INHERITANCE
238 #define __imp_only __unused
242 * Default parameters for certain policies
245 int proc_standard_daemon_tier
= THROTTLE_LEVEL_TIER1
;
246 int proc_suppressed_disk_tier
= THROTTLE_LEVEL_TIER1
;
247 int proc_tal_disk_tier
= THROTTLE_LEVEL_TIER1
;
249 int proc_graphics_timer_qos
= (LATENCY_QOS_TIER_0
& 0xFF);
251 const int proc_default_bg_iotier
= THROTTLE_LEVEL_TIER2
;
253 /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
254 const struct task_requested_policy default_task_requested_policy
= {
255 .trp_bg_iotier
= proc_default_bg_iotier
257 const struct task_effective_policy default_task_effective_policy
= {};
260 * Default parameters for CPU usage monitor.
262 * Default setting is 50% over 3 minutes.
264 #define DEFAULT_CPUMON_PERCENTAGE 50
265 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
267 uint8_t proc_max_cpumon_percentage
;
268 uint64_t proc_max_cpumon_interval
;
272 qos_latency_policy_validate(task_latency_qos_t ltier
)
274 if ((ltier
!= LATENCY_QOS_TIER_UNSPECIFIED
) &&
275 ((ltier
> LATENCY_QOS_TIER_5
) || (ltier
< LATENCY_QOS_TIER_0
))) {
276 return KERN_INVALID_ARGUMENT
;
283 qos_throughput_policy_validate(task_throughput_qos_t ttier
)
285 if ((ttier
!= THROUGHPUT_QOS_TIER_UNSPECIFIED
) &&
286 ((ttier
> THROUGHPUT_QOS_TIER_5
) || (ttier
< THROUGHPUT_QOS_TIER_0
))) {
287 return KERN_INVALID_ARGUMENT
;
294 task_qos_policy_validate(task_qos_policy_t qosinfo
, mach_msg_type_number_t count
)
296 if (count
< TASK_QOS_POLICY_COUNT
) {
297 return KERN_INVALID_ARGUMENT
;
300 task_latency_qos_t ltier
= qosinfo
->task_latency_qos_tier
;
301 task_throughput_qos_t ttier
= qosinfo
->task_throughput_qos_tier
;
303 kern_return_t kr
= qos_latency_policy_validate(ltier
);
305 if (kr
!= KERN_SUCCESS
) {
309 kr
= qos_throughput_policy_validate(ttier
);
315 qos_extract(uint32_t qv
)
321 qos_latency_policy_package(uint32_t qv
)
323 return (qv
== LATENCY_QOS_TIER_UNSPECIFIED
) ? LATENCY_QOS_TIER_UNSPECIFIED
: ((0xFF << 16) | qv
);
327 qos_throughput_policy_package(uint32_t qv
)
329 return (qv
== THROUGHPUT_QOS_TIER_UNSPECIFIED
) ? THROUGHPUT_QOS_TIER_UNSPECIFIED
: ((0xFE << 16) | qv
);
332 #define TASK_POLICY_SUPPRESSION_DISABLE 0x1
333 #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
334 #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
335 /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
336 static boolean_t task_policy_suppression_flags
= TASK_POLICY_SUPPRESSION_IOTIER2
|
337 TASK_POLICY_SUPPRESSION_NONDONOR
;
342 task_policy_flavor_t flavor
,
343 task_policy_t policy_info
,
344 mach_msg_type_number_t count
)
346 kern_return_t result
= KERN_SUCCESS
;
348 if (task
== TASK_NULL
|| task
== kernel_task
) {
349 return KERN_INVALID_ARGUMENT
;
353 case TASK_CATEGORY_POLICY
: {
354 task_category_policy_t info
= (task_category_policy_t
)policy_info
;
356 if (count
< TASK_CATEGORY_POLICY_COUNT
) {
357 return KERN_INVALID_ARGUMENT
;
361 /* On embedded, you can't modify your own role. */
362 if (current_task() == task
) {
363 return KERN_INVALID_ARGUMENT
;
367 switch (info
->role
) {
368 case TASK_FOREGROUND_APPLICATION
:
369 case TASK_BACKGROUND_APPLICATION
:
370 case TASK_DEFAULT_APPLICATION
:
371 proc_set_task_policy(task
,
372 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
376 case TASK_CONTROL_APPLICATION
:
377 if (task
!= current_task() || task
->sec_token
.val
[0] != 0) {
378 result
= KERN_INVALID_ARGUMENT
;
380 proc_set_task_policy(task
,
381 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
386 case TASK_GRAPHICS_SERVER
:
387 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
388 if (task
!= current_task() || task
->sec_token
.val
[0] != 0) {
389 result
= KERN_INVALID_ARGUMENT
;
391 proc_set_task_policy(task
,
392 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
397 result
= KERN_INVALID_ARGUMENT
;
399 } /* switch (info->role) */
404 /* Desired energy-efficiency/performance "quality-of-service" */
405 case TASK_BASE_QOS_POLICY
:
406 case TASK_OVERRIDE_QOS_POLICY
:
408 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
409 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
411 if (kr
!= KERN_SUCCESS
) {
416 uint32_t lqos
= qos_extract(qosinfo
->task_latency_qos_tier
);
417 uint32_t tqos
= qos_extract(qosinfo
->task_throughput_qos_tier
);
419 proc_set_task_policy2(task
, TASK_POLICY_ATTRIBUTE
,
420 flavor
== TASK_BASE_QOS_POLICY
? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
: TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
,
425 case TASK_BASE_LATENCY_QOS_POLICY
:
427 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
428 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
430 if (kr
!= KERN_SUCCESS
) {
434 uint32_t lqos
= qos_extract(qosinfo
->task_latency_qos_tier
);
436 proc_set_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_BASE_LATENCY_QOS_POLICY
, lqos
);
440 case TASK_BASE_THROUGHPUT_QOS_POLICY
:
442 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
443 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
445 if (kr
!= KERN_SUCCESS
) {
449 uint32_t tqos
= qos_extract(qosinfo
->task_throughput_qos_tier
);
451 proc_set_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_BASE_THROUGHPUT_QOS_POLICY
, tqos
);
455 case TASK_SUPPRESSION_POLICY
:
459 * Suppression policy is not enabled for embedded
460 * because apps aren't marked as denap receivers
462 result
= KERN_INVALID_ARGUMENT
;
464 #else /* CONFIG_EMBEDDED */
466 task_suppression_policy_t info
= (task_suppression_policy_t
)policy_info
;
468 if (count
< TASK_SUPPRESSION_POLICY_COUNT
) {
469 return KERN_INVALID_ARGUMENT
;
472 struct task_qos_policy qosinfo
;
474 qosinfo
.task_latency_qos_tier
= info
->timer_throttle
;
475 qosinfo
.task_throughput_qos_tier
= info
->throughput_qos
;
477 kern_return_t kr
= task_qos_policy_validate(&qosinfo
, TASK_QOS_POLICY_COUNT
);
479 if (kr
!= KERN_SUCCESS
) {
483 /* TEMPORARY disablement of task suppression */
485 (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_DISABLE
)) {
489 struct task_pend_token pend_token
= {};
493 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
494 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION
, info
->active
)) | DBG_FUNC_START
,
495 proc_selfpid(), task_pid(task
), trequested_0(task
),
496 trequested_1(task
), 0);
498 task
->requested_policy
.trp_sup_active
= (info
->active
) ? 1 : 0;
499 task
->requested_policy
.trp_sup_lowpri_cpu
= (info
->lowpri_cpu
) ? 1 : 0;
500 task
->requested_policy
.trp_sup_timer
= qos_extract(info
->timer_throttle
);
501 task
->requested_policy
.trp_sup_disk
= (info
->disk_throttle
) ? 1 : 0;
502 task
->requested_policy
.trp_sup_throughput
= qos_extract(info
->throughput_qos
);
503 task
->requested_policy
.trp_sup_cpu
= (info
->suppressed_cpu
) ? 1 : 0;
504 task
->requested_policy
.trp_sup_bg_sockets
= (info
->background_sockets
) ? 1 : 0;
506 task_policy_update_locked(task
, &pend_token
);
508 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
509 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION
, info
->active
)) | DBG_FUNC_END
,
510 proc_selfpid(), task_pid(task
), trequested_0(task
),
511 trequested_1(task
), 0);
515 task_policy_update_complete_unlocked(task
, &pend_token
);
519 #endif /* CONFIG_EMBEDDED */
523 result
= KERN_INVALID_ARGUMENT
;
530 /* Sets BSD 'nice' value on the task */
534 integer_t importance
)
536 if (task
== TASK_NULL
|| task
== kernel_task
) {
537 return KERN_INVALID_ARGUMENT
;
545 return KERN_TERMINATED
;
548 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) >= TASK_CONTROL_APPLICATION
) {
551 return KERN_INVALID_ARGUMENT
;
554 task
->importance
= importance
;
556 struct task_pend_token pend_token
= {};
558 task_policy_update_locked(task
, &pend_token
);
562 task_policy_update_complete_unlocked(task
, &pend_token
);
570 task_policy_flavor_t flavor
,
571 task_policy_t policy_info
,
572 mach_msg_type_number_t
*count
,
573 boolean_t
*get_default
)
575 if (task
== TASK_NULL
|| task
== kernel_task
) {
576 return KERN_INVALID_ARGUMENT
;
580 case TASK_CATEGORY_POLICY
:
582 task_category_policy_t info
= (task_category_policy_t
)policy_info
;
584 if (*count
< TASK_CATEGORY_POLICY_COUNT
) {
585 return KERN_INVALID_ARGUMENT
;
589 info
->role
= TASK_UNSPECIFIED
;
591 info
->role
= proc_get_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
);
596 case TASK_BASE_QOS_POLICY
: /* FALLTHRU */
597 case TASK_OVERRIDE_QOS_POLICY
:
599 task_qos_policy_t info
= (task_qos_policy_t
)policy_info
;
601 if (*count
< TASK_QOS_POLICY_COUNT
) {
602 return KERN_INVALID_ARGUMENT
;
606 info
->task_latency_qos_tier
= LATENCY_QOS_TIER_UNSPECIFIED
;
607 info
->task_throughput_qos_tier
= THROUGHPUT_QOS_TIER_UNSPECIFIED
;
608 } else if (flavor
== TASK_BASE_QOS_POLICY
) {
611 proc_get_task_policy2(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
, &value1
, &value2
);
613 info
->task_latency_qos_tier
= qos_latency_policy_package(value1
);
614 info
->task_throughput_qos_tier
= qos_throughput_policy_package(value2
);
615 } else if (flavor
== TASK_OVERRIDE_QOS_POLICY
) {
618 proc_get_task_policy2(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
, &value1
, &value2
);
620 info
->task_latency_qos_tier
= qos_latency_policy_package(value1
);
621 info
->task_throughput_qos_tier
= qos_throughput_policy_package(value2
);
627 case TASK_POLICY_STATE
:
629 task_policy_state_t info
= (task_policy_state_t
)policy_info
;
631 if (*count
< TASK_POLICY_STATE_COUNT
) {
632 return KERN_INVALID_ARGUMENT
;
635 /* Only root can get this info */
636 if (current_task()->sec_token
.val
[0] != 0) {
637 return KERN_PROTECTION_FAILURE
;
644 info
->imp_assertcnt
= 0;
645 info
->imp_externcnt
= 0;
647 info
->imp_transitions
= 0;
651 info
->requested
= task_requested_bitfield(task
);
652 info
->effective
= task_effective_bitfield(task
);
655 info
->tps_requested_policy
= *(uint64_t*)(&task
->requested_policy
);
656 info
->tps_effective_policy
= *(uint64_t*)(&task
->effective_policy
);
659 if (task
->task_imp_base
!= NULL
) {
660 info
->imp_assertcnt
= task
->task_imp_base
->iit_assertcnt
;
661 info
->imp_externcnt
= IIT_EXTERN(task
->task_imp_base
);
662 info
->flags
|= (task_is_marked_importance_receiver(task
) ? TASK_IMP_RECEIVER
: 0);
663 info
->flags
|= (task_is_marked_importance_denap_receiver(task
) ? TASK_DENAP_RECEIVER
: 0);
664 info
->flags
|= (task_is_marked_importance_donor(task
) ? TASK_IMP_DONOR
: 0);
665 info
->flags
|= (task_is_marked_live_importance_donor(task
) ? TASK_IMP_LIVE_DONOR
: 0);
666 info
->imp_transitions
= task
->task_imp_base
->iit_transitions
;
668 info
->imp_assertcnt
= 0;
669 info
->imp_externcnt
= 0;
670 info
->imp_transitions
= 0;
678 case TASK_SUPPRESSION_POLICY
:
680 task_suppression_policy_t info
= (task_suppression_policy_t
)policy_info
;
682 if (*count
< TASK_SUPPRESSION_POLICY_COUNT
) {
683 return KERN_INVALID_ARGUMENT
;
690 info
->lowpri_cpu
= 0;
691 info
->timer_throttle
= LATENCY_QOS_TIER_UNSPECIFIED
;
692 info
->disk_throttle
= 0;
695 info
->throughput_qos
= 0;
696 info
->suppressed_cpu
= 0;
698 info
->active
= task
->requested_policy
.trp_sup_active
;
699 info
->lowpri_cpu
= task
->requested_policy
.trp_sup_lowpri_cpu
;
700 info
->timer_throttle
= qos_latency_policy_package(task
->requested_policy
.trp_sup_timer
);
701 info
->disk_throttle
= task
->requested_policy
.trp_sup_disk
;
704 info
->throughput_qos
= qos_throughput_policy_package(task
->requested_policy
.trp_sup_throughput
);
705 info
->suppressed_cpu
= task
->requested_policy
.trp_sup_cpu
;
706 info
->background_sockets
= task
->requested_policy
.trp_sup_bg_sockets
;
714 return KERN_INVALID_ARGUMENT
;
721 * Called at task creation
722 * We calculate the correct effective but don't apply it to anything yet.
723 * The threads, etc will inherit from the task as they get created.
726 task_policy_create(task_t task
, task_t parent_task
)
728 task
->requested_policy
.trp_apptype
= parent_task
->requested_policy
.trp_apptype
;
730 task
->requested_policy
.trp_int_darwinbg
= parent_task
->requested_policy
.trp_int_darwinbg
;
731 task
->requested_policy
.trp_ext_darwinbg
= parent_task
->requested_policy
.trp_ext_darwinbg
;
732 task
->requested_policy
.trp_int_iotier
= parent_task
->requested_policy
.trp_int_iotier
;
733 task
->requested_policy
.trp_ext_iotier
= parent_task
->requested_policy
.trp_ext_iotier
;
734 task
->requested_policy
.trp_int_iopassive
= parent_task
->requested_policy
.trp_int_iopassive
;
735 task
->requested_policy
.trp_ext_iopassive
= parent_task
->requested_policy
.trp_ext_iopassive
;
736 task
->requested_policy
.trp_bg_iotier
= parent_task
->requested_policy
.trp_bg_iotier
;
737 task
->requested_policy
.trp_terminated
= parent_task
->requested_policy
.trp_terminated
;
738 task
->requested_policy
.trp_qos_clamp
= parent_task
->requested_policy
.trp_qos_clamp
;
740 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&& !task_is_exec_copy(task
)) {
741 /* Do not update the apptype for exec copy task */
742 if (parent_task
->requested_policy
.trp_boosted
) {
743 task
->requested_policy
.trp_apptype
= TASK_APPTYPE_DAEMON_INTERACTIVE
;
744 task_importance_mark_donor(task
, TRUE
);
746 task
->requested_policy
.trp_apptype
= TASK_APPTYPE_DAEMON_BACKGROUND
;
747 task_importance_mark_receiver(task
, FALSE
);
751 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
752 (IMPORTANCE_CODE(IMP_UPDATE
, (IMP_UPDATE_TASK_CREATE
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
753 task_pid(task
), teffective_0(task
),
754 teffective_1(task
), task
->priority
, 0);
756 task_policy_update_internal_locked(task
, TRUE
, NULL
);
758 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
759 (IMPORTANCE_CODE(IMP_UPDATE
, (IMP_UPDATE_TASK_CREATE
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
760 task_pid(task
), teffective_0(task
),
761 teffective_1(task
), task
->priority
, 0);
763 task_importance_update_live_donor(task
);
768 task_policy_update_locked(task_t task
, task_pend_token_t pend_token
)
770 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
771 (IMPORTANCE_CODE(IMP_UPDATE
, TASK_POLICY_TASK
) | DBG_FUNC_START
),
772 task_pid(task
), teffective_0(task
),
773 teffective_1(task
), task
->priority
, 0);
775 task_policy_update_internal_locked(task
, FALSE
, pend_token
);
777 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
778 (IMPORTANCE_CODE(IMP_UPDATE
, TASK_POLICY_TASK
)) | DBG_FUNC_END
,
779 task_pid(task
), teffective_0(task
),
780 teffective_1(task
), task
->priority
, 0);
784 * One state update function TO RULE THEM ALL
786 * This function updates the task or thread effective policy fields
787 * and pushes the results to the relevant subsystems.
789 * Must call update_complete after unlocking the task,
790 * as some subsystems cannot be updated while holding the task lock.
792 * Called with task locked, not thread
796 task_policy_update_internal_locked(task_t task
, boolean_t in_create
, task_pend_token_t pend_token
)
800 * Gather requested policy
803 struct task_requested_policy requested
= task
->requested_policy
;
807 * Calculate new effective policies from requested policy and task state
809 * Don't change requested, it won't take effect
812 struct task_effective_policy next
= {};
814 /* Update task role */
815 next
.tep_role
= requested
.trp_role
;
817 /* Set task qos clamp and ceiling */
818 next
.tep_qos_clamp
= requested
.trp_qos_clamp
;
820 if (requested
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
821 requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
) {
822 switch (next
.tep_role
) {
823 case TASK_FOREGROUND_APPLICATION
:
824 /* Foreground apps get urgent scheduler priority */
825 next
.tep_qos_ui_is_urgent
= 1;
826 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
829 case TASK_BACKGROUND_APPLICATION
:
830 /* This is really 'non-focal but on-screen' */
831 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
834 case TASK_DEFAULT_APPLICATION
:
835 /* This is 'may render UI but we don't know if it's focal/nonfocal' */
836 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
839 case TASK_NONUI_APPLICATION
:
840 /* i.e. 'off-screen' */
841 next
.tep_qos_ceiling
= THREAD_QOS_LEGACY
;
844 case TASK_CONTROL_APPLICATION
:
845 case TASK_GRAPHICS_SERVER
:
846 next
.tep_qos_ui_is_urgent
= 1;
847 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
850 case TASK_THROTTLE_APPLICATION
:
851 /* i.e. 'TAL launch' */
852 next
.tep_qos_ceiling
= THREAD_QOS_UTILITY
;
855 case TASK_DARWINBG_APPLICATION
:
856 /* i.e. 'DARWIN_BG throttled background application' */
857 next
.tep_qos_ceiling
= THREAD_QOS_BACKGROUND
;
860 case TASK_UNSPECIFIED
:
862 /* Apps that don't have an application role get
863 * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
864 next
.tep_qos_ceiling
= THREAD_QOS_LEGACY
;
868 /* Daemons and dext get USER_INTERACTIVE squashed to USER_INITIATED */
869 next
.tep_qos_ceiling
= THREAD_QOS_USER_INITIATED
;
872 /* Calculate DARWIN_BG */
873 boolean_t wants_darwinbg
= FALSE
;
874 boolean_t wants_all_sockets_bg
= FALSE
; /* Do I want my existing sockets to be bg */
875 boolean_t wants_watchersbg
= FALSE
; /* Do I want my pidbound threads to be bg */
878 * If DARWIN_BG has been requested at either level, it's engaged.
879 * Only true DARWIN_BG changes cause watchers to transition.
881 * Backgrounding due to apptype does.
883 if (requested
.trp_int_darwinbg
|| requested
.trp_ext_darwinbg
||
884 next
.tep_role
== TASK_DARWINBG_APPLICATION
) {
885 wants_watchersbg
= wants_all_sockets_bg
= wants_darwinbg
= TRUE
;
889 * Deprecated TAL implementation for TAL apptype
890 * Background TAL apps are throttled when TAL is enabled
892 if (requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
&&
893 requested
.trp_role
== TASK_BACKGROUND_APPLICATION
&&
894 requested
.trp_tal_enabled
== 1) {
895 next
.tep_tal_engaged
= 1;
898 /* New TAL implementation based on TAL role alone, works for all apps */
899 if ((requested
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
900 requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
) &&
901 requested
.trp_role
== TASK_THROTTLE_APPLICATION
) {
902 next
.tep_tal_engaged
= 1;
905 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
906 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&&
907 requested
.trp_boosted
== 0) {
908 wants_darwinbg
= TRUE
;
911 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
912 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_BACKGROUND
) {
913 wants_darwinbg
= TRUE
;
916 if (next
.tep_qos_clamp
== THREAD_QOS_BACKGROUND
|| next
.tep_qos_clamp
== THREAD_QOS_MAINTENANCE
) {
917 wants_darwinbg
= TRUE
;
920 /* Calculate side effects of DARWIN_BG */
922 if (wants_darwinbg
) {
923 next
.tep_darwinbg
= 1;
924 /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
925 next
.tep_new_sockets_bg
= 1;
926 next
.tep_lowpri_cpu
= 1;
929 if (wants_all_sockets_bg
) {
930 next
.tep_all_sockets_bg
= 1;
933 if (wants_watchersbg
) {
934 next
.tep_watchers_bg
= 1;
937 /* Calculate low CPU priority */
939 boolean_t wants_lowpri_cpu
= FALSE
;
941 if (wants_darwinbg
) {
942 wants_lowpri_cpu
= TRUE
;
945 if (next
.tep_tal_engaged
) {
946 wants_lowpri_cpu
= TRUE
;
949 if (requested
.trp_sup_lowpri_cpu
&& requested
.trp_boosted
== 0) {
950 wants_lowpri_cpu
= TRUE
;
953 if (wants_lowpri_cpu
) {
954 next
.tep_lowpri_cpu
= 1;
957 /* Calculate IO policy */
959 /* Update BG IO policy (so we can see if it has changed) */
960 next
.tep_bg_iotier
= requested
.trp_bg_iotier
;
962 int iopol
= THROTTLE_LEVEL_TIER0
;
964 if (wants_darwinbg
) {
965 iopol
= MAX(iopol
, requested
.trp_bg_iotier
);
968 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_STANDARD
) {
969 iopol
= MAX(iopol
, proc_standard_daemon_tier
);
972 if (requested
.trp_sup_disk
&& requested
.trp_boosted
== 0) {
973 iopol
= MAX(iopol
, proc_suppressed_disk_tier
);
976 if (next
.tep_tal_engaged
) {
977 iopol
= MAX(iopol
, proc_tal_disk_tier
);
980 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
981 iopol
= MAX(iopol
, thread_qos_policy_params
.qos_iotier
[next
.tep_qos_clamp
]);
984 iopol
= MAX(iopol
, requested
.trp_int_iotier
);
985 iopol
= MAX(iopol
, requested
.trp_ext_iotier
);
987 next
.tep_io_tier
= iopol
;
989 /* Calculate Passive IO policy */
991 if (requested
.trp_ext_iopassive
|| requested
.trp_int_iopassive
) {
992 next
.tep_io_passive
= 1;
995 /* Calculate suppression-active flag */
996 boolean_t appnap_transition
= FALSE
;
998 if (requested
.trp_sup_active
&& requested
.trp_boosted
== 0) {
999 next
.tep_sup_active
= 1;
1002 if (task
->effective_policy
.tep_sup_active
!= next
.tep_sup_active
) {
1003 appnap_transition
= TRUE
;
1006 /* Calculate timer QOS */
1007 int latency_qos
= requested
.trp_base_latency_qos
;
1009 if (requested
.trp_sup_timer
&& requested
.trp_boosted
== 0) {
1010 latency_qos
= requested
.trp_sup_timer
;
1013 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1014 latency_qos
= MAX(latency_qos
, (int)thread_qos_policy_params
.qos_latency_qos
[next
.tep_qos_clamp
]);
1017 if (requested
.trp_over_latency_qos
!= 0) {
1018 latency_qos
= requested
.trp_over_latency_qos
;
1021 /* Treat the windowserver special */
1022 if (requested
.trp_role
== TASK_GRAPHICS_SERVER
) {
1023 latency_qos
= proc_graphics_timer_qos
;
1026 next
.tep_latency_qos
= latency_qos
;
1028 /* Calculate throughput QOS */
1029 int through_qos
= requested
.trp_base_through_qos
;
1031 if (requested
.trp_sup_throughput
&& requested
.trp_boosted
== 0) {
1032 through_qos
= requested
.trp_sup_throughput
;
1035 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1036 through_qos
= MAX(through_qos
, (int)thread_qos_policy_params
.qos_through_qos
[next
.tep_qos_clamp
]);
1039 if (requested
.trp_over_through_qos
!= 0) {
1040 through_qos
= requested
.trp_over_through_qos
;
1043 next
.tep_through_qos
= through_qos
;
1045 /* Calculate suppressed CPU priority */
1046 if (requested
.trp_sup_cpu
&& requested
.trp_boosted
== 0) {
1047 next
.tep_suppressed_cpu
= 1;
1051 * Calculate background sockets
1052 * Don't take into account boosting to limit transition frequency.
1054 if (requested
.trp_sup_bg_sockets
) {
1055 next
.tep_all_sockets_bg
= 1;
1056 next
.tep_new_sockets_bg
= 1;
1059 /* Apply SFI Managed class bit */
1060 next
.tep_sfi_managed
= requested
.trp_sfi_managed
;
1062 /* Calculate 'live donor' status for live importance */
1063 switch (requested
.trp_apptype
) {
1064 case TASK_APPTYPE_APP_TAL
:
1065 case TASK_APPTYPE_APP_DEFAULT
:
1066 if (requested
.trp_ext_darwinbg
== 1 ||
1067 (next
.tep_sup_active
== 1 &&
1068 (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_NONDONOR
)) ||
1069 next
.tep_role
== TASK_DARWINBG_APPLICATION
) {
1070 next
.tep_live_donor
= 0;
1072 next
.tep_live_donor
= 1;
1076 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1077 case TASK_APPTYPE_DAEMON_STANDARD
:
1078 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1079 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1080 case TASK_APPTYPE_DRIVER
:
1082 next
.tep_live_donor
= 0;
1086 if (requested
.trp_terminated
) {
1088 * Shoot down the throttles that slow down exit or response to SIGTERM
1089 * We don't need to shoot down:
1090 * passive (don't want to cause others to throttle)
1091 * all_sockets_bg (don't need to iterate FDs on every exit)
1092 * new_sockets_bg (doesn't matter for exiting process)
1093 * pidsuspend (jetsam-ed BG process shouldn't run again)
1094 * watchers_bg (watcher threads don't need to be unthrottled)
1095 * latency_qos (affects userspace timers only)
1098 next
.tep_terminated
= 1;
1099 next
.tep_darwinbg
= 0;
1100 next
.tep_lowpri_cpu
= 0;
1101 next
.tep_io_tier
= THROTTLE_LEVEL_TIER0
;
1102 next
.tep_tal_engaged
= 0;
1103 next
.tep_role
= TASK_UNSPECIFIED
;
1104 next
.tep_suppressed_cpu
= 0;
1109 * Swap out old policy for new policy
1112 struct task_effective_policy prev
= task
->effective_policy
;
1114 /* This is the point where the new values become visible to other threads */
1115 task
->effective_policy
= next
;
1117 /* Don't do anything further to a half-formed task */
1122 if (task
== kernel_task
) {
1123 panic("Attempting to set task policy on kernel_task");
1128 * Pend updates that can't be done while holding the task lock
1131 if (prev
.tep_all_sockets_bg
!= next
.tep_all_sockets_bg
) {
1132 pend_token
->tpt_update_sockets
= 1;
1135 /* Only re-scan the timer list if the qos level is getting less strong */
1136 if (prev
.tep_latency_qos
> next
.tep_latency_qos
) {
1137 pend_token
->tpt_update_timers
= 1;
1141 if (prev
.tep_watchers_bg
!= next
.tep_watchers_bg
) {
1142 pend_token
->tpt_update_watchers
= 1;
1144 #endif /* CONFIG_EMBEDDED */
1146 if (prev
.tep_live_donor
!= next
.tep_live_donor
) {
1147 pend_token
->tpt_update_live_donor
= 1;
1152 * Update other subsystems as necessary if something has changed
1155 boolean_t update_threads
= FALSE
, update_sfi
= FALSE
;
1158 * Check for the attributes that thread_policy_update_internal_locked() consults,
1159 * and trigger thread policy re-evaluation.
1161 if (prev
.tep_io_tier
!= next
.tep_io_tier
||
1162 prev
.tep_bg_iotier
!= next
.tep_bg_iotier
||
1163 prev
.tep_io_passive
!= next
.tep_io_passive
||
1164 prev
.tep_darwinbg
!= next
.tep_darwinbg
||
1165 prev
.tep_qos_clamp
!= next
.tep_qos_clamp
||
1166 prev
.tep_qos_ceiling
!= next
.tep_qos_ceiling
||
1167 prev
.tep_qos_ui_is_urgent
!= next
.tep_qos_ui_is_urgent
||
1168 prev
.tep_latency_qos
!= next
.tep_latency_qos
||
1169 prev
.tep_through_qos
!= next
.tep_through_qos
||
1170 prev
.tep_lowpri_cpu
!= next
.tep_lowpri_cpu
||
1171 prev
.tep_new_sockets_bg
!= next
.tep_new_sockets_bg
||
1172 prev
.tep_terminated
!= next
.tep_terminated
) {
1173 update_threads
= TRUE
;
1177 * Check for the attributes that sfi_thread_classify() consults,
1178 * and trigger SFI re-evaluation.
1180 if (prev
.tep_latency_qos
!= next
.tep_latency_qos
||
1181 prev
.tep_role
!= next
.tep_role
||
1182 prev
.tep_sfi_managed
!= next
.tep_sfi_managed
) {
1186 /* Reflect task role transitions into the coalition role counters */
1187 if (prev
.tep_role
!= next
.tep_role
) {
1188 if (task_policy_update_coalition_focal_tasks(task
, prev
.tep_role
, next
.tep_role
, pend_token
)) {
1193 boolean_t update_priority
= FALSE
;
1195 int priority
= BASEPRI_DEFAULT
;
1196 int max_priority
= MAXPRI_USER
;
1198 if (next
.tep_lowpri_cpu
) {
1199 priority
= MAXPRI_THROTTLE
;
1200 max_priority
= MAXPRI_THROTTLE
;
1201 } else if (next
.tep_suppressed_cpu
) {
1202 priority
= MAXPRI_SUPPRESSED
;
1203 max_priority
= MAXPRI_SUPPRESSED
;
1205 switch (next
.tep_role
) {
1206 case TASK_CONTROL_APPLICATION
:
1207 priority
= BASEPRI_CONTROL
;
1209 case TASK_GRAPHICS_SERVER
:
1210 priority
= BASEPRI_GRAPHICS
;
1211 max_priority
= MAXPRI_RESERVED
;
1217 /* factor in 'nice' value */
1218 priority
+= task
->importance
;
1220 if (task
->effective_policy
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1221 int qos_clamp_priority
= thread_qos_policy_params
.qos_pri
[task
->effective_policy
.tep_qos_clamp
];
1223 priority
= MIN(priority
, qos_clamp_priority
);
1224 max_priority
= MIN(max_priority
, qos_clamp_priority
);
1227 if (priority
> max_priority
) {
1228 priority
= max_priority
;
1229 } else if (priority
< MINPRI
) {
1234 assert(priority
<= max_priority
);
1236 /* avoid extra work if priority isn't changing */
1237 if (priority
!= task
->priority
||
1238 max_priority
!= task
->max_priority
) {
1239 /* update the scheduling priority for the task */
1240 task
->max_priority
= max_priority
;
1241 task
->priority
= priority
;
1242 update_priority
= TRUE
;
1245 /* Loop over the threads in the task:
1248 * with one thread mutex hold per thread
1250 if (update_threads
|| update_priority
|| update_sfi
) {
1253 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
1254 struct task_pend_token thread_pend_token
= {};
1257 thread_pend_token
.tpt_update_thread_sfi
= 1;
1260 if (update_priority
|| update_threads
) {
1261 thread_policy_update_tasklocked(thread
,
1262 task
->priority
, task
->max_priority
,
1263 &thread_pend_token
);
1266 assert(!thread_pend_token
.tpt_update_sockets
);
1268 // Slightly risky, as we still hold the task lock...
1269 thread_policy_update_complete_unlocked(thread
, &thread_pend_token
);
1274 * Use the app-nap transitions to influence the
1275 * transition of the process within the jetsam band
1276 * [and optionally its live-donor status]
1279 if (appnap_transition
== TRUE
) {
1280 if (task
->effective_policy
.tep_sup_active
== 1) {
1281 memorystatus_update_priority_for_appnap(((proc_t
) task
->bsd_info
), TRUE
);
1283 memorystatus_update_priority_for_appnap(((proc_t
) task
->bsd_info
), FALSE
);
1290 * Yet another layering violation. We reach out and bang on the coalition directly.
1293 task_policy_update_coalition_focal_tasks(task_t task
,
1296 task_pend_token_t pend_token
)
1298 boolean_t sfi_transition
= FALSE
;
1299 uint32_t new_count
= 0;
1301 /* task moving into/out-of the foreground */
1302 if (prev_role
!= TASK_FOREGROUND_APPLICATION
&& next_role
== TASK_FOREGROUND_APPLICATION
) {
1303 if (task_coalition_adjust_focal_count(task
, 1, &new_count
) && (new_count
== 1)) {
1304 sfi_transition
= TRUE
;
1305 pend_token
->tpt_update_tg_ui_flag
= TRUE
;
1307 } else if (prev_role
== TASK_FOREGROUND_APPLICATION
&& next_role
!= TASK_FOREGROUND_APPLICATION
) {
1308 if (task_coalition_adjust_focal_count(task
, -1, &new_count
) && (new_count
== 0)) {
1309 sfi_transition
= TRUE
;
1310 pend_token
->tpt_update_tg_ui_flag
= TRUE
;
1314 /* task moving into/out-of background */
1315 if (prev_role
!= TASK_BACKGROUND_APPLICATION
&& next_role
== TASK_BACKGROUND_APPLICATION
) {
1316 if (task_coalition_adjust_nonfocal_count(task
, 1, &new_count
) && (new_count
== 1)) {
1317 sfi_transition
= TRUE
;
1319 } else if (prev_role
== TASK_BACKGROUND_APPLICATION
&& next_role
!= TASK_BACKGROUND_APPLICATION
) {
1320 if (task_coalition_adjust_nonfocal_count(task
, -1, &new_count
) && (new_count
== 0)) {
1321 sfi_transition
= TRUE
;
1325 if (sfi_transition
) {
1326 pend_token
->tpt_update_coal_sfi
= 1;
1328 return sfi_transition
;
1331 #if CONFIG_SCHED_SFI
1333 /* coalition object is locked */
1335 task_sfi_reevaluate_cb(coalition_t coal
, void *ctx
, task_t task
)
1339 /* unused for now */
1342 /* skip the task we're re-evaluating on behalf of: it's already updated */
1343 if (task
== (task_t
)ctx
) {
1349 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
1350 sfi_reevaluate(thread
);
1355 #endif /* CONFIG_SCHED_SFI */
1358 * Called with task unlocked to do things that can't be done while holding the task lock
1361 task_policy_update_complete_unlocked(task_t task
, task_pend_token_t pend_token
)
1364 if (pend_token
->tpt_update_sockets
) {
1365 proc_apply_task_networkbg(task
->bsd_info
, THREAD_NULL
);
1367 #endif /* MACH_BSD */
1369 /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
1370 if (pend_token
->tpt_update_timers
) {
1371 ml_timer_evaluate();
1375 if (pend_token
->tpt_update_watchers
) {
1376 apply_appstate_watchers(task
);
1378 #endif /* CONFIG_EMBEDDED */
1380 if (pend_token
->tpt_update_live_donor
) {
1381 task_importance_update_live_donor(task
);
1384 #if CONFIG_SCHED_SFI
1385 /* use the resource coalition for SFI re-evaluation */
1386 if (pend_token
->tpt_update_coal_sfi
) {
1387 coalition_for_each_task(task
->coalition
[COALITION_TYPE_RESOURCE
],
1388 (void *)task
, task_sfi_reevaluate_cb
);
1390 #endif /* CONFIG_SCHED_SFI */
1395 * Initiate a task policy state transition
1397 * Everything that modifies requested except functions that need to hold the task lock
1398 * should use this function
1400 * Argument validation should be performed before reaching this point.
1402 * TODO: Do we need to check task->active?
1405 proc_set_task_policy(task_t task
,
1410 struct task_pend_token pend_token
= {};
1414 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1415 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
1416 task_pid(task
), trequested_0(task
),
1417 trequested_1(task
), value
, 0);
1419 proc_set_task_policy_locked(task
, category
, flavor
, value
, 0);
1421 task_policy_update_locked(task
, &pend_token
);
1424 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1425 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
1426 task_pid(task
), trequested_0(task
),
1427 trequested_1(task
), tpending(&pend_token
), 0);
1431 task_policy_update_complete_unlocked(task
, &pend_token
);
1435 * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
1436 * Same locking rules apply.
1439 proc_set_task_policy2(task_t task
,
1445 struct task_pend_token pend_token
= {};
1449 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1450 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
1451 task_pid(task
), trequested_0(task
),
1452 trequested_1(task
), value
, 0);
1454 proc_set_task_policy_locked(task
, category
, flavor
, value
, value2
);
1456 task_policy_update_locked(task
, &pend_token
);
1458 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1459 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
1460 task_pid(task
), trequested_0(task
),
1461 trequested_1(task
), tpending(&pend_token
), 0);
1465 task_policy_update_complete_unlocked(task
, &pend_token
);
1469 * Set the requested state for a specific flavor to a specific value.
1472 * Verify that arguments to non iopol things are 1 or 0
1475 proc_set_task_policy_locked(task_t task
,
1483 struct task_requested_policy requested
= task
->requested_policy
;
1486 /* Category: EXTERNAL and INTERNAL */
1488 case TASK_POLICY_DARWIN_BG
:
1489 if (category
== TASK_POLICY_EXTERNAL
) {
1490 requested
.trp_ext_darwinbg
= value
;
1492 requested
.trp_int_darwinbg
= value
;
1496 case TASK_POLICY_IOPOL
:
1497 proc_iopol_to_tier(value
, &tier
, &passive
);
1498 if (category
== TASK_POLICY_EXTERNAL
) {
1499 requested
.trp_ext_iotier
= tier
;
1500 requested
.trp_ext_iopassive
= passive
;
1502 requested
.trp_int_iotier
= tier
;
1503 requested
.trp_int_iopassive
= passive
;
1507 case TASK_POLICY_IO
:
1508 if (category
== TASK_POLICY_EXTERNAL
) {
1509 requested
.trp_ext_iotier
= value
;
1511 requested
.trp_int_iotier
= value
;
1515 case TASK_POLICY_PASSIVE_IO
:
1516 if (category
== TASK_POLICY_EXTERNAL
) {
1517 requested
.trp_ext_iopassive
= value
;
1519 requested
.trp_int_iopassive
= value
;
1523 /* Category: INTERNAL */
1525 case TASK_POLICY_DARWIN_BG_IOPOL
:
1526 assert(category
== TASK_POLICY_INTERNAL
);
1527 proc_iopol_to_tier(value
, &tier
, &passive
);
1528 requested
.trp_bg_iotier
= tier
;
1531 /* Category: ATTRIBUTE */
1533 case TASK_POLICY_TAL
:
1534 assert(category
== TASK_POLICY_ATTRIBUTE
);
1535 requested
.trp_tal_enabled
= value
;
1538 case TASK_POLICY_BOOST
:
1539 assert(category
== TASK_POLICY_ATTRIBUTE
);
1540 requested
.trp_boosted
= value
;
1543 case TASK_POLICY_ROLE
:
1544 assert(category
== TASK_POLICY_ATTRIBUTE
);
1545 requested
.trp_role
= value
;
1548 case TASK_POLICY_TERMINATED
:
1549 assert(category
== TASK_POLICY_ATTRIBUTE
);
1550 requested
.trp_terminated
= value
;
1553 case TASK_BASE_LATENCY_QOS_POLICY
:
1554 assert(category
== TASK_POLICY_ATTRIBUTE
);
1555 requested
.trp_base_latency_qos
= value
;
1558 case TASK_BASE_THROUGHPUT_QOS_POLICY
:
1559 assert(category
== TASK_POLICY_ATTRIBUTE
);
1560 requested
.trp_base_through_qos
= value
;
1563 case TASK_POLICY_SFI_MANAGED
:
1564 assert(category
== TASK_POLICY_ATTRIBUTE
);
1565 requested
.trp_sfi_managed
= value
;
1568 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
:
1569 assert(category
== TASK_POLICY_ATTRIBUTE
);
1570 requested
.trp_base_latency_qos
= value
;
1571 requested
.trp_base_through_qos
= value2
;
1574 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
:
1575 assert(category
== TASK_POLICY_ATTRIBUTE
);
1576 requested
.trp_over_latency_qos
= value
;
1577 requested
.trp_over_through_qos
= value2
;
1581 panic("unknown task policy: %d %d %d %d", category
, flavor
, value
, value2
);
1585 task
->requested_policy
= requested
;
1589 * Gets what you set. Effective values may be different.
1592 proc_get_task_policy(task_t task
,
1600 struct task_requested_policy requested
= task
->requested_policy
;
1603 case TASK_POLICY_DARWIN_BG
:
1604 if (category
== TASK_POLICY_EXTERNAL
) {
1605 value
= requested
.trp_ext_darwinbg
;
1607 value
= requested
.trp_int_darwinbg
;
1610 case TASK_POLICY_IOPOL
:
1611 if (category
== TASK_POLICY_EXTERNAL
) {
1612 value
= proc_tier_to_iopol(requested
.trp_ext_iotier
,
1613 requested
.trp_ext_iopassive
);
1615 value
= proc_tier_to_iopol(requested
.trp_int_iotier
,
1616 requested
.trp_int_iopassive
);
1619 case TASK_POLICY_IO
:
1620 if (category
== TASK_POLICY_EXTERNAL
) {
1621 value
= requested
.trp_ext_iotier
;
1623 value
= requested
.trp_int_iotier
;
1626 case TASK_POLICY_PASSIVE_IO
:
1627 if (category
== TASK_POLICY_EXTERNAL
) {
1628 value
= requested
.trp_ext_iopassive
;
1630 value
= requested
.trp_int_iopassive
;
1633 case TASK_POLICY_DARWIN_BG_IOPOL
:
1634 assert(category
== TASK_POLICY_ATTRIBUTE
);
1635 value
= proc_tier_to_iopol(requested
.trp_bg_iotier
, 0);
1637 case TASK_POLICY_ROLE
:
1638 assert(category
== TASK_POLICY_ATTRIBUTE
);
1639 value
= requested
.trp_role
;
1641 case TASK_POLICY_SFI_MANAGED
:
1642 assert(category
== TASK_POLICY_ATTRIBUTE
);
1643 value
= requested
.trp_sfi_managed
;
1646 panic("unknown policy_flavor %d", flavor
);
1656 * Variant of proc_get_task_policy() that returns two scalar outputs.
1659 proc_get_task_policy2(task_t task
,
1660 __assert_only
int category
,
1667 struct task_requested_policy requested
= task
->requested_policy
;
1670 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
:
1671 assert(category
== TASK_POLICY_ATTRIBUTE
);
1672 *value1
= requested
.trp_base_latency_qos
;
1673 *value2
= requested
.trp_base_through_qos
;
1676 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
:
1677 assert(category
== TASK_POLICY_ATTRIBUTE
);
1678 *value1
= requested
.trp_over_latency_qos
;
1679 *value2
= requested
.trp_over_through_qos
;
1683 panic("unknown policy_flavor %d", flavor
);
1691 * Function for querying effective state for relevant subsystems
1692 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1694 * ONLY the relevant subsystem should query this.
1695 * NEVER take a value from the 'effective' function and stuff it into a setter.
1697 * NOTE: This accessor does not take the task lock.
1698 * Notifications of state updates need to be externally synchronized with state queries.
1699 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1700 * within the context of a timer interrupt. It is also called in KDP context for stackshot.
1703 proc_get_effective_task_policy(task_t task
,
1709 case TASK_POLICY_DARWIN_BG
:
1711 * This backs the KPI call proc_pidbackgrounded to find
1712 * out if a pid is backgrounded.
1713 * It is used to communicate state to the VM system, as well as
1714 * prioritizing requests to the graphics system.
1715 * Returns 1 for background mode, 0 for normal mode
1717 value
= task
->effective_policy
.tep_darwinbg
;
1719 case TASK_POLICY_ALL_SOCKETS_BG
:
1721 * do_background_socket() calls this to determine what it should do to the proc's sockets
1722 * Returns 1 for background mode, 0 for normal mode
1724 * This consults both thread and task so un-DBGing a thread while the task is BG
1725 * doesn't get you out of the network throttle.
1727 value
= task
->effective_policy
.tep_all_sockets_bg
;
1729 case TASK_POLICY_SUP_ACTIVE
:
1731 * Is the task in AppNap? This is used to determine the urgency
1732 * that's passed to the performance management subsystem for threads
1733 * that are running at a priority <= MAXPRI_THROTTLE.
1735 value
= task
->effective_policy
.tep_sup_active
;
1737 case TASK_POLICY_LATENCY_QOS
:
1739 * timer arming calls into here to find out the timer coalescing level
1740 * Returns a QoS tier (0-6)
1742 value
= task
->effective_policy
.tep_latency_qos
;
1744 case TASK_POLICY_THROUGH_QOS
:
1746 * This value is passed into the urgency callout from the scheduler
1747 * to the performance management subsystem.
1748 * Returns a QoS tier (0-6)
1750 value
= task
->effective_policy
.tep_through_qos
;
1752 case TASK_POLICY_ROLE
:
1754 * This controls various things that ask whether a process is foreground,
1755 * like SFI, VM, access to GPU, etc
1757 value
= task
->effective_policy
.tep_role
;
1759 case TASK_POLICY_WATCHERS_BG
:
1761 * This controls whether or not a thread watching this process should be BG.
1763 value
= task
->effective_policy
.tep_watchers_bg
;
1765 case TASK_POLICY_SFI_MANAGED
:
1767 * This controls whether or not a process is targeted for specific control by thermald.
1769 value
= task
->effective_policy
.tep_sfi_managed
;
1772 panic("unknown policy_flavor %d", flavor
);
1780 * Convert from IOPOL_* values to throttle tiers.
1782 * TODO: Can this be made more compact, like an array lookup
1783 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1787 proc_iopol_to_tier(int iopolicy
, int *tier
, int *passive
)
1792 case IOPOL_IMPORTANT
:
1793 *tier
= THROTTLE_LEVEL_TIER0
;
1796 *tier
= THROTTLE_LEVEL_TIER0
;
1799 case IOPOL_STANDARD
:
1800 *tier
= THROTTLE_LEVEL_TIER1
;
1803 *tier
= THROTTLE_LEVEL_TIER2
;
1805 case IOPOL_THROTTLE
:
1806 *tier
= THROTTLE_LEVEL_TIER3
;
1809 panic("unknown I/O policy %d", iopolicy
);
1815 proc_tier_to_iopol(int tier
, int passive
)
1819 case THROTTLE_LEVEL_TIER0
:
1820 return IOPOL_PASSIVE
;
1822 panic("unknown passive tier %d", tier
);
1823 return IOPOL_DEFAULT
;
1827 case THROTTLE_LEVEL_NONE
:
1828 case THROTTLE_LEVEL_TIER0
:
1829 return IOPOL_DEFAULT
;
1830 case THROTTLE_LEVEL_TIER1
:
1831 return IOPOL_STANDARD
;
1832 case THROTTLE_LEVEL_TIER2
:
1833 return IOPOL_UTILITY
;
1834 case THROTTLE_LEVEL_TIER3
:
1835 return IOPOL_THROTTLE
;
1837 panic("unknown tier %d", tier
);
1838 return IOPOL_DEFAULT
;
1844 proc_darwin_role_to_task_role(int darwin_role
, int* task_role
)
1846 integer_t role
= TASK_UNSPECIFIED
;
1848 switch (darwin_role
) {
1849 case PRIO_DARWIN_ROLE_DEFAULT
:
1850 role
= TASK_UNSPECIFIED
;
1852 case PRIO_DARWIN_ROLE_UI_FOCAL
:
1853 role
= TASK_FOREGROUND_APPLICATION
;
1855 case PRIO_DARWIN_ROLE_UI
:
1856 role
= TASK_DEFAULT_APPLICATION
;
1858 case PRIO_DARWIN_ROLE_NON_UI
:
1859 role
= TASK_NONUI_APPLICATION
;
1861 case PRIO_DARWIN_ROLE_UI_NON_FOCAL
:
1862 role
= TASK_BACKGROUND_APPLICATION
;
1864 case PRIO_DARWIN_ROLE_TAL_LAUNCH
:
1865 role
= TASK_THROTTLE_APPLICATION
;
1867 case PRIO_DARWIN_ROLE_DARWIN_BG
:
1868 role
= TASK_DARWINBG_APPLICATION
;
1880 proc_task_role_to_darwin_role(int task_role
)
1882 switch (task_role
) {
1883 case TASK_FOREGROUND_APPLICATION
:
1884 return PRIO_DARWIN_ROLE_UI_FOCAL
;
1885 case TASK_BACKGROUND_APPLICATION
:
1886 return PRIO_DARWIN_ROLE_UI_NON_FOCAL
;
1887 case TASK_NONUI_APPLICATION
:
1888 return PRIO_DARWIN_ROLE_NON_UI
;
1889 case TASK_DEFAULT_APPLICATION
:
1890 return PRIO_DARWIN_ROLE_UI
;
1891 case TASK_THROTTLE_APPLICATION
:
1892 return PRIO_DARWIN_ROLE_TAL_LAUNCH
;
1893 case TASK_DARWINBG_APPLICATION
:
1894 return PRIO_DARWIN_ROLE_DARWIN_BG
;
1895 case TASK_UNSPECIFIED
:
1897 return PRIO_DARWIN_ROLE_DEFAULT
;
1902 /* TODO: remove this variable when interactive daemon audit period is over */
1903 extern boolean_t ipc_importance_interactive_receiver
;
1906 * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
1908 * TODO: Make this function more table-driven instead of ad-hoc
1911 proc_set_task_spawnpolicy(task_t task
, thread_t thread
, int apptype
, int qos_clamp
, int role
,
1912 ipc_port_t
* portwatch_ports
, uint32_t portwatch_count
)
1914 struct task_pend_token pend_token
= {};
1916 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1917 (IMPORTANCE_CODE(IMP_TASK_APPTYPE
, apptype
)) | DBG_FUNC_START
,
1918 task_pid(task
), trequested_0(task
), trequested_1(task
),
1922 case TASK_APPTYPE_APP_TAL
:
1923 case TASK_APPTYPE_APP_DEFAULT
:
1924 /* Apps become donors via the 'live-donor' flag instead of the static donor flag */
1925 task_importance_mark_donor(task
, FALSE
);
1926 task_importance_mark_live_donor(task
, TRUE
);
1927 task_importance_mark_receiver(task
, FALSE
);
1929 task_importance_mark_denap_receiver(task
, FALSE
);
1931 /* Apps are de-nap recievers on desktop for suppression behaviors */
1932 task_importance_mark_denap_receiver(task
, TRUE
);
1933 #endif /* CONFIG_EMBEDDED */
1936 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1937 task_importance_mark_donor(task
, TRUE
);
1938 task_importance_mark_live_donor(task
, FALSE
);
1941 * A boot arg controls whether interactive daemons are importance receivers.
1942 * Normally, they are not. But for testing their behavior as an adaptive
1943 * daemon, the boot-arg can be set.
1945 * TODO: remove this when the interactive daemon audit period is over.
1947 task_importance_mark_receiver(task
, /* FALSE */ ipc_importance_interactive_receiver
);
1948 task_importance_mark_denap_receiver(task
, FALSE
);
1951 case TASK_APPTYPE_DAEMON_STANDARD
:
1952 task_importance_mark_donor(task
, TRUE
);
1953 task_importance_mark_live_donor(task
, FALSE
);
1954 task_importance_mark_receiver(task
, FALSE
);
1955 task_importance_mark_denap_receiver(task
, FALSE
);
1958 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1959 task_importance_mark_donor(task
, FALSE
);
1960 task_importance_mark_live_donor(task
, FALSE
);
1961 task_importance_mark_receiver(task
, TRUE
);
1962 task_importance_mark_denap_receiver(task
, FALSE
);
1965 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1966 task_importance_mark_donor(task
, FALSE
);
1967 task_importance_mark_live_donor(task
, FALSE
);
1968 task_importance_mark_receiver(task
, FALSE
);
1969 task_importance_mark_denap_receiver(task
, FALSE
);
1972 case TASK_APPTYPE_DRIVER
:
1973 task_importance_mark_donor(task
, FALSE
);
1974 task_importance_mark_live_donor(task
, FALSE
);
1975 task_importance_mark_receiver(task
, FALSE
);
1976 task_importance_mark_denap_receiver(task
, FALSE
);
1979 case TASK_APPTYPE_NONE
:
1983 if (portwatch_ports
!= NULL
&& apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
1984 int portwatch_boosts
= 0;
1986 for (uint32_t i
= 0; i
< portwatch_count
; i
++) {
1987 ipc_port_t port
= NULL
;
1989 if (IP_VALID(port
= portwatch_ports
[i
])) {
1991 task_add_importance_watchport(task
, port
, &boost
);
1992 portwatch_boosts
+= boost
;
1996 if (portwatch_boosts
> 0) {
1997 task_importance_hold_internal_assertion(task
, portwatch_boosts
);
2001 /* Redirect the turnstile push of watchports to task */
2002 if (portwatch_count
&& portwatch_ports
!= NULL
) {
2003 task_add_turnstile_watchports(task
, thread
, portwatch_ports
, portwatch_count
);
2008 if (apptype
== TASK_APPTYPE_APP_TAL
) {
2009 /* TAL starts off enabled by default */
2010 task
->requested_policy
.trp_tal_enabled
= 1;
2013 if (apptype
!= TASK_APPTYPE_NONE
) {
2014 task
->requested_policy
.trp_apptype
= apptype
;
2018 /* Remove this after launchd starts setting it properly */
2019 if (apptype
== TASK_APPTYPE_APP_DEFAULT
&& role
== TASK_UNSPECIFIED
) {
2020 task
->requested_policy
.trp_role
= TASK_FOREGROUND_APPLICATION
;
2023 if (role
!= TASK_UNSPECIFIED
) {
2024 task
->requested_policy
.trp_role
= role
;
2027 if (qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
2028 task
->requested_policy
.trp_qos_clamp
= qos_clamp
;
2031 task_policy_update_locked(task
, &pend_token
);
2035 /* Ensure the donor bit is updated to be in sync with the new live donor status */
2036 pend_token
.tpt_update_live_donor
= 1;
2038 task_policy_update_complete_unlocked(task
, &pend_token
);
2040 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2041 (IMPORTANCE_CODE(IMP_TASK_APPTYPE
, apptype
)) | DBG_FUNC_END
,
2042 task_pid(task
), trequested_0(task
), trequested_1(task
),
2043 task_is_importance_receiver(task
), 0);
2047 * Inherit task role across exec
2050 proc_inherit_task_role(task_t new_task
,
2055 /* inherit the role from old task to new task */
2056 role
= proc_get_task_policy(old_task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
);
2057 proc_set_task_policy(new_task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
, role
);
2060 extern void *initproc
;
2063 * Compute the default main thread qos for a task
2066 task_compute_main_thread_qos(task_t task
)
2068 int primordial_qos
= THREAD_QOS_UNSPECIFIED
;
2070 int qos_clamp
= task
->requested_policy
.trp_qos_clamp
;
2072 switch (task
->requested_policy
.trp_apptype
) {
2073 case TASK_APPTYPE_APP_TAL
:
2074 case TASK_APPTYPE_APP_DEFAULT
:
2075 primordial_qos
= THREAD_QOS_USER_INTERACTIVE
;
2078 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
2079 case TASK_APPTYPE_DAEMON_STANDARD
:
2080 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
2081 case TASK_APPTYPE_DRIVER
:
2082 primordial_qos
= THREAD_QOS_LEGACY
;
2085 case TASK_APPTYPE_DAEMON_BACKGROUND
:
2086 primordial_qos
= THREAD_QOS_BACKGROUND
;
2090 if (task
->bsd_info
== initproc
) {
2091 /* PID 1 gets a special case */
2092 primordial_qos
= MAX(primordial_qos
, THREAD_QOS_USER_INITIATED
);
2095 if (qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
2096 if (primordial_qos
!= THREAD_QOS_UNSPECIFIED
) {
2097 primordial_qos
= MIN(qos_clamp
, primordial_qos
);
2099 primordial_qos
= qos_clamp
;
2103 return primordial_qos
;
2107 /* for process_policy to check before attempting to set */
2109 proc_task_is_tal(task_t task
)
2111 return (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_TAL
) ? TRUE
: FALSE
;
2115 task_get_apptype(task_t task
)
2117 return task
->requested_policy
.trp_apptype
;
2121 task_is_daemon(task_t task
)
2123 switch (task
->requested_policy
.trp_apptype
) {
2124 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
2125 case TASK_APPTYPE_DAEMON_STANDARD
:
2126 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
2127 case TASK_APPTYPE_DAEMON_BACKGROUND
:
2135 task_is_driver(task_t task
)
2140 return task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DRIVER
;
2144 task_is_app(task_t task
)
2146 switch (task
->requested_policy
.trp_apptype
) {
2147 case TASK_APPTYPE_APP_DEFAULT
:
2148 case TASK_APPTYPE_APP_TAL
:
2157 task_grab_latency_qos(task_t task
)
2159 return qos_latency_policy_package(proc_get_effective_task_policy(task
, TASK_POLICY_LATENCY_QOS
));
2162 /* update the darwin background action state in the flags field for libproc */
2164 proc_get_darwinbgstate(task_t task
, uint32_t * flagsp
)
2166 if (task
->requested_policy
.trp_ext_darwinbg
) {
2167 *flagsp
|= PROC_FLAG_EXT_DARWINBG
;
2170 if (task
->requested_policy
.trp_int_darwinbg
) {
2171 *flagsp
|= PROC_FLAG_DARWINBG
;
2175 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_BACKGROUND
) {
2176 *flagsp
|= PROC_FLAG_IOS_APPLEDAEMON
;
2179 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
2180 *flagsp
|= PROC_FLAG_IOS_IMPPROMOTION
;
2182 #endif /* CONFIG_EMBEDDED */
2184 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
2185 task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_TAL
) {
2186 *flagsp
|= PROC_FLAG_APPLICATION
;
2189 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
2190 *flagsp
|= PROC_FLAG_ADAPTIVE
;
2193 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&&
2194 task
->requested_policy
.trp_boosted
== 1) {
2195 *flagsp
|= PROC_FLAG_ADAPTIVE_IMPORTANT
;
2198 if (task_is_importance_donor(task
)) {
2199 *flagsp
|= PROC_FLAG_IMPORTANCE_DONOR
;
2202 if (task
->effective_policy
.tep_sup_active
) {
2203 *flagsp
|= PROC_FLAG_SUPPRESSED
;
2210 * Tracepoint data... Reading the tracepoint data can be somewhat complicated.
2211 * The current scheme packs as much data into a single tracepoint as it can.
2213 * Each task/thread requested/effective structure is 64 bits in size. Any
2214 * given tracepoint will emit either requested or effective data, but not both.
2216 * A tracepoint may emit any of task, thread, or task & thread data.
2218 * The type of data emitted varies with pointer size. Where possible, both
2219 * task and thread data are emitted. In LP32 systems, the first and second
2220 * halves of either the task or thread data is emitted.
2222 * The code uses uintptr_t array indexes instead of high/low to avoid
2223 * confusion WRT big vs little endian.
2225 * The truth table for the tracepoint data functions is below, and has the
2226 * following invariants:
2228 * 1) task and thread are uintptr_t*
2229 * 2) task may never be NULL
2233 * trequested_0(task, NULL) task[0] task[0]
2234 * trequested_1(task, NULL) task[1] NULL
2235 * trequested_0(task, thread) thread[0] task[0]
2236 * trequested_1(task, thread) thread[1] thread[0]
2238 * Basically, you get a full task or thread on LP32, and both on LP64.
2240 * The uintptr_t munging here is squicky enough to deserve a comment.
2242 * The variables we are accessing are laid out in memory like this:
2244 * [ LP64 uintptr_t 0 ]
2245 * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
2252 trequested_0(task_t task
)
2254 static_assert(sizeof(struct task_requested_policy
) == sizeof(uint64_t), "size invariant violated");
2256 uintptr_t* raw
= (uintptr_t*)&task
->requested_policy
;
2262 trequested_1(task_t task
)
2264 #if defined __LP64__
2268 uintptr_t* raw
= (uintptr_t*)(&task
->requested_policy
);
2274 teffective_0(task_t task
)
2276 uintptr_t* raw
= (uintptr_t*)&task
->effective_policy
;
2282 teffective_1(task_t task
)
2284 #if defined __LP64__
2288 uintptr_t* raw
= (uintptr_t*)(&task
->effective_policy
);
2293 /* dump pending for tracepoint */
2295 tpending(task_pend_token_t pend_token
)
2297 return *(uint32_t*)(void*)(pend_token
);
2301 task_requested_bitfield(task_t task
)
2304 struct task_requested_policy requested
= task
->requested_policy
;
2306 bits
|= (requested
.trp_int_darwinbg
? POLICY_REQ_INT_DARWIN_BG
: 0);
2307 bits
|= (requested
.trp_ext_darwinbg
? POLICY_REQ_EXT_DARWIN_BG
: 0);
2308 bits
|= (requested
.trp_int_iotier
? (((uint64_t)requested
.trp_int_iotier
) << POLICY_REQ_INT_IO_TIER_SHIFT
) : 0);
2309 bits
|= (requested
.trp_ext_iotier
? (((uint64_t)requested
.trp_ext_iotier
) << POLICY_REQ_EXT_IO_TIER_SHIFT
) : 0);
2310 bits
|= (requested
.trp_int_iopassive
? POLICY_REQ_INT_PASSIVE_IO
: 0);
2311 bits
|= (requested
.trp_ext_iopassive
? POLICY_REQ_EXT_PASSIVE_IO
: 0);
2312 bits
|= (requested
.trp_bg_iotier
? (((uint64_t)requested
.trp_bg_iotier
) << POLICY_REQ_BG_IOTIER_SHIFT
) : 0);
2313 bits
|= (requested
.trp_terminated
? POLICY_REQ_TERMINATED
: 0);
2315 bits
|= (requested
.trp_boosted
? POLICY_REQ_BOOSTED
: 0);
2316 bits
|= (requested
.trp_tal_enabled
? POLICY_REQ_TAL_ENABLED
: 0);
2317 bits
|= (requested
.trp_apptype
? (((uint64_t)requested
.trp_apptype
) << POLICY_REQ_APPTYPE_SHIFT
) : 0);
2318 bits
|= (requested
.trp_role
? (((uint64_t)requested
.trp_role
) << POLICY_REQ_ROLE_SHIFT
) : 0);
2320 bits
|= (requested
.trp_sup_active
? POLICY_REQ_SUP_ACTIVE
: 0);
2321 bits
|= (requested
.trp_sup_lowpri_cpu
? POLICY_REQ_SUP_LOWPRI_CPU
: 0);
2322 bits
|= (requested
.trp_sup_cpu
? POLICY_REQ_SUP_CPU
: 0);
2323 bits
|= (requested
.trp_sup_timer
? (((uint64_t)requested
.trp_sup_timer
) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT
) : 0);
2324 bits
|= (requested
.trp_sup_throughput
? (((uint64_t)requested
.trp_sup_throughput
) << POLICY_REQ_SUP_THROUGHPUT_SHIFT
) : 0);
2325 bits
|= (requested
.trp_sup_disk
? POLICY_REQ_SUP_DISK_THROTTLE
: 0);
2326 bits
|= (requested
.trp_sup_bg_sockets
? POLICY_REQ_SUP_BG_SOCKETS
: 0);
2328 bits
|= (requested
.trp_base_latency_qos
? (((uint64_t)requested
.trp_base_latency_qos
) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT
) : 0);
2329 bits
|= (requested
.trp_over_latency_qos
? (((uint64_t)requested
.trp_over_latency_qos
) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT
) : 0);
2330 bits
|= (requested
.trp_base_through_qos
? (((uint64_t)requested
.trp_base_through_qos
) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT
) : 0);
2331 bits
|= (requested
.trp_over_through_qos
? (((uint64_t)requested
.trp_over_through_qos
) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT
) : 0);
2332 bits
|= (requested
.trp_sfi_managed
? POLICY_REQ_SFI_MANAGED
: 0);
2333 bits
|= (requested
.trp_qos_clamp
? (((uint64_t)requested
.trp_qos_clamp
) << POLICY_REQ_QOS_CLAMP_SHIFT
) : 0);
2339 task_effective_bitfield(task_t task
)
2342 struct task_effective_policy effective
= task
->effective_policy
;
2344 bits
|= (effective
.tep_io_tier
? (((uint64_t)effective
.tep_io_tier
) << POLICY_EFF_IO_TIER_SHIFT
) : 0);
2345 bits
|= (effective
.tep_io_passive
? POLICY_EFF_IO_PASSIVE
: 0);
2346 bits
|= (effective
.tep_darwinbg
? POLICY_EFF_DARWIN_BG
: 0);
2347 bits
|= (effective
.tep_lowpri_cpu
? POLICY_EFF_LOWPRI_CPU
: 0);
2348 bits
|= (effective
.tep_terminated
? POLICY_EFF_TERMINATED
: 0);
2349 bits
|= (effective
.tep_all_sockets_bg
? POLICY_EFF_ALL_SOCKETS_BG
: 0);
2350 bits
|= (effective
.tep_new_sockets_bg
? POLICY_EFF_NEW_SOCKETS_BG
: 0);
2351 bits
|= (effective
.tep_bg_iotier
? (((uint64_t)effective
.tep_bg_iotier
) << POLICY_EFF_BG_IOTIER_SHIFT
) : 0);
2352 bits
|= (effective
.tep_qos_ui_is_urgent
? POLICY_EFF_QOS_UI_IS_URGENT
: 0);
2354 bits
|= (effective
.tep_tal_engaged
? POLICY_EFF_TAL_ENGAGED
: 0);
2355 bits
|= (effective
.tep_watchers_bg
? POLICY_EFF_WATCHERS_BG
: 0);
2356 bits
|= (effective
.tep_sup_active
? POLICY_EFF_SUP_ACTIVE
: 0);
2357 bits
|= (effective
.tep_suppressed_cpu
? POLICY_EFF_SUP_CPU
: 0);
2358 bits
|= (effective
.tep_role
? (((uint64_t)effective
.tep_role
) << POLICY_EFF_ROLE_SHIFT
) : 0);
2359 bits
|= (effective
.tep_latency_qos
? (((uint64_t)effective
.tep_latency_qos
) << POLICY_EFF_LATENCY_QOS_SHIFT
) : 0);
2360 bits
|= (effective
.tep_through_qos
? (((uint64_t)effective
.tep_through_qos
) << POLICY_EFF_THROUGH_QOS_SHIFT
) : 0);
2361 bits
|= (effective
.tep_sfi_managed
? POLICY_EFF_SFI_MANAGED
: 0);
2362 bits
|= (effective
.tep_qos_ceiling
? (((uint64_t)effective
.tep_qos_ceiling
) << POLICY_EFF_QOS_CEILING_SHIFT
) : 0);
2369 * Resource usage and CPU related routines
2373 proc_get_task_ruse_cpu(task_t task
, uint32_t *policyp
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
)
2381 error
= task_get_cpuusage(task
, percentagep
, intervalp
, deadlinep
, &scope
);
2385 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
2387 if (scope
== TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2388 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC
;
2389 } else if (scope
== TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2390 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE
;
2391 } else if (scope
== TASK_RUSECPU_FLAGS_DEADLINE
) {
2392 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2399 * Configure the default CPU usage monitor parameters.
2401 * For tasks which have this mechanism activated: if any thread in the
2402 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
2405 proc_init_cpumon_params(void)
2408 * The max CPU percentage can be configured via the boot-args and
2409 * a key in the device tree. The boot-args are honored first, then the
2412 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage
,
2413 sizeof(proc_max_cpumon_percentage
))) {
2414 uint64_t max_percentage
= 0ULL;
2416 if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage
,
2417 sizeof(max_percentage
))) {
2418 max_percentage
= DEFAULT_CPUMON_PERCENTAGE
;
2421 assert(max_percentage
<= UINT8_MAX
);
2422 proc_max_cpumon_percentage
= (uint8_t) max_percentage
;
2425 if (proc_max_cpumon_percentage
> 100) {
2426 proc_max_cpumon_percentage
= 100;
2430 * The interval should be specified in seconds.
2432 * Like the max CPU percentage, the max CPU interval can be configured
2433 * via boot-args and the device tree.
2435 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval
,
2436 sizeof(proc_max_cpumon_interval
))) {
2437 if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval
,
2438 sizeof(proc_max_cpumon_interval
))) {
2439 proc_max_cpumon_interval
= DEFAULT_CPUMON_INTERVAL
;
2443 proc_max_cpumon_interval
*= NSEC_PER_SEC
;
2445 /* TEMPORARY boot arg to control App suppression */
2446 PE_parse_boot_argn("task_policy_suppression_flags",
2447 &task_policy_suppression_flags
,
2448 sizeof(task_policy_suppression_flags
));
2450 /* adjust suppression disk policy if called for in boot arg */
2451 if (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_IOTIER2
) {
2452 proc_suppressed_disk_tier
= THROTTLE_LEVEL_TIER2
;
2457 * Currently supported configurations for CPU limits.
2459 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
2460 * -------------------------------------+--------------------------+------------------------------
2461 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
2462 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
2463 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
2464 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
2465 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
2467 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
2468 * after the specified amount of wallclock time has elapsed.
2470 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
2471 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
2472 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
2473 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2475 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2476 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2477 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2478 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2480 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2481 * CPU limit. All other types of notifications force task-wide scope for the limit.
2484 proc_set_task_ruse_cpu(task_t task
, uint32_t policy
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
,
2485 int cpumon_entitled
)
2491 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
2494 // If no policy is explicitly given, the default is to throttle.
2495 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
:
2496 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE
:
2497 if (deadline
!= 0) {
2500 scope
= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2502 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND
:
2503 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE
:
2504 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ
:
2505 if (percentage
!= 0) {
2508 scope
= TASK_RUSECPU_FLAGS_DEADLINE
;
2510 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC
:
2511 if (deadline
!= 0) {
2514 scope
= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2515 #ifdef CONFIG_NOMONITORS
2517 #endif /* CONFIG_NOMONITORS */
2524 if (task
!= current_task()) {
2525 task
->policy_ru_cpu_ext
= policy
;
2527 task
->policy_ru_cpu
= policy
;
2529 error
= task_set_cpuusage(task
, percentage
, interval
, deadline
, scope
, cpumon_entitled
);
2534 /* TODO: get rid of these */
2535 #define TASK_POLICY_CPU_RESOURCE_USAGE 0
2536 #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
2537 #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
2538 #define TASK_POLICY_DISK_RESOURCE_USAGE 3
2539 #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
2540 #define TASK_POLICY_POWER_RESOURCE_USAGE 5
2542 #define TASK_POLICY_RESOURCE_USAGE_COUNT 6
2545 proc_clear_task_ruse_cpu(task_t task
, int cpumon_entitled
)
2549 void * bsdinfo
= NULL
;
2552 if (task
!= current_task()) {
2553 task
->policy_ru_cpu_ext
= TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT
;
2555 task
->policy_ru_cpu
= TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT
;
2558 error
= task_clear_cpuusage_locked(task
, cpumon_entitled
);
2563 action
= task
->applied_ru_cpu
;
2564 if (task
->applied_ru_cpu_ext
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2566 task
->applied_ru_cpu_ext
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2568 if (action
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2569 bsdinfo
= task
->bsd_info
;
2571 proc_restore_resource_actions(bsdinfo
, TASK_POLICY_CPU_RESOURCE_USAGE
, action
);
2581 /* used to apply resource limit related actions */
2583 task_apply_resource_actions(task_t task
, int type
)
2585 int action
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2586 void * bsdinfo
= NULL
;
2589 case TASK_POLICY_CPU_RESOURCE_USAGE
:
2591 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE
:
2592 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE
:
2593 case TASK_POLICY_DISK_RESOURCE_USAGE
:
2594 case TASK_POLICY_NETWORK_RESOURCE_USAGE
:
2595 case TASK_POLICY_POWER_RESOURCE_USAGE
:
2603 /* only cpu actions for now */
2606 if (task
->applied_ru_cpu_ext
== TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2608 task
->applied_ru_cpu_ext
= task
->policy_ru_cpu_ext
;
2609 action
= task
->applied_ru_cpu_ext
;
2611 action
= task
->applied_ru_cpu_ext
;
2614 if (action
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2615 bsdinfo
= task
->bsd_info
;
2617 proc_apply_resource_actions(bsdinfo
, TASK_POLICY_CPU_RESOURCE_USAGE
, action
);
2626 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
2627 * only allows for one at a time. This means that if there is a per-thread limit active, the other
2628 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
2629 * to the caller, and prefer that, but there's no need for that at the moment.
2632 task_get_cpuusage(task_t task
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
, int *scope
)
2638 if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) != 0) {
2639 *scope
= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2640 *percentagep
= task
->rusage_cpu_perthr_percentage
;
2641 *intervalp
= task
->rusage_cpu_perthr_interval
;
2642 } else if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PROC_LIMIT
) != 0) {
2643 *scope
= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2644 *percentagep
= task
->rusage_cpu_percentage
;
2645 *intervalp
= task
->rusage_cpu_interval
;
2646 } else if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_DEADLINE
) != 0) {
2647 *scope
= TASK_RUSECPU_FLAGS_DEADLINE
;
2648 *deadlinep
= task
->rusage_cpu_deadline
;
2657 * Suspend the CPU usage monitor for the task. Return value indicates
2658 * if the mechanism was actually enabled.
2661 task_suspend_cpumon(task_t task
)
2665 task_lock_assert_owned(task
);
2667 if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) == 0) {
2668 return KERN_INVALID_ARGUMENT
;
2671 #if CONFIG_TELEMETRY
2673 * Disable task-wide telemetry if it was ever enabled by the CPU usage
2674 * monitor's warning zone.
2676 telemetry_task_ctl_locked(task
, TF_CPUMON_WARNING
, 0);
2680 * Suspend monitoring for the task, and propagate that change to each thread.
2682 task
->rusage_cpu_flags
&= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT
| TASK_RUSECPU_FLAGS_FATAL_CPUMON
);
2683 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
2684 act_set_astledger(thread
);
2687 return KERN_SUCCESS
;
2691 * Remove all traces of the CPU monitor.
2694 task_disable_cpumon(task_t task
)
2698 task_lock_assert_owned(task
);
2700 kret
= task_suspend_cpumon(task
);
2705 /* Once we clear these values, the monitor can't be resumed */
2706 task
->rusage_cpu_perthr_percentage
= 0;
2707 task
->rusage_cpu_perthr_interval
= 0;
2709 return KERN_SUCCESS
;
2714 task_enable_cpumon_locked(task_t task
)
2717 task_lock_assert_owned(task
);
2719 if (task
->rusage_cpu_perthr_percentage
== 0 ||
2720 task
->rusage_cpu_perthr_interval
== 0) {
2721 return KERN_INVALID_ARGUMENT
;
2724 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2725 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
2726 act_set_astledger(thread
);
2729 return KERN_SUCCESS
;
2733 task_resume_cpumon(task_t task
)
2742 kret
= task_enable_cpumon_locked(task
);
2749 /* duplicate values from bsd/sys/process_policy.h */
2750 #define PROC_POLICY_CPUMON_DISABLE 0xFF
2751 #define PROC_POLICY_CPUMON_DEFAULTS 0xFE
2754 task_set_cpuusage(task_t task
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
, int scope
, int cpumon_entitled
)
2756 uint64_t abstime
= 0;
2757 uint64_t limittime
= 0;
2759 lck_mtx_assert(&task
->lock
, LCK_MTX_ASSERT_OWNED
);
2761 /* By default, refill once per second */
2762 if (interval
== 0) {
2763 interval
= NSEC_PER_SEC
;
2766 if (percentage
!= 0) {
2767 if (scope
== TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2768 boolean_t warn
= FALSE
;
2771 * A per-thread CPU limit on a task generates an exception
2772 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
2773 * exceeds the limit.
2776 if (percentage
== PROC_POLICY_CPUMON_DISABLE
) {
2777 if (cpumon_entitled
) {
2778 /* 25095698 - task_disable_cpumon() should be reliable */
2779 task_disable_cpumon(task
);
2784 * This task wishes to disable the CPU usage monitor, but it's
2785 * missing the required entitlement:
2786 * com.apple.private.kernel.override-cpumon
2788 * Instead, treat this as a request to reset its params
2789 * back to the defaults.
2792 percentage
= PROC_POLICY_CPUMON_DEFAULTS
;
2795 if (percentage
== PROC_POLICY_CPUMON_DEFAULTS
) {
2796 percentage
= proc_max_cpumon_percentage
;
2797 interval
= proc_max_cpumon_interval
;
2800 if (percentage
> 100) {
2805 * Passing in an interval of -1 means either:
2806 * - Leave the interval as-is, if there's already a per-thread
2808 * - Use the system default.
2810 if (interval
== -1ULL) {
2811 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2812 interval
= task
->rusage_cpu_perthr_interval
;
2814 interval
= proc_max_cpumon_interval
;
2819 * Enforce global caps on CPU usage monitor here if the process is not
2820 * entitled to escape the global caps.
2822 if ((percentage
> proc_max_cpumon_percentage
) && (cpumon_entitled
== 0)) {
2824 percentage
= proc_max_cpumon_percentage
;
2827 if ((interval
> proc_max_cpumon_interval
) && (cpumon_entitled
== 0)) {
2829 interval
= proc_max_cpumon_interval
;
2834 const char *procname
= "unknown";
2837 pid
= proc_selfpid();
2838 if (current_task()->bsd_info
!= NULL
) {
2839 procname
= proc_name_address(current_task()->bsd_info
);
2843 printf("process %s[%d] denied attempt to escape CPU monitor"
2844 " (missing required entitlement).\n", procname
, pid
);
2847 /* configure the limit values */
2848 task
->rusage_cpu_perthr_percentage
= percentage
;
2849 task
->rusage_cpu_perthr_interval
= interval
;
2851 /* and enable the CPU monitor */
2852 (void)task_enable_cpumon_locked(task
);
2853 } else if (scope
== TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2855 * Currently, a proc-wide CPU limit always blocks if the limit is
2856 * exceeded (LEDGER_ACTION_BLOCK).
2858 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2859 task
->rusage_cpu_percentage
= percentage
;
2860 task
->rusage_cpu_interval
= interval
;
2862 limittime
= (interval
* percentage
) / 100;
2863 nanoseconds_to_absolutetime(limittime
, &abstime
);
2865 ledger_set_limit(task
->ledger
, task_ledgers
.cpu_time
, abstime
, 0);
2866 ledger_set_period(task
->ledger
, task_ledgers
.cpu_time
, interval
);
2867 ledger_set_action(task
->ledger
, task_ledgers
.cpu_time
, LEDGER_ACTION_BLOCK
);
2871 if (deadline
!= 0) {
2872 assert(scope
== TASK_RUSECPU_FLAGS_DEADLINE
);
2874 /* if already in use, cancel and wait for it to cleanout */
2875 if (task
->rusage_cpu_callt
!= NULL
) {
2877 thread_call_cancel_wait(task
->rusage_cpu_callt
);
2880 if (task
->rusage_cpu_callt
== NULL
) {
2881 task
->rusage_cpu_callt
= thread_call_allocate_with_priority(task_action_cpuusage
, (thread_call_param_t
)task
, THREAD_CALL_PRIORITY_KERNEL
);
2884 if (task
->rusage_cpu_callt
!= 0) {
2885 uint64_t save_abstime
= 0;
2887 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_DEADLINE
;
2888 task
->rusage_cpu_deadline
= deadline
;
2890 nanoseconds_to_absolutetime(deadline
, &abstime
);
2891 save_abstime
= abstime
;
2892 clock_absolutetime_interval_to_deadline(save_abstime
, &abstime
);
2893 thread_call_enter_delayed(task
->rusage_cpu_callt
, abstime
);
2901 task_clear_cpuusage(task_t task
, int cpumon_entitled
)
2906 retval
= task_clear_cpuusage_locked(task
, cpumon_entitled
);
2913 task_clear_cpuusage_locked(task_t task
, int cpumon_entitled
)
2915 thread_call_t savecallt
;
2917 /* cancel percentage handling if set */
2918 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2919 task
->rusage_cpu_flags
&= ~TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2920 ledger_set_limit(task
->ledger
, task_ledgers
.cpu_time
, LEDGER_LIMIT_INFINITY
, 0);
2921 task
->rusage_cpu_percentage
= 0;
2922 task
->rusage_cpu_interval
= 0;
2926 * Disable the CPU usage monitor.
2928 if (cpumon_entitled
) {
2929 task_disable_cpumon(task
);
2932 /* cancel deadline handling if set */
2933 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_DEADLINE
) {
2934 task
->rusage_cpu_flags
&= ~TASK_RUSECPU_FLAGS_DEADLINE
;
2935 if (task
->rusage_cpu_callt
!= 0) {
2936 savecallt
= task
->rusage_cpu_callt
;
2937 task
->rusage_cpu_callt
= NULL
;
2938 task
->rusage_cpu_deadline
= 0;
2940 thread_call_cancel_wait(savecallt
);
2941 thread_call_free(savecallt
);
2948 /* called by ledger unit to enforce action due to resource usage criteria being met */
2950 task_action_cpuusage(thread_call_param_t param0
, __unused thread_call_param_t param1
)
2952 task_t task
= (task_t
)param0
;
2953 (void)task_apply_resource_actions(task
, TASK_POLICY_CPU_RESOURCE_USAGE
);
2959 * Routines for taskwatch and pidbind
2964 lck_mtx_t task_watch_mtx
;
2967 task_watch_init(void)
2969 lck_mtx_init(&task_watch_mtx
, &task_lck_grp
, &task_lck_attr
);
2973 task_watch_lock(void)
2975 lck_mtx_lock(&task_watch_mtx
);
2979 task_watch_unlock(void)
2981 lck_mtx_unlock(&task_watch_mtx
);
2985 add_taskwatch_locked(task_t task
, task_watch_t
* twp
)
2987 queue_enter(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
);
2988 task
->num_taskwatchers
++;
2992 remove_taskwatch_locked(task_t task
, task_watch_t
* twp
)
2994 queue_remove(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
);
2995 task
->num_taskwatchers
--;
3000 proc_lf_pidbind(task_t curtask
, uint64_t tid
, task_t target_task
, int bind
)
3002 thread_t target_thread
= NULL
;
3003 int ret
= 0, setbg
= 0;
3004 task_watch_t
*twp
= NULL
;
3005 task_t task
= TASK_NULL
;
3007 target_thread
= task_findtid(curtask
, tid
);
3008 if (target_thread
== NULL
) {
3011 /* holds thread reference */
3014 /* task is still active ? */
3015 task_lock(target_task
);
3016 if (target_task
->active
== 0) {
3017 task_unlock(target_task
);
3021 task_unlock(target_task
);
3023 twp
= (task_watch_t
*)kalloc(sizeof(task_watch_t
));
3025 task_watch_unlock();
3030 bzero(twp
, sizeof(task_watch_t
));
3034 if (target_thread
->taskwatch
!= NULL
) {
3035 /* already bound to another task */
3036 task_watch_unlock();
3038 kfree(twp
, sizeof(task_watch_t
));
3043 task_reference(target_task
);
3045 setbg
= proc_get_effective_task_policy(target_task
, TASK_POLICY_WATCHERS_BG
);
3047 twp
->tw_task
= target_task
; /* holds the task reference */
3048 twp
->tw_thread
= target_thread
; /* holds the thread reference */
3049 twp
->tw_state
= setbg
;
3050 twp
->tw_importance
= target_thread
->importance
;
3052 add_taskwatch_locked(target_task
, twp
);
3054 target_thread
->taskwatch
= twp
;
3056 task_watch_unlock();
3059 set_thread_appbg(target_thread
, setbg
, INT_MIN
);
3062 /* retain the thread reference as it is in twp */
3063 target_thread
= NULL
;
3067 if ((twp
= target_thread
->taskwatch
) != NULL
) {
3068 task
= twp
->tw_task
;
3069 target_thread
->taskwatch
= NULL
;
3070 remove_taskwatch_locked(task
, twp
);
3072 task_watch_unlock();
3074 task_deallocate(task
); /* drop task ref in twp */
3075 set_thread_appbg(target_thread
, 0, twp
->tw_importance
);
3076 thread_deallocate(target_thread
); /* drop thread ref in twp */
3077 kfree(twp
, sizeof(task_watch_t
));
3079 task_watch_unlock();
3080 ret
= 0; /* return success if it not alredy bound */
3085 thread_deallocate(target_thread
); /* drop thread ref acquired in this routine */
3090 set_thread_appbg(thread_t thread
, int setbg
, __unused
int importance
)
3092 int enable
= (setbg
? TASK_POLICY_ENABLE
: TASK_POLICY_DISABLE
);
3094 proc_set_thread_policy(thread
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_PIDBIND_BG
, enable
);
3098 apply_appstate_watchers(task_t task
)
3100 int numwatchers
= 0, i
, j
, setbg
;
3101 thread_watchlist_t
* threadlist
;
3105 /* if no watchers on the list return */
3106 if ((numwatchers
= task
->num_taskwatchers
) == 0) {
3110 threadlist
= (thread_watchlist_t
*)kalloc(numwatchers
* sizeof(thread_watchlist_t
));
3111 if (threadlist
== NULL
) {
3115 bzero(threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3118 /*serialize application of app state changes */
3120 if (task
->watchapplying
!= 0) {
3121 lck_mtx_sleep(&task_watch_mtx
, LCK_SLEEP_DEFAULT
, &task
->watchapplying
, THREAD_UNINT
);
3122 task_watch_unlock();
3123 kfree(threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3127 if (numwatchers
!= task
->num_taskwatchers
) {
3128 task_watch_unlock();
3129 kfree(threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3133 setbg
= proc_get_effective_task_policy(task
, TASK_POLICY_WATCHERS_BG
);
3135 task
->watchapplying
= 1;
3137 queue_iterate(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
) {
3138 threadlist
[i
].thread
= twp
->tw_thread
;
3139 thread_reference(threadlist
[i
].thread
);
3141 twp
->tw_importance
= twp
->tw_thread
->importance
;
3142 threadlist
[i
].importance
= INT_MIN
;
3144 threadlist
[i
].importance
= twp
->tw_importance
;
3147 if (i
> numwatchers
) {
3152 task_watch_unlock();
3154 for (j
= 0; j
< i
; j
++) {
3155 set_thread_appbg(threadlist
[j
].thread
, setbg
, threadlist
[j
].importance
);
3156 thread_deallocate(threadlist
[j
].thread
);
3158 kfree(threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3162 task
->watchapplying
= 0;
3163 thread_wakeup_one(&task
->watchapplying
);
3164 task_watch_unlock();
3168 thead_remove_taskwatch(thread_t thread
)
3174 if ((twp
= thread
->taskwatch
) != NULL
) {
3175 thread
->taskwatch
= NULL
;
3176 remove_taskwatch_locked(twp
->tw_task
, twp
);
3178 task_watch_unlock();
3180 thread_deallocate(twp
->tw_thread
);
3181 task_deallocate(twp
->tw_task
);
3182 importance
= twp
->tw_importance
;
3183 kfree(twp
, sizeof(task_watch_t
));
3184 /* remove the thread and networkbg */
3185 set_thread_appbg(thread
, 0, importance
);
3190 task_removewatchers(task_t task
)
3192 int numwatchers
= 0, i
, j
;
3193 task_watch_t
** twplist
= NULL
;
3194 task_watch_t
* twp
= NULL
;
3197 if ((numwatchers
= task
->num_taskwatchers
) == 0) {
3201 twplist
= (task_watch_t
**)kalloc(numwatchers
* sizeof(task_watch_t
*));
3202 if (twplist
== NULL
) {
3206 bzero(twplist
, numwatchers
* sizeof(task_watch_t
*));
3209 if (task
->num_taskwatchers
== 0) {
3210 task_watch_unlock();
3214 if (numwatchers
!= task
->num_taskwatchers
) {
3215 task_watch_unlock();
3216 kfree(twplist
, numwatchers
* sizeof(task_watch_t
*));
3222 while ((twp
= (task_watch_t
*)dequeue_head(&task
->task_watchers
)) != NULL
) {
3224 task
->num_taskwatchers
--;
3227 * Since the linkage is removed and thead state cleanup is already set up,
3228 * remove the refernce from the thread.
3230 twp
->tw_thread
->taskwatch
= NULL
; /* removed linkage, clear thread holding ref */
3232 if ((task
->num_taskwatchers
== 0) || (i
> numwatchers
)) {
3237 task_watch_unlock();
3239 for (j
= 0; j
< i
; j
++) {
3241 /* remove thread and network bg */
3242 set_thread_appbg(twp
->tw_thread
, 0, twp
->tw_importance
);
3243 thread_deallocate(twp
->tw_thread
);
3244 task_deallocate(twp
->tw_task
);
3245 kfree(twp
, sizeof(task_watch_t
));
3249 kfree(twplist
, numwatchers
* sizeof(task_watch_t
*));
3251 #endif /* CONFIG_EMBEDDED */
3254 * Routines for importance donation/inheritance/boosting
3258 task_importance_update_live_donor(task_t target_task
)
3260 #if IMPORTANCE_INHERITANCE
3262 ipc_importance_task_t task_imp
;
3264 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3265 if (IIT_NULL
!= task_imp
) {
3266 ipc_importance_task_update_live_donor(task_imp
);
3267 ipc_importance_task_release(task_imp
);
3269 #endif /* IMPORTANCE_INHERITANCE */
3273 task_importance_mark_donor(task_t task
, boolean_t donating
)
3275 #if IMPORTANCE_INHERITANCE
3276 ipc_importance_task_t task_imp
;
3278 task_imp
= ipc_importance_for_task(task
, FALSE
);
3279 if (IIT_NULL
!= task_imp
) {
3280 ipc_importance_task_mark_donor(task_imp
, donating
);
3281 ipc_importance_task_release(task_imp
);
3283 #endif /* IMPORTANCE_INHERITANCE */
3287 task_importance_mark_live_donor(task_t task
, boolean_t live_donating
)
3289 #if IMPORTANCE_INHERITANCE
3290 ipc_importance_task_t task_imp
;
3292 task_imp
= ipc_importance_for_task(task
, FALSE
);
3293 if (IIT_NULL
!= task_imp
) {
3294 ipc_importance_task_mark_live_donor(task_imp
, live_donating
);
3295 ipc_importance_task_release(task_imp
);
3297 #endif /* IMPORTANCE_INHERITANCE */
3301 task_importance_mark_receiver(task_t task
, boolean_t receiving
)
3303 #if IMPORTANCE_INHERITANCE
3304 ipc_importance_task_t task_imp
;
3306 task_imp
= ipc_importance_for_task(task
, FALSE
);
3307 if (IIT_NULL
!= task_imp
) {
3308 ipc_importance_task_mark_receiver(task_imp
, receiving
);
3309 ipc_importance_task_release(task_imp
);
3311 #endif /* IMPORTANCE_INHERITANCE */
3315 task_importance_mark_denap_receiver(task_t task
, boolean_t denap
)
3317 #if IMPORTANCE_INHERITANCE
3318 ipc_importance_task_t task_imp
;
3320 task_imp
= ipc_importance_for_task(task
, FALSE
);
3321 if (IIT_NULL
!= task_imp
) {
3322 ipc_importance_task_mark_denap_receiver(task_imp
, denap
);
3323 ipc_importance_task_release(task_imp
);
3325 #endif /* IMPORTANCE_INHERITANCE */
3329 task_importance_reset(__imp_only task_t task
)
3331 #if IMPORTANCE_INHERITANCE
3332 ipc_importance_task_t task_imp
;
3334 /* TODO: Lower importance downstream before disconnect */
3335 task_imp
= task
->task_imp_base
;
3336 ipc_importance_reset(task_imp
, FALSE
);
3337 task_importance_update_live_donor(task
);
3338 #endif /* IMPORTANCE_INHERITANCE */
3342 task_importance_init_from_parent(__imp_only task_t new_task
, __imp_only task_t parent_task
)
3344 #if IMPORTANCE_INHERITANCE
3345 ipc_importance_task_t new_task_imp
= IIT_NULL
;
3347 new_task
->task_imp_base
= NULL
;
3352 if (task_is_marked_importance_donor(parent_task
)) {
3353 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3354 assert(IIT_NULL
!= new_task_imp
);
3355 ipc_importance_task_mark_donor(new_task_imp
, TRUE
);
3357 if (task_is_marked_live_importance_donor(parent_task
)) {
3358 if (IIT_NULL
== new_task_imp
) {
3359 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3361 assert(IIT_NULL
!= new_task_imp
);
3362 ipc_importance_task_mark_live_donor(new_task_imp
, TRUE
);
3364 /* Do not inherit 'receiver' on fork, vfexec or true spawn */
3365 if (task_is_exec_copy(new_task
) &&
3366 task_is_marked_importance_receiver(parent_task
)) {
3367 if (IIT_NULL
== new_task_imp
) {
3368 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3370 assert(IIT_NULL
!= new_task_imp
);
3371 ipc_importance_task_mark_receiver(new_task_imp
, TRUE
);
3373 if (task_is_marked_importance_denap_receiver(parent_task
)) {
3374 if (IIT_NULL
== new_task_imp
) {
3375 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3377 assert(IIT_NULL
!= new_task_imp
);
3378 ipc_importance_task_mark_denap_receiver(new_task_imp
, TRUE
);
3380 if (IIT_NULL
!= new_task_imp
) {
3381 assert(new_task
->task_imp_base
== new_task_imp
);
3382 ipc_importance_task_release(new_task_imp
);
3384 #endif /* IMPORTANCE_INHERITANCE */
3387 #if IMPORTANCE_INHERITANCE
3389 * Sets the task boost bit to the provided value. Does NOT run the update function.
3391 * Task lock must be held.
3394 task_set_boost_locked(task_t task
, boolean_t boost_active
)
3396 #if IMPORTANCE_TRACE
3397 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_BOOST
, (boost_active
? IMP_BOOSTED
: IMP_UNBOOSTED
)) | DBG_FUNC_START
),
3398 proc_selfpid(), task_pid(task
), trequested_0(task
), trequested_1(task
), 0);
3399 #endif /* IMPORTANCE_TRACE */
3401 task
->requested_policy
.trp_boosted
= boost_active
;
3403 #if IMPORTANCE_TRACE
3404 if (boost_active
== TRUE
) {
3405 DTRACE_BOOST2(boost
, task_t
, task
, int, task_pid(task
));
3407 DTRACE_BOOST2(unboost
, task_t
, task
, int, task_pid(task
));
3409 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_BOOST
, (boost_active
? IMP_BOOSTED
: IMP_UNBOOSTED
)) | DBG_FUNC_END
),
3410 proc_selfpid(), task_pid(task
),
3411 trequested_0(task
), trequested_1(task
), 0);
3412 #endif /* IMPORTANCE_TRACE */
3416 * Sets the task boost bit to the provided value and applies the update.
3418 * Task lock must be held. Must call update complete after unlocking the task.
3421 task_update_boost_locked(task_t task
, boolean_t boost_active
, task_pend_token_t pend_token
)
3423 task_set_boost_locked(task
, boost_active
);
3425 task_policy_update_locked(task
, pend_token
);
3429 * Check if this task should donate importance.
3431 * May be called without taking the task lock. In that case, donor status can change
3432 * so you must check only once for each donation event.
3435 task_is_importance_donor(task_t task
)
3437 if (task
->task_imp_base
== IIT_NULL
) {
3440 return ipc_importance_task_is_donor(task
->task_imp_base
);
3444 * Query the status of the task's donor mark.
3447 task_is_marked_importance_donor(task_t task
)
3449 if (task
->task_imp_base
== IIT_NULL
) {
3452 return ipc_importance_task_is_marked_donor(task
->task_imp_base
);
3456 * Query the status of the task's live donor and donor mark.
3459 task_is_marked_live_importance_donor(task_t task
)
3461 if (task
->task_imp_base
== IIT_NULL
) {
3464 return ipc_importance_task_is_marked_live_donor(task
->task_imp_base
);
3469 * This routine may be called without holding task lock
3470 * since the value of imp_receiver can never be unset.
3473 task_is_importance_receiver(task_t task
)
3475 if (task
->task_imp_base
== IIT_NULL
) {
3478 return ipc_importance_task_is_marked_receiver(task
->task_imp_base
);
3482 * Query the task's receiver mark.
3485 task_is_marked_importance_receiver(task_t task
)
3487 if (task
->task_imp_base
== IIT_NULL
) {
3490 return ipc_importance_task_is_marked_receiver(task
->task_imp_base
);
3494 * This routine may be called without holding task lock
3495 * since the value of de-nap receiver can never be unset.
3498 task_is_importance_denap_receiver(task_t task
)
3500 if (task
->task_imp_base
== IIT_NULL
) {
3503 return ipc_importance_task_is_denap_receiver(task
->task_imp_base
);
3507 * Query the task's de-nap receiver mark.
3510 task_is_marked_importance_denap_receiver(task_t task
)
3512 if (task
->task_imp_base
== IIT_NULL
) {
3515 return ipc_importance_task_is_marked_denap_receiver(task
->task_imp_base
);
3519 * This routine may be called without holding task lock
3520 * since the value of imp_receiver can never be unset.
3523 task_is_importance_receiver_type(task_t task
)
3525 if (task
->task_imp_base
== IIT_NULL
) {
3528 return task_is_importance_receiver(task
) ||
3529 task_is_importance_denap_receiver(task
);
3533 * External importance assertions are managed by the process in userspace
3534 * Internal importance assertions are the responsibility of the kernel
3535 * Assertions are changed from internal to external via task_importance_externalize_assertion
3539 task_importance_hold_internal_assertion(task_t target_task
, uint32_t count
)
3541 ipc_importance_task_t task_imp
;
3544 /* may be first time, so allow for possible importance setup */
3545 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3546 if (IIT_NULL
== task_imp
) {
3549 ret
= ipc_importance_task_hold_internal_assertion(task_imp
, count
);
3550 ipc_importance_task_release(task_imp
);
3552 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3556 task_importance_hold_file_lock_assertion(task_t target_task
, uint32_t count
)
3558 ipc_importance_task_t task_imp
;
3561 /* may be first time, so allow for possible importance setup */
3562 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3563 if (IIT_NULL
== task_imp
) {
3566 ret
= ipc_importance_task_hold_file_lock_assertion(task_imp
, count
);
3567 ipc_importance_task_release(task_imp
);
3569 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3573 task_importance_hold_legacy_external_assertion(task_t target_task
, uint32_t count
)
3575 ipc_importance_task_t task_imp
;
3578 /* must already have set up an importance */
3579 task_imp
= target_task
->task_imp_base
;
3580 if (IIT_NULL
== task_imp
) {
3583 ret
= ipc_importance_task_hold_legacy_external_assertion(task_imp
, count
);
3584 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3588 task_importance_drop_file_lock_assertion(task_t target_task
, uint32_t count
)
3590 ipc_importance_task_t task_imp
;
3593 /* must already have set up an importance */
3594 task_imp
= target_task
->task_imp_base
;
3595 if (IIT_NULL
== task_imp
) {
3598 ret
= ipc_importance_task_drop_file_lock_assertion(target_task
->task_imp_base
, count
);
3599 return (KERN_SUCCESS
!= ret
) ? EOVERFLOW
: 0;
3603 task_importance_drop_legacy_external_assertion(task_t target_task
, uint32_t count
)
3605 ipc_importance_task_t task_imp
;
3608 /* must already have set up an importance */
3609 task_imp
= target_task
->task_imp_base
;
3610 if (IIT_NULL
== task_imp
) {
3613 ret
= ipc_importance_task_drop_legacy_external_assertion(task_imp
, count
);
3614 return (KERN_SUCCESS
!= ret
) ? EOVERFLOW
: 0;
3618 task_add_importance_watchport(task_t task
, mach_port_t port
, int *boostp
)
3622 __imptrace_only
int released_pid
= 0;
3623 __imptrace_only
int pid
= task_pid(task
);
3625 ipc_importance_task_t release_imp_task
= IIT_NULL
;
3627 if (IP_VALID(port
) != 0) {
3628 ipc_importance_task_t new_imp_task
= ipc_importance_for_task(task
, FALSE
);
3633 * The port must have been marked tempowner already.
3634 * This also filters out ports whose receive rights
3635 * are already enqueued in a message, as you can't
3636 * change the right's destination once it's already
3639 if (port
->ip_tempowner
!= 0) {
3640 assert(port
->ip_impdonation
!= 0);
3642 boost
= port
->ip_impcount
;
3643 if (IIT_NULL
!= port
->ip_imp_task
) {
3645 * if this port is already bound to a task,
3646 * release the task reference and drop any
3647 * watchport-forwarded boosts
3649 release_imp_task
= port
->ip_imp_task
;
3650 port
->ip_imp_task
= IIT_NULL
;
3653 /* mark the port is watching another task (reference held in port->ip_imp_task) */
3654 if (ipc_importance_task_is_marked_receiver(new_imp_task
)) {
3655 port
->ip_imp_task
= new_imp_task
;
3656 new_imp_task
= IIT_NULL
;
3661 if (IIT_NULL
!= new_imp_task
) {
3662 ipc_importance_task_release(new_imp_task
);
3665 if (IIT_NULL
!= release_imp_task
) {
3667 ipc_importance_task_drop_internal_assertion(release_imp_task
, boost
);
3670 // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
3671 ipc_importance_task_release(release_imp_task
);
3673 #if IMPORTANCE_TRACE
3674 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_WATCHPORT
, 0)) | DBG_FUNC_NONE
,
3675 proc_selfpid(), pid
, boost
, released_pid
, 0);
3676 #endif /* IMPORTANCE_TRACE */
3683 #endif /* IMPORTANCE_INHERITANCE */
3686 * Routines for VM to query task importance
3691 * Order to be considered while estimating importance
3692 * for low memory notification and purging purgeable memory.
3694 #define TASK_IMPORTANCE_FOREGROUND 4
3695 #define TASK_IMPORTANCE_NOTDARWINBG 1
3699 * (Un)Mark the task as a privileged listener for memory notifications.
3700 * if marked, this task will be among the first to be notified amongst
3701 * the bulk of all other tasks when the system enters a pressure level
3702 * of interest to this task.
3705 task_low_mem_privileged_listener(task_t task
, boolean_t new_value
, boolean_t
*old_value
)
3707 if (old_value
!= NULL
) {
3708 *old_value
= (boolean_t
)task
->low_mem_privileged_listener
;
3711 task
->low_mem_privileged_listener
= (uint32_t)new_value
;
3719 * Checks if the task is already notified.
3721 * Condition: task lock should be held while calling this function.
3724 task_has_been_notified(task_t task
, int pressurelevel
)
3730 if (pressurelevel
== kVMPressureWarning
) {
3731 return task
->low_mem_notified_warn
? TRUE
: FALSE
;
3732 } else if (pressurelevel
== kVMPressureCritical
) {
3733 return task
->low_mem_notified_critical
? TRUE
: FALSE
;
3741 * Checks if the task is used for purging.
3743 * Condition: task lock should be held while calling this function.
3746 task_used_for_purging(task_t task
, int pressurelevel
)
3752 if (pressurelevel
== kVMPressureWarning
) {
3753 return task
->purged_memory_warn
? TRUE
: FALSE
;
3754 } else if (pressurelevel
== kVMPressureCritical
) {
3755 return task
->purged_memory_critical
? TRUE
: FALSE
;
3763 * Mark the task as notified with memory notification.
3765 * Condition: task lock should be held while calling this function.
3768 task_mark_has_been_notified(task_t task
, int pressurelevel
)
3774 if (pressurelevel
== kVMPressureWarning
) {
3775 task
->low_mem_notified_warn
= 1;
3776 } else if (pressurelevel
== kVMPressureCritical
) {
3777 task
->low_mem_notified_critical
= 1;
3783 * Mark the task as purged.
3785 * Condition: task lock should be held while calling this function.
3788 task_mark_used_for_purging(task_t task
, int pressurelevel
)
3794 if (pressurelevel
== kVMPressureWarning
) {
3795 task
->purged_memory_warn
= 1;
3796 } else if (pressurelevel
== kVMPressureCritical
) {
3797 task
->purged_memory_critical
= 1;
3803 * Mark the task eligible for low memory notification.
3805 * Condition: task lock should be held while calling this function.
3808 task_clear_has_been_notified(task_t task
, int pressurelevel
)
3814 if (pressurelevel
== kVMPressureWarning
) {
3815 task
->low_mem_notified_warn
= 0;
3816 } else if (pressurelevel
== kVMPressureCritical
) {
3817 task
->low_mem_notified_critical
= 0;
3823 * Mark the task eligible for purging its purgeable memory.
3825 * Condition: task lock should be held while calling this function.
3828 task_clear_used_for_purging(task_t task
)
3834 task
->purged_memory_warn
= 0;
3835 task
->purged_memory_critical
= 0;
3840 * Estimate task importance for purging its purgeable memory
3841 * and low memory notification.
3843 * Importance is calculated in the following order of criteria:
3844 * -Task role : Background vs Foreground
3845 * -Boost status: Not boosted vs Boosted
3846 * -Darwin BG status.
3848 * Returns: Estimated task importance. Less important task will have lower
3849 * estimated importance.
3852 task_importance_estimate(task_t task
)
3854 int task_importance
= 0;
3860 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) == TASK_FOREGROUND_APPLICATION
) {
3861 task_importance
+= TASK_IMPORTANCE_FOREGROUND
;
3864 if (proc_get_effective_task_policy(task
, TASK_POLICY_DARWIN_BG
) == 0) {
3865 task_importance
+= TASK_IMPORTANCE_NOTDARWINBG
;
3868 return task_importance
;
3872 task_has_assertions(task_t task
)
3874 return task
->task_imp_base
->iit_assertcnt
? TRUE
: FALSE
;
3879 send_resource_violation(typeof(send_cpu_usage_violation
) sendfunc
,
3881 struct ledger_entry_info
*linfo
,
3882 resource_notify_flags_t flags
)
3885 return KERN_NOT_SUPPORTED
;
3887 kern_return_t kr
= KERN_SUCCESS
;
3889 posix_path_t proc_path
= "";
3890 proc_name_t procname
= "<unknown>";
3894 mach_timespec_t timestamp
;
3895 thread_t curthread
= current_thread();
3896 ipc_port_t dstport
= MACH_PORT_NULL
;
3899 kr
= KERN_INVALID_ARGUMENT
; goto finish
;
3902 /* extract violator information */
3903 task_lock(violator
);
3904 if (!(proc
= get_bsdtask_info(violator
))) {
3905 task_unlock(violator
);
3906 kr
= KERN_INVALID_ARGUMENT
; goto finish
;
3908 (void)mig_strncpy(procname
, proc_best_name(proc
), sizeof(procname
));
3909 pid
= task_pid(violator
);
3910 if (flags
& kRNFatalLimitFlag
) {
3911 kr
= proc_pidpathinfo_internal(proc
, 0, proc_path
,
3912 sizeof(proc_path
), NULL
);
3914 task_unlock(violator
);
3919 /* violation time ~ now */
3920 clock_get_calendar_nanotime(&secs
, &nsecs
);
3921 timestamp
.tv_sec
= (int32_t)secs
;
3922 timestamp
.tv_nsec
= (int32_t)nsecs
;
3923 /* 25567702 tracks widening mach_timespec_t */
3926 kr
= host_get_special_port(host_priv_self(), HOST_LOCAL_NODE
,
3927 HOST_RESOURCE_NOTIFY_PORT
, &dstport
);
3932 thread_set_honor_qlimit(curthread
);
3933 kr
= sendfunc(dstport
,
3934 procname
, pid
, proc_path
, timestamp
,
3935 linfo
->lei_balance
, linfo
->lei_last_refill
,
3936 linfo
->lei_limit
, linfo
->lei_refill_period
,
3938 thread_clear_honor_qlimit(curthread
);
3940 ipc_port_release_send(dstport
);
3944 #endif /* MACH_BSD */
3949 * Resource violations trace four 64-bit integers. For K32, two additional
3950 * codes are allocated, the first with the low nibble doubled. So if the K64
3951 * code is 0x042, the K32 codes would be 0x044 and 0x45.
3955 trace_resource_violation(uint16_t code
,
3956 struct ledger_entry_info
*linfo
)
3958 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, code
),
3959 linfo
->lei_balance
, linfo
->lei_last_refill
,
3960 linfo
->lei_limit
, linfo
->lei_refill_period
);
3963 /* TODO: create/find a trace_two_LLs() for K32 systems */
3964 #define MASK32 0xffffffff
3966 trace_resource_violation(uint16_t code
,
3967 struct ledger_entry_info
*linfo
)
3969 int8_t lownibble
= (code
& 0x3) * 2;
3970 int16_t codeA
= (code
& 0xffc) | lownibble
;
3971 int16_t codeB
= codeA
+ 1;
3973 int32_t balance_high
= (linfo
->lei_balance
>> 32) & MASK32
;
3974 int32_t balance_low
= linfo
->lei_balance
& MASK32
;
3975 int32_t last_refill_high
= (linfo
->lei_last_refill
>> 32) & MASK32
;
3976 int32_t last_refill_low
= linfo
->lei_last_refill
& MASK32
;
3978 int32_t limit_high
= (linfo
->lei_limit
>> 32) & MASK32
;
3979 int32_t limit_low
= linfo
->lei_limit
& MASK32
;
3980 int32_t refill_period_high
= (linfo
->lei_refill_period
>> 32) & MASK32
;
3981 int32_t refill_period_low
= linfo
->lei_refill_period
& MASK32
;
3983 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, codeA
),
3984 balance_high
, balance_low
,
3985 last_refill_high
, last_refill_low
);
3986 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, codeB
),
3987 limit_high
, limit_low
,
3988 refill_period_high
, refill_period_low
);
3990 #endif /* K64/K32 */