]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_subr.c
xnu-6153.81.5.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_subr.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
67 */
68 /*
69 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74
75 /*
76 * External virtual filesystem routines
77 */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc_internal.h>
82 #include <sys/kauth.h>
83 #include <sys/mount_internal.h>
84 #include <sys/time.h>
85 #include <sys/lock.h>
86 #include <sys/vnode.h>
87 #include <sys/vnode_internal.h>
88 #include <sys/stat.h>
89 #include <sys/namei.h>
90 #include <sys/ucred.h>
91 #include <sys/buf_internal.h>
92 #include <sys/errno.h>
93 #include <sys/malloc.h>
94 #include <sys/uio_internal.h>
95 #include <sys/uio.h>
96 #include <sys/domain.h>
97 #include <sys/mbuf.h>
98 #include <sys/syslog.h>
99 #include <sys/ubc_internal.h>
100 #include <sys/vm.h>
101 #include <sys/sysctl.h>
102 #include <sys/filedesc.h>
103 #include <sys/event.h>
104 #include <sys/kdebug.h>
105 #include <sys/kauth.h>
106 #include <sys/user.h>
107 #include <sys/systm.h>
108 #include <sys/kern_memorystatus.h>
109 #include <sys/lockf.h>
110 #include <miscfs/fifofs/fifo.h>
111
112 #include <string.h>
113 #include <machine/machine_routines.h>
114
115 #include <kern/assert.h>
116 #include <mach/kern_return.h>
117 #include <kern/thread.h>
118 #include <kern/sched_prim.h>
119
120 #include <miscfs/specfs/specdev.h>
121
122 #include <mach/mach_types.h>
123 #include <mach/memory_object_types.h>
124 #include <mach/memory_object_control.h>
125
126 #include <kern/kalloc.h> /* kalloc()/kfree() */
127 #include <kern/clock.h> /* delay_for_interval() */
128 #include <libkern/OSAtomic.h> /* OSAddAtomic() */
129 #if !CONFIG_EMBEDDED
130 #include <console/video_console.h>
131 #endif
132
133 #ifdef JOE_DEBUG
134 #include <libkern/OSDebug.h>
135 #endif
136
137 #include <vm/vm_protos.h> /* vnode_pager_vrele() */
138
139 #if CONFIG_MACF
140 #include <security/mac_framework.h>
141 #endif
142
143 #include <vfs/vfs_disk_conditioner.h>
144 #include <libkern/section_keywords.h>
145
146 extern lck_grp_t *vnode_lck_grp;
147 extern lck_attr_t *vnode_lck_attr;
148
149 #if CONFIG_TRIGGERS
150 extern lck_grp_t *trigger_vnode_lck_grp;
151 extern lck_attr_t *trigger_vnode_lck_attr;
152 #endif
153
154 extern lck_mtx_t * mnt_list_mtx_lock;
155
156 enum vtype iftovt_tab[16] = {
157 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
158 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
159 };
160 int vttoif_tab[9] = {
161 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
162 S_IFSOCK, S_IFIFO, S_IFMT,
163 };
164
165
166 /* XXX These should be in a BSD accessible Mach header, but aren't. */
167 extern void memory_object_mark_used(
168 memory_object_control_t control);
169
170 extern void memory_object_mark_unused(
171 memory_object_control_t control,
172 boolean_t rage);
173
174 extern void memory_object_mark_io_tracking(
175 memory_object_control_t control);
176
177 /* XXX next protptype should be from <nfs/nfs.h> */
178 extern int nfs_vinvalbuf(vnode_t, int, vfs_context_t, int);
179
180 extern int paniclog_append_noflush(const char *format, ...);
181
182 /* XXX next prototytype should be from libsa/stdlib.h> but conflicts libkern */
183 __private_extern__ void qsort(
184 void * array,
185 size_t nmembers,
186 size_t member_size,
187 int (*)(const void *, const void *));
188
189 __private_extern__ void vntblinit(void);
190 __private_extern__ int unlink1(vfs_context_t, vnode_t, user_addr_t,
191 enum uio_seg, int);
192
193 extern int system_inshutdown;
194
195 static void vnode_list_add(vnode_t);
196 static void vnode_async_list_add(vnode_t);
197 static void vnode_list_remove(vnode_t);
198 static void vnode_list_remove_locked(vnode_t);
199
200 static void vnode_abort_advlocks(vnode_t);
201 static errno_t vnode_drain(vnode_t);
202 static void vgone(vnode_t, int flags);
203 static void vclean(vnode_t vp, int flag);
204 static void vnode_reclaim_internal(vnode_t, int, int, int);
205
206 static void vnode_dropiocount(vnode_t);
207
208 static vnode_t checkalias(vnode_t vp, dev_t nvp_rdev);
209 static int vnode_reload(vnode_t);
210 static int vnode_isinuse_locked(vnode_t, int, int);
211
212 static int unmount_callback(mount_t, __unused void *);
213
214 static void insmntque(vnode_t vp, mount_t mp);
215 static int mount_getvfscnt(void);
216 static int mount_fillfsids(fsid_t *, int );
217 static void vnode_iterate_setup(mount_t);
218 int vnode_umount_preflight(mount_t, vnode_t, int);
219 static int vnode_iterate_prepare(mount_t);
220 static int vnode_iterate_reloadq(mount_t);
221 static void vnode_iterate_clear(mount_t);
222 static mount_t vfs_getvfs_locked(fsid_t *);
223 static int vn_create_reg(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp,
224 struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx);
225 static int vnode_authattr_new_internal(vnode_t dvp, struct vnode_attr *vap, int noauth, uint32_t *defaulted_fieldsp, vfs_context_t ctx);
226
227 errno_t rmdir_remove_orphaned_appleDouble(vnode_t, vfs_context_t, int *);
228
229 #ifdef JOE_DEBUG
230 static void record_vp(vnode_t vp, int count);
231 #endif
232
233 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
234 extern int bootarg_no_vnode_jetsam; /* from bsd_init.c default value is 0 */
235 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
236
237 extern int bootarg_no_vnode_drain; /* from bsd_init.c default value is 0 */
238
239 boolean_t root_is_CF_drive = FALSE;
240
241 #if CONFIG_TRIGGERS
242 static int vnode_resolver_create(mount_t, vnode_t, struct vnode_trigger_param *, boolean_t external);
243 static void vnode_resolver_detach(vnode_t);
244 #endif
245
246 TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
247 TAILQ_HEAD(deadlst, vnode) vnode_dead_list; /* vnode dead list */
248 TAILQ_HEAD(async_work_lst, vnode) vnode_async_work_list;
249
250
251 TAILQ_HEAD(ragelst, vnode) vnode_rage_list; /* vnode rapid age list */
252 struct timeval rage_tv;
253 int rage_limit = 0;
254 int ragevnodes = 0;
255 static int vfs_unmountall_started = 0;
256
257 #define RAGE_LIMIT_MIN 100
258 #define RAGE_TIME_LIMIT 5
259
260 /*
261 * ROSV definitions
262 * NOTE: These are shadowed from PlatformSupport definitions, but XNU
263 * builds standalone.
264 */
265 #define PLATFORM_DATA_VOLUME_MOUNT_POINT "/System/Volumes/Data"
266 #define PLATFORM_VM_VOLUME_MOUNT_POINT "/private/var/vm"
267
268
269 struct mntlist mountlist; /* mounted filesystem list */
270 static int nummounts = 0;
271
272 static int print_busy_vnodes = 0; /* print out busy vnodes */
273
274 #if DIAGNOSTIC
275 #define VLISTCHECK(fun, vp, list) \
276 if ((vp)->v_freelist.tqe_prev == (struct vnode **)0xdeadb) \
277 panic("%s: %s vnode not on %slist", (fun), (list), (list));
278 #else
279 #define VLISTCHECK(fun, vp, list)
280 #endif /* DIAGNOSTIC */
281
282 #define VLISTNONE(vp) \
283 do { \
284 (vp)->v_freelist.tqe_next = (struct vnode *)0; \
285 (vp)->v_freelist.tqe_prev = (struct vnode **)0xdeadb; \
286 } while(0)
287
288 #define VONLIST(vp) \
289 ((vp)->v_freelist.tqe_prev != (struct vnode **)0xdeadb)
290
291 /* remove a vnode from free vnode list */
292 #define VREMFREE(fun, vp) \
293 do { \
294 VLISTCHECK((fun), (vp), "free"); \
295 TAILQ_REMOVE(&vnode_free_list, (vp), v_freelist); \
296 VLISTNONE((vp)); \
297 freevnodes--; \
298 } while(0)
299
300
301 /* remove a vnode from dead vnode list */
302 #define VREMDEAD(fun, vp) \
303 do { \
304 VLISTCHECK((fun), (vp), "dead"); \
305 TAILQ_REMOVE(&vnode_dead_list, (vp), v_freelist); \
306 VLISTNONE((vp)); \
307 vp->v_listflag &= ~VLIST_DEAD; \
308 deadvnodes--; \
309 } while(0)
310
311
312 /* remove a vnode from async work vnode list */
313 #define VREMASYNC_WORK(fun, vp) \
314 do { \
315 VLISTCHECK((fun), (vp), "async_work"); \
316 TAILQ_REMOVE(&vnode_async_work_list, (vp), v_freelist); \
317 VLISTNONE((vp)); \
318 vp->v_listflag &= ~VLIST_ASYNC_WORK; \
319 async_work_vnodes--; \
320 } while(0)
321
322
323 /* remove a vnode from rage vnode list */
324 #define VREMRAGE(fun, vp) \
325 do { \
326 if ( !(vp->v_listflag & VLIST_RAGE)) \
327 panic("VREMRAGE: vp not on rage list"); \
328 VLISTCHECK((fun), (vp), "rage"); \
329 TAILQ_REMOVE(&vnode_rage_list, (vp), v_freelist); \
330 VLISTNONE((vp)); \
331 vp->v_listflag &= ~VLIST_RAGE; \
332 ragevnodes--; \
333 } while(0)
334
335 static void async_work_continue(void);
336
337 /*
338 * Initialize the vnode management data structures.
339 */
340 __private_extern__ void
341 vntblinit(void)
342 {
343 thread_t thread = THREAD_NULL;
344
345 TAILQ_INIT(&vnode_free_list);
346 TAILQ_INIT(&vnode_rage_list);
347 TAILQ_INIT(&vnode_dead_list);
348 TAILQ_INIT(&vnode_async_work_list);
349 TAILQ_INIT(&mountlist);
350
351 microuptime(&rage_tv);
352 rage_limit = desiredvnodes / 100;
353
354 if (rage_limit < RAGE_LIMIT_MIN) {
355 rage_limit = RAGE_LIMIT_MIN;
356 }
357
358 /*
359 * create worker threads
360 */
361 kernel_thread_start((thread_continue_t)async_work_continue, NULL, &thread);
362 thread_deallocate(thread);
363 }
364
365 /* the timeout is in 10 msecs */
366 int
367 vnode_waitforwrites(vnode_t vp, int output_target, int slpflag, int slptimeout, const char *msg)
368 {
369 int error = 0;
370 struct timespec ts;
371
372 KERNEL_DEBUG(0x3010280 | DBG_FUNC_START, (int)vp, output_target, vp->v_numoutput, 0, 0);
373
374 if (vp->v_numoutput > output_target) {
375 slpflag |= PDROP;
376
377 vnode_lock_spin(vp);
378
379 while ((vp->v_numoutput > output_target) && error == 0) {
380 if (output_target) {
381 vp->v_flag |= VTHROTTLED;
382 } else {
383 vp->v_flag |= VBWAIT;
384 }
385
386 ts.tv_sec = (slptimeout / 100);
387 ts.tv_nsec = (slptimeout % 1000) * 10 * NSEC_PER_USEC * 1000;
388 error = msleep((caddr_t)&vp->v_numoutput, &vp->v_lock, (slpflag | (PRIBIO + 1)), msg, &ts);
389
390 vnode_lock_spin(vp);
391 }
392 vnode_unlock(vp);
393 }
394 KERNEL_DEBUG(0x3010280 | DBG_FUNC_END, (int)vp, output_target, vp->v_numoutput, error, 0);
395
396 return error;
397 }
398
399
400 void
401 vnode_startwrite(vnode_t vp)
402 {
403 OSAddAtomic(1, &vp->v_numoutput);
404 }
405
406
407 void
408 vnode_writedone(vnode_t vp)
409 {
410 if (vp) {
411 int need_wakeup = 0;
412
413 OSAddAtomic(-1, &vp->v_numoutput);
414
415 vnode_lock_spin(vp);
416
417 if (vp->v_numoutput < 0) {
418 panic("vnode_writedone: numoutput < 0");
419 }
420
421 if ((vp->v_flag & VTHROTTLED)) {
422 vp->v_flag &= ~VTHROTTLED;
423 need_wakeup = 1;
424 }
425 if ((vp->v_flag & VBWAIT) && (vp->v_numoutput == 0)) {
426 vp->v_flag &= ~VBWAIT;
427 need_wakeup = 1;
428 }
429 vnode_unlock(vp);
430
431 if (need_wakeup) {
432 wakeup((caddr_t)&vp->v_numoutput);
433 }
434 }
435 }
436
437
438
439 int
440 vnode_hasdirtyblks(vnode_t vp)
441 {
442 struct cl_writebehind *wbp;
443
444 /*
445 * Not taking the buf_mtxp as there is little
446 * point doing it. Even if the lock is taken the
447 * state can change right after that. If their
448 * needs to be a synchronization, it must be driven
449 * by the caller
450 */
451 if (vp->v_dirtyblkhd.lh_first) {
452 return 1;
453 }
454
455 if (!UBCINFOEXISTS(vp)) {
456 return 0;
457 }
458
459 wbp = vp->v_ubcinfo->cl_wbehind;
460
461 if (wbp && (wbp->cl_number || wbp->cl_scmap)) {
462 return 1;
463 }
464
465 return 0;
466 }
467
468 int
469 vnode_hascleanblks(vnode_t vp)
470 {
471 /*
472 * Not taking the buf_mtxp as there is little
473 * point doing it. Even if the lock is taken the
474 * state can change right after that. If their
475 * needs to be a synchronization, it must be driven
476 * by the caller
477 */
478 if (vp->v_cleanblkhd.lh_first) {
479 return 1;
480 }
481 return 0;
482 }
483
484 void
485 vnode_iterate_setup(mount_t mp)
486 {
487 mp->mnt_lflag |= MNT_LITER;
488 }
489
490 int
491 vnode_umount_preflight(mount_t mp, vnode_t skipvp, int flags)
492 {
493 vnode_t vp;
494 int ret = 0;
495
496 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
497 if (vp->v_type == VDIR) {
498 continue;
499 }
500 if (vp == skipvp) {
501 continue;
502 }
503 if ((flags & SKIPSYSTEM) && ((vp->v_flag & VSYSTEM) || (vp->v_flag & VNOFLUSH))) {
504 continue;
505 }
506 if ((flags & SKIPSWAP) && (vp->v_flag & VSWAP)) {
507 continue;
508 }
509 if ((flags & WRITECLOSE) && (vp->v_writecount == 0 || vp->v_type != VREG)) {
510 continue;
511 }
512
513 /* Look for busy vnode */
514 if ((vp->v_usecount != 0) && ((vp->v_usecount - vp->v_kusecount) != 0)) {
515 ret = 1;
516 if (print_busy_vnodes && ((flags & FORCECLOSE) == 0)) {
517 vprint("vnode_umount_preflight - busy vnode", vp);
518 } else {
519 return ret;
520 }
521 } else if (vp->v_iocount > 0) {
522 /* Busy if iocount is > 0 for more than 3 seconds */
523 tsleep(&vp->v_iocount, PVFS, "vnode_drain_network", 3 * hz);
524 if (vp->v_iocount > 0) {
525 ret = 1;
526 if (print_busy_vnodes && ((flags & FORCECLOSE) == 0)) {
527 vprint("vnode_umount_preflight - busy vnode", vp);
528 } else {
529 return ret;
530 }
531 }
532 continue;
533 }
534 }
535
536 return ret;
537 }
538
539 /*
540 * This routine prepares iteration by moving all the vnodes to worker queue
541 * called with mount lock held
542 */
543 int
544 vnode_iterate_prepare(mount_t mp)
545 {
546 vnode_t vp;
547
548 if (TAILQ_EMPTY(&mp->mnt_vnodelist)) {
549 /* nothing to do */
550 return 0;
551 }
552
553 vp = TAILQ_FIRST(&mp->mnt_vnodelist);
554 vp->v_mntvnodes.tqe_prev = &(mp->mnt_workerqueue.tqh_first);
555 mp->mnt_workerqueue.tqh_first = mp->mnt_vnodelist.tqh_first;
556 mp->mnt_workerqueue.tqh_last = mp->mnt_vnodelist.tqh_last;
557
558 TAILQ_INIT(&mp->mnt_vnodelist);
559 if (mp->mnt_newvnodes.tqh_first != NULL) {
560 panic("vnode_iterate_prepare: newvnode when entering vnode");
561 }
562 TAILQ_INIT(&mp->mnt_newvnodes);
563
564 return 1;
565 }
566
567
568 /* called with mount lock held */
569 int
570 vnode_iterate_reloadq(mount_t mp)
571 {
572 int moved = 0;
573
574 /* add the remaining entries in workerq to the end of mount vnode list */
575 if (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
576 struct vnode * mvp;
577 mvp = TAILQ_LAST(&mp->mnt_vnodelist, vnodelst);
578
579 /* Joining the workerque entities to mount vnode list */
580 if (mvp) {
581 mvp->v_mntvnodes.tqe_next = mp->mnt_workerqueue.tqh_first;
582 } else {
583 mp->mnt_vnodelist.tqh_first = mp->mnt_workerqueue.tqh_first;
584 }
585 mp->mnt_workerqueue.tqh_first->v_mntvnodes.tqe_prev = mp->mnt_vnodelist.tqh_last;
586 mp->mnt_vnodelist.tqh_last = mp->mnt_workerqueue.tqh_last;
587 TAILQ_INIT(&mp->mnt_workerqueue);
588 }
589
590 /* add the newvnodes to the head of mount vnode list */
591 if (!TAILQ_EMPTY(&mp->mnt_newvnodes)) {
592 struct vnode * nlvp;
593 nlvp = TAILQ_LAST(&mp->mnt_newvnodes, vnodelst);
594
595 mp->mnt_newvnodes.tqh_first->v_mntvnodes.tqe_prev = &mp->mnt_vnodelist.tqh_first;
596 nlvp->v_mntvnodes.tqe_next = mp->mnt_vnodelist.tqh_first;
597 if (mp->mnt_vnodelist.tqh_first) {
598 mp->mnt_vnodelist.tqh_first->v_mntvnodes.tqe_prev = &nlvp->v_mntvnodes.tqe_next;
599 } else {
600 mp->mnt_vnodelist.tqh_last = mp->mnt_newvnodes.tqh_last;
601 }
602 mp->mnt_vnodelist.tqh_first = mp->mnt_newvnodes.tqh_first;
603 TAILQ_INIT(&mp->mnt_newvnodes);
604 moved = 1;
605 }
606
607 return moved;
608 }
609
610
611 void
612 vnode_iterate_clear(mount_t mp)
613 {
614 mp->mnt_lflag &= ~MNT_LITER;
615 }
616
617 #if !CONFIG_EMBEDDED
618
619 #include <i386/panic_hooks.h>
620
621 struct vnode_iterate_panic_hook {
622 panic_hook_t hook;
623 mount_t mp;
624 struct vnode *vp;
625 };
626
627 static void
628 vnode_iterate_panic_hook(panic_hook_t *hook_)
629 {
630 struct vnode_iterate_panic_hook *hook = (struct vnode_iterate_panic_hook *)hook_;
631 panic_phys_range_t range;
632 uint64_t phys;
633
634 if (panic_phys_range_before(hook->mp, &phys, &range)) {
635 paniclog_append_noflush("mp = %p, phys = %p, prev (%p: %p-%p)\n",
636 hook->mp, phys, range.type, range.phys_start,
637 range.phys_start + range.len);
638 } else {
639 paniclog_append_noflush("mp = %p, phys = %p, prev (!)\n", hook->mp, phys);
640 }
641
642 if (panic_phys_range_before(hook->vp, &phys, &range)) {
643 paniclog_append_noflush("vp = %p, phys = %p, prev (%p: %p-%p)\n",
644 hook->vp, phys, range.type, range.phys_start,
645 range.phys_start + range.len);
646 } else {
647 paniclog_append_noflush("vp = %p, phys = %p, prev (!)\n", hook->vp, phys);
648 }
649 panic_dump_mem((void *)(((vm_offset_t)hook->mp - 4096) & ~4095), 12288);
650 }
651 #endif //CONFIG_EMBEDDED
652
653 int
654 vnode_iterate(mount_t mp, int flags, int (*callout)(struct vnode *, void *),
655 void *arg)
656 {
657 struct vnode *vp;
658 int vid, retval;
659 int ret = 0;
660
661 /*
662 * The mount iterate mutex is held for the duration of the iteration.
663 * This can be done by a state flag on the mount structure but we can
664 * run into priority inversion issues sometimes.
665 * Using a mutex allows us to benefit from the priority donation
666 * mechanisms in the kernel for locks. This mutex should never be
667 * acquired in spin mode and it should be acquired before attempting to
668 * acquire the mount lock.
669 */
670 mount_iterate_lock(mp);
671
672 mount_lock(mp);
673
674 vnode_iterate_setup(mp);
675
676 /* If it returns 0 then there is nothing to do */
677 retval = vnode_iterate_prepare(mp);
678
679 if (retval == 0) {
680 vnode_iterate_clear(mp);
681 mount_unlock(mp);
682 mount_iterate_unlock(mp);
683 return ret;
684 }
685
686 #if !CONFIG_EMBEDDED
687 struct vnode_iterate_panic_hook hook;
688 hook.mp = mp;
689 hook.vp = NULL;
690 panic_hook(&hook.hook, vnode_iterate_panic_hook);
691 #endif
692 /* iterate over all the vnodes */
693 while (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
694 vp = TAILQ_FIRST(&mp->mnt_workerqueue);
695 #if !CONFIG_EMBEDDED
696 hook.vp = vp;
697 #endif
698 TAILQ_REMOVE(&mp->mnt_workerqueue, vp, v_mntvnodes);
699 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
700 vid = vp->v_id;
701 if ((vp->v_data == NULL) || (vp->v_type == VNON) || (vp->v_mount != mp)) {
702 continue;
703 }
704 mount_unlock(mp);
705
706 if (vget_internal(vp, vid, (flags | VNODE_NODEAD | VNODE_WITHID | VNODE_NOSUSPEND))) {
707 mount_lock(mp);
708 continue;
709 }
710 if (flags & VNODE_RELOAD) {
711 /*
712 * we're reloading the filesystem
713 * cast out any inactive vnodes...
714 */
715 if (vnode_reload(vp)) {
716 /* vnode will be recycled on the refcount drop */
717 vnode_put(vp);
718 mount_lock(mp);
719 continue;
720 }
721 }
722
723 retval = callout(vp, arg);
724
725 switch (retval) {
726 case VNODE_RETURNED:
727 case VNODE_RETURNED_DONE:
728 vnode_put(vp);
729 if (retval == VNODE_RETURNED_DONE) {
730 mount_lock(mp);
731 ret = 0;
732 goto out;
733 }
734 break;
735
736 case VNODE_CLAIMED_DONE:
737 mount_lock(mp);
738 ret = 0;
739 goto out;
740 case VNODE_CLAIMED:
741 default:
742 break;
743 }
744 mount_lock(mp);
745 }
746
747 out:
748 #if !CONFIG_EMBEDDED
749 panic_unhook(&hook.hook);
750 #endif
751 (void)vnode_iterate_reloadq(mp);
752 vnode_iterate_clear(mp);
753 mount_unlock(mp);
754 mount_iterate_unlock(mp);
755 return ret;
756 }
757
758 void
759 mount_lock_renames(mount_t mp)
760 {
761 lck_mtx_lock(&mp->mnt_renamelock);
762 }
763
764 void
765 mount_unlock_renames(mount_t mp)
766 {
767 lck_mtx_unlock(&mp->mnt_renamelock);
768 }
769
770 void
771 mount_iterate_lock(mount_t mp)
772 {
773 lck_mtx_lock(&mp->mnt_iter_lock);
774 }
775
776 void
777 mount_iterate_unlock(mount_t mp)
778 {
779 lck_mtx_unlock(&mp->mnt_iter_lock);
780 }
781
782 void
783 mount_lock(mount_t mp)
784 {
785 lck_mtx_lock(&mp->mnt_mlock);
786 }
787
788 void
789 mount_lock_spin(mount_t mp)
790 {
791 lck_mtx_lock_spin(&mp->mnt_mlock);
792 }
793
794 void
795 mount_unlock(mount_t mp)
796 {
797 lck_mtx_unlock(&mp->mnt_mlock);
798 }
799
800
801 void
802 mount_ref(mount_t mp, int locked)
803 {
804 if (!locked) {
805 mount_lock_spin(mp);
806 }
807
808 mp->mnt_count++;
809
810 if (!locked) {
811 mount_unlock(mp);
812 }
813 }
814
815
816 void
817 mount_drop(mount_t mp, int locked)
818 {
819 if (!locked) {
820 mount_lock_spin(mp);
821 }
822
823 mp->mnt_count--;
824
825 if (mp->mnt_count == 0 && (mp->mnt_lflag & MNT_LDRAIN)) {
826 wakeup(&mp->mnt_lflag);
827 }
828
829 if (!locked) {
830 mount_unlock(mp);
831 }
832 }
833
834
835 int
836 mount_iterref(mount_t mp, int locked)
837 {
838 int retval = 0;
839
840 if (!locked) {
841 mount_list_lock();
842 }
843 if (mp->mnt_iterref < 0) {
844 retval = 1;
845 } else {
846 mp->mnt_iterref++;
847 }
848 if (!locked) {
849 mount_list_unlock();
850 }
851 return retval;
852 }
853
854 int
855 mount_isdrained(mount_t mp, int locked)
856 {
857 int retval;
858
859 if (!locked) {
860 mount_list_lock();
861 }
862 if (mp->mnt_iterref < 0) {
863 retval = 1;
864 } else {
865 retval = 0;
866 }
867 if (!locked) {
868 mount_list_unlock();
869 }
870 return retval;
871 }
872
873 void
874 mount_iterdrop(mount_t mp)
875 {
876 mount_list_lock();
877 mp->mnt_iterref--;
878 wakeup(&mp->mnt_iterref);
879 mount_list_unlock();
880 }
881
882 void
883 mount_iterdrain(mount_t mp)
884 {
885 mount_list_lock();
886 while (mp->mnt_iterref) {
887 msleep((caddr_t)&mp->mnt_iterref, mnt_list_mtx_lock, PVFS, "mount_iterdrain", NULL);
888 }
889 /* mount iterations drained */
890 mp->mnt_iterref = -1;
891 mount_list_unlock();
892 }
893 void
894 mount_iterreset(mount_t mp)
895 {
896 mount_list_lock();
897 if (mp->mnt_iterref == -1) {
898 mp->mnt_iterref = 0;
899 }
900 mount_list_unlock();
901 }
902
903 /* always called with mount lock held */
904 int
905 mount_refdrain(mount_t mp)
906 {
907 if (mp->mnt_lflag & MNT_LDRAIN) {
908 panic("already in drain");
909 }
910 mp->mnt_lflag |= MNT_LDRAIN;
911
912 while (mp->mnt_count) {
913 msleep((caddr_t)&mp->mnt_lflag, &mp->mnt_mlock, PVFS, "mount_drain", NULL);
914 }
915
916 if (mp->mnt_vnodelist.tqh_first != NULL) {
917 panic("mount_refdrain: dangling vnode");
918 }
919
920 mp->mnt_lflag &= ~MNT_LDRAIN;
921
922 return 0;
923 }
924
925 /* Tags the mount point as not supportine extended readdir for NFS exports */
926 void
927 mount_set_noreaddirext(mount_t mp)
928 {
929 mount_lock(mp);
930 mp->mnt_kern_flag |= MNTK_DENY_READDIREXT;
931 mount_unlock(mp);
932 }
933
934 /*
935 * Mark a mount point as busy. Used to synchronize access and to delay
936 * unmounting.
937 */
938 int
939 vfs_busy(mount_t mp, int flags)
940 {
941 restart:
942 if (mp->mnt_lflag & MNT_LDEAD) {
943 return ENOENT;
944 }
945
946 mount_lock(mp);
947
948 if (mp->mnt_lflag & MNT_LUNMOUNT) {
949 if (flags & LK_NOWAIT || mp->mnt_lflag & MNT_LDEAD) {
950 mount_unlock(mp);
951 return ENOENT;
952 }
953
954 /*
955 * Since all busy locks are shared except the exclusive
956 * lock granted when unmounting, the only place that a
957 * wakeup needs to be done is at the release of the
958 * exclusive lock at the end of dounmount.
959 */
960 mp->mnt_lflag |= MNT_LWAIT;
961 msleep((caddr_t)mp, &mp->mnt_mlock, (PVFS | PDROP), "vfsbusy", NULL);
962 return ENOENT;
963 }
964
965 mount_unlock(mp);
966
967 lck_rw_lock_shared(&mp->mnt_rwlock);
968
969 /*
970 * Until we are granted the rwlock, it's possible for the mount point to
971 * change state, so re-evaluate before granting the vfs_busy.
972 */
973 if (mp->mnt_lflag & (MNT_LDEAD | MNT_LUNMOUNT)) {
974 lck_rw_done(&mp->mnt_rwlock);
975 goto restart;
976 }
977 return 0;
978 }
979
980 /*
981 * Free a busy filesystem.
982 */
983 void
984 vfs_unbusy(mount_t mp)
985 {
986 lck_rw_done(&mp->mnt_rwlock);
987 }
988
989
990
991 static void
992 vfs_rootmountfailed(mount_t mp)
993 {
994 mount_list_lock();
995 mp->mnt_vtable->vfc_refcount--;
996 mount_list_unlock();
997
998 vfs_unbusy(mp);
999
1000 mount_lock_destroy(mp);
1001
1002 #if CONFIG_MACF
1003 mac_mount_label_destroy(mp);
1004 #endif
1005
1006 FREE_ZONE(mp, sizeof(struct mount), M_MOUNT);
1007 }
1008
1009 /*
1010 * Lookup a filesystem type, and if found allocate and initialize
1011 * a mount structure for it.
1012 *
1013 * Devname is usually updated by mount(8) after booting.
1014 */
1015 static mount_t
1016 vfs_rootmountalloc_internal(struct vfstable *vfsp, const char *devname)
1017 {
1018 mount_t mp;
1019
1020 mp = _MALLOC_ZONE(sizeof(struct mount), M_MOUNT, M_WAITOK);
1021 bzero((char *)mp, sizeof(struct mount));
1022
1023 /* Initialize the default IO constraints */
1024 mp->mnt_maxreadcnt = mp->mnt_maxwritecnt = MAXPHYS;
1025 mp->mnt_segreadcnt = mp->mnt_segwritecnt = 32;
1026 mp->mnt_maxsegreadsize = mp->mnt_maxreadcnt;
1027 mp->mnt_maxsegwritesize = mp->mnt_maxwritecnt;
1028 mp->mnt_devblocksize = DEV_BSIZE;
1029 mp->mnt_alignmentmask = PAGE_MASK;
1030 mp->mnt_ioqueue_depth = MNT_DEFAULT_IOQUEUE_DEPTH;
1031 mp->mnt_ioscale = 1;
1032 mp->mnt_ioflags = 0;
1033 mp->mnt_realrootvp = NULLVP;
1034 mp->mnt_authcache_ttl = CACHED_LOOKUP_RIGHT_TTL;
1035 mp->mnt_throttle_mask = LOWPRI_MAX_NUM_DEV - 1;
1036 mp->mnt_devbsdunit = 0;
1037
1038 mount_lock_init(mp);
1039 (void)vfs_busy(mp, LK_NOWAIT);
1040
1041 TAILQ_INIT(&mp->mnt_vnodelist);
1042 TAILQ_INIT(&mp->mnt_workerqueue);
1043 TAILQ_INIT(&mp->mnt_newvnodes);
1044
1045 mp->mnt_vtable = vfsp;
1046 mp->mnt_op = vfsp->vfc_vfsops;
1047 mp->mnt_flag = MNT_RDONLY | MNT_ROOTFS;
1048 mp->mnt_vnodecovered = NULLVP;
1049 //mp->mnt_stat.f_type = vfsp->vfc_typenum;
1050 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
1051
1052 mount_list_lock();
1053 vfsp->vfc_refcount++;
1054 mount_list_unlock();
1055
1056 strlcpy(mp->mnt_vfsstat.f_fstypename, vfsp->vfc_name, MFSTYPENAMELEN);
1057 mp->mnt_vfsstat.f_mntonname[0] = '/';
1058 /* XXX const poisoning layering violation */
1059 (void) copystr((const void *)devname, mp->mnt_vfsstat.f_mntfromname, MAXPATHLEN - 1, NULL);
1060
1061 #if CONFIG_MACF
1062 mac_mount_label_init(mp);
1063 mac_mount_label_associate(vfs_context_kernel(), mp);
1064 #endif
1065 return mp;
1066 }
1067
1068 errno_t
1069 vfs_rootmountalloc(const char *fstypename, const char *devname, mount_t *mpp)
1070 {
1071 struct vfstable *vfsp;
1072
1073 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1074 if (!strncmp(vfsp->vfc_name, fstypename,
1075 sizeof(vfsp->vfc_name))) {
1076 break;
1077 }
1078 }
1079 if (vfsp == NULL) {
1080 return ENODEV;
1081 }
1082
1083 *mpp = vfs_rootmountalloc_internal(vfsp, devname);
1084
1085 if (*mpp) {
1086 return 0;
1087 }
1088
1089 return ENOMEM;
1090 }
1091
1092 #define DBG_MOUNTROOT (FSDBG_CODE(DBG_MOUNT, 0))
1093
1094 /*
1095 * Find an appropriate filesystem to use for the root. If a filesystem
1096 * has not been preselected, walk through the list of known filesystems
1097 * trying those that have mountroot routines, and try them until one
1098 * works or we have tried them all.
1099 */
1100 extern int (*mountroot)(void);
1101
1102 int
1103 vfs_mountroot(void)
1104 {
1105 #if CONFIG_MACF
1106 struct vnode *vp;
1107 #endif
1108 struct vfstable *vfsp;
1109 vfs_context_t ctx = vfs_context_kernel();
1110 struct vfs_attr vfsattr;
1111 int error;
1112 mount_t mp;
1113 vnode_t bdevvp_rootvp;
1114
1115 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_START);
1116 if (mountroot != NULL) {
1117 /*
1118 * used for netboot which follows a different set of rules
1119 */
1120 error = (*mountroot)();
1121
1122 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error, 0);
1123 return error;
1124 }
1125 if ((error = bdevvp(rootdev, &rootvp))) {
1126 printf("vfs_mountroot: can't setup bdevvp\n");
1127
1128 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error, 1);
1129 return error;
1130 }
1131 /*
1132 * 4951998 - code we call in vfc_mountroot may replace rootvp
1133 * so keep a local copy for some house keeping.
1134 */
1135 bdevvp_rootvp = rootvp;
1136
1137 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1138 if (vfsp->vfc_mountroot == NULL
1139 && !ISSET(vfsp->vfc_vfsflags, VFC_VFSCANMOUNTROOT)) {
1140 continue;
1141 }
1142
1143 mp = vfs_rootmountalloc_internal(vfsp, "root_device");
1144 mp->mnt_devvp = rootvp;
1145
1146 if (vfsp->vfc_mountroot) {
1147 error = (*vfsp->vfc_mountroot)(mp, rootvp, ctx);
1148 } else {
1149 error = VFS_MOUNT(mp, rootvp, 0, ctx);
1150 }
1151
1152 if (!error) {
1153 if (bdevvp_rootvp != rootvp) {
1154 /*
1155 * rootvp changed...
1156 * bump the iocount and fix up mnt_devvp for the
1157 * new rootvp (it will already have a usecount taken)...
1158 * drop the iocount and the usecount on the orignal
1159 * since we are no longer going to use it...
1160 */
1161 vnode_getwithref(rootvp);
1162 mp->mnt_devvp = rootvp;
1163
1164 vnode_rele(bdevvp_rootvp);
1165 vnode_put(bdevvp_rootvp);
1166 }
1167 mp->mnt_devvp->v_specflags |= SI_MOUNTEDON;
1168
1169 vfs_unbusy(mp);
1170
1171 mount_list_add(mp);
1172
1173 /*
1174 * cache the IO attributes for the underlying physical media...
1175 * an error return indicates the underlying driver doesn't
1176 * support all the queries necessary... however, reasonable
1177 * defaults will have been set, so no reason to bail or care
1178 */
1179 vfs_init_io_attributes(rootvp, mp);
1180
1181 if (mp->mnt_ioflags & MNT_IOFLAGS_FUSION_DRIVE) {
1182 root_is_CF_drive = TRUE;
1183 }
1184
1185 /*
1186 * Shadow the VFC_VFSNATIVEXATTR flag to MNTK_EXTENDED_ATTRS.
1187 */
1188 if (mp->mnt_vtable->vfc_vfsflags & VFC_VFSNATIVEXATTR) {
1189 mp->mnt_kern_flag |= MNTK_EXTENDED_ATTRS;
1190 }
1191 if (mp->mnt_vtable->vfc_vfsflags & VFC_VFSPREFLIGHT) {
1192 mp->mnt_kern_flag |= MNTK_UNMOUNT_PREFLIGHT;
1193 }
1194
1195 #if !CONFIG_EMBEDDED
1196 uint32_t speed;
1197
1198 if (MNTK_VIRTUALDEV & mp->mnt_kern_flag) {
1199 speed = 128;
1200 } else if (disk_conditioner_mount_is_ssd(mp)) {
1201 speed = 7 * 256;
1202 } else {
1203 speed = 256;
1204 }
1205 vc_progress_setdiskspeed(speed);
1206 #endif
1207 /*
1208 * Probe root file system for additional features.
1209 */
1210 (void)VFS_START(mp, 0, ctx);
1211
1212 VFSATTR_INIT(&vfsattr);
1213 VFSATTR_WANTED(&vfsattr, f_capabilities);
1214 if (vfs_getattr(mp, &vfsattr, ctx) == 0 &&
1215 VFSATTR_IS_SUPPORTED(&vfsattr, f_capabilities)) {
1216 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_EXTENDED_ATTR) &&
1217 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_EXTENDED_ATTR)) {
1218 mp->mnt_kern_flag |= MNTK_EXTENDED_ATTRS;
1219 }
1220 #if NAMEDSTREAMS
1221 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_NAMEDSTREAMS) &&
1222 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_NAMEDSTREAMS)) {
1223 mp->mnt_kern_flag |= MNTK_NAMED_STREAMS;
1224 }
1225 #endif
1226 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_PATH_FROM_ID) &&
1227 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_PATH_FROM_ID)) {
1228 mp->mnt_kern_flag |= MNTK_PATH_FROM_ID;
1229 }
1230
1231 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_DIR_HARDLINKS) &&
1232 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_DIR_HARDLINKS)) {
1233 mp->mnt_kern_flag |= MNTK_DIR_HARDLINKS;
1234 }
1235 }
1236
1237 /*
1238 * get rid of iocount reference returned
1239 * by bdevvp (or picked up by us on the substitued
1240 * rootvp)... it (or we) will have also taken
1241 * a usecount reference which we want to keep
1242 */
1243 vnode_put(rootvp);
1244
1245 #if CONFIG_MACF
1246 if ((vfs_flags(mp) & MNT_MULTILABEL) == 0) {
1247 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, 0, 2);
1248 return 0;
1249 }
1250
1251 error = VFS_ROOT(mp, &vp, ctx);
1252 if (error) {
1253 printf("%s() VFS_ROOT() returned %d\n",
1254 __func__, error);
1255 dounmount(mp, MNT_FORCE, 0, ctx);
1256 goto fail;
1257 }
1258 error = vnode_label(mp, NULL, vp, NULL, 0, ctx);
1259 /*
1260 * get rid of reference provided by VFS_ROOT
1261 */
1262 vnode_put(vp);
1263
1264 if (error) {
1265 printf("%s() vnode_label() returned %d\n",
1266 __func__, error);
1267 dounmount(mp, MNT_FORCE, 0, ctx);
1268 goto fail;
1269 }
1270 #endif
1271 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, 0, 3);
1272 return 0;
1273 }
1274 #if CONFIG_MACF
1275 fail:
1276 #endif
1277 vfs_rootmountfailed(mp);
1278
1279 if (error != EINVAL) {
1280 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
1281 }
1282 }
1283 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error ? error : ENODEV, 4);
1284 return ENODEV;
1285 }
1286
1287 /*
1288 * Mount the data volume of an ROSV volume group
1289 */
1290 int
1291 vfs_mount_rosv_data(void)
1292 {
1293 #if CONFIG_ROSV_STARTUP
1294 int error = 0;
1295 int do_rosv_mounts = 0;
1296
1297 error = vnode_get(rootvnode);
1298 if (error) {
1299 /* root must be mounted first */
1300 printf("vnode_get(rootvnode) failed with error %d\n", error);
1301 return error;
1302 }
1303
1304 printf("NOTE: Attempting ROSV mount\n");
1305 struct vfs_attr vfsattr;
1306 VFSATTR_INIT(&vfsattr);
1307 VFSATTR_WANTED(&vfsattr, f_capabilities);
1308 if (vfs_getattr(rootvnode->v_mount, &vfsattr, vfs_context_kernel()) == 0 &&
1309 VFSATTR_IS_SUPPORTED(&vfsattr, f_capabilities)) {
1310 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_VOL_GROUPS) &&
1311 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_VOL_GROUPS)) {
1312 printf("NOTE: DETECTED ROSV CONFIG\n");
1313 do_rosv_mounts = 1;
1314 }
1315 }
1316
1317 if (!do_rosv_mounts) {
1318 vnode_put(rootvnode);
1319 //bail out if config not supported
1320 return 0;
1321 }
1322
1323 char datapath[] = PLATFORM_DATA_VOLUME_MOUNT_POINT; /* !const because of internal casting */
1324
1325 /* Mount the data volume */
1326 printf("attempting kernel mount for data volume... \n");
1327 error = kernel_mount(rootvnode->v_mount->mnt_vfsstat.f_fstypename, NULLVP, NULLVP,
1328 datapath, (rootvnode->v_mount), 0, 0, (KERNEL_MOUNT_DATAVOL), vfs_context_kernel());
1329
1330 if (error) {
1331 printf("Failed to mount data volume (%d)\n", error);
1332 }
1333
1334 vnode_put(rootvnode);
1335
1336 return error;
1337
1338 #else
1339 return 0;
1340 #endif
1341 }
1342
1343 /*
1344 * Mount the VM volume of a container
1345 */
1346 int
1347 vfs_mount_vm(void)
1348 {
1349 #if CONFIG_MOUNT_VM
1350 int error = 0;
1351
1352 error = vnode_get(rootvnode);
1353 if (error) {
1354 /* root must be mounted first */
1355 printf("vnode_get(rootvnode) failed with error %d\n", error);
1356 return error;
1357 }
1358
1359 char vmpath[] = PLATFORM_VM_VOLUME_MOUNT_POINT; /* !const because of internal casting */
1360
1361 /* Mount the VM volume */
1362 printf("attempting kernel mount for vm volume... \n");
1363 error = kernel_mount(rootvnode->v_mount->mnt_vfsstat.f_fstypename, NULLVP, NULLVP,
1364 vmpath, (rootvnode->v_mount), 0, 0, (KERNEL_MOUNT_VMVOL), vfs_context_kernel());
1365
1366 if (error) {
1367 printf("Failed to mount vm volume (%d)\n", error);
1368 } else {
1369 printf("mounted VM volume\n");
1370 }
1371
1372 vnode_put(rootvnode);
1373 return error;
1374 #else
1375 return 0;
1376 #endif
1377 }
1378
1379 /*
1380 * Lookup a mount point by filesystem identifier.
1381 */
1382
1383 struct mount *
1384 vfs_getvfs(fsid_t *fsid)
1385 {
1386 return mount_list_lookupby_fsid(fsid, 0, 0);
1387 }
1388
1389 static struct mount *
1390 vfs_getvfs_locked(fsid_t *fsid)
1391 {
1392 return mount_list_lookupby_fsid(fsid, 1, 0);
1393 }
1394
1395 struct mount *
1396 vfs_getvfs_by_mntonname(char *path)
1397 {
1398 mount_t retmp = (mount_t)0;
1399 mount_t mp;
1400
1401 mount_list_lock();
1402 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1403 if (!strncmp(mp->mnt_vfsstat.f_mntonname, path,
1404 sizeof(mp->mnt_vfsstat.f_mntonname))) {
1405 retmp = mp;
1406 if (mount_iterref(retmp, 1)) {
1407 retmp = NULL;
1408 }
1409 goto out;
1410 }
1411 }
1412 out:
1413 mount_list_unlock();
1414 return retmp;
1415 }
1416
1417 /* generation number for creation of new fsids */
1418 u_short mntid_gen = 0;
1419 /*
1420 * Get a new unique fsid
1421 */
1422 void
1423 vfs_getnewfsid(struct mount *mp)
1424 {
1425 fsid_t tfsid;
1426 int mtype;
1427
1428 mount_list_lock();
1429
1430 /* generate a new fsid */
1431 mtype = mp->mnt_vtable->vfc_typenum;
1432 if (++mntid_gen == 0) {
1433 mntid_gen++;
1434 }
1435 tfsid.val[0] = makedev(nblkdev + mtype, mntid_gen);
1436 tfsid.val[1] = mtype;
1437
1438 while (vfs_getvfs_locked(&tfsid)) {
1439 if (++mntid_gen == 0) {
1440 mntid_gen++;
1441 }
1442 tfsid.val[0] = makedev(nblkdev + mtype, mntid_gen);
1443 }
1444
1445 mp->mnt_vfsstat.f_fsid.val[0] = tfsid.val[0];
1446 mp->mnt_vfsstat.f_fsid.val[1] = tfsid.val[1];
1447 mount_list_unlock();
1448 }
1449
1450 /*
1451 * Routines having to do with the management of the vnode table.
1452 */
1453 extern int(**dead_vnodeop_p)(void *);
1454 long numvnodes, freevnodes, deadvnodes, async_work_vnodes;
1455
1456
1457 int async_work_timed_out = 0;
1458 int async_work_handled = 0;
1459 int dead_vnode_wanted = 0;
1460 int dead_vnode_waited = 0;
1461
1462 /*
1463 * Move a vnode from one mount queue to another.
1464 */
1465 static void
1466 insmntque(vnode_t vp, mount_t mp)
1467 {
1468 mount_t lmp;
1469 /*
1470 * Delete from old mount point vnode list, if on one.
1471 */
1472 if ((lmp = vp->v_mount) != NULL && lmp != dead_mountp) {
1473 if ((vp->v_lflag & VNAMED_MOUNT) == 0) {
1474 panic("insmntque: vp not in mount vnode list");
1475 }
1476 vp->v_lflag &= ~VNAMED_MOUNT;
1477
1478 mount_lock_spin(lmp);
1479
1480 mount_drop(lmp, 1);
1481
1482 if (vp->v_mntvnodes.tqe_next == NULL) {
1483 if (TAILQ_LAST(&lmp->mnt_vnodelist, vnodelst) == vp) {
1484 TAILQ_REMOVE(&lmp->mnt_vnodelist, vp, v_mntvnodes);
1485 } else if (TAILQ_LAST(&lmp->mnt_newvnodes, vnodelst) == vp) {
1486 TAILQ_REMOVE(&lmp->mnt_newvnodes, vp, v_mntvnodes);
1487 } else if (TAILQ_LAST(&lmp->mnt_workerqueue, vnodelst) == vp) {
1488 TAILQ_REMOVE(&lmp->mnt_workerqueue, vp, v_mntvnodes);
1489 }
1490 } else {
1491 vp->v_mntvnodes.tqe_next->v_mntvnodes.tqe_prev = vp->v_mntvnodes.tqe_prev;
1492 *vp->v_mntvnodes.tqe_prev = vp->v_mntvnodes.tqe_next;
1493 }
1494 vp->v_mntvnodes.tqe_next = NULL;
1495 vp->v_mntvnodes.tqe_prev = NULL;
1496 mount_unlock(lmp);
1497 return;
1498 }
1499
1500 /*
1501 * Insert into list of vnodes for the new mount point, if available.
1502 */
1503 if ((vp->v_mount = mp) != NULL) {
1504 mount_lock_spin(mp);
1505 if ((vp->v_mntvnodes.tqe_next != 0) && (vp->v_mntvnodes.tqe_prev != 0)) {
1506 panic("vp already in mount list");
1507 }
1508 if (mp->mnt_lflag & MNT_LITER) {
1509 TAILQ_INSERT_HEAD(&mp->mnt_newvnodes, vp, v_mntvnodes);
1510 } else {
1511 TAILQ_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
1512 }
1513 if (vp->v_lflag & VNAMED_MOUNT) {
1514 panic("insmntque: vp already in mount vnode list");
1515 }
1516 vp->v_lflag |= VNAMED_MOUNT;
1517 mount_ref(mp, 1);
1518 mount_unlock(mp);
1519 }
1520 }
1521
1522
1523 /*
1524 * Create a vnode for a block device.
1525 * Used for root filesystem, argdev, and swap areas.
1526 * Also used for memory file system special devices.
1527 */
1528 int
1529 bdevvp(dev_t dev, vnode_t *vpp)
1530 {
1531 vnode_t nvp;
1532 int error;
1533 struct vnode_fsparam vfsp;
1534 struct vfs_context context;
1535
1536 if (dev == NODEV) {
1537 *vpp = NULLVP;
1538 return ENODEV;
1539 }
1540
1541 context.vc_thread = current_thread();
1542 context.vc_ucred = FSCRED;
1543
1544 vfsp.vnfs_mp = (struct mount *)0;
1545 vfsp.vnfs_vtype = VBLK;
1546 vfsp.vnfs_str = "bdevvp";
1547 vfsp.vnfs_dvp = NULL;
1548 vfsp.vnfs_fsnode = NULL;
1549 vfsp.vnfs_cnp = NULL;
1550 vfsp.vnfs_vops = spec_vnodeop_p;
1551 vfsp.vnfs_rdev = dev;
1552 vfsp.vnfs_filesize = 0;
1553
1554 vfsp.vnfs_flags = VNFS_NOCACHE | VNFS_CANTCACHE;
1555
1556 vfsp.vnfs_marksystem = 0;
1557 vfsp.vnfs_markroot = 0;
1558
1559 if ((error = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &nvp))) {
1560 *vpp = NULLVP;
1561 return error;
1562 }
1563 vnode_lock_spin(nvp);
1564 nvp->v_flag |= VBDEVVP;
1565 nvp->v_tag = VT_NON; /* set this to VT_NON so during aliasing it can be replaced */
1566 vnode_unlock(nvp);
1567 if ((error = vnode_ref(nvp))) {
1568 panic("bdevvp failed: vnode_ref");
1569 return error;
1570 }
1571 if ((error = VNOP_FSYNC(nvp, MNT_WAIT, &context))) {
1572 panic("bdevvp failed: fsync");
1573 return error;
1574 }
1575 if ((error = buf_invalidateblks(nvp, BUF_WRITE_DATA, 0, 0))) {
1576 panic("bdevvp failed: invalidateblks");
1577 return error;
1578 }
1579
1580 #if CONFIG_MACF
1581 /*
1582 * XXXMAC: We can't put a MAC check here, the system will
1583 * panic without this vnode.
1584 */
1585 #endif /* MAC */
1586
1587 if ((error = VNOP_OPEN(nvp, FREAD, &context))) {
1588 panic("bdevvp failed: open");
1589 return error;
1590 }
1591 *vpp = nvp;
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * Check to see if the new vnode represents a special device
1598 * for which we already have a vnode (either because of
1599 * bdevvp() or because of a different vnode representing
1600 * the same block device). If such an alias exists, deallocate
1601 * the existing contents and return the aliased vnode. The
1602 * caller is responsible for filling it with its new contents.
1603 */
1604 static vnode_t
1605 checkalias(struct vnode *nvp, dev_t nvp_rdev)
1606 {
1607 struct vnode *vp;
1608 struct vnode **vpp;
1609 struct specinfo *sin = NULL;
1610 int vid = 0;
1611
1612 vpp = &speclisth[SPECHASH(nvp_rdev)];
1613 loop:
1614 SPECHASH_LOCK();
1615
1616 for (vp = *vpp; vp; vp = vp->v_specnext) {
1617 if (nvp_rdev == vp->v_rdev && nvp->v_type == vp->v_type) {
1618 vid = vp->v_id;
1619 break;
1620 }
1621 }
1622 SPECHASH_UNLOCK();
1623
1624 if (vp) {
1625 found_alias:
1626 if (vnode_getwithvid(vp, vid)) {
1627 goto loop;
1628 }
1629 /*
1630 * Termination state is checked in vnode_getwithvid
1631 */
1632 vnode_lock(vp);
1633
1634 /*
1635 * Alias, but not in use, so flush it out.
1636 */
1637 if ((vp->v_iocount == 1) && (vp->v_usecount == 0)) {
1638 vnode_reclaim_internal(vp, 1, 1, 0);
1639 vnode_put_locked(vp);
1640 vnode_unlock(vp);
1641 goto loop;
1642 }
1643 }
1644 if (vp == NULL || vp->v_tag != VT_NON) {
1645 if (sin == NULL) {
1646 MALLOC_ZONE(sin, struct specinfo *, sizeof(struct specinfo),
1647 M_SPECINFO, M_WAITOK);
1648 }
1649
1650 nvp->v_specinfo = sin;
1651 bzero(nvp->v_specinfo, sizeof(struct specinfo));
1652 nvp->v_rdev = nvp_rdev;
1653 nvp->v_specflags = 0;
1654 nvp->v_speclastr = -1;
1655 nvp->v_specinfo->si_opencount = 0;
1656 nvp->v_specinfo->si_initted = 0;
1657 nvp->v_specinfo->si_throttleable = 0;
1658
1659 SPECHASH_LOCK();
1660
1661 /* We dropped the lock, someone could have added */
1662 if (vp == NULLVP) {
1663 for (vp = *vpp; vp; vp = vp->v_specnext) {
1664 if (nvp_rdev == vp->v_rdev && nvp->v_type == vp->v_type) {
1665 vid = vp->v_id;
1666 SPECHASH_UNLOCK();
1667 goto found_alias;
1668 }
1669 }
1670 }
1671
1672 nvp->v_hashchain = vpp;
1673 nvp->v_specnext = *vpp;
1674 *vpp = nvp;
1675
1676 if (vp != NULLVP) {
1677 nvp->v_specflags |= SI_ALIASED;
1678 vp->v_specflags |= SI_ALIASED;
1679 SPECHASH_UNLOCK();
1680 vnode_put_locked(vp);
1681 vnode_unlock(vp);
1682 } else {
1683 SPECHASH_UNLOCK();
1684 }
1685
1686 return NULLVP;
1687 }
1688
1689 if (sin) {
1690 FREE_ZONE(sin, sizeof(struct specinfo), M_SPECINFO);
1691 }
1692
1693 if ((vp->v_flag & (VBDEVVP | VDEVFLUSH)) != 0) {
1694 return vp;
1695 }
1696
1697 panic("checkalias with VT_NON vp that shouldn't: %p", vp);
1698
1699 return vp;
1700 }
1701
1702
1703 /*
1704 * Get a reference on a particular vnode and lock it if requested.
1705 * If the vnode was on the inactive list, remove it from the list.
1706 * If the vnode was on the free list, remove it from the list and
1707 * move it to inactive list as needed.
1708 * The vnode lock bit is set if the vnode is being eliminated in
1709 * vgone. The process is awakened when the transition is completed,
1710 * and an error returned to indicate that the vnode is no longer
1711 * usable (possibly having been changed to a new file system type).
1712 */
1713 int
1714 vget_internal(vnode_t vp, int vid, int vflags)
1715 {
1716 int error = 0;
1717
1718 vnode_lock_spin(vp);
1719
1720 if ((vflags & VNODE_WRITEABLE) && (vp->v_writecount == 0)) {
1721 /*
1722 * vnode to be returned only if it has writers opened
1723 */
1724 error = EINVAL;
1725 } else {
1726 error = vnode_getiocount(vp, vid, vflags);
1727 }
1728
1729 vnode_unlock(vp);
1730
1731 return error;
1732 }
1733
1734 /*
1735 * Returns: 0 Success
1736 * ENOENT No such file or directory [terminating]
1737 */
1738 int
1739 vnode_ref(vnode_t vp)
1740 {
1741 return vnode_ref_ext(vp, 0, 0);
1742 }
1743
1744 /*
1745 * Returns: 0 Success
1746 * ENOENT No such file or directory [terminating]
1747 */
1748 int
1749 vnode_ref_ext(vnode_t vp, int fmode, int flags)
1750 {
1751 int error = 0;
1752
1753 vnode_lock_spin(vp);
1754
1755 /*
1756 * once all the current call sites have been fixed to insure they have
1757 * taken an iocount, we can toughen this assert up and insist that the
1758 * iocount is non-zero... a non-zero usecount doesn't insure correctness
1759 */
1760 if (vp->v_iocount <= 0 && vp->v_usecount <= 0) {
1761 panic("vnode_ref_ext: vp %p has no valid reference %d, %d", vp, vp->v_iocount, vp->v_usecount);
1762 }
1763
1764 /*
1765 * if you are the owner of drain/termination, can acquire usecount
1766 */
1767 if ((flags & VNODE_REF_FORCE) == 0) {
1768 if ((vp->v_lflag & (VL_DRAIN | VL_TERMINATE | VL_DEAD))) {
1769 if (vp->v_owner != current_thread()) {
1770 error = ENOENT;
1771 goto out;
1772 }
1773 }
1774 }
1775 vp->v_usecount++;
1776
1777 if (fmode & FWRITE) {
1778 if (++vp->v_writecount <= 0) {
1779 panic("vnode_ref_ext: v_writecount");
1780 }
1781 }
1782 if (fmode & O_EVTONLY) {
1783 if (++vp->v_kusecount <= 0) {
1784 panic("vnode_ref_ext: v_kusecount");
1785 }
1786 }
1787 if (vp->v_flag & VRAGE) {
1788 struct uthread *ut;
1789
1790 ut = get_bsdthread_info(current_thread());
1791
1792 if (!(current_proc()->p_lflag & P_LRAGE_VNODES) &&
1793 !(ut->uu_flag & UT_RAGE_VNODES)) {
1794 /*
1795 * a 'normal' process accessed this vnode
1796 * so make sure its no longer marked
1797 * for rapid aging... also, make sure
1798 * it gets removed from the rage list...
1799 * when v_usecount drops back to 0, it
1800 * will be put back on the real free list
1801 */
1802 vp->v_flag &= ~VRAGE;
1803 vp->v_references = 0;
1804 vnode_list_remove(vp);
1805 }
1806 }
1807 if (vp->v_usecount == 1 && vp->v_type == VREG && !(vp->v_flag & VSYSTEM)) {
1808 if (vp->v_ubcinfo) {
1809 vnode_lock_convert(vp);
1810 memory_object_mark_used(vp->v_ubcinfo->ui_control);
1811 }
1812 }
1813 out:
1814 vnode_unlock(vp);
1815
1816 return error;
1817 }
1818
1819
1820 boolean_t
1821 vnode_on_reliable_media(vnode_t vp)
1822 {
1823 if (!(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) && (vp->v_mount->mnt_flag & MNT_LOCAL)) {
1824 return TRUE;
1825 }
1826 return FALSE;
1827 }
1828
1829 static void
1830 vnode_async_list_add(vnode_t vp)
1831 {
1832 vnode_list_lock();
1833
1834 if (VONLIST(vp) || (vp->v_lflag & (VL_TERMINATE | VL_DEAD))) {
1835 panic("vnode_async_list_add: %p is in wrong state", vp);
1836 }
1837
1838 TAILQ_INSERT_HEAD(&vnode_async_work_list, vp, v_freelist);
1839 vp->v_listflag |= VLIST_ASYNC_WORK;
1840
1841 async_work_vnodes++;
1842
1843 vnode_list_unlock();
1844
1845 wakeup(&vnode_async_work_list);
1846 }
1847
1848
1849 /*
1850 * put the vnode on appropriate free list.
1851 * called with vnode LOCKED
1852 */
1853 static void
1854 vnode_list_add(vnode_t vp)
1855 {
1856 boolean_t need_dead_wakeup = FALSE;
1857
1858 #if DIAGNOSTIC
1859 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1860 #endif
1861
1862 again:
1863
1864 /*
1865 * if it is already on a list or non zero references return
1866 */
1867 if (VONLIST(vp) || (vp->v_usecount != 0) || (vp->v_iocount != 0) || (vp->v_lflag & VL_TERMINATE)) {
1868 return;
1869 }
1870
1871 /*
1872 * In vclean, we might have deferred ditching locked buffers
1873 * because something was still referencing them (indicated by
1874 * usecount). We can ditch them now.
1875 */
1876 if (ISSET(vp->v_lflag, VL_DEAD)
1877 && (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))) {
1878 ++vp->v_iocount; // Probably not necessary, but harmless
1879 #ifdef JOE_DEBUG
1880 record_vp(vp, 1);
1881 #endif
1882 vnode_unlock(vp);
1883 buf_invalidateblks(vp, BUF_INVALIDATE_LOCKED, 0, 0);
1884 vnode_lock(vp);
1885 vnode_dropiocount(vp);
1886 goto again;
1887 }
1888
1889 vnode_list_lock();
1890
1891 if ((vp->v_flag & VRAGE) && !(vp->v_lflag & VL_DEAD)) {
1892 /*
1893 * add the new guy to the appropriate end of the RAGE list
1894 */
1895 if ((vp->v_flag & VAGE)) {
1896 TAILQ_INSERT_HEAD(&vnode_rage_list, vp, v_freelist);
1897 } else {
1898 TAILQ_INSERT_TAIL(&vnode_rage_list, vp, v_freelist);
1899 }
1900
1901 vp->v_listflag |= VLIST_RAGE;
1902 ragevnodes++;
1903
1904 /*
1905 * reset the timestamp for the last inserted vp on the RAGE
1906 * queue to let new_vnode know that its not ok to start stealing
1907 * from this list... as long as we're actively adding to this list
1908 * we'll push out the vnodes we want to donate to the real free list
1909 * once we stop pushing, we'll let some time elapse before we start
1910 * stealing them in the new_vnode routine
1911 */
1912 microuptime(&rage_tv);
1913 } else {
1914 /*
1915 * if VL_DEAD, insert it at head of the dead list
1916 * else insert at tail of LRU list or at head if VAGE is set
1917 */
1918 if ((vp->v_lflag & VL_DEAD)) {
1919 TAILQ_INSERT_HEAD(&vnode_dead_list, vp, v_freelist);
1920 vp->v_listflag |= VLIST_DEAD;
1921 deadvnodes++;
1922
1923 if (dead_vnode_wanted) {
1924 dead_vnode_wanted--;
1925 need_dead_wakeup = TRUE;
1926 }
1927 } else if ((vp->v_flag & VAGE)) {
1928 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1929 vp->v_flag &= ~VAGE;
1930 freevnodes++;
1931 } else {
1932 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1933 freevnodes++;
1934 }
1935 }
1936 vnode_list_unlock();
1937
1938 if (need_dead_wakeup == TRUE) {
1939 wakeup_one((caddr_t)&dead_vnode_wanted);
1940 }
1941 }
1942
1943
1944 /*
1945 * remove the vnode from appropriate free list.
1946 * called with vnode LOCKED and
1947 * the list lock held
1948 */
1949 static void
1950 vnode_list_remove_locked(vnode_t vp)
1951 {
1952 if (VONLIST(vp)) {
1953 /*
1954 * the v_listflag field is
1955 * protected by the vnode_list_lock
1956 */
1957 if (vp->v_listflag & VLIST_RAGE) {
1958 VREMRAGE("vnode_list_remove", vp);
1959 } else if (vp->v_listflag & VLIST_DEAD) {
1960 VREMDEAD("vnode_list_remove", vp);
1961 } else if (vp->v_listflag & VLIST_ASYNC_WORK) {
1962 VREMASYNC_WORK("vnode_list_remove", vp);
1963 } else {
1964 VREMFREE("vnode_list_remove", vp);
1965 }
1966 }
1967 }
1968
1969
1970 /*
1971 * remove the vnode from appropriate free list.
1972 * called with vnode LOCKED
1973 */
1974 static void
1975 vnode_list_remove(vnode_t vp)
1976 {
1977 #if DIAGNOSTIC
1978 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1979 #endif
1980 /*
1981 * we want to avoid taking the list lock
1982 * in the case where we're not on the free
1983 * list... this will be true for most
1984 * directories and any currently in use files
1985 *
1986 * we're guaranteed that we can't go from
1987 * the not-on-list state to the on-list
1988 * state since we hold the vnode lock...
1989 * all calls to vnode_list_add are done
1990 * under the vnode lock... so we can
1991 * check for that condition (the prevelant one)
1992 * without taking the list lock
1993 */
1994 if (VONLIST(vp)) {
1995 vnode_list_lock();
1996 /*
1997 * however, we're not guaranteed that
1998 * we won't go from the on-list state
1999 * to the not-on-list state until we
2000 * hold the vnode_list_lock... this
2001 * is due to "new_vnode" removing vnodes
2002 * from the free list uder the list_lock
2003 * w/o the vnode lock... so we need to
2004 * check again whether we're currently
2005 * on the free list
2006 */
2007 vnode_list_remove_locked(vp);
2008
2009 vnode_list_unlock();
2010 }
2011 }
2012
2013
2014 void
2015 vnode_rele(vnode_t vp)
2016 {
2017 vnode_rele_internal(vp, 0, 0, 0);
2018 }
2019
2020
2021 void
2022 vnode_rele_ext(vnode_t vp, int fmode, int dont_reenter)
2023 {
2024 vnode_rele_internal(vp, fmode, dont_reenter, 0);
2025 }
2026
2027
2028 void
2029 vnode_rele_internal(vnode_t vp, int fmode, int dont_reenter, int locked)
2030 {
2031 if (!locked) {
2032 vnode_lock_spin(vp);
2033 }
2034 #if DIAGNOSTIC
2035 else {
2036 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
2037 }
2038 #endif
2039 if (--vp->v_usecount < 0) {
2040 panic("vnode_rele_ext: vp %p usecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_usecount, vp->v_tag, vp->v_type, vp->v_flag);
2041 }
2042
2043 if (fmode & FWRITE) {
2044 if (--vp->v_writecount < 0) {
2045 panic("vnode_rele_ext: vp %p writecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_writecount, vp->v_tag, vp->v_type, vp->v_flag);
2046 }
2047 }
2048 if (fmode & O_EVTONLY) {
2049 if (--vp->v_kusecount < 0) {
2050 panic("vnode_rele_ext: vp %p kusecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_kusecount, vp->v_tag, vp->v_type, vp->v_flag);
2051 }
2052 }
2053 if (vp->v_kusecount > vp->v_usecount) {
2054 panic("vnode_rele_ext: vp %p kusecount(%d) out of balance with usecount(%d). v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_kusecount, vp->v_usecount, vp->v_tag, vp->v_type, vp->v_flag);
2055 }
2056
2057 if ((vp->v_iocount > 0) || (vp->v_usecount > 0)) {
2058 /*
2059 * vnode is still busy... if we're the last
2060 * usecount, mark for a future call to VNOP_INACTIVE
2061 * when the iocount finally drops to 0
2062 */
2063 if (vp->v_usecount == 0) {
2064 vp->v_lflag |= VL_NEEDINACTIVE;
2065 vp->v_flag &= ~(VNOCACHE_DATA | VRAOFF | VOPENEVT);
2066 }
2067 goto done;
2068 }
2069 vp->v_flag &= ~(VNOCACHE_DATA | VRAOFF | VOPENEVT);
2070
2071 if (ISSET(vp->v_lflag, VL_TERMINATE | VL_DEAD) || dont_reenter) {
2072 /*
2073 * vnode is being cleaned, or
2074 * we've requested that we don't reenter
2075 * the filesystem on this release...in
2076 * the latter case, we'll mark the vnode aged
2077 */
2078 if (dont_reenter) {
2079 if (!(vp->v_lflag & (VL_TERMINATE | VL_DEAD | VL_MARKTERM))) {
2080 vp->v_lflag |= VL_NEEDINACTIVE;
2081
2082 if (vnode_on_reliable_media(vp) == FALSE || vp->v_flag & VISDIRTY) {
2083 vnode_async_list_add(vp);
2084 goto done;
2085 }
2086 }
2087 vp->v_flag |= VAGE;
2088 }
2089 vnode_list_add(vp);
2090
2091 goto done;
2092 }
2093 /*
2094 * at this point both the iocount and usecount
2095 * are zero
2096 * pick up an iocount so that we can call
2097 * VNOP_INACTIVE with the vnode lock unheld
2098 */
2099 vp->v_iocount++;
2100 #ifdef JOE_DEBUG
2101 record_vp(vp, 1);
2102 #endif
2103 vp->v_lflag &= ~VL_NEEDINACTIVE;
2104 vnode_unlock(vp);
2105
2106 VNOP_INACTIVE(vp, vfs_context_current());
2107
2108 vnode_lock_spin(vp);
2109 /*
2110 * because we dropped the vnode lock to call VNOP_INACTIVE
2111 * the state of the vnode may have changed... we may have
2112 * picked up an iocount, usecount or the MARKTERM may have
2113 * been set... we need to reevaluate the reference counts
2114 * to determine if we can call vnode_reclaim_internal at
2115 * this point... if the reference counts are up, we'll pick
2116 * up the MARKTERM state when they get subsequently dropped
2117 */
2118 if ((vp->v_iocount == 1) && (vp->v_usecount == 0) &&
2119 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
2120 struct uthread *ut;
2121
2122 ut = get_bsdthread_info(current_thread());
2123
2124 if (ut->uu_defer_reclaims) {
2125 vp->v_defer_reclaimlist = ut->uu_vreclaims;
2126 ut->uu_vreclaims = vp;
2127 goto done;
2128 }
2129 vnode_lock_convert(vp);
2130 vnode_reclaim_internal(vp, 1, 1, 0);
2131 }
2132 vnode_dropiocount(vp);
2133 vnode_list_add(vp);
2134 done:
2135 if (vp->v_usecount == 0 && vp->v_type == VREG && !(vp->v_flag & VSYSTEM)) {
2136 if (vp->v_ubcinfo) {
2137 vnode_lock_convert(vp);
2138 memory_object_mark_unused(vp->v_ubcinfo->ui_control, (vp->v_flag & VRAGE) == VRAGE);
2139 }
2140 }
2141 if (!locked) {
2142 vnode_unlock(vp);
2143 }
2144 return;
2145 }
2146
2147 /*
2148 * Remove any vnodes in the vnode table belonging to mount point mp.
2149 *
2150 * If MNT_NOFORCE is specified, there should not be any active ones,
2151 * return error if any are found (nb: this is a user error, not a
2152 * system error). If MNT_FORCE is specified, detach any active vnodes
2153 * that are found.
2154 */
2155
2156 int
2157 vflush(struct mount *mp, struct vnode *skipvp, int flags)
2158 {
2159 struct vnode *vp;
2160 int busy = 0;
2161 int reclaimed = 0;
2162 int retval;
2163 unsigned int vid;
2164 bool first_try = true;
2165
2166 /*
2167 * See comments in vnode_iterate() for the rationale for this lock
2168 */
2169 mount_iterate_lock(mp);
2170
2171 mount_lock(mp);
2172 vnode_iterate_setup(mp);
2173 /*
2174 * On regular unmounts(not forced) do a
2175 * quick check for vnodes to be in use. This
2176 * preserves the caching of vnodes. automounter
2177 * tries unmounting every so often to see whether
2178 * it is still busy or not.
2179 */
2180 if (((flags & FORCECLOSE) == 0) && ((mp->mnt_kern_flag & MNTK_UNMOUNT_PREFLIGHT) != 0)) {
2181 if (vnode_umount_preflight(mp, skipvp, flags)) {
2182 vnode_iterate_clear(mp);
2183 mount_unlock(mp);
2184 mount_iterate_unlock(mp);
2185 return EBUSY;
2186 }
2187 }
2188 loop:
2189 /* If it returns 0 then there is nothing to do */
2190 retval = vnode_iterate_prepare(mp);
2191
2192 if (retval == 0) {
2193 vnode_iterate_clear(mp);
2194 mount_unlock(mp);
2195 mount_iterate_unlock(mp);
2196 return retval;
2197 }
2198
2199 /* iterate over all the vnodes */
2200 while (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
2201 vp = TAILQ_FIRST(&mp->mnt_workerqueue);
2202 TAILQ_REMOVE(&mp->mnt_workerqueue, vp, v_mntvnodes);
2203 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
2204
2205 if ((vp->v_mount != mp) || (vp == skipvp)) {
2206 continue;
2207 }
2208 vid = vp->v_id;
2209 mount_unlock(mp);
2210
2211 vnode_lock_spin(vp);
2212
2213 // If vnode is already terminating, wait for it...
2214 while (vp->v_id == vid && ISSET(vp->v_lflag, VL_TERMINATE)) {
2215 vp->v_lflag |= VL_TERMWANT;
2216 msleep(&vp->v_lflag, &vp->v_lock, PVFS, "vflush", NULL);
2217 }
2218
2219 if ((vp->v_id != vid) || ISSET(vp->v_lflag, VL_DEAD)) {
2220 vnode_unlock(vp);
2221 mount_lock(mp);
2222 continue;
2223 }
2224
2225 /*
2226 * If requested, skip over vnodes marked VSYSTEM.
2227 * Skip over all vnodes marked VNOFLUSH.
2228 */
2229 if ((flags & SKIPSYSTEM) && ((vp->v_flag & VSYSTEM) ||
2230 (vp->v_flag & VNOFLUSH))) {
2231 vnode_unlock(vp);
2232 mount_lock(mp);
2233 continue;
2234 }
2235 /*
2236 * If requested, skip over vnodes marked VSWAP.
2237 */
2238 if ((flags & SKIPSWAP) && (vp->v_flag & VSWAP)) {
2239 vnode_unlock(vp);
2240 mount_lock(mp);
2241 continue;
2242 }
2243 /*
2244 * If requested, skip over vnodes marked VROOT.
2245 */
2246 if ((flags & SKIPROOT) && (vp->v_flag & VROOT)) {
2247 vnode_unlock(vp);
2248 mount_lock(mp);
2249 continue;
2250 }
2251 /*
2252 * If WRITECLOSE is set, only flush out regular file
2253 * vnodes open for writing.
2254 */
2255 if ((flags & WRITECLOSE) &&
2256 (vp->v_writecount == 0 || vp->v_type != VREG)) {
2257 vnode_unlock(vp);
2258 mount_lock(mp);
2259 continue;
2260 }
2261 /*
2262 * If the real usecount is 0, all we need to do is clear
2263 * out the vnode data structures and we are done.
2264 */
2265 if (((vp->v_usecount == 0) ||
2266 ((vp->v_usecount - vp->v_kusecount) == 0))) {
2267 vnode_lock_convert(vp);
2268 vp->v_iocount++; /* so that drain waits for * other iocounts */
2269 #ifdef JOE_DEBUG
2270 record_vp(vp, 1);
2271 #endif
2272 vnode_reclaim_internal(vp, 1, 1, 0);
2273 vnode_dropiocount(vp);
2274 vnode_list_add(vp);
2275 vnode_unlock(vp);
2276
2277 reclaimed++;
2278 mount_lock(mp);
2279 continue;
2280 }
2281 /*
2282 * If FORCECLOSE is set, forcibly close the vnode.
2283 * For block or character devices, revert to an
2284 * anonymous device. For all other files, just kill them.
2285 */
2286 if (flags & FORCECLOSE) {
2287 vnode_lock_convert(vp);
2288
2289 if (vp->v_type != VBLK && vp->v_type != VCHR) {
2290 vp->v_iocount++; /* so that drain waits * for other iocounts */
2291 #ifdef JOE_DEBUG
2292 record_vp(vp, 1);
2293 #endif
2294 vnode_abort_advlocks(vp);
2295 vnode_reclaim_internal(vp, 1, 1, 0);
2296 vnode_dropiocount(vp);
2297 vnode_list_add(vp);
2298 vnode_unlock(vp);
2299 } else {
2300 vclean(vp, 0);
2301 vp->v_lflag &= ~VL_DEAD;
2302 vp->v_op = spec_vnodeop_p;
2303 vp->v_flag |= VDEVFLUSH;
2304 vnode_unlock(vp);
2305 }
2306 mount_lock(mp);
2307 continue;
2308 }
2309
2310 /* log vnodes blocking unforced unmounts */
2311 if (print_busy_vnodes && first_try && ((flags & FORCECLOSE) == 0)) {
2312 vprint("vflush - busy vnode", vp);
2313 }
2314
2315 vnode_unlock(vp);
2316 mount_lock(mp);
2317 busy++;
2318 }
2319
2320 /* At this point the worker queue is completed */
2321 if (busy && ((flags & FORCECLOSE) == 0) && reclaimed) {
2322 busy = 0;
2323 reclaimed = 0;
2324 (void)vnode_iterate_reloadq(mp);
2325 first_try = false;
2326 /* returned with mount lock held */
2327 goto loop;
2328 }
2329
2330 /* if new vnodes were created in between retry the reclaim */
2331 if (vnode_iterate_reloadq(mp) != 0) {
2332 if (!(busy && ((flags & FORCECLOSE) == 0))) {
2333 first_try = false;
2334 goto loop;
2335 }
2336 }
2337 vnode_iterate_clear(mp);
2338 mount_unlock(mp);
2339 mount_iterate_unlock(mp);
2340
2341 if (busy && ((flags & FORCECLOSE) == 0)) {
2342 return EBUSY;
2343 }
2344 return 0;
2345 }
2346
2347 long num_recycledvnodes = 0;
2348 /*
2349 * Disassociate the underlying file system from a vnode.
2350 * The vnode lock is held on entry.
2351 */
2352 static void
2353 vclean(vnode_t vp, int flags)
2354 {
2355 vfs_context_t ctx = vfs_context_current();
2356 int active;
2357 int need_inactive;
2358 int already_terminating;
2359 int clflags = 0;
2360 #if NAMEDSTREAMS
2361 int is_namedstream;
2362 #endif
2363
2364 /*
2365 * Check to see if the vnode is in use.
2366 * If so we have to reference it before we clean it out
2367 * so that its count cannot fall to zero and generate a
2368 * race against ourselves to recycle it.
2369 */
2370 active = vp->v_usecount;
2371
2372 /*
2373 * just in case we missed sending a needed
2374 * VNOP_INACTIVE, we'll do it now
2375 */
2376 need_inactive = (vp->v_lflag & VL_NEEDINACTIVE);
2377
2378 vp->v_lflag &= ~VL_NEEDINACTIVE;
2379
2380 /*
2381 * Prevent the vnode from being recycled or
2382 * brought into use while we clean it out.
2383 */
2384 already_terminating = (vp->v_lflag & VL_TERMINATE);
2385
2386 vp->v_lflag |= VL_TERMINATE;
2387
2388 #if NAMEDSTREAMS
2389 is_namedstream = vnode_isnamedstream(vp);
2390 #endif
2391
2392 vnode_unlock(vp);
2393
2394 OSAddAtomicLong(1, &num_recycledvnodes);
2395
2396 if (flags & DOCLOSE) {
2397 clflags |= IO_NDELAY;
2398 }
2399 if (flags & REVOKEALL) {
2400 clflags |= IO_REVOKE;
2401 }
2402
2403 if (active && (flags & DOCLOSE)) {
2404 VNOP_CLOSE(vp, clflags, ctx);
2405 }
2406
2407 /*
2408 * Clean out any buffers associated with the vnode.
2409 */
2410 if (flags & DOCLOSE) {
2411 #if NFSCLIENT
2412 if (vp->v_tag == VT_NFS) {
2413 nfs_vinvalbuf(vp, V_SAVE, ctx, 0);
2414 } else
2415 #endif
2416 {
2417 VNOP_FSYNC(vp, MNT_WAIT, ctx);
2418
2419 /*
2420 * If the vnode is still in use (by the journal for
2421 * example) we don't want to invalidate locked buffers
2422 * here. In that case, either the journal will tidy them
2423 * up, or we will deal with it when the usecount is
2424 * finally released in vnode_rele_internal.
2425 */
2426 buf_invalidateblks(vp, BUF_WRITE_DATA | (active ? 0 : BUF_INVALIDATE_LOCKED), 0, 0);
2427 }
2428 if (UBCINFOEXISTS(vp)) {
2429 /*
2430 * Clean the pages in VM.
2431 */
2432 (void)ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL | UBC_INVALIDATE | UBC_SYNC);
2433 }
2434 }
2435 if (active || need_inactive) {
2436 VNOP_INACTIVE(vp, ctx);
2437 }
2438
2439 #if NAMEDSTREAMS
2440 if ((is_namedstream != 0) && (vp->v_parent != NULLVP)) {
2441 vnode_t pvp = vp->v_parent;
2442
2443 /* Delete the shadow stream file before we reclaim its vnode */
2444 if (vnode_isshadow(vp)) {
2445 vnode_relenamedstream(pvp, vp);
2446 }
2447
2448 /*
2449 * No more streams associated with the parent. We
2450 * have a ref on it, so its identity is stable.
2451 * If the parent is on an opaque volume, then we need to know
2452 * whether it has associated named streams.
2453 */
2454 if (vfs_authopaque(pvp->v_mount)) {
2455 vnode_lock_spin(pvp);
2456 pvp->v_lflag &= ~VL_HASSTREAMS;
2457 vnode_unlock(pvp);
2458 }
2459 }
2460 #endif
2461
2462 /*
2463 * Destroy ubc named reference
2464 * cluster_release is done on this path
2465 * along with dropping the reference on the ucred
2466 * (and in the case of forced unmount of an mmap-ed file,
2467 * the ubc reference on the vnode is dropped here too).
2468 */
2469 ubc_destroy_named(vp);
2470
2471 #if CONFIG_TRIGGERS
2472 /*
2473 * cleanup trigger info from vnode (if any)
2474 */
2475 if (vp->v_resolve) {
2476 vnode_resolver_detach(vp);
2477 }
2478 #endif
2479
2480 /*
2481 * Reclaim the vnode.
2482 */
2483 if (VNOP_RECLAIM(vp, ctx)) {
2484 panic("vclean: cannot reclaim");
2485 }
2486
2487 // make sure the name & parent ptrs get cleaned out!
2488 vnode_update_identity(vp, NULLVP, NULL, 0, 0, VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME | VNODE_UPDATE_PURGE | VNODE_UPDATE_PURGEFIRMLINK);
2489
2490 vnode_lock(vp);
2491
2492 /*
2493 * Remove the vnode from any mount list it might be on. It is not
2494 * safe to do this any earlier because unmount needs to wait for
2495 * any vnodes to terminate and it cannot do that if it cannot find
2496 * them.
2497 */
2498 insmntque(vp, (struct mount *)0);
2499
2500 vp->v_mount = dead_mountp;
2501 vp->v_op = dead_vnodeop_p;
2502 vp->v_tag = VT_NON;
2503 vp->v_data = NULL;
2504
2505 vp->v_lflag |= VL_DEAD;
2506 vp->v_flag &= ~VISDIRTY;
2507
2508 if (already_terminating == 0) {
2509 vp->v_lflag &= ~VL_TERMINATE;
2510 /*
2511 * Done with purge, notify sleepers of the grim news.
2512 */
2513 if (vp->v_lflag & VL_TERMWANT) {
2514 vp->v_lflag &= ~VL_TERMWANT;
2515 wakeup(&vp->v_lflag);
2516 }
2517 }
2518 }
2519
2520 /*
2521 * Eliminate all activity associated with the requested vnode
2522 * and with all vnodes aliased to the requested vnode.
2523 */
2524 int
2525 #if DIAGNOSTIC
2526 vn_revoke(vnode_t vp, int flags, __unused vfs_context_t a_context)
2527 #else
2528 vn_revoke(vnode_t vp, __unused int flags, __unused vfs_context_t a_context)
2529 #endif
2530 {
2531 struct vnode *vq;
2532 int vid;
2533
2534 #if DIAGNOSTIC
2535 if ((flags & REVOKEALL) == 0) {
2536 panic("vnop_revoke");
2537 }
2538 #endif
2539
2540 if (vnode_isaliased(vp)) {
2541 /*
2542 * If a vgone (or vclean) is already in progress,
2543 * return an immediate error
2544 */
2545 if (vp->v_lflag & VL_TERMINATE) {
2546 return ENOENT;
2547 }
2548
2549 /*
2550 * Ensure that vp will not be vgone'd while we
2551 * are eliminating its aliases.
2552 */
2553 SPECHASH_LOCK();
2554 while ((vp->v_specflags & SI_ALIASED)) {
2555 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2556 if (vq->v_rdev != vp->v_rdev ||
2557 vq->v_type != vp->v_type || vp == vq) {
2558 continue;
2559 }
2560 vid = vq->v_id;
2561 SPECHASH_UNLOCK();
2562 if (vnode_getwithvid(vq, vid)) {
2563 SPECHASH_LOCK();
2564 break;
2565 }
2566 vnode_lock(vq);
2567 if (!(vq->v_lflag & VL_TERMINATE)) {
2568 vnode_reclaim_internal(vq, 1, 1, 0);
2569 }
2570 vnode_put_locked(vq);
2571 vnode_unlock(vq);
2572 SPECHASH_LOCK();
2573 break;
2574 }
2575 }
2576 SPECHASH_UNLOCK();
2577 }
2578 vnode_lock(vp);
2579 if (vp->v_lflag & VL_TERMINATE) {
2580 vnode_unlock(vp);
2581 return ENOENT;
2582 }
2583 vnode_reclaim_internal(vp, 1, 0, REVOKEALL);
2584 vnode_unlock(vp);
2585
2586 return 0;
2587 }
2588
2589 /*
2590 * Recycle an unused vnode to the front of the free list.
2591 * Release the passed interlock if the vnode will be recycled.
2592 */
2593 int
2594 vnode_recycle(struct vnode *vp)
2595 {
2596 vnode_lock_spin(vp);
2597
2598 if (vp->v_iocount || vp->v_usecount) {
2599 vp->v_lflag |= VL_MARKTERM;
2600 vnode_unlock(vp);
2601 return 0;
2602 }
2603 vnode_lock_convert(vp);
2604 vnode_reclaim_internal(vp, 1, 0, 0);
2605
2606 vnode_unlock(vp);
2607
2608 return 1;
2609 }
2610
2611 static int
2612 vnode_reload(vnode_t vp)
2613 {
2614 vnode_lock_spin(vp);
2615
2616 if ((vp->v_iocount > 1) || vp->v_usecount) {
2617 vnode_unlock(vp);
2618 return 0;
2619 }
2620 if (vp->v_iocount <= 0) {
2621 panic("vnode_reload with no iocount %d", vp->v_iocount);
2622 }
2623
2624 /* mark for release when iocount is dopped */
2625 vp->v_lflag |= VL_MARKTERM;
2626 vnode_unlock(vp);
2627
2628 return 1;
2629 }
2630
2631
2632 static void
2633 vgone(vnode_t vp, int flags)
2634 {
2635 struct vnode *vq;
2636 struct vnode *vx;
2637
2638 /*
2639 * Clean out the filesystem specific data.
2640 * vclean also takes care of removing the
2641 * vnode from any mount list it might be on
2642 */
2643 vclean(vp, flags | DOCLOSE);
2644
2645 /*
2646 * If special device, remove it from special device alias list
2647 * if it is on one.
2648 */
2649 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) {
2650 SPECHASH_LOCK();
2651 if (*vp->v_hashchain == vp) {
2652 *vp->v_hashchain = vp->v_specnext;
2653 } else {
2654 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2655 if (vq->v_specnext != vp) {
2656 continue;
2657 }
2658 vq->v_specnext = vp->v_specnext;
2659 break;
2660 }
2661 if (vq == NULL) {
2662 panic("missing bdev");
2663 }
2664 }
2665 if (vp->v_specflags & SI_ALIASED) {
2666 vx = NULL;
2667 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2668 if (vq->v_rdev != vp->v_rdev ||
2669 vq->v_type != vp->v_type) {
2670 continue;
2671 }
2672 if (vx) {
2673 break;
2674 }
2675 vx = vq;
2676 }
2677 if (vx == NULL) {
2678 panic("missing alias");
2679 }
2680 if (vq == NULL) {
2681 vx->v_specflags &= ~SI_ALIASED;
2682 }
2683 vp->v_specflags &= ~SI_ALIASED;
2684 }
2685 SPECHASH_UNLOCK();
2686 {
2687 struct specinfo *tmp = vp->v_specinfo;
2688 vp->v_specinfo = NULL;
2689 FREE_ZONE(tmp, sizeof(struct specinfo), M_SPECINFO);
2690 }
2691 }
2692 }
2693
2694 /*
2695 * Lookup a vnode by device number.
2696 */
2697 int
2698 check_mountedon(dev_t dev, enum vtype type, int *errorp)
2699 {
2700 vnode_t vp;
2701 int rc = 0;
2702 int vid;
2703
2704 loop:
2705 SPECHASH_LOCK();
2706 for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
2707 if (dev != vp->v_rdev || type != vp->v_type) {
2708 continue;
2709 }
2710 vid = vp->v_id;
2711 SPECHASH_UNLOCK();
2712 if (vnode_getwithvid(vp, vid)) {
2713 goto loop;
2714 }
2715 vnode_lock_spin(vp);
2716 if ((vp->v_usecount > 0) || (vp->v_iocount > 1)) {
2717 vnode_unlock(vp);
2718 if ((*errorp = vfs_mountedon(vp)) != 0) {
2719 rc = 1;
2720 }
2721 } else {
2722 vnode_unlock(vp);
2723 }
2724 vnode_put(vp);
2725 return rc;
2726 }
2727 SPECHASH_UNLOCK();
2728 return 0;
2729 }
2730
2731 /*
2732 * Calculate the total number of references to a special device.
2733 */
2734 int
2735 vcount(vnode_t vp)
2736 {
2737 vnode_t vq, vnext;
2738 int count;
2739 int vid;
2740
2741 if (!vnode_isspec(vp)) {
2742 return vp->v_usecount - vp->v_kusecount;
2743 }
2744
2745 loop:
2746 if (!vnode_isaliased(vp)) {
2747 return vp->v_specinfo->si_opencount;
2748 }
2749 count = 0;
2750
2751 SPECHASH_LOCK();
2752 /*
2753 * Grab first vnode and its vid.
2754 */
2755 vq = *vp->v_hashchain;
2756 vid = vq ? vq->v_id : 0;
2757
2758 SPECHASH_UNLOCK();
2759
2760 while (vq) {
2761 /*
2762 * Attempt to get the vnode outside the SPECHASH lock.
2763 */
2764 if (vnode_getwithvid(vq, vid)) {
2765 goto loop;
2766 }
2767 vnode_lock(vq);
2768
2769 if (vq->v_rdev == vp->v_rdev && vq->v_type == vp->v_type) {
2770 if ((vq->v_usecount == 0) && (vq->v_iocount == 1) && vq != vp) {
2771 /*
2772 * Alias, but not in use, so flush it out.
2773 */
2774 vnode_reclaim_internal(vq, 1, 1, 0);
2775 vnode_put_locked(vq);
2776 vnode_unlock(vq);
2777 goto loop;
2778 }
2779 count += vq->v_specinfo->si_opencount;
2780 }
2781 vnode_unlock(vq);
2782
2783 SPECHASH_LOCK();
2784 /*
2785 * must do this with the reference still held on 'vq'
2786 * so that it can't be destroyed while we're poking
2787 * through v_specnext
2788 */
2789 vnext = vq->v_specnext;
2790 vid = vnext ? vnext->v_id : 0;
2791
2792 SPECHASH_UNLOCK();
2793
2794 vnode_put(vq);
2795
2796 vq = vnext;
2797 }
2798
2799 return count;
2800 }
2801
2802 int prtactive = 0; /* 1 => print out reclaim of active vnodes */
2803
2804 /*
2805 * Print out a description of a vnode.
2806 */
2807 static const char *typename[] =
2808 { "VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD" };
2809
2810 void
2811 vprint(const char *label, struct vnode *vp)
2812 {
2813 char sbuf[64];
2814
2815 if (label != NULL) {
2816 printf("%s: ", label);
2817 }
2818 printf("name %s type %s, usecount %d, writecount %d\n",
2819 vp->v_name, typename[vp->v_type],
2820 vp->v_usecount, vp->v_writecount);
2821 sbuf[0] = '\0';
2822 if (vp->v_flag & VROOT) {
2823 strlcat(sbuf, "|VROOT", sizeof(sbuf));
2824 }
2825 if (vp->v_flag & VTEXT) {
2826 strlcat(sbuf, "|VTEXT", sizeof(sbuf));
2827 }
2828 if (vp->v_flag & VSYSTEM) {
2829 strlcat(sbuf, "|VSYSTEM", sizeof(sbuf));
2830 }
2831 if (vp->v_flag & VNOFLUSH) {
2832 strlcat(sbuf, "|VNOFLUSH", sizeof(sbuf));
2833 }
2834 if (vp->v_flag & VBWAIT) {
2835 strlcat(sbuf, "|VBWAIT", sizeof(sbuf));
2836 }
2837 if (vnode_isaliased(vp)) {
2838 strlcat(sbuf, "|VALIASED", sizeof(sbuf));
2839 }
2840 if (sbuf[0] != '\0') {
2841 printf("vnode flags (%s\n", &sbuf[1]);
2842 }
2843 }
2844
2845
2846 int
2847 vn_getpath(struct vnode *vp, char *pathbuf, int *len)
2848 {
2849 return build_path(vp, pathbuf, *len, len, BUILDPATH_NO_FS_ENTER, vfs_context_current());
2850 }
2851
2852 int
2853 vn_getpath_fsenter(struct vnode *vp, char *pathbuf, int *len)
2854 {
2855 return build_path(vp, pathbuf, *len, len, 0, vfs_context_current());
2856 }
2857
2858 /*
2859 * vn_getpath_fsenter_with_parent will reenter the file system to fine the path of the
2860 * vnode. It requires that there are IO counts on both the vnode and the directory vnode.
2861 *
2862 * vn_getpath_fsenter is called by MAC hooks to authorize operations for every thing, but
2863 * unlink, rmdir and rename. For these operation the MAC hook calls vn_getpath. This presents
2864 * problems where if the path can not be found from the name cache, those operations can
2865 * erroneously fail with EPERM even though the call should succeed. When removing or moving
2866 * file system objects with operations such as unlink or rename, those operations need to
2867 * take IO counts on the target and containing directory. Calling vn_getpath_fsenter from a
2868 * MAC hook from these operations during forced unmount operations can lead to dead
2869 * lock. This happens when the operation starts, IO counts are taken on the containing
2870 * directories and targets. Before the MAC hook is called a forced unmount from another
2871 * thread takes place and blocks on the on going operation's directory vnode in vdrain.
2872 * After which, the MAC hook gets called and calls vn_getpath_fsenter. vn_getpath_fsenter
2873 * is called with the understanding that there is an IO count on the target. If in
2874 * build_path the directory vnode is no longer in the cache, then the parent object id via
2875 * vnode_getattr from the target is obtain and used to call VFS_VGET to get the parent
2876 * vnode. The file system's VFS_VGET then looks up by inode in its hash and tries to get
2877 * an IO count. But VFS_VGET "sees" the directory vnode is in vdrain and can block
2878 * depending on which version and how it calls the vnode_get family of interfaces.
2879 *
2880 * N.B. A reasonable interface to use is vnode_getwithvid. This interface was modified to
2881 * call vnode_getiocount with VNODE_DRAINO, so it will happily get an IO count and not
2882 * cause issues, but there is no guarantee that all or any file systems are doing that.
2883 *
2884 * vn_getpath_fsenter_with_parent can enter the file system safely since there is a known
2885 * IO count on the directory vnode by calling build_path_with_parent.
2886 */
2887
2888 int
2889 vn_getpath_fsenter_with_parent(struct vnode *dvp, struct vnode *vp, char *pathbuf, int *len)
2890 {
2891 return build_path_with_parent(vp, dvp, pathbuf, *len, len, 0, vfs_context_current());
2892 }
2893
2894 int
2895 vn_getpath_ext(struct vnode *vp, struct vnode *dvp, char *pathbuf, int *len, int flags)
2896 {
2897 int bpflags = (flags & VN_GETPATH_FSENTER) ? 0 : BUILDPATH_NO_FS_ENTER;
2898
2899 if (flags && (flags != VN_GETPATH_FSENTER)) {
2900 if (flags & VN_GETPATH_NO_FIRMLINK) {
2901 bpflags |= BUILDPATH_NO_FIRMLINK;;
2902 }
2903 if (flags & VN_GETPATH_VOLUME_RELATIVE) {
2904 bpflags |= (BUILDPATH_VOLUME_RELATIVE | BUILDPATH_NO_FIRMLINK);
2905 }
2906 }
2907
2908 return build_path_with_parent(vp, dvp, pathbuf, *len, len, bpflags, vfs_context_current());
2909 }
2910
2911 int
2912 vn_getpath_no_firmlink(struct vnode *vp, char *pathbuf, int *len)
2913 {
2914 return vn_getpath_ext(vp, NULLVP, pathbuf, len, VN_GETPATH_NO_FIRMLINK);
2915 }
2916
2917 int
2918 vn_getcdhash(struct vnode *vp, off_t offset, unsigned char *cdhash)
2919 {
2920 return ubc_cs_getcdhash(vp, offset, cdhash);
2921 }
2922
2923
2924 static char *extension_table = NULL;
2925 static int nexts;
2926 static int max_ext_width;
2927
2928 static int
2929 extension_cmp(const void *a, const void *b)
2930 {
2931 return strlen((const char *)a) - strlen((const char *)b);
2932 }
2933
2934
2935 //
2936 // This is the api LaunchServices uses to inform the kernel
2937 // the list of package extensions to ignore.
2938 //
2939 // Internally we keep the list sorted by the length of the
2940 // the extension (from longest to shortest). We sort the
2941 // list of extensions so that we can speed up our searches
2942 // when comparing file names -- we only compare extensions
2943 // that could possibly fit into the file name, not all of
2944 // them (i.e. a short 8 character name can't have an 8
2945 // character extension).
2946 //
2947 extern lck_mtx_t *pkg_extensions_lck;
2948
2949 __private_extern__ int
2950 set_package_extensions_table(user_addr_t data, int nentries, int maxwidth)
2951 {
2952 char *new_exts, *old_exts;
2953 int error;
2954
2955 if (nentries <= 0 || nentries > 1024 || maxwidth <= 0 || maxwidth > 255) {
2956 return EINVAL;
2957 }
2958
2959
2960 // allocate one byte extra so we can guarantee null termination
2961 MALLOC(new_exts, char *, (nentries * maxwidth) + 1, M_TEMP, M_WAITOK);
2962 if (new_exts == NULL) {
2963 return ENOMEM;
2964 }
2965
2966 error = copyin(data, new_exts, nentries * maxwidth);
2967 if (error) {
2968 FREE(new_exts, M_TEMP);
2969 return error;
2970 }
2971
2972 new_exts[(nentries * maxwidth)] = '\0'; // guarantee null termination of the block
2973
2974 qsort(new_exts, nentries, maxwidth, extension_cmp);
2975
2976 lck_mtx_lock(pkg_extensions_lck);
2977
2978 old_exts = extension_table;
2979 extension_table = new_exts;
2980 nexts = nentries;
2981 max_ext_width = maxwidth;
2982
2983 lck_mtx_unlock(pkg_extensions_lck);
2984
2985 if (old_exts) {
2986 FREE(old_exts, M_TEMP);
2987 }
2988
2989 return 0;
2990 }
2991
2992
2993 int
2994 is_package_name(const char *name, int len)
2995 {
2996 int i, extlen;
2997 const char *ptr, *name_ext;
2998
2999 if (len <= 3) {
3000 return 0;
3001 }
3002
3003 name_ext = NULL;
3004 for (ptr = name; *ptr != '\0'; ptr++) {
3005 if (*ptr == '.') {
3006 name_ext = ptr;
3007 }
3008 }
3009
3010 // if there is no "." extension, it can't match
3011 if (name_ext == NULL) {
3012 return 0;
3013 }
3014
3015 // advance over the "."
3016 name_ext++;
3017
3018 lck_mtx_lock(pkg_extensions_lck);
3019
3020 // now iterate over all the extensions to see if any match
3021 ptr = &extension_table[0];
3022 for (i = 0; i < nexts; i++, ptr += max_ext_width) {
3023 extlen = strlen(ptr);
3024 if (strncasecmp(name_ext, ptr, extlen) == 0 && name_ext[extlen] == '\0') {
3025 // aha, a match!
3026 lck_mtx_unlock(pkg_extensions_lck);
3027 return 1;
3028 }
3029 }
3030
3031 lck_mtx_unlock(pkg_extensions_lck);
3032
3033 // if we get here, no extension matched
3034 return 0;
3035 }
3036
3037 int
3038 vn_path_package_check(__unused vnode_t vp, char *path, int pathlen, int *component)
3039 {
3040 char *ptr, *end;
3041 int comp = 0;
3042
3043 *component = -1;
3044 if (*path != '/') {
3045 return EINVAL;
3046 }
3047
3048 end = path + 1;
3049 while (end < path + pathlen && *end != '\0') {
3050 while (end < path + pathlen && *end == '/' && *end != '\0') {
3051 end++;
3052 }
3053
3054 ptr = end;
3055
3056 while (end < path + pathlen && *end != '/' && *end != '\0') {
3057 end++;
3058 }
3059
3060 if (end > path + pathlen) {
3061 // hmm, string wasn't null terminated
3062 return EINVAL;
3063 }
3064
3065 *end = '\0';
3066 if (is_package_name(ptr, end - ptr)) {
3067 *component = comp;
3068 break;
3069 }
3070
3071 end++;
3072 comp++;
3073 }
3074
3075 return 0;
3076 }
3077
3078 /*
3079 * Determine if a name is inappropriate for a searchfs query.
3080 * This list consists of /System currently.
3081 */
3082
3083 int
3084 vn_searchfs_inappropriate_name(const char *name, int len)
3085 {
3086 const char *bad_names[] = { "System" };
3087 int bad_len[] = { 6 };
3088 int i;
3089
3090 for (i = 0; i < (int) (sizeof(bad_names) / sizeof(bad_names[0])); i++) {
3091 if (len == bad_len[i] && strncmp(name, bad_names[i], strlen(bad_names[i]) + 1) == 0) {
3092 return 1;
3093 }
3094 }
3095
3096 // if we get here, no name matched
3097 return 0;
3098 }
3099
3100 /*
3101 * Top level filesystem related information gathering.
3102 */
3103 extern unsigned int vfs_nummntops;
3104
3105 /*
3106 * The VFS_NUMMNTOPS shouldn't be at name[1] since
3107 * is a VFS generic variable. Since we no longer support
3108 * VT_UFS, we reserve its value to support this sysctl node.
3109 *
3110 * It should have been:
3111 * name[0]: VFS_GENERIC
3112 * name[1]: VFS_NUMMNTOPS
3113 */
3114 SYSCTL_INT(_vfs, VFS_NUMMNTOPS, nummntops,
3115 CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
3116 &vfs_nummntops, 0, "");
3117
3118 int
3119 vfs_sysctl(int *name __unused, u_int namelen __unused,
3120 user_addr_t oldp __unused, size_t *oldlenp __unused,
3121 user_addr_t newp __unused, size_t newlen __unused, proc_t p __unused);
3122
3123 int
3124 vfs_sysctl(int *name __unused, u_int namelen __unused,
3125 user_addr_t oldp __unused, size_t *oldlenp __unused,
3126 user_addr_t newp __unused, size_t newlen __unused, proc_t p __unused)
3127 {
3128 return EINVAL;
3129 }
3130
3131
3132 //
3133 // The following code disallows specific sysctl's that came through
3134 // the direct sysctl interface (vfs_sysctl_node) instead of the newer
3135 // sysctl_vfs_ctlbyfsid() interface. We can not allow these selectors
3136 // through vfs_sysctl_node() because it passes the user's oldp pointer
3137 // directly to the file system which (for these selectors) casts it
3138 // back to a struct sysctl_req and then proceed to use SYSCTL_IN()
3139 // which jumps through an arbitrary function pointer. When called
3140 // through the sysctl_vfs_ctlbyfsid() interface this does not happen
3141 // and so it's safe.
3142 //
3143 // Unfortunately we have to pull in definitions from AFP and SMB and
3144 // perform explicit name checks on the file system to determine if
3145 // these selectors are being used.
3146 //
3147
3148 #define AFPFS_VFS_CTL_GETID 0x00020001
3149 #define AFPFS_VFS_CTL_NETCHANGE 0x00020002
3150 #define AFPFS_VFS_CTL_VOLCHANGE 0x00020003
3151
3152 #define SMBFS_SYSCTL_REMOUNT 1
3153 #define SMBFS_SYSCTL_REMOUNT_INFO 2
3154 #define SMBFS_SYSCTL_GET_SERVER_SHARE 3
3155
3156
3157 static int
3158 is_bad_sysctl_name(struct vfstable *vfsp, int selector_name)
3159 {
3160 switch (selector_name) {
3161 case VFS_CTL_QUERY:
3162 case VFS_CTL_TIMEO:
3163 case VFS_CTL_NOLOCKS:
3164 case VFS_CTL_NSTATUS:
3165 case VFS_CTL_SADDR:
3166 case VFS_CTL_DISC:
3167 case VFS_CTL_SERVERINFO:
3168 return 1;
3169
3170 default:
3171 break;
3172 }
3173
3174 // the more complicated check for some of SMB's special values
3175 if (strcmp(vfsp->vfc_name, "smbfs") == 0) {
3176 switch (selector_name) {
3177 case SMBFS_SYSCTL_REMOUNT:
3178 case SMBFS_SYSCTL_REMOUNT_INFO:
3179 case SMBFS_SYSCTL_GET_SERVER_SHARE:
3180 return 1;
3181 }
3182 } else if (strcmp(vfsp->vfc_name, "afpfs") == 0) {
3183 switch (selector_name) {
3184 case AFPFS_VFS_CTL_GETID:
3185 case AFPFS_VFS_CTL_NETCHANGE:
3186 case AFPFS_VFS_CTL_VOLCHANGE:
3187 return 1;
3188 }
3189 }
3190
3191 //
3192 // If we get here we passed all the checks so the selector is ok
3193 //
3194 return 0;
3195 }
3196
3197
3198 int vfs_sysctl_node SYSCTL_HANDLER_ARGS
3199 {
3200 int *name, namelen;
3201 struct vfstable *vfsp;
3202 int error;
3203 int fstypenum;
3204
3205 fstypenum = oidp->oid_number;
3206 name = arg1;
3207 namelen = arg2;
3208
3209 /* all sysctl names at this level should have at least one name slot for the FS */
3210 if (namelen < 1) {
3211 return EISDIR; /* overloaded */
3212 }
3213 mount_list_lock();
3214 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
3215 if (vfsp->vfc_typenum == fstypenum) {
3216 vfsp->vfc_refcount++;
3217 break;
3218 }
3219 }
3220 mount_list_unlock();
3221
3222 if (vfsp == NULL) {
3223 return ENOTSUP;
3224 }
3225
3226 if (is_bad_sysctl_name(vfsp, name[0])) {
3227 printf("vfs: bad selector 0x%.8x for old-style sysctl(). use the sysctl-by-fsid interface instead\n", name[0]);
3228 return EPERM;
3229 }
3230
3231 error = (vfsp->vfc_vfsops->vfs_sysctl)(name, namelen, req->oldptr, &req->oldlen, req->newptr, req->newlen, vfs_context_current());
3232
3233 mount_list_lock();
3234 vfsp->vfc_refcount--;
3235 mount_list_unlock();
3236
3237 return error;
3238 }
3239
3240 /*
3241 * Check to see if a filesystem is mounted on a block device.
3242 */
3243 int
3244 vfs_mountedon(struct vnode *vp)
3245 {
3246 struct vnode *vq;
3247 int error = 0;
3248
3249 SPECHASH_LOCK();
3250 if (vp->v_specflags & SI_MOUNTEDON) {
3251 error = EBUSY;
3252 goto out;
3253 }
3254 if (vp->v_specflags & SI_ALIASED) {
3255 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
3256 if (vq->v_rdev != vp->v_rdev ||
3257 vq->v_type != vp->v_type) {
3258 continue;
3259 }
3260 if (vq->v_specflags & SI_MOUNTEDON) {
3261 error = EBUSY;
3262 break;
3263 }
3264 }
3265 }
3266 out:
3267 SPECHASH_UNLOCK();
3268 return error;
3269 }
3270
3271 struct unmount_info {
3272 int u_errs; // Total failed unmounts
3273 int u_busy; // EBUSY failed unmounts
3274 };
3275
3276 static int
3277 unmount_callback(mount_t mp, void *arg)
3278 {
3279 int error;
3280 char *mntname;
3281 struct unmount_info *uip = arg;
3282
3283 mount_ref(mp, 0);
3284 mount_iterdrop(mp); // avoid vfs_iterate deadlock in dounmount()
3285
3286 MALLOC_ZONE(mntname, void *, MAXPATHLEN, M_NAMEI, M_WAITOK);
3287 if (mntname) {
3288 strlcpy(mntname, mp->mnt_vfsstat.f_mntonname, MAXPATHLEN);
3289 }
3290
3291 error = dounmount(mp, MNT_FORCE, 1, vfs_context_current());
3292 if (error) {
3293 uip->u_errs++;
3294 printf("Unmount of %s failed (%d)\n", mntname ? mntname:"?", error);
3295 if (error == EBUSY) {
3296 uip->u_busy++;
3297 }
3298 }
3299 if (mntname) {
3300 FREE_ZONE(mntname, MAXPATHLEN, M_NAMEI);
3301 }
3302
3303 return VFS_RETURNED;
3304 }
3305
3306 /*
3307 * Unmount all filesystems. The list is traversed in reverse order
3308 * of mounting to avoid dependencies.
3309 * Busy mounts are retried.
3310 */
3311 __private_extern__ void
3312 vfs_unmountall(void)
3313 {
3314 int mounts, sec = 1;
3315 struct unmount_info ui;
3316
3317 vfs_unmountall_started = 1;
3318
3319 retry:
3320 ui.u_errs = ui.u_busy = 0;
3321 vfs_iterate(VFS_ITERATE_CB_DROPREF | VFS_ITERATE_TAIL_FIRST, unmount_callback, &ui);
3322 mounts = mount_getvfscnt();
3323 if (mounts == 0) {
3324 return;
3325 }
3326
3327 if (ui.u_busy > 0) { // Busy mounts - wait & retry
3328 tsleep(&nummounts, PVFS, "busy mount", sec * hz);
3329 sec *= 2;
3330 if (sec <= 32) {
3331 goto retry;
3332 }
3333 printf("Unmounting timed out\n");
3334 } else if (ui.u_errs < mounts) {
3335 // If the vfs_iterate missed mounts in progress - wait a bit
3336 tsleep(&nummounts, PVFS, "missed mount", 2 * hz);
3337 }
3338 }
3339
3340 /*
3341 * This routine is called from vnode_pager_deallocate out of the VM
3342 * The path to vnode_pager_deallocate can only be initiated by ubc_destroy_named
3343 * on a vnode that has a UBCINFO
3344 */
3345 __private_extern__ void
3346 vnode_pager_vrele(vnode_t vp)
3347 {
3348 struct ubc_info *uip;
3349
3350 vnode_lock_spin(vp);
3351
3352 vp->v_lflag &= ~VNAMED_UBC;
3353 if (vp->v_usecount != 0) {
3354 /*
3355 * At the eleventh hour, just before the ubcinfo is
3356 * destroyed, ensure the ubc-specific v_usecount
3357 * reference has gone. We use v_usecount != 0 as a hint;
3358 * ubc_unmap() does nothing if there's no mapping.
3359 *
3360 * This case is caused by coming here via forced unmount,
3361 * versus the usual vm_object_deallocate() path.
3362 * In the forced unmount case, ubc_destroy_named()
3363 * releases the pager before memory_object_last_unmap()
3364 * can be called.
3365 */
3366 vnode_unlock(vp);
3367 ubc_unmap(vp);
3368 vnode_lock_spin(vp);
3369 }
3370
3371 uip = vp->v_ubcinfo;
3372 vp->v_ubcinfo = UBC_INFO_NULL;
3373
3374 vnode_unlock(vp);
3375
3376 ubc_info_deallocate(uip);
3377 }
3378
3379
3380 #include <sys/disk.h>
3381
3382 u_int32_t rootunit = (u_int32_t)-1;
3383
3384 #if CONFIG_IOSCHED
3385 extern int lowpri_throttle_enabled;
3386 extern int iosched_enabled;
3387 #endif
3388
3389 errno_t
3390 vfs_init_io_attributes(vnode_t devvp, mount_t mp)
3391 {
3392 int error;
3393 off_t readblockcnt = 0;
3394 off_t writeblockcnt = 0;
3395 off_t readmaxcnt = 0;
3396 off_t writemaxcnt = 0;
3397 off_t readsegcnt = 0;
3398 off_t writesegcnt = 0;
3399 off_t readsegsize = 0;
3400 off_t writesegsize = 0;
3401 off_t alignment = 0;
3402 u_int32_t minsaturationbytecount = 0;
3403 u_int32_t ioqueue_depth = 0;
3404 u_int32_t blksize;
3405 u_int64_t temp;
3406 u_int32_t features;
3407 u_int64_t location = 0;
3408 vfs_context_t ctx = vfs_context_current();
3409 dk_corestorage_info_t cs_info;
3410 boolean_t cs_present = FALSE;;
3411 int isssd = 0;
3412 int isvirtual = 0;
3413
3414
3415 VNOP_IOCTL(devvp, DKIOCGETTHROTTLEMASK, (caddr_t)&mp->mnt_throttle_mask, 0, NULL);
3416 /*
3417 * as a reasonable approximation, only use the lowest bit of the mask
3418 * to generate a disk unit number
3419 */
3420 mp->mnt_devbsdunit = num_trailing_0(mp->mnt_throttle_mask);
3421
3422 if (devvp == rootvp) {
3423 rootunit = mp->mnt_devbsdunit;
3424 }
3425
3426 if (mp->mnt_devbsdunit == rootunit) {
3427 /*
3428 * this mount point exists on the same device as the root
3429 * partition, so it comes under the hard throttle control...
3430 * this is true even for the root mount point itself
3431 */
3432 mp->mnt_kern_flag |= MNTK_ROOTDEV;
3433 }
3434 /*
3435 * force the spec device to re-cache
3436 * the underlying block size in case
3437 * the filesystem overrode the initial value
3438 */
3439 set_fsblocksize(devvp);
3440
3441
3442 if ((error = VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE,
3443 (caddr_t)&blksize, 0, ctx))) {
3444 return error;
3445 }
3446
3447 mp->mnt_devblocksize = blksize;
3448
3449 /*
3450 * set the maximum possible I/O size
3451 * this may get clipped to a smaller value
3452 * based on which constraints are being advertised
3453 * and if those advertised constraints result in a smaller
3454 * limit for a given I/O
3455 */
3456 mp->mnt_maxreadcnt = MAX_UPL_SIZE_BYTES;
3457 mp->mnt_maxwritecnt = MAX_UPL_SIZE_BYTES;
3458
3459 if (VNOP_IOCTL(devvp, DKIOCISVIRTUAL, (caddr_t)&isvirtual, 0, ctx) == 0) {
3460 if (isvirtual) {
3461 mp->mnt_kern_flag |= MNTK_VIRTUALDEV;
3462 mp->mnt_flag |= MNT_REMOVABLE;
3463 }
3464 }
3465 if (VNOP_IOCTL(devvp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ctx) == 0) {
3466 if (isssd) {
3467 mp->mnt_kern_flag |= MNTK_SSD;
3468 }
3469 }
3470 if ((error = VNOP_IOCTL(devvp, DKIOCGETFEATURES,
3471 (caddr_t)&features, 0, ctx))) {
3472 return error;
3473 }
3474
3475 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBLOCKCOUNTREAD,
3476 (caddr_t)&readblockcnt, 0, ctx))) {
3477 return error;
3478 }
3479
3480 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBLOCKCOUNTWRITE,
3481 (caddr_t)&writeblockcnt, 0, ctx))) {
3482 return error;
3483 }
3484
3485 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBYTECOUNTREAD,
3486 (caddr_t)&readmaxcnt, 0, ctx))) {
3487 return error;
3488 }
3489
3490 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBYTECOUNTWRITE,
3491 (caddr_t)&writemaxcnt, 0, ctx))) {
3492 return error;
3493 }
3494
3495 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTCOUNTREAD,
3496 (caddr_t)&readsegcnt, 0, ctx))) {
3497 return error;
3498 }
3499
3500 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTCOUNTWRITE,
3501 (caddr_t)&writesegcnt, 0, ctx))) {
3502 return error;
3503 }
3504
3505 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTBYTECOUNTREAD,
3506 (caddr_t)&readsegsize, 0, ctx))) {
3507 return error;
3508 }
3509
3510 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTBYTECOUNTWRITE,
3511 (caddr_t)&writesegsize, 0, ctx))) {
3512 return error;
3513 }
3514
3515 if ((error = VNOP_IOCTL(devvp, DKIOCGETMINSEGMENTALIGNMENTBYTECOUNT,
3516 (caddr_t)&alignment, 0, ctx))) {
3517 return error;
3518 }
3519
3520 if ((error = VNOP_IOCTL(devvp, DKIOCGETCOMMANDPOOLSIZE,
3521 (caddr_t)&ioqueue_depth, 0, ctx))) {
3522 return error;
3523 }
3524
3525 if (readmaxcnt) {
3526 mp->mnt_maxreadcnt = (readmaxcnt > UINT32_MAX) ? UINT32_MAX : readmaxcnt;
3527 }
3528
3529 if (readblockcnt) {
3530 temp = readblockcnt * blksize;
3531 temp = (temp > UINT32_MAX) ? UINT32_MAX : temp;
3532
3533 if (temp < mp->mnt_maxreadcnt) {
3534 mp->mnt_maxreadcnt = (u_int32_t)temp;
3535 }
3536 }
3537
3538 if (writemaxcnt) {
3539 mp->mnt_maxwritecnt = (writemaxcnt > UINT32_MAX) ? UINT32_MAX : writemaxcnt;
3540 }
3541
3542 if (writeblockcnt) {
3543 temp = writeblockcnt * blksize;
3544 temp = (temp > UINT32_MAX) ? UINT32_MAX : temp;
3545
3546 if (temp < mp->mnt_maxwritecnt) {
3547 mp->mnt_maxwritecnt = (u_int32_t)temp;
3548 }
3549 }
3550
3551 if (readsegcnt) {
3552 temp = (readsegcnt > UINT16_MAX) ? UINT16_MAX : readsegcnt;
3553 } else {
3554 temp = mp->mnt_maxreadcnt / PAGE_SIZE;
3555
3556 if (temp > UINT16_MAX) {
3557 temp = UINT16_MAX;
3558 }
3559 }
3560 mp->mnt_segreadcnt = (u_int16_t)temp;
3561
3562 if (writesegcnt) {
3563 temp = (writesegcnt > UINT16_MAX) ? UINT16_MAX : writesegcnt;
3564 } else {
3565 temp = mp->mnt_maxwritecnt / PAGE_SIZE;
3566
3567 if (temp > UINT16_MAX) {
3568 temp = UINT16_MAX;
3569 }
3570 }
3571 mp->mnt_segwritecnt = (u_int16_t)temp;
3572
3573 if (readsegsize) {
3574 temp = (readsegsize > UINT32_MAX) ? UINT32_MAX : readsegsize;
3575 } else {
3576 temp = mp->mnt_maxreadcnt;
3577 }
3578 mp->mnt_maxsegreadsize = (u_int32_t)temp;
3579
3580 if (writesegsize) {
3581 temp = (writesegsize > UINT32_MAX) ? UINT32_MAX : writesegsize;
3582 } else {
3583 temp = mp->mnt_maxwritecnt;
3584 }
3585 mp->mnt_maxsegwritesize = (u_int32_t)temp;
3586
3587 if (alignment) {
3588 temp = (alignment > PAGE_SIZE) ? PAGE_MASK : alignment - 1;
3589 } else {
3590 temp = 0;
3591 }
3592 mp->mnt_alignmentmask = temp;
3593
3594
3595 if (ioqueue_depth > MNT_DEFAULT_IOQUEUE_DEPTH) {
3596 temp = ioqueue_depth;
3597 } else {
3598 temp = MNT_DEFAULT_IOQUEUE_DEPTH;
3599 }
3600
3601 mp->mnt_ioqueue_depth = temp;
3602 mp->mnt_ioscale = MNT_IOSCALE(mp->mnt_ioqueue_depth);
3603
3604 if (mp->mnt_ioscale > 1) {
3605 printf("ioqueue_depth = %d, ioscale = %d\n", (int)mp->mnt_ioqueue_depth, (int)mp->mnt_ioscale);
3606 }
3607
3608 if (features & DK_FEATURE_FORCE_UNIT_ACCESS) {
3609 mp->mnt_ioflags |= MNT_IOFLAGS_FUA_SUPPORTED;
3610 }
3611
3612 if (VNOP_IOCTL(devvp, DKIOCGETIOMINSATURATIONBYTECOUNT, (caddr_t)&minsaturationbytecount, 0, ctx) == 0) {
3613 mp->mnt_minsaturationbytecount = minsaturationbytecount;
3614 } else {
3615 mp->mnt_minsaturationbytecount = 0;
3616 }
3617
3618 if (VNOP_IOCTL(devvp, DKIOCCORESTORAGE, (caddr_t)&cs_info, 0, ctx) == 0) {
3619 cs_present = TRUE;
3620 }
3621
3622 if (features & DK_FEATURE_UNMAP) {
3623 mp->mnt_ioflags |= MNT_IOFLAGS_UNMAP_SUPPORTED;
3624
3625 if (cs_present == TRUE) {
3626 mp->mnt_ioflags |= MNT_IOFLAGS_CSUNMAP_SUPPORTED;
3627 }
3628 }
3629 if (cs_present == TRUE) {
3630 /*
3631 * for now we'll use the following test as a proxy for
3632 * the underlying drive being FUSION in nature
3633 */
3634 if ((cs_info.flags & DK_CORESTORAGE_PIN_YOUR_METADATA)) {
3635 mp->mnt_ioflags |= MNT_IOFLAGS_FUSION_DRIVE;
3636 }
3637 } else {
3638 /* Check for APFS Fusion */
3639 dk_apfs_flavour_t flavour;
3640 if ((VNOP_IOCTL(devvp, DKIOCGETAPFSFLAVOUR, (caddr_t)&flavour, 0, ctx) == 0) &&
3641 (flavour == DK_APFS_FUSION)) {
3642 mp->mnt_ioflags |= MNT_IOFLAGS_FUSION_DRIVE;
3643 }
3644 }
3645
3646 if (VNOP_IOCTL(devvp, DKIOCGETLOCATION, (caddr_t)&location, 0, ctx) == 0) {
3647 if (location & DK_LOCATION_EXTERNAL) {
3648 mp->mnt_ioflags |= MNT_IOFLAGS_PERIPHERAL_DRIVE;
3649 mp->mnt_flag |= MNT_REMOVABLE;
3650 }
3651 }
3652
3653 #if CONFIG_IOSCHED
3654 if (iosched_enabled && (features & DK_FEATURE_PRIORITY)) {
3655 mp->mnt_ioflags |= MNT_IOFLAGS_IOSCHED_SUPPORTED;
3656 throttle_info_disable_throttle(mp->mnt_devbsdunit, (mp->mnt_ioflags & MNT_IOFLAGS_FUSION_DRIVE) != 0);
3657 }
3658 #endif /* CONFIG_IOSCHED */
3659 return error;
3660 }
3661
3662 static struct klist fs_klist;
3663 lck_grp_t *fs_klist_lck_grp;
3664 lck_mtx_t *fs_klist_lock;
3665
3666 void
3667 vfs_event_init(void)
3668 {
3669 klist_init(&fs_klist);
3670 fs_klist_lck_grp = lck_grp_alloc_init("fs_klist", NULL);
3671 fs_klist_lock = lck_mtx_alloc_init(fs_klist_lck_grp, NULL);
3672 }
3673
3674 void
3675 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data)
3676 {
3677 if (event == VQ_DEAD || event == VQ_NOTRESP) {
3678 struct mount *mp = vfs_getvfs(fsid);
3679 if (mp) {
3680 mount_lock_spin(mp);
3681 if (data) {
3682 mp->mnt_kern_flag &= ~MNT_LNOTRESP; // Now responding
3683 } else {
3684 mp->mnt_kern_flag |= MNT_LNOTRESP; // Not responding
3685 }
3686 mount_unlock(mp);
3687 }
3688 }
3689
3690 lck_mtx_lock(fs_klist_lock);
3691 KNOTE(&fs_klist, event);
3692 lck_mtx_unlock(fs_klist_lock);
3693 }
3694
3695 /*
3696 * return the number of mounted filesystems.
3697 */
3698 static int
3699 sysctl_vfs_getvfscnt(void)
3700 {
3701 return mount_getvfscnt();
3702 }
3703
3704
3705 static int
3706 mount_getvfscnt(void)
3707 {
3708 int ret;
3709
3710 mount_list_lock();
3711 ret = nummounts;
3712 mount_list_unlock();
3713 return ret;
3714 }
3715
3716
3717
3718 static int
3719 mount_fillfsids(fsid_t *fsidlst, int count)
3720 {
3721 struct mount *mp;
3722 int actual = 0;
3723
3724 actual = 0;
3725 mount_list_lock();
3726 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3727 if (actual <= count) {
3728 fsidlst[actual] = mp->mnt_vfsstat.f_fsid;
3729 actual++;
3730 }
3731 }
3732 mount_list_unlock();
3733 return actual;
3734 }
3735
3736 /*
3737 * fill in the array of fsid_t's up to a max of 'count', the actual
3738 * number filled in will be set in '*actual'. If there are more fsid_t's
3739 * than room in fsidlst then ENOMEM will be returned and '*actual' will
3740 * have the actual count.
3741 * having *actual filled out even in the error case is depended upon.
3742 */
3743 static int
3744 sysctl_vfs_getvfslist(fsid_t *fsidlst, int count, int *actual)
3745 {
3746 struct mount *mp;
3747
3748 *actual = 0;
3749 mount_list_lock();
3750 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3751 (*actual)++;
3752 if (*actual <= count) {
3753 fsidlst[(*actual) - 1] = mp->mnt_vfsstat.f_fsid;
3754 }
3755 }
3756 mount_list_unlock();
3757 return *actual <= count ? 0 : ENOMEM;
3758 }
3759
3760 static int
3761 sysctl_vfs_vfslist(__unused struct sysctl_oid *oidp, __unused void *arg1,
3762 __unused int arg2, struct sysctl_req *req)
3763 {
3764 int actual, error;
3765 size_t space;
3766 fsid_t *fsidlst;
3767
3768 /* This is a readonly node. */
3769 if (req->newptr != USER_ADDR_NULL) {
3770 return EPERM;
3771 }
3772
3773 /* they are querying us so just return the space required. */
3774 if (req->oldptr == USER_ADDR_NULL) {
3775 req->oldidx = sysctl_vfs_getvfscnt() * sizeof(fsid_t);
3776 return 0;
3777 }
3778 again:
3779 /*
3780 * Retrieve an accurate count of the amount of space required to copy
3781 * out all the fsids in the system.
3782 */
3783 space = req->oldlen;
3784 req->oldlen = sysctl_vfs_getvfscnt() * sizeof(fsid_t);
3785
3786 /* they didn't give us enough space. */
3787 if (space < req->oldlen) {
3788 return ENOMEM;
3789 }
3790
3791 MALLOC(fsidlst, fsid_t *, req->oldlen, M_TEMP, M_WAITOK | M_ZERO);
3792 if (fsidlst == NULL) {
3793 return ENOMEM;
3794 }
3795
3796 error = sysctl_vfs_getvfslist(fsidlst, req->oldlen / sizeof(fsid_t),
3797 &actual);
3798 /*
3799 * If we get back ENOMEM, then another mount has been added while we
3800 * slept in malloc above. If this is the case then try again.
3801 */
3802 if (error == ENOMEM) {
3803 FREE(fsidlst, M_TEMP);
3804 req->oldlen = space;
3805 goto again;
3806 }
3807 if (error == 0) {
3808 error = SYSCTL_OUT(req, fsidlst, actual * sizeof(fsid_t));
3809 }
3810 FREE(fsidlst, M_TEMP);
3811 return error;
3812 }
3813
3814 /*
3815 * Do a sysctl by fsid.
3816 */
3817 static int
3818 sysctl_vfs_ctlbyfsid(__unused struct sysctl_oid *oidp, void *arg1, int arg2,
3819 struct sysctl_req *req)
3820 {
3821 union union_vfsidctl vc;
3822 struct mount *mp;
3823 struct vfsstatfs *sp;
3824 int *name, flags, namelen;
3825 int error = 0, gotref = 0;
3826 vfs_context_t ctx = vfs_context_current();
3827 proc_t p = req->p; /* XXX req->p != current_proc()? */
3828 boolean_t is_64_bit;
3829
3830 name = arg1;
3831 namelen = arg2;
3832 is_64_bit = proc_is64bit(p);
3833
3834 error = SYSCTL_IN(req, &vc, is_64_bit? sizeof(vc.vc64):sizeof(vc.vc32));
3835 if (error) {
3836 goto out;
3837 }
3838 if (vc.vc32.vc_vers != VFS_CTL_VERS1) { /* works for 32 and 64 */
3839 error = EINVAL;
3840 goto out;
3841 }
3842 mp = mount_list_lookupby_fsid(&vc.vc32.vc_fsid, 0, 1); /* works for 32 and 64 */
3843 if (mp == NULL) {
3844 error = ENOENT;
3845 goto out;
3846 }
3847 gotref = 1;
3848 /* reset so that the fs specific code can fetch it. */
3849 req->newidx = 0;
3850 /*
3851 * Note if this is a VFS_CTL then we pass the actual sysctl req
3852 * in for "oldp" so that the lower layer can DTRT and use the
3853 * SYSCTL_IN/OUT routines.
3854 */
3855 if (mp->mnt_op->vfs_sysctl != NULL) {
3856 if (is_64_bit) {
3857 if (vfs_64bitready(mp)) {
3858 error = mp->mnt_op->vfs_sysctl(name, namelen,
3859 CAST_USER_ADDR_T(req),
3860 NULL, USER_ADDR_NULL, 0,
3861 ctx);
3862 } else {
3863 error = ENOTSUP;
3864 }
3865 } else {
3866 error = mp->mnt_op->vfs_sysctl(name, namelen,
3867 CAST_USER_ADDR_T(req),
3868 NULL, USER_ADDR_NULL, 0,
3869 ctx);
3870 }
3871 if (error != ENOTSUP) {
3872 goto out;
3873 }
3874 }
3875 switch (name[0]) {
3876 case VFS_CTL_UMOUNT:
3877 req->newidx = 0;
3878 if (is_64_bit) {
3879 req->newptr = vc.vc64.vc_ptr;
3880 req->newlen = (size_t)vc.vc64.vc_len;
3881 } else {
3882 req->newptr = CAST_USER_ADDR_T(vc.vc32.vc_ptr);
3883 req->newlen = vc.vc32.vc_len;
3884 }
3885 error = SYSCTL_IN(req, &flags, sizeof(flags));
3886 if (error) {
3887 break;
3888 }
3889
3890 mount_ref(mp, 0);
3891 mount_iterdrop(mp);
3892 gotref = 0;
3893 /* safedounmount consumes a ref */
3894 error = safedounmount(mp, flags, ctx);
3895 break;
3896 case VFS_CTL_STATFS:
3897 req->newidx = 0;
3898 if (is_64_bit) {
3899 req->newptr = vc.vc64.vc_ptr;
3900 req->newlen = (size_t)vc.vc64.vc_len;
3901 } else {
3902 req->newptr = CAST_USER_ADDR_T(vc.vc32.vc_ptr);
3903 req->newlen = vc.vc32.vc_len;
3904 }
3905 error = SYSCTL_IN(req, &flags, sizeof(flags));
3906 if (error) {
3907 break;
3908 }
3909 sp = &mp->mnt_vfsstat;
3910 if (((flags & MNT_NOWAIT) == 0 || (flags & (MNT_WAIT | MNT_DWAIT))) &&
3911 (error = vfs_update_vfsstat(mp, ctx, VFS_USER_EVENT))) {
3912 goto out;
3913 }
3914 if (is_64_bit) {
3915 struct user64_statfs sfs;
3916 bzero(&sfs, sizeof(sfs));
3917 sfs.f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3918 sfs.f_type = mp->mnt_vtable->vfc_typenum;
3919 sfs.f_bsize = (user64_long_t)sp->f_bsize;
3920 sfs.f_iosize = (user64_long_t)sp->f_iosize;
3921 sfs.f_blocks = (user64_long_t)sp->f_blocks;
3922 sfs.f_bfree = (user64_long_t)sp->f_bfree;
3923 sfs.f_bavail = (user64_long_t)sp->f_bavail;
3924 sfs.f_files = (user64_long_t)sp->f_files;
3925 sfs.f_ffree = (user64_long_t)sp->f_ffree;
3926 sfs.f_fsid = sp->f_fsid;
3927 sfs.f_owner = sp->f_owner;
3928 #ifdef NFSCLIENT
3929 if (mp->mnt_kern_flag & MNTK_TYPENAME_OVERRIDE) {
3930 strlcpy(&sfs.f_fstypename[0], &mp->fstypename_override[0], MFSNAMELEN);
3931 } else
3932 #endif
3933 {
3934 strlcpy(sfs.f_fstypename, sp->f_fstypename, MFSNAMELEN);
3935 }
3936 strlcpy(sfs.f_mntonname, sp->f_mntonname, MNAMELEN);
3937 strlcpy(sfs.f_mntfromname, sp->f_mntfromname, MNAMELEN);
3938
3939 error = SYSCTL_OUT(req, &sfs, sizeof(sfs));
3940 } else {
3941 struct user32_statfs sfs;
3942 bzero(&sfs, sizeof(sfs));
3943 sfs.f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3944 sfs.f_type = mp->mnt_vtable->vfc_typenum;
3945
3946 /*
3947 * It's possible for there to be more than 2^^31 blocks in the filesystem, so we
3948 * have to fudge the numbers here in that case. We inflate the blocksize in order
3949 * to reflect the filesystem size as best we can.
3950 */
3951 if (sp->f_blocks > INT_MAX) {
3952 int shift;
3953
3954 /*
3955 * Work out how far we have to shift the block count down to make it fit.
3956 * Note that it's possible to have to shift so far that the resulting
3957 * blocksize would be unreportably large. At that point, we will clip
3958 * any values that don't fit.
3959 *
3960 * For safety's sake, we also ensure that f_iosize is never reported as
3961 * being smaller than f_bsize.
3962 */
3963 for (shift = 0; shift < 32; shift++) {
3964 if ((sp->f_blocks >> shift) <= INT_MAX) {
3965 break;
3966 }
3967 if ((((long long)sp->f_bsize) << (shift + 1)) > INT_MAX) {
3968 break;
3969 }
3970 }
3971 #define __SHIFT_OR_CLIP(x, s) ((((x) >> (s)) > INT_MAX) ? INT_MAX : ((x) >> (s)))
3972 sfs.f_blocks = (user32_long_t)__SHIFT_OR_CLIP(sp->f_blocks, shift);
3973 sfs.f_bfree = (user32_long_t)__SHIFT_OR_CLIP(sp->f_bfree, shift);
3974 sfs.f_bavail = (user32_long_t)__SHIFT_OR_CLIP(sp->f_bavail, shift);
3975 #undef __SHIFT_OR_CLIP
3976 sfs.f_bsize = (user32_long_t)(sp->f_bsize << shift);
3977 sfs.f_iosize = lmax(sp->f_iosize, sp->f_bsize);
3978 } else {
3979 sfs.f_bsize = (user32_long_t)sp->f_bsize;
3980 sfs.f_iosize = (user32_long_t)sp->f_iosize;
3981 sfs.f_blocks = (user32_long_t)sp->f_blocks;
3982 sfs.f_bfree = (user32_long_t)sp->f_bfree;
3983 sfs.f_bavail = (user32_long_t)sp->f_bavail;
3984 }
3985 sfs.f_files = (user32_long_t)sp->f_files;
3986 sfs.f_ffree = (user32_long_t)sp->f_ffree;
3987 sfs.f_fsid = sp->f_fsid;
3988 sfs.f_owner = sp->f_owner;
3989
3990 #ifdef NFSCLIENT
3991 if (mp->mnt_kern_flag & MNTK_TYPENAME_OVERRIDE) {
3992 strlcpy(&sfs.f_fstypename[0], &mp->fstypename_override[0], MFSNAMELEN);
3993 } else
3994 #endif
3995 {
3996 strlcpy(sfs.f_fstypename, sp->f_fstypename, MFSNAMELEN);
3997 }
3998 strlcpy(sfs.f_mntonname, sp->f_mntonname, MNAMELEN);
3999 strlcpy(sfs.f_mntfromname, sp->f_mntfromname, MNAMELEN);
4000
4001 error = SYSCTL_OUT(req, &sfs, sizeof(sfs));
4002 }
4003 break;
4004 default:
4005 error = ENOTSUP;
4006 goto out;
4007 }
4008 out:
4009 if (gotref != 0) {
4010 mount_iterdrop(mp);
4011 }
4012 return error;
4013 }
4014
4015 static int filt_fsattach(struct knote *kn, struct kevent_qos_s *kev);
4016 static void filt_fsdetach(struct knote *kn);
4017 static int filt_fsevent(struct knote *kn, long hint);
4018 static int filt_fstouch(struct knote *kn, struct kevent_qos_s *kev);
4019 static int filt_fsprocess(struct knote *kn, struct kevent_qos_s *kev);
4020 SECURITY_READ_ONLY_EARLY(struct filterops) fs_filtops = {
4021 .f_attach = filt_fsattach,
4022 .f_detach = filt_fsdetach,
4023 .f_event = filt_fsevent,
4024 .f_touch = filt_fstouch,
4025 .f_process = filt_fsprocess,
4026 };
4027
4028 static int
4029 filt_fsattach(struct knote *kn, __unused struct kevent_qos_s *kev)
4030 {
4031 kn->kn_flags |= EV_CLEAR; /* automatic */
4032 kn->kn_sdata = 0; /* incoming data is ignored */
4033
4034 lck_mtx_lock(fs_klist_lock);
4035 KNOTE_ATTACH(&fs_klist, kn);
4036 lck_mtx_unlock(fs_klist_lock);
4037
4038 /*
4039 * filter only sees future events,
4040 * so it can't be fired already.
4041 */
4042 return 0;
4043 }
4044
4045 static void
4046 filt_fsdetach(struct knote *kn)
4047 {
4048 lck_mtx_lock(fs_klist_lock);
4049 KNOTE_DETACH(&fs_klist, kn);
4050 lck_mtx_unlock(fs_klist_lock);
4051 }
4052
4053 static int
4054 filt_fsevent(struct knote *kn, long hint)
4055 {
4056 /*
4057 * Backwards compatibility:
4058 * Other filters would do nothing if kn->kn_sfflags == 0
4059 */
4060
4061 if ((kn->kn_sfflags == 0) || (kn->kn_sfflags & hint)) {
4062 kn->kn_fflags |= hint;
4063 }
4064
4065 return kn->kn_fflags != 0;
4066 }
4067
4068 static int
4069 filt_fstouch(struct knote *kn, struct kevent_qos_s *kev)
4070 {
4071 int res;
4072
4073 lck_mtx_lock(fs_klist_lock);
4074
4075 kn->kn_sfflags = kev->fflags;
4076
4077 /*
4078 * the above filter function sets bits even if nobody is looking for them.
4079 * Just preserve those bits even in the new mask is more selective
4080 * than before.
4081 *
4082 * For compatibility with previous implementations, we leave kn_fflags
4083 * as they were before.
4084 */
4085 //if (kn->kn_sfflags)
4086 // kn->kn_fflags &= kn->kn_sfflags;
4087 res = (kn->kn_fflags != 0);
4088
4089 lck_mtx_unlock(fs_klist_lock);
4090
4091 return res;
4092 }
4093
4094 static int
4095 filt_fsprocess(struct knote *kn, struct kevent_qos_s *kev)
4096 {
4097 int res = 0;
4098
4099 lck_mtx_lock(fs_klist_lock);
4100 if (kn->kn_fflags) {
4101 knote_fill_kevent(kn, kev, 0);
4102 res = 1;
4103 }
4104 lck_mtx_unlock(fs_klist_lock);
4105 return res;
4106 }
4107
4108 static int
4109 sysctl_vfs_noremotehang(__unused struct sysctl_oid *oidp,
4110 __unused void *arg1, __unused int arg2, struct sysctl_req *req)
4111 {
4112 int out, error;
4113 pid_t pid;
4114 proc_t p;
4115
4116 /* We need a pid. */
4117 if (req->newptr == USER_ADDR_NULL) {
4118 return EINVAL;
4119 }
4120
4121 error = SYSCTL_IN(req, &pid, sizeof(pid));
4122 if (error) {
4123 return error;
4124 }
4125
4126 p = proc_find(pid < 0 ? -pid : pid);
4127 if (p == NULL) {
4128 return ESRCH;
4129 }
4130
4131 /*
4132 * Fetching the value is ok, but we only fetch if the old
4133 * pointer is given.
4134 */
4135 if (req->oldptr != USER_ADDR_NULL) {
4136 out = !((p->p_flag & P_NOREMOTEHANG) == 0);
4137 proc_rele(p);
4138 error = SYSCTL_OUT(req, &out, sizeof(out));
4139 return error;
4140 }
4141
4142 /* cansignal offers us enough security. */
4143 if (p != req->p && proc_suser(req->p) != 0) {
4144 proc_rele(p);
4145 return EPERM;
4146 }
4147
4148 if (pid < 0) {
4149 OSBitAndAtomic(~((uint32_t)P_NOREMOTEHANG), &p->p_flag);
4150 } else {
4151 OSBitOrAtomic(P_NOREMOTEHANG, &p->p_flag);
4152 }
4153 proc_rele(p);
4154
4155 return 0;
4156 }
4157
4158 static int
4159 sysctl_vfs_generic_conf SYSCTL_HANDLER_ARGS
4160 {
4161 int *name, namelen;
4162 struct vfstable *vfsp;
4163 struct vfsconf vfsc = {};
4164
4165 (void)oidp;
4166 name = arg1;
4167 namelen = arg2;
4168
4169 if (namelen < 1) {
4170 return EISDIR;
4171 } else if (namelen > 1) {
4172 return ENOTDIR;
4173 }
4174
4175 mount_list_lock();
4176 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
4177 if (vfsp->vfc_typenum == name[0]) {
4178 break;
4179 }
4180 }
4181
4182 if (vfsp == NULL) {
4183 mount_list_unlock();
4184 return ENOTSUP;
4185 }
4186
4187 vfsc.vfc_reserved1 = 0;
4188 bcopy(vfsp->vfc_name, vfsc.vfc_name, sizeof(vfsc.vfc_name));
4189 vfsc.vfc_typenum = vfsp->vfc_typenum;
4190 vfsc.vfc_refcount = vfsp->vfc_refcount;
4191 vfsc.vfc_flags = vfsp->vfc_flags;
4192 vfsc.vfc_reserved2 = 0;
4193 vfsc.vfc_reserved3 = 0;
4194
4195 mount_list_unlock();
4196 return SYSCTL_OUT(req, &vfsc, sizeof(struct vfsconf));
4197 }
4198
4199 /* the vfs.generic. branch. */
4200 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RW | CTLFLAG_LOCKED, NULL, "vfs generic hinge");
4201 /* retreive a list of mounted filesystem fsid_t */
4202 SYSCTL_PROC(_vfs_generic, OID_AUTO, vfsidlist,
4203 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
4204 NULL, 0, sysctl_vfs_vfslist, "S,fsid", "List of mounted filesystem ids");
4205 /* perform operations on filesystem via fsid_t */
4206 SYSCTL_NODE(_vfs_generic, OID_AUTO, ctlbyfsid, CTLFLAG_RW | CTLFLAG_LOCKED,
4207 sysctl_vfs_ctlbyfsid, "ctlbyfsid");
4208 SYSCTL_PROC(_vfs_generic, OID_AUTO, noremotehang, CTLFLAG_RW | CTLFLAG_ANYBODY,
4209 NULL, 0, sysctl_vfs_noremotehang, "I", "noremotehang");
4210 SYSCTL_INT(_vfs_generic, VFS_MAXTYPENUM, maxtypenum,
4211 CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
4212 &maxvfstypenum, 0, "");
4213 SYSCTL_INT(_vfs_generic, OID_AUTO, sync_timeout, CTLFLAG_RW | CTLFLAG_LOCKED, &sync_timeout_seconds, 0, "");
4214 SYSCTL_NODE(_vfs_generic, VFS_CONF, conf,
4215 CTLFLAG_RD | CTLFLAG_LOCKED,
4216 sysctl_vfs_generic_conf, "");
4217 #if DEVELOPMENT || DEBUG
4218 SYSCTL_INT(_vfs_generic, OID_AUTO, print_busy_vnodes,
4219 CTLTYPE_INT | CTLFLAG_RW,
4220 &print_busy_vnodes, 0,
4221 "VFS log busy vnodes blocking unmount");
4222 #endif
4223
4224 /* Indicate that the root file system unmounted cleanly */
4225 static int vfs_root_unmounted_cleanly = 0;
4226 SYSCTL_INT(_vfs_generic, OID_AUTO, root_unmounted_cleanly, CTLFLAG_RD, &vfs_root_unmounted_cleanly, 0, "Root filesystem was unmounted cleanly");
4227
4228 void
4229 vfs_set_root_unmounted_cleanly(void)
4230 {
4231 vfs_root_unmounted_cleanly = 1;
4232 }
4233
4234 /*
4235 * Print vnode state.
4236 */
4237 void
4238 vn_print_state(struct vnode *vp, const char *fmt, ...)
4239 {
4240 va_list ap;
4241 char perm_str[] = "(VM_KERNEL_ADDRPERM pointer)";
4242 char fs_name[MFSNAMELEN];
4243
4244 va_start(ap, fmt);
4245 vprintf(fmt, ap);
4246 va_end(ap);
4247 printf("vp 0x%0llx %s: ", (uint64_t)VM_KERNEL_ADDRPERM(vp), perm_str);
4248 printf("tag %d, type %d\n", vp->v_tag, vp->v_type);
4249 /* Counts .. */
4250 printf(" iocount %d, usecount %d, kusecount %d references %d\n",
4251 vp->v_iocount, vp->v_usecount, vp->v_kusecount, vp->v_references);
4252 printf(" writecount %d, numoutput %d\n", vp->v_writecount,
4253 vp->v_numoutput);
4254 /* Flags */
4255 printf(" flag 0x%x, lflag 0x%x, listflag 0x%x\n", vp->v_flag,
4256 vp->v_lflag, vp->v_listflag);
4257
4258 if (vp->v_mount == NULL || vp->v_mount == dead_mountp) {
4259 strlcpy(fs_name, "deadfs", MFSNAMELEN);
4260 } else {
4261 vfs_name(vp->v_mount, fs_name);
4262 }
4263
4264 printf(" v_data 0x%0llx %s\n",
4265 (vp->v_data ? (uint64_t)VM_KERNEL_ADDRPERM(vp->v_data) : 0),
4266 perm_str);
4267 printf(" v_mount 0x%0llx %s vfs_name %s\n",
4268 (vp->v_mount ? (uint64_t)VM_KERNEL_ADDRPERM(vp->v_mount) : 0),
4269 perm_str, fs_name);
4270 }
4271
4272 long num_reusedvnodes = 0;
4273
4274
4275 static vnode_t
4276 process_vp(vnode_t vp, int want_vp, int *deferred)
4277 {
4278 unsigned int vpid;
4279
4280 *deferred = 0;
4281
4282 vpid = vp->v_id;
4283
4284 vnode_list_remove_locked(vp);
4285
4286 vnode_list_unlock();
4287
4288 vnode_lock_spin(vp);
4289
4290 /*
4291 * We could wait for the vnode_lock after removing the vp from the freelist
4292 * and the vid is bumped only at the very end of reclaim. So it is possible
4293 * that we are looking at a vnode that is being terminated. If so skip it.
4294 */
4295 if ((vpid != vp->v_id) || (vp->v_usecount != 0) || (vp->v_iocount != 0) ||
4296 VONLIST(vp) || (vp->v_lflag & VL_TERMINATE)) {
4297 /*
4298 * we lost the race between dropping the list lock
4299 * and picking up the vnode_lock... someone else
4300 * used this vnode and it is now in a new state
4301 */
4302 vnode_unlock(vp);
4303
4304 return NULLVP;
4305 }
4306 if ((vp->v_lflag & (VL_NEEDINACTIVE | VL_MARKTERM)) == VL_NEEDINACTIVE) {
4307 /*
4308 * we did a vnode_rele_ext that asked for
4309 * us not to reenter the filesystem during
4310 * the release even though VL_NEEDINACTIVE was
4311 * set... we'll do it here by doing a
4312 * vnode_get/vnode_put
4313 *
4314 * pick up an iocount so that we can call
4315 * vnode_put and drive the VNOP_INACTIVE...
4316 * vnode_put will either leave us off
4317 * the freelist if a new ref comes in,
4318 * or put us back on the end of the freelist
4319 * or recycle us if we were marked for termination...
4320 * so we'll just go grab a new candidate
4321 */
4322 vp->v_iocount++;
4323 #ifdef JOE_DEBUG
4324 record_vp(vp, 1);
4325 #endif
4326 vnode_put_locked(vp);
4327 vnode_unlock(vp);
4328
4329 return NULLVP;
4330 }
4331 /*
4332 * Checks for anyone racing us for recycle
4333 */
4334 if (vp->v_type != VBAD) {
4335 if (want_vp && (vnode_on_reliable_media(vp) == FALSE || (vp->v_flag & VISDIRTY))) {
4336 vnode_async_list_add(vp);
4337 vnode_unlock(vp);
4338
4339 *deferred = 1;
4340
4341 return NULLVP;
4342 }
4343 if (vp->v_lflag & VL_DEAD) {
4344 panic("new_vnode(%p): the vnode is VL_DEAD but not VBAD", vp);
4345 }
4346
4347 vnode_lock_convert(vp);
4348 (void)vnode_reclaim_internal(vp, 1, want_vp, 0);
4349
4350 if (want_vp) {
4351 if ((VONLIST(vp))) {
4352 panic("new_vnode(%p): vp on list", vp);
4353 }
4354 if (vp->v_usecount || vp->v_iocount || vp->v_kusecount ||
4355 (vp->v_lflag & (VNAMED_UBC | VNAMED_MOUNT | VNAMED_FSHASH))) {
4356 panic("new_vnode(%p): free vnode still referenced", vp);
4357 }
4358 if ((vp->v_mntvnodes.tqe_prev != 0) && (vp->v_mntvnodes.tqe_next != 0)) {
4359 panic("new_vnode(%p): vnode seems to be on mount list", vp);
4360 }
4361 if (!LIST_EMPTY(&vp->v_nclinks) || !TAILQ_EMPTY(&vp->v_ncchildren)) {
4362 panic("new_vnode(%p): vnode still hooked into the name cache", vp);
4363 }
4364 } else {
4365 vnode_unlock(vp);
4366 vp = NULLVP;
4367 }
4368 }
4369 return vp;
4370 }
4371
4372 __attribute__((noreturn))
4373 static void
4374 async_work_continue(void)
4375 {
4376 struct async_work_lst *q;
4377 int deferred;
4378 vnode_t vp;
4379
4380 q = &vnode_async_work_list;
4381
4382 for (;;) {
4383 vnode_list_lock();
4384
4385 if (TAILQ_EMPTY(q)) {
4386 assert_wait(q, (THREAD_UNINT));
4387
4388 vnode_list_unlock();
4389
4390 thread_block((thread_continue_t)async_work_continue);
4391
4392 continue;
4393 }
4394 async_work_handled++;
4395
4396 vp = TAILQ_FIRST(q);
4397
4398 vp = process_vp(vp, 0, &deferred);
4399
4400 if (vp != NULLVP) {
4401 panic("found VBAD vp (%p) on async queue", vp);
4402 }
4403 }
4404 }
4405
4406
4407 static int
4408 new_vnode(vnode_t *vpp)
4409 {
4410 vnode_t vp;
4411 uint32_t retries = 0, max_retries = 100; /* retry incase of tablefull */
4412 int force_alloc = 0, walk_count = 0;
4413 boolean_t need_reliable_vp = FALSE;
4414 int deferred;
4415 struct timeval initial_tv;
4416 struct timeval current_tv;
4417 proc_t curproc = current_proc();
4418
4419 initial_tv.tv_sec = 0;
4420 retry:
4421 vp = NULLVP;
4422
4423 vnode_list_lock();
4424
4425 if (need_reliable_vp == TRUE) {
4426 async_work_timed_out++;
4427 }
4428
4429 if ((numvnodes - deadvnodes) < desiredvnodes || force_alloc) {
4430 struct timespec ts;
4431
4432 if (!TAILQ_EMPTY(&vnode_dead_list)) {
4433 /*
4434 * Can always reuse a dead one
4435 */
4436 vp = TAILQ_FIRST(&vnode_dead_list);
4437 goto steal_this_vp;
4438 }
4439 /*
4440 * no dead vnodes available... if we're under
4441 * the limit, we'll create a new vnode
4442 */
4443 numvnodes++;
4444 vnode_list_unlock();
4445
4446 MALLOC_ZONE(vp, struct vnode *, sizeof(*vp), M_VNODE, M_WAITOK);
4447 bzero((char *)vp, sizeof(*vp));
4448 VLISTNONE(vp); /* avoid double queue removal */
4449 lck_mtx_init(&vp->v_lock, vnode_lck_grp, vnode_lck_attr);
4450
4451 TAILQ_INIT(&vp->v_ncchildren);
4452
4453 klist_init(&vp->v_knotes);
4454 nanouptime(&ts);
4455 vp->v_id = ts.tv_nsec;
4456 vp->v_flag = VSTANDARD;
4457
4458 #if CONFIG_MACF
4459 if (mac_vnode_label_init_needed(vp)) {
4460 mac_vnode_label_init(vp);
4461 }
4462 #endif /* MAC */
4463
4464 vp->v_iocount = 1;
4465 goto done;
4466 }
4467 microuptime(&current_tv);
4468
4469 #define MAX_WALK_COUNT 1000
4470
4471 if (!TAILQ_EMPTY(&vnode_rage_list) &&
4472 (ragevnodes >= rage_limit ||
4473 (current_tv.tv_sec - rage_tv.tv_sec) >= RAGE_TIME_LIMIT)) {
4474 TAILQ_FOREACH(vp, &vnode_rage_list, v_freelist) {
4475 if (!(vp->v_listflag & VLIST_RAGE)) {
4476 panic("new_vnode: vp (%p) on RAGE list not marked VLIST_RAGE", vp);
4477 }
4478
4479 // if we're a dependency-capable process, skip vnodes that can
4480 // cause recycling deadlocks. (i.e. this process is diskimages
4481 // helper and the vnode is in a disk image). Querying the
4482 // mnt_kern_flag for the mount's virtual device status
4483 // is safer than checking the mnt_dependent_process, which
4484 // may not be updated if there are multiple devnode layers
4485 // in between the disk image and the final consumer.
4486
4487 if ((curproc->p_flag & P_DEPENDENCY_CAPABLE) == 0 || vp->v_mount == NULL ||
4488 (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) == 0) {
4489 /*
4490 * if need_reliable_vp == TRUE, then we've already sent one or more
4491 * non-reliable vnodes to the async thread for processing and timed
4492 * out waiting for a dead vnode to show up. Use the MAX_WALK_COUNT
4493 * mechanism to first scan for a reliable vnode before forcing
4494 * a new vnode to be created
4495 */
4496 if (need_reliable_vp == FALSE || vnode_on_reliable_media(vp) == TRUE) {
4497 break;
4498 }
4499 }
4500
4501 // don't iterate more than MAX_WALK_COUNT vnodes to
4502 // avoid keeping the vnode list lock held for too long.
4503
4504 if (walk_count++ > MAX_WALK_COUNT) {
4505 vp = NULL;
4506 break;
4507 }
4508 }
4509 }
4510
4511 if (vp == NULL && !TAILQ_EMPTY(&vnode_free_list)) {
4512 /*
4513 * Pick the first vp for possible reuse
4514 */
4515 walk_count = 0;
4516 TAILQ_FOREACH(vp, &vnode_free_list, v_freelist) {
4517 // if we're a dependency-capable process, skip vnodes that can
4518 // cause recycling deadlocks. (i.e. this process is diskimages
4519 // helper and the vnode is in a disk image). Querying the
4520 // mnt_kern_flag for the mount's virtual device status
4521 // is safer than checking the mnt_dependent_process, which
4522 // may not be updated if there are multiple devnode layers
4523 // in between the disk image and the final consumer.
4524
4525 if ((curproc->p_flag & P_DEPENDENCY_CAPABLE) == 0 || vp->v_mount == NULL ||
4526 (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) == 0) {
4527 /*
4528 * if need_reliable_vp == TRUE, then we've already sent one or more
4529 * non-reliable vnodes to the async thread for processing and timed
4530 * out waiting for a dead vnode to show up. Use the MAX_WALK_COUNT
4531 * mechanism to first scan for a reliable vnode before forcing
4532 * a new vnode to be created
4533 */
4534 if (need_reliable_vp == FALSE || vnode_on_reliable_media(vp) == TRUE) {
4535 break;
4536 }
4537 }
4538
4539 // don't iterate more than MAX_WALK_COUNT vnodes to
4540 // avoid keeping the vnode list lock held for too long.
4541
4542 if (walk_count++ > MAX_WALK_COUNT) {
4543 vp = NULL;
4544 break;
4545 }
4546 }
4547 }
4548
4549 //
4550 // if we don't have a vnode and the walk_count is >= MAX_WALK_COUNT
4551 // then we're trying to create a vnode on behalf of a
4552 // process like diskimages-helper that has file systems
4553 // mounted on top of itself (and thus we can't reclaim
4554 // vnodes in the file systems on top of us). if we can't
4555 // find a vnode to reclaim then we'll just have to force
4556 // the allocation.
4557 //
4558 if (vp == NULL && walk_count >= MAX_WALK_COUNT) {
4559 force_alloc = 1;
4560 vnode_list_unlock();
4561 goto retry;
4562 }
4563
4564 if (vp == NULL) {
4565 /*
4566 * we've reached the system imposed maximum number of vnodes
4567 * but there isn't a single one available
4568 * wait a bit and then retry... if we can't get a vnode
4569 * after our target number of retries, than log a complaint
4570 */
4571 if (++retries <= max_retries) {
4572 vnode_list_unlock();
4573 delay_for_interval(1, 1000 * 1000);
4574 goto retry;
4575 }
4576
4577 vnode_list_unlock();
4578 tablefull("vnode");
4579 log(LOG_EMERG, "%d desired, %d numvnodes, "
4580 "%d free, %d dead, %d async, %d rage\n",
4581 desiredvnodes, numvnodes, freevnodes, deadvnodes, async_work_vnodes, ragevnodes);
4582 #if CONFIG_JETSAM
4583
4584 #if DEVELOPMENT || DEBUG
4585 if (bootarg_no_vnode_jetsam) {
4586 panic("vnode table is full\n");
4587 }
4588 #endif /* DEVELOPMENT || DEBUG */
4589
4590 /*
4591 * Running out of vnodes tends to make a system unusable. Start killing
4592 * processes that jetsam knows are killable.
4593 */
4594 if (memorystatus_kill_on_vnode_limit() == FALSE) {
4595 /*
4596 * If jetsam can't find any more processes to kill and there
4597 * still aren't any free vnodes, panic. Hopefully we'll get a
4598 * panic log to tell us why we ran out.
4599 */
4600 panic("vnode table is full\n");
4601 }
4602
4603 /*
4604 * Now that we've killed someone, wait a bit and continue looking
4605 * (with fewer retries before trying another kill).
4606 */
4607 delay_for_interval(3, 1000 * 1000);
4608 retries = 0;
4609 max_retries = 10;
4610 goto retry;
4611 #endif
4612
4613 *vpp = NULL;
4614 return ENFILE;
4615 }
4616 steal_this_vp:
4617 if ((vp = process_vp(vp, 1, &deferred)) == NULLVP) {
4618 if (deferred) {
4619 int elapsed_msecs;
4620 struct timeval elapsed_tv;
4621
4622 if (initial_tv.tv_sec == 0) {
4623 microuptime(&initial_tv);
4624 }
4625
4626 vnode_list_lock();
4627
4628 dead_vnode_waited++;
4629 dead_vnode_wanted++;
4630
4631 /*
4632 * note that we're only going to explicitly wait 10ms
4633 * for a dead vnode to become available, since even if one
4634 * isn't available, a reliable vnode might now be available
4635 * at the head of the VRAGE or free lists... if so, we
4636 * can satisfy the new_vnode request with less latency then waiting
4637 * for the full 100ms duration we're ultimately willing to tolerate
4638 */
4639 assert_wait_timeout((caddr_t)&dead_vnode_wanted, (THREAD_INTERRUPTIBLE), 10000, NSEC_PER_USEC);
4640
4641 vnode_list_unlock();
4642
4643 thread_block(THREAD_CONTINUE_NULL);
4644
4645 microuptime(&elapsed_tv);
4646
4647 timevalsub(&elapsed_tv, &initial_tv);
4648 elapsed_msecs = elapsed_tv.tv_sec * 1000 + elapsed_tv.tv_usec / 1000;
4649
4650 if (elapsed_msecs >= 100) {
4651 /*
4652 * we've waited long enough... 100ms is
4653 * somewhat arbitrary for this case, but the
4654 * normal worst case latency used for UI
4655 * interaction is 100ms, so I've chosen to
4656 * go with that.
4657 *
4658 * setting need_reliable_vp to TRUE
4659 * forces us to find a reliable vnode
4660 * that we can process synchronously, or
4661 * to create a new one if the scan for
4662 * a reliable one hits the scan limit
4663 */
4664 need_reliable_vp = TRUE;
4665 }
4666 }
4667 goto retry;
4668 }
4669 OSAddAtomicLong(1, &num_reusedvnodes);
4670
4671
4672 #if CONFIG_MACF
4673 /*
4674 * We should never see VL_LABELWAIT or VL_LABEL here.
4675 * as those operations hold a reference.
4676 */
4677 assert((vp->v_lflag & VL_LABELWAIT) != VL_LABELWAIT);
4678 assert((vp->v_lflag & VL_LABEL) != VL_LABEL);
4679 if (vp->v_lflag & VL_LABELED || vp->v_label != NULL) {
4680 vnode_lock_convert(vp);
4681 mac_vnode_label_recycle(vp);
4682 } else if (mac_vnode_label_init_needed(vp)) {
4683 vnode_lock_convert(vp);
4684 mac_vnode_label_init(vp);
4685 }
4686
4687 #endif /* MAC */
4688
4689 vp->v_iocount = 1;
4690 vp->v_lflag = 0;
4691 vp->v_writecount = 0;
4692 vp->v_references = 0;
4693 vp->v_iterblkflags = 0;
4694 vp->v_flag = VSTANDARD;
4695 /* vbad vnodes can point to dead_mountp */
4696 vp->v_mount = NULL;
4697 vp->v_defer_reclaimlist = (vnode_t)0;
4698
4699 vnode_unlock(vp);
4700
4701 done:
4702 *vpp = vp;
4703
4704 return 0;
4705 }
4706
4707 void
4708 vnode_lock(vnode_t vp)
4709 {
4710 lck_mtx_lock(&vp->v_lock);
4711 }
4712
4713 void
4714 vnode_lock_spin(vnode_t vp)
4715 {
4716 lck_mtx_lock_spin(&vp->v_lock);
4717 }
4718
4719 void
4720 vnode_unlock(vnode_t vp)
4721 {
4722 lck_mtx_unlock(&vp->v_lock);
4723 }
4724
4725
4726
4727 int
4728 vnode_get(struct vnode *vp)
4729 {
4730 int retval;
4731
4732 vnode_lock_spin(vp);
4733 retval = vnode_get_locked(vp);
4734 vnode_unlock(vp);
4735
4736 return retval;
4737 }
4738
4739 int
4740 vnode_get_locked(struct vnode *vp)
4741 {
4742 #if DIAGNOSTIC
4743 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
4744 #endif
4745 if ((vp->v_iocount == 0) && (vp->v_lflag & (VL_TERMINATE | VL_DEAD))) {
4746 return ENOENT;
4747 }
4748
4749 if (os_add_overflow(vp->v_iocount, 1, &vp->v_iocount)) {
4750 panic("v_iocount overflow");
4751 }
4752
4753 #ifdef JOE_DEBUG
4754 record_vp(vp, 1);
4755 #endif
4756 return 0;
4757 }
4758
4759 /*
4760 * vnode_getwithvid() cuts in line in front of a vnode drain (that is,
4761 * while the vnode is draining, but at no point after that) to prevent
4762 * deadlocks when getting vnodes from filesystem hashes while holding
4763 * resources that may prevent other iocounts from being released.
4764 */
4765 int
4766 vnode_getwithvid(vnode_t vp, uint32_t vid)
4767 {
4768 return vget_internal(vp, vid, (VNODE_NODEAD | VNODE_WITHID | VNODE_DRAINO));
4769 }
4770
4771 /*
4772 * vnode_getwithvid_drainok() is like vnode_getwithvid(), but *does* block behind a vnode
4773 * drain; it exists for use in the VFS name cache, where we really do want to block behind
4774 * vnode drain to prevent holding off an unmount.
4775 */
4776 int
4777 vnode_getwithvid_drainok(vnode_t vp, uint32_t vid)
4778 {
4779 return vget_internal(vp, vid, (VNODE_NODEAD | VNODE_WITHID));
4780 }
4781
4782 int
4783 vnode_getwithref(vnode_t vp)
4784 {
4785 return vget_internal(vp, 0, 0);
4786 }
4787
4788
4789 __private_extern__ int
4790 vnode_getalways(vnode_t vp)
4791 {
4792 return vget_internal(vp, 0, VNODE_ALWAYS);
4793 }
4794
4795 int
4796 vnode_put(vnode_t vp)
4797 {
4798 int retval;
4799
4800 vnode_lock_spin(vp);
4801 retval = vnode_put_locked(vp);
4802 vnode_unlock(vp);
4803
4804 return retval;
4805 }
4806
4807 static inline void
4808 vn_set_dead(vnode_t vp)
4809 {
4810 vp->v_mount = NULL;
4811 vp->v_op = dead_vnodeop_p;
4812 vp->v_tag = VT_NON;
4813 vp->v_data = NULL;
4814 vp->v_type = VBAD;
4815 vp->v_lflag |= VL_DEAD;
4816 }
4817
4818 int
4819 vnode_put_locked(vnode_t vp)
4820 {
4821 vfs_context_t ctx = vfs_context_current(); /* hoist outside loop */
4822
4823 #if DIAGNOSTIC
4824 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
4825 #endif
4826 retry:
4827 if (vp->v_iocount < 1) {
4828 panic("vnode_put(%p): iocount < 1", vp);
4829 }
4830
4831 if ((vp->v_usecount > 0) || (vp->v_iocount > 1)) {
4832 vnode_dropiocount(vp);
4833 return 0;
4834 }
4835 if ((vp->v_lflag & (VL_DEAD | VL_NEEDINACTIVE)) == VL_NEEDINACTIVE) {
4836 vp->v_lflag &= ~VL_NEEDINACTIVE;
4837 vnode_unlock(vp);
4838
4839 VNOP_INACTIVE(vp, ctx);
4840
4841 vnode_lock_spin(vp);
4842 /*
4843 * because we had to drop the vnode lock before calling
4844 * VNOP_INACTIVE, the state of this vnode may have changed...
4845 * we may pick up both VL_MARTERM and either
4846 * an iocount or a usecount while in the VNOP_INACTIVE call
4847 * we don't want to call vnode_reclaim_internal on a vnode
4848 * that has active references on it... so loop back around
4849 * and reevaluate the state
4850 */
4851 goto retry;
4852 }
4853 vp->v_lflag &= ~VL_NEEDINACTIVE;
4854
4855 if ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM) {
4856 vnode_lock_convert(vp);
4857 vnode_reclaim_internal(vp, 1, 1, 0);
4858 }
4859 vnode_dropiocount(vp);
4860 vnode_list_add(vp);
4861
4862 return 0;
4863 }
4864
4865 /* is vnode_t in use by others? */
4866 int
4867 vnode_isinuse(vnode_t vp, int refcnt)
4868 {
4869 return vnode_isinuse_locked(vp, refcnt, 0);
4870 }
4871
4872 int
4873 vnode_usecount(vnode_t vp)
4874 {
4875 return vp->v_usecount;
4876 }
4877
4878 int
4879 vnode_iocount(vnode_t vp)
4880 {
4881 return vp->v_iocount;
4882 }
4883
4884 static int
4885 vnode_isinuse_locked(vnode_t vp, int refcnt, int locked)
4886 {
4887 int retval = 0;
4888
4889 if (!locked) {
4890 vnode_lock_spin(vp);
4891 }
4892 if ((vp->v_type != VREG) && ((vp->v_usecount - vp->v_kusecount) > refcnt)) {
4893 retval = 1;
4894 goto out;
4895 }
4896 if (vp->v_type == VREG) {
4897 retval = ubc_isinuse_locked(vp, refcnt, 1);
4898 }
4899
4900 out:
4901 if (!locked) {
4902 vnode_unlock(vp);
4903 }
4904 return retval;
4905 }
4906
4907
4908 /* resume vnode_t */
4909 errno_t
4910 vnode_resume(vnode_t vp)
4911 {
4912 if ((vp->v_lflag & VL_SUSPENDED) && vp->v_owner == current_thread()) {
4913 vnode_lock_spin(vp);
4914 vp->v_lflag &= ~VL_SUSPENDED;
4915 vp->v_owner = NULL;
4916 vnode_unlock(vp);
4917
4918 wakeup(&vp->v_iocount);
4919 }
4920 return 0;
4921 }
4922
4923 /* suspend vnode_t
4924 * Please do not use on more than one vnode at a time as it may
4925 * cause deadlocks.
4926 * xxx should we explicity prevent this from happening?
4927 */
4928
4929 errno_t
4930 vnode_suspend(vnode_t vp)
4931 {
4932 if (vp->v_lflag & VL_SUSPENDED) {
4933 return EBUSY;
4934 }
4935
4936 vnode_lock_spin(vp);
4937
4938 /*
4939 * xxx is this sufficient to check if a vnode_drain is
4940 * progress?
4941 */
4942
4943 if (vp->v_owner == NULL) {
4944 vp->v_lflag |= VL_SUSPENDED;
4945 vp->v_owner = current_thread();
4946 }
4947 vnode_unlock(vp);
4948
4949 return 0;
4950 }
4951
4952 /*
4953 * Release any blocked locking requests on the vnode.
4954 * Used for forced-unmounts.
4955 *
4956 * XXX What about network filesystems?
4957 */
4958 static void
4959 vnode_abort_advlocks(vnode_t vp)
4960 {
4961 if (vp->v_flag & VLOCKLOCAL) {
4962 lf_abort_advlocks(vp);
4963 }
4964 }
4965
4966
4967 static errno_t
4968 vnode_drain(vnode_t vp)
4969 {
4970 if (vp->v_lflag & VL_DRAIN) {
4971 panic("vnode_drain: recursive drain");
4972 return ENOENT;
4973 }
4974 vp->v_lflag |= VL_DRAIN;
4975 vp->v_owner = current_thread();
4976
4977 while (vp->v_iocount > 1) {
4978 if (bootarg_no_vnode_drain) {
4979 struct timespec ts = {.tv_sec = 10, .tv_nsec = 0};
4980 int error;
4981
4982 if (vfs_unmountall_started) {
4983 ts.tv_sec = 1;
4984 }
4985
4986 error = msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_drain_with_timeout", &ts);
4987
4988 /* Try to deal with leaked iocounts under bootarg and shutting down */
4989 if (vp->v_iocount > 1 && error == EWOULDBLOCK &&
4990 ts.tv_sec == 1 && vp->v_numoutput == 0) {
4991 vp->v_iocount = 1;
4992 break;
4993 }
4994 } else {
4995 msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_drain", NULL);
4996 }
4997 }
4998
4999 vp->v_lflag &= ~VL_DRAIN;
5000
5001 return 0;
5002 }
5003
5004
5005 /*
5006 * if the number of recent references via vnode_getwithvid or vnode_getwithref
5007 * exceeds this threshold, than 'UN-AGE' the vnode by removing it from
5008 * the LRU list if it's currently on it... once the iocount and usecount both drop
5009 * to 0, it will get put back on the end of the list, effectively making it younger
5010 * this allows us to keep actively referenced vnodes in the list without having
5011 * to constantly remove and add to the list each time a vnode w/o a usecount is
5012 * referenced which costs us taking and dropping a global lock twice.
5013 * However, if the vnode is marked DIRTY, we want to pull it out much earlier
5014 */
5015 #define UNAGE_THRESHHOLD 25
5016 #define UNAGE_DIRTYTHRESHHOLD 6
5017
5018 errno_t
5019 vnode_getiocount(vnode_t vp, unsigned int vid, int vflags)
5020 {
5021 int nodead = vflags & VNODE_NODEAD;
5022 int nosusp = vflags & VNODE_NOSUSPEND;
5023 int always = vflags & VNODE_ALWAYS;
5024 int beatdrain = vflags & VNODE_DRAINO;
5025 int withvid = vflags & VNODE_WITHID;
5026
5027 for (;;) {
5028 int sleepflg = 0;
5029
5030 /*
5031 * if it is a dead vnode with deadfs
5032 */
5033 if (nodead && (vp->v_lflag & VL_DEAD) && ((vp->v_type == VBAD) || (vp->v_data == 0))) {
5034 return ENOENT;
5035 }
5036 /*
5037 * will return VL_DEAD ones
5038 */
5039 if ((vp->v_lflag & (VL_SUSPENDED | VL_DRAIN | VL_TERMINATE)) == 0) {
5040 break;
5041 }
5042 /*
5043 * if suspended vnodes are to be failed
5044 */
5045 if (nosusp && (vp->v_lflag & VL_SUSPENDED)) {
5046 return ENOENT;
5047 }
5048 /*
5049 * if you are the owner of drain/suspend/termination , can acquire iocount
5050 * check for VL_TERMINATE; it does not set owner
5051 */
5052 if ((vp->v_lflag & (VL_DRAIN | VL_SUSPENDED | VL_TERMINATE)) &&
5053 (vp->v_owner == current_thread())) {
5054 break;
5055 }
5056
5057 if (always != 0) {
5058 break;
5059 }
5060
5061 /*
5062 * If this vnode is getting drained, there are some cases where
5063 * we can't block or, in case of tty vnodes, want to be
5064 * interruptible.
5065 */
5066 if (vp->v_lflag & VL_DRAIN) {
5067 /*
5068 * In some situations, we want to get an iocount
5069 * even if the vnode is draining to prevent deadlock,
5070 * e.g. if we're in the filesystem, potentially holding
5071 * resources that could prevent other iocounts from
5072 * being released.
5073 */
5074 if (beatdrain) {
5075 break;
5076 }
5077 /*
5078 * Don't block if the vnode's mount point is unmounting as
5079 * we may be the thread the unmount is itself waiting on
5080 * Only callers who pass in vids (at this point, we've already
5081 * handled nosusp and nodead) are expecting error returns
5082 * from this function, so only we can only return errors for
5083 * those. ENODEV is intended to inform callers that the call
5084 * failed because an unmount is in progress.
5085 */
5086 if (withvid && (vp->v_mount) && vfs_isunmount(vp->v_mount)) {
5087 return ENODEV;
5088 }
5089
5090 if (vnode_istty(vp)) {
5091 sleepflg = PCATCH;
5092 }
5093 }
5094
5095 vnode_lock_convert(vp);
5096
5097 if (vp->v_lflag & VL_TERMINATE) {
5098 int error;
5099
5100 vp->v_lflag |= VL_TERMWANT;
5101
5102 error = msleep(&vp->v_lflag, &vp->v_lock,
5103 (PVFS | sleepflg), "vnode getiocount", NULL);
5104 if (error) {
5105 return error;
5106 }
5107 } else {
5108 msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_getiocount", NULL);
5109 }
5110 }
5111 if (withvid && vid != vp->v_id) {
5112 return ENOENT;
5113 }
5114 if (++vp->v_references >= UNAGE_THRESHHOLD ||
5115 (vp->v_flag & VISDIRTY && vp->v_references >= UNAGE_DIRTYTHRESHHOLD)) {
5116 vp->v_references = 0;
5117 vnode_list_remove(vp);
5118 }
5119 vp->v_iocount++;
5120 #ifdef JOE_DEBUG
5121 record_vp(vp, 1);
5122 #endif
5123 return 0;
5124 }
5125
5126 static void
5127 vnode_dropiocount(vnode_t vp)
5128 {
5129 if (vp->v_iocount < 1) {
5130 panic("vnode_dropiocount(%p): v_iocount < 1", vp);
5131 }
5132
5133 vp->v_iocount--;
5134 #ifdef JOE_DEBUG
5135 record_vp(vp, -1);
5136 #endif
5137 if ((vp->v_lflag & (VL_DRAIN | VL_SUSPENDED)) && (vp->v_iocount <= 1)) {
5138 wakeup(&vp->v_iocount);
5139 }
5140 }
5141
5142
5143 void
5144 vnode_reclaim(struct vnode * vp)
5145 {
5146 vnode_reclaim_internal(vp, 0, 0, 0);
5147 }
5148
5149 __private_extern__
5150 void
5151 vnode_reclaim_internal(struct vnode * vp, int locked, int reuse, int flags)
5152 {
5153 int isfifo = 0;
5154
5155 if (!locked) {
5156 vnode_lock(vp);
5157 }
5158
5159 if (vp->v_lflag & VL_TERMINATE) {
5160 panic("vnode reclaim in progress");
5161 }
5162 vp->v_lflag |= VL_TERMINATE;
5163
5164 vn_clearunionwait(vp, 1);
5165
5166 if (vnode_istty(vp) && (flags & REVOKEALL) && vp->v_usecount &&
5167 (vp->v_iocount > 1)) {
5168 vnode_unlock(vp);
5169 VNOP_IOCTL(vp, TIOCREVOKE, (caddr_t)NULL, 0, vfs_context_kernel());
5170 vnode_lock(vp);
5171 }
5172
5173 vnode_drain(vp);
5174
5175 isfifo = (vp->v_type == VFIFO);
5176
5177 if (vp->v_type != VBAD) {
5178 vgone(vp, flags); /* clean and reclaim the vnode */
5179 }
5180 /*
5181 * give the vnode a new identity so that vnode_getwithvid will fail
5182 * on any stale cache accesses...
5183 * grab the list_lock so that if we're in "new_vnode"
5184 * behind the list_lock trying to steal this vnode, the v_id is stable...
5185 * once new_vnode drops the list_lock, it will block trying to take
5186 * the vnode lock until we release it... at that point it will evaluate
5187 * whether the v_vid has changed
5188 * also need to make sure that the vnode isn't on a list where "new_vnode"
5189 * can find it after the v_id has been bumped until we are completely done
5190 * with the vnode (i.e. putting it back on a list has to be the very last
5191 * thing we do to this vnode... many of the callers of vnode_reclaim_internal
5192 * are holding an io_count on the vnode... they need to drop the io_count
5193 * BEFORE doing a vnode_list_add or make sure to hold the vnode lock until
5194 * they are completely done with the vnode
5195 */
5196 vnode_list_lock();
5197
5198 vnode_list_remove_locked(vp);
5199 vp->v_id++;
5200
5201 vnode_list_unlock();
5202
5203 if (isfifo) {
5204 struct fifoinfo * fip;
5205
5206 fip = vp->v_fifoinfo;
5207 vp->v_fifoinfo = NULL;
5208 FREE(fip, M_TEMP);
5209 }
5210 vp->v_type = VBAD;
5211
5212 if (vp->v_data) {
5213 panic("vnode_reclaim_internal: cleaned vnode isn't");
5214 }
5215 if (vp->v_numoutput) {
5216 panic("vnode_reclaim_internal: clean vnode has pending I/O's");
5217 }
5218 if (UBCINFOEXISTS(vp)) {
5219 panic("vnode_reclaim_internal: ubcinfo not cleaned");
5220 }
5221 if (vp->v_parent) {
5222 panic("vnode_reclaim_internal: vparent not removed");
5223 }
5224 if (vp->v_name) {
5225 panic("vnode_reclaim_internal: vname not removed");
5226 }
5227
5228 vp->v_socket = NULL;
5229
5230 vp->v_lflag &= ~VL_TERMINATE;
5231 vp->v_owner = NULL;
5232
5233 KNOTE(&vp->v_knotes, NOTE_REVOKE);
5234
5235 /* Make sure that when we reuse the vnode, no knotes left over */
5236 klist_init(&vp->v_knotes);
5237
5238 if (vp->v_lflag & VL_TERMWANT) {
5239 vp->v_lflag &= ~VL_TERMWANT;
5240 wakeup(&vp->v_lflag);
5241 }
5242 if (!reuse) {
5243 /*
5244 * make sure we get on the
5245 * dead list if appropriate
5246 */
5247 vnode_list_add(vp);
5248 }
5249 if (!locked) {
5250 vnode_unlock(vp);
5251 }
5252 }
5253
5254 static int
5255 vnode_create_internal(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp,
5256 int init_vnode)
5257 {
5258 int error;
5259 int insert = 1;
5260 int existing_vnode;
5261 vnode_t vp;
5262 vnode_t nvp;
5263 vnode_t dvp;
5264 struct uthread *ut;
5265 struct componentname *cnp;
5266 struct vnode_fsparam *param = (struct vnode_fsparam *)data;
5267 #if CONFIG_TRIGGERS
5268 struct vnode_trigger_param *tinfo = NULL;
5269 #endif
5270 if (*vpp) {
5271 vp = *vpp;
5272 *vpp = NULLVP;
5273 existing_vnode = 1;
5274 } else {
5275 existing_vnode = 0;
5276 }
5277
5278 if (init_vnode) {
5279 /* Do quick sanity check on the parameters. */
5280 if ((param == NULL) || (param->vnfs_vtype == VBAD)) {
5281 error = EINVAL;
5282 goto error_out;
5283 }
5284
5285 #if CONFIG_TRIGGERS
5286 if ((flavor == VNCREATE_TRIGGER) && (size == VNCREATE_TRIGGER_SIZE)) {
5287 tinfo = (struct vnode_trigger_param *)data;
5288
5289 /* Validate trigger vnode input */
5290 if ((param->vnfs_vtype != VDIR) ||
5291 (tinfo->vnt_resolve_func == NULL) ||
5292 (tinfo->vnt_flags & ~VNT_VALID_MASK)) {
5293 error = EINVAL;
5294 goto error_out;
5295 }
5296 /* Fall through a normal create (params will be the same) */
5297 flavor = VNCREATE_FLAVOR;
5298 size = VCREATESIZE;
5299 }
5300 #endif
5301 if ((flavor != VNCREATE_FLAVOR) || (size != VCREATESIZE)) {
5302 error = EINVAL;
5303 goto error_out;
5304 }
5305 }
5306
5307 if (!existing_vnode) {
5308 if ((error = new_vnode(&vp))) {
5309 return error;
5310 }
5311 if (!init_vnode) {
5312 /* Make it so that it can be released by a vnode_put) */
5313 vn_set_dead(vp);
5314 *vpp = vp;
5315 return 0;
5316 }
5317 } else {
5318 /*
5319 * A vnode obtained by vnode_create_empty has been passed to
5320 * vnode_initialize - Unset VL_DEAD set by vn_set_dead. After
5321 * this point, it is set back on any error.
5322 *
5323 * N.B. vnode locking - We make the same assumptions as the
5324 * "unsplit" vnode_create did - i.e. it is safe to update the
5325 * vnode's fields without the vnode lock. This vnode has been
5326 * out and about with the filesystem and hopefully nothing
5327 * was done to the vnode between the vnode_create_empty and
5328 * now when it has come in through vnode_initialize.
5329 */
5330 vp->v_lflag &= ~VL_DEAD;
5331 }
5332
5333 dvp = param->vnfs_dvp;
5334 cnp = param->vnfs_cnp;
5335
5336 vp->v_op = param->vnfs_vops;
5337 vp->v_type = param->vnfs_vtype;
5338 vp->v_data = param->vnfs_fsnode;
5339
5340 if (param->vnfs_markroot) {
5341 vp->v_flag |= VROOT;
5342 }
5343 if (param->vnfs_marksystem) {
5344 vp->v_flag |= VSYSTEM;
5345 }
5346 if (vp->v_type == VREG) {
5347 error = ubc_info_init_withsize(vp, param->vnfs_filesize);
5348 if (error) {
5349 #ifdef JOE_DEBUG
5350 record_vp(vp, 1);
5351 #endif
5352 vn_set_dead(vp);
5353
5354 vnode_put(vp);
5355 return error;
5356 }
5357 if (param->vnfs_mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED) {
5358 memory_object_mark_io_tracking(vp->v_ubcinfo->ui_control);
5359 }
5360 }
5361 #ifdef JOE_DEBUG
5362 record_vp(vp, 1);
5363 #endif
5364
5365 #if CONFIG_FIRMLINKS
5366 vp->v_fmlink = NULLVP;
5367 #endif
5368 vp->v_flag &= ~VFMLINKTARGET;
5369
5370 #if CONFIG_TRIGGERS
5371 /*
5372 * For trigger vnodes, attach trigger info to vnode
5373 */
5374 if ((vp->v_type == VDIR) && (tinfo != NULL)) {
5375 /*
5376 * Note: has a side effect of incrementing trigger count on the
5377 * mount if successful, which we would need to undo on a
5378 * subsequent failure.
5379 */
5380 #ifdef JOE_DEBUG
5381 record_vp(vp, -1);
5382 #endif
5383 error = vnode_resolver_create(param->vnfs_mp, vp, tinfo, FALSE);
5384 if (error) {
5385 printf("vnode_create: vnode_resolver_create() err %d\n", error);
5386 vn_set_dead(vp);
5387 #ifdef JOE_DEBUG
5388 record_vp(vp, 1);
5389 #endif
5390 vnode_put(vp);
5391 return error;
5392 }
5393 }
5394 #endif
5395 if (vp->v_type == VCHR || vp->v_type == VBLK) {
5396 vp->v_tag = VT_DEVFS; /* callers will reset if needed (bdevvp) */
5397
5398 if ((nvp = checkalias(vp, param->vnfs_rdev))) {
5399 /*
5400 * if checkalias returns a vnode, it will be locked
5401 *
5402 * first get rid of the unneeded vnode we acquired
5403 */
5404 vp->v_data = NULL;
5405 vp->v_op = spec_vnodeop_p;
5406 vp->v_type = VBAD;
5407 vp->v_lflag = VL_DEAD;
5408 vp->v_data = NULL;
5409 vp->v_tag = VT_NON;
5410 vnode_put(vp);
5411
5412 /*
5413 * switch to aliased vnode and finish
5414 * preparing it
5415 */
5416 vp = nvp;
5417
5418 vclean(vp, 0);
5419 vp->v_op = param->vnfs_vops;
5420 vp->v_type = param->vnfs_vtype;
5421 vp->v_data = param->vnfs_fsnode;
5422 vp->v_lflag = 0;
5423 vp->v_mount = NULL;
5424 insmntque(vp, param->vnfs_mp);
5425 insert = 0;
5426 vnode_unlock(vp);
5427 }
5428
5429 if (VCHR == vp->v_type) {
5430 u_int maj = major(vp->v_rdev);
5431
5432 if (maj < (u_int)nchrdev && cdevsw[maj].d_type == D_TTY) {
5433 vp->v_flag |= VISTTY;
5434 }
5435 }
5436 }
5437
5438 if (vp->v_type == VFIFO) {
5439 struct fifoinfo *fip;
5440
5441 MALLOC(fip, struct fifoinfo *,
5442 sizeof(*fip), M_TEMP, M_WAITOK);
5443 bzero(fip, sizeof(struct fifoinfo));
5444 vp->v_fifoinfo = fip;
5445 }
5446 /* The file systems must pass the address of the location where
5447 * they store the vnode pointer. When we add the vnode into the mount
5448 * list and name cache they become discoverable. So the file system node
5449 * must have the connection to vnode setup by then
5450 */
5451 *vpp = vp;
5452
5453 /* Add fs named reference. */
5454 if (param->vnfs_flags & VNFS_ADDFSREF) {
5455 vp->v_lflag |= VNAMED_FSHASH;
5456 }
5457 if (param->vnfs_mp) {
5458 if (param->vnfs_mp->mnt_kern_flag & MNTK_LOCK_LOCAL) {
5459 vp->v_flag |= VLOCKLOCAL;
5460 }
5461 if (insert) {
5462 if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb)) {
5463 panic("insmntque: vp on the free list\n");
5464 }
5465
5466 /*
5467 * enter in mount vnode list
5468 */
5469 insmntque(vp, param->vnfs_mp);
5470 }
5471 }
5472 if (dvp && vnode_ref(dvp) == 0) {
5473 vp->v_parent = dvp;
5474 }
5475 if (cnp) {
5476 if (dvp && ((param->vnfs_flags & (VNFS_NOCACHE | VNFS_CANTCACHE)) == 0)) {
5477 /*
5478 * enter into name cache
5479 * we've got the info to enter it into the name cache now
5480 * cache_enter_create will pick up an extra reference on
5481 * the name entered into the string cache
5482 */
5483 vp->v_name = cache_enter_create(dvp, vp, cnp);
5484 } else {
5485 vp->v_name = vfs_addname(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, 0);
5486 }
5487
5488 if ((cnp->cn_flags & UNIONCREATED) == UNIONCREATED) {
5489 vp->v_flag |= VISUNION;
5490 }
5491 }
5492 if ((param->vnfs_flags & VNFS_CANTCACHE) == 0) {
5493 /*
5494 * this vnode is being created as cacheable in the name cache
5495 * this allows us to re-enter it in the cache
5496 */
5497 vp->v_flag |= VNCACHEABLE;
5498 }
5499 ut = get_bsdthread_info(current_thread());
5500
5501 if ((current_proc()->p_lflag & P_LRAGE_VNODES) ||
5502 (ut->uu_flag & (UT_RAGE_VNODES | UT_KERN_RAGE_VNODES))) {
5503 /*
5504 * process has indicated that it wants any
5505 * vnodes created on its behalf to be rapidly
5506 * aged to reduce the impact on the cached set
5507 * of vnodes
5508 *
5509 * if UT_KERN_RAGE_VNODES is set, then the
5510 * kernel internally wants vnodes to be rapidly
5511 * aged, even if the process hasn't requested
5512 * this
5513 */
5514 vp->v_flag |= VRAGE;
5515 }
5516
5517 #if CONFIG_SECLUDED_MEMORY
5518 switch (secluded_for_filecache) {
5519 case 0:
5520 /*
5521 * secluded_for_filecache == 0:
5522 * + no file contents in secluded pool
5523 */
5524 break;
5525 case 1:
5526 /*
5527 * secluded_for_filecache == 1:
5528 * + no files from /
5529 * + files from /Applications/ are OK
5530 * + files from /Applications/Camera are not OK
5531 * + no files that are open for write
5532 */
5533 if (vnode_vtype(vp) == VREG &&
5534 vnode_mount(vp) != NULL &&
5535 (!(vfs_flags(vnode_mount(vp)) & MNT_ROOTFS))) {
5536 /* not from root filesystem: eligible for secluded pages */
5537 memory_object_mark_eligible_for_secluded(
5538 ubc_getobject(vp, UBC_FLAGS_NONE),
5539 TRUE);
5540 }
5541 break;
5542 case 2:
5543 /*
5544 * secluded_for_filecache == 2:
5545 * + all read-only files OK, except:
5546 * + dyld_shared_cache_arm64*
5547 * + Camera
5548 * + mediaserverd
5549 */
5550 if (vnode_vtype(vp) == VREG) {
5551 memory_object_mark_eligible_for_secluded(
5552 ubc_getobject(vp, UBC_FLAGS_NONE),
5553 TRUE);
5554 }
5555 break;
5556 default:
5557 break;
5558 }
5559 #endif /* CONFIG_SECLUDED_MEMORY */
5560
5561 return 0;
5562
5563 error_out:
5564 if (existing_vnode) {
5565 vnode_put(vp);
5566 }
5567 return error;
5568 }
5569
5570 /* USAGE:
5571 * The following api creates a vnode and associates all the parameter specified in vnode_fsparam
5572 * structure and returns a vnode handle with a reference. device aliasing is handled here so checkalias
5573 * is obsoleted by this.
5574 */
5575 int
5576 vnode_create(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp)
5577 {
5578 *vpp = NULLVP;
5579 return vnode_create_internal(flavor, size, data, vpp, 1);
5580 }
5581
5582 int
5583 vnode_create_empty(vnode_t *vpp)
5584 {
5585 *vpp = NULLVP;
5586 return vnode_create_internal(VNCREATE_FLAVOR, VCREATESIZE, NULL,
5587 vpp, 0);
5588 }
5589
5590 int
5591 vnode_initialize(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp)
5592 {
5593 if (*vpp == NULLVP) {
5594 panic("NULL vnode passed to vnode_initialize");
5595 }
5596 #if DEVELOPMENT || DEBUG
5597 /*
5598 * We lock to check that vnode is fit for unlocked use in
5599 * vnode_create_internal.
5600 */
5601 vnode_lock_spin(*vpp);
5602 VNASSERT(((*vpp)->v_iocount == 1), *vpp,
5603 ("vnode_initialize : iocount not 1, is %d", (*vpp)->v_iocount));
5604 VNASSERT(((*vpp)->v_usecount == 0), *vpp,
5605 ("vnode_initialize : usecount not 0, is %d", (*vpp)->v_usecount));
5606 VNASSERT(((*vpp)->v_lflag & VL_DEAD), *vpp,
5607 ("vnode_initialize : v_lflag does not have VL_DEAD, is 0x%x",
5608 (*vpp)->v_lflag));
5609 VNASSERT(((*vpp)->v_data == NULL), *vpp,
5610 ("vnode_initialize : v_data not NULL"));
5611 vnode_unlock(*vpp);
5612 #endif
5613 return vnode_create_internal(flavor, size, data, vpp, 1);
5614 }
5615
5616 int
5617 vnode_addfsref(vnode_t vp)
5618 {
5619 vnode_lock_spin(vp);
5620 if (vp->v_lflag & VNAMED_FSHASH) {
5621 panic("add_fsref: vp already has named reference");
5622 }
5623 if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb)) {
5624 panic("addfsref: vp on the free list\n");
5625 }
5626 vp->v_lflag |= VNAMED_FSHASH;
5627 vnode_unlock(vp);
5628 return 0;
5629 }
5630 int
5631 vnode_removefsref(vnode_t vp)
5632 {
5633 vnode_lock_spin(vp);
5634 if ((vp->v_lflag & VNAMED_FSHASH) == 0) {
5635 panic("remove_fsref: no named reference");
5636 }
5637 vp->v_lflag &= ~VNAMED_FSHASH;
5638 vnode_unlock(vp);
5639 return 0;
5640 }
5641
5642
5643 int
5644 vfs_iterate(int flags, int (*callout)(mount_t, void *), void *arg)
5645 {
5646 mount_t mp;
5647 int ret = 0;
5648 fsid_t * fsid_list;
5649 int count, actualcount, i;
5650 void * allocmem;
5651 int indx_start, indx_stop, indx_incr;
5652 int cb_dropref = (flags & VFS_ITERATE_CB_DROPREF);
5653 int noskip_unmount = (flags & VFS_ITERATE_NOSKIP_UNMOUNT);
5654
5655 count = mount_getvfscnt();
5656 count += 10;
5657
5658 fsid_list = (fsid_t *)kalloc(count * sizeof(fsid_t));
5659 allocmem = (void *)fsid_list;
5660
5661 actualcount = mount_fillfsids(fsid_list, count);
5662
5663 /*
5664 * Establish the iteration direction
5665 * VFS_ITERATE_TAIL_FIRST overrides default head first order (oldest first)
5666 */
5667 if (flags & VFS_ITERATE_TAIL_FIRST) {
5668 indx_start = actualcount - 1;
5669 indx_stop = -1;
5670 indx_incr = -1;
5671 } else { /* Head first by default */
5672 indx_start = 0;
5673 indx_stop = actualcount;
5674 indx_incr = 1;
5675 }
5676
5677 for (i = indx_start; i != indx_stop; i += indx_incr) {
5678 /* obtain the mount point with iteration reference */
5679 mp = mount_list_lookupby_fsid(&fsid_list[i], 0, 1);
5680
5681 if (mp == (struct mount *)0) {
5682 continue;
5683 }
5684 mount_lock(mp);
5685 if ((mp->mnt_lflag & MNT_LDEAD) ||
5686 (!noskip_unmount && (mp->mnt_lflag & MNT_LUNMOUNT))) {
5687 mount_unlock(mp);
5688 mount_iterdrop(mp);
5689 continue;
5690 }
5691 mount_unlock(mp);
5692
5693 /* iterate over all the vnodes */
5694 ret = callout(mp, arg);
5695
5696 /*
5697 * Drop the iterref here if the callback didn't do it.
5698 * Note: If cb_dropref is set the mp may no longer exist.
5699 */
5700 if (!cb_dropref) {
5701 mount_iterdrop(mp);
5702 }
5703
5704 switch (ret) {
5705 case VFS_RETURNED:
5706 case VFS_RETURNED_DONE:
5707 if (ret == VFS_RETURNED_DONE) {
5708 ret = 0;
5709 goto out;
5710 }
5711 break;
5712
5713 case VFS_CLAIMED_DONE:
5714 ret = 0;
5715 goto out;
5716 case VFS_CLAIMED:
5717 default:
5718 break;
5719 }
5720 ret = 0;
5721 }
5722
5723 out:
5724 kfree(allocmem, (count * sizeof(fsid_t)));
5725 return ret;
5726 }
5727
5728 /*
5729 * Update the vfsstatfs structure in the mountpoint.
5730 * MAC: Parameter eventtype added, indicating whether the event that
5731 * triggered this update came from user space, via a system call
5732 * (VFS_USER_EVENT) or an internal kernel call (VFS_KERNEL_EVENT).
5733 */
5734 int
5735 vfs_update_vfsstat(mount_t mp, vfs_context_t ctx, __unused int eventtype)
5736 {
5737 struct vfs_attr va;
5738 int error;
5739
5740 /*
5741 * Request the attributes we want to propagate into
5742 * the per-mount vfsstat structure.
5743 */
5744 VFSATTR_INIT(&va);
5745 VFSATTR_WANTED(&va, f_iosize);
5746 VFSATTR_WANTED(&va, f_blocks);
5747 VFSATTR_WANTED(&va, f_bfree);
5748 VFSATTR_WANTED(&va, f_bavail);
5749 VFSATTR_WANTED(&va, f_bused);
5750 VFSATTR_WANTED(&va, f_files);
5751 VFSATTR_WANTED(&va, f_ffree);
5752 VFSATTR_WANTED(&va, f_bsize);
5753 VFSATTR_WANTED(&va, f_fssubtype);
5754
5755 if ((error = vfs_getattr(mp, &va, ctx)) != 0) {
5756 KAUTH_DEBUG("STAT - filesystem returned error %d", error);
5757 return error;
5758 }
5759 #if CONFIG_MACF
5760 if (eventtype == VFS_USER_EVENT) {
5761 error = mac_mount_check_getattr(ctx, mp, &va);
5762 if (error != 0) {
5763 return error;
5764 }
5765 }
5766 #endif
5767 /*
5768 * Unpack into the per-mount structure.
5769 *
5770 * We only overwrite these fields, which are likely to change:
5771 * f_blocks
5772 * f_bfree
5773 * f_bavail
5774 * f_bused
5775 * f_files
5776 * f_ffree
5777 *
5778 * And these which are not, but which the FS has no other way
5779 * of providing to us:
5780 * f_bsize
5781 * f_iosize
5782 * f_fssubtype
5783 *
5784 */
5785 if (VFSATTR_IS_SUPPORTED(&va, f_bsize)) {
5786 /* 4822056 - protect against malformed server mount */
5787 mp->mnt_vfsstat.f_bsize = (va.f_bsize > 0 ? va.f_bsize : 512);
5788 } else {
5789 mp->mnt_vfsstat.f_bsize = mp->mnt_devblocksize; /* default from the device block size */
5790 }
5791 if (VFSATTR_IS_SUPPORTED(&va, f_iosize)) {
5792 mp->mnt_vfsstat.f_iosize = va.f_iosize;
5793 } else {
5794 mp->mnt_vfsstat.f_iosize = 1024 * 1024; /* 1MB sensible I/O size */
5795 }
5796 if (VFSATTR_IS_SUPPORTED(&va, f_blocks)) {
5797 mp->mnt_vfsstat.f_blocks = va.f_blocks;
5798 }
5799 if (VFSATTR_IS_SUPPORTED(&va, f_bfree)) {
5800 mp->mnt_vfsstat.f_bfree = va.f_bfree;
5801 }
5802 if (VFSATTR_IS_SUPPORTED(&va, f_bavail)) {
5803 mp->mnt_vfsstat.f_bavail = va.f_bavail;
5804 }
5805 if (VFSATTR_IS_SUPPORTED(&va, f_bused)) {
5806 mp->mnt_vfsstat.f_bused = va.f_bused;
5807 }
5808 if (VFSATTR_IS_SUPPORTED(&va, f_files)) {
5809 mp->mnt_vfsstat.f_files = va.f_files;
5810 }
5811 if (VFSATTR_IS_SUPPORTED(&va, f_ffree)) {
5812 mp->mnt_vfsstat.f_ffree = va.f_ffree;
5813 }
5814
5815 /* this is unlikely to change, but has to be queried for */
5816 if (VFSATTR_IS_SUPPORTED(&va, f_fssubtype)) {
5817 mp->mnt_vfsstat.f_fssubtype = va.f_fssubtype;
5818 }
5819
5820 return 0;
5821 }
5822
5823 int
5824 mount_list_add(mount_t mp)
5825 {
5826 int res;
5827
5828 mount_list_lock();
5829 if (system_inshutdown != 0) {
5830 res = -1;
5831 } else {
5832 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
5833 nummounts++;
5834 res = 0;
5835 }
5836 mount_list_unlock();
5837
5838 return res;
5839 }
5840
5841 void
5842 mount_list_remove(mount_t mp)
5843 {
5844 mount_list_lock();
5845 TAILQ_REMOVE(&mountlist, mp, mnt_list);
5846 nummounts--;
5847 mp->mnt_list.tqe_next = NULL;
5848 mp->mnt_list.tqe_prev = NULL;
5849 mount_list_unlock();
5850 }
5851
5852 mount_t
5853 mount_lookupby_volfsid(int volfs_id, int withref)
5854 {
5855 mount_t cur_mount = (mount_t)0;
5856 mount_t mp;
5857
5858 mount_list_lock();
5859 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
5860 if (!(mp->mnt_kern_flag & MNTK_UNMOUNT) &&
5861 (mp->mnt_kern_flag & MNTK_PATH_FROM_ID) &&
5862 (mp->mnt_vfsstat.f_fsid.val[0] == volfs_id)) {
5863 cur_mount = mp;
5864 if (withref) {
5865 if (mount_iterref(cur_mount, 1)) {
5866 cur_mount = (mount_t)0;
5867 mount_list_unlock();
5868 goto out;
5869 }
5870 }
5871 break;
5872 }
5873 }
5874 mount_list_unlock();
5875 if (withref && (cur_mount != (mount_t)0)) {
5876 mp = cur_mount;
5877 if (vfs_busy(mp, LK_NOWAIT) != 0) {
5878 cur_mount = (mount_t)0;
5879 }
5880 mount_iterdrop(mp);
5881 }
5882 out:
5883 return cur_mount;
5884 }
5885
5886 mount_t
5887 mount_list_lookupby_fsid(fsid_t *fsid, int locked, int withref)
5888 {
5889 mount_t retmp = (mount_t)0;
5890 mount_t mp;
5891
5892 if (!locked) {
5893 mount_list_lock();
5894 }
5895 TAILQ_FOREACH(mp, &mountlist, mnt_list)
5896 if (mp->mnt_vfsstat.f_fsid.val[0] == fsid->val[0] &&
5897 mp->mnt_vfsstat.f_fsid.val[1] == fsid->val[1]) {
5898 retmp = mp;
5899 if (withref) {
5900 if (mount_iterref(retmp, 1)) {
5901 retmp = (mount_t)0;
5902 }
5903 }
5904 goto out;
5905 }
5906 out:
5907 if (!locked) {
5908 mount_list_unlock();
5909 }
5910 return retmp;
5911 }
5912
5913 errno_t
5914 vnode_lookupat(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx,
5915 vnode_t start_dvp)
5916 {
5917 struct nameidata nd;
5918 int error;
5919 u_int32_t ndflags = 0;
5920
5921 if (ctx == NULL) {
5922 return EINVAL;
5923 }
5924
5925 if (flags & VNODE_LOOKUP_NOFOLLOW) {
5926 ndflags = NOFOLLOW;
5927 } else {
5928 ndflags = FOLLOW;
5929 }
5930
5931 if (flags & VNODE_LOOKUP_NOCROSSMOUNT) {
5932 ndflags |= NOCROSSMOUNT;
5933 }
5934
5935 if (flags & VNODE_LOOKUP_CROSSMOUNTNOWAIT) {
5936 ndflags |= CN_NBMOUNTLOOK;
5937 }
5938
5939 /* XXX AUDITVNPATH1 needed ? */
5940 NDINIT(&nd, LOOKUP, OP_LOOKUP, ndflags, UIO_SYSSPACE,
5941 CAST_USER_ADDR_T(path), ctx);
5942
5943 if (start_dvp && (path[0] != '/')) {
5944 nd.ni_dvp = start_dvp;
5945 nd.ni_cnd.cn_flags |= USEDVP;
5946 }
5947
5948 if ((error = namei(&nd))) {
5949 return error;
5950 }
5951
5952 nd.ni_cnd.cn_flags &= ~USEDVP;
5953
5954 *vpp = nd.ni_vp;
5955 nameidone(&nd);
5956
5957 return 0;
5958 }
5959
5960 errno_t
5961 vnode_lookup(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx)
5962 {
5963 return vnode_lookupat(path, flags, vpp, ctx, NULLVP);
5964 }
5965
5966 errno_t
5967 vnode_open(const char *path, int fmode, int cmode, int flags, vnode_t *vpp, vfs_context_t ctx)
5968 {
5969 struct nameidata nd;
5970 int error;
5971 u_int32_t ndflags = 0;
5972 int lflags = flags;
5973
5974 if (ctx == NULL) { /* XXX technically an error */
5975 ctx = vfs_context_current();
5976 }
5977
5978 if (fmode & O_NOFOLLOW) {
5979 lflags |= VNODE_LOOKUP_NOFOLLOW;
5980 }
5981
5982 if (lflags & VNODE_LOOKUP_NOFOLLOW) {
5983 ndflags = NOFOLLOW;
5984 } else {
5985 ndflags = FOLLOW;
5986 }
5987
5988 if (lflags & VNODE_LOOKUP_NOCROSSMOUNT) {
5989 ndflags |= NOCROSSMOUNT;
5990 }
5991
5992 if (lflags & VNODE_LOOKUP_CROSSMOUNTNOWAIT) {
5993 ndflags |= CN_NBMOUNTLOOK;
5994 }
5995
5996 /* XXX AUDITVNPATH1 needed ? */
5997 NDINIT(&nd, LOOKUP, OP_OPEN, ndflags, UIO_SYSSPACE,
5998 CAST_USER_ADDR_T(path), ctx);
5999
6000 if ((error = vn_open(&nd, fmode, cmode))) {
6001 *vpp = NULL;
6002 } else {
6003 *vpp = nd.ni_vp;
6004 }
6005
6006 return error;
6007 }
6008
6009 errno_t
6010 vnode_close(vnode_t vp, int flags, vfs_context_t ctx)
6011 {
6012 int error;
6013
6014 if (ctx == NULL) {
6015 ctx = vfs_context_current();
6016 }
6017
6018 error = vn_close(vp, flags, ctx);
6019 vnode_put(vp);
6020 return error;
6021 }
6022
6023 errno_t
6024 vnode_mtime(vnode_t vp, struct timespec *mtime, vfs_context_t ctx)
6025 {
6026 struct vnode_attr va;
6027 int error;
6028
6029 VATTR_INIT(&va);
6030 VATTR_WANTED(&va, va_modify_time);
6031 error = vnode_getattr(vp, &va, ctx);
6032 if (!error) {
6033 *mtime = va.va_modify_time;
6034 }
6035 return error;
6036 }
6037
6038 errno_t
6039 vnode_flags(vnode_t vp, uint32_t *flags, vfs_context_t ctx)
6040 {
6041 struct vnode_attr va;
6042 int error;
6043
6044 VATTR_INIT(&va);
6045 VATTR_WANTED(&va, va_flags);
6046 error = vnode_getattr(vp, &va, ctx);
6047 if (!error) {
6048 *flags = va.va_flags;
6049 }
6050 return error;
6051 }
6052
6053 /*
6054 * Returns: 0 Success
6055 * vnode_getattr:???
6056 */
6057 errno_t
6058 vnode_size(vnode_t vp, off_t *sizep, vfs_context_t ctx)
6059 {
6060 struct vnode_attr va;
6061 int error;
6062
6063 VATTR_INIT(&va);
6064 VATTR_WANTED(&va, va_data_size);
6065 error = vnode_getattr(vp, &va, ctx);
6066 if (!error) {
6067 *sizep = va.va_data_size;
6068 }
6069 return error;
6070 }
6071
6072 errno_t
6073 vnode_setsize(vnode_t vp, off_t size, int ioflag, vfs_context_t ctx)
6074 {
6075 struct vnode_attr va;
6076
6077 VATTR_INIT(&va);
6078 VATTR_SET(&va, va_data_size, size);
6079 va.va_vaflags = ioflag & 0xffff;
6080 return vnode_setattr(vp, &va, ctx);
6081 }
6082
6083 int
6084 vnode_setdirty(vnode_t vp)
6085 {
6086 vnode_lock_spin(vp);
6087 vp->v_flag |= VISDIRTY;
6088 vnode_unlock(vp);
6089 return 0;
6090 }
6091
6092 int
6093 vnode_cleardirty(vnode_t vp)
6094 {
6095 vnode_lock_spin(vp);
6096 vp->v_flag &= ~VISDIRTY;
6097 vnode_unlock(vp);
6098 return 0;
6099 }
6100
6101 int
6102 vnode_isdirty(vnode_t vp)
6103 {
6104 int dirty;
6105
6106 vnode_lock_spin(vp);
6107 dirty = (vp->v_flag & VISDIRTY) ? 1 : 0;
6108 vnode_unlock(vp);
6109
6110 return dirty;
6111 }
6112
6113 static int
6114 vn_create_reg(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp, struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx)
6115 {
6116 /* Only use compound VNOP for compound operation */
6117 if (vnode_compound_open_available(dvp) && ((flags & VN_CREATE_DOOPEN) != 0)) {
6118 *vpp = NULLVP;
6119 return VNOP_COMPOUND_OPEN(dvp, vpp, ndp, O_CREAT, fmode, statusp, vap, ctx);
6120 } else {
6121 return VNOP_CREATE(dvp, vpp, &ndp->ni_cnd, vap, ctx);
6122 }
6123 }
6124
6125 /*
6126 * Create a filesystem object of arbitrary type with arbitrary attributes in
6127 * the spevied directory with the specified name.
6128 *
6129 * Parameters: dvp Pointer to the vnode of the directory
6130 * in which to create the object.
6131 * vpp Pointer to the area into which to
6132 * return the vnode of the created object.
6133 * cnp Component name pointer from the namei
6134 * data structure, containing the name to
6135 * use for the create object.
6136 * vap Pointer to the vnode_attr structure
6137 * describing the object to be created,
6138 * including the type of object.
6139 * flags VN_* flags controlling ACL inheritance
6140 * and whether or not authorization is to
6141 * be required for the operation.
6142 *
6143 * Returns: 0 Success
6144 * !0 errno value
6145 *
6146 * Implicit: *vpp Contains the vnode of the object that
6147 * was created, if successful.
6148 * *cnp May be modified by the underlying VFS.
6149 * *vap May be modified by the underlying VFS.
6150 * modified by either ACL inheritance or
6151 *
6152 *
6153 * be modified, even if the operation is
6154 *
6155 *
6156 * Notes: The kauth_filesec_t in 'vap', if any, is in host byte order.
6157 *
6158 * Modification of '*cnp' and '*vap' by the underlying VFS is
6159 * strongly discouraged.
6160 *
6161 * XXX: This function is a 'vn_*' function; it belongs in vfs_vnops.c
6162 *
6163 * XXX: We should enummerate the possible errno values here, and where
6164 * in the code they originated.
6165 */
6166 errno_t
6167 vn_create(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp, struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx)
6168 {
6169 errno_t error, old_error;
6170 vnode_t vp = (vnode_t)0;
6171 boolean_t batched;
6172 struct componentname *cnp;
6173 uint32_t defaulted;
6174
6175 cnp = &ndp->ni_cnd;
6176 error = 0;
6177 batched = namei_compound_available(dvp, ndp) ? TRUE : FALSE;
6178
6179 KAUTH_DEBUG("%p CREATE - '%s'", dvp, cnp->cn_nameptr);
6180
6181 if (flags & VN_CREATE_NOINHERIT) {
6182 vap->va_vaflags |= VA_NOINHERIT;
6183 }
6184 if (flags & VN_CREATE_NOAUTH) {
6185 vap->va_vaflags |= VA_NOAUTH;
6186 }
6187 /*
6188 * Handle ACL inheritance, initialize vap.
6189 */
6190 error = vn_attribute_prepare(dvp, vap, &defaulted, ctx);
6191 if (error) {
6192 return error;
6193 }
6194
6195 if (vap->va_type != VREG && (fmode != 0 || (flags & VN_CREATE_DOOPEN) || statusp)) {
6196 panic("Open parameters, but not a regular file.");
6197 }
6198 if ((fmode != 0) && ((flags & VN_CREATE_DOOPEN) == 0)) {
6199 panic("Mode for open, but not trying to open...");
6200 }
6201
6202
6203 /*
6204 * Create the requested node.
6205 */
6206 switch (vap->va_type) {
6207 case VREG:
6208 error = vn_create_reg(dvp, vpp, ndp, vap, flags, fmode, statusp, ctx);
6209 break;
6210 case VDIR:
6211 error = vn_mkdir(dvp, vpp, ndp, vap, ctx);
6212 break;
6213 case VSOCK:
6214 case VFIFO:
6215 case VBLK:
6216 case VCHR:
6217 error = VNOP_MKNOD(dvp, vpp, cnp, vap, ctx);
6218 break;
6219 default:
6220 panic("vnode_create: unknown vtype %d", vap->va_type);
6221 }
6222 if (error != 0) {
6223 KAUTH_DEBUG("%p CREATE - error %d returned by filesystem", dvp, error);
6224 goto out;
6225 }
6226
6227 vp = *vpp;
6228 old_error = error;
6229
6230 #if CONFIG_MACF
6231 if (!(flags & VN_CREATE_NOLABEL)) {
6232 error = vnode_label(vnode_mount(vp), dvp, vp, cnp, VNODE_LABEL_CREATE, ctx);
6233 if (error) {
6234 goto error;
6235 }
6236 }
6237 #endif
6238
6239 /*
6240 * If some of the requested attributes weren't handled by the VNOP,
6241 * use our fallback code.
6242 */
6243 if (!VATTR_ALL_SUPPORTED(vap) && *vpp) {
6244 KAUTH_DEBUG(" CREATE - doing fallback with ACL %p", vap->va_acl);
6245 error = vnode_setattr_fallback(*vpp, vap, ctx);
6246 }
6247 #if CONFIG_MACF
6248 error:
6249 #endif
6250 if ((error != 0) && (vp != (vnode_t)0)) {
6251 /* If we've done a compound open, close */
6252 if (batched && (old_error == 0) && (vap->va_type == VREG)) {
6253 VNOP_CLOSE(vp, fmode, ctx);
6254 }
6255
6256 /* Need to provide notifications if a create succeeded */
6257 if (!batched) {
6258 *vpp = (vnode_t) 0;
6259 vnode_put(vp);
6260 vp = NULLVP;
6261 }
6262 }
6263
6264 /*
6265 * For creation VNOPs, this is the equivalent of
6266 * lookup_handle_found_vnode.
6267 */
6268 if (kdebug_enable && *vpp) {
6269 kdebug_lookup(*vpp, cnp);
6270 }
6271
6272 out:
6273 vn_attribute_cleanup(vap, defaulted);
6274
6275 return error;
6276 }
6277
6278 static kauth_scope_t vnode_scope;
6279 static int vnode_authorize_callback(kauth_cred_t credential, void *idata, kauth_action_t action,
6280 uintptr_t arg0, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3);
6281 static int vnode_authorize_callback_int(kauth_action_t action, vfs_context_t ctx,
6282 vnode_t vp, vnode_t dvp, int *errorp);
6283
6284 typedef struct _vnode_authorize_context {
6285 vnode_t vp;
6286 struct vnode_attr *vap;
6287 vnode_t dvp;
6288 struct vnode_attr *dvap;
6289 vfs_context_t ctx;
6290 int flags;
6291 int flags_valid;
6292 #define _VAC_IS_OWNER (1<<0)
6293 #define _VAC_IN_GROUP (1<<1)
6294 #define _VAC_IS_DIR_OWNER (1<<2)
6295 #define _VAC_IN_DIR_GROUP (1<<3)
6296 #define _VAC_NO_VNODE_POINTERS (1<<4)
6297 } *vauth_ctx;
6298
6299 void
6300 vnode_authorize_init(void)
6301 {
6302 vnode_scope = kauth_register_scope(KAUTH_SCOPE_VNODE, vnode_authorize_callback, NULL);
6303 }
6304
6305 #define VATTR_PREPARE_DEFAULTED_UID 0x1
6306 #define VATTR_PREPARE_DEFAULTED_GID 0x2
6307 #define VATTR_PREPARE_DEFAULTED_MODE 0x4
6308
6309 int
6310 vn_attribute_prepare(vnode_t dvp, struct vnode_attr *vap, uint32_t *defaulted_fieldsp, vfs_context_t ctx)
6311 {
6312 kauth_acl_t nacl = NULL, oacl = NULL;
6313 int error;
6314
6315 /*
6316 * Handle ACL inheritance.
6317 */
6318 if (!(vap->va_vaflags & VA_NOINHERIT) && vfs_extendedsecurity(dvp->v_mount)) {
6319 /* save the original filesec */
6320 if (VATTR_IS_ACTIVE(vap, va_acl)) {
6321 oacl = vap->va_acl;
6322 }
6323
6324 vap->va_acl = NULL;
6325 if ((error = kauth_acl_inherit(dvp,
6326 oacl,
6327 &nacl,
6328 vap->va_type == VDIR,
6329 ctx)) != 0) {
6330 KAUTH_DEBUG("%p CREATE - error %d processing inheritance", dvp, error);
6331 return error;
6332 }
6333
6334 /*
6335 * If the generated ACL is NULL, then we can save ourselves some effort
6336 * by clearing the active bit.
6337 */
6338 if (nacl == NULL) {
6339 VATTR_CLEAR_ACTIVE(vap, va_acl);
6340 } else {
6341 vap->va_base_acl = oacl;
6342 VATTR_SET(vap, va_acl, nacl);
6343 }
6344 }
6345
6346 error = vnode_authattr_new_internal(dvp, vap, (vap->va_vaflags & VA_NOAUTH), defaulted_fieldsp, ctx);
6347 if (error) {
6348 vn_attribute_cleanup(vap, *defaulted_fieldsp);
6349 }
6350
6351 return error;
6352 }
6353
6354 void
6355 vn_attribute_cleanup(struct vnode_attr *vap, uint32_t defaulted_fields)
6356 {
6357 /*
6358 * If the caller supplied a filesec in vap, it has been replaced
6359 * now by the post-inheritance copy. We need to put the original back
6360 * and free the inherited product.
6361 */
6362 kauth_acl_t nacl, oacl;
6363
6364 if (VATTR_IS_ACTIVE(vap, va_acl)) {
6365 nacl = vap->va_acl;
6366 oacl = vap->va_base_acl;
6367
6368 if (oacl) {
6369 VATTR_SET(vap, va_acl, oacl);
6370 vap->va_base_acl = NULL;
6371 } else {
6372 VATTR_CLEAR_ACTIVE(vap, va_acl);
6373 }
6374
6375 if (nacl != NULL) {
6376 kauth_acl_free(nacl);
6377 }
6378 }
6379
6380 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_MODE) != 0) {
6381 VATTR_CLEAR_ACTIVE(vap, va_mode);
6382 }
6383 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_GID) != 0) {
6384 VATTR_CLEAR_ACTIVE(vap, va_gid);
6385 }
6386 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_UID) != 0) {
6387 VATTR_CLEAR_ACTIVE(vap, va_uid);
6388 }
6389
6390 return;
6391 }
6392
6393 int
6394 vn_authorize_unlink(vnode_t dvp, vnode_t vp, struct componentname *cnp, vfs_context_t ctx, __unused void *reserved)
6395 {
6396 #if !CONFIG_MACF
6397 #pragma unused(cnp)
6398 #endif
6399 int error = 0;
6400
6401 /*
6402 * Normally, unlinking of directories is not supported.
6403 * However, some file systems may have limited support.
6404 */
6405 if ((vp->v_type == VDIR) &&
6406 !(vp->v_mount->mnt_kern_flag & MNTK_DIR_HARDLINKS)) {
6407 return EPERM; /* POSIX */
6408 }
6409
6410 /* authorize the delete operation */
6411 #if CONFIG_MACF
6412 if (!error) {
6413 error = mac_vnode_check_unlink(ctx, dvp, vp, cnp);
6414 }
6415 #endif /* MAC */
6416 if (!error) {
6417 error = vnode_authorize(vp, dvp, KAUTH_VNODE_DELETE, ctx);
6418 }
6419
6420 return error;
6421 }
6422
6423 int
6424 vn_authorize_open_existing(vnode_t vp, struct componentname *cnp, int fmode, vfs_context_t ctx, void *reserved)
6425 {
6426 /* Open of existing case */
6427 kauth_action_t action;
6428 int error = 0;
6429 if (cnp->cn_ndp == NULL) {
6430 panic("NULL ndp");
6431 }
6432 if (reserved != NULL) {
6433 panic("reserved not NULL.");
6434 }
6435
6436 #if CONFIG_MACF
6437 /* XXX may do duplicate work here, but ignore that for now (idempotent) */
6438 if (vfs_flags(vnode_mount(vp)) & MNT_MULTILABEL) {
6439 error = vnode_label(vnode_mount(vp), NULL, vp, NULL, 0, ctx);
6440 if (error) {
6441 return error;
6442 }
6443 }
6444 #endif
6445
6446 if ((fmode & O_DIRECTORY) && vp->v_type != VDIR) {
6447 return ENOTDIR;
6448 }
6449
6450 if (vp->v_type == VSOCK && vp->v_tag != VT_FDESC) {
6451 return EOPNOTSUPP; /* Operation not supported on socket */
6452 }
6453
6454 if (vp->v_type == VLNK && (fmode & O_NOFOLLOW) != 0) {
6455 return ELOOP; /* O_NOFOLLOW was specified and the target is a symbolic link */
6456 }
6457
6458 /* disallow write operations on directories */
6459 if (vnode_isdir(vp) && (fmode & (FWRITE | O_TRUNC))) {
6460 return EISDIR;
6461 }
6462
6463 if ((cnp->cn_ndp->ni_flag & NAMEI_TRAILINGSLASH)) {
6464 if (vp->v_type != VDIR) {
6465 return ENOTDIR;
6466 }
6467 }
6468
6469 #if CONFIG_MACF
6470 /* If a file being opened is a shadow file containing
6471 * namedstream data, ignore the macf checks because it
6472 * is a kernel internal file and access should always
6473 * be allowed.
6474 */
6475 if (!(vnode_isshadow(vp) && vnode_isnamedstream(vp))) {
6476 error = mac_vnode_check_open(ctx, vp, fmode);
6477 if (error) {
6478 return error;
6479 }
6480 }
6481 #endif
6482
6483 /* compute action to be authorized */
6484 action = 0;
6485 if (fmode & FREAD) {
6486 action |= KAUTH_VNODE_READ_DATA;
6487 }
6488 if (fmode & (FWRITE | O_TRUNC)) {
6489 /*
6490 * If we are writing, appending, and not truncating,
6491 * indicate that we are appending so that if the
6492 * UF_APPEND or SF_APPEND bits are set, we do not deny
6493 * the open.
6494 */
6495 if ((fmode & O_APPEND) && !(fmode & O_TRUNC)) {
6496 action |= KAUTH_VNODE_APPEND_DATA;
6497 } else {
6498 action |= KAUTH_VNODE_WRITE_DATA;
6499 }
6500 }
6501 error = vnode_authorize(vp, NULL, action, ctx);
6502 #if NAMEDSTREAMS
6503 if (error == EACCES) {
6504 /*
6505 * Shadow files may exist on-disk with a different UID/GID
6506 * than that of the current context. Verify that this file
6507 * is really a shadow file. If it was created successfully
6508 * then it should be authorized.
6509 */
6510 if (vnode_isshadow(vp) && vnode_isnamedstream(vp)) {
6511 error = vnode_verifynamedstream(vp);
6512 }
6513 }
6514 #endif
6515
6516 return error;
6517 }
6518
6519 int
6520 vn_authorize_create(vnode_t dvp, struct componentname *cnp, struct vnode_attr *vap, vfs_context_t ctx, void *reserved)
6521 {
6522 #if !CONFIG_MACF
6523 #pragma unused(vap)
6524 #endif
6525 /* Creation case */
6526 int error;
6527
6528 if (cnp->cn_ndp == NULL) {
6529 panic("NULL cn_ndp");
6530 }
6531 if (reserved != NULL) {
6532 panic("reserved not NULL.");
6533 }
6534
6535 /* Only validate path for creation if we didn't do a complete lookup */
6536 if (cnp->cn_ndp->ni_flag & NAMEI_UNFINISHED) {
6537 error = lookup_validate_creation_path(cnp->cn_ndp);
6538 if (error) {
6539 return error;
6540 }
6541 }
6542
6543 #if CONFIG_MACF
6544 error = mac_vnode_check_create(ctx, dvp, cnp, vap);
6545 if (error) {
6546 return error;
6547 }
6548 #endif /* CONFIG_MACF */
6549
6550 return vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_FILE, ctx);
6551 }
6552
6553 int
6554 vn_authorize_rename(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp,
6555 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp,
6556 vfs_context_t ctx, void *reserved)
6557 {
6558 return vn_authorize_renamex(fdvp, fvp, fcnp, tdvp, tvp, tcnp, ctx, 0, reserved);
6559 }
6560
6561 int
6562 vn_authorize_renamex(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp,
6563 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp,
6564 vfs_context_t ctx, vfs_rename_flags_t flags, void *reserved)
6565 {
6566 return vn_authorize_renamex_with_paths(fdvp, fvp, fcnp, NULL, tdvp, tvp, tcnp, NULL, ctx, flags, reserved);
6567 }
6568
6569 int
6570 vn_authorize_renamex_with_paths(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp, const char *from_path,
6571 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp, const char *to_path,
6572 vfs_context_t ctx, vfs_rename_flags_t flags, void *reserved)
6573 {
6574 int error = 0;
6575 int moving = 0;
6576 bool swap = flags & VFS_RENAME_SWAP;
6577
6578 if (reserved != NULL) {
6579 panic("Passed something other than NULL as reserved field!");
6580 }
6581
6582 /*
6583 * Avoid renaming "." and "..".
6584 *
6585 * XXX No need to check for this in the FS. We should always have the leaves
6586 * in VFS in this case.
6587 */
6588 if (fvp->v_type == VDIR &&
6589 ((fdvp == fvp) ||
6590 (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
6591 ((fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT))) {
6592 error = EINVAL;
6593 goto out;
6594 }
6595
6596 if (tvp == NULLVP && vnode_compound_rename_available(tdvp)) {
6597 error = lookup_validate_creation_path(tcnp->cn_ndp);
6598 if (error) {
6599 goto out;
6600 }
6601 }
6602
6603 /***** <MACF> *****/
6604 #if CONFIG_MACF
6605 error = mac_vnode_check_rename(ctx, fdvp, fvp, fcnp, tdvp, tvp, tcnp);
6606 if (error) {
6607 goto out;
6608 }
6609 if (swap) {
6610 error = mac_vnode_check_rename(ctx, tdvp, tvp, tcnp, fdvp, fvp, fcnp);
6611 if (error) {
6612 goto out;
6613 }
6614 }
6615 #endif
6616 /***** </MACF> *****/
6617
6618 /***** <MiscChecks> *****/
6619 if (tvp != NULL) {
6620 if (!swap) {
6621 if (fvp->v_type == VDIR && tvp->v_type != VDIR) {
6622 error = ENOTDIR;
6623 goto out;
6624 } else if (fvp->v_type != VDIR && tvp->v_type == VDIR) {
6625 error = EISDIR;
6626 goto out;
6627 }
6628 }
6629 } else if (swap) {
6630 /*
6631 * Caller should have already checked this and returned
6632 * ENOENT. If we send back ENOENT here, caller will retry
6633 * which isn't what we want so we send back EINVAL here
6634 * instead.
6635 */
6636 error = EINVAL;
6637 goto out;
6638 }
6639
6640 if (fvp == tdvp) {
6641 error = EINVAL;
6642 goto out;
6643 }
6644
6645 /*
6646 * The following edge case is caught here:
6647 * (to cannot be a descendent of from)
6648 *
6649 * o fdvp
6650 * /
6651 * /
6652 * o fvp
6653 * \
6654 * \
6655 * o tdvp
6656 * /
6657 * /
6658 * o tvp
6659 */
6660 if (tdvp->v_parent == fvp) {
6661 error = EINVAL;
6662 goto out;
6663 }
6664
6665 if (swap && fdvp->v_parent == tvp) {
6666 error = EINVAL;
6667 goto out;
6668 }
6669 /***** </MiscChecks> *****/
6670
6671 /***** <Kauth> *****/
6672
6673 /*
6674 * As part of the Kauth step, we call out to allow 3rd-party
6675 * fileop notification of "about to rename". This is needed
6676 * in the event that 3rd-parties need to know that the DELETE
6677 * authorization is actually part of a rename. It's important
6678 * that we guarantee that the DELETE call-out will always be
6679 * made if the WILL_RENAME call-out is made. Another fileop
6680 * call-out will be performed once the operation is completed.
6681 * We can ignore the result of kauth_authorize_fileop().
6682 *
6683 * N.B. We are passing the vnode and *both* paths to each
6684 * call; kauth_authorize_fileop() extracts the "from" path
6685 * when posting a KAUTH_FILEOP_WILL_RENAME notification.
6686 * As such, we only post these notifications if all of the
6687 * information we need is provided.
6688 */
6689
6690 if (swap) {
6691 kauth_action_t f = 0, t = 0;
6692
6693 /*
6694 * Directories changing parents need ...ADD_SUBDIR... to
6695 * permit changing ".."
6696 */
6697 if (fdvp != tdvp) {
6698 if (vnode_isdir(fvp)) {
6699 f = KAUTH_VNODE_ADD_SUBDIRECTORY;
6700 }
6701 if (vnode_isdir(tvp)) {
6702 t = KAUTH_VNODE_ADD_SUBDIRECTORY;
6703 }
6704 }
6705 if (to_path != NULL) {
6706 kauth_authorize_fileop(vfs_context_ucred(ctx),
6707 KAUTH_FILEOP_WILL_RENAME,
6708 (uintptr_t)fvp,
6709 (uintptr_t)to_path);
6710 }
6711 error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE | f, ctx);
6712 if (error) {
6713 goto out;
6714 }
6715 if (from_path != NULL) {
6716 kauth_authorize_fileop(vfs_context_ucred(ctx),
6717 KAUTH_FILEOP_WILL_RENAME,
6718 (uintptr_t)tvp,
6719 (uintptr_t)from_path);
6720 }
6721 error = vnode_authorize(tvp, tdvp, KAUTH_VNODE_DELETE | t, ctx);
6722 if (error) {
6723 goto out;
6724 }
6725 f = vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE;
6726 t = vnode_isdir(tvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE;
6727 if (fdvp == tdvp) {
6728 error = vnode_authorize(fdvp, NULL, f | t, ctx);
6729 } else {
6730 error = vnode_authorize(fdvp, NULL, t, ctx);
6731 if (error) {
6732 goto out;
6733 }
6734 error = vnode_authorize(tdvp, NULL, f, ctx);
6735 }
6736 if (error) {
6737 goto out;
6738 }
6739 } else {
6740 error = 0;
6741 if ((tvp != NULL) && vnode_isdir(tvp)) {
6742 if (tvp != fdvp) {
6743 moving = 1;
6744 }
6745 } else if (tdvp != fdvp) {
6746 moving = 1;
6747 }
6748
6749 /*
6750 * must have delete rights to remove the old name even in
6751 * the simple case of fdvp == tdvp.
6752 *
6753 * If fvp is a directory, and we are changing it's parent,
6754 * then we also need rights to rewrite its ".." entry as well.
6755 */
6756 if (to_path != NULL) {
6757 kauth_authorize_fileop(vfs_context_ucred(ctx),
6758 KAUTH_FILEOP_WILL_RENAME,
6759 (uintptr_t)fvp,
6760 (uintptr_t)to_path);
6761 }
6762 if (vnode_isdir(fvp)) {
6763 if ((error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE | KAUTH_VNODE_ADD_SUBDIRECTORY, ctx)) != 0) {
6764 goto out;
6765 }
6766 } else {
6767 if ((error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE, ctx)) != 0) {
6768 goto out;
6769 }
6770 }
6771 if (moving) {
6772 /* moving into tdvp or tvp, must have rights to add */
6773 if ((error = vnode_authorize(((tvp != NULL) && vnode_isdir(tvp)) ? tvp : tdvp,
6774 NULL,
6775 vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE,
6776 ctx)) != 0) {
6777 goto out;
6778 }
6779 } else {
6780 /* node staying in same directory, must be allowed to add new name */
6781 if ((error = vnode_authorize(fdvp, NULL,
6782 vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE, ctx)) != 0) {
6783 goto out;
6784 }
6785 }
6786 /* overwriting tvp */
6787 if ((tvp != NULL) && !vnode_isdir(tvp) &&
6788 ((error = vnode_authorize(tvp, tdvp, KAUTH_VNODE_DELETE, ctx)) != 0)) {
6789 goto out;
6790 }
6791 }
6792
6793 /***** </Kauth> *****/
6794
6795 /* XXX more checks? */
6796 out:
6797 return error;
6798 }
6799
6800 int
6801 vn_authorize_mkdir(vnode_t dvp, struct componentname *cnp, struct vnode_attr *vap, vfs_context_t ctx, void *reserved)
6802 {
6803 #if !CONFIG_MACF
6804 #pragma unused(vap)
6805 #endif
6806 int error;
6807
6808 if (reserved != NULL) {
6809 panic("reserved not NULL in vn_authorize_mkdir()");
6810 }
6811
6812 /* XXX A hack for now, to make shadow files work */
6813 if (cnp->cn_ndp == NULL) {
6814 return 0;
6815 }
6816
6817 if (vnode_compound_mkdir_available(dvp)) {
6818 error = lookup_validate_creation_path(cnp->cn_ndp);
6819 if (error) {
6820 goto out;
6821 }
6822 }
6823
6824 #if CONFIG_MACF
6825 error = mac_vnode_check_create(ctx,
6826 dvp, cnp, vap);
6827 if (error) {
6828 goto out;
6829 }
6830 #endif
6831
6832 /* authorize addition of a directory to the parent */
6833 if ((error = vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_SUBDIRECTORY, ctx)) != 0) {
6834 goto out;
6835 }
6836
6837 out:
6838 return error;
6839 }
6840
6841 int
6842 vn_authorize_rmdir(vnode_t dvp, vnode_t vp, struct componentname *cnp, vfs_context_t ctx, void *reserved)
6843 {
6844 #if CONFIG_MACF
6845 int error;
6846 #else
6847 #pragma unused(cnp)
6848 #endif
6849 if (reserved != NULL) {
6850 panic("Non-NULL reserved argument to vn_authorize_rmdir()");
6851 }
6852
6853 if (vp->v_type != VDIR) {
6854 /*
6855 * rmdir only deals with directories
6856 */
6857 return ENOTDIR;
6858 }
6859
6860 if (dvp == vp) {
6861 /*
6862 * No rmdir "." please.
6863 */
6864 return EINVAL;
6865 }
6866
6867 #if CONFIG_MACF
6868 error = mac_vnode_check_unlink(ctx, dvp,
6869 vp, cnp);
6870 if (error) {
6871 return error;
6872 }
6873 #endif
6874
6875 return vnode_authorize(vp, dvp, KAUTH_VNODE_DELETE, ctx);
6876 }
6877
6878 /*
6879 * Authorizer for directory cloning. This does not use vnodes but instead
6880 * uses prefilled vnode attributes from the filesystem.
6881 *
6882 * The same function is called to set up the attributes required, perform the
6883 * authorization and cleanup (if required)
6884 */
6885 int
6886 vnode_attr_authorize_dir_clone(struct vnode_attr *vap, kauth_action_t action,
6887 struct vnode_attr *dvap, __unused vnode_t sdvp, mount_t mp,
6888 dir_clone_authorizer_op_t vattr_op, uint32_t flags, vfs_context_t ctx,
6889 __unused void *reserved)
6890 {
6891 int error;
6892 int is_suser = vfs_context_issuser(ctx);
6893
6894 if (vattr_op == OP_VATTR_SETUP) {
6895 VATTR_INIT(vap);
6896
6897 /*
6898 * When ACL inheritence is implemented, both vap->va_acl and
6899 * dvap->va_acl will be required (even as superuser).
6900 */
6901 VATTR_WANTED(vap, va_type);
6902 VATTR_WANTED(vap, va_mode);
6903 VATTR_WANTED(vap, va_flags);
6904 VATTR_WANTED(vap, va_uid);
6905 VATTR_WANTED(vap, va_gid);
6906 if (dvap) {
6907 VATTR_INIT(dvap);
6908 VATTR_WANTED(dvap, va_flags);
6909 }
6910
6911 if (!is_suser) {
6912 /*
6913 * If not superuser, we have to evaluate ACLs and
6914 * need the target directory gid to set the initial
6915 * gid of the new object.
6916 */
6917 VATTR_WANTED(vap, va_acl);
6918 if (dvap) {
6919 VATTR_WANTED(dvap, va_gid);
6920 }
6921 } else if (dvap && (flags & VNODE_CLONEFILE_NOOWNERCOPY)) {
6922 VATTR_WANTED(dvap, va_gid);
6923 }
6924 return 0;
6925 } else if (vattr_op == OP_VATTR_CLEANUP) {
6926 return 0; /* Nothing to do for now */
6927 }
6928
6929 /* dvap isn't used for authorization */
6930 error = vnode_attr_authorize(vap, NULL, mp, action, ctx);
6931
6932 if (error) {
6933 return error;
6934 }
6935
6936 /*
6937 * vn_attribute_prepare should be able to accept attributes as well as
6938 * vnodes but for now we do this inline.
6939 */
6940 if (!is_suser || (flags & VNODE_CLONEFILE_NOOWNERCOPY)) {
6941 /*
6942 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit
6943 * owner is set, that owner takes ownership of all new files.
6944 */
6945 if ((mp->mnt_flag & MNT_IGNORE_OWNERSHIP) &&
6946 (mp->mnt_fsowner != KAUTH_UID_NONE)) {
6947 VATTR_SET(vap, va_uid, mp->mnt_fsowner);
6948 } else {
6949 /* default owner is current user */
6950 VATTR_SET(vap, va_uid,
6951 kauth_cred_getuid(vfs_context_ucred(ctx)));
6952 }
6953
6954 if ((mp->mnt_flag & MNT_IGNORE_OWNERSHIP) &&
6955 (mp->mnt_fsgroup != KAUTH_GID_NONE)) {
6956 VATTR_SET(vap, va_gid, mp->mnt_fsgroup);
6957 } else {
6958 /*
6959 * default group comes from parent object,
6960 * fallback to current user
6961 */
6962 if (VATTR_IS_SUPPORTED(dvap, va_gid)) {
6963 VATTR_SET(vap, va_gid, dvap->va_gid);
6964 } else {
6965 VATTR_SET(vap, va_gid,
6966 kauth_cred_getgid(vfs_context_ucred(ctx)));
6967 }
6968 }
6969 }
6970
6971 /* Inherit SF_RESTRICTED bit from destination directory only */
6972 if (VATTR_IS_ACTIVE(vap, va_flags)) {
6973 VATTR_SET(vap, va_flags,
6974 ((vap->va_flags & ~(UF_DATAVAULT | SF_RESTRICTED)))); /* Turn off from source */
6975 if (VATTR_IS_ACTIVE(dvap, va_flags)) {
6976 VATTR_SET(vap, va_flags,
6977 vap->va_flags | (dvap->va_flags & (UF_DATAVAULT | SF_RESTRICTED)));
6978 }
6979 } else if (VATTR_IS_ACTIVE(dvap, va_flags)) {
6980 VATTR_SET(vap, va_flags, (dvap->va_flags & (UF_DATAVAULT | SF_RESTRICTED)));
6981 }
6982
6983 return 0;
6984 }
6985
6986
6987 /*
6988 * Authorize an operation on a vnode.
6989 *
6990 * This is KPI, but here because it needs vnode_scope.
6991 *
6992 * Returns: 0 Success
6993 * kauth_authorize_action:EPERM ...
6994 * xlate => EACCES Permission denied
6995 * kauth_authorize_action:0 Success
6996 * kauth_authorize_action: Depends on callback return; this is
6997 * usually only vnode_authorize_callback(),
6998 * but may include other listerners, if any
6999 * exist.
7000 * EROFS
7001 * EACCES
7002 * EPERM
7003 * ???
7004 */
7005 int
7006 vnode_authorize(vnode_t vp, vnode_t dvp, kauth_action_t action, vfs_context_t ctx)
7007 {
7008 int error, result;
7009
7010 /*
7011 * We can't authorize against a dead vnode; allow all operations through so that
7012 * the correct error can be returned.
7013 */
7014 if (vp->v_type == VBAD) {
7015 return 0;
7016 }
7017
7018 error = 0;
7019 result = kauth_authorize_action(vnode_scope, vfs_context_ucred(ctx), action,
7020 (uintptr_t)ctx, (uintptr_t)vp, (uintptr_t)dvp, (uintptr_t)&error);
7021 if (result == EPERM) { /* traditional behaviour */
7022 result = EACCES;
7023 }
7024 /* did the lower layers give a better error return? */
7025 if ((result != 0) && (error != 0)) {
7026 return error;
7027 }
7028 return result;
7029 }
7030
7031 /*
7032 * Test for vnode immutability.
7033 *
7034 * The 'append' flag is set when the authorization request is constrained
7035 * to operations which only request the right to append to a file.
7036 *
7037 * The 'ignore' flag is set when an operation modifying the immutability flags
7038 * is being authorized. We check the system securelevel to determine which
7039 * immutability flags we can ignore.
7040 */
7041 static int
7042 vnode_immutable(struct vnode_attr *vap, int append, int ignore)
7043 {
7044 int mask;
7045
7046 /* start with all bits precluding the operation */
7047 mask = IMMUTABLE | APPEND;
7048
7049 /* if appending only, remove the append-only bits */
7050 if (append) {
7051 mask &= ~APPEND;
7052 }
7053
7054 /* ignore only set when authorizing flags changes */
7055 if (ignore) {
7056 if (securelevel <= 0) {
7057 /* in insecure state, flags do not inhibit changes */
7058 mask = 0;
7059 } else {
7060 /* in secure state, user flags don't inhibit */
7061 mask &= ~(UF_IMMUTABLE | UF_APPEND);
7062 }
7063 }
7064 KAUTH_DEBUG("IMMUTABLE - file flags 0x%x mask 0x%x append = %d ignore = %d", vap->va_flags, mask, append, ignore);
7065 if ((vap->va_flags & mask) != 0) {
7066 return EPERM;
7067 }
7068 return 0;
7069 }
7070
7071 static int
7072 vauth_node_owner(struct vnode_attr *vap, kauth_cred_t cred)
7073 {
7074 int result;
7075
7076 /* default assumption is not-owner */
7077 result = 0;
7078
7079 /*
7080 * If the filesystem has given us a UID, we treat this as authoritative.
7081 */
7082 if (vap && VATTR_IS_SUPPORTED(vap, va_uid)) {
7083 result = (vap->va_uid == kauth_cred_getuid(cred)) ? 1 : 0;
7084 }
7085 /* we could test the owner UUID here if we had a policy for it */
7086
7087 return result;
7088 }
7089
7090 /*
7091 * vauth_node_group
7092 *
7093 * Description: Ask if a cred is a member of the group owning the vnode object
7094 *
7095 * Parameters: vap vnode attribute
7096 * vap->va_gid group owner of vnode object
7097 * cred credential to check
7098 * ismember pointer to where to put the answer
7099 * idontknow Return this if we can't get an answer
7100 *
7101 * Returns: 0 Success
7102 * idontknow Can't get information
7103 * kauth_cred_ismember_gid:? Error from kauth subsystem
7104 * kauth_cred_ismember_gid:? Error from kauth subsystem
7105 */
7106 static int
7107 vauth_node_group(struct vnode_attr *vap, kauth_cred_t cred, int *ismember, int idontknow)
7108 {
7109 int error;
7110 int result;
7111
7112 error = 0;
7113 result = 0;
7114
7115 /*
7116 * The caller is expected to have asked the filesystem for a group
7117 * at some point prior to calling this function. The answer may
7118 * have been that there is no group ownership supported for the
7119 * vnode object, in which case we return
7120 */
7121 if (vap && VATTR_IS_SUPPORTED(vap, va_gid)) {
7122 error = kauth_cred_ismember_gid(cred, vap->va_gid, &result);
7123 /*
7124 * Credentials which are opted into external group membership
7125 * resolution which are not known to the external resolver
7126 * will result in an ENOENT error. We translate this into
7127 * the appropriate 'idontknow' response for our caller.
7128 *
7129 * XXX We do not make a distinction here between an ENOENT
7130 * XXX arising from a response from the external resolver,
7131 * XXX and an ENOENT which is internally generated. This is
7132 * XXX a deficiency of the published kauth_cred_ismember_gid()
7133 * XXX KPI which can not be overcome without new KPI. For
7134 * XXX all currently known cases, however, this wil result
7135 * XXX in correct behaviour.
7136 */
7137 if (error == ENOENT) {
7138 error = idontknow;
7139 }
7140 }
7141 /*
7142 * XXX We could test the group UUID here if we had a policy for it,
7143 * XXX but this is problematic from the perspective of synchronizing
7144 * XXX group UUID and POSIX GID ownership of a file and keeping the
7145 * XXX values coherent over time. The problem is that the local
7146 * XXX system will vend transient group UUIDs for unknown POSIX GID
7147 * XXX values, and these are not persistent, whereas storage of values
7148 * XXX is persistent. One potential solution to this is a local
7149 * XXX (persistent) replica of remote directory entries and vended
7150 * XXX local ids in a local directory server (think in terms of a
7151 * XXX caching DNS server).
7152 */
7153
7154 if (!error) {
7155 *ismember = result;
7156 }
7157 return error;
7158 }
7159
7160 static int
7161 vauth_file_owner(vauth_ctx vcp)
7162 {
7163 int result;
7164
7165 if (vcp->flags_valid & _VAC_IS_OWNER) {
7166 result = (vcp->flags & _VAC_IS_OWNER) ? 1 : 0;
7167 } else {
7168 result = vauth_node_owner(vcp->vap, vcp->ctx->vc_ucred);
7169
7170 /* cache our result */
7171 vcp->flags_valid |= _VAC_IS_OWNER;
7172 if (result) {
7173 vcp->flags |= _VAC_IS_OWNER;
7174 } else {
7175 vcp->flags &= ~_VAC_IS_OWNER;
7176 }
7177 }
7178 return result;
7179 }
7180
7181
7182 /*
7183 * vauth_file_ingroup
7184 *
7185 * Description: Ask if a user is a member of the group owning the directory
7186 *
7187 * Parameters: vcp The vnode authorization context that
7188 * contains the user and directory info
7189 * vcp->flags_valid Valid flags
7190 * vcp->flags Flags values
7191 * vcp->vap File vnode attributes
7192 * vcp->ctx VFS Context (for user)
7193 * ismember pointer to where to put the answer
7194 * idontknow Return this if we can't get an answer
7195 *
7196 * Returns: 0 Success
7197 * vauth_node_group:? Error from vauth_node_group()
7198 *
7199 * Implicit returns: *ismember 0 The user is not a group member
7200 * 1 The user is a group member
7201 */
7202 static int
7203 vauth_file_ingroup(vauth_ctx vcp, int *ismember, int idontknow)
7204 {
7205 int error;
7206
7207 /* Check for a cached answer first, to avoid the check if possible */
7208 if (vcp->flags_valid & _VAC_IN_GROUP) {
7209 *ismember = (vcp->flags & _VAC_IN_GROUP) ? 1 : 0;
7210 error = 0;
7211 } else {
7212 /* Otherwise, go look for it */
7213 error = vauth_node_group(vcp->vap, vcp->ctx->vc_ucred, ismember, idontknow);
7214
7215 if (!error) {
7216 /* cache our result */
7217 vcp->flags_valid |= _VAC_IN_GROUP;
7218 if (*ismember) {
7219 vcp->flags |= _VAC_IN_GROUP;
7220 } else {
7221 vcp->flags &= ~_VAC_IN_GROUP;
7222 }
7223 }
7224 }
7225 return error;
7226 }
7227
7228 static int
7229 vauth_dir_owner(vauth_ctx vcp)
7230 {
7231 int result;
7232
7233 if (vcp->flags_valid & _VAC_IS_DIR_OWNER) {
7234 result = (vcp->flags & _VAC_IS_DIR_OWNER) ? 1 : 0;
7235 } else {
7236 result = vauth_node_owner(vcp->dvap, vcp->ctx->vc_ucred);
7237
7238 /* cache our result */
7239 vcp->flags_valid |= _VAC_IS_DIR_OWNER;
7240 if (result) {
7241 vcp->flags |= _VAC_IS_DIR_OWNER;
7242 } else {
7243 vcp->flags &= ~_VAC_IS_DIR_OWNER;
7244 }
7245 }
7246 return result;
7247 }
7248
7249 /*
7250 * vauth_dir_ingroup
7251 *
7252 * Description: Ask if a user is a member of the group owning the directory
7253 *
7254 * Parameters: vcp The vnode authorization context that
7255 * contains the user and directory info
7256 * vcp->flags_valid Valid flags
7257 * vcp->flags Flags values
7258 * vcp->dvap Dir vnode attributes
7259 * vcp->ctx VFS Context (for user)
7260 * ismember pointer to where to put the answer
7261 * idontknow Return this if we can't get an answer
7262 *
7263 * Returns: 0 Success
7264 * vauth_node_group:? Error from vauth_node_group()
7265 *
7266 * Implicit returns: *ismember 0 The user is not a group member
7267 * 1 The user is a group member
7268 */
7269 static int
7270 vauth_dir_ingroup(vauth_ctx vcp, int *ismember, int idontknow)
7271 {
7272 int error;
7273
7274 /* Check for a cached answer first, to avoid the check if possible */
7275 if (vcp->flags_valid & _VAC_IN_DIR_GROUP) {
7276 *ismember = (vcp->flags & _VAC_IN_DIR_GROUP) ? 1 : 0;
7277 error = 0;
7278 } else {
7279 /* Otherwise, go look for it */
7280 error = vauth_node_group(vcp->dvap, vcp->ctx->vc_ucred, ismember, idontknow);
7281
7282 if (!error) {
7283 /* cache our result */
7284 vcp->flags_valid |= _VAC_IN_DIR_GROUP;
7285 if (*ismember) {
7286 vcp->flags |= _VAC_IN_DIR_GROUP;
7287 } else {
7288 vcp->flags &= ~_VAC_IN_DIR_GROUP;
7289 }
7290 }
7291 }
7292 return error;
7293 }
7294
7295 /*
7296 * Test the posix permissions in (vap) to determine whether (credential)
7297 * may perform (action)
7298 */
7299 static int
7300 vnode_authorize_posix(vauth_ctx vcp, int action, int on_dir)
7301 {
7302 struct vnode_attr *vap;
7303 int needed, error, owner_ok, group_ok, world_ok, ismember;
7304 #ifdef KAUTH_DEBUG_ENABLE
7305 const char *where = "uninitialized";
7306 # define _SETWHERE(c) where = c;
7307 #else
7308 # define _SETWHERE(c)
7309 #endif
7310
7311 /* checking file or directory? */
7312 if (on_dir) {
7313 vap = vcp->dvap;
7314 } else {
7315 vap = vcp->vap;
7316 }
7317
7318 error = 0;
7319
7320 /*
7321 * We want to do as little work here as possible. So first we check
7322 * which sets of permissions grant us the access we need, and avoid checking
7323 * whether specific permissions grant access when more generic ones would.
7324 */
7325
7326 /* owner permissions */
7327 needed = 0;
7328 if (action & VREAD) {
7329 needed |= S_IRUSR;
7330 }
7331 if (action & VWRITE) {
7332 needed |= S_IWUSR;
7333 }
7334 if (action & VEXEC) {
7335 needed |= S_IXUSR;
7336 }
7337 owner_ok = (needed & vap->va_mode) == needed;
7338
7339 /* group permissions */
7340 needed = 0;
7341 if (action & VREAD) {
7342 needed |= S_IRGRP;
7343 }
7344 if (action & VWRITE) {
7345 needed |= S_IWGRP;
7346 }
7347 if (action & VEXEC) {
7348 needed |= S_IXGRP;
7349 }
7350 group_ok = (needed & vap->va_mode) == needed;
7351
7352 /* world permissions */
7353 needed = 0;
7354 if (action & VREAD) {
7355 needed |= S_IROTH;
7356 }
7357 if (action & VWRITE) {
7358 needed |= S_IWOTH;
7359 }
7360 if (action & VEXEC) {
7361 needed |= S_IXOTH;
7362 }
7363 world_ok = (needed & vap->va_mode) == needed;
7364
7365 /* If granted/denied by all three, we're done */
7366 if (owner_ok && group_ok && world_ok) {
7367 _SETWHERE("all");
7368 goto out;
7369 }
7370 if (!owner_ok && !group_ok && !world_ok) {
7371 _SETWHERE("all");
7372 error = EACCES;
7373 goto out;
7374 }
7375
7376 /* Check ownership (relatively cheap) */
7377 if ((on_dir && vauth_dir_owner(vcp)) ||
7378 (!on_dir && vauth_file_owner(vcp))) {
7379 _SETWHERE("user");
7380 if (!owner_ok) {
7381 error = EACCES;
7382 }
7383 goto out;
7384 }
7385
7386 /* Not owner; if group and world both grant it we're done */
7387 if (group_ok && world_ok) {
7388 _SETWHERE("group/world");
7389 goto out;
7390 }
7391 if (!group_ok && !world_ok) {
7392 _SETWHERE("group/world");
7393 error = EACCES;
7394 goto out;
7395 }
7396
7397 /* Check group membership (most expensive) */
7398 ismember = 0; /* Default to allow, if the target has no group owner */
7399
7400 /*
7401 * In the case we can't get an answer about the user from the call to
7402 * vauth_dir_ingroup() or vauth_file_ingroup(), we want to fail on
7403 * the side of caution, rather than simply granting access, or we will
7404 * fail to correctly implement exclusion groups, so we set the third
7405 * parameter on the basis of the state of 'group_ok'.
7406 */
7407 if (on_dir) {
7408 error = vauth_dir_ingroup(vcp, &ismember, (!group_ok ? EACCES : 0));
7409 } else {
7410 error = vauth_file_ingroup(vcp, &ismember, (!group_ok ? EACCES : 0));
7411 }
7412 if (error) {
7413 if (!group_ok) {
7414 ismember = 1;
7415 }
7416 error = 0;
7417 }
7418 if (ismember) {
7419 _SETWHERE("group");
7420 if (!group_ok) {
7421 error = EACCES;
7422 }
7423 goto out;
7424 }
7425
7426 /* Not owner, not in group, use world result */
7427 _SETWHERE("world");
7428 if (!world_ok) {
7429 error = EACCES;
7430 }
7431
7432 /* FALLTHROUGH */
7433
7434 out:
7435 KAUTH_DEBUG("%p %s - posix %s permissions : need %s%s%s %x have %s%s%s%s%s%s%s%s%s UID = %d file = %d,%d",
7436 vcp->vp, (error == 0) ? "ALLOWED" : "DENIED", where,
7437 (action & VREAD) ? "r" : "-",
7438 (action & VWRITE) ? "w" : "-",
7439 (action & VEXEC) ? "x" : "-",
7440 needed,
7441 (vap->va_mode & S_IRUSR) ? "r" : "-",
7442 (vap->va_mode & S_IWUSR) ? "w" : "-",
7443 (vap->va_mode & S_IXUSR) ? "x" : "-",
7444 (vap->va_mode & S_IRGRP) ? "r" : "-",
7445 (vap->va_mode & S_IWGRP) ? "w" : "-",
7446 (vap->va_mode & S_IXGRP) ? "x" : "-",
7447 (vap->va_mode & S_IROTH) ? "r" : "-",
7448 (vap->va_mode & S_IWOTH) ? "w" : "-",
7449 (vap->va_mode & S_IXOTH) ? "x" : "-",
7450 kauth_cred_getuid(vcp->ctx->vc_ucred),
7451 on_dir ? vcp->dvap->va_uid : vcp->vap->va_uid,
7452 on_dir ? vcp->dvap->va_gid : vcp->vap->va_gid);
7453 return error;
7454 }
7455
7456 /*
7457 * Authorize the deletion of the node vp from the directory dvp.
7458 *
7459 * We assume that:
7460 * - Neither the node nor the directory are immutable.
7461 * - The user is not the superuser.
7462 *
7463 * The precedence of factors for authorizing or denying delete for a credential
7464 *
7465 * 1) Explicit ACE on the node. (allow or deny DELETE)
7466 * 2) Explicit ACE on the directory (allow or deny DELETE_CHILD).
7467 *
7468 * If there are conflicting ACEs on the node and the directory, the node
7469 * ACE wins.
7470 *
7471 * 3) Sticky bit on the directory.
7472 * Deletion is not permitted if the directory is sticky and the caller is
7473 * not owner of the node or directory. The sticky bit rules are like a deny
7474 * delete ACE except lower in priority than ACL's either allowing or denying
7475 * delete.
7476 *
7477 * 4) POSIX permisions on the directory.
7478 *
7479 * As an optimization, we cache whether or not delete child is permitted
7480 * on directories. This enables us to skip directory ACL and POSIX checks
7481 * as we already have the result from those checks. However, we always check the
7482 * node ACL and, if the directory has the sticky bit set, we always check its
7483 * ACL (even for a directory with an authorized delete child). Furthermore,
7484 * caching the delete child authorization is independent of the sticky bit
7485 * being set as it is only applicable in determining whether the node can be
7486 * deleted or not.
7487 */
7488 static int
7489 vnode_authorize_delete(vauth_ctx vcp, boolean_t cached_delete_child)
7490 {
7491 struct vnode_attr *vap = vcp->vap;
7492 struct vnode_attr *dvap = vcp->dvap;
7493 kauth_cred_t cred = vcp->ctx->vc_ucred;
7494 struct kauth_acl_eval eval;
7495 int error, ismember;
7496
7497 /* Check the ACL on the node first */
7498 if (VATTR_IS_NOT(vap, va_acl, NULL)) {
7499 eval.ae_requested = KAUTH_VNODE_DELETE;
7500 eval.ae_acl = &vap->va_acl->acl_ace[0];
7501 eval.ae_count = vap->va_acl->acl_entrycount;
7502 eval.ae_options = 0;
7503 if (vauth_file_owner(vcp)) {
7504 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7505 }
7506 /*
7507 * We use ENOENT as a marker to indicate we could not get
7508 * information in order to delay evaluation until after we
7509 * have the ACL evaluation answer. Previously, we would
7510 * always deny the operation at this point.
7511 */
7512 if ((error = vauth_file_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT) {
7513 return error;
7514 }
7515 if (error == ENOENT) {
7516 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7517 } else if (ismember) {
7518 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7519 }
7520 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7521 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7522 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7523 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7524
7525 if ((error = kauth_acl_evaluate(cred, &eval)) != 0) {
7526 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7527 return error;
7528 }
7529
7530 switch (eval.ae_result) {
7531 case KAUTH_RESULT_DENY:
7532 KAUTH_DEBUG("%p DENIED - denied by ACL", vcp->vp);
7533 return EACCES;
7534 case KAUTH_RESULT_ALLOW:
7535 KAUTH_DEBUG("%p ALLOWED - granted by ACL", vcp->vp);
7536 return 0;
7537 case KAUTH_RESULT_DEFER:
7538 default:
7539 /* Defer to directory */
7540 KAUTH_DEBUG("%p DEFERRED - by file ACL", vcp->vp);
7541 break;
7542 }
7543 }
7544
7545 /*
7546 * Without a sticky bit, a previously authorized delete child is
7547 * sufficient to authorize this delete.
7548 *
7549 * If the sticky bit is set, a directory ACL which allows delete child
7550 * overrides a (potential) sticky bit deny. The authorized delete child
7551 * cannot tell us if it was authorized because of an explicit delete
7552 * child allow ACE or because of POSIX permisions so we have to check
7553 * the directory ACL everytime if the directory has a sticky bit.
7554 */
7555 if (!(dvap->va_mode & S_ISTXT) && cached_delete_child) {
7556 KAUTH_DEBUG("%p ALLOWED - granted by directory ACL or POSIX permissions and no sticky bit on directory", vcp->vp);
7557 return 0;
7558 }
7559
7560 /* check the ACL on the directory */
7561 if (VATTR_IS_NOT(dvap, va_acl, NULL)) {
7562 eval.ae_requested = KAUTH_VNODE_DELETE_CHILD;
7563 eval.ae_acl = &dvap->va_acl->acl_ace[0];
7564 eval.ae_count = dvap->va_acl->acl_entrycount;
7565 eval.ae_options = 0;
7566 if (vauth_dir_owner(vcp)) {
7567 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7568 }
7569 /*
7570 * We use ENOENT as a marker to indicate we could not get
7571 * information in order to delay evaluation until after we
7572 * have the ACL evaluation answer. Previously, we would
7573 * always deny the operation at this point.
7574 */
7575 if ((error = vauth_dir_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT) {
7576 return error;
7577 }
7578 if (error == ENOENT) {
7579 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7580 } else if (ismember) {
7581 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7582 }
7583 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7584 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7585 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7586 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7587
7588 /*
7589 * If there is no entry, we are going to defer to other
7590 * authorization mechanisms.
7591 */
7592 error = kauth_acl_evaluate(cred, &eval);
7593
7594 if (error != 0) {
7595 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7596 return error;
7597 }
7598 switch (eval.ae_result) {
7599 case KAUTH_RESULT_DENY:
7600 KAUTH_DEBUG("%p DENIED - denied by directory ACL", vcp->vp);
7601 return EACCES;
7602 case KAUTH_RESULT_ALLOW:
7603 KAUTH_DEBUG("%p ALLOWED - granted by directory ACL", vcp->vp);
7604 if (!cached_delete_child && vcp->dvp) {
7605 vnode_cache_authorized_action(vcp->dvp,
7606 vcp->ctx, KAUTH_VNODE_DELETE_CHILD);
7607 }
7608 return 0;
7609 case KAUTH_RESULT_DEFER:
7610 default:
7611 /* Deferred by directory ACL */
7612 KAUTH_DEBUG("%p DEFERRED - directory ACL", vcp->vp);
7613 break;
7614 }
7615 }
7616
7617 /*
7618 * From this point, we can't explicitly allow and if we reach the end
7619 * of the function without a denial, then the delete is authorized.
7620 */
7621 if (!cached_delete_child) {
7622 if (vnode_authorize_posix(vcp, VWRITE, 1 /* on_dir */) != 0) {
7623 KAUTH_DEBUG("%p DENIED - denied by posix permisssions", vcp->vp);
7624 return EACCES;
7625 }
7626 /*
7627 * Cache the authorized action on the vnode if allowed by the
7628 * directory ACL or POSIX permissions. It is correct to cache
7629 * this action even if sticky bit would deny deleting the node.
7630 */
7631 if (vcp->dvp) {
7632 vnode_cache_authorized_action(vcp->dvp, vcp->ctx,
7633 KAUTH_VNODE_DELETE_CHILD);
7634 }
7635 }
7636
7637 /* enforce sticky bit behaviour */
7638 if ((dvap->va_mode & S_ISTXT) && !vauth_file_owner(vcp) && !vauth_dir_owner(vcp)) {
7639 KAUTH_DEBUG("%p DENIED - sticky bit rules (user %d file %d dir %d)",
7640 vcp->vp, cred->cr_posix.cr_uid, vap->va_uid, dvap->va_uid);
7641 return EACCES;
7642 }
7643
7644 /* not denied, must be OK */
7645 return 0;
7646 }
7647
7648
7649 /*
7650 * Authorize an operation based on the node's attributes.
7651 */
7652 static int
7653 vnode_authorize_simple(vauth_ctx vcp, kauth_ace_rights_t acl_rights, kauth_ace_rights_t preauth_rights, boolean_t *found_deny)
7654 {
7655 struct vnode_attr *vap = vcp->vap;
7656 kauth_cred_t cred = vcp->ctx->vc_ucred;
7657 struct kauth_acl_eval eval;
7658 int error, ismember;
7659 mode_t posix_action;
7660
7661 /*
7662 * If we are the file owner, we automatically have some rights.
7663 *
7664 * Do we need to expand this to support group ownership?
7665 */
7666 if (vauth_file_owner(vcp)) {
7667 acl_rights &= ~(KAUTH_VNODE_WRITE_SECURITY);
7668 }
7669
7670 /*
7671 * If we are checking both TAKE_OWNERSHIP and WRITE_SECURITY, we can
7672 * mask the latter. If TAKE_OWNERSHIP is requested the caller is about to
7673 * change ownership to themselves, and WRITE_SECURITY is implicitly
7674 * granted to the owner. We need to do this because at this point
7675 * WRITE_SECURITY may not be granted as the caller is not currently
7676 * the owner.
7677 */
7678 if ((acl_rights & KAUTH_VNODE_TAKE_OWNERSHIP) &&
7679 (acl_rights & KAUTH_VNODE_WRITE_SECURITY)) {
7680 acl_rights &= ~KAUTH_VNODE_WRITE_SECURITY;
7681 }
7682
7683 if (acl_rights == 0) {
7684 KAUTH_DEBUG("%p ALLOWED - implicit or no rights required", vcp->vp);
7685 return 0;
7686 }
7687
7688 /* if we have an ACL, evaluate it */
7689 if (VATTR_IS_NOT(vap, va_acl, NULL)) {
7690 eval.ae_requested = acl_rights;
7691 eval.ae_acl = &vap->va_acl->acl_ace[0];
7692 eval.ae_count = vap->va_acl->acl_entrycount;
7693 eval.ae_options = 0;
7694 if (vauth_file_owner(vcp)) {
7695 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7696 }
7697 /*
7698 * We use ENOENT as a marker to indicate we could not get
7699 * information in order to delay evaluation until after we
7700 * have the ACL evaluation answer. Previously, we would
7701 * always deny the operation at this point.
7702 */
7703 if ((error = vauth_file_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT) {
7704 return error;
7705 }
7706 if (error == ENOENT) {
7707 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7708 } else if (ismember) {
7709 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7710 }
7711 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7712 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7713 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7714 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7715
7716 if ((error = kauth_acl_evaluate(cred, &eval)) != 0) {
7717 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7718 return error;
7719 }
7720
7721 switch (eval.ae_result) {
7722 case KAUTH_RESULT_DENY:
7723 KAUTH_DEBUG("%p DENIED - by ACL", vcp->vp);
7724 return EACCES; /* deny, deny, counter-allege */
7725 case KAUTH_RESULT_ALLOW:
7726 KAUTH_DEBUG("%p ALLOWED - all rights granted by ACL", vcp->vp);
7727 return 0;
7728 case KAUTH_RESULT_DEFER:
7729 default:
7730 /* Effectively the same as !delete_child_denied */
7731 KAUTH_DEBUG("%p DEFERRED - directory ACL", vcp->vp);
7732 break;
7733 }
7734
7735 *found_deny = eval.ae_found_deny;
7736
7737 /* fall through and evaluate residual rights */
7738 } else {
7739 /* no ACL, everything is residual */
7740 eval.ae_residual = acl_rights;
7741 }
7742
7743 /*
7744 * Grant residual rights that have been pre-authorized.
7745 */
7746 eval.ae_residual &= ~preauth_rights;
7747
7748 /*
7749 * We grant WRITE_ATTRIBUTES to the owner if it hasn't been denied.
7750 */
7751 if (vauth_file_owner(vcp)) {
7752 eval.ae_residual &= ~KAUTH_VNODE_WRITE_ATTRIBUTES;
7753 }
7754
7755 if (eval.ae_residual == 0) {
7756 KAUTH_DEBUG("%p ALLOWED - rights already authorized", vcp->vp);
7757 return 0;
7758 }
7759
7760 /*
7761 * Bail if we have residual rights that can't be granted by posix permissions,
7762 * or aren't presumed granted at this point.
7763 *
7764 * XXX these can be collapsed for performance
7765 */
7766 if (eval.ae_residual & KAUTH_VNODE_CHANGE_OWNER) {
7767 KAUTH_DEBUG("%p DENIED - CHANGE_OWNER not permitted", vcp->vp);
7768 return EACCES;
7769 }
7770 if (eval.ae_residual & KAUTH_VNODE_WRITE_SECURITY) {
7771 KAUTH_DEBUG("%p DENIED - WRITE_SECURITY not permitted", vcp->vp);
7772 return EACCES;
7773 }
7774
7775 #if DIAGNOSTIC
7776 if (eval.ae_residual & KAUTH_VNODE_DELETE) {
7777 panic("vnode_authorize: can't be checking delete permission here");
7778 }
7779 #endif
7780
7781 /*
7782 * Compute the fallback posix permissions that will satisfy the remaining
7783 * rights.
7784 */
7785 posix_action = 0;
7786 if (eval.ae_residual & (KAUTH_VNODE_READ_DATA |
7787 KAUTH_VNODE_LIST_DIRECTORY |
7788 KAUTH_VNODE_READ_EXTATTRIBUTES)) {
7789 posix_action |= VREAD;
7790 }
7791 if (eval.ae_residual & (KAUTH_VNODE_WRITE_DATA |
7792 KAUTH_VNODE_ADD_FILE |
7793 KAUTH_VNODE_ADD_SUBDIRECTORY |
7794 KAUTH_VNODE_DELETE_CHILD |
7795 KAUTH_VNODE_WRITE_ATTRIBUTES |
7796 KAUTH_VNODE_WRITE_EXTATTRIBUTES)) {
7797 posix_action |= VWRITE;
7798 }
7799 if (eval.ae_residual & (KAUTH_VNODE_EXECUTE |
7800 KAUTH_VNODE_SEARCH)) {
7801 posix_action |= VEXEC;
7802 }
7803
7804 if (posix_action != 0) {
7805 return vnode_authorize_posix(vcp, posix_action, 0 /* !on_dir */);
7806 } else {
7807 KAUTH_DEBUG("%p ALLOWED - residual rights %s%s%s%s%s%s%s%s%s%s%s%s%s%s granted due to no posix mapping",
7808 vcp->vp,
7809 (eval.ae_residual & KAUTH_VNODE_READ_DATA)
7810 ? vnode_isdir(vcp->vp) ? " LIST_DIRECTORY" : " READ_DATA" : "",
7811 (eval.ae_residual & KAUTH_VNODE_WRITE_DATA)
7812 ? vnode_isdir(vcp->vp) ? " ADD_FILE" : " WRITE_DATA" : "",
7813 (eval.ae_residual & KAUTH_VNODE_EXECUTE)
7814 ? vnode_isdir(vcp->vp) ? " SEARCH" : " EXECUTE" : "",
7815 (eval.ae_residual & KAUTH_VNODE_DELETE)
7816 ? " DELETE" : "",
7817 (eval.ae_residual & KAUTH_VNODE_APPEND_DATA)
7818 ? vnode_isdir(vcp->vp) ? " ADD_SUBDIRECTORY" : " APPEND_DATA" : "",
7819 (eval.ae_residual & KAUTH_VNODE_DELETE_CHILD)
7820 ? " DELETE_CHILD" : "",
7821 (eval.ae_residual & KAUTH_VNODE_READ_ATTRIBUTES)
7822 ? " READ_ATTRIBUTES" : "",
7823 (eval.ae_residual & KAUTH_VNODE_WRITE_ATTRIBUTES)
7824 ? " WRITE_ATTRIBUTES" : "",
7825 (eval.ae_residual & KAUTH_VNODE_READ_EXTATTRIBUTES)
7826 ? " READ_EXTATTRIBUTES" : "",
7827 (eval.ae_residual & KAUTH_VNODE_WRITE_EXTATTRIBUTES)
7828 ? " WRITE_EXTATTRIBUTES" : "",
7829 (eval.ae_residual & KAUTH_VNODE_READ_SECURITY)
7830 ? " READ_SECURITY" : "",
7831 (eval.ae_residual & KAUTH_VNODE_WRITE_SECURITY)
7832 ? " WRITE_SECURITY" : "",
7833 (eval.ae_residual & KAUTH_VNODE_CHECKIMMUTABLE)
7834 ? " CHECKIMMUTABLE" : "",
7835 (eval.ae_residual & KAUTH_VNODE_CHANGE_OWNER)
7836 ? " CHANGE_OWNER" : "");
7837 }
7838
7839 /*
7840 * Lack of required Posix permissions implies no reason to deny access.
7841 */
7842 return 0;
7843 }
7844
7845 /*
7846 * Check for file immutability.
7847 */
7848 static int
7849 vnode_authorize_checkimmutable(mount_t mp, struct vnode_attr *vap, int rights, int ignore)
7850 {
7851 int error;
7852 int append;
7853
7854 /*
7855 * Perform immutability checks for operations that change data.
7856 *
7857 * Sockets, fifos and devices require special handling.
7858 */
7859 switch (vap->va_type) {
7860 case VSOCK:
7861 case VFIFO:
7862 case VBLK:
7863 case VCHR:
7864 /*
7865 * Writing to these nodes does not change the filesystem data,
7866 * so forget that it's being tried.
7867 */
7868 rights &= ~KAUTH_VNODE_WRITE_DATA;
7869 break;
7870 default:
7871 break;
7872 }
7873
7874 error = 0;
7875 if (rights & KAUTH_VNODE_WRITE_RIGHTS) {
7876 /* check per-filesystem options if possible */
7877 if (mp != NULL) {
7878 /* check for no-EA filesystems */
7879 if ((rights & KAUTH_VNODE_WRITE_EXTATTRIBUTES) &&
7880 (vfs_flags(mp) & MNT_NOUSERXATTR)) {
7881 KAUTH_DEBUG("%p DENIED - filesystem disallowed extended attributes", vap);
7882 error = EACCES; /* User attributes disabled */
7883 goto out;
7884 }
7885 }
7886
7887 /*
7888 * check for file immutability. first, check if the requested rights are
7889 * allowable for a UF_APPEND file.
7890 */
7891 append = 0;
7892 if (vap->va_type == VDIR) {
7893 if ((rights & (KAUTH_VNODE_ADD_FILE | KAUTH_VNODE_ADD_SUBDIRECTORY | KAUTH_VNODE_WRITE_EXTATTRIBUTES)) == rights) {
7894 append = 1;
7895 }
7896 } else {
7897 if ((rights & (KAUTH_VNODE_APPEND_DATA | KAUTH_VNODE_WRITE_EXTATTRIBUTES)) == rights) {
7898 append = 1;
7899 }
7900 }
7901 if ((error = vnode_immutable(vap, append, ignore)) != 0) {
7902 KAUTH_DEBUG("%p DENIED - file is immutable", vap);
7903 goto out;
7904 }
7905 }
7906 out:
7907 return error;
7908 }
7909
7910 /*
7911 * Handle authorization actions for filesystems that advertise that the
7912 * server will be enforcing.
7913 *
7914 * Returns: 0 Authorization should be handled locally
7915 * 1 Authorization was handled by the FS
7916 *
7917 * Note: Imputed returns will only occur if the authorization request
7918 * was handled by the FS.
7919 *
7920 * Imputed: *resultp, modified Return code from FS when the request is
7921 * handled by the FS.
7922 * VNOP_ACCESS:???
7923 * VNOP_OPEN:???
7924 */
7925 static int
7926 vnode_authorize_opaque(vnode_t vp, int *resultp, kauth_action_t action, vfs_context_t ctx)
7927 {
7928 int error;
7929
7930 /*
7931 * If the vp is a device node, socket or FIFO it actually represents a local
7932 * endpoint, so we need to handle it locally.
7933 */
7934 switch (vp->v_type) {
7935 case VBLK:
7936 case VCHR:
7937 case VSOCK:
7938 case VFIFO:
7939 return 0;
7940 default:
7941 break;
7942 }
7943
7944 /*
7945 * In the advisory request case, if the filesystem doesn't think it's reliable
7946 * we will attempt to formulate a result ourselves based on VNOP_GETATTR data.
7947 */
7948 if ((action & KAUTH_VNODE_ACCESS) && !vfs_authopaqueaccess(vp->v_mount)) {
7949 return 0;
7950 }
7951
7952 /*
7953 * Let the filesystem have a say in the matter. It's OK for it to not implemnent
7954 * VNOP_ACCESS, as most will authorise inline with the actual request.
7955 */
7956 if ((error = VNOP_ACCESS(vp, action, ctx)) != ENOTSUP) {
7957 *resultp = error;
7958 KAUTH_DEBUG("%p DENIED - opaque filesystem VNOP_ACCESS denied access", vp);
7959 return 1;
7960 }
7961
7962 /*
7963 * Typically opaque filesystems do authorisation in-line, but exec is a special case. In
7964 * order to be reasonably sure that exec will be permitted, we try a bit harder here.
7965 */
7966 if ((action & KAUTH_VNODE_EXECUTE) && (vp->v_type == VREG)) {
7967 /* try a VNOP_OPEN for readonly access */
7968 if ((error = VNOP_OPEN(vp, FREAD, ctx)) != 0) {
7969 *resultp = error;
7970 KAUTH_DEBUG("%p DENIED - EXECUTE denied because file could not be opened readonly", vp);
7971 return 1;
7972 }
7973 VNOP_CLOSE(vp, FREAD, ctx);
7974 }
7975
7976 /*
7977 * We don't have any reason to believe that the request has to be denied at this point,
7978 * so go ahead and allow it.
7979 */
7980 *resultp = 0;
7981 KAUTH_DEBUG("%p ALLOWED - bypassing access check for non-local filesystem", vp);
7982 return 1;
7983 }
7984
7985
7986
7987
7988 /*
7989 * Returns: KAUTH_RESULT_ALLOW
7990 * KAUTH_RESULT_DENY
7991 *
7992 * Imputed: *arg3, modified Error code in the deny case
7993 * EROFS Read-only file system
7994 * EACCES Permission denied
7995 * EPERM Operation not permitted [no execute]
7996 * vnode_getattr:ENOMEM Not enough space [only if has filesec]
7997 * vnode_getattr:???
7998 * vnode_authorize_opaque:*arg2 ???
7999 * vnode_authorize_checkimmutable:???
8000 * vnode_authorize_delete:???
8001 * vnode_authorize_simple:???
8002 */
8003
8004
8005 static int
8006 vnode_authorize_callback(__unused kauth_cred_t cred, __unused void *idata,
8007 kauth_action_t action, uintptr_t arg0, uintptr_t arg1, uintptr_t arg2,
8008 uintptr_t arg3)
8009 {
8010 vfs_context_t ctx;
8011 vnode_t cvp = NULLVP;
8012 vnode_t vp, dvp;
8013 int result = KAUTH_RESULT_DENY;
8014 int parent_iocount = 0;
8015 int parent_action; /* In case we need to use namedstream's data fork for cached rights*/
8016
8017 ctx = (vfs_context_t)arg0;
8018 vp = (vnode_t)arg1;
8019 dvp = (vnode_t)arg2;
8020
8021 /*
8022 * if there are 2 vnodes passed in, we don't know at
8023 * this point which rights to look at based on the
8024 * combined action being passed in... defer until later...
8025 * otherwise check the kauth 'rights' cache hung
8026 * off of the vnode we're interested in... if we've already
8027 * been granted the right we're currently interested in,
8028 * we can just return success... otherwise we'll go through
8029 * the process of authorizing the requested right(s)... if that
8030 * succeeds, we'll add the right(s) to the cache.
8031 * VNOP_SETATTR and VNOP_SETXATTR will invalidate this cache
8032 */
8033 if (dvp && vp) {
8034 goto defer;
8035 }
8036 if (dvp) {
8037 cvp = dvp;
8038 } else {
8039 /*
8040 * For named streams on local-authorization volumes, rights are cached on the parent;
8041 * authorization is determined by looking at the parent's properties anyway, so storing
8042 * on the parent means that we don't recompute for the named stream and that if
8043 * we need to flush rights (e.g. on VNOP_SETATTR()) we don't need to track down the
8044 * stream to flush its cache separately. If we miss in the cache, then we authorize
8045 * as if there were no cached rights (passing the named stream vnode and desired rights to
8046 * vnode_authorize_callback_int()).
8047 *
8048 * On an opaquely authorized volume, we don't know the relationship between the
8049 * data fork's properties and the rights granted on a stream. Thus, named stream vnodes
8050 * on such a volume are authorized directly (rather than using the parent) and have their
8051 * own caches. When a named stream vnode is created, we mark the parent as having a named
8052 * stream. On a VNOP_SETATTR() for the parent that may invalidate cached authorization, we
8053 * find the stream and flush its cache.
8054 */
8055 if (vnode_isnamedstream(vp) && (!vfs_authopaque(vp->v_mount))) {
8056 cvp = vnode_getparent(vp);
8057 if (cvp != NULLVP) {
8058 parent_iocount = 1;
8059 } else {
8060 cvp = NULL;
8061 goto defer; /* If we can't use the parent, take the slow path */
8062 }
8063
8064 /* Have to translate some actions */
8065 parent_action = action;
8066 if (parent_action & KAUTH_VNODE_READ_DATA) {
8067 parent_action &= ~KAUTH_VNODE_READ_DATA;
8068 parent_action |= KAUTH_VNODE_READ_EXTATTRIBUTES;
8069 }
8070 if (parent_action & KAUTH_VNODE_WRITE_DATA) {
8071 parent_action &= ~KAUTH_VNODE_WRITE_DATA;
8072 parent_action |= KAUTH_VNODE_WRITE_EXTATTRIBUTES;
8073 }
8074 } else {
8075 cvp = vp;
8076 }
8077 }
8078
8079 if (vnode_cache_is_authorized(cvp, ctx, parent_iocount ? parent_action : action) == TRUE) {
8080 result = KAUTH_RESULT_ALLOW;
8081 goto out;
8082 }
8083 defer:
8084 result = vnode_authorize_callback_int(action, ctx, vp, dvp, (int *)arg3);
8085
8086 if (result == KAUTH_RESULT_ALLOW && cvp != NULLVP) {
8087 KAUTH_DEBUG("%p - caching action = %x", cvp, action);
8088 vnode_cache_authorized_action(cvp, ctx, action);
8089 }
8090
8091 out:
8092 if (parent_iocount) {
8093 vnode_put(cvp);
8094 }
8095
8096 return result;
8097 }
8098
8099 static int
8100 vnode_attr_authorize_internal(vauth_ctx vcp, mount_t mp,
8101 kauth_ace_rights_t rights, int is_suser, boolean_t *found_deny,
8102 int noimmutable, int parent_authorized_for_delete_child)
8103 {
8104 int result;
8105
8106 /*
8107 * Check for immutability.
8108 *
8109 * In the deletion case, parent directory immutability vetoes specific
8110 * file rights.
8111 */
8112 if ((result = vnode_authorize_checkimmutable(mp, vcp->vap, rights,
8113 noimmutable)) != 0) {
8114 goto out;
8115 }
8116
8117 if ((rights & KAUTH_VNODE_DELETE) &&
8118 !parent_authorized_for_delete_child) {
8119 result = vnode_authorize_checkimmutable(mp, vcp->dvap,
8120 KAUTH_VNODE_DELETE_CHILD, 0);
8121 if (result) {
8122 goto out;
8123 }
8124 }
8125
8126 /*
8127 * Clear rights that have been authorized by reaching this point, bail if nothing left to
8128 * check.
8129 */
8130 rights &= ~(KAUTH_VNODE_LINKTARGET | KAUTH_VNODE_CHECKIMMUTABLE);
8131 if (rights == 0) {
8132 goto out;
8133 }
8134
8135 /*
8136 * If we're not the superuser, authorize based on file properties;
8137 * note that even if parent_authorized_for_delete_child is TRUE, we
8138 * need to check on the node itself.
8139 */
8140 if (!is_suser) {
8141 /* process delete rights */
8142 if ((rights & KAUTH_VNODE_DELETE) &&
8143 ((result = vnode_authorize_delete(vcp, parent_authorized_for_delete_child)) != 0)) {
8144 goto out;
8145 }
8146
8147 /* process remaining rights */
8148 if ((rights & ~KAUTH_VNODE_DELETE) &&
8149 (result = vnode_authorize_simple(vcp, rights, rights & KAUTH_VNODE_DELETE, found_deny)) != 0) {
8150 goto out;
8151 }
8152 } else {
8153 /*
8154 * Execute is only granted to root if one of the x bits is set. This check only
8155 * makes sense if the posix mode bits are actually supported.
8156 */
8157 if ((rights & KAUTH_VNODE_EXECUTE) &&
8158 (vcp->vap->va_type == VREG) &&
8159 VATTR_IS_SUPPORTED(vcp->vap, va_mode) &&
8160 !(vcp->vap->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) {
8161 result = EPERM;
8162 KAUTH_DEBUG("%p DENIED - root execute requires at least one x bit in 0x%x", vcp, vcp->vap->va_mode);
8163 goto out;
8164 }
8165
8166 /* Assume that there were DENYs so we don't wrongly cache KAUTH_VNODE_SEARCHBYANYONE */
8167 *found_deny = TRUE;
8168
8169 KAUTH_DEBUG("%p ALLOWED - caller is superuser", vcp);
8170 }
8171 out:
8172 return result;
8173 }
8174
8175 static int
8176 vnode_authorize_callback_int(kauth_action_t action, vfs_context_t ctx,
8177 vnode_t vp, vnode_t dvp, int *errorp)
8178 {
8179 struct _vnode_authorize_context auth_context;
8180 vauth_ctx vcp;
8181 kauth_cred_t cred;
8182 kauth_ace_rights_t rights;
8183 struct vnode_attr va, dva;
8184 int result;
8185 int noimmutable;
8186 boolean_t parent_authorized_for_delete_child = FALSE;
8187 boolean_t found_deny = FALSE;
8188 boolean_t parent_ref = FALSE;
8189 boolean_t is_suser = FALSE;
8190
8191 vcp = &auth_context;
8192 vcp->ctx = ctx;
8193 vcp->vp = vp;
8194 vcp->dvp = dvp;
8195 /*
8196 * Note that we authorize against the context, not the passed cred
8197 * (the same thing anyway)
8198 */
8199 cred = ctx->vc_ucred;
8200
8201 VATTR_INIT(&va);
8202 vcp->vap = &va;
8203 VATTR_INIT(&dva);
8204 vcp->dvap = &dva;
8205
8206 vcp->flags = vcp->flags_valid = 0;
8207
8208 #if DIAGNOSTIC
8209 if ((ctx == NULL) || (vp == NULL) || (cred == NULL)) {
8210 panic("vnode_authorize: bad arguments (context %p vp %p cred %p)", ctx, vp, cred);
8211 }
8212 #endif
8213
8214 KAUTH_DEBUG("%p AUTH - %s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s on %s '%s' (0x%x:%p/%p)",
8215 vp, vfs_context_proc(ctx)->p_comm,
8216 (action & KAUTH_VNODE_ACCESS) ? "access" : "auth",
8217 (action & KAUTH_VNODE_READ_DATA) ? vnode_isdir(vp) ? " LIST_DIRECTORY" : " READ_DATA" : "",
8218 (action & KAUTH_VNODE_WRITE_DATA) ? vnode_isdir(vp) ? " ADD_FILE" : " WRITE_DATA" : "",
8219 (action & KAUTH_VNODE_EXECUTE) ? vnode_isdir(vp) ? " SEARCH" : " EXECUTE" : "",
8220 (action & KAUTH_VNODE_DELETE) ? " DELETE" : "",
8221 (action & KAUTH_VNODE_APPEND_DATA) ? vnode_isdir(vp) ? " ADD_SUBDIRECTORY" : " APPEND_DATA" : "",
8222 (action & KAUTH_VNODE_DELETE_CHILD) ? " DELETE_CHILD" : "",
8223 (action & KAUTH_VNODE_READ_ATTRIBUTES) ? " READ_ATTRIBUTES" : "",
8224 (action & KAUTH_VNODE_WRITE_ATTRIBUTES) ? " WRITE_ATTRIBUTES" : "",
8225 (action & KAUTH_VNODE_READ_EXTATTRIBUTES) ? " READ_EXTATTRIBUTES" : "",
8226 (action & KAUTH_VNODE_WRITE_EXTATTRIBUTES) ? " WRITE_EXTATTRIBUTES" : "",
8227 (action & KAUTH_VNODE_READ_SECURITY) ? " READ_SECURITY" : "",
8228 (action & KAUTH_VNODE_WRITE_SECURITY) ? " WRITE_SECURITY" : "",
8229 (action & KAUTH_VNODE_CHANGE_OWNER) ? " CHANGE_OWNER" : "",
8230 (action & KAUTH_VNODE_NOIMMUTABLE) ? " (noimmutable)" : "",
8231 vnode_isdir(vp) ? "directory" : "file",
8232 vp->v_name ? vp->v_name : "<NULL>", action, vp, dvp);
8233
8234 /*
8235 * Extract the control bits from the action, everything else is
8236 * requested rights.
8237 */
8238 noimmutable = (action & KAUTH_VNODE_NOIMMUTABLE) ? 1 : 0;
8239 rights = action & ~(KAUTH_VNODE_ACCESS | KAUTH_VNODE_NOIMMUTABLE);
8240
8241 if (rights & KAUTH_VNODE_DELETE) {
8242 #if DIAGNOSTIC
8243 if (dvp == NULL) {
8244 panic("vnode_authorize: KAUTH_VNODE_DELETE test requires a directory");
8245 }
8246 #endif
8247 /*
8248 * check to see if we've already authorized the parent
8249 * directory for deletion of its children... if so, we
8250 * can skip a whole bunch of work... we will still have to
8251 * authorize that this specific child can be removed
8252 */
8253 if (vnode_cache_is_authorized(dvp, ctx, KAUTH_VNODE_DELETE_CHILD) == TRUE) {
8254 parent_authorized_for_delete_child = TRUE;
8255 }
8256 } else {
8257 vcp->dvp = NULLVP;
8258 vcp->dvap = NULL;
8259 }
8260
8261 /*
8262 * Check for read-only filesystems.
8263 */
8264 if ((rights & KAUTH_VNODE_WRITE_RIGHTS) &&
8265 (vp->v_mount->mnt_flag & MNT_RDONLY) &&
8266 ((vp->v_type == VREG) || (vp->v_type == VDIR) ||
8267 (vp->v_type == VLNK) || (vp->v_type == VCPLX) ||
8268 (rights & KAUTH_VNODE_DELETE) || (rights & KAUTH_VNODE_DELETE_CHILD))) {
8269 result = EROFS;
8270 goto out;
8271 }
8272
8273 /*
8274 * Check for noexec filesystems.
8275 */
8276 if ((rights & KAUTH_VNODE_EXECUTE) && (vp->v_type == VREG) && (vp->v_mount->mnt_flag & MNT_NOEXEC)) {
8277 result = EACCES;
8278 goto out;
8279 }
8280
8281 /*
8282 * Handle cases related to filesystems with non-local enforcement.
8283 * This call can return 0, in which case we will fall through to perform a
8284 * check based on VNOP_GETATTR data. Otherwise it returns 1 and sets
8285 * an appropriate result, at which point we can return immediately.
8286 */
8287 if ((vp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) && vnode_authorize_opaque(vp, &result, action, ctx)) {
8288 goto out;
8289 }
8290
8291 /*
8292 * If the vnode is a namedstream (extended attribute) data vnode (eg.
8293 * a resource fork), *_DATA becomes *_EXTATTRIBUTES.
8294 */
8295 if (vnode_isnamedstream(vp)) {
8296 if (rights & KAUTH_VNODE_READ_DATA) {
8297 rights &= ~KAUTH_VNODE_READ_DATA;
8298 rights |= KAUTH_VNODE_READ_EXTATTRIBUTES;
8299 }
8300 if (rights & KAUTH_VNODE_WRITE_DATA) {
8301 rights &= ~KAUTH_VNODE_WRITE_DATA;
8302 rights |= KAUTH_VNODE_WRITE_EXTATTRIBUTES;
8303 }
8304
8305 /*
8306 * Point 'vp' to the namedstream's parent for ACL checking
8307 */
8308 if ((vp->v_parent != NULL) &&
8309 (vget_internal(vp->v_parent, 0, VNODE_NODEAD | VNODE_DRAINO) == 0)) {
8310 parent_ref = TRUE;
8311 vcp->vp = vp = vp->v_parent;
8312 }
8313 }
8314
8315 if (vfs_context_issuser(ctx)) {
8316 /*
8317 * if we're not asking for execute permissions or modifications,
8318 * then we're done, this action is authorized.
8319 */
8320 if (!(rights & (KAUTH_VNODE_EXECUTE | KAUTH_VNODE_WRITE_RIGHTS))) {
8321 goto success;
8322 }
8323
8324 is_suser = TRUE;
8325 }
8326
8327 /*
8328 * Get vnode attributes and extended security information for the vnode
8329 * and directory if required.
8330 *
8331 * If we're root we only want mode bits and flags for checking
8332 * execute and immutability.
8333 */
8334 VATTR_WANTED(&va, va_mode);
8335 VATTR_WANTED(&va, va_flags);
8336 if (!is_suser) {
8337 VATTR_WANTED(&va, va_uid);
8338 VATTR_WANTED(&va, va_gid);
8339 VATTR_WANTED(&va, va_acl);
8340 }
8341 if ((result = vnode_getattr(vp, &va, ctx)) != 0) {
8342 KAUTH_DEBUG("%p ERROR - failed to get vnode attributes - %d", vp, result);
8343 goto out;
8344 }
8345 VATTR_WANTED(&va, va_type);
8346 VATTR_RETURN(&va, va_type, vnode_vtype(vp));
8347
8348 if (vcp->dvp) {
8349 VATTR_WANTED(&dva, va_mode);
8350 VATTR_WANTED(&dva, va_flags);
8351 if (!is_suser) {
8352 VATTR_WANTED(&dva, va_uid);
8353 VATTR_WANTED(&dva, va_gid);
8354 VATTR_WANTED(&dva, va_acl);
8355 }
8356 if ((result = vnode_getattr(vcp->dvp, &dva, ctx)) != 0) {
8357 KAUTH_DEBUG("%p ERROR - failed to get directory vnode attributes - %d", vp, result);
8358 goto out;
8359 }
8360 VATTR_WANTED(&dva, va_type);
8361 VATTR_RETURN(&dva, va_type, vnode_vtype(vcp->dvp));
8362 }
8363
8364 result = vnode_attr_authorize_internal(vcp, vp->v_mount, rights, is_suser,
8365 &found_deny, noimmutable, parent_authorized_for_delete_child);
8366 out:
8367 if (VATTR_IS_SUPPORTED(&va, va_acl) && (va.va_acl != NULL)) {
8368 kauth_acl_free(va.va_acl);
8369 }
8370 if (VATTR_IS_SUPPORTED(&dva, va_acl) && (dva.va_acl != NULL)) {
8371 kauth_acl_free(dva.va_acl);
8372 }
8373
8374 if (result) {
8375 if (parent_ref) {
8376 vnode_put(vp);
8377 }
8378 *errorp = result;
8379 KAUTH_DEBUG("%p DENIED - auth denied", vp);
8380 return KAUTH_RESULT_DENY;
8381 }
8382 if ((rights & KAUTH_VNODE_SEARCH) && found_deny == FALSE && vp->v_type == VDIR) {
8383 /*
8384 * if we were successfully granted the right to search this directory
8385 * and there were NO ACL DENYs for search and the posix permissions also don't
8386 * deny execute, we can synthesize a global right that allows anyone to
8387 * traverse this directory during a pathname lookup without having to
8388 * match the credential associated with this cache of rights.
8389 *
8390 * Note that we can correctly cache KAUTH_VNODE_SEARCHBYANYONE
8391 * only if we actually check ACLs which we don't for root. As
8392 * a workaround, the lookup fast path checks for root.
8393 */
8394 if (!VATTR_IS_SUPPORTED(&va, va_mode) ||
8395 ((va.va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) ==
8396 (S_IXUSR | S_IXGRP | S_IXOTH))) {
8397 vnode_cache_authorized_action(vp, ctx, KAUTH_VNODE_SEARCHBYANYONE);
8398 }
8399 }
8400 success:
8401 if (parent_ref) {
8402 vnode_put(vp);
8403 }
8404
8405 /*
8406 * Note that this implies that we will allow requests for no rights, as well as
8407 * for rights that we do not recognise. There should be none of these.
8408 */
8409 KAUTH_DEBUG("%p ALLOWED - auth granted", vp);
8410 return KAUTH_RESULT_ALLOW;
8411 }
8412
8413 int
8414 vnode_attr_authorize_init(struct vnode_attr *vap, struct vnode_attr *dvap,
8415 kauth_action_t action, vfs_context_t ctx)
8416 {
8417 VATTR_INIT(vap);
8418 VATTR_WANTED(vap, va_type);
8419 VATTR_WANTED(vap, va_mode);
8420 VATTR_WANTED(vap, va_flags);
8421 if (dvap) {
8422 VATTR_INIT(dvap);
8423 if (action & KAUTH_VNODE_DELETE) {
8424 VATTR_WANTED(dvap, va_type);
8425 VATTR_WANTED(dvap, va_mode);
8426 VATTR_WANTED(dvap, va_flags);
8427 }
8428 } else if (action & KAUTH_VNODE_DELETE) {
8429 return EINVAL;
8430 }
8431
8432 if (!vfs_context_issuser(ctx)) {
8433 VATTR_WANTED(vap, va_uid);
8434 VATTR_WANTED(vap, va_gid);
8435 VATTR_WANTED(vap, va_acl);
8436 if (dvap && (action & KAUTH_VNODE_DELETE)) {
8437 VATTR_WANTED(dvap, va_uid);
8438 VATTR_WANTED(dvap, va_gid);
8439 VATTR_WANTED(dvap, va_acl);
8440 }
8441 }
8442
8443 return 0;
8444 }
8445
8446 int
8447 vnode_attr_authorize(struct vnode_attr *vap, struct vnode_attr *dvap, mount_t mp,
8448 kauth_action_t action, vfs_context_t ctx)
8449 {
8450 struct _vnode_authorize_context auth_context;
8451 vauth_ctx vcp;
8452 kauth_ace_rights_t rights;
8453 int noimmutable;
8454 boolean_t found_deny;
8455 boolean_t is_suser = FALSE;
8456 int result = 0;
8457
8458 vcp = &auth_context;
8459 vcp->ctx = ctx;
8460 vcp->vp = NULLVP;
8461 vcp->vap = vap;
8462 vcp->dvp = NULLVP;
8463 vcp->dvap = dvap;
8464 vcp->flags = vcp->flags_valid = 0;
8465
8466 noimmutable = (action & KAUTH_VNODE_NOIMMUTABLE) ? 1 : 0;
8467 rights = action & ~(KAUTH_VNODE_ACCESS | KAUTH_VNODE_NOIMMUTABLE);
8468
8469 /*
8470 * Check for read-only filesystems.
8471 */
8472 if ((rights & KAUTH_VNODE_WRITE_RIGHTS) &&
8473 mp && (mp->mnt_flag & MNT_RDONLY) &&
8474 ((vap->va_type == VREG) || (vap->va_type == VDIR) ||
8475 (vap->va_type == VLNK) || (rights & KAUTH_VNODE_DELETE) ||
8476 (rights & KAUTH_VNODE_DELETE_CHILD))) {
8477 result = EROFS;
8478 goto out;
8479 }
8480
8481 /*
8482 * Check for noexec filesystems.
8483 */
8484 if ((rights & KAUTH_VNODE_EXECUTE) &&
8485 (vap->va_type == VREG) && mp && (mp->mnt_flag & MNT_NOEXEC)) {
8486 result = EACCES;
8487 goto out;
8488 }
8489
8490 if (vfs_context_issuser(ctx)) {
8491 /*
8492 * if we're not asking for execute permissions or modifications,
8493 * then we're done, this action is authorized.
8494 */
8495 if (!(rights & (KAUTH_VNODE_EXECUTE | KAUTH_VNODE_WRITE_RIGHTS))) {
8496 goto out;
8497 }
8498 is_suser = TRUE;
8499 } else {
8500 if (!VATTR_IS_SUPPORTED(vap, va_uid) ||
8501 !VATTR_IS_SUPPORTED(vap, va_gid) ||
8502 (mp && vfs_extendedsecurity(mp) && !VATTR_IS_SUPPORTED(vap, va_acl))) {
8503 panic("vnode attrs not complete for vnode_attr_authorize\n");
8504 }
8505 }
8506
8507 result = vnode_attr_authorize_internal(vcp, mp, rights, is_suser,
8508 &found_deny, noimmutable, FALSE);
8509
8510 if (result == EPERM) {
8511 result = EACCES;
8512 }
8513 out:
8514 return result;
8515 }
8516
8517
8518 int
8519 vnode_authattr_new(vnode_t dvp, struct vnode_attr *vap, int noauth, vfs_context_t ctx)
8520 {
8521 return vnode_authattr_new_internal(dvp, vap, noauth, NULL, ctx);
8522 }
8523
8524 /*
8525 * Check that the attribute information in vattr can be legally applied to
8526 * a new file by the context.
8527 */
8528 static int
8529 vnode_authattr_new_internal(vnode_t dvp, struct vnode_attr *vap, int noauth, uint32_t *defaulted_fieldsp, vfs_context_t ctx)
8530 {
8531 int error;
8532 int has_priv_suser, ismember, defaulted_owner, defaulted_group, defaulted_mode;
8533 uint32_t inherit_flags;
8534 kauth_cred_t cred;
8535 guid_t changer;
8536 mount_t dmp;
8537 struct vnode_attr dva;
8538
8539 error = 0;
8540
8541 if (defaulted_fieldsp) {
8542 *defaulted_fieldsp = 0;
8543 }
8544
8545 defaulted_owner = defaulted_group = defaulted_mode = 0;
8546
8547 inherit_flags = 0;
8548
8549 /*
8550 * Require that the filesystem support extended security to apply any.
8551 */
8552 if (!vfs_extendedsecurity(dvp->v_mount) &&
8553 (VATTR_IS_ACTIVE(vap, va_acl) || VATTR_IS_ACTIVE(vap, va_uuuid) || VATTR_IS_ACTIVE(vap, va_guuid))) {
8554 error = EINVAL;
8555 goto out;
8556 }
8557
8558 /*
8559 * Default some fields.
8560 */
8561 dmp = dvp->v_mount;
8562
8563 /*
8564 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit owner is set, that
8565 * owner takes ownership of all new files.
8566 */
8567 if ((dmp->mnt_flag & MNT_IGNORE_OWNERSHIP) && (dmp->mnt_fsowner != KAUTH_UID_NONE)) {
8568 VATTR_SET(vap, va_uid, dmp->mnt_fsowner);
8569 defaulted_owner = 1;
8570 } else {
8571 if (!VATTR_IS_ACTIVE(vap, va_uid)) {
8572 /* default owner is current user */
8573 VATTR_SET(vap, va_uid, kauth_cred_getuid(vfs_context_ucred(ctx)));
8574 defaulted_owner = 1;
8575 }
8576 }
8577
8578 /*
8579 * We need the dvp's va_flags and *may* need the gid of the directory,
8580 * we ask for both here.
8581 */
8582 VATTR_INIT(&dva);
8583 VATTR_WANTED(&dva, va_gid);
8584 VATTR_WANTED(&dva, va_flags);
8585 if ((error = vnode_getattr(dvp, &dva, ctx)) != 0) {
8586 goto out;
8587 }
8588
8589 /*
8590 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit grouo is set, that
8591 * group takes ownership of all new files.
8592 */
8593 if ((dmp->mnt_flag & MNT_IGNORE_OWNERSHIP) && (dmp->mnt_fsgroup != KAUTH_GID_NONE)) {
8594 VATTR_SET(vap, va_gid, dmp->mnt_fsgroup);
8595 defaulted_group = 1;
8596 } else {
8597 if (!VATTR_IS_ACTIVE(vap, va_gid)) {
8598 /* default group comes from parent object, fallback to current user */
8599 if (VATTR_IS_SUPPORTED(&dva, va_gid)) {
8600 VATTR_SET(vap, va_gid, dva.va_gid);
8601 } else {
8602 VATTR_SET(vap, va_gid, kauth_cred_getgid(vfs_context_ucred(ctx)));
8603 }
8604 defaulted_group = 1;
8605 }
8606 }
8607
8608 if (!VATTR_IS_ACTIVE(vap, va_flags)) {
8609 VATTR_SET(vap, va_flags, 0);
8610 }
8611
8612 /* Determine if SF_RESTRICTED should be inherited from the parent
8613 * directory. */
8614 if (VATTR_IS_SUPPORTED(&dva, va_flags)) {
8615 inherit_flags = dva.va_flags & (UF_DATAVAULT | SF_RESTRICTED);
8616 }
8617
8618 /* default mode is everything, masked with current umask */
8619 if (!VATTR_IS_ACTIVE(vap, va_mode)) {
8620 VATTR_SET(vap, va_mode, ACCESSPERMS & ~vfs_context_proc(ctx)->p_fd->fd_cmask);
8621 KAUTH_DEBUG("ATTR - defaulting new file mode to %o from umask %o", vap->va_mode, vfs_context_proc(ctx)->p_fd->fd_cmask);
8622 defaulted_mode = 1;
8623 }
8624 /* set timestamps to now */
8625 if (!VATTR_IS_ACTIVE(vap, va_create_time)) {
8626 nanotime(&vap->va_create_time);
8627 VATTR_SET_ACTIVE(vap, va_create_time);
8628 }
8629
8630 /*
8631 * Check for attempts to set nonsensical fields.
8632 */
8633 if (vap->va_active & ~VNODE_ATTR_NEWOBJ) {
8634 error = EINVAL;
8635 KAUTH_DEBUG("ATTR - ERROR - attempt to set unsupported new-file attributes %llx",
8636 vap->va_active & ~VNODE_ATTR_NEWOBJ);
8637 goto out;
8638 }
8639
8640 /*
8641 * Quickly check for the applicability of any enforcement here.
8642 * Tests below maintain the integrity of the local security model.
8643 */
8644 if (vfs_authopaque(dvp->v_mount)) {
8645 goto out;
8646 }
8647
8648 /*
8649 * We need to know if the caller is the superuser, or if the work is
8650 * otherwise already authorised.
8651 */
8652 cred = vfs_context_ucred(ctx);
8653 if (noauth) {
8654 /* doing work for the kernel */
8655 has_priv_suser = 1;
8656 } else {
8657 has_priv_suser = vfs_context_issuser(ctx);
8658 }
8659
8660
8661 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8662 vap->va_flags &= ~SF_SYNTHETIC;
8663 if (has_priv_suser) {
8664 if ((vap->va_flags & (UF_SETTABLE | SF_SETTABLE)) != vap->va_flags) {
8665 error = EPERM;
8666 KAUTH_DEBUG(" DENIED - superuser attempt to set illegal flag(s)");
8667 goto out;
8668 }
8669 } else {
8670 if ((vap->va_flags & UF_SETTABLE) != vap->va_flags) {
8671 error = EPERM;
8672 KAUTH_DEBUG(" DENIED - user attempt to set illegal flag(s)");
8673 goto out;
8674 }
8675 }
8676 }
8677
8678 /* if not superuser, validate legality of new-item attributes */
8679 if (!has_priv_suser) {
8680 if (!defaulted_mode && VATTR_IS_ACTIVE(vap, va_mode)) {
8681 /* setgid? */
8682 if (vap->va_mode & S_ISGID) {
8683 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8684 KAUTH_DEBUG("ATTR - ERROR: got %d checking for membership in %d", error, vap->va_gid);
8685 goto out;
8686 }
8687 if (!ismember) {
8688 KAUTH_DEBUG(" DENIED - can't set SGID bit, not a member of %d", vap->va_gid);
8689 error = EPERM;
8690 goto out;
8691 }
8692 }
8693
8694 /* setuid? */
8695 if ((vap->va_mode & S_ISUID) && (vap->va_uid != kauth_cred_getuid(cred))) {
8696 KAUTH_DEBUG("ATTR - ERROR: illegal attempt to set the setuid bit");
8697 error = EPERM;
8698 goto out;
8699 }
8700 }
8701 if (!defaulted_owner && (vap->va_uid != kauth_cred_getuid(cred))) {
8702 KAUTH_DEBUG(" DENIED - cannot create new item owned by %d", vap->va_uid);
8703 error = EPERM;
8704 goto out;
8705 }
8706 if (!defaulted_group) {
8707 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8708 KAUTH_DEBUG(" ERROR - got %d checking for membership in %d", error, vap->va_gid);
8709 goto out;
8710 }
8711 if (!ismember) {
8712 KAUTH_DEBUG(" DENIED - cannot create new item with group %d - not a member", vap->va_gid);
8713 error = EPERM;
8714 goto out;
8715 }
8716 }
8717
8718 /* initialising owner/group UUID */
8719 if (VATTR_IS_ACTIVE(vap, va_uuuid)) {
8720 if ((error = kauth_cred_getguid(cred, &changer)) != 0) {
8721 KAUTH_DEBUG(" ERROR - got %d trying to get caller UUID", error);
8722 /* XXX ENOENT here - no GUID - should perhaps become EPERM */
8723 goto out;
8724 }
8725 if (!kauth_guid_equal(&vap->va_uuuid, &changer)) {
8726 KAUTH_DEBUG(" ERROR - cannot create item with supplied owner UUID - not us");
8727 error = EPERM;
8728 goto out;
8729 }
8730 }
8731 if (VATTR_IS_ACTIVE(vap, va_guuid)) {
8732 if ((error = kauth_cred_ismember_guid(cred, &vap->va_guuid, &ismember)) != 0) {
8733 KAUTH_DEBUG(" ERROR - got %d trying to check group membership", error);
8734 goto out;
8735 }
8736 if (!ismember) {
8737 KAUTH_DEBUG(" ERROR - cannot create item with supplied group UUID - not a member");
8738 error = EPERM;
8739 goto out;
8740 }
8741 }
8742 }
8743 out:
8744 if (inherit_flags) {
8745 /* Apply SF_RESTRICTED to the file if its parent directory was
8746 * restricted. This is done at the end so that root is not
8747 * required if this flag is only set due to inheritance. */
8748 VATTR_SET(vap, va_flags, (vap->va_flags | inherit_flags));
8749 }
8750 if (defaulted_fieldsp) {
8751 if (defaulted_mode) {
8752 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_MODE;
8753 }
8754 if (defaulted_group) {
8755 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_GID;
8756 }
8757 if (defaulted_owner) {
8758 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_UID;
8759 }
8760 }
8761 return error;
8762 }
8763
8764 /*
8765 * Check that the attribute information in vap can be legally written by the
8766 * context.
8767 *
8768 * Call this when you're not sure about the vnode_attr; either its contents
8769 * have come from an unknown source, or when they are variable.
8770 *
8771 * Returns errno, or zero and sets *actionp to the KAUTH_VNODE_* actions that
8772 * must be authorized to be permitted to write the vattr.
8773 */
8774 int
8775 vnode_authattr(vnode_t vp, struct vnode_attr *vap, kauth_action_t *actionp, vfs_context_t ctx)
8776 {
8777 struct vnode_attr ova;
8778 kauth_action_t required_action;
8779 int error, has_priv_suser, ismember, chowner, chgroup, clear_suid, clear_sgid;
8780 guid_t changer;
8781 gid_t group;
8782 uid_t owner;
8783 mode_t newmode;
8784 kauth_cred_t cred;
8785 uint32_t fdelta;
8786
8787 VATTR_INIT(&ova);
8788 required_action = 0;
8789 error = 0;
8790
8791 /*
8792 * Quickly check for enforcement applicability.
8793 */
8794 if (vfs_authopaque(vp->v_mount)) {
8795 goto out;
8796 }
8797
8798 /*
8799 * Check for attempts to set nonsensical fields.
8800 */
8801 if (vap->va_active & VNODE_ATTR_RDONLY) {
8802 KAUTH_DEBUG("ATTR - ERROR: attempt to set readonly attribute(s)");
8803 error = EINVAL;
8804 goto out;
8805 }
8806
8807 /*
8808 * We need to know if the caller is the superuser.
8809 */
8810 cred = vfs_context_ucred(ctx);
8811 has_priv_suser = kauth_cred_issuser(cred);
8812
8813 /*
8814 * If any of the following are changing, we need information from the old file:
8815 * va_uid
8816 * va_gid
8817 * va_mode
8818 * va_uuuid
8819 * va_guuid
8820 */
8821 if (VATTR_IS_ACTIVE(vap, va_uid) ||
8822 VATTR_IS_ACTIVE(vap, va_gid) ||
8823 VATTR_IS_ACTIVE(vap, va_mode) ||
8824 VATTR_IS_ACTIVE(vap, va_uuuid) ||
8825 VATTR_IS_ACTIVE(vap, va_guuid)) {
8826 VATTR_WANTED(&ova, va_mode);
8827 VATTR_WANTED(&ova, va_uid);
8828 VATTR_WANTED(&ova, va_gid);
8829 VATTR_WANTED(&ova, va_uuuid);
8830 VATTR_WANTED(&ova, va_guuid);
8831 KAUTH_DEBUG("ATTR - security information changing, fetching existing attributes");
8832 }
8833
8834 /*
8835 * If timestamps are being changed, we need to know who the file is owned
8836 * by.
8837 */
8838 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
8839 VATTR_IS_ACTIVE(vap, va_change_time) ||
8840 VATTR_IS_ACTIVE(vap, va_modify_time) ||
8841 VATTR_IS_ACTIVE(vap, va_access_time) ||
8842 VATTR_IS_ACTIVE(vap, va_backup_time) ||
8843 VATTR_IS_ACTIVE(vap, va_addedtime)) {
8844 VATTR_WANTED(&ova, va_uid);
8845 #if 0 /* enable this when we support UUIDs as official owners */
8846 VATTR_WANTED(&ova, va_uuuid);
8847 #endif
8848 KAUTH_DEBUG("ATTR - timestamps changing, fetching uid and GUID");
8849 }
8850
8851 /*
8852 * If flags are being changed, we need the old flags.
8853 */
8854 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8855 KAUTH_DEBUG("ATTR - flags changing, fetching old flags");
8856 VATTR_WANTED(&ova, va_flags);
8857 }
8858
8859 /*
8860 * If ACLs are being changed, we need the old ACLs.
8861 */
8862 if (VATTR_IS_ACTIVE(vap, va_acl)) {
8863 KAUTH_DEBUG("ATTR - acl changing, fetching old flags");
8864 VATTR_WANTED(&ova, va_acl);
8865 }
8866
8867 /*
8868 * If the size is being set, make sure it's not a directory.
8869 */
8870 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
8871 /* size is only meaningful on regular files, don't permit otherwise */
8872 if (!vnode_isreg(vp)) {
8873 KAUTH_DEBUG("ATTR - ERROR: size change requested on non-file");
8874 error = vnode_isdir(vp) ? EISDIR : EINVAL;
8875 goto out;
8876 }
8877 }
8878
8879 /*
8880 * Get old data.
8881 */
8882 KAUTH_DEBUG("ATTR - fetching old attributes %016llx", ova.va_active);
8883 if ((error = vnode_getattr(vp, &ova, ctx)) != 0) {
8884 KAUTH_DEBUG(" ERROR - got %d trying to get attributes", error);
8885 goto out;
8886 }
8887
8888 /*
8889 * Size changes require write access to the file data.
8890 */
8891 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
8892 /* if we can't get the size, or it's different, we need write access */
8893 KAUTH_DEBUG("ATTR - size change, requiring WRITE_DATA");
8894 required_action |= KAUTH_VNODE_WRITE_DATA;
8895 }
8896
8897 /*
8898 * Changing timestamps?
8899 *
8900 * Note that we are only called to authorize user-requested time changes;
8901 * side-effect time changes are not authorized. Authorisation is only
8902 * required for existing files.
8903 *
8904 * Non-owners are not permitted to change the time on an existing
8905 * file to anything other than the current time.
8906 */
8907 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
8908 VATTR_IS_ACTIVE(vap, va_change_time) ||
8909 VATTR_IS_ACTIVE(vap, va_modify_time) ||
8910 VATTR_IS_ACTIVE(vap, va_access_time) ||
8911 VATTR_IS_ACTIVE(vap, va_backup_time) ||
8912 VATTR_IS_ACTIVE(vap, va_addedtime)) {
8913 /*
8914 * The owner and root may set any timestamps they like,
8915 * provided that the file is not immutable. The owner still needs
8916 * WRITE_ATTRIBUTES (implied by ownership but still deniable).
8917 */
8918 if (has_priv_suser || vauth_node_owner(&ova, cred)) {
8919 KAUTH_DEBUG("ATTR - root or owner changing timestamps");
8920 required_action |= KAUTH_VNODE_CHECKIMMUTABLE | KAUTH_VNODE_WRITE_ATTRIBUTES;
8921 } else {
8922 /* just setting the current time? */
8923 if (vap->va_vaflags & VA_UTIMES_NULL) {
8924 KAUTH_DEBUG("ATTR - non-root/owner changing timestamps, requiring WRITE_ATTRIBUTES");
8925 required_action |= KAUTH_VNODE_WRITE_ATTRIBUTES;
8926 } else {
8927 KAUTH_DEBUG("ATTR - ERROR: illegal timestamp modification attempted");
8928 error = EACCES;
8929 goto out;
8930 }
8931 }
8932 }
8933
8934 /*
8935 * Changing file mode?
8936 */
8937 if (VATTR_IS_ACTIVE(vap, va_mode) && VATTR_IS_SUPPORTED(&ova, va_mode) && (ova.va_mode != vap->va_mode)) {
8938 KAUTH_DEBUG("ATTR - mode change from %06o to %06o", ova.va_mode, vap->va_mode);
8939
8940 /*
8941 * Mode changes always have the same basic auth requirements.
8942 */
8943 if (has_priv_suser) {
8944 KAUTH_DEBUG("ATTR - superuser mode change, requiring immutability check");
8945 required_action |= KAUTH_VNODE_CHECKIMMUTABLE;
8946 } else {
8947 /* need WRITE_SECURITY */
8948 KAUTH_DEBUG("ATTR - non-superuser mode change, requiring WRITE_SECURITY");
8949 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8950 }
8951
8952 /*
8953 * Can't set the setgid bit if you're not in the group and not root. Have to have
8954 * existing group information in the case we're not setting it right now.
8955 */
8956 if (vap->va_mode & S_ISGID) {
8957 required_action |= KAUTH_VNODE_CHECKIMMUTABLE; /* always required */
8958 if (!has_priv_suser) {
8959 if (VATTR_IS_ACTIVE(vap, va_gid)) {
8960 group = vap->va_gid;
8961 } else if (VATTR_IS_SUPPORTED(&ova, va_gid)) {
8962 group = ova.va_gid;
8963 } else {
8964 KAUTH_DEBUG("ATTR - ERROR: setgid but no gid available");
8965 error = EINVAL;
8966 goto out;
8967 }
8968 /*
8969 * This might be too restrictive; WRITE_SECURITY might be implied by
8970 * membership in this case, rather than being an additional requirement.
8971 */
8972 if ((error = kauth_cred_ismember_gid(cred, group, &ismember)) != 0) {
8973 KAUTH_DEBUG("ATTR - ERROR: got %d checking for membership in %d", error, vap->va_gid);
8974 goto out;
8975 }
8976 if (!ismember) {
8977 KAUTH_DEBUG(" DENIED - can't set SGID bit, not a member of %d", group);
8978 error = EPERM;
8979 goto out;
8980 }
8981 }
8982 }
8983
8984 /*
8985 * Can't set the setuid bit unless you're root or the file's owner.
8986 */
8987 if (vap->va_mode & S_ISUID) {
8988 required_action |= KAUTH_VNODE_CHECKIMMUTABLE; /* always required */
8989 if (!has_priv_suser) {
8990 if (VATTR_IS_ACTIVE(vap, va_uid)) {
8991 owner = vap->va_uid;
8992 } else if (VATTR_IS_SUPPORTED(&ova, va_uid)) {
8993 owner = ova.va_uid;
8994 } else {
8995 KAUTH_DEBUG("ATTR - ERROR: setuid but no uid available");
8996 error = EINVAL;
8997 goto out;
8998 }
8999 if (owner != kauth_cred_getuid(cred)) {
9000 /*
9001 * We could allow this if WRITE_SECURITY is permitted, perhaps.
9002 */
9003 KAUTH_DEBUG("ATTR - ERROR: illegal attempt to set the setuid bit");
9004 error = EPERM;
9005 goto out;
9006 }
9007 }
9008 }
9009 }
9010
9011 /*
9012 * Validate/mask flags changes. This checks that only the flags in
9013 * the UF_SETTABLE mask are being set, and preserves the flags in
9014 * the SF_SETTABLE case.
9015 *
9016 * Since flags changes may be made in conjunction with other changes,
9017 * we will ask the auth code to ignore immutability in the case that
9018 * the SF_* flags are not set and we are only manipulating the file flags.
9019 *
9020 */
9021 if (VATTR_IS_ACTIVE(vap, va_flags)) {
9022 /* compute changing flags bits */
9023 vap->va_flags &= ~SF_SYNTHETIC;
9024 ova.va_flags &= ~SF_SYNTHETIC;
9025 if (VATTR_IS_SUPPORTED(&ova, va_flags)) {
9026 fdelta = vap->va_flags ^ ova.va_flags;
9027 } else {
9028 fdelta = vap->va_flags;
9029 }
9030
9031 if (fdelta != 0) {
9032 KAUTH_DEBUG("ATTR - flags changing, requiring WRITE_SECURITY");
9033 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9034
9035 /* check that changing bits are legal */
9036 if (has_priv_suser) {
9037 /*
9038 * The immutability check will prevent us from clearing the SF_*
9039 * flags unless the system securelevel permits it, so just check
9040 * for legal flags here.
9041 */
9042 if (fdelta & ~(UF_SETTABLE | SF_SETTABLE)) {
9043 error = EPERM;
9044 KAUTH_DEBUG(" DENIED - superuser attempt to set illegal flag(s)");
9045 goto out;
9046 }
9047 } else {
9048 if (fdelta & ~UF_SETTABLE) {
9049 error = EPERM;
9050 KAUTH_DEBUG(" DENIED - user attempt to set illegal flag(s)");
9051 goto out;
9052 }
9053 }
9054 /*
9055 * If the caller has the ability to manipulate file flags,
9056 * security is not reduced by ignoring them for this operation.
9057 *
9058 * A more complete test here would consider the 'after' states of the flags
9059 * to determine whether it would permit the operation, but this becomes
9060 * very complex.
9061 *
9062 * Ignoring immutability is conditional on securelevel; this does not bypass
9063 * the SF_* flags if securelevel > 0.
9064 */
9065 required_action |= KAUTH_VNODE_NOIMMUTABLE;
9066 }
9067 }
9068
9069 /*
9070 * Validate ownership information.
9071 */
9072 chowner = 0;
9073 chgroup = 0;
9074 clear_suid = 0;
9075 clear_sgid = 0;
9076
9077 /*
9078 * uid changing
9079 * Note that if the filesystem didn't give us a UID, we expect that it doesn't
9080 * support them in general, and will ignore it if/when we try to set it.
9081 * We might want to clear the uid out of vap completely here.
9082 */
9083 if (VATTR_IS_ACTIVE(vap, va_uid)) {
9084 if (VATTR_IS_SUPPORTED(&ova, va_uid) && (vap->va_uid != ova.va_uid)) {
9085 if (!has_priv_suser && (kauth_cred_getuid(cred) != vap->va_uid)) {
9086 KAUTH_DEBUG(" DENIED - non-superuser cannot change ownershipt to a third party");
9087 error = EPERM;
9088 goto out;
9089 }
9090 chowner = 1;
9091 }
9092 clear_suid = 1;
9093 }
9094
9095 /*
9096 * gid changing
9097 * Note that if the filesystem didn't give us a GID, we expect that it doesn't
9098 * support them in general, and will ignore it if/when we try to set it.
9099 * We might want to clear the gid out of vap completely here.
9100 */
9101 if (VATTR_IS_ACTIVE(vap, va_gid)) {
9102 if (VATTR_IS_SUPPORTED(&ova, va_gid) && (vap->va_gid != ova.va_gid)) {
9103 if (!has_priv_suser) {
9104 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
9105 KAUTH_DEBUG(" ERROR - got %d checking for membership in %d", error, vap->va_gid);
9106 goto out;
9107 }
9108 if (!ismember) {
9109 KAUTH_DEBUG(" DENIED - group change from %d to %d but not a member of target group",
9110 ova.va_gid, vap->va_gid);
9111 error = EPERM;
9112 goto out;
9113 }
9114 }
9115 chgroup = 1;
9116 }
9117 clear_sgid = 1;
9118 }
9119
9120 /*
9121 * Owner UUID being set or changed.
9122 */
9123 if (VATTR_IS_ACTIVE(vap, va_uuuid)) {
9124 /* if the owner UUID is not actually changing ... */
9125 if (VATTR_IS_SUPPORTED(&ova, va_uuuid)) {
9126 if (kauth_guid_equal(&vap->va_uuuid, &ova.va_uuuid)) {
9127 goto no_uuuid_change;
9128 }
9129
9130 /*
9131 * If the current owner UUID is a null GUID, check
9132 * it against the UUID corresponding to the owner UID.
9133 */
9134 if (kauth_guid_equal(&ova.va_uuuid, &kauth_null_guid) &&
9135 VATTR_IS_SUPPORTED(&ova, va_uid)) {
9136 guid_t uid_guid;
9137
9138 if (kauth_cred_uid2guid(ova.va_uid, &uid_guid) == 0 &&
9139 kauth_guid_equal(&vap->va_uuuid, &uid_guid)) {
9140 goto no_uuuid_change;
9141 }
9142 }
9143 }
9144
9145 /*
9146 * The owner UUID cannot be set by a non-superuser to anything other than
9147 * their own or a null GUID (to "unset" the owner UUID).
9148 * Note that file systems must be prepared to handle the
9149 * null UUID case in a manner appropriate for that file
9150 * system.
9151 */
9152 if (!has_priv_suser) {
9153 if ((error = kauth_cred_getguid(cred, &changer)) != 0) {
9154 KAUTH_DEBUG(" ERROR - got %d trying to get caller UUID", error);
9155 /* XXX ENOENT here - no UUID - should perhaps become EPERM */
9156 goto out;
9157 }
9158 if (!kauth_guid_equal(&vap->va_uuuid, &changer) &&
9159 !kauth_guid_equal(&vap->va_uuuid, &kauth_null_guid)) {
9160 KAUTH_DEBUG(" ERROR - cannot set supplied owner UUID - not us / null");
9161 error = EPERM;
9162 goto out;
9163 }
9164 }
9165 chowner = 1;
9166 clear_suid = 1;
9167 }
9168 no_uuuid_change:
9169 /*
9170 * Group UUID being set or changed.
9171 */
9172 if (VATTR_IS_ACTIVE(vap, va_guuid)) {
9173 /* if the group UUID is not actually changing ... */
9174 if (VATTR_IS_SUPPORTED(&ova, va_guuid)) {
9175 if (kauth_guid_equal(&vap->va_guuid, &ova.va_guuid)) {
9176 goto no_guuid_change;
9177 }
9178
9179 /*
9180 * If the current group UUID is a null UUID, check
9181 * it against the UUID corresponding to the group GID.
9182 */
9183 if (kauth_guid_equal(&ova.va_guuid, &kauth_null_guid) &&
9184 VATTR_IS_SUPPORTED(&ova, va_gid)) {
9185 guid_t gid_guid;
9186
9187 if (kauth_cred_gid2guid(ova.va_gid, &gid_guid) == 0 &&
9188 kauth_guid_equal(&vap->va_guuid, &gid_guid)) {
9189 goto no_guuid_change;
9190 }
9191 }
9192 }
9193
9194 /*
9195 * The group UUID cannot be set by a non-superuser to anything other than
9196 * one of which they are a member or a null GUID (to "unset"
9197 * the group UUID).
9198 * Note that file systems must be prepared to handle the
9199 * null UUID case in a manner appropriate for that file
9200 * system.
9201 */
9202 if (!has_priv_suser) {
9203 if (kauth_guid_equal(&vap->va_guuid, &kauth_null_guid)) {
9204 ismember = 1;
9205 } else if ((error = kauth_cred_ismember_guid(cred, &vap->va_guuid, &ismember)) != 0) {
9206 KAUTH_DEBUG(" ERROR - got %d trying to check group membership", error);
9207 goto out;
9208 }
9209 if (!ismember) {
9210 KAUTH_DEBUG(" ERROR - cannot set supplied group UUID - not a member / null");
9211 error = EPERM;
9212 goto out;
9213 }
9214 }
9215 chgroup = 1;
9216 }
9217 no_guuid_change:
9218
9219 /*
9220 * Compute authorisation for group/ownership changes.
9221 */
9222 if (chowner || chgroup || clear_suid || clear_sgid) {
9223 if (has_priv_suser) {
9224 KAUTH_DEBUG("ATTR - superuser changing file owner/group, requiring immutability check");
9225 required_action |= KAUTH_VNODE_CHECKIMMUTABLE;
9226 } else {
9227 if (chowner) {
9228 KAUTH_DEBUG("ATTR - ownership change, requiring TAKE_OWNERSHIP");
9229 required_action |= KAUTH_VNODE_TAKE_OWNERSHIP;
9230 }
9231 if (chgroup && !chowner) {
9232 KAUTH_DEBUG("ATTR - group change, requiring WRITE_SECURITY");
9233 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9234 }
9235 }
9236
9237 /*
9238 * clear set-uid and set-gid bits. POSIX only requires this for
9239 * non-privileged processes but we do it even for root.
9240 */
9241 if (VATTR_IS_ACTIVE(vap, va_mode)) {
9242 newmode = vap->va_mode;
9243 } else if (VATTR_IS_SUPPORTED(&ova, va_mode)) {
9244 newmode = ova.va_mode;
9245 } else {
9246 KAUTH_DEBUG("CHOWN - trying to change owner but cannot get mode from filesystem to mask setugid bits");
9247 newmode = 0;
9248 }
9249
9250 /* chown always clears setuid/gid bits. An exception is made for
9251 * setattrlist which can set both at the same time: <uid, gid, mode> on a file:
9252 * setattrlist is allowed to set the new mode on the file and change (chown)
9253 * uid/gid.
9254 */
9255 if (newmode & (S_ISUID | S_ISGID)) {
9256 if (!VATTR_IS_ACTIVE(vap, va_mode)) {
9257 KAUTH_DEBUG("CHOWN - masking setugid bits from mode %o to %o",
9258 newmode, newmode & ~(S_ISUID | S_ISGID));
9259 newmode &= ~(S_ISUID | S_ISGID);
9260 }
9261 VATTR_SET(vap, va_mode, newmode);
9262 }
9263 }
9264
9265 /*
9266 * Authorise changes in the ACL.
9267 */
9268 if (VATTR_IS_ACTIVE(vap, va_acl)) {
9269 /* no existing ACL */
9270 if (!VATTR_IS_ACTIVE(&ova, va_acl) || (ova.va_acl == NULL)) {
9271 /* adding an ACL */
9272 if (vap->va_acl != NULL) {
9273 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9274 KAUTH_DEBUG("CHMOD - adding ACL");
9275 }
9276
9277 /* removing an existing ACL */
9278 } else if (vap->va_acl == NULL) {
9279 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9280 KAUTH_DEBUG("CHMOD - removing ACL");
9281
9282 /* updating an existing ACL */
9283 } else {
9284 if (vap->va_acl->acl_entrycount != ova.va_acl->acl_entrycount) {
9285 /* entry count changed, must be different */
9286 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9287 KAUTH_DEBUG("CHMOD - adding/removing ACL entries");
9288 } else if (vap->va_acl->acl_entrycount > 0) {
9289 /* both ACLs have the same ACE count, said count is 1 or more, bitwise compare ACLs */
9290 if (memcmp(&vap->va_acl->acl_ace[0], &ova.va_acl->acl_ace[0],
9291 sizeof(struct kauth_ace) * vap->va_acl->acl_entrycount)) {
9292 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9293 KAUTH_DEBUG("CHMOD - changing ACL entries");
9294 }
9295 }
9296 }
9297 }
9298
9299 /*
9300 * Other attributes that require authorisation.
9301 */
9302 if (VATTR_IS_ACTIVE(vap, va_encoding)) {
9303 required_action |= KAUTH_VNODE_WRITE_ATTRIBUTES;
9304 }
9305
9306 out:
9307 if (VATTR_IS_SUPPORTED(&ova, va_acl) && (ova.va_acl != NULL)) {
9308 kauth_acl_free(ova.va_acl);
9309 }
9310 if (error == 0) {
9311 *actionp = required_action;
9312 }
9313 return error;
9314 }
9315
9316 static int
9317 setlocklocal_callback(struct vnode *vp, __unused void *cargs)
9318 {
9319 vnode_lock_spin(vp);
9320 vp->v_flag |= VLOCKLOCAL;
9321 vnode_unlock(vp);
9322
9323 return VNODE_RETURNED;
9324 }
9325
9326 void
9327 vfs_setlocklocal(mount_t mp)
9328 {
9329 mount_lock_spin(mp);
9330 mp->mnt_kern_flag |= MNTK_LOCK_LOCAL;
9331 mount_unlock(mp);
9332
9333 /*
9334 * The number of active vnodes is expected to be
9335 * very small when vfs_setlocklocal is invoked.
9336 */
9337 vnode_iterate(mp, 0, setlocklocal_callback, NULL);
9338 }
9339
9340 void
9341 vfs_setcompoundopen(mount_t mp)
9342 {
9343 mount_lock_spin(mp);
9344 mp->mnt_compound_ops |= COMPOUND_VNOP_OPEN;
9345 mount_unlock(mp);
9346 }
9347
9348 void
9349 vnode_setswapmount(vnode_t vp)
9350 {
9351 mount_lock(vp->v_mount);
9352 vp->v_mount->mnt_kern_flag |= MNTK_SWAP_MOUNT;
9353 mount_unlock(vp->v_mount);
9354 }
9355
9356
9357 int64_t
9358 vnode_getswappin_avail(vnode_t vp)
9359 {
9360 int64_t max_swappin_avail = 0;
9361
9362 mount_lock(vp->v_mount);
9363 if (vp->v_mount->mnt_ioflags & MNT_IOFLAGS_SWAPPIN_SUPPORTED) {
9364 max_swappin_avail = vp->v_mount->mnt_max_swappin_available;
9365 }
9366 mount_unlock(vp->v_mount);
9367
9368 return max_swappin_avail;
9369 }
9370
9371
9372 void
9373 vn_setunionwait(vnode_t vp)
9374 {
9375 vnode_lock_spin(vp);
9376 vp->v_flag |= VISUNION;
9377 vnode_unlock(vp);
9378 }
9379
9380
9381 void
9382 vn_checkunionwait(vnode_t vp)
9383 {
9384 vnode_lock_spin(vp);
9385 while ((vp->v_flag & VISUNION) == VISUNION) {
9386 msleep((caddr_t)&vp->v_flag, &vp->v_lock, 0, 0, 0);
9387 }
9388 vnode_unlock(vp);
9389 }
9390
9391 void
9392 vn_clearunionwait(vnode_t vp, int locked)
9393 {
9394 if (!locked) {
9395 vnode_lock_spin(vp);
9396 }
9397 if ((vp->v_flag & VISUNION) == VISUNION) {
9398 vp->v_flag &= ~VISUNION;
9399 wakeup((caddr_t)&vp->v_flag);
9400 }
9401 if (!locked) {
9402 vnode_unlock(vp);
9403 }
9404 }
9405
9406 int
9407 vnode_materialize_dataless_file(vnode_t vp, uint64_t op_type)
9408 {
9409 int error;
9410
9411 /* Swap files are special; ignore them */
9412 if (vnode_isswap(vp)) {
9413 return 0;
9414 }
9415
9416 error = resolve_nspace_item(vp,
9417 op_type | NAMESPACE_HANDLER_NSPACE_EVENT);
9418
9419 /*
9420 * The file resolver owns the logic about what error to return
9421 * to the caller. We only need to handle a couple of special
9422 * cases here:
9423 */
9424 if (error == EJUSTRETURN) {
9425 /*
9426 * The requesting process is allowed to interact with
9427 * dataless objects. Make a couple of sanity-checks
9428 * here to ensure the action makes sense.
9429 */
9430 switch (op_type) {
9431 case NAMESPACE_HANDLER_WRITE_OP:
9432 case NAMESPACE_HANDLER_TRUNCATE_OP:
9433 case NAMESPACE_HANDLER_RENAME_OP:
9434 /*
9435 * This handles the case of the resolver itself
9436 * writing data to the file (or throwing it
9437 * away).
9438 */
9439 error = 0;
9440 break;
9441 case NAMESPACE_HANDLER_READ_OP:
9442 /*
9443 * This handles the case of the resolver needing
9444 * to look up inside of a dataless directory while
9445 * it's in the process of materializing it (for
9446 * example, creating files or directories).
9447 */
9448 error = (vnode_vtype(vp) == VDIR) ? 0 : EBADF;
9449 break;
9450 default:
9451 error = EBADF;
9452 break;
9453 }
9454 }
9455
9456 return error;
9457 }
9458
9459 /*
9460 * Removes orphaned apple double files during a rmdir
9461 * Works by:
9462 * 1. vnode_suspend().
9463 * 2. Call VNOP_READDIR() till the end of directory is reached.
9464 * 3. Check if the directory entries returned are regular files with name starting with "._". If not, return ENOTEMPTY.
9465 * 4. Continue (2) and (3) till end of directory is reached.
9466 * 5. If all the entries in the directory were files with "._" name, delete all the files.
9467 * 6. vnode_resume()
9468 * 7. If deletion of all files succeeded, call VNOP_RMDIR() again.
9469 */
9470
9471 errno_t
9472 rmdir_remove_orphaned_appleDouble(vnode_t vp, vfs_context_t ctx, int * restart_flag)
9473 {
9474 #define UIO_BUFF_SIZE 2048
9475 uio_t auio = NULL;
9476 int eofflag, siz = UIO_BUFF_SIZE, nentries = 0;
9477 int open_flag = 0, full_erase_flag = 0;
9478 char uio_buf[UIO_SIZEOF(1)];
9479 char *rbuf = NULL;
9480 void *dir_pos;
9481 void *dir_end;
9482 struct dirent *dp;
9483 errno_t error;
9484
9485 error = vnode_suspend(vp);
9486
9487 /*
9488 * restart_flag is set so that the calling rmdir sleeps and resets
9489 */
9490 if (error == EBUSY) {
9491 *restart_flag = 1;
9492 }
9493 if (error != 0) {
9494 return error;
9495 }
9496
9497 /*
9498 * Prevent dataless fault materialization while we have
9499 * a suspended vnode.
9500 */
9501 uthread_t ut = get_bsdthread_info(current_thread());
9502 bool saved_nodatalessfaults =
9503 (ut->uu_flag & UT_NSPACE_NODATALESSFAULTS) ? true : false;
9504 ut->uu_flag |= UT_NSPACE_NODATALESSFAULTS;
9505
9506 /*
9507 * set up UIO
9508 */
9509 MALLOC(rbuf, caddr_t, siz, M_TEMP, M_WAITOK);
9510 if (rbuf) {
9511 auio = uio_createwithbuffer(1, 0, UIO_SYSSPACE, UIO_READ,
9512 &uio_buf[0], sizeof(uio_buf));
9513 }
9514 if (!rbuf || !auio) {
9515 error = ENOMEM;
9516 goto outsc;
9517 }
9518
9519 uio_setoffset(auio, 0);
9520
9521 eofflag = 0;
9522
9523 if ((error = VNOP_OPEN(vp, FREAD, ctx))) {
9524 goto outsc;
9525 } else {
9526 open_flag = 1;
9527 }
9528
9529 /*
9530 * First pass checks if all files are appleDouble files.
9531 */
9532
9533 do {
9534 siz = UIO_BUFF_SIZE;
9535 uio_reset(auio, uio_offset(auio), UIO_SYSSPACE, UIO_READ);
9536 uio_addiov(auio, CAST_USER_ADDR_T(rbuf), UIO_BUFF_SIZE);
9537
9538 if ((error = VNOP_READDIR(vp, auio, 0, &eofflag, &nentries, ctx))) {
9539 goto outsc;
9540 }
9541
9542 if (uio_resid(auio) != 0) {
9543 siz -= uio_resid(auio);
9544 }
9545
9546 /*
9547 * Iterate through directory
9548 */
9549 dir_pos = (void*) rbuf;
9550 dir_end = (void*) (rbuf + siz);
9551 dp = (struct dirent*) (dir_pos);
9552
9553 if (dir_pos == dir_end) {
9554 eofflag = 1;
9555 }
9556
9557 while (dir_pos < dir_end) {
9558 /*
9559 * Check for . and .. as well as directories
9560 */
9561 if (dp->d_ino != 0 &&
9562 !((dp->d_namlen == 1 && dp->d_name[0] == '.') ||
9563 (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'))) {
9564 /*
9565 * Check for irregular files and ._ files
9566 * If there is a ._._ file abort the op
9567 */
9568 if (dp->d_namlen < 2 ||
9569 strncmp(dp->d_name, "._", 2) ||
9570 (dp->d_namlen >= 4 && !strncmp(&(dp->d_name[2]), "._", 2))) {
9571 error = ENOTEMPTY;
9572 goto outsc;
9573 }
9574 }
9575 dir_pos = (void*) ((uint8_t*)dir_pos + dp->d_reclen);
9576 dp = (struct dirent*)dir_pos;
9577 }
9578
9579 /*
9580 * workaround for HFS/NFS setting eofflag before end of file
9581 */
9582 if (vp->v_tag == VT_HFS && nentries > 2) {
9583 eofflag = 0;
9584 }
9585
9586 if (vp->v_tag == VT_NFS) {
9587 if (eofflag && !full_erase_flag) {
9588 full_erase_flag = 1;
9589 eofflag = 0;
9590 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9591 } else if (!eofflag && full_erase_flag) {
9592 full_erase_flag = 0;
9593 }
9594 }
9595 } while (!eofflag);
9596 /*
9597 * If we've made it here all the files in the dir are ._ files.
9598 * We can delete the files even though the node is suspended
9599 * because we are the owner of the file.
9600 */
9601
9602 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9603 eofflag = 0;
9604 full_erase_flag = 0;
9605
9606 do {
9607 siz = UIO_BUFF_SIZE;
9608 uio_reset(auio, uio_offset(auio), UIO_SYSSPACE, UIO_READ);
9609 uio_addiov(auio, CAST_USER_ADDR_T(rbuf), UIO_BUFF_SIZE);
9610
9611 error = VNOP_READDIR(vp, auio, 0, &eofflag, &nentries, ctx);
9612
9613 if (error != 0) {
9614 goto outsc;
9615 }
9616
9617 if (uio_resid(auio) != 0) {
9618 siz -= uio_resid(auio);
9619 }
9620
9621 /*
9622 * Iterate through directory
9623 */
9624 dir_pos = (void*) rbuf;
9625 dir_end = (void*) (rbuf + siz);
9626 dp = (struct dirent*) dir_pos;
9627
9628 if (dir_pos == dir_end) {
9629 eofflag = 1;
9630 }
9631
9632 while (dir_pos < dir_end) {
9633 /*
9634 * Check for . and .. as well as directories
9635 */
9636 if (dp->d_ino != 0 &&
9637 !((dp->d_namlen == 1 && dp->d_name[0] == '.') ||
9638 (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'))
9639 ) {
9640 error = unlink1(ctx, vp,
9641 CAST_USER_ADDR_T(dp->d_name), UIO_SYSSPACE,
9642 VNODE_REMOVE_SKIP_NAMESPACE_EVENT |
9643 VNODE_REMOVE_NO_AUDIT_PATH);
9644
9645 if (error && error != ENOENT) {
9646 goto outsc;
9647 }
9648 }
9649 dir_pos = (void*) ((uint8_t*)dir_pos + dp->d_reclen);
9650 dp = (struct dirent*)dir_pos;
9651 }
9652
9653 /*
9654 * workaround for HFS/NFS setting eofflag before end of file
9655 */
9656 if (vp->v_tag == VT_HFS && nentries > 2) {
9657 eofflag = 0;
9658 }
9659
9660 if (vp->v_tag == VT_NFS) {
9661 if (eofflag && !full_erase_flag) {
9662 full_erase_flag = 1;
9663 eofflag = 0;
9664 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9665 } else if (!eofflag && full_erase_flag) {
9666 full_erase_flag = 0;
9667 }
9668 }
9669 } while (!eofflag);
9670
9671
9672 error = 0;
9673
9674 outsc:
9675 if (open_flag) {
9676 VNOP_CLOSE(vp, FREAD, ctx);
9677 }
9678
9679 if (auio) {
9680 uio_free(auio);
9681 }
9682 FREE(rbuf, M_TEMP);
9683
9684 if (saved_nodatalessfaults == false) {
9685 ut->uu_flag &= ~UT_NSPACE_NODATALESSFAULTS;
9686 }
9687
9688 vnode_resume(vp);
9689
9690 return error;
9691 }
9692
9693
9694 void
9695 lock_vnode_and_post(vnode_t vp, int kevent_num)
9696 {
9697 /* Only take the lock if there's something there! */
9698 if (vp->v_knotes.slh_first != NULL) {
9699 vnode_lock(vp);
9700 KNOTE(&vp->v_knotes, kevent_num);
9701 vnode_unlock(vp);
9702 }
9703 }
9704
9705 void panic_print_vnodes(void);
9706
9707 /* define PANIC_PRINTS_VNODES only if investigation is required. */
9708 #ifdef PANIC_PRINTS_VNODES
9709
9710 static const char *
9711 __vtype(uint16_t vtype)
9712 {
9713 switch (vtype) {
9714 case VREG:
9715 return "R";
9716 case VDIR:
9717 return "D";
9718 case VBLK:
9719 return "B";
9720 case VCHR:
9721 return "C";
9722 case VLNK:
9723 return "L";
9724 case VSOCK:
9725 return "S";
9726 case VFIFO:
9727 return "F";
9728 case VBAD:
9729 return "x";
9730 case VSTR:
9731 return "T";
9732 case VCPLX:
9733 return "X";
9734 default:
9735 return "?";
9736 }
9737 }
9738
9739 /*
9740 * build a path from the bottom up
9741 * NOTE: called from the panic path - no alloc'ing of memory and no locks!
9742 */
9743 static char *
9744 __vpath(vnode_t vp, char *str, int len, int depth)
9745 {
9746 int vnm_len;
9747 const char *src;
9748 char *dst;
9749
9750 if (len <= 0) {
9751 return str;
9752 }
9753 /* str + len is the start of the string we created */
9754 if (!vp->v_name) {
9755 return str + len;
9756 }
9757
9758 /* follow mount vnodes to get the full path */
9759 if ((vp->v_flag & VROOT)) {
9760 if (vp->v_mount != NULL && vp->v_mount->mnt_vnodecovered) {
9761 return __vpath(vp->v_mount->mnt_vnodecovered,
9762 str, len, depth + 1);
9763 }
9764 return str + len;
9765 }
9766
9767 src = vp->v_name;
9768 vnm_len = strlen(src);
9769 if (vnm_len > len) {
9770 /* truncate the name to fit in the string */
9771 src += (vnm_len - len);
9772 vnm_len = len;
9773 }
9774
9775 /* start from the back and copy just characters (no NULLs) */
9776
9777 /* this will chop off leaf path (file) names */
9778 if (depth > 0) {
9779 dst = str + len - vnm_len;
9780 memcpy(dst, src, vnm_len);
9781 len -= vnm_len;
9782 } else {
9783 dst = str + len;
9784 }
9785
9786 if (vp->v_parent && len > 1) {
9787 /* follow parents up the chain */
9788 len--;
9789 *(dst - 1) = '/';
9790 return __vpath(vp->v_parent, str, len, depth + 1);
9791 }
9792
9793 return dst;
9794 }
9795
9796 #define SANE_VNODE_PRINT_LIMIT 5000
9797 void
9798 panic_print_vnodes(void)
9799 {
9800 mount_t mnt;
9801 vnode_t vp;
9802 int nvnodes = 0;
9803 const char *type;
9804 char *nm;
9805 char vname[257];
9806
9807 paniclog_append_noflush("\n***** VNODES *****\n"
9808 "TYPE UREF ICNT PATH\n");
9809
9810 /* NULL-terminate the path name */
9811 vname[sizeof(vname) - 1] = '\0';
9812
9813 /*
9814 * iterate all vnodelist items in all mounts (mntlist) -> mnt_vnodelist
9815 */
9816 TAILQ_FOREACH(mnt, &mountlist, mnt_list) {
9817 if (!ml_validate_nofault((vm_offset_t)mnt, sizeof(mount_t))) {
9818 paniclog_append_noflush("Unable to iterate the mount list %p - encountered an invalid mount pointer %p \n",
9819 &mountlist, mnt);
9820 break;
9821 }
9822
9823 TAILQ_FOREACH(vp, &mnt->mnt_vnodelist, v_mntvnodes) {
9824 if (!ml_validate_nofault((vm_offset_t)vp, sizeof(vnode_t))) {
9825 paniclog_append_noflush("Unable to iterate the vnode list %p - encountered an invalid vnode pointer %p \n",
9826 &mnt->mnt_vnodelist, vp);
9827 break;
9828 }
9829
9830 if (++nvnodes > SANE_VNODE_PRINT_LIMIT) {
9831 return;
9832 }
9833 type = __vtype(vp->v_type);
9834 nm = __vpath(vp, vname, sizeof(vname) - 1, 0);
9835 paniclog_append_noflush("%s %0d %0d %s\n",
9836 type, vp->v_usecount, vp->v_iocount, nm);
9837 }
9838 }
9839 }
9840
9841 #else /* !PANIC_PRINTS_VNODES */
9842 void
9843 panic_print_vnodes(void)
9844 {
9845 return;
9846 }
9847 #endif
9848
9849
9850 #ifdef JOE_DEBUG
9851 static void
9852 record_vp(vnode_t vp, int count)
9853 {
9854 struct uthread *ut;
9855
9856 #if CONFIG_TRIGGERS
9857 if (vp->v_resolve) {
9858 return;
9859 }
9860 #endif
9861 if ((vp->v_flag & VSYSTEM)) {
9862 return;
9863 }
9864
9865 ut = get_bsdthread_info(current_thread());
9866 ut->uu_iocount += count;
9867
9868 if (count == 1) {
9869 if (ut->uu_vpindex < 32) {
9870 OSBacktrace((void **)&ut->uu_pcs[ut->uu_vpindex][0], 10);
9871
9872 ut->uu_vps[ut->uu_vpindex] = vp;
9873 ut->uu_vpindex++;
9874 }
9875 }
9876 }
9877 #endif
9878
9879
9880 #if CONFIG_TRIGGERS
9881
9882 #define TRIG_DEBUG 0
9883
9884 #if TRIG_DEBUG
9885 #define TRIG_LOG(...) do { printf("%s: ", __FUNCTION__); printf(__VA_ARGS__); } while (0)
9886 #else
9887 #define TRIG_LOG(...)
9888 #endif
9889
9890 /*
9891 * Resolver result functions
9892 */
9893
9894 resolver_result_t
9895 vfs_resolver_result(uint32_t seq, enum resolver_status stat, int aux)
9896 {
9897 /*
9898 * |<--- 32 --->|<--- 28 --->|<- 4 ->|
9899 * sequence auxiliary status
9900 */
9901 return (((uint64_t)seq) << 32) |
9902 (((uint64_t)(aux & 0x0fffffff)) << 4) |
9903 (uint64_t)(stat & 0x0000000F);
9904 }
9905
9906 enum resolver_status
9907 vfs_resolver_status(resolver_result_t result)
9908 {
9909 /* lower 4 bits is status */
9910 return result & 0x0000000F;
9911 }
9912
9913 uint32_t
9914 vfs_resolver_sequence(resolver_result_t result)
9915 {
9916 /* upper 32 bits is sequence */
9917 return (uint32_t)(result >> 32);
9918 }
9919
9920 int
9921 vfs_resolver_auxiliary(resolver_result_t result)
9922 {
9923 /* 28 bits of auxiliary */
9924 return (int)(((uint32_t)(result & 0xFFFFFFF0)) >> 4);
9925 }
9926
9927 /*
9928 * SPI
9929 * Call in for resolvers to update vnode trigger state
9930 */
9931 int
9932 vnode_trigger_update(vnode_t vp, resolver_result_t result)
9933 {
9934 vnode_resolve_t rp;
9935 uint32_t seq;
9936 enum resolver_status stat;
9937
9938 if (vp->v_resolve == NULL) {
9939 return EINVAL;
9940 }
9941
9942 stat = vfs_resolver_status(result);
9943 seq = vfs_resolver_sequence(result);
9944
9945 if ((stat != RESOLVER_RESOLVED) && (stat != RESOLVER_UNRESOLVED)) {
9946 return EINVAL;
9947 }
9948
9949 rp = vp->v_resolve;
9950 lck_mtx_lock(&rp->vr_lock);
9951
9952 if (seq > rp->vr_lastseq) {
9953 if (stat == RESOLVER_RESOLVED) {
9954 rp->vr_flags |= VNT_RESOLVED;
9955 } else {
9956 rp->vr_flags &= ~VNT_RESOLVED;
9957 }
9958
9959 rp->vr_lastseq = seq;
9960 }
9961
9962 lck_mtx_unlock(&rp->vr_lock);
9963
9964 return 0;
9965 }
9966
9967 static int
9968 vnode_resolver_attach(vnode_t vp, vnode_resolve_t rp, boolean_t ref)
9969 {
9970 int error;
9971
9972 vnode_lock_spin(vp);
9973 if (vp->v_resolve != NULL) {
9974 vnode_unlock(vp);
9975 return EINVAL;
9976 } else {
9977 vp->v_resolve = rp;
9978 }
9979 vnode_unlock(vp);
9980
9981 if (ref) {
9982 error = vnode_ref_ext(vp, O_EVTONLY, VNODE_REF_FORCE);
9983 if (error != 0) {
9984 panic("VNODE_REF_FORCE didn't help...");
9985 }
9986 }
9987
9988 return 0;
9989 }
9990
9991 /*
9992 * VFS internal interfaces for vnode triggers
9993 *
9994 * vnode must already have an io count on entry
9995 * v_resolve is stable when io count is non-zero
9996 */
9997 static int
9998 vnode_resolver_create(mount_t mp, vnode_t vp, struct vnode_trigger_param *tinfo, boolean_t external)
9999 {
10000 vnode_resolve_t rp;
10001 int result;
10002 char byte;
10003
10004 #if 1
10005 /* minimum pointer test (debugging) */
10006 if (tinfo->vnt_data) {
10007 byte = *((char *)tinfo->vnt_data);
10008 }
10009 #endif
10010 MALLOC(rp, vnode_resolve_t, sizeof(*rp), M_TEMP, M_WAITOK);
10011 if (rp == NULL) {
10012 return ENOMEM;
10013 }
10014
10015 lck_mtx_init(&rp->vr_lock, trigger_vnode_lck_grp, trigger_vnode_lck_attr);
10016
10017 rp->vr_resolve_func = tinfo->vnt_resolve_func;
10018 rp->vr_unresolve_func = tinfo->vnt_unresolve_func;
10019 rp->vr_rearm_func = tinfo->vnt_rearm_func;
10020 rp->vr_reclaim_func = tinfo->vnt_reclaim_func;
10021 rp->vr_data = tinfo->vnt_data;
10022 rp->vr_lastseq = 0;
10023 rp->vr_flags = tinfo->vnt_flags & VNT_VALID_MASK;
10024 if (external) {
10025 rp->vr_flags |= VNT_EXTERNAL;
10026 }
10027
10028 result = vnode_resolver_attach(vp, rp, external);
10029 if (result != 0) {
10030 goto out;
10031 }
10032
10033 if (mp) {
10034 OSAddAtomic(1, &mp->mnt_numtriggers);
10035 }
10036
10037 return result;
10038
10039 out:
10040 FREE(rp, M_TEMP);
10041 return result;
10042 }
10043
10044 static void
10045 vnode_resolver_release(vnode_resolve_t rp)
10046 {
10047 /*
10048 * Give them a chance to free any private data
10049 */
10050 if (rp->vr_data && rp->vr_reclaim_func) {
10051 rp->vr_reclaim_func(NULLVP, rp->vr_data);
10052 }
10053
10054 lck_mtx_destroy(&rp->vr_lock, trigger_vnode_lck_grp);
10055 FREE(rp, M_TEMP);
10056 }
10057
10058 /* Called after the vnode has been drained */
10059 static void
10060 vnode_resolver_detach(vnode_t vp)
10061 {
10062 vnode_resolve_t rp;
10063 mount_t mp;
10064
10065 mp = vnode_mount(vp);
10066
10067 vnode_lock(vp);
10068 rp = vp->v_resolve;
10069 vp->v_resolve = NULL;
10070 vnode_unlock(vp);
10071
10072 if ((rp->vr_flags & VNT_EXTERNAL) != 0) {
10073 vnode_rele_ext(vp, O_EVTONLY, 1);
10074 }
10075
10076 vnode_resolver_release(rp);
10077
10078 /* Keep count of active trigger vnodes per mount */
10079 OSAddAtomic(-1, &mp->mnt_numtriggers);
10080 }
10081
10082 __private_extern__
10083 void
10084 vnode_trigger_rearm(vnode_t vp, vfs_context_t ctx)
10085 {
10086 vnode_resolve_t rp;
10087 resolver_result_t result;
10088 enum resolver_status status;
10089 uint32_t seq;
10090
10091 if ((vp->v_resolve == NULL) ||
10092 (vp->v_resolve->vr_rearm_func == NULL) ||
10093 (vp->v_resolve->vr_flags & VNT_AUTO_REARM) == 0) {
10094 return;
10095 }
10096
10097 rp = vp->v_resolve;
10098 lck_mtx_lock(&rp->vr_lock);
10099
10100 /*
10101 * Check if VFS initiated this unmount. If so, we'll catch it after the unresolve completes.
10102 */
10103 if (rp->vr_flags & VNT_VFS_UNMOUNTED) {
10104 lck_mtx_unlock(&rp->vr_lock);
10105 return;
10106 }
10107
10108 /* Check if this vnode is already armed */
10109 if ((rp->vr_flags & VNT_RESOLVED) == 0) {
10110 lck_mtx_unlock(&rp->vr_lock);
10111 return;
10112 }
10113
10114 lck_mtx_unlock(&rp->vr_lock);
10115
10116 result = rp->vr_rearm_func(vp, 0, rp->vr_data, ctx);
10117 status = vfs_resolver_status(result);
10118 seq = vfs_resolver_sequence(result);
10119
10120 lck_mtx_lock(&rp->vr_lock);
10121 if (seq > rp->vr_lastseq) {
10122 if (status == RESOLVER_UNRESOLVED) {
10123 rp->vr_flags &= ~VNT_RESOLVED;
10124 }
10125 rp->vr_lastseq = seq;
10126 }
10127 lck_mtx_unlock(&rp->vr_lock);
10128 }
10129
10130 __private_extern__
10131 int
10132 vnode_trigger_resolve(vnode_t vp, struct nameidata *ndp, vfs_context_t ctx)
10133 {
10134 vnode_resolve_t rp;
10135 enum path_operation op;
10136 resolver_result_t result;
10137 enum resolver_status status;
10138 uint32_t seq;
10139
10140 /* Only trigger on topmost vnodes */
10141 if ((vp->v_resolve == NULL) ||
10142 (vp->v_resolve->vr_resolve_func == NULL) ||
10143 (vp->v_mountedhere != NULL)) {
10144 return 0;
10145 }
10146
10147 rp = vp->v_resolve;
10148 lck_mtx_lock(&rp->vr_lock);
10149
10150 /* Check if this vnode is already resolved */
10151 if (rp->vr_flags & VNT_RESOLVED) {
10152 lck_mtx_unlock(&rp->vr_lock);
10153 return 0;
10154 }
10155
10156 lck_mtx_unlock(&rp->vr_lock);
10157
10158 #if CONFIG_MACF
10159 if ((rp->vr_flags & VNT_KERN_RESOLVE) == 0) {
10160 /*
10161 * VNT_KERN_RESOLVE indicates this trigger has no parameters
10162 * at the discression of the accessing process other than
10163 * the act of access. All other triggers must be checked
10164 */
10165 int rv = mac_vnode_check_trigger_resolve(ctx, vp, &ndp->ni_cnd);
10166 if (rv != 0) {
10167 return rv;
10168 }
10169 }
10170 #endif
10171
10172 /*
10173 * XXX
10174 * assumes that resolver will not access this trigger vnode (otherwise the kernel will deadlock)
10175 * is there anyway to know this???
10176 * there can also be other legitimate lookups in parallel
10177 *
10178 * XXX - should we call this on a separate thread with a timeout?
10179 *
10180 * XXX - should we use ISLASTCN to pick the op value??? Perhaps only leafs should
10181 * get the richer set and non-leafs should get generic OP_LOOKUP? TBD
10182 */
10183 op = (ndp->ni_op < OP_MAXOP) ? ndp->ni_op: OP_LOOKUP;
10184
10185 result = rp->vr_resolve_func(vp, &ndp->ni_cnd, op, 0, rp->vr_data, ctx);
10186 status = vfs_resolver_status(result);
10187 seq = vfs_resolver_sequence(result);
10188
10189 lck_mtx_lock(&rp->vr_lock);
10190 if (seq > rp->vr_lastseq) {
10191 if (status == RESOLVER_RESOLVED) {
10192 rp->vr_flags |= VNT_RESOLVED;
10193 }
10194 rp->vr_lastseq = seq;
10195 }
10196 lck_mtx_unlock(&rp->vr_lock);
10197
10198 /* On resolver errors, propagate the error back up */
10199 return status == RESOLVER_ERROR ? vfs_resolver_auxiliary(result) : 0;
10200 }
10201
10202 static int
10203 vnode_trigger_unresolve(vnode_t vp, int flags, vfs_context_t ctx)
10204 {
10205 vnode_resolve_t rp;
10206 resolver_result_t result;
10207 enum resolver_status status;
10208 uint32_t seq;
10209
10210 if ((vp->v_resolve == NULL) || (vp->v_resolve->vr_unresolve_func == NULL)) {
10211 return 0;
10212 }
10213
10214 rp = vp->v_resolve;
10215 lck_mtx_lock(&rp->vr_lock);
10216
10217 /* Check if this vnode is already resolved */
10218 if ((rp->vr_flags & VNT_RESOLVED) == 0) {
10219 printf("vnode_trigger_unresolve: not currently resolved\n");
10220 lck_mtx_unlock(&rp->vr_lock);
10221 return 0;
10222 }
10223
10224 rp->vr_flags |= VNT_VFS_UNMOUNTED;
10225
10226 lck_mtx_unlock(&rp->vr_lock);
10227
10228 /*
10229 * XXX
10230 * assumes that resolver will not access this trigger vnode (otherwise the kernel will deadlock)
10231 * there can also be other legitimate lookups in parallel
10232 *
10233 * XXX - should we call this on a separate thread with a timeout?
10234 */
10235
10236 result = rp->vr_unresolve_func(vp, flags, rp->vr_data, ctx);
10237 status = vfs_resolver_status(result);
10238 seq = vfs_resolver_sequence(result);
10239
10240 lck_mtx_lock(&rp->vr_lock);
10241 if (seq > rp->vr_lastseq) {
10242 if (status == RESOLVER_UNRESOLVED) {
10243 rp->vr_flags &= ~VNT_RESOLVED;
10244 }
10245 rp->vr_lastseq = seq;
10246 }
10247 rp->vr_flags &= ~VNT_VFS_UNMOUNTED;
10248 lck_mtx_unlock(&rp->vr_lock);
10249
10250 /* On resolver errors, propagate the error back up */
10251 return status == RESOLVER_ERROR ? vfs_resolver_auxiliary(result) : 0;
10252 }
10253
10254 static int
10255 triggerisdescendant(mount_t mp, mount_t rmp)
10256 {
10257 int match = FALSE;
10258
10259 /*
10260 * walk up vnode covered chain looking for a match
10261 */
10262 name_cache_lock_shared();
10263
10264 while (1) {
10265 vnode_t vp;
10266
10267 /* did we encounter "/" ? */
10268 if (mp->mnt_flag & MNT_ROOTFS) {
10269 break;
10270 }
10271
10272 vp = mp->mnt_vnodecovered;
10273 if (vp == NULLVP) {
10274 break;
10275 }
10276
10277 mp = vp->v_mount;
10278 if (mp == rmp) {
10279 match = TRUE;
10280 break;
10281 }
10282 }
10283
10284 name_cache_unlock();
10285
10286 return match;
10287 }
10288
10289 struct trigger_unmount_info {
10290 vfs_context_t ctx;
10291 mount_t top_mp;
10292 vnode_t trigger_vp;
10293 mount_t trigger_mp;
10294 uint32_t trigger_vid;
10295 int flags;
10296 };
10297
10298 static int
10299 trigger_unmount_callback(mount_t mp, void * arg)
10300 {
10301 struct trigger_unmount_info * infop = (struct trigger_unmount_info *)arg;
10302 boolean_t mountedtrigger = FALSE;
10303
10304 /*
10305 * When we encounter the top level mount we're done
10306 */
10307 if (mp == infop->top_mp) {
10308 return VFS_RETURNED_DONE;
10309 }
10310
10311 if ((mp->mnt_vnodecovered == NULL) ||
10312 (vnode_getwithref(mp->mnt_vnodecovered) != 0)) {
10313 return VFS_RETURNED;
10314 }
10315
10316 if ((mp->mnt_vnodecovered->v_mountedhere == mp) &&
10317 (mp->mnt_vnodecovered->v_resolve != NULL) &&
10318 (mp->mnt_vnodecovered->v_resolve->vr_flags & VNT_RESOLVED)) {
10319 mountedtrigger = TRUE;
10320 }
10321 vnode_put(mp->mnt_vnodecovered);
10322
10323 /*
10324 * When we encounter a mounted trigger, check if its under the top level mount
10325 */
10326 if (!mountedtrigger || !triggerisdescendant(mp, infop->top_mp)) {
10327 return VFS_RETURNED;
10328 }
10329
10330 /*
10331 * Process any pending nested mount (now that its not referenced)
10332 */
10333 if ((infop->trigger_vp != NULLVP) &&
10334 (vnode_getwithvid(infop->trigger_vp, infop->trigger_vid) == 0)) {
10335 vnode_t vp = infop->trigger_vp;
10336 int error;
10337
10338 infop->trigger_vp = NULLVP;
10339
10340 if (mp == vp->v_mountedhere) {
10341 vnode_put(vp);
10342 printf("trigger_unmount_callback: unexpected match '%s'\n",
10343 mp->mnt_vfsstat.f_mntonname);
10344 return VFS_RETURNED;
10345 }
10346 if (infop->trigger_mp != vp->v_mountedhere) {
10347 vnode_put(vp);
10348 printf("trigger_unmount_callback: trigger mnt changed! (%p != %p)\n",
10349 infop->trigger_mp, vp->v_mountedhere);
10350 goto savenext;
10351 }
10352
10353 error = vnode_trigger_unresolve(vp, infop->flags, infop->ctx);
10354 vnode_put(vp);
10355 if (error) {
10356 printf("unresolving: '%s', err %d\n",
10357 vp->v_mountedhere ? vp->v_mountedhere->mnt_vfsstat.f_mntonname :
10358 "???", error);
10359 return VFS_RETURNED_DONE; /* stop iteration on errors */
10360 }
10361 }
10362 savenext:
10363 /*
10364 * We can't call resolver here since we hold a mount iter
10365 * ref on mp so save its covered vp for later processing
10366 */
10367 infop->trigger_vp = mp->mnt_vnodecovered;
10368 if ((infop->trigger_vp != NULLVP) &&
10369 (vnode_getwithref(infop->trigger_vp) == 0)) {
10370 if (infop->trigger_vp->v_mountedhere == mp) {
10371 infop->trigger_vid = infop->trigger_vp->v_id;
10372 infop->trigger_mp = mp;
10373 }
10374 vnode_put(infop->trigger_vp);
10375 }
10376
10377 return VFS_RETURNED;
10378 }
10379
10380 /*
10381 * Attempt to unmount any trigger mounts nested underneath a mount.
10382 * This is a best effort attempt and no retries are performed here.
10383 *
10384 * Note: mp->mnt_rwlock is held exclusively on entry (so be carefull)
10385 */
10386 __private_extern__
10387 void
10388 vfs_nested_trigger_unmounts(mount_t mp, int flags, vfs_context_t ctx)
10389 {
10390 struct trigger_unmount_info info;
10391
10392 /* Must have trigger vnodes */
10393 if (mp->mnt_numtriggers == 0) {
10394 return;
10395 }
10396 /* Avoid recursive requests (by checking covered vnode) */
10397 if ((mp->mnt_vnodecovered != NULL) &&
10398 (vnode_getwithref(mp->mnt_vnodecovered) == 0)) {
10399 boolean_t recursive = FALSE;
10400
10401 if ((mp->mnt_vnodecovered->v_mountedhere == mp) &&
10402 (mp->mnt_vnodecovered->v_resolve != NULL) &&
10403 (mp->mnt_vnodecovered->v_resolve->vr_flags & VNT_VFS_UNMOUNTED)) {
10404 recursive = TRUE;
10405 }
10406 vnode_put(mp->mnt_vnodecovered);
10407 if (recursive) {
10408 return;
10409 }
10410 }
10411
10412 /*
10413 * Attempt to unmount any nested trigger mounts (best effort)
10414 */
10415 info.ctx = ctx;
10416 info.top_mp = mp;
10417 info.trigger_vp = NULLVP;
10418 info.trigger_vid = 0;
10419 info.trigger_mp = NULL;
10420 info.flags = flags;
10421
10422 (void) vfs_iterate(VFS_ITERATE_TAIL_FIRST, trigger_unmount_callback, &info);
10423
10424 /*
10425 * Process remaining nested mount (now that its not referenced)
10426 */
10427 if ((info.trigger_vp != NULLVP) &&
10428 (vnode_getwithvid(info.trigger_vp, info.trigger_vid) == 0)) {
10429 vnode_t vp = info.trigger_vp;
10430
10431 if (info.trigger_mp == vp->v_mountedhere) {
10432 (void) vnode_trigger_unresolve(vp, flags, ctx);
10433 }
10434 vnode_put(vp);
10435 }
10436 }
10437
10438 int
10439 vfs_addtrigger(mount_t mp, const char *relpath, struct vnode_trigger_info *vtip, vfs_context_t ctx)
10440 {
10441 struct nameidata nd;
10442 int res;
10443 vnode_t rvp, vp;
10444 struct vnode_trigger_param vtp;
10445
10446 /*
10447 * Must be called for trigger callback, wherein rwlock is held
10448 */
10449 lck_rw_assert(&mp->mnt_rwlock, LCK_RW_ASSERT_HELD);
10450
10451 TRIG_LOG("Adding trigger at %s\n", relpath);
10452 TRIG_LOG("Trying VFS_ROOT\n");
10453
10454 /*
10455 * We do a lookup starting at the root of the mountpoint, unwilling
10456 * to cross into other mountpoints.
10457 */
10458 res = VFS_ROOT(mp, &rvp, ctx);
10459 if (res != 0) {
10460 goto out;
10461 }
10462
10463 TRIG_LOG("Trying namei\n");
10464
10465 NDINIT(&nd, LOOKUP, OP_LOOKUP, USEDVP | NOCROSSMOUNT | FOLLOW, UIO_SYSSPACE,
10466 CAST_USER_ADDR_T(relpath), ctx);
10467 nd.ni_dvp = rvp;
10468 res = namei(&nd);
10469 if (res != 0) {
10470 vnode_put(rvp);
10471 goto out;
10472 }
10473
10474 vp = nd.ni_vp;
10475 nameidone(&nd);
10476 vnode_put(rvp);
10477
10478 TRIG_LOG("Trying vnode_resolver_create()\n");
10479
10480 /*
10481 * Set up blob. vnode_create() takes a larger structure
10482 * with creation info, and we needed something different
10483 * for this case. One needs to win, or we need to munge both;
10484 * vnode_create() wins.
10485 */
10486 bzero(&vtp, sizeof(vtp));
10487 vtp.vnt_resolve_func = vtip->vti_resolve_func;
10488 vtp.vnt_unresolve_func = vtip->vti_unresolve_func;
10489 vtp.vnt_rearm_func = vtip->vti_rearm_func;
10490 vtp.vnt_reclaim_func = vtip->vti_reclaim_func;
10491 vtp.vnt_reclaim_func = vtip->vti_reclaim_func;
10492 vtp.vnt_data = vtip->vti_data;
10493 vtp.vnt_flags = vtip->vti_flags;
10494
10495 res = vnode_resolver_create(mp, vp, &vtp, TRUE);
10496 vnode_put(vp);
10497 out:
10498 TRIG_LOG("Returning %d\n", res);
10499 return res;
10500 }
10501
10502 #endif /* CONFIG_TRIGGERS */
10503
10504 vm_offset_t
10505 kdebug_vnode(vnode_t vp)
10506 {
10507 return VM_KERNEL_ADDRPERM(vp);
10508 }
10509
10510 static int flush_cache_on_write = 0;
10511 SYSCTL_INT(_kern, OID_AUTO, flush_cache_on_write,
10512 CTLFLAG_RW | CTLFLAG_LOCKED, &flush_cache_on_write, 0,
10513 "always flush the drive cache on writes to uncached files");
10514
10515 int
10516 vnode_should_flush_after_write(vnode_t vp, int ioflag)
10517 {
10518 return flush_cache_on_write
10519 && (ISSET(ioflag, IO_NOCACHE) || vnode_isnocache(vp));
10520 }
10521
10522 /*
10523 * sysctl for use by disk I/O tracing tools to get the list of existing
10524 * vnodes' paths
10525 */
10526
10527 struct vnode_trace_paths_context {
10528 uint64_t count;
10529 long path[MAXPATHLEN / sizeof(long) + 1]; /* + 1 in case sizeof (long) does not divide MAXPATHLEN */
10530 };
10531
10532 static int
10533 vnode_trace_path_callback(struct vnode *vp, void *arg)
10534 {
10535 int len, rv;
10536 struct vnode_trace_paths_context *ctx;
10537
10538 ctx = arg;
10539
10540 len = sizeof(ctx->path);
10541 rv = vn_getpath(vp, (char *)ctx->path, &len);
10542 /* vn_getpath() NUL-terminates, and len includes the NUL */
10543
10544 if (!rv) {
10545 kdebug_vfs_lookup(ctx->path, len, vp,
10546 KDBG_VFS_LOOKUP_FLAG_LOOKUP | KDBG_VFS_LOOKUP_FLAG_NOPROCFILT);
10547
10548 if (++(ctx->count) == 1000) {
10549 thread_yield_to_preemption();
10550 ctx->count = 0;
10551 }
10552 }
10553
10554 return VNODE_RETURNED;
10555 }
10556
10557 static int
10558 vfs_trace_paths_callback(mount_t mp, void *arg)
10559 {
10560 if (mp->mnt_flag & MNT_LOCAL) {
10561 vnode_iterate(mp, VNODE_ITERATE_ALL, vnode_trace_path_callback, arg);
10562 }
10563
10564 return VFS_RETURNED;
10565 }
10566
10567 static int sysctl_vfs_trace_paths SYSCTL_HANDLER_ARGS {
10568 struct vnode_trace_paths_context ctx;
10569
10570 (void)oidp;
10571 (void)arg1;
10572 (void)arg2;
10573 (void)req;
10574
10575 if (!kauth_cred_issuser(kauth_cred_get())) {
10576 return EPERM;
10577 }
10578
10579 if (!kdebug_enable || !kdebug_debugid_enabled(VFS_LOOKUP)) {
10580 return EINVAL;
10581 }
10582
10583 bzero(&ctx, sizeof(struct vnode_trace_paths_context));
10584
10585 vfs_iterate(0, vfs_trace_paths_callback, &ctx);
10586
10587 return 0;
10588 }
10589
10590 SYSCTL_PROC(_vfs_generic, OID_AUTO, trace_paths, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, NULL, 0, &sysctl_vfs_trace_paths, "-", "trace_paths");