]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/sync_sema.c
xnu-6153.81.5.tar.gz
[apple/xnu.git] / osfmk / kern / sync_sema.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 *
31 */
32 /*
33 * File: kern/sync_sema.c
34 * Author: Joseph CaraDonna
35 *
36 * Contains RT distributed semaphore synchronization services.
37 */
38
39 #include <mach/mach_types.h>
40 #include <mach/mach_traps.h>
41 #include <mach/kern_return.h>
42 #include <mach/semaphore.h>
43 #include <mach/sync_policy.h>
44 #include <mach/task.h>
45
46 #include <kern/misc_protos.h>
47 #include <kern/sync_sema.h>
48 #include <kern/spl.h>
49 #include <kern/ipc_kobject.h>
50 #include <kern/ipc_sync.h>
51 #include <kern/ipc_tt.h>
52 #include <kern/thread.h>
53 #include <kern/clock.h>
54 #include <ipc/ipc_port.h>
55 #include <ipc/ipc_space.h>
56 #include <kern/host.h>
57 #include <kern/waitq.h>
58 #include <kern/zalloc.h>
59 #include <kern/mach_param.h>
60
61 #include <libkern/OSAtomic.h>
62
63 static unsigned int semaphore_event;
64 #define SEMAPHORE_EVENT CAST_EVENT64_T(&semaphore_event)
65
66 zone_t semaphore_zone;
67 unsigned int semaphore_max;
68
69 os_refgrp_decl(static, sema_refgrp, "semaphore", NULL);
70
71 /* Forward declarations */
72
73
74 kern_return_t
75 semaphore_wait_trap_internal(
76 mach_port_name_t name,
77 void (*caller_cont)(kern_return_t));
78
79 kern_return_t
80 semaphore_wait_signal_trap_internal(
81 mach_port_name_t wait_name,
82 mach_port_name_t signal_name,
83 void (*caller_cont)(kern_return_t));
84
85 kern_return_t
86 semaphore_timedwait_trap_internal(
87 mach_port_name_t name,
88 unsigned int sec,
89 clock_res_t nsec,
90 void (*caller_cont)(kern_return_t));
91
92 kern_return_t
93 semaphore_timedwait_signal_trap_internal(
94 mach_port_name_t wait_name,
95 mach_port_name_t signal_name,
96 unsigned int sec,
97 clock_res_t nsec,
98 void (*caller_cont)(kern_return_t));
99
100 kern_return_t
101 semaphore_signal_internal_trap(mach_port_name_t sema_name);
102
103 kern_return_t
104 semaphore_signal_internal(
105 semaphore_t semaphore,
106 thread_t thread,
107 int options);
108
109 kern_return_t
110 semaphore_convert_wait_result(
111 int wait_result);
112
113 void
114 semaphore_wait_continue(void);
115
116 static kern_return_t
117 semaphore_wait_internal(
118 semaphore_t wait_semaphore,
119 semaphore_t signal_semaphore,
120 uint64_t deadline,
121 int option,
122 void (*caller_cont)(kern_return_t));
123
124 static __inline__ uint64_t
125 semaphore_deadline(
126 unsigned int sec,
127 clock_res_t nsec)
128 {
129 uint64_t abstime;
130
131 nanoseconds_to_absolutetime((uint64_t)sec * NSEC_PER_SEC + nsec, &abstime);
132 clock_absolutetime_interval_to_deadline(abstime, &abstime);
133
134 return abstime;
135 }
136
137 /*
138 * ROUTINE: semaphore_init [private]
139 *
140 * Initialize the semaphore mechanisms.
141 * Right now, we only need to initialize the semaphore zone.
142 */
143 void
144 semaphore_init(void)
145 {
146 semaphore_zone = zinit(sizeof(struct semaphore),
147 semaphore_max * sizeof(struct semaphore),
148 sizeof(struct semaphore),
149 "semaphores");
150 zone_change(semaphore_zone, Z_NOENCRYPT, TRUE);
151 }
152
153 /*
154 * Routine: semaphore_create
155 *
156 * Creates a semaphore.
157 * The port representing the semaphore is returned as a parameter.
158 */
159 kern_return_t
160 semaphore_create(
161 task_t task,
162 semaphore_t *new_semaphore,
163 int policy,
164 int value)
165 {
166 semaphore_t s = SEMAPHORE_NULL;
167 kern_return_t kret;
168
169
170 *new_semaphore = SEMAPHORE_NULL;
171 if (task == TASK_NULL || value < 0 || policy > SYNC_POLICY_MAX) {
172 return KERN_INVALID_ARGUMENT;
173 }
174
175 s = (semaphore_t) zalloc(semaphore_zone);
176
177 if (s == SEMAPHORE_NULL) {
178 return KERN_RESOURCE_SHORTAGE;
179 }
180
181 kret = waitq_init(&s->waitq, policy | SYNC_POLICY_DISABLE_IRQ); /* also inits lock */
182 if (kret != KERN_SUCCESS) {
183 zfree(semaphore_zone, s);
184 return kret;
185 }
186
187 /*
188 * Initialize the semaphore values.
189 */
190 s->port = IP_NULL;
191 os_ref_init(&s->ref_count, &sema_refgrp);
192 s->count = value;
193 s->active = TRUE;
194 s->owner = task;
195
196 /*
197 * Associate the new semaphore with the task by adding
198 * the new semaphore to the task's semaphore list.
199 */
200 task_lock(task);
201 enqueue_head(&task->semaphore_list, (queue_entry_t) s);
202 task->semaphores_owned++;
203 task_unlock(task);
204
205 *new_semaphore = s;
206
207 return KERN_SUCCESS;
208 }
209
210 /*
211 * Routine: semaphore_destroy_internal
212 *
213 * Disassociate a semaphore from its owning task, mark it inactive,
214 * and set any waiting threads running with THREAD_RESTART.
215 *
216 * Conditions:
217 * task is locked
218 * semaphore is locked
219 * semaphore is owned by the specified task
220 * Returns:
221 * with semaphore unlocked
222 */
223 static void
224 semaphore_destroy_internal(
225 task_t task,
226 semaphore_t semaphore)
227 {
228 int old_count;
229
230 /* unlink semaphore from owning task */
231 assert(semaphore->owner == task);
232 remqueue((queue_entry_t) semaphore);
233 semaphore->owner = TASK_NULL;
234 task->semaphores_owned--;
235
236 /*
237 * Deactivate semaphore
238 */
239 assert(semaphore->active);
240 semaphore->active = FALSE;
241
242 /*
243 * Wakeup blocked threads
244 */
245 old_count = semaphore->count;
246 semaphore->count = 0;
247
248 if (old_count < 0) {
249 waitq_wakeup64_all_locked(&semaphore->waitq,
250 SEMAPHORE_EVENT,
251 THREAD_RESTART, NULL,
252 WAITQ_ALL_PRIORITIES,
253 WAITQ_UNLOCK);
254 /* waitq/semaphore is unlocked */
255 } else {
256 semaphore_unlock(semaphore);
257 }
258 }
259
260 /*
261 * Routine: semaphore_destroy
262 *
263 * Destroys a semaphore and consume the caller's reference on the
264 * semaphore.
265 */
266 kern_return_t
267 semaphore_destroy(
268 task_t task,
269 semaphore_t semaphore)
270 {
271 spl_t spl_level;
272
273 if (semaphore == SEMAPHORE_NULL) {
274 return KERN_INVALID_ARGUMENT;
275 }
276
277 if (task == TASK_NULL) {
278 semaphore_dereference(semaphore);
279 return KERN_INVALID_ARGUMENT;
280 }
281
282 task_lock(task);
283 spl_level = splsched();
284 semaphore_lock(semaphore);
285
286 if (semaphore->owner != task) {
287 semaphore_unlock(semaphore);
288 semaphore_dereference(semaphore);
289 splx(spl_level);
290 task_unlock(task);
291 return KERN_INVALID_ARGUMENT;
292 }
293
294 semaphore_destroy_internal(task, semaphore);
295 /* semaphore unlocked */
296
297 splx(spl_level);
298 task_unlock(task);
299
300 semaphore_dereference(semaphore);
301 return KERN_SUCCESS;
302 }
303
304 /*
305 * Routine: semaphore_destroy_all
306 *
307 * Destroy all the semaphores associated with a given task.
308 */
309 #define SEMASPERSPL 20 /* max number of semaphores to destroy per spl hold */
310
311 void
312 semaphore_destroy_all(
313 task_t task)
314 {
315 uint32_t count;
316 spl_t spl_level;
317
318 count = 0;
319 task_lock(task);
320 while (!queue_empty(&task->semaphore_list)) {
321 semaphore_t semaphore;
322
323 semaphore = (semaphore_t) queue_first(&task->semaphore_list);
324
325 if (count == 0) {
326 spl_level = splsched();
327 }
328 semaphore_lock(semaphore);
329
330 semaphore_destroy_internal(task, semaphore);
331 /* semaphore unlocked */
332
333 /* throttle number of semaphores per interrupt disablement */
334 if (++count == SEMASPERSPL) {
335 count = 0;
336 splx(spl_level);
337 }
338 }
339 if (count != 0) {
340 splx(spl_level);
341 }
342
343 task_unlock(task);
344 }
345
346 /*
347 * Routine: semaphore_signal_internal
348 *
349 * Signals the semaphore as direct.
350 * Assumptions:
351 * Semaphore is locked.
352 */
353 kern_return_t
354 semaphore_signal_internal(
355 semaphore_t semaphore,
356 thread_t thread,
357 int options)
358 {
359 kern_return_t kr;
360 spl_t spl_level;
361
362 spl_level = splsched();
363 semaphore_lock(semaphore);
364
365 if (!semaphore->active) {
366 semaphore_unlock(semaphore);
367 splx(spl_level);
368 return KERN_TERMINATED;
369 }
370
371 if (thread != THREAD_NULL) {
372 if (semaphore->count < 0) {
373 kr = waitq_wakeup64_thread_locked(
374 &semaphore->waitq,
375 SEMAPHORE_EVENT,
376 thread,
377 THREAD_AWAKENED,
378 WAITQ_UNLOCK);
379 /* waitq/semaphore is unlocked */
380 } else {
381 kr = KERN_NOT_WAITING;
382 semaphore_unlock(semaphore);
383 }
384 splx(spl_level);
385 return kr;
386 }
387
388 if (options & SEMAPHORE_SIGNAL_ALL) {
389 int old_count = semaphore->count;
390
391 kr = KERN_NOT_WAITING;
392 if (old_count < 0) {
393 semaphore->count = 0; /* always reset */
394 kr = waitq_wakeup64_all_locked(
395 &semaphore->waitq,
396 SEMAPHORE_EVENT,
397 THREAD_AWAKENED, NULL,
398 WAITQ_ALL_PRIORITIES,
399 WAITQ_UNLOCK);
400 /* waitq / semaphore is unlocked */
401 } else {
402 if (options & SEMAPHORE_SIGNAL_PREPOST) {
403 semaphore->count++;
404 }
405 kr = KERN_SUCCESS;
406 semaphore_unlock(semaphore);
407 }
408 splx(spl_level);
409 return kr;
410 }
411
412 if (semaphore->count < 0) {
413 kr = waitq_wakeup64_one_locked(
414 &semaphore->waitq,
415 SEMAPHORE_EVENT,
416 THREAD_AWAKENED, NULL,
417 WAITQ_ALL_PRIORITIES,
418 WAITQ_KEEP_LOCKED);
419 if (kr == KERN_SUCCESS) {
420 semaphore_unlock(semaphore);
421 splx(spl_level);
422 return KERN_SUCCESS;
423 } else {
424 semaphore->count = 0; /* all waiters gone */
425 }
426 }
427
428 if (options & SEMAPHORE_SIGNAL_PREPOST) {
429 semaphore->count++;
430 }
431
432 semaphore_unlock(semaphore);
433 splx(spl_level);
434 return KERN_NOT_WAITING;
435 }
436
437 /*
438 * Routine: semaphore_signal_thread
439 *
440 * If the specified thread is blocked on the semaphore, it is
441 * woken up. If a NULL thread was supplied, then any one
442 * thread is woken up. Otherwise the caller gets KERN_NOT_WAITING
443 * and the semaphore is unchanged.
444 */
445 kern_return_t
446 semaphore_signal_thread(
447 semaphore_t semaphore,
448 thread_t thread)
449 {
450 kern_return_t ret;
451
452 if (semaphore == SEMAPHORE_NULL) {
453 return KERN_INVALID_ARGUMENT;
454 }
455
456 ret = semaphore_signal_internal(semaphore,
457 thread,
458 SEMAPHORE_OPTION_NONE);
459 return ret;
460 }
461
462 /*
463 * Routine: semaphore_signal_thread_trap
464 *
465 * Trap interface to the semaphore_signal_thread function.
466 */
467 kern_return_t
468 semaphore_signal_thread_trap(
469 struct semaphore_signal_thread_trap_args *args)
470 {
471 mach_port_name_t sema_name = args->signal_name;
472 mach_port_name_t thread_name = args->thread_name;
473 semaphore_t semaphore;
474 thread_t thread;
475 kern_return_t kr;
476
477 /*
478 * MACH_PORT_NULL is not an error. It means that we want to
479 * select any one thread that is already waiting, but not to
480 * pre-post the semaphore.
481 */
482 if (thread_name != MACH_PORT_NULL) {
483 thread = port_name_to_thread(thread_name, PORT_TO_THREAD_NONE);
484 if (thread == THREAD_NULL) {
485 return KERN_INVALID_ARGUMENT;
486 }
487 } else {
488 thread = THREAD_NULL;
489 }
490
491 kr = port_name_to_semaphore(sema_name, &semaphore);
492 if (kr == KERN_SUCCESS) {
493 kr = semaphore_signal_internal(semaphore,
494 thread,
495 SEMAPHORE_OPTION_NONE);
496 semaphore_dereference(semaphore);
497 }
498 if (thread != THREAD_NULL) {
499 thread_deallocate(thread);
500 }
501 return kr;
502 }
503
504
505
506 /*
507 * Routine: semaphore_signal
508 *
509 * Traditional (in-kernel client and MIG interface) semaphore
510 * signal routine. Most users will access the trap version.
511 *
512 * This interface in not defined to return info about whether
513 * this call found a thread waiting or not. The internal
514 * routines (and future external routines) do. We have to
515 * convert those into plain KERN_SUCCESS returns.
516 */
517 kern_return_t
518 semaphore_signal(
519 semaphore_t semaphore)
520 {
521 kern_return_t kr;
522
523 if (semaphore == SEMAPHORE_NULL) {
524 return KERN_INVALID_ARGUMENT;
525 }
526
527 kr = semaphore_signal_internal(semaphore,
528 THREAD_NULL,
529 SEMAPHORE_SIGNAL_PREPOST);
530 if (kr == KERN_NOT_WAITING) {
531 return KERN_SUCCESS;
532 }
533 return kr;
534 }
535
536 /*
537 * Routine: semaphore_signal_trap
538 *
539 * Trap interface to the semaphore_signal function.
540 */
541 kern_return_t
542 semaphore_signal_trap(
543 struct semaphore_signal_trap_args *args)
544 {
545 mach_port_name_t sema_name = args->signal_name;
546
547 return semaphore_signal_internal_trap(sema_name);
548 }
549
550 kern_return_t
551 semaphore_signal_internal_trap(mach_port_name_t sema_name)
552 {
553 semaphore_t semaphore;
554 kern_return_t kr;
555
556 kr = port_name_to_semaphore(sema_name, &semaphore);
557 if (kr == KERN_SUCCESS) {
558 kr = semaphore_signal_internal(semaphore,
559 THREAD_NULL,
560 SEMAPHORE_SIGNAL_PREPOST);
561 semaphore_dereference(semaphore);
562 if (kr == KERN_NOT_WAITING) {
563 kr = KERN_SUCCESS;
564 }
565 }
566 return kr;
567 }
568
569 /*
570 * Routine: semaphore_signal_all
571 *
572 * Awakens ALL threads currently blocked on the semaphore.
573 * The semaphore count returns to zero.
574 */
575 kern_return_t
576 semaphore_signal_all(
577 semaphore_t semaphore)
578 {
579 kern_return_t kr;
580
581 if (semaphore == SEMAPHORE_NULL) {
582 return KERN_INVALID_ARGUMENT;
583 }
584
585 kr = semaphore_signal_internal(semaphore,
586 THREAD_NULL,
587 SEMAPHORE_SIGNAL_ALL);
588 if (kr == KERN_NOT_WAITING) {
589 return KERN_SUCCESS;
590 }
591 return kr;
592 }
593
594 /*
595 * Routine: semaphore_signal_all_trap
596 *
597 * Trap interface to the semaphore_signal_all function.
598 */
599 kern_return_t
600 semaphore_signal_all_trap(
601 struct semaphore_signal_all_trap_args *args)
602 {
603 mach_port_name_t sema_name = args->signal_name;
604 semaphore_t semaphore;
605 kern_return_t kr;
606
607 kr = port_name_to_semaphore(sema_name, &semaphore);
608 if (kr == KERN_SUCCESS) {
609 kr = semaphore_signal_internal(semaphore,
610 THREAD_NULL,
611 SEMAPHORE_SIGNAL_ALL);
612 semaphore_dereference(semaphore);
613 if (kr == KERN_NOT_WAITING) {
614 kr = KERN_SUCCESS;
615 }
616 }
617 return kr;
618 }
619
620 /*
621 * Routine: semaphore_convert_wait_result
622 *
623 * Generate the return code after a semaphore wait/block. It
624 * takes the wait result as an input and coverts that to an
625 * appropriate result.
626 */
627 kern_return_t
628 semaphore_convert_wait_result(int wait_result)
629 {
630 switch (wait_result) {
631 case THREAD_AWAKENED:
632 return KERN_SUCCESS;
633
634 case THREAD_TIMED_OUT:
635 return KERN_OPERATION_TIMED_OUT;
636
637 case THREAD_INTERRUPTED:
638 return KERN_ABORTED;
639
640 case THREAD_RESTART:
641 return KERN_TERMINATED;
642
643 default:
644 panic("semaphore_block\n");
645 return KERN_FAILURE;
646 }
647 }
648
649 /*
650 * Routine: semaphore_wait_continue
651 *
652 * Common continuation routine after waiting on a semphore.
653 * It returns directly to user space.
654 */
655 void
656 semaphore_wait_continue(void)
657 {
658 thread_t self = current_thread();
659 int wait_result = self->wait_result;
660 void (*caller_cont)(kern_return_t) = self->sth_continuation;
661
662 assert(self->sth_waitsemaphore != SEMAPHORE_NULL);
663 semaphore_dereference(self->sth_waitsemaphore);
664 if (self->sth_signalsemaphore != SEMAPHORE_NULL) {
665 semaphore_dereference(self->sth_signalsemaphore);
666 }
667
668 assert(caller_cont != (void (*)(kern_return_t))0);
669 (*caller_cont)(semaphore_convert_wait_result(wait_result));
670 }
671
672 /*
673 * Routine: semaphore_wait_internal
674 *
675 * Decrements the semaphore count by one. If the count is
676 * negative after the decrement, the calling thread blocks
677 * (possibly at a continuation and/or with a timeout).
678 *
679 * Assumptions:
680 * The reference
681 * A reference is held on the signal semaphore.
682 */
683 static kern_return_t
684 semaphore_wait_internal(
685 semaphore_t wait_semaphore,
686 semaphore_t signal_semaphore,
687 uint64_t deadline,
688 int option,
689 void (*caller_cont)(kern_return_t))
690 {
691 int wait_result;
692 spl_t spl_level;
693 kern_return_t kr = KERN_ALREADY_WAITING;
694
695 spl_level = splsched();
696 semaphore_lock(wait_semaphore);
697
698 if (!wait_semaphore->active) {
699 kr = KERN_TERMINATED;
700 } else if (wait_semaphore->count > 0) {
701 wait_semaphore->count--;
702 kr = KERN_SUCCESS;
703 } else if (option & SEMAPHORE_TIMEOUT_NOBLOCK) {
704 kr = KERN_OPERATION_TIMED_OUT;
705 } else {
706 thread_t self = current_thread();
707
708 wait_semaphore->count = -1; /* we don't keep an actual count */
709
710 thread_set_pending_block_hint(self, kThreadWaitSemaphore);
711 (void)waitq_assert_wait64_locked(
712 &wait_semaphore->waitq,
713 SEMAPHORE_EVENT,
714 THREAD_ABORTSAFE,
715 TIMEOUT_URGENCY_USER_NORMAL,
716 deadline, TIMEOUT_NO_LEEWAY,
717 self);
718 }
719 semaphore_unlock(wait_semaphore);
720 splx(spl_level);
721
722 /*
723 * wait_semaphore is unlocked so we are free to go ahead and
724 * signal the signal_semaphore (if one was provided).
725 */
726 if (signal_semaphore != SEMAPHORE_NULL) {
727 kern_return_t signal_kr;
728
729 /*
730 * lock the signal semaphore reference we got and signal it.
731 * This will NOT block (we cannot block after having asserted
732 * our intention to wait above).
733 */
734 signal_kr = semaphore_signal_internal(signal_semaphore,
735 THREAD_NULL,
736 SEMAPHORE_SIGNAL_PREPOST);
737
738 if (signal_kr == KERN_NOT_WAITING) {
739 signal_kr = KERN_SUCCESS;
740 } else if (signal_kr == KERN_TERMINATED) {
741 /*
742 * Uh!Oh! The semaphore we were to signal died.
743 * We have to get ourselves out of the wait in
744 * case we get stuck here forever (it is assumed
745 * that the semaphore we were posting is gating
746 * the decision by someone else to post the
747 * semaphore we are waiting on). People will
748 * discover the other dead semaphore soon enough.
749 * If we got out of the wait cleanly (someone
750 * already posted a wakeup to us) then return that
751 * (most important) result. Otherwise,
752 * return the KERN_TERMINATED status.
753 */
754 thread_t self = current_thread();
755
756 clear_wait(self, THREAD_INTERRUPTED);
757 kr = semaphore_convert_wait_result(self->wait_result);
758 if (kr == KERN_ABORTED) {
759 kr = KERN_TERMINATED;
760 }
761 }
762 }
763
764 /*
765 * If we had an error, or we didn't really need to wait we can
766 * return now that we have signalled the signal semaphore.
767 */
768 if (kr != KERN_ALREADY_WAITING) {
769 return kr;
770 }
771
772 /*
773 * Now, we can block. If the caller supplied a continuation
774 * pointer of his own for after the block, block with the
775 * appropriate semaphore continuation. Thiswill gather the
776 * semaphore results, release references on the semaphore(s),
777 * and then call the caller's continuation.
778 */
779 if (caller_cont) {
780 thread_t self = current_thread();
781
782 self->sth_continuation = caller_cont;
783 self->sth_waitsemaphore = wait_semaphore;
784 self->sth_signalsemaphore = signal_semaphore;
785 wait_result = thread_block((thread_continue_t)semaphore_wait_continue);
786 } else {
787 wait_result = thread_block(THREAD_CONTINUE_NULL);
788 }
789
790 return semaphore_convert_wait_result(wait_result);
791 }
792
793
794 /*
795 * Routine: semaphore_wait
796 *
797 * Traditional (non-continuation) interface presented to
798 * in-kernel clients to wait on a semaphore.
799 */
800 kern_return_t
801 semaphore_wait(
802 semaphore_t semaphore)
803 {
804 if (semaphore == SEMAPHORE_NULL) {
805 return KERN_INVALID_ARGUMENT;
806 }
807
808 return semaphore_wait_internal(semaphore,
809 SEMAPHORE_NULL,
810 0ULL, SEMAPHORE_OPTION_NONE,
811 (void (*)(kern_return_t))0);
812 }
813
814 kern_return_t
815 semaphore_wait_noblock(
816 semaphore_t semaphore)
817 {
818 if (semaphore == SEMAPHORE_NULL) {
819 return KERN_INVALID_ARGUMENT;
820 }
821
822 return semaphore_wait_internal(semaphore,
823 SEMAPHORE_NULL,
824 0ULL, SEMAPHORE_TIMEOUT_NOBLOCK,
825 (void (*)(kern_return_t))0);
826 }
827
828 kern_return_t
829 semaphore_wait_deadline(
830 semaphore_t semaphore,
831 uint64_t deadline)
832 {
833 if (semaphore == SEMAPHORE_NULL) {
834 return KERN_INVALID_ARGUMENT;
835 }
836
837 return semaphore_wait_internal(semaphore,
838 SEMAPHORE_NULL,
839 deadline, SEMAPHORE_OPTION_NONE,
840 (void (*)(kern_return_t))0);
841 }
842
843 /*
844 * Trap: semaphore_wait_trap
845 *
846 * Trap version of semaphore wait. Called on behalf of user-level
847 * clients.
848 */
849
850 kern_return_t
851 semaphore_wait_trap(
852 struct semaphore_wait_trap_args *args)
853 {
854 return semaphore_wait_trap_internal(args->wait_name, thread_syscall_return);
855 }
856
857
858
859 kern_return_t
860 semaphore_wait_trap_internal(
861 mach_port_name_t name,
862 void (*caller_cont)(kern_return_t))
863 {
864 semaphore_t semaphore;
865 kern_return_t kr;
866
867 kr = port_name_to_semaphore(name, &semaphore);
868 if (kr == KERN_SUCCESS) {
869 kr = semaphore_wait_internal(semaphore,
870 SEMAPHORE_NULL,
871 0ULL, SEMAPHORE_OPTION_NONE,
872 caller_cont);
873 semaphore_dereference(semaphore);
874 }
875 return kr;
876 }
877
878 /*
879 * Routine: semaphore_timedwait
880 *
881 * Traditional (non-continuation) interface presented to
882 * in-kernel clients to wait on a semaphore with a timeout.
883 *
884 * A timeout of {0,0} is considered non-blocking.
885 */
886 kern_return_t
887 semaphore_timedwait(
888 semaphore_t semaphore,
889 mach_timespec_t wait_time)
890 {
891 int option = SEMAPHORE_OPTION_NONE;
892 uint64_t deadline = 0;
893
894 if (semaphore == SEMAPHORE_NULL) {
895 return KERN_INVALID_ARGUMENT;
896 }
897
898 if (BAD_MACH_TIMESPEC(&wait_time)) {
899 return KERN_INVALID_VALUE;
900 }
901
902 if (wait_time.tv_sec == 0 && wait_time.tv_nsec == 0) {
903 option = SEMAPHORE_TIMEOUT_NOBLOCK;
904 } else {
905 deadline = semaphore_deadline(wait_time.tv_sec, wait_time.tv_nsec);
906 }
907
908 return semaphore_wait_internal(semaphore,
909 SEMAPHORE_NULL,
910 deadline, option,
911 (void (*)(kern_return_t))0);
912 }
913
914 /*
915 * Trap: semaphore_timedwait_trap
916 *
917 * Trap version of a semaphore_timedwait. The timeout parameter
918 * is passed in two distinct parts and re-assembled on this side
919 * of the trap interface (to accomodate calling conventions that
920 * pass structures as pointers instead of inline in registers without
921 * having to add a copyin).
922 *
923 * A timeout of {0,0} is considered non-blocking.
924 */
925 kern_return_t
926 semaphore_timedwait_trap(
927 struct semaphore_timedwait_trap_args *args)
928 {
929 return semaphore_timedwait_trap_internal(args->wait_name, args->sec, args->nsec, thread_syscall_return);
930 }
931
932
933 kern_return_t
934 semaphore_timedwait_trap_internal(
935 mach_port_name_t name,
936 unsigned int sec,
937 clock_res_t nsec,
938 void (*caller_cont)(kern_return_t))
939 {
940 semaphore_t semaphore;
941 mach_timespec_t wait_time;
942 kern_return_t kr;
943
944 wait_time.tv_sec = sec;
945 wait_time.tv_nsec = nsec;
946 if (BAD_MACH_TIMESPEC(&wait_time)) {
947 return KERN_INVALID_VALUE;
948 }
949
950 kr = port_name_to_semaphore(name, &semaphore);
951 if (kr == KERN_SUCCESS) {
952 int option = SEMAPHORE_OPTION_NONE;
953 uint64_t deadline = 0;
954
955 if (sec == 0 && nsec == 0) {
956 option = SEMAPHORE_TIMEOUT_NOBLOCK;
957 } else {
958 deadline = semaphore_deadline(sec, nsec);
959 }
960
961 kr = semaphore_wait_internal(semaphore,
962 SEMAPHORE_NULL,
963 deadline, option,
964 caller_cont);
965 semaphore_dereference(semaphore);
966 }
967 return kr;
968 }
969
970 /*
971 * Routine: semaphore_wait_signal
972 *
973 * Atomically register a wait on a semaphore and THEN signal
974 * another. This is the in-kernel entry point that does not
975 * block at a continuation and does not free a signal_semaphore
976 * reference.
977 */
978 kern_return_t
979 semaphore_wait_signal(
980 semaphore_t wait_semaphore,
981 semaphore_t signal_semaphore)
982 {
983 if (wait_semaphore == SEMAPHORE_NULL) {
984 return KERN_INVALID_ARGUMENT;
985 }
986
987 return semaphore_wait_internal(wait_semaphore,
988 signal_semaphore,
989 0ULL, SEMAPHORE_OPTION_NONE,
990 (void (*)(kern_return_t))0);
991 }
992
993 /*
994 * Trap: semaphore_wait_signal_trap
995 *
996 * Atomically register a wait on a semaphore and THEN signal
997 * another. This is the trap version from user space.
998 */
999 kern_return_t
1000 semaphore_wait_signal_trap(
1001 struct semaphore_wait_signal_trap_args *args)
1002 {
1003 return semaphore_wait_signal_trap_internal(args->wait_name, args->signal_name, thread_syscall_return);
1004 }
1005
1006 kern_return_t
1007 semaphore_wait_signal_trap_internal(
1008 mach_port_name_t wait_name,
1009 mach_port_name_t signal_name,
1010 void (*caller_cont)(kern_return_t))
1011 {
1012 semaphore_t wait_semaphore;
1013 semaphore_t signal_semaphore;
1014 kern_return_t kr;
1015
1016 kr = port_name_to_semaphore(signal_name, &signal_semaphore);
1017 if (kr == KERN_SUCCESS) {
1018 kr = port_name_to_semaphore(wait_name, &wait_semaphore);
1019 if (kr == KERN_SUCCESS) {
1020 kr = semaphore_wait_internal(wait_semaphore,
1021 signal_semaphore,
1022 0ULL, SEMAPHORE_OPTION_NONE,
1023 caller_cont);
1024 semaphore_dereference(wait_semaphore);
1025 }
1026 semaphore_dereference(signal_semaphore);
1027 }
1028 return kr;
1029 }
1030
1031
1032 /*
1033 * Routine: semaphore_timedwait_signal
1034 *
1035 * Atomically register a wait on a semaphore and THEN signal
1036 * another. This is the in-kernel entry point that does not
1037 * block at a continuation.
1038 *
1039 * A timeout of {0,0} is considered non-blocking.
1040 */
1041 kern_return_t
1042 semaphore_timedwait_signal(
1043 semaphore_t wait_semaphore,
1044 semaphore_t signal_semaphore,
1045 mach_timespec_t wait_time)
1046 {
1047 int option = SEMAPHORE_OPTION_NONE;
1048 uint64_t deadline = 0;
1049
1050 if (wait_semaphore == SEMAPHORE_NULL) {
1051 return KERN_INVALID_ARGUMENT;
1052 }
1053
1054 if (BAD_MACH_TIMESPEC(&wait_time)) {
1055 return KERN_INVALID_VALUE;
1056 }
1057
1058 if (wait_time.tv_sec == 0 && wait_time.tv_nsec == 0) {
1059 option = SEMAPHORE_TIMEOUT_NOBLOCK;
1060 } else {
1061 deadline = semaphore_deadline(wait_time.tv_sec, wait_time.tv_nsec);
1062 }
1063
1064 return semaphore_wait_internal(wait_semaphore,
1065 signal_semaphore,
1066 deadline, option,
1067 (void (*)(kern_return_t))0);
1068 }
1069
1070 /*
1071 * Trap: semaphore_timedwait_signal_trap
1072 *
1073 * Atomically register a timed wait on a semaphore and THEN signal
1074 * another. This is the trap version from user space.
1075 */
1076 kern_return_t
1077 semaphore_timedwait_signal_trap(
1078 struct semaphore_timedwait_signal_trap_args *args)
1079 {
1080 return semaphore_timedwait_signal_trap_internal(args->wait_name, args->signal_name, args->sec, args->nsec, thread_syscall_return);
1081 }
1082
1083 kern_return_t
1084 semaphore_timedwait_signal_trap_internal(
1085 mach_port_name_t wait_name,
1086 mach_port_name_t signal_name,
1087 unsigned int sec,
1088 clock_res_t nsec,
1089 void (*caller_cont)(kern_return_t))
1090 {
1091 semaphore_t wait_semaphore;
1092 semaphore_t signal_semaphore;
1093 mach_timespec_t wait_time;
1094 kern_return_t kr;
1095
1096 wait_time.tv_sec = sec;
1097 wait_time.tv_nsec = nsec;
1098 if (BAD_MACH_TIMESPEC(&wait_time)) {
1099 return KERN_INVALID_VALUE;
1100 }
1101
1102 kr = port_name_to_semaphore(signal_name, &signal_semaphore);
1103 if (kr == KERN_SUCCESS) {
1104 kr = port_name_to_semaphore(wait_name, &wait_semaphore);
1105 if (kr == KERN_SUCCESS) {
1106 int option = SEMAPHORE_OPTION_NONE;
1107 uint64_t deadline = 0;
1108
1109 if (sec == 0 && nsec == 0) {
1110 option = SEMAPHORE_TIMEOUT_NOBLOCK;
1111 } else {
1112 deadline = semaphore_deadline(sec, nsec);
1113 }
1114
1115 kr = semaphore_wait_internal(wait_semaphore,
1116 signal_semaphore,
1117 deadline, option,
1118 caller_cont);
1119 semaphore_dereference(wait_semaphore);
1120 }
1121 semaphore_dereference(signal_semaphore);
1122 }
1123 return kr;
1124 }
1125
1126
1127 /*
1128 * Routine: semaphore_reference
1129 *
1130 * Take out a reference on a semaphore. This keeps the data structure
1131 * in existence (but the semaphore may be deactivated).
1132 */
1133 void
1134 semaphore_reference(
1135 semaphore_t semaphore)
1136 {
1137 os_ref_retain(&semaphore->ref_count);
1138 }
1139
1140 /*
1141 * Routine: semaphore_dereference
1142 *
1143 * Release a reference on a semaphore. If this is the last reference,
1144 * the semaphore data structure is deallocated.
1145 */
1146 void
1147 semaphore_dereference(
1148 semaphore_t semaphore)
1149 {
1150 uint32_t collisions;
1151 spl_t spl_level;
1152
1153 if (semaphore == NULL) {
1154 return;
1155 }
1156
1157 if (os_ref_release(&semaphore->ref_count) > 0) {
1158 return;
1159 }
1160
1161 /*
1162 * Last ref, clean up the port [if any]
1163 * associated with the semaphore, destroy
1164 * it (if still active) and then free
1165 * the semaphore.
1166 */
1167 ipc_port_t port = semaphore->port;
1168
1169 if (IP_VALID(port)) {
1170 assert(!port->ip_srights);
1171 ipc_port_dealloc_kernel(port);
1172 }
1173
1174 /*
1175 * Lock the semaphore to lock in the owner task reference.
1176 * Then continue to try to lock the task (inverse order).
1177 */
1178 spl_level = splsched();
1179 semaphore_lock(semaphore);
1180 for (collisions = 0; semaphore->active; collisions++) {
1181 task_t task = semaphore->owner;
1182
1183 assert(task != TASK_NULL);
1184
1185 if (task_lock_try(task)) {
1186 semaphore_destroy_internal(task, semaphore);
1187 /* semaphore unlocked */
1188 splx(spl_level);
1189 task_unlock(task);
1190 goto out;
1191 }
1192
1193 /* failed to get out-of-order locks */
1194 semaphore_unlock(semaphore);
1195 splx(spl_level);
1196 mutex_pause(collisions);
1197 spl_level = splsched();
1198 semaphore_lock(semaphore);
1199 }
1200 semaphore_unlock(semaphore);
1201 splx(spl_level);
1202
1203 out:
1204 zfree(semaphore_zone, semaphore);
1205 }
1206
1207 #define WAITQ_TO_SEMA(wq) ((semaphore_t) ((uintptr_t)(wq) - offsetof(struct semaphore, waitq)))
1208 void
1209 kdp_sema_find_owner(struct waitq * waitq, __assert_only event64_t event, thread_waitinfo_t * waitinfo)
1210 {
1211 semaphore_t sem = WAITQ_TO_SEMA(waitq);
1212 assert(event == SEMAPHORE_EVENT);
1213 assert(kdp_is_in_zone(sem, "semaphores"));
1214
1215 waitinfo->context = VM_KERNEL_UNSLIDE_OR_PERM(sem->port);
1216 if (sem->owner) {
1217 waitinfo->owner = pid_from_task(sem->owner);
1218 }
1219 }