2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1988, 1990, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
93 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
94 * support for mandatory and extensible security protections. This notice
95 * is included in support of clause 2.2 (b) of the Apple Public License,
99 #include <sys/param.h>
100 #include <sys/malloc.h>
101 #include <sys/mbuf.h>
102 #include <sys/errno.h>
103 #include <sys/protosw.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/systm.h>
107 #include <sys/kernel.h>
108 #include <sys/proc.h>
109 #include <sys/kauth.h>
110 #include <sys/mcache.h>
111 #include <sys/sysctl.h>
112 #include <kern/zalloc.h>
113 #include <libkern/OSByteOrder.h>
115 #include <pexpert/pexpert.h>
116 #include <mach/sdt.h>
119 #include <net/route.h>
120 #include <net/dlil.h>
121 #include <net/net_api_stats.h>
122 #include <net/net_osdep.h>
123 #include <net/net_perf.h>
125 #include <netinet/ip.h>
126 #include <netinet/in.h>
127 #include <netinet/in_var.h>
128 #include <netinet/ip_var.h>
129 #include <netinet6/in6_var.h>
130 #include <netinet/ip6.h>
131 #include <netinet/kpi_ipfilter_var.h>
132 #include <netinet/in_tclass.h>
134 #include <netinet6/ip6protosw.h>
135 #include <netinet/icmp6.h>
136 #include <netinet6/ip6_var.h>
137 #include <netinet/in_pcb.h>
138 #include <netinet6/nd6.h>
139 #include <netinet6/scope6_var.h>
141 #include <netinet6/ipsec.h>
142 #include <netinet6/ipsec6.h>
143 #include <netkey/key.h>
144 extern int ipsec_bypass
;
148 #include <net/necp.h>
152 #include <security/mac.h>
153 #endif /* CONFIG_MACF_NET */
156 #include <netinet/ip_fw.h>
157 #include <netinet/ip_dummynet.h>
158 #endif /* DUMMYNET */
161 #include <net/pfvar.h>
164 static int sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS
;
165 static int sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS
;
166 static int sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS
;
167 static int ip6_copyexthdr(struct mbuf
**, caddr_t
, int);
168 static void ip6_out_cksum_stats(int, u_int32_t
);
169 static int ip6_insert_jumboopt(struct ip6_exthdrs
*, u_int32_t
);
170 static int ip6_insertfraghdr(struct mbuf
*, struct mbuf
*, int,
172 static int ip6_getpmtu(struct route_in6
*, struct route_in6
*,
173 struct ifnet
*, struct in6_addr
*, u_int32_t
*);
174 static int ip6_pcbopts(struct ip6_pktopts
**, struct mbuf
*, struct socket
*,
175 struct sockopt
*sopt
);
176 static int ip6_pcbopt(int, u_char
*, int, struct ip6_pktopts
**, int);
177 static int ip6_getpcbopt(struct ip6_pktopts
*, int, struct sockopt
*);
178 static int copypktopts(struct ip6_pktopts
*, struct ip6_pktopts
*, int);
179 static void im6o_trace(struct ip6_moptions
*, int);
180 static int ip6_setpktopt(int, u_char
*, int, struct ip6_pktopts
*, int,
182 static int ip6_splithdr(struct mbuf
*, struct ip6_exthdrs
*);
183 static void ip6_output_checksum(struct ifnet
*, uint32_t, struct mbuf
*,
184 int, uint32_t, uint32_t);
185 extern int udp_ctloutput(struct socket
*, struct sockopt
*);
186 static int ip6_fragment_packet(struct mbuf
**m
,
187 struct ip6_pktopts
*opt
, struct ip6_exthdrs
*exthdrsp
, struct ifnet
*ifp
,
188 uint32_t mtu
, uint32_t unfragpartlen
,
189 struct route_in6
*ro_pmtu
, int nxt0
, uint32_t optlen
);
191 SYSCTL_DECL(_net_inet6_ip6
);
193 static int ip6_output_measure
= 0;
194 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf
,
195 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
196 &ip6_output_measure
, 0, sysctl_reset_ip6_output_stats
, "I", "Do time measurement");
198 static uint64_t ip6_output_measure_bins
= 0;
199 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf_bins
,
200 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_output_measure_bins
, 0,
201 sysctl_ip6_output_measure_bins
, "I",
202 "bins for chaining performance data histogram");
204 static net_perf_t net_perf
;
205 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf_data
,
206 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
207 0, 0, sysctl_ip6_output_getperf
, "S,net_perf",
208 "IP6 output performance data (struct net_perf, net/net_perf.h)");
210 #define IM6O_TRACE_HIST_SIZE 32 /* size of trace history */
213 __private_extern__
unsigned int im6o_trace_hist_size
= IM6O_TRACE_HIST_SIZE
;
215 struct ip6_moptions_dbg
{
216 struct ip6_moptions im6o
; /* ip6_moptions */
217 u_int16_t im6o_refhold_cnt
; /* # of IM6O_ADDREF */
218 u_int16_t im6o_refrele_cnt
; /* # of IM6O_REMREF */
220 * Alloc and free callers.
225 * Circular lists of IM6O_ADDREF and IM6O_REMREF callers.
227 ctrace_t im6o_refhold
[IM6O_TRACE_HIST_SIZE
];
228 ctrace_t im6o_refrele
[IM6O_TRACE_HIST_SIZE
];
232 static unsigned int im6o_debug
= 1; /* debugging (enabled) */
234 static unsigned int im6o_debug
; /* debugging (disabled) */
237 static unsigned int im6o_size
; /* size of zone element */
238 static struct zone
*im6o_zone
; /* zone for ip6_moptions */
240 #define IM6O_ZONE_MAX 64 /* maximum elements in zone */
241 #define IM6O_ZONE_NAME "ip6_moptions" /* zone name */
244 * ip6_output() calls ip6_output_list() to do the work
247 ip6_output(struct mbuf
*m0
, struct ip6_pktopts
*opt
,
248 struct route_in6
*ro
, int flags
, struct ip6_moptions
*im6o
,
249 struct ifnet
**ifpp
, struct ip6_out_args
*ip6oa
)
251 return ip6_output_list(m0
, 0, opt
, ro
, flags
, im6o
, ifpp
, ip6oa
);
255 * IP6 output. Each packet in mbuf chain m contains a skeletal IP6
256 * header (with pri, len, nxt, hlim, src, dst).
257 * This function may modify ver and hlim only.
258 * The mbuf chain containing the packet will be freed.
259 * The mbuf opt, if present, will not be freed.
261 * If ro is non-NULL and has valid ro->ro_rt, route lookup would be
262 * skipped and ro->ro_rt would be used. Otherwise the result of route
263 * lookup is stored in ro->ro_rt.
265 * type of "mtu": rt_rmx.rmx_mtu is u_int32_t, ifnet.ifr_mtu is int, and
266 * nd_ifinfo.linkmtu is u_int32_t. so we use u_int32_t to hold largest one,
267 * which is rt_rmx.rmx_mtu.
270 ip6_output_list(struct mbuf
*m0
, int packetchain
, struct ip6_pktopts
*opt
,
271 struct route_in6
*ro
, int flags
, struct ip6_moptions
*im6o
,
272 struct ifnet
**ifpp
, struct ip6_out_args
*ip6oa
)
276 struct ifnet
*ifp
= NULL
, *origifp
= NULL
; /* refcnt'd */
277 struct ifnet
**ifpp_save
= ifpp
;
278 struct mbuf
*m
, *mprev
;
279 struct mbuf
*sendchain
= NULL
, *sendchain_last
= NULL
;
280 struct mbuf
*inputchain
= NULL
;
282 struct route_in6
*ro_pmtu
= NULL
;
283 struct rtentry
*rt
= NULL
;
284 struct sockaddr_in6
*dst
= NULL
, src_sa
, dst_sa
;
286 struct in6_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
288 u_int32_t optlen
= 0, plen
= 0, unfragpartlen
= 0;
289 struct ip6_rthdr
*rh
;
290 struct in6_addr finaldst
;
291 ipfilter_t inject_filter_ref
;
292 struct ipf_pktopts
*ippo
= NULL
;
293 struct flowadv
*adv
= NULL
;
295 uint32_t packets_processed
= 0;
296 struct timeval start_tv
;
298 boolean_t skip_pf
= (ip6oa
!= NULL
) &&
299 (ip6oa
->ip6oa_flags
& IP6OAF_SKIP_PF
);
304 struct ip6_out_args saved_ip6oa
;
305 struct sockaddr_in6 dst_buf
;
306 #endif /* DUMMYNET */
308 struct socket
*so
= NULL
;
309 struct secpolicy
*sp
= NULL
;
310 struct route_in6
*ipsec_saved_route
= NULL
;
311 boolean_t needipsectun
= FALSE
;
314 necp_kernel_policy_result necp_result
= 0;
315 necp_kernel_policy_result_parameter necp_result_parameter
;
316 necp_kernel_policy_id necp_matched_policy_id
= 0;
319 struct ipf_pktopts ipf_pktopts
;
320 struct ip6_exthdrs exthdrs
;
321 struct route_in6 ip6route
;
323 struct ipsec_output_state ipsec_state
;
326 struct route_in6 necp_route
;
329 struct route_in6 saved_route
;
330 struct route_in6 saved_ro_pmtu
;
331 struct ip_fw_args args
;
332 #endif /* DUMMYNET */
334 #define ipf_pktopts ip6obz.ipf_pktopts
335 #define exthdrs ip6obz.exthdrs
336 #define ip6route ip6obz.ip6route
337 #define ipsec_state ip6obz.ipsec_state
338 #define necp_route ip6obz.necp_route
339 #define saved_route ip6obz.saved_route
340 #define saved_ro_pmtu ip6obz.saved_ro_pmtu
341 #define args ip6obz.args
344 boolean_t select_srcif
: 1;
345 boolean_t hdrsplit
: 1;
346 boolean_t route_selected
: 1;
347 boolean_t dontfrag
: 1;
349 boolean_t needipsec
: 1;
350 boolean_t noipsec
: 1;
354 } ip6obf
= { .raw
= 0 };
356 if (ip6_output_measure
) {
357 net_perf_start_time(&net_perf
, &start_tv
);
360 VERIFY(m0
->m_flags
& M_PKTHDR
);
362 /* zero out {saved_route, saved_ro_pmtu, ip6route, exthdrs, args} */
363 bzero(&ip6obz
, sizeof(ip6obz
));
366 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
)) {
370 /* Grab info from mtags prepended to the chain */
371 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
372 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
373 struct dn_pkt_tag
*dn_tag
;
376 * ip6_output_list() cannot handle chains of packets reinjected
377 * by dummynet. The same restriction applies to
380 VERIFY(0 == packetchain
);
382 dn_tag
= (struct dn_pkt_tag
*)(tag
+ 1);
383 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
385 bcopy(&dn_tag
->dn_dst6
, &dst_buf
, sizeof(dst_buf
));
387 ifp
= dn_tag
->dn_ifp
;
389 ifnet_reference(ifp
);
391 flags
= dn_tag
->dn_flags
;
392 if (dn_tag
->dn_flags
& IPV6_OUTARGS
) {
393 saved_ip6oa
= dn_tag
->dn_ip6oa
;
394 ip6oa
= &saved_ip6oa
;
397 saved_route
= dn_tag
->dn_ro6
;
399 saved_ro_pmtu
= dn_tag
->dn_ro6_pmtu
;
400 ro_pmtu
= &saved_ro_pmtu
;
401 origifp
= dn_tag
->dn_origifp
;
402 if (origifp
!= NULL
) {
403 ifnet_reference(origifp
);
405 mtu
= dn_tag
->dn_mtu
;
406 unfragpartlen
= dn_tag
->dn_unfragpartlen
;
408 bcopy(&dn_tag
->dn_exthdrs
, &exthdrs
, sizeof(exthdrs
));
410 m_tag_delete(m0
, tag
);
414 #endif /* DUMMYNET */
419 if (ipsec_bypass
== 0) {
420 so
= ipsec_getsocket(m
);
422 (void) ipsec_setsocket(m
, NULL
);
424 /* If packet is bound to an interface, check bound policies */
425 if ((flags
& IPV6_OUTARGS
) &&
426 (ip6oa
->ip6oa_flags
& IP6OAF_BOUND_IF
) &&
427 ip6oa
->ip6oa_boundif
!= IFSCOPE_NONE
) {
428 /* ip6obf.noipsec is a bitfield, use temp integer */
431 if (ipsec6_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
432 flags
, ip6oa
, &noipsec
, &sp
) != 0) {
436 ip6obf
.noipsec
= (noipsec
!= 0);
443 if (flags
& IPV6_OUTARGS
) {
445 * In the forwarding case, only the ifscope value is used,
446 * as source interface selection doesn't take place.
448 if ((ip6obf
.select_srcif
= (!(flags
& (IPV6_FORWARDING
|
449 IPV6_UNSPECSRC
| IPV6_FLAG_NOSRCIFSEL
)) &&
450 (ip6oa
->ip6oa_flags
& IP6OAF_SELECT_SRCIF
)))) {
451 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
454 if ((ip6oa
->ip6oa_flags
& IP6OAF_BOUND_IF
) &&
455 ip6oa
->ip6oa_boundif
!= IFSCOPE_NONE
) {
456 ipf_pktopts
.ippo_flags
|= (IPPOF_BOUND_IF
|
457 (ip6oa
->ip6oa_boundif
<< IPPOF_SHIFT_IFSCOPE
));
460 if (ip6oa
->ip6oa_flags
& IP6OAF_BOUND_SRCADDR
) {
461 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
464 ip6obf
.select_srcif
= FALSE
;
465 if (flags
& IPV6_OUTARGS
) {
466 ip6oa
->ip6oa_boundif
= IFSCOPE_NONE
;
467 ip6oa
->ip6oa_flags
&= ~(IP6OAF_SELECT_SRCIF
|
468 IP6OAF_BOUND_IF
| IP6OAF_BOUND_SRCADDR
);
472 if (flags
& IPV6_OUTARGS
) {
473 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_CELLULAR
) {
474 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
476 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_EXPENSIVE
) {
477 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
479 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_CONSTRAINED
) {
480 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_CONSTRAINED
;
482 adv
= &ip6oa
->ip6oa_flowadv
;
483 adv
->code
= FADV_SUCCESS
;
484 ip6oa
->ip6oa_retflags
= 0;
488 * Clear out ifpp to be filled in after determining route. ifpp_save is
489 * used to keep old value to release reference properly and dtrace
490 * ipsec tunnel traffic properly.
492 if (ifpp
!= NULL
&& *ifpp
!= NULL
) {
497 if (args
.fwa_pf_rule
) {
498 ip6
= mtod(m
, struct ip6_hdr
*);
499 VERIFY(ro
!= NULL
); /* ro == saved_route */
502 #endif /* DUMMYNET */
506 * Since all packets are assumed to come from same socket, necp lookup
507 * only needs to happen once per function entry.
509 necp_matched_policy_id
= necp_ip6_output_find_policy_match(m
, flags
,
510 (flags
& IPV6_OUTARGS
) ? ip6oa
: NULL
, ro
? ro
->ro_rt
: NULL
, &necp_result
,
511 &necp_result_parameter
);
515 * If a chain was passed in, prepare for ther first iteration. For all
516 * other iterations, this work will be done at evaluateloop: label.
520 * Remove m from the chain during processing to avoid
521 * accidental frees on entire list.
523 inputchain
= m
->m_nextpkt
;
529 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
| PKTF_IFAINFO
);
530 ip6
= mtod(m
, struct ip6_hdr
*);
532 finaldst
= ip6
->ip6_dst
;
533 ip6obf
.hdrsplit
= FALSE
;
536 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
)) {
537 inject_filter_ref
= ipf_get_inject_filter(m
);
539 inject_filter_ref
= NULL
;
542 #define MAKE_EXTHDR(hp, mp) do { \
544 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
545 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
546 ((eh)->ip6e_len + 1) << 3); \
553 /* Hop-by-Hop options header */
554 MAKE_EXTHDR(opt
->ip6po_hbh
, &exthdrs
.ip6e_hbh
);
555 /* Destination options header(1st part) */
556 if (opt
->ip6po_rthdr
) {
558 * Destination options header(1st part)
559 * This only makes sense with a routing header.
560 * See Section 9.2 of RFC 3542.
561 * Disabling this part just for MIP6 convenience is
562 * a bad idea. We need to think carefully about a
563 * way to make the advanced API coexist with MIP6
564 * options, which might automatically be inserted in
567 MAKE_EXTHDR(opt
->ip6po_dest1
, &exthdrs
.ip6e_dest1
);
570 MAKE_EXTHDR(opt
->ip6po_rthdr
, &exthdrs
.ip6e_rthdr
);
571 /* Destination options header(2nd part) */
572 MAKE_EXTHDR(opt
->ip6po_dest2
, &exthdrs
.ip6e_dest2
);
578 if (necp_matched_policy_id
) {
579 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
581 switch (necp_result
) {
582 case NECP_KERNEL_POLICY_RESULT_PASS
:
584 case NECP_KERNEL_POLICY_RESULT_DROP
:
585 error
= EHOSTUNREACH
;
586 ip6stat
.ip6s_necp_policy_drop
++;
588 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
590 * Flow divert packets should be blocked at the IP
593 error
= EHOSTUNREACH
;
594 ip6stat
.ip6s_necp_policy_drop
++;
596 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
598 * Verify that the packet is being routed to the tunnel
600 struct ifnet
*policy_ifp
=
601 necp_get_ifnet_from_result_parameter(
602 &necp_result_parameter
);
604 if (policy_ifp
== ifp
) {
607 if (necp_packet_can_rebind_to_ifnet(m
,
608 policy_ifp
, (struct route
*)&necp_route
,
611 * Set scoped index to the tunnel
612 * interface, since it is compatible
613 * with the packet. This will only work
614 * for callers who pass IPV6_OUTARGS,
615 * but that covers all of the clients
616 * we care about today.
618 if (flags
& IPV6_OUTARGS
) {
619 ip6oa
->ip6oa_boundif
=
620 policy_ifp
->if_index
;
621 ip6oa
->ip6oa_flags
|=
625 && opt
->ip6po_pktinfo
!= NULL
) {
628 policy_ifp
->if_index
;
634 ip6stat
.ip6s_necp_policy_drop
++;
646 if (ipsec_bypass
!= 0 || ip6obf
.noipsec
) {
651 /* get a security policy for this packet */
653 sp
= ipsec6_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
656 sp
= ipsec6_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
660 IPSEC_STAT_INCREMENT(ipsec6stat
.out_inval
);
668 switch (sp
->policy
) {
669 case IPSEC_POLICY_DISCARD
:
670 case IPSEC_POLICY_GENERATE
:
672 * This packet is just discarded.
674 IPSEC_STAT_INCREMENT(ipsec6stat
.out_polvio
);
677 case IPSEC_POLICY_BYPASS
:
678 case IPSEC_POLICY_NONE
:
679 /* no need to do IPsec. */
680 ip6obf
.needipsec
= FALSE
;
683 case IPSEC_POLICY_IPSEC
:
684 if (sp
->req
== NULL
) {
685 /* acquire a policy */
686 error
= key_spdacquire(sp
);
692 ip6obf
.needipsec
= TRUE
;
696 case IPSEC_POLICY_ENTRUST
:
698 printf("%s: Invalid policy found: %d\n", __func__
, sp
->policy
);
705 * Calculate the total length of the extension header chain.
706 * Keep the length of the unfragmentable part for fragmentation.
709 if (exthdrs
.ip6e_hbh
!= NULL
) {
710 optlen
+= exthdrs
.ip6e_hbh
->m_len
;
712 if (exthdrs
.ip6e_dest1
!= NULL
) {
713 optlen
+= exthdrs
.ip6e_dest1
->m_len
;
715 if (exthdrs
.ip6e_rthdr
!= NULL
) {
716 optlen
+= exthdrs
.ip6e_rthdr
->m_len
;
718 unfragpartlen
= optlen
+ sizeof(struct ip6_hdr
);
720 /* NOTE: we don't add AH/ESP length here. do that later. */
721 if (exthdrs
.ip6e_dest2
!= NULL
) {
722 optlen
+= exthdrs
.ip6e_dest2
->m_len
;
726 * If we need IPsec, or there is at least one extension header,
727 * separate IP6 header from the payload.
733 optlen
) && !ip6obf
.hdrsplit
) {
734 if ((error
= ip6_splithdr(m
, &exthdrs
)) != 0) {
738 m
= exthdrs
.ip6e_ip6
;
739 ip6obf
.hdrsplit
= TRUE
;
743 ip6
= mtod(m
, struct ip6_hdr
*);
745 /* adjust mbuf packet header length */
746 m
->m_pkthdr
.len
+= optlen
;
747 plen
= m
->m_pkthdr
.len
- sizeof(*ip6
);
749 /* If this is a jumbo payload, insert a jumbo payload option. */
750 if (plen
> IPV6_MAXPACKET
) {
751 if (!ip6obf
.hdrsplit
) {
752 if ((error
= ip6_splithdr(m
, &exthdrs
)) != 0) {
756 m
= exthdrs
.ip6e_ip6
;
757 ip6obf
.hdrsplit
= TRUE
;
760 ip6
= mtod(m
, struct ip6_hdr
*);
761 if ((error
= ip6_insert_jumboopt(&exthdrs
, plen
)) != 0) {
766 ip6
->ip6_plen
= htons(plen
);
769 * Concatenate headers and fill in next header fields.
770 * Here we have, on "m"
772 * and we insert headers accordingly. Finally, we should be getting:
773 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
775 * during the header composing process, "m" points to IPv6 header.
776 * "mprev" points to an extension header prior to esp.
778 nexthdrp
= &ip6
->ip6_nxt
;
782 * we treat dest2 specially. this makes IPsec processing
783 * much easier. the goal here is to make mprev point the
784 * mbuf prior to dest2.
786 * result: IPv6 dest2 payload
787 * m and mprev will point to IPv6 header.
789 if (exthdrs
.ip6e_dest2
!= NULL
) {
790 if (!ip6obf
.hdrsplit
) {
791 panic("assumption failed: hdr not split");
794 exthdrs
.ip6e_dest2
->m_next
= m
->m_next
;
795 m
->m_next
= exthdrs
.ip6e_dest2
;
796 *mtod(exthdrs
.ip6e_dest2
, u_char
*) = ip6
->ip6_nxt
;
797 ip6
->ip6_nxt
= IPPROTO_DSTOPTS
;
800 #define MAKE_CHAIN(m, mp, p, i) do { \
802 if (!ip6obf.hdrsplit) { \
803 panic("assumption failed: hdr not split"); \
806 *mtod((m), u_char *) = *(p); \
808 p = mtod((m), u_char *); \
809 (m)->m_next = (mp)->m_next; \
810 (mp)->m_next = (m); \
815 * result: IPv6 hbh dest1 rthdr dest2 payload
816 * m will point to IPv6 header. mprev will point to the
817 * extension header prior to dest2 (rthdr in the above case).
819 MAKE_CHAIN(exthdrs
.ip6e_hbh
, mprev
, nexthdrp
, IPPROTO_HOPOPTS
);
820 MAKE_CHAIN(exthdrs
.ip6e_dest1
, mprev
, nexthdrp
, IPPROTO_DSTOPTS
);
821 MAKE_CHAIN(exthdrs
.ip6e_rthdr
, mprev
, nexthdrp
, IPPROTO_ROUTING
);
823 /* It is no longer safe to free the pointers in exthdrs. */
824 exthdrs
.merged
= TRUE
;
829 if (ip6obf
.needipsec
&& (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
)) {
830 in6_delayed_cksum_offset(m
, 0, optlen
, nxt0
);
834 if (!TAILQ_EMPTY(&ipv6_filters
) &&
835 !((flags
& IPV6_OUTARGS
) &&
836 (ip6oa
->ip6oa_flags
& IP6OAF_INTCOPROC_ALLOWED
)
838 && !necp_packet_should_skip_filters(m
)
841 struct ipfilter
*filter
;
842 int seen
= (inject_filter_ref
== NULL
);
845 if (im6o
!= NULL
&& IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
846 ippo
->ippo_flags
|= IPPOF_MCAST_OPTS
;
848 ippo
->ippo_mcast_ifnet
= im6o
->im6o_multicast_ifp
;
849 ippo
->ippo_mcast_ttl
= im6o
->im6o_multicast_hlim
;
850 ippo
->ippo_mcast_loop
= im6o
->im6o_multicast_loop
;
854 /* Hack: embed the scope_id in the destination */
855 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_dst
) &&
856 (ip6
->ip6_dst
.s6_addr16
[1] == 0) && (ro
!= NULL
)) {
858 ip6
->ip6_dst
.s6_addr16
[1] =
859 htons(ro
->ro_dst
.sin6_scope_id
);
863 TAILQ_FOREACH(filter
, &ipv6_filters
, ipf_link
) {
865 * Don't process packet twice if we've already seen it.
868 if ((struct ipfilter
*)inject_filter_ref
==
872 } else if (filter
->ipf_filter
.ipf_output
!= NULL
) {
875 result
= filter
->ipf_filter
.ipf_output(
876 filter
->ipf_filter
.cookie
,
878 if (result
== EJUSTRETURN
) {
891 ip6
= mtod(m
, struct ip6_hdr
*);
892 /* Hack: cleanup embedded scope_id if we put it there */
894 ip6
->ip6_dst
.s6_addr16
[1] = 0;
899 if (ip6obf
.needipsec
) {
903 * pointers after IPsec headers are not valid any more.
904 * other pointers need a great care too.
905 * (IPsec routines should not mangle mbufs prior to AH/ESP)
907 exthdrs
.ip6e_dest2
= NULL
;
909 if (exthdrs
.ip6e_rthdr
!= NULL
) {
910 rh
= mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*);
911 segleft_org
= rh
->ip6r_segleft
;
912 rh
->ip6r_segleft
= 0;
919 error
= ipsec6_output_trans(&ipsec_state
, nexthdrp
, mprev
,
920 sp
, flags
, &needipsectun
);
923 /* mbuf is already reclaimed in ipsec6_output_trans. */
933 printf("ip6_output (ipsec): error code %d\n",
937 /* don't show these error codes to the user */
943 if (exthdrs
.ip6e_rthdr
!= NULL
) {
944 /* ah6_output doesn't modify mbuf chain */
945 rh
->ip6r_segleft
= segleft_org
;
950 /* If there is a routing header, discard the packet. */
951 if (exthdrs
.ip6e_rthdr
!= NULL
) {
956 /* Source address validation */
957 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
) &&
958 !(flags
& IPV6_UNSPECSRC
)) {
960 ip6stat
.ip6s_badscope
++;
963 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
)) {
965 ip6stat
.ip6s_badscope
++;
969 ip6stat
.ip6s_localout
++;
976 bzero((caddr_t
)ro
, sizeof(*ro
));
979 if (opt
!= NULL
&& opt
->ip6po_rthdr
) {
980 ro
= &opt
->ip6po_route
;
982 dst
= SIN6(&ro
->ro_dst
);
984 if (ro
->ro_rt
!= NULL
) {
985 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
988 * if specified, try to fill in the traffic class field.
989 * do not override if a non-zero value is already set.
990 * we check the diffserv field and the ecn field separately.
992 if (opt
!= NULL
&& opt
->ip6po_tclass
>= 0) {
995 if ((ip6
->ip6_flow
& htonl(0xfc << 20)) == 0) {
998 if ((ip6
->ip6_flow
& htonl(0x03 << 20)) == 0) {
1003 htonl((opt
->ip6po_tclass
& mask
) << 20);
1007 /* fill in or override the hop limit field, if necessary. */
1008 if (opt
&& opt
->ip6po_hlim
!= -1) {
1009 ip6
->ip6_hlim
= opt
->ip6po_hlim
& 0xff;
1010 } else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1013 ip6
->ip6_hlim
= im6o
->im6o_multicast_hlim
;
1016 ip6
->ip6_hlim
= ip6_defmcasthlim
;
1021 * If there is a cached route, check that it is to the same
1022 * destination and is still up. If not, free it and try again.
1023 * Test rt_flags without holding rt_lock for performance reasons;
1024 * if the route is down it will hopefully be caught by the layer
1025 * below (since it uses this route as a hint) or during the
1028 if (ROUTE_UNUSABLE(ro
) || dst
->sin6_family
!= AF_INET6
||
1029 !IN6_ARE_ADDR_EQUAL(&dst
->sin6_addr
, &ip6
->ip6_dst
)) {
1033 if (ro
->ro_rt
== NULL
) {
1034 bzero(dst
, sizeof(*dst
));
1035 dst
->sin6_family
= AF_INET6
;
1036 dst
->sin6_len
= sizeof(struct sockaddr_in6
);
1037 dst
->sin6_addr
= ip6
->ip6_dst
;
1040 if (ip6obf
.needipsec
&& needipsectun
) {
1042 struct ifnet
*trace_ifp
= (ifpp_save
!= NULL
) ? (*ifpp_save
) : NULL
;
1043 #endif /* CONFIG_DTRACE */
1045 * All the extension headers will become inaccessible
1046 * (since they can be encrypted).
1047 * Don't panic, we need no more updates to extension headers
1048 * on inner IPv6 packet (since they are now encapsulated).
1050 * IPv6 [ESP|AH] IPv6 [extension headers] payload
1052 bzero(&exthdrs
, sizeof(exthdrs
));
1053 exthdrs
.ip6e_ip6
= m
;
1056 route_copyout((struct route
*)&ipsec_state
.ro
, (struct route
*)ro
,
1057 sizeof(struct route_in6
));
1058 ipsec_state
.dst
= SA(dst
);
1060 /* So that we can see packets inside the tunnel */
1061 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1062 struct ip6_hdr
*, ip6
, struct ifnet
*, trace_ifp
,
1063 struct ip
*, NULL
, struct ip6_hdr
*, ip6
);
1065 error
= ipsec6_output_tunnel(&ipsec_state
, sp
, flags
);
1066 /* tunneled in IPv4? packet is gone */
1067 if (ipsec_state
.tunneled
== 4) {
1072 ipsec_saved_route
= ro
;
1073 ro
= (struct route_in6
*)&ipsec_state
.ro
;
1074 dst
= SIN6(ipsec_state
.dst
);
1076 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
1086 printf("ip6_output (ipsec): error code %d\n",
1090 /* don't show these error codes to the user */
1097 * The packet has been encapsulated so the ifscope
1098 * is no longer valid since it does not apply to the
1099 * outer address: ignore the ifscope.
1101 if (flags
& IPV6_OUTARGS
) {
1102 ip6oa
->ip6oa_boundif
= IFSCOPE_NONE
;
1103 ip6oa
->ip6oa_flags
&= ~IP6OAF_BOUND_IF
;
1105 if (opt
!= NULL
&& opt
->ip6po_pktinfo
!= NULL
) {
1106 if (opt
->ip6po_pktinfo
->ipi6_ifindex
!= IFSCOPE_NONE
) {
1107 opt
->ip6po_pktinfo
->ipi6_ifindex
= IFSCOPE_NONE
;
1110 exthdrs
.ip6e_ip6
= m
;
1115 * ifp should only be filled in for dummy net packets which will jump
1116 * to check_with_pf label.
1119 VERIFY(ip6obf
.route_selected
);
1122 /* adjust pointer */
1123 ip6
= mtod(m
, struct ip6_hdr
*);
1125 if (ip6obf
.select_srcif
) {
1126 bzero(&src_sa
, sizeof(src_sa
));
1127 src_sa
.sin6_family
= AF_INET6
;
1128 src_sa
.sin6_len
= sizeof(src_sa
);
1129 src_sa
.sin6_addr
= ip6
->ip6_src
;
1131 bzero(&dst_sa
, sizeof(dst_sa
));
1132 dst_sa
.sin6_family
= AF_INET6
;
1133 dst_sa
.sin6_len
= sizeof(dst_sa
);
1134 dst_sa
.sin6_addr
= ip6
->ip6_dst
;
1137 * Only call in6_selectroute() on first iteration to avoid taking
1138 * multiple references on ifp and rt.
1140 * in6_selectroute() might return an ifp with its reference held
1141 * even in the error case, so make sure to release its reference.
1142 * ip6oa may be NULL if IPV6_OUTARGS isn't set.
1144 if (!ip6obf
.route_selected
) {
1145 error
= in6_selectroute( ip6obf
.select_srcif
? &src_sa
: NULL
,
1146 &dst_sa
, opt
, im6o
, &src_ia
, ro
, &ifp
, &rt
, 0, ip6oa
);
1151 ip6stat
.ip6s_noroute
++;
1155 break; /* XXX statistics? */
1158 in6_ifstat_inc(ifp
, ifs6_out_discard
);
1160 /* ifp (if non-NULL) will be released at the end */
1163 ip6obf
.route_selected
= TRUE
;
1167 * If in6_selectroute() does not return a route entry,
1168 * dst may not have been updated.
1170 *dst
= dst_sa
; /* XXX */
1174 /* Catch-all to check if the interface is allowed */
1175 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1176 error
= EHOSTUNREACH
;
1177 ip6stat
.ip6s_necp_policy_drop
++;
1183 * then rt (for unicast) and ifp must be non-NULL valid values.
1185 if (!(flags
& IPV6_FORWARDING
)) {
1186 in6_ifstat_inc_na(ifp
, ifs6_out_request
);
1191 ia
= (struct in6_ifaddr
*)(rt
->rt_ifa
);
1193 IFA_ADDREF(&ia
->ia_ifa
);
1201 * The outgoing interface must be in the zone of source and
1202 * destination addresses (except local/loopback). We should
1203 * use ia_ifp to support the case of sending packets to an
1204 * address of our own.
1206 if (ia
!= NULL
&& ia
->ia_ifp
) {
1207 ifnet_reference(ia
->ia_ifp
); /* for origifp */
1208 if (origifp
!= NULL
) {
1209 ifnet_release(origifp
);
1211 origifp
= ia
->ia_ifp
;
1214 ifnet_reference(ifp
); /* for origifp */
1216 if (origifp
!= NULL
) {
1217 ifnet_release(origifp
);
1222 /* skip scope enforcements for local/loopback route */
1223 if (rt
== NULL
|| !(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)) {
1224 struct in6_addr src0
, dst0
;
1227 src0
= ip6
->ip6_src
;
1228 if (in6_setscope(&src0
, origifp
, &zone
)) {
1231 bzero(&src_sa
, sizeof(src_sa
));
1232 src_sa
.sin6_family
= AF_INET6
;
1233 src_sa
.sin6_len
= sizeof(src_sa
);
1234 src_sa
.sin6_addr
= ip6
->ip6_src
;
1235 if ((sa6_recoverscope(&src_sa
, TRUE
) ||
1236 zone
!= src_sa
.sin6_scope_id
)) {
1240 dst0
= ip6
->ip6_dst
;
1241 if ((in6_setscope(&dst0
, origifp
, &zone
))) {
1244 /* re-initialize to be sure */
1245 bzero(&dst_sa
, sizeof(dst_sa
));
1246 dst_sa
.sin6_family
= AF_INET6
;
1247 dst_sa
.sin6_len
= sizeof(dst_sa
);
1248 dst_sa
.sin6_addr
= ip6
->ip6_dst
;
1249 if ((sa6_recoverscope(&dst_sa
, TRUE
) ||
1250 zone
!= dst_sa
.sin6_scope_id
)) {
1254 /* scope check is done. */
1258 ip6stat
.ip6s_badscope
++;
1259 in6_ifstat_inc(origifp
, ifs6_out_discard
);
1261 error
= EHOSTUNREACH
; /* XXX */
1267 if (rt
!= NULL
&& !IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1268 if (opt
!= NULL
&& opt
->ip6po_nextroute
.ro_rt
) {
1270 * The nexthop is explicitly specified by the
1271 * application. We assume the next hop is an IPv6
1274 dst
= SIN6(opt
->ip6po_nexthop
);
1275 } else if ((rt
->rt_flags
& RTF_GATEWAY
)) {
1276 dst
= SIN6(rt
->rt_gateway
);
1279 * For packets destined to local/loopback, record the
1280 * source the source interface (which owns the source
1281 * address), as well as the output interface. This is
1282 * needed to reconstruct the embedded zone for the
1283 * link-local address case in ip6_input().
1285 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
)) {
1288 if (src_ia
!= NULL
) {
1289 srcidx
= src_ia
->ia_ifp
->if_index
;
1290 } else if (ro
->ro_srcia
!= NULL
) {
1291 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
1296 ip6_setsrcifaddr_info(m
, srcidx
, NULL
);
1297 ip6_setdstifaddr_info(m
, 0, ia
);
1301 if (!IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1302 m
->m_flags
&= ~(M_BCAST
| M_MCAST
); /* just in case */
1304 struct in6_multi
*in6m
;
1306 m
->m_flags
= (m
->m_flags
& ~M_BCAST
) | M_MCAST
;
1307 in6_ifstat_inc_na(ifp
, ifs6_out_mcast
);
1310 * Confirm that the outgoing interface supports multicast.
1312 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
1313 ip6stat
.ip6s_noroute
++;
1314 in6_ifstat_inc(ifp
, ifs6_out_discard
);
1315 error
= ENETUNREACH
;
1318 in6_multihead_lock_shared();
1319 IN6_LOOKUP_MULTI(&ip6
->ip6_dst
, ifp
, in6m
);
1320 in6_multihead_lock_done();
1325 (im6o
== NULL
|| im6o
->im6o_multicast_loop
)) {
1330 * If we belong to the destination multicast group
1331 * on the outgoing interface, and the caller did not
1332 * forbid loopback, loop back a copy.
1334 ip6_mloopback(NULL
, ifp
, m
, dst
, optlen
, nxt0
);
1335 } else if (im6o
!= NULL
) {
1342 * Multicasts with a hoplimit of zero may be looped back,
1343 * above, but must not be transmitted on a network.
1344 * Also, multicasts addressed to the loopback interface
1345 * are not sent -- the above call to ip6_mloopback() will
1346 * loop back a copy if this host actually belongs to the
1347 * destination group on the loopback interface.
1349 if (ip6
->ip6_hlim
== 0 || (ifp
->if_flags
& IFF_LOOPBACK
) ||
1350 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6
->ip6_dst
)) {
1351 /* remove m from the packetchain and continue looping */
1361 * Fill the outgoing inteface to tell the upper layer
1362 * to increment per-interface statistics.
1364 if (ifpp
!= NULL
&& *ifpp
== NULL
) {
1365 ifnet_reference(ifp
); /* for caller */
1369 /* Determine path MTU. */
1370 if ((error
= ip6_getpmtu(ro_pmtu
, ro
, ifp
, &finaldst
, &mtu
)) != 0) {
1375 * The caller of this function may specify to use the minimum MTU
1377 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
1378 * setting. The logic is a bit complicated; by default, unicast
1379 * packets will follow path MTU while multicast packets will be sent at
1380 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
1381 * including unicast ones will be sent at the minimum MTU. Multicast
1382 * packets will always be sent at the minimum MTU unless
1383 * IP6PO_MINMTU_DISABLE is explicitly specified.
1384 * See RFC 3542 for more details.
1386 if (mtu
> IPV6_MMTU
) {
1387 if ((flags
& IPV6_MINMTU
)) {
1389 } else if (opt
&& opt
->ip6po_minmtu
== IP6PO_MINMTU_ALL
) {
1391 } else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) &&
1393 opt
->ip6po_minmtu
!= IP6PO_MINMTU_DISABLE
)) {
1399 * clear embedded scope identifiers if necessary.
1400 * in6_clearscope will touch the addresses only when necessary.
1402 in6_clearscope(&ip6
->ip6_src
);
1403 in6_clearscope(&ip6
->ip6_dst
);
1405 * If the outgoing packet contains a hop-by-hop options header,
1406 * it must be examined and processed even by the source node.
1407 * (RFC 2460, section 4.)
1409 if (exthdrs
.ip6e_hbh
!= NULL
) {
1410 struct ip6_hbh
*hbh
= mtod(exthdrs
.ip6e_hbh
, struct ip6_hbh
*);
1411 u_int32_t dummy
; /* XXX unused */
1412 uint32_t oplen
= 0; /* for ip6_process_hopopts() */
1414 if ((hbh
->ip6h_len
+ 1) << 3 > exthdrs
.ip6e_hbh
->m_len
) {
1415 panic("ip6e_hbh is not continuous");
1419 * XXX: If we have to send an ICMPv6 error to the sender,
1420 * we need the M_LOOP flag since icmp6_error() expects
1421 * the IPv6 and the hop-by-hop options header are
1422 * continuous unless the flag is set.
1424 m
->m_flags
|= M_LOOP
;
1425 m
->m_pkthdr
.rcvif
= ifp
;
1426 if (ip6_process_hopopts(m
, (u_int8_t
*)(hbh
+ 1),
1427 ((hbh
->ip6h_len
+ 1) << 3) - sizeof(struct ip6_hbh
),
1428 &dummy
, &oplen
) < 0) {
1430 * m was already freed at this point. Set to NULL so it
1431 * is not re-freed at end of ip6_output_list.
1434 error
= EINVAL
; /* better error? */
1437 m
->m_flags
&= ~M_LOOP
; /* XXX */
1438 m
->m_pkthdr
.rcvif
= NULL
;
1443 #endif /* DUMMYNET */
1445 if (PF_IS_ENABLED
&& !skip_pf
) {
1449 * TODO: Need to save opt->ip6po_flags for reinjection
1454 args
.fwa_oflags
= flags
;
1455 if (flags
& IPV6_OUTARGS
) {
1456 args
.fwa_ip6oa
= ip6oa
;
1459 args
.fwa_dst6
= dst
;
1460 args
.fwa_ro6_pmtu
= ro_pmtu
;
1461 args
.fwa_origifp
= origifp
;
1463 args
.fwa_unfragpartlen
= unfragpartlen
;
1464 args
.fwa_exthdrs
= &exthdrs
;
1465 /* Invoke outbound packet filter */
1466 error
= pf_af_hook(ifp
, NULL
, &m
, AF_INET6
, FALSE
, &args
);
1467 #else /* !DUMMYNET */
1468 error
= pf_af_hook(ifp
, NULL
, &m
, AF_INET6
, FALSE
, NULL
);
1469 #endif /* !DUMMYNET */
1471 if (error
!= 0 || m
== NULL
) {
1473 panic("%s: unexpected packet %p\n",
1477 /* m was already freed by callee and is now NULL. */
1480 ip6
= mtod(m
, struct ip6_hdr
*);
1485 /* clean ipsec history before fragmentation */
1489 if (ip6oa
!= NULL
) {
1492 dscp
= (ntohl(ip6
->ip6_flow
) & IP6FLOW_DSCP_MASK
) >> IP6FLOW_DSCP_SHIFT
;
1494 error
= set_packet_qos(m
, ifp
,
1495 ip6oa
->ip6oa_flags
& IP6OAF_QOSMARKING_ALLOWED
? TRUE
: FALSE
,
1496 ip6oa
->ip6oa_sotc
, ip6oa
->ip6oa_netsvctype
, &dscp
);
1498 ip6
->ip6_flow
&= ~htonl(IP6FLOW_DSCP_MASK
);
1499 ip6
->ip6_flow
|= htonl((u_int32_t
)dscp
<< IP6FLOW_DSCP_SHIFT
);
1501 printf("%s if_dscp_for_mbuf() error %d\n", __func__
, error
);
1506 * Determine whether fragmentation is necessary. If so, m is passed
1507 * back as a chain of packets and original mbuf is freed. Otherwise, m
1510 error
= ip6_fragment_packet(&m
, opt
,
1511 &exthdrs
, ifp
, mtu
, unfragpartlen
, ro_pmtu
, nxt0
,
1519 * The evaluateloop label is where we decide whether to continue looping over
1520 * packets or call into nd code to send.
1525 * m may be NULL when we jump to the evaluateloop label from PF or
1526 * other code that can drop packets.
1530 * If we already have a chain to send, tack m onto the end.
1531 * Otherwise make m the start and end of the to-be-sent chain.
1533 if (sendchain
!= NULL
) {
1534 sendchain_last
->m_nextpkt
= m
;
1539 /* Fragmentation may mean m is a chain. Find the last packet. */
1540 while (m
->m_nextpkt
) {
1547 /* Fill in next m from inputchain as appropriate. */
1550 /* Isolate m from rest of input chain. */
1551 inputchain
= m
->m_nextpkt
;
1552 m
->m_nextpkt
= NULL
;
1555 * Clear exthdrs and ipsec_state so stale contents are not
1556 * reused. Note this also clears the exthdrs.merged flag.
1558 bzero(&exthdrs
, sizeof(exthdrs
));
1559 bzero(&ipsec_state
, sizeof(ipsec_state
));
1561 /* Continue looping. */
1566 * If we get here, there's no more mbufs in inputchain, so send the
1567 * sendchain if there is one.
1570 error
= nd6_output_list(ifp
, origifp
, sendchain
, dst
,
1573 * Fall through to done label even in error case because
1574 * nd6_output_list frees packetchain in both success and
1580 if (ifpp_save
!= NULL
&& *ifpp_save
!= NULL
) {
1581 ifnet_release(*ifpp_save
);
1584 ROUTE_RELEASE(&ip6route
);
1586 ROUTE_RELEASE(&ipsec_state
.ro
);
1588 key_freesp(sp
, KEY_SADB_UNLOCKED
);
1592 ROUTE_RELEASE(&necp_route
);
1595 ROUTE_RELEASE(&saved_route
);
1596 ROUTE_RELEASE(&saved_ro_pmtu
);
1597 #endif /* DUMMYNET */
1600 IFA_REMREF(&ia
->ia_ifa
);
1602 if (src_ia
!= NULL
) {
1603 IFA_REMREF(&src_ia
->ia_ifa
);
1608 if (origifp
!= NULL
) {
1609 ifnet_release(origifp
);
1611 if (ip6_output_measure
) {
1612 net_perf_measure_time(&net_perf
, &start_tv
, packets_processed
);
1613 net_perf_histogram(&net_perf
, packets_processed
);
1618 if (exthdrs
.ip6e_hbh
!= NULL
) {
1619 if (exthdrs
.merged
) {
1620 panic("Double free of ip6e_hbh");
1622 m_freem(exthdrs
.ip6e_hbh
);
1624 if (exthdrs
.ip6e_dest1
!= NULL
) {
1625 if (exthdrs
.merged
) {
1626 panic("Double free of ip6e_dest1");
1628 m_freem(exthdrs
.ip6e_dest1
);
1630 if (exthdrs
.ip6e_rthdr
!= NULL
) {
1631 if (exthdrs
.merged
) {
1632 panic("Double free of ip6e_rthdr");
1634 m_freem(exthdrs
.ip6e_rthdr
);
1636 if (exthdrs
.ip6e_dest2
!= NULL
) {
1637 if (exthdrs
.merged
) {
1638 panic("Double free of ip6e_dest2");
1640 m_freem(exthdrs
.ip6e_dest2
);
1644 if (inputchain
!= NULL
) {
1645 m_freem_list(inputchain
);
1647 if (sendchain
!= NULL
) {
1648 m_freem_list(sendchain
);
1661 #undef saved_ro_pmtu
1665 /* ip6_fragment_packet
1667 * The fragmentation logic is rather complex:
1668 * 1: normal case (dontfrag == 0)
1669 * 1-a: send as is if tlen <= path mtu
1670 * 1-b: fragment if tlen > path mtu
1672 * 2: if user asks us not to fragment (dontfrag == 1)
1673 * 2-a: send as is if tlen <= interface mtu
1674 * 2-b: error if tlen > interface mtu
1678 ip6_fragment_packet(struct mbuf
**mptr
, struct ip6_pktopts
*opt
,
1679 struct ip6_exthdrs
*exthdrsp
, struct ifnet
*ifp
, uint32_t mtu
,
1680 uint32_t unfragpartlen
, struct route_in6
*ro_pmtu
,
1681 int nxt0
, uint32_t optlen
)
1683 VERIFY(NULL
!= mptr
);
1684 struct mbuf
*m
= *mptr
;
1686 size_t tlen
= m
->m_pkthdr
.len
;
1687 boolean_t dontfrag
= (opt
!= NULL
&& (opt
->ip6po_flags
& IP6PO_DONTFRAG
));
1689 if (m
->m_pkthdr
.pkt_flags
& PKTF_FORWARDED
) {
1692 * Discard partial sum information if this packet originated
1693 * from another interface; the packet would already have the
1694 * final checksum and we shouldn't recompute it.
1696 if ((m
->m_pkthdr
.csum_flags
& (CSUM_DATA_VALID
| CSUM_PARTIAL
)) ==
1697 (CSUM_DATA_VALID
| CSUM_PARTIAL
)) {
1698 m
->m_pkthdr
.csum_flags
&= ~CSUM_TX_FLAGS
;
1699 m
->m_pkthdr
.csum_data
= 0;
1703 /* Access without acquiring nd_ifinfo lock for performance */
1704 if (dontfrag
&& tlen
> IN6_LINKMTU(ifp
)) { /* case 2-b */
1706 * Even if the DONTFRAG option is specified, we cannot send the
1707 * packet when the data length is larger than the MTU of the
1708 * outgoing interface.
1709 * Notify the error by sending IPV6_PATHMTU ancillary data as
1710 * well as returning an error code (the latter is not described
1714 struct ip6ctlparam ip6cp
;
1716 mtu32
= (u_int32_t
)mtu
;
1717 bzero(&ip6cp
, sizeof(ip6cp
));
1718 ip6cp
.ip6c_cmdarg
= (void *)&mtu32
;
1719 pfctlinput2(PRC_MSGSIZE
, SA(&ro_pmtu
->ro_dst
), (void *)&ip6cp
);
1724 * transmit packet without fragmentation
1727 (tlen
<= mtu
|| TSO_IPV6_OK(ifp
, m
) ||
1728 (ifp
->if_hwassist
& CSUM_FRAGMENT_IPV6
))) {
1730 * mppn not updated in this case because no new chain is formed
1733 ip6_output_checksum(ifp
, mtu
, m
, nxt0
, tlen
, optlen
);
1736 * time to fragment - cases 1-b is handled inside
1737 * ip6_do_fragmentation().
1738 * mppn is passed down to be updated to point at fragment chain.
1740 u_int8_t
*lexthdrsp
;
1742 if (exthdrsp
->ip6e_rthdr
!= NULL
) {
1743 lexthdrsp
= mtod(exthdrsp
->ip6e_rthdr
, uint8_t *);
1744 } else if (exthdrsp
->ip6e_dest1
!= NULL
) {
1745 lexthdrsp
= mtod(exthdrsp
->ip6e_dest1
, uint8_t *);
1746 } else if (exthdrsp
->ip6e_hbh
!= NULL
) {
1747 lexthdrsp
= mtod(exthdrsp
->ip6e_hbh
, uint8_t *);
1751 error
= ip6_do_fragmentation(mptr
, optlen
, ifp
,
1752 unfragpartlen
, mtod(m
, struct ip6_hdr
*), lexthdrsp
, mtu
,
1753 nxt0
, htonl(ip6_randomid()));
1760 * ip6_do_fragmentation() is called by ip6_fragment_packet() after determining
1761 * the packet needs to be fragmented. on success, morig is freed and a chain
1762 * of fragments is linked into the packet chain where morig existed. Otherwise,
1763 * an errno is returned.
1764 * optlen: total length of all extension headers (excludes the IPv6 header).
1765 * unfragpartlen: length of the per-fragment headers which consist of the IPv6
1766 * header plus any extension headers that must be processed by nodes
1767 * en route to the destination.
1768 * lexthdrsp: pointer to the last extension header in the unfragmentable part
1770 * nxt0: upper-layer protocol number.
1771 * id: Identification value to be used in the fragment header.
1774 ip6_do_fragmentation(struct mbuf
**mptr
, uint32_t optlen
, struct ifnet
*ifp
,
1775 uint32_t unfragpartlen
, struct ip6_hdr
*ip6
, uint8_t *lexthdrsp
,
1776 uint32_t mtu
, int nxt0
, uint32_t id
)
1778 VERIFY(NULL
!= mptr
);
1781 struct mbuf
*morig
= *mptr
;
1782 struct mbuf
*first_mbufp
= NULL
;
1783 struct mbuf
*last_mbufp
= NULL
;
1785 size_t tlen
= morig
->m_pkthdr
.len
;
1787 /* try to fragment the packet. case 1-b */
1788 if ((morig
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV6
)) {
1789 /* TSO and fragment aren't compatible */
1790 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1792 } else if (mtu
< IPV6_MMTU
) {
1793 /* path MTU cannot be less than IPV6_MMTU */
1794 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1796 } else if (ip6
->ip6_plen
== 0) {
1797 /* jumbo payload cannot be fragmented */
1798 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1801 size_t hlen
, len
, off
;
1802 struct mbuf
**mnext
= NULL
;
1803 struct ip6_frag
*ip6f
;
1807 * Too large for the destination or interface;
1808 * fragment if possible.
1809 * Must be able to put at least 8 bytes per fragment.
1811 hlen
= unfragpartlen
;
1812 if (mtu
> IPV6_MAXPACKET
) {
1813 mtu
= IPV6_MAXPACKET
;
1816 len
= (mtu
- hlen
- sizeof(struct ip6_frag
)) & ~7;
1818 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1823 * Change the next header field of the last header in the
1824 * unfragmentable part.
1826 if (lexthdrsp
!= NULL
) {
1827 nextproto
= *lexthdrsp
;
1828 *lexthdrsp
= IPPROTO_FRAGMENT
;
1830 nextproto
= ip6
->ip6_nxt
;
1831 ip6
->ip6_nxt
= IPPROTO_FRAGMENT
;
1834 if (morig
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
) {
1835 in6_delayed_cksum_offset(morig
, 0, optlen
, nxt0
);
1839 * Loop through length of segment after first fragment,
1840 * make new header and copy data of each part and link onto
1843 for (off
= hlen
; off
< tlen
; off
+= len
) {
1844 struct ip6_hdr
*new_mhip6
;
1846 struct mbuf
*m_frgpart
;
1848 MGETHDR(new_m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
1849 if (new_m
== NULL
) {
1851 ip6stat
.ip6s_odropped
++;
1854 new_m
->m_pkthdr
.rcvif
= NULL
;
1855 new_m
->m_flags
= morig
->m_flags
& M_COPYFLAGS
;
1857 if (first_mbufp
!= NULL
) {
1858 /* Every pass through loop but first */
1862 /* This is the first element of the fragment chain */
1863 first_mbufp
= new_m
;
1866 mnext
= &new_m
->m_nextpkt
;
1868 new_m
->m_data
+= max_linkhdr
;
1869 new_mhip6
= mtod(new_m
, struct ip6_hdr
*);
1871 new_m
->m_len
= sizeof(*new_mhip6
);
1873 error
= ip6_insertfraghdr(morig
, new_m
, hlen
, &ip6f
);
1875 ip6stat
.ip6s_odropped
++;
1879 ip6f
->ip6f_offlg
= htons((u_short
)((off
- hlen
) & ~7));
1880 if (off
+ len
>= tlen
) {
1883 ip6f
->ip6f_offlg
|= IP6F_MORE_FRAG
;
1885 new_mhip6
->ip6_plen
= htons((u_short
)(len
+ hlen
+
1886 sizeof(*ip6f
) - sizeof(struct ip6_hdr
)));
1888 if ((m_frgpart
= m_copy(morig
, off
, len
)) == NULL
) {
1890 ip6stat
.ip6s_odropped
++;
1893 m_cat(new_m
, m_frgpart
);
1894 new_m
->m_pkthdr
.len
= len
+ hlen
+ sizeof(*ip6f
);
1895 new_m
->m_pkthdr
.rcvif
= NULL
;
1897 M_COPY_CLASSIFIER(new_m
, morig
);
1898 M_COPY_PFTAG(new_m
, morig
);
1902 mac_create_fragment(morig
, new_m
);
1903 #endif /* CONFIG_MACF_NET */
1906 ip6f
->ip6f_reserved
= 0;
1907 ip6f
->ip6f_ident
= id
;
1908 ip6f
->ip6f_nxt
= nextproto
;
1909 ip6stat
.ip6s_ofragments
++;
1910 in6_ifstat_inc(ifp
, ifs6_out_fragcreat
);
1914 /* free all the fragments created */
1915 if (first_mbufp
!= NULL
) {
1916 m_freem_list(first_mbufp
);
1921 /* successful fragmenting */
1923 *mptr
= first_mbufp
;
1924 last_mbufp
->m_nextpkt
= NULL
;
1925 ip6stat
.ip6s_fragmented
++;
1926 in6_ifstat_inc(ifp
, ifs6_out_fragok
);
1933 ip6_copyexthdr(struct mbuf
**mp
, caddr_t hdr
, int hlen
)
1937 if (hlen
> MCLBYTES
) {
1938 return ENOBUFS
; /* XXX */
1940 MGET(m
, M_DONTWAIT
, MT_DATA
);
1946 MCLGET(m
, M_DONTWAIT
);
1947 if (!(m
->m_flags
& M_EXT
)) {
1954 bcopy(hdr
, mtod(m
, caddr_t
), hlen
);
1962 ip6_out_cksum_stats(int proto
, u_int32_t len
)
1966 tcp_out6_cksum_stats(len
);
1969 udp_out6_cksum_stats(len
);
1972 /* keep only TCP or UDP stats for now */
1978 * Process a delayed payload checksum calculation (outbound path.)
1980 * hoff is the number of bytes beyond the mbuf data pointer which
1981 * points to the IPv6 header. optlen is the number of bytes, if any,
1982 * between the end of IPv6 header and the beginning of the ULP payload
1983 * header, which represents the extension headers. If optlen is less
1984 * than zero, this routine will bail when it detects extension headers.
1986 * Returns a bitmask representing all the work done in software.
1989 in6_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, int32_t optlen
,
1990 int32_t nxt0
, uint32_t csum_flags
)
1992 unsigned char buf
[sizeof(struct ip6_hdr
)] __attribute__((aligned(8)));
1993 struct ip6_hdr
*ip6
;
1994 uint32_t offset
, mlen
, hlen
, olen
, sw_csum
;
1995 uint16_t csum
, ulpoff
, plen
;
1998 _CASSERT(sizeof(csum
) == sizeof(uint16_t));
1999 VERIFY(m
->m_flags
& M_PKTHDR
);
2001 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
2003 if ((sw_csum
&= CSUM_DELAY_IPV6_DATA
) == 0) {
2007 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
2008 hlen
= sizeof(*ip6
); /* IPv6 header len */
2010 /* sanity check (need at least IPv6 header) */
2011 if (mlen
< (hoff
+ hlen
)) {
2012 panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr "
2013 "(%u+%u)\n", __func__
, m
, mlen
, hoff
, hlen
);
2018 * In case the IPv6 header is not contiguous, or not 32-bit
2019 * aligned, copy it to a local buffer.
2021 if ((hoff
+ hlen
) > m
->m_len
||
2022 !IP6_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
2023 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
2024 ip6
= (struct ip6_hdr
*)(void *)buf
;
2026 ip6
= (struct ip6_hdr
*)(void *)(m
->m_data
+ hoff
);
2030 plen
= ntohs(ip6
->ip6_plen
);
2031 if (plen
!= (mlen
- (hoff
+ hlen
))) {
2032 plen
= OSSwapInt16(plen
);
2033 if (plen
!= (mlen
- (hoff
+ hlen
))) {
2034 /* Don't complain for jumbograms */
2035 if (plen
!= 0 || nxt
!= IPPROTO_HOPOPTS
) {
2036 printf("%s: mbuf 0x%llx proto %d IPv6 "
2037 "plen %d (%x) [swapped %d (%x)] doesn't "
2038 "match actual packet length; %d is used "
2039 "instead\n", __func__
,
2040 (uint64_t)VM_KERNEL_ADDRPERM(m
), nxt
,
2041 ip6
->ip6_plen
, ip6
->ip6_plen
, plen
, plen
,
2042 (mlen
- (hoff
+ hlen
)));
2044 plen
= mlen
- (hoff
+ hlen
);
2049 /* next header isn't TCP/UDP and we don't know optlen, bail */
2050 if (nxt
!= IPPROTO_TCP
&& nxt
!= IPPROTO_UDP
) {
2056 /* caller supplied the original transport number; use it */
2063 offset
= hoff
+ hlen
+ olen
; /* ULP header */
2066 if (mlen
< offset
) {
2067 panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr+ext_hdr "
2068 "(%u+%u+%u)\n", __func__
, m
, mlen
, hoff
, hlen
, olen
);
2073 * offset is added to the lower 16-bit value of csum_data,
2074 * which is expected to contain the ULP offset; therefore
2075 * CSUM_PARTIAL offset adjustment must be undone.
2077 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
| CSUM_DATA_VALID
)) ==
2078 (CSUM_PARTIAL
| CSUM_DATA_VALID
)) {
2080 * Get back the original ULP offset (this will
2081 * undo the CSUM_PARTIAL logic in ip6_output.)
2083 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2084 m
->m_pkthdr
.csum_tx_start
);
2087 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2089 if (mlen
< (ulpoff
+ sizeof(csum
))) {
2090 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2091 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2092 m
, mlen
, nxt
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2096 csum
= inet6_cksum(m
, 0, offset
, plen
- olen
);
2099 ip6_out_cksum_stats(nxt
, plen
- olen
);
2101 /* RFC1122 4.1.3.4 */
2103 (m
->m_pkthdr
.csum_flags
& (CSUM_UDPIPV6
| CSUM_ZERO_INVERT
))) {
2107 /* Insert the checksum in the ULP csum field */
2109 if ((offset
+ sizeof(csum
)) > m
->m_len
) {
2110 m_copyback(m
, offset
, sizeof(csum
), &csum
);
2111 } else if (IP6_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2112 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2114 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof(csum
));
2116 m
->m_pkthdr
.csum_flags
&= ~(CSUM_DELAY_IPV6_DATA
| CSUM_DATA_VALID
|
2117 CSUM_PARTIAL
| CSUM_ZERO_INVERT
);
2124 * Insert jumbo payload option.
2127 ip6_insert_jumboopt(struct ip6_exthdrs
*exthdrs
, u_int32_t plen
)
2133 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
2136 * If there is no hop-by-hop options header, allocate new one.
2137 * If there is one but it doesn't have enough space to store the
2138 * jumbo payload option, allocate a cluster to store the whole options.
2139 * Otherwise, use it to store the options.
2141 if (exthdrs
->ip6e_hbh
== NULL
) {
2142 MGET(mopt
, M_DONTWAIT
, MT_DATA
);
2146 mopt
->m_len
= JUMBOOPTLEN
;
2147 optbuf
= mtod(mopt
, u_char
*);
2148 optbuf
[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
2149 exthdrs
->ip6e_hbh
= mopt
;
2151 struct ip6_hbh
*hbh
;
2153 mopt
= exthdrs
->ip6e_hbh
;
2154 if (M_TRAILINGSPACE(mopt
) < JUMBOOPTLEN
) {
2157 * - exthdrs->ip6e_hbh is not referenced from places
2158 * other than exthdrs.
2159 * - exthdrs->ip6e_hbh is not an mbuf chain.
2161 u_int32_t oldoptlen
= mopt
->m_len
;
2165 * XXX: give up if the whole (new) hbh header does
2166 * not fit even in an mbuf cluster.
2168 if (oldoptlen
+ JUMBOOPTLEN
> MCLBYTES
) {
2173 * As a consequence, we must always prepare a cluster
2176 MGET(n
, M_DONTWAIT
, MT_DATA
);
2178 MCLGET(n
, M_DONTWAIT
);
2179 if (!(n
->m_flags
& M_EXT
)) {
2187 n
->m_len
= oldoptlen
+ JUMBOOPTLEN
;
2188 bcopy(mtod(mopt
, caddr_t
), mtod(n
, caddr_t
),
2190 optbuf
= mtod(n
, u_char
*) + oldoptlen
;
2192 mopt
= exthdrs
->ip6e_hbh
= n
;
2194 optbuf
= mtod(mopt
, u_char
*) + mopt
->m_len
;
2195 mopt
->m_len
+= JUMBOOPTLEN
;
2197 optbuf
[0] = IP6OPT_PADN
;
2201 * Adjust the header length according to the pad and
2202 * the jumbo payload option.
2204 hbh
= mtod(mopt
, struct ip6_hbh
*);
2205 hbh
->ip6h_len
+= (JUMBOOPTLEN
>> 3);
2208 /* fill in the option. */
2209 optbuf
[2] = IP6OPT_JUMBO
;
2211 v
= (u_int32_t
)htonl(plen
+ JUMBOOPTLEN
);
2212 bcopy(&v
, &optbuf
[4], sizeof(u_int32_t
));
2214 /* finally, adjust the packet header length */
2215 exthdrs
->ip6e_ip6
->m_pkthdr
.len
+= JUMBOOPTLEN
;
2222 * Insert fragment header and copy unfragmentable header portions.
2225 ip6_insertfraghdr(struct mbuf
*m0
, struct mbuf
*m
, int hlen
,
2226 struct ip6_frag
**frghdrp
)
2228 struct mbuf
*n
, *mlast
;
2230 if (hlen
> sizeof(struct ip6_hdr
)) {
2231 n
= m_copym(m0
, sizeof(struct ip6_hdr
),
2232 hlen
- sizeof(struct ip6_hdr
), M_DONTWAIT
);
2241 /* Search for the last mbuf of unfragmentable part. */
2242 for (mlast
= n
; mlast
->m_next
; mlast
= mlast
->m_next
) {
2246 if (!(mlast
->m_flags
& M_EXT
) &&
2247 M_TRAILINGSPACE(mlast
) >= sizeof(struct ip6_frag
)) {
2248 /* use the trailing space of the last mbuf for the frag hdr */
2249 *frghdrp
= (struct ip6_frag
*)(mtod(mlast
, caddr_t
) +
2251 mlast
->m_len
+= sizeof(struct ip6_frag
);
2252 m
->m_pkthdr
.len
+= sizeof(struct ip6_frag
);
2254 /* allocate a new mbuf for the fragment header */
2257 MGET(mfrg
, M_DONTWAIT
, MT_DATA
);
2261 mfrg
->m_len
= sizeof(struct ip6_frag
);
2262 *frghdrp
= mtod(mfrg
, struct ip6_frag
*);
2263 mlast
->m_next
= mfrg
;
2270 ip6_getpmtu(struct route_in6
*ro_pmtu
, struct route_in6
*ro
,
2271 struct ifnet
*ifp
, struct in6_addr
*dst
, u_int32_t
*mtup
)
2277 if (ro_pmtu
!= ro
) {
2278 /* The first hop and the final destination may differ. */
2279 struct sockaddr_in6
*sa6_dst
= SIN6(&ro_pmtu
->ro_dst
);
2280 if (ROUTE_UNUSABLE(ro_pmtu
) ||
2281 !IN6_ARE_ADDR_EQUAL(&sa6_dst
->sin6_addr
, dst
)) {
2282 ROUTE_RELEASE(ro_pmtu
);
2285 if (ro_pmtu
->ro_rt
== NULL
) {
2286 bzero(sa6_dst
, sizeof(*sa6_dst
));
2287 sa6_dst
->sin6_family
= AF_INET6
;
2288 sa6_dst
->sin6_len
= sizeof(struct sockaddr_in6
);
2289 sa6_dst
->sin6_addr
= *dst
;
2291 rtalloc_scoped((struct route
*)ro_pmtu
,
2292 ifp
!= NULL
? ifp
->if_index
: IFSCOPE_NONE
);
2296 if (ro_pmtu
->ro_rt
!= NULL
) {
2300 ifp
= ro_pmtu
->ro_rt
->rt_ifp
;
2302 /* Access without acquiring nd_ifinfo lock for performance */
2303 ifmtu
= IN6_LINKMTU(ifp
);
2306 * Access rmx_mtu without holding the route entry lock,
2307 * for performance; this isn't something that changes
2308 * often, so optimize.
2310 mtu
= ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
;
2311 if (mtu
> ifmtu
|| mtu
== 0) {
2313 * The MTU on the route is larger than the MTU on
2314 * the interface! This shouldn't happen, unless the
2315 * MTU of the interface has been changed after the
2316 * interface was brought up. Change the MTU in the
2317 * route to match the interface MTU (as long as the
2318 * field isn't locked).
2320 * if MTU on the route is 0, we need to fix the MTU.
2321 * this case happens with path MTU discovery timeouts.
2324 if (!(ro_pmtu
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
)) {
2325 ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
= mtu
; /* XXX */
2330 /* Don't hold nd_ifinfo lock for performance */
2331 mtu
= IN6_LINKMTU(ifp
);
2333 error
= EHOSTUNREACH
; /* XXX */
2342 * IP6 socket option processing.
2345 ip6_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2347 int optdatalen
, uproto
;
2350 struct inpcb
*in6p
= sotoinpcb(so
);
2351 int error
= 0, optval
= 0;
2352 int level
, op
= -1, optname
= 0;
2355 lck_mtx_t
*mutex_held
= NULL
;
2357 VERIFY(sopt
!= NULL
);
2359 level
= sopt
->sopt_level
;
2360 op
= sopt
->sopt_dir
;
2361 optname
= sopt
->sopt_name
;
2362 optlen
= sopt
->sopt_valsize
;
2364 uproto
= (int)SOCK_PROTO(so
);
2366 privileged
= (proc_suser(p
) == 0);
2368 if (level
== IPPROTO_IPV6
) {
2369 boolean_t capture_exthdrstat_in
= FALSE
;
2372 mutex_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
2374 * Wait if we are in the middle of ip6_output
2375 * as we unlocked the socket there and don't
2376 * want to overwrite the IP options
2378 if (in6p
->inp_sndinprog_cnt
> 0) {
2379 in6p
->inp_sndingprog_waiters
++;
2381 while (in6p
->inp_sndinprog_cnt
> 0) {
2382 msleep(&in6p
->inp_sndinprog_cnt
, mutex_held
,
2383 PSOCK
| PCATCH
, "inp_sndinprog_cnt",
2386 in6p
->inp_sndingprog_waiters
--;
2389 case IPV6_2292PKTOPTIONS
: {
2392 error
= soopt_getm(sopt
, &m
);
2396 error
= soopt_mcopyin(sopt
, m
);
2400 error
= ip6_pcbopts(&in6p
->in6p_outputopts
,
2407 * Use of some Hop-by-Hop options or some
2408 * Destination options, might require special
2409 * privilege. That is, normal applications
2410 * (without special privilege) might be forbidden
2411 * from setting certain options in outgoing packets,
2412 * and might never see certain options in received
2413 * packets. [RFC 2292 Section 6]
2414 * KAME specific note:
2415 * KAME prevents non-privileged users from sending or
2416 * receiving ANY hbh/dst options in order to avoid
2417 * overhead of parsing options in the kernel.
2419 case IPV6_RECVHOPOPTS
:
2420 case IPV6_RECVDSTOPTS
:
2421 case IPV6_RECVRTHDRDSTOPTS
:
2426 case IPV6_UNICAST_HOPS
:
2428 case IPV6_RECVPKTINFO
:
2429 case IPV6_RECVHOPLIMIT
:
2430 case IPV6_RECVRTHDR
:
2431 case IPV6_RECVPATHMTU
:
2432 case IPV6_RECVTCLASS
:
2434 case IPV6_AUTOFLOWLABEL
:
2435 if (optlen
!= sizeof(int)) {
2439 error
= sooptcopyin(sopt
, &optval
,
2440 sizeof(optval
), sizeof(optval
));
2446 case IPV6_UNICAST_HOPS
:
2447 if (optval
< -1 || optval
>= 256) {
2450 /* -1 = kernel default */
2451 in6p
->in6p_hops
= optval
;
2452 if (in6p
->inp_vflag
&
2459 #define OPTSET(bit) do { \
2461 in6p->inp_flags |= (bit); \
2463 in6p->inp_flags &= ~(bit); \
2466 #define OPTSET2292(bit) do { \
2467 in6p->inp_flags |= IN6P_RFC2292; \
2469 in6p->inp_flags |= (bit); \
2471 in6p->inp_flags &= ~(bit); \
2474 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
2476 case IPV6_RECVPKTINFO
:
2477 /* cannot mix with RFC2292 */
2478 if (OPTBIT(IN6P_RFC2292
)) {
2482 OPTSET(IN6P_PKTINFO
);
2485 case IPV6_HOPLIMIT
: {
2486 struct ip6_pktopts
**optp
;
2488 /* cannot mix with RFC2292 */
2489 if (OPTBIT(IN6P_RFC2292
)) {
2493 optp
= &in6p
->in6p_outputopts
;
2494 error
= ip6_pcbopt(IPV6_HOPLIMIT
,
2495 (u_char
*)&optval
, sizeof(optval
),
2500 case IPV6_RECVHOPLIMIT
:
2501 /* cannot mix with RFC2292 */
2502 if (OPTBIT(IN6P_RFC2292
)) {
2506 OPTSET(IN6P_HOPLIMIT
);
2509 case IPV6_RECVHOPOPTS
:
2510 /* cannot mix with RFC2292 */
2511 if (OPTBIT(IN6P_RFC2292
)) {
2515 OPTSET(IN6P_HOPOPTS
);
2516 capture_exthdrstat_in
= TRUE
;
2519 case IPV6_RECVDSTOPTS
:
2520 /* cannot mix with RFC2292 */
2521 if (OPTBIT(IN6P_RFC2292
)) {
2525 OPTSET(IN6P_DSTOPTS
);
2526 capture_exthdrstat_in
= TRUE
;
2529 case IPV6_RECVRTHDRDSTOPTS
:
2530 /* cannot mix with RFC2292 */
2531 if (OPTBIT(IN6P_RFC2292
)) {
2535 OPTSET(IN6P_RTHDRDSTOPTS
);
2536 capture_exthdrstat_in
= TRUE
;
2539 case IPV6_RECVRTHDR
:
2540 /* cannot mix with RFC2292 */
2541 if (OPTBIT(IN6P_RFC2292
)) {
2546 capture_exthdrstat_in
= TRUE
;
2549 case IPV6_RECVPATHMTU
:
2551 * We ignore this option for TCP
2553 * (RFC3542 leaves this case
2556 if (uproto
!= IPPROTO_TCP
) {
2563 * make setsockopt(IPV6_V6ONLY)
2564 * available only prior to bind(2).
2565 * see ipng mailing list, Jun 22 2001.
2567 if (in6p
->inp_lport
||
2568 !IN6_IS_ADDR_UNSPECIFIED(
2569 &in6p
->in6p_laddr
)) {
2573 OPTSET(IN6P_IPV6_V6ONLY
);
2575 in6p
->inp_vflag
&= ~INP_IPV4
;
2577 in6p
->inp_vflag
|= INP_IPV4
;
2581 case IPV6_RECVTCLASS
:
2582 /* we can mix with RFC2292 */
2583 OPTSET(IN6P_TCLASS
);
2586 case IPV6_AUTOFLOWLABEL
:
2587 OPTSET(IN6P_AUTOFLOWLABEL
);
2594 case IPV6_USE_MIN_MTU
:
2595 case IPV6_PREFER_TEMPADDR
: {
2596 struct ip6_pktopts
**optp
;
2598 if (optlen
!= sizeof(optval
)) {
2602 error
= sooptcopyin(sopt
, &optval
,
2603 sizeof(optval
), sizeof(optval
));
2608 optp
= &in6p
->in6p_outputopts
;
2609 error
= ip6_pcbopt(optname
, (u_char
*)&optval
,
2610 sizeof(optval
), optp
, uproto
);
2612 if (optname
== IPV6_TCLASS
) {
2613 // Add in the ECN flags
2614 u_int8_t tos
= (in6p
->inp_ip_tos
& ~IPTOS_ECN_MASK
);
2615 u_int8_t ecn
= optval
& IPTOS_ECN_MASK
;
2616 in6p
->inp_ip_tos
= tos
| ecn
;
2621 case IPV6_2292PKTINFO
:
2622 case IPV6_2292HOPLIMIT
:
2623 case IPV6_2292HOPOPTS
:
2624 case IPV6_2292DSTOPTS
:
2625 case IPV6_2292RTHDR
:
2627 if (optlen
!= sizeof(int)) {
2631 error
= sooptcopyin(sopt
, &optval
,
2632 sizeof(optval
), sizeof(optval
));
2637 case IPV6_2292PKTINFO
:
2638 OPTSET2292(IN6P_PKTINFO
);
2640 case IPV6_2292HOPLIMIT
:
2641 OPTSET2292(IN6P_HOPLIMIT
);
2643 case IPV6_2292HOPOPTS
:
2645 * Check super-user privilege.
2646 * See comments for IPV6_RECVHOPOPTS.
2651 OPTSET2292(IN6P_HOPOPTS
);
2652 capture_exthdrstat_in
= TRUE
;
2654 case IPV6_2292DSTOPTS
:
2658 OPTSET2292(IN6P_DSTOPTS
|
2659 IN6P_RTHDRDSTOPTS
); /* XXX */
2660 capture_exthdrstat_in
= TRUE
;
2662 case IPV6_2292RTHDR
:
2663 OPTSET2292(IN6P_RTHDR
);
2664 capture_exthdrstat_in
= TRUE
;
2669 case IPV6_3542PKTINFO
:
2670 case IPV6_3542HOPOPTS
:
2671 case IPV6_3542RTHDR
:
2672 case IPV6_3542DSTOPTS
:
2673 case IPV6_RTHDRDSTOPTS
:
2674 case IPV6_3542NEXTHOP
: {
2675 struct ip6_pktopts
**optp
;
2676 /* new advanced API (RFC3542) */
2679 /* cannot mix with RFC2292 */
2680 if (OPTBIT(IN6P_RFC2292
)) {
2684 error
= soopt_getm(sopt
, &m
);
2688 error
= soopt_mcopyin(sopt
, m
);
2693 optp
= &in6p
->in6p_outputopts
;
2694 error
= ip6_pcbopt(optname
, mtod(m
, u_char
*),
2695 m
->m_len
, optp
, uproto
);
2700 case IPV6_MULTICAST_IF
:
2701 case IPV6_MULTICAST_HOPS
:
2702 case IPV6_MULTICAST_LOOP
:
2703 case IPV6_JOIN_GROUP
:
2704 case IPV6_LEAVE_GROUP
:
2706 case MCAST_BLOCK_SOURCE
:
2707 case MCAST_UNBLOCK_SOURCE
:
2708 case MCAST_JOIN_GROUP
:
2709 case MCAST_LEAVE_GROUP
:
2710 case MCAST_JOIN_SOURCE_GROUP
:
2711 case MCAST_LEAVE_SOURCE_GROUP
:
2712 error
= ip6_setmoptions(in6p
, sopt
);
2715 case IPV6_PORTRANGE
:
2716 error
= sooptcopyin(sopt
, &optval
,
2717 sizeof(optval
), sizeof(optval
));
2723 case IPV6_PORTRANGE_DEFAULT
:
2724 in6p
->inp_flags
&= ~(INP_LOWPORT
);
2725 in6p
->inp_flags
&= ~(INP_HIGHPORT
);
2728 case IPV6_PORTRANGE_HIGH
:
2729 in6p
->inp_flags
&= ~(INP_LOWPORT
);
2730 in6p
->inp_flags
|= INP_HIGHPORT
;
2733 case IPV6_PORTRANGE_LOW
:
2734 in6p
->inp_flags
&= ~(INP_HIGHPORT
);
2735 in6p
->inp_flags
|= INP_LOWPORT
;
2744 case IPV6_IPSEC_POLICY
: {
2749 if ((error
= soopt_getm(sopt
, &m
)) != 0) {
2752 if ((error
= soopt_mcopyin(sopt
, m
)) != 0) {
2756 req
= mtod(m
, caddr_t
);
2758 error
= ipsec6_set_policy(in6p
, optname
, req
,
2765 * IPv6 variant of IP_BOUND_IF; for details see
2766 * comments on IP_BOUND_IF in ip_ctloutput().
2769 /* This option is settable only on IPv6 */
2770 if (!(in6p
->inp_vflag
& INP_IPV6
)) {
2775 error
= sooptcopyin(sopt
, &optval
,
2776 sizeof(optval
), sizeof(optval
));
2782 error
= inp_bindif(in6p
, optval
, NULL
);
2785 case IPV6_NO_IFT_CELLULAR
:
2786 /* This option is settable only for IPv6 */
2787 if (!(in6p
->inp_vflag
& INP_IPV6
)) {
2792 error
= sooptcopyin(sopt
, &optval
,
2793 sizeof(optval
), sizeof(optval
));
2799 /* once set, it cannot be unset */
2800 if (!optval
&& INP_NO_CELLULAR(in6p
)) {
2805 error
= so_set_restrictions(so
,
2806 SO_RESTRICT_DENY_CELLULAR
);
2810 /* This option is not settable */
2815 error
= ENOPROTOOPT
;
2818 if (capture_exthdrstat_in
) {
2819 if (uproto
== IPPROTO_TCP
) {
2820 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_sock_inet6_stream_exthdr_in
);
2821 } else if (uproto
== IPPROTO_UDP
) {
2822 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_sock_inet6_dgram_exthdr_in
);
2829 case IPV6_2292PKTOPTIONS
:
2831 * RFC3542 (effectively) deprecated the
2832 * semantics of the 2292-style pktoptions.
2833 * Since it was not reliable in nature (i.e.,
2834 * applications had to expect the lack of some
2835 * information after all), it would make sense
2836 * to simplify this part by always returning
2839 sopt
->sopt_valsize
= 0;
2842 case IPV6_RECVHOPOPTS
:
2843 case IPV6_RECVDSTOPTS
:
2844 case IPV6_RECVRTHDRDSTOPTS
:
2845 case IPV6_UNICAST_HOPS
:
2846 case IPV6_RECVPKTINFO
:
2847 case IPV6_RECVHOPLIMIT
:
2848 case IPV6_RECVRTHDR
:
2849 case IPV6_RECVPATHMTU
:
2851 case IPV6_PORTRANGE
:
2852 case IPV6_RECVTCLASS
:
2853 case IPV6_AUTOFLOWLABEL
:
2855 case IPV6_RECVHOPOPTS
:
2856 optval
= OPTBIT(IN6P_HOPOPTS
);
2859 case IPV6_RECVDSTOPTS
:
2860 optval
= OPTBIT(IN6P_DSTOPTS
);
2863 case IPV6_RECVRTHDRDSTOPTS
:
2864 optval
= OPTBIT(IN6P_RTHDRDSTOPTS
);
2867 case IPV6_UNICAST_HOPS
:
2868 optval
= in6p
->in6p_hops
;
2871 case IPV6_RECVPKTINFO
:
2872 optval
= OPTBIT(IN6P_PKTINFO
);
2875 case IPV6_RECVHOPLIMIT
:
2876 optval
= OPTBIT(IN6P_HOPLIMIT
);
2879 case IPV6_RECVRTHDR
:
2880 optval
= OPTBIT(IN6P_RTHDR
);
2883 case IPV6_RECVPATHMTU
:
2884 optval
= OPTBIT(IN6P_MTU
);
2888 optval
= OPTBIT(IN6P_IPV6_V6ONLY
);
2891 case IPV6_PORTRANGE
: {
2893 flags
= in6p
->inp_flags
;
2894 if (flags
& INP_HIGHPORT
) {
2895 optval
= IPV6_PORTRANGE_HIGH
;
2896 } else if (flags
& INP_LOWPORT
) {
2897 optval
= IPV6_PORTRANGE_LOW
;
2903 case IPV6_RECVTCLASS
:
2904 optval
= OPTBIT(IN6P_TCLASS
);
2907 case IPV6_AUTOFLOWLABEL
:
2908 optval
= OPTBIT(IN6P_AUTOFLOWLABEL
);
2914 error
= sooptcopyout(sopt
, &optval
,
2918 case IPV6_PATHMTU
: {
2920 struct ip6_mtuinfo mtuinfo
;
2921 struct route_in6 sro
;
2923 bzero(&sro
, sizeof(sro
));
2925 if (!(so
->so_state
& SS_ISCONNECTED
)) {
2929 * XXX: we dot not consider the case of source
2930 * routing, or optional information to specify
2931 * the outgoing interface.
2933 error
= ip6_getpmtu(&sro
, NULL
, NULL
,
2934 &in6p
->in6p_faddr
, &pmtu
);
2935 ROUTE_RELEASE(&sro
);
2939 if (pmtu
> IPV6_MAXPACKET
) {
2940 pmtu
= IPV6_MAXPACKET
;
2943 bzero(&mtuinfo
, sizeof(mtuinfo
));
2944 mtuinfo
.ip6m_mtu
= (u_int32_t
)pmtu
;
2945 optdata
= (void *)&mtuinfo
;
2946 optdatalen
= sizeof(mtuinfo
);
2947 error
= sooptcopyout(sopt
, optdata
,
2952 case IPV6_2292PKTINFO
:
2953 case IPV6_2292HOPLIMIT
:
2954 case IPV6_2292HOPOPTS
:
2955 case IPV6_2292RTHDR
:
2956 case IPV6_2292DSTOPTS
:
2958 case IPV6_2292PKTINFO
:
2959 optval
= OPTBIT(IN6P_PKTINFO
);
2961 case IPV6_2292HOPLIMIT
:
2962 optval
= OPTBIT(IN6P_HOPLIMIT
);
2964 case IPV6_2292HOPOPTS
:
2965 optval
= OPTBIT(IN6P_HOPOPTS
);
2967 case IPV6_2292RTHDR
:
2968 optval
= OPTBIT(IN6P_RTHDR
);
2970 case IPV6_2292DSTOPTS
:
2971 optval
= OPTBIT(IN6P_DSTOPTS
|
2975 error
= sooptcopyout(sopt
, &optval
,
2983 case IPV6_RTHDRDSTOPTS
:
2987 case IPV6_USE_MIN_MTU
:
2988 case IPV6_PREFER_TEMPADDR
:
2989 error
= ip6_getpcbopt(in6p
->in6p_outputopts
,
2993 case IPV6_MULTICAST_IF
:
2994 case IPV6_MULTICAST_HOPS
:
2995 case IPV6_MULTICAST_LOOP
:
2997 error
= ip6_getmoptions(in6p
, sopt
);
3000 case IPV6_IPSEC_POLICY
: {
3001 error
= 0; /* This option is no longer supported */
3006 if (in6p
->inp_flags
& INP_BOUND_IF
) {
3007 optval
= in6p
->inp_boundifp
->if_index
;
3009 error
= sooptcopyout(sopt
, &optval
,
3013 case IPV6_NO_IFT_CELLULAR
:
3014 optval
= INP_NO_CELLULAR(in6p
) ? 1 : 0;
3015 error
= sooptcopyout(sopt
, &optval
,
3020 optval
= (in6p
->in6p_last_outifp
!= NULL
) ?
3021 in6p
->in6p_last_outifp
->if_index
: 0;
3022 error
= sooptcopyout(sopt
, &optval
,
3027 error
= ENOPROTOOPT
;
3032 } else if (level
== IPPROTO_UDP
) {
3033 error
= udp_ctloutput(so
, sopt
);
3041 ip6_raw_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
3043 int error
= 0, optval
, optlen
;
3044 const int icmp6off
= offsetof(struct icmp6_hdr
, icmp6_cksum
);
3045 struct inpcb
*in6p
= sotoinpcb(so
);
3046 int level
, op
, optname
;
3048 level
= sopt
->sopt_level
;
3049 op
= sopt
->sopt_dir
;
3050 optname
= sopt
->sopt_name
;
3051 optlen
= sopt
->sopt_valsize
;
3053 if (level
!= IPPROTO_IPV6
) {
3060 * For ICMPv6 sockets, no modification allowed for checksum
3061 * offset, permit "no change" values to help existing apps.
3063 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
3064 * for an ICMPv6 socket will fail."
3065 * The current behavior does not meet RFC3542.
3069 if (optlen
!= sizeof(int)) {
3073 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
3078 if ((optval
% 2) != 0) {
3079 /* the API assumes even offset values */
3081 } else if (SOCK_PROTO(so
) == IPPROTO_ICMPV6
) {
3082 if (optval
!= icmp6off
) {
3086 in6p
->in6p_cksum
= optval
;
3091 if (SOCK_PROTO(so
) == IPPROTO_ICMPV6
) {
3094 optval
= in6p
->in6p_cksum
;
3097 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
3107 error
= ENOPROTOOPT
;
3115 * Set up IP6 options in pcb for insertion in output packets or
3116 * specifying behavior of outgoing packets.
3119 ip6_pcbopts(struct ip6_pktopts
**pktopt
, struct mbuf
*m
, struct socket
*so
,
3120 struct sockopt
*sopt
)
3122 #pragma unused(sopt)
3123 struct ip6_pktopts
*opt
= *pktopt
;
3126 /* turn off any old options. */
3129 if (opt
->ip6po_pktinfo
|| opt
->ip6po_nexthop
||
3130 opt
->ip6po_hbh
|| opt
->ip6po_dest1
|| opt
->ip6po_dest2
||
3131 opt
->ip6po_rhinfo
.ip6po_rhi_rthdr
) {
3132 printf("%s: all specified options are cleared.\n",
3136 ip6_clearpktopts(opt
, -1);
3138 opt
= _MALLOC(sizeof(*opt
), M_IP6OPT
, M_WAITOK
);
3145 if (m
== NULL
|| m
->m_len
== 0) {
3147 * Only turning off any previous options, regardless of
3148 * whether the opt is just created or given.
3151 FREE(opt
, M_IP6OPT
);
3156 /* set options specified by user. */
3157 if ((error
= ip6_setpktopts(m
, opt
, NULL
, SOCK_PROTO(so
))) != 0) {
3158 ip6_clearpktopts(opt
, -1); /* XXX: discard all options */
3159 FREE(opt
, M_IP6OPT
);
3167 * initialize ip6_pktopts. beware that there are non-zero default values in
3171 ip6_initpktopts(struct ip6_pktopts
*opt
)
3173 bzero(opt
, sizeof(*opt
));
3174 opt
->ip6po_hlim
= -1; /* -1 means default hop limit */
3175 opt
->ip6po_tclass
= -1; /* -1 means default traffic class */
3176 opt
->ip6po_minmtu
= IP6PO_MINMTU_MCASTONLY
;
3177 opt
->ip6po_prefer_tempaddr
= IP6PO_TEMPADDR_SYSTEM
;
3181 ip6_pcbopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
**pktopt
,
3184 struct ip6_pktopts
*opt
;
3188 opt
= _MALLOC(sizeof(*opt
), M_IP6OPT
, M_WAITOK
);
3192 ip6_initpktopts(opt
);
3196 return ip6_setpktopt(optname
, buf
, len
, opt
, 1, 0, uproto
);
3200 ip6_getpcbopt(struct ip6_pktopts
*pktopt
, int optname
, struct sockopt
*sopt
)
3202 void *optdata
= NULL
;
3204 struct ip6_ext
*ip6e
;
3205 struct in6_pktinfo null_pktinfo
;
3206 int deftclass
= 0, on
;
3207 int defminmtu
= IP6PO_MINMTU_MCASTONLY
;
3208 int defpreftemp
= IP6PO_TEMPADDR_SYSTEM
;
3213 if (pktopt
&& pktopt
->ip6po_pktinfo
) {
3214 optdata
= (void *)pktopt
->ip6po_pktinfo
;
3216 /* XXX: we don't have to do this every time... */
3217 bzero(&null_pktinfo
, sizeof(null_pktinfo
));
3218 optdata
= (void *)&null_pktinfo
;
3220 optdatalen
= sizeof(struct in6_pktinfo
);
3224 if (pktopt
&& pktopt
->ip6po_tclass
>= 0) {
3225 optdata
= (void *)&pktopt
->ip6po_tclass
;
3227 optdata
= (void *)&deftclass
;
3229 optdatalen
= sizeof(int);
3233 if (pktopt
&& pktopt
->ip6po_hbh
) {
3234 optdata
= (void *)pktopt
->ip6po_hbh
;
3235 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_hbh
;
3236 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3241 if (pktopt
&& pktopt
->ip6po_rthdr
) {
3242 optdata
= (void *)pktopt
->ip6po_rthdr
;
3243 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_rthdr
;
3244 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3248 case IPV6_RTHDRDSTOPTS
:
3249 if (pktopt
&& pktopt
->ip6po_dest1
) {
3250 optdata
= (void *)pktopt
->ip6po_dest1
;
3251 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest1
;
3252 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3257 if (pktopt
&& pktopt
->ip6po_dest2
) {
3258 optdata
= (void *)pktopt
->ip6po_dest2
;
3259 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest2
;
3260 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3265 if (pktopt
&& pktopt
->ip6po_nexthop
) {
3266 optdata
= (void *)pktopt
->ip6po_nexthop
;
3267 optdatalen
= pktopt
->ip6po_nexthop
->sa_len
;
3271 case IPV6_USE_MIN_MTU
:
3273 optdata
= (void *)&pktopt
->ip6po_minmtu
;
3275 optdata
= (void *)&defminmtu
;
3277 optdatalen
= sizeof(int);
3281 if (pktopt
&& ((pktopt
->ip6po_flags
) & IP6PO_DONTFRAG
)) {
3286 optdata
= (void *)&on
;
3287 optdatalen
= sizeof(on
);
3290 case IPV6_PREFER_TEMPADDR
:
3292 optdata
= (void *)&pktopt
->ip6po_prefer_tempaddr
;
3294 optdata
= (void *)&defpreftemp
;
3296 optdatalen
= sizeof(int);
3299 default: /* should not happen */
3301 panic("ip6_getpcbopt: unexpected option\n");
3306 return sooptcopyout(sopt
, optdata
, optdatalen
);
3310 ip6_clearpktopts(struct ip6_pktopts
*pktopt
, int optname
)
3312 if (pktopt
== NULL
) {
3316 if (optname
== -1 || optname
== IPV6_PKTINFO
) {
3317 if (pktopt
->ip6po_pktinfo
) {
3318 FREE(pktopt
->ip6po_pktinfo
, M_IP6OPT
);
3320 pktopt
->ip6po_pktinfo
= NULL
;
3322 if (optname
== -1 || optname
== IPV6_HOPLIMIT
) {
3323 pktopt
->ip6po_hlim
= -1;
3325 if (optname
== -1 || optname
== IPV6_TCLASS
) {
3326 pktopt
->ip6po_tclass
= -1;
3328 if (optname
== -1 || optname
== IPV6_NEXTHOP
) {
3329 ROUTE_RELEASE(&pktopt
->ip6po_nextroute
);
3330 if (pktopt
->ip6po_nexthop
) {
3331 FREE(pktopt
->ip6po_nexthop
, M_IP6OPT
);
3333 pktopt
->ip6po_nexthop
= NULL
;
3335 if (optname
== -1 || optname
== IPV6_HOPOPTS
) {
3336 if (pktopt
->ip6po_hbh
) {
3337 FREE(pktopt
->ip6po_hbh
, M_IP6OPT
);
3339 pktopt
->ip6po_hbh
= NULL
;
3341 if (optname
== -1 || optname
== IPV6_RTHDRDSTOPTS
) {
3342 if (pktopt
->ip6po_dest1
) {
3343 FREE(pktopt
->ip6po_dest1
, M_IP6OPT
);
3345 pktopt
->ip6po_dest1
= NULL
;
3347 if (optname
== -1 || optname
== IPV6_RTHDR
) {
3348 if (pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
) {
3349 FREE(pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
, M_IP6OPT
);
3351 pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
= NULL
;
3352 ROUTE_RELEASE(&pktopt
->ip6po_route
);
3354 if (optname
== -1 || optname
== IPV6_DSTOPTS
) {
3355 if (pktopt
->ip6po_dest2
) {
3356 FREE(pktopt
->ip6po_dest2
, M_IP6OPT
);
3358 pktopt
->ip6po_dest2
= NULL
;
3362 #define PKTOPT_EXTHDRCPY(type) do { \
3365 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3; \
3366 dst->type = _MALLOC(hlen, M_IP6OPT, canwait); \
3367 if (dst->type == NULL && canwait == M_NOWAIT) \
3369 bcopy(src->type, dst->type, hlen); \
3374 copypktopts(struct ip6_pktopts
*dst
, struct ip6_pktopts
*src
, int canwait
)
3376 if (dst
== NULL
|| src
== NULL
) {
3377 printf("copypktopts: invalid argument\n");
3381 dst
->ip6po_hlim
= src
->ip6po_hlim
;
3382 dst
->ip6po_tclass
= src
->ip6po_tclass
;
3383 dst
->ip6po_flags
= src
->ip6po_flags
;
3384 if (src
->ip6po_pktinfo
) {
3385 dst
->ip6po_pktinfo
= _MALLOC(sizeof(*dst
->ip6po_pktinfo
),
3387 if (dst
->ip6po_pktinfo
== NULL
&& canwait
== M_NOWAIT
) {
3390 *dst
->ip6po_pktinfo
= *src
->ip6po_pktinfo
;
3392 if (src
->ip6po_nexthop
) {
3393 dst
->ip6po_nexthop
= _MALLOC(src
->ip6po_nexthop
->sa_len
,
3395 if (dst
->ip6po_nexthop
== NULL
&& canwait
== M_NOWAIT
) {
3398 bcopy(src
->ip6po_nexthop
, dst
->ip6po_nexthop
,
3399 src
->ip6po_nexthop
->sa_len
);
3401 PKTOPT_EXTHDRCPY(ip6po_hbh
);
3402 PKTOPT_EXTHDRCPY(ip6po_dest1
);
3403 PKTOPT_EXTHDRCPY(ip6po_dest2
);
3404 PKTOPT_EXTHDRCPY(ip6po_rthdr
); /* not copy the cached route */
3408 ip6_clearpktopts(dst
, -1);
3411 #undef PKTOPT_EXTHDRCPY
3413 struct ip6_pktopts
*
3414 ip6_copypktopts(struct ip6_pktopts
*src
, int canwait
)
3417 struct ip6_pktopts
*dst
;
3419 dst
= _MALLOC(sizeof(*dst
), M_IP6OPT
, canwait
);
3423 ip6_initpktopts(dst
);
3425 if ((error
= copypktopts(dst
, src
, canwait
)) != 0) {
3426 FREE(dst
, M_IP6OPT
);
3434 ip6_freepcbopts(struct ip6_pktopts
*pktopt
)
3436 if (pktopt
== NULL
) {
3440 ip6_clearpktopts(pktopt
, -1);
3442 FREE(pktopt
, M_IP6OPT
);
3446 ip6_moptions_init(void)
3448 PE_parse_boot_argn("ifa_debug", &im6o_debug
, sizeof(im6o_debug
));
3450 im6o_size
= (im6o_debug
== 0) ? sizeof(struct ip6_moptions
) :
3451 sizeof(struct ip6_moptions_dbg
);
3453 im6o_zone
= zinit(im6o_size
, IM6O_ZONE_MAX
* im6o_size
, 0,
3455 if (im6o_zone
== NULL
) {
3456 panic("%s: failed allocating %s", __func__
, IM6O_ZONE_NAME
);
3459 zone_change(im6o_zone
, Z_EXPAND
, TRUE
);
3463 im6o_addref(struct ip6_moptions
*im6o
, int locked
)
3468 IM6O_LOCK_ASSERT_HELD(im6o
);
3471 if (++im6o
->im6o_refcnt
== 0) {
3472 panic("%s: im6o %p wraparound refcnt\n", __func__
, im6o
);
3474 } else if (im6o
->im6o_trace
!= NULL
) {
3475 (*im6o
->im6o_trace
)(im6o
, TRUE
);
3484 im6o_remref(struct ip6_moptions
*im6o
)
3489 if (im6o
->im6o_refcnt
== 0) {
3490 panic("%s: im6o %p negative refcnt", __func__
, im6o
);
3492 } else if (im6o
->im6o_trace
!= NULL
) {
3493 (*im6o
->im6o_trace
)(im6o
, FALSE
);
3496 --im6o
->im6o_refcnt
;
3497 if (im6o
->im6o_refcnt
> 0) {
3502 for (i
= 0; i
< im6o
->im6o_num_memberships
; ++i
) {
3503 struct in6_mfilter
*imf
;
3505 imf
= im6o
->im6o_mfilters
? &im6o
->im6o_mfilters
[i
] : NULL
;
3510 (void) in6_mc_leave(im6o
->im6o_membership
[i
], imf
);
3516 IN6M_REMREF(im6o
->im6o_membership
[i
]);
3517 im6o
->im6o_membership
[i
] = NULL
;
3519 im6o
->im6o_num_memberships
= 0;
3520 if (im6o
->im6o_mfilters
!= NULL
) {
3521 FREE(im6o
->im6o_mfilters
, M_IN6MFILTER
);
3522 im6o
->im6o_mfilters
= NULL
;
3524 if (im6o
->im6o_membership
!= NULL
) {
3525 FREE(im6o
->im6o_membership
, M_IP6MOPTS
);
3526 im6o
->im6o_membership
= NULL
;
3530 lck_mtx_destroy(&im6o
->im6o_lock
, ifa_mtx_grp
);
3532 if (!(im6o
->im6o_debug
& IFD_ALLOC
)) {
3533 panic("%s: im6o %p cannot be freed", __func__
, im6o
);
3536 zfree(im6o_zone
, im6o
);
3540 im6o_trace(struct ip6_moptions
*im6o
, int refhold
)
3542 struct ip6_moptions_dbg
*im6o_dbg
= (struct ip6_moptions_dbg
*)im6o
;
3547 if (!(im6o
->im6o_debug
& IFD_DEBUG
)) {
3548 panic("%s: im6o %p has no debug structure", __func__
, im6o
);
3552 cnt
= &im6o_dbg
->im6o_refhold_cnt
;
3553 tr
= im6o_dbg
->im6o_refhold
;
3555 cnt
= &im6o_dbg
->im6o_refrele_cnt
;
3556 tr
= im6o_dbg
->im6o_refrele
;
3559 idx
= atomic_add_16_ov(cnt
, 1) % IM6O_TRACE_HIST_SIZE
;
3560 ctrace_record(&tr
[idx
]);
3563 struct ip6_moptions
*
3564 ip6_allocmoptions(int how
)
3566 struct ip6_moptions
*im6o
;
3568 im6o
= (how
== M_WAITOK
) ?
3569 zalloc(im6o_zone
) : zalloc_noblock(im6o_zone
);
3571 bzero(im6o
, im6o_size
);
3572 lck_mtx_init(&im6o
->im6o_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3573 im6o
->im6o_debug
|= IFD_ALLOC
;
3574 if (im6o_debug
!= 0) {
3575 im6o
->im6o_debug
|= IFD_DEBUG
;
3576 im6o
->im6o_trace
= im6o_trace
;
3585 * Set IPv6 outgoing packet options based on advanced API.
3588 ip6_setpktopts(struct mbuf
*control
, struct ip6_pktopts
*opt
,
3589 struct ip6_pktopts
*stickyopt
, int uproto
)
3591 struct cmsghdr
*cm
= NULL
;
3593 if (control
== NULL
|| opt
== NULL
) {
3597 ip6_initpktopts(opt
);
3602 * If stickyopt is provided, make a local copy of the options
3603 * for this particular packet, then override them by ancillary
3605 * XXX: copypktopts() does not copy the cached route to a next
3606 * hop (if any). This is not very good in terms of efficiency,
3607 * but we can allow this since this option should be rarely
3610 if ((error
= copypktopts(opt
, stickyopt
, M_NOWAIT
)) != 0) {
3616 * XXX: Currently, we assume all the optional information is stored
3619 if (control
->m_next
) {
3623 if (control
->m_len
< CMSG_LEN(0)) {
3627 for (cm
= M_FIRST_CMSGHDR(control
);
3628 is_cmsg_valid(control
, cm
);
3629 cm
= M_NXT_CMSGHDR(control
, cm
)) {
3632 if (cm
->cmsg_level
!= IPPROTO_IPV6
) {
3636 error
= ip6_setpktopt(cm
->cmsg_type
, CMSG_DATA(cm
),
3637 cm
->cmsg_len
- CMSG_LEN(0), opt
, 0, 1, uproto
);
3646 * Set a particular packet option, as a sticky option or an ancillary data
3647 * item. "len" can be 0 only when it's a sticky option.
3648 * We have 4 cases of combination of "sticky" and "cmsg":
3649 * "sticky=0, cmsg=0": impossible
3650 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
3651 * "sticky=1, cmsg=0": RFC3542 socket option
3652 * "sticky=1, cmsg=1": RFC2292 socket option
3655 ip6_setpktopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
*opt
,
3656 int sticky
, int cmsg
, int uproto
)
3658 int minmtupolicy
, preftemp
;
3660 boolean_t capture_exthdrstat_out
= FALSE
;
3662 if (!sticky
&& !cmsg
) {
3664 printf("ip6_setpktopt: impossible case\n");
3670 * Caller must have ensured that the buffer is at least
3671 * aligned on 32-bit boundary.
3673 VERIFY(IS_P2ALIGNED(buf
, sizeof(u_int32_t
)));
3676 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
3677 * not be specified in the context of RFC3542. Conversely,
3678 * RFC3542 types should not be specified in the context of RFC2292.
3682 case IPV6_2292PKTINFO
:
3683 case IPV6_2292HOPLIMIT
:
3684 case IPV6_2292NEXTHOP
:
3685 case IPV6_2292HOPOPTS
:
3686 case IPV6_2292DSTOPTS
:
3687 case IPV6_2292RTHDR
:
3688 case IPV6_2292PKTOPTIONS
:
3692 if (sticky
&& cmsg
) {
3699 case IPV6_RTHDRDSTOPTS
:
3701 case IPV6_USE_MIN_MTU
:
3704 case IPV6_PREFER_TEMPADDR
: /* XXX: not an RFC3542 option */
3710 case IPV6_2292PKTINFO
:
3711 case IPV6_PKTINFO
: {
3712 struct ifnet
*ifp
= NULL
;
3713 struct in6_pktinfo
*pktinfo
;
3715 if (len
!= sizeof(struct in6_pktinfo
)) {
3719 pktinfo
= (struct in6_pktinfo
*)(void *)buf
;
3722 * An application can clear any sticky IPV6_PKTINFO option by
3723 * doing a "regular" setsockopt with ipi6_addr being
3724 * in6addr_any and ipi6_ifindex being zero.
3725 * [RFC 3542, Section 6]
3727 if (optname
== IPV6_PKTINFO
&& opt
->ip6po_pktinfo
&&
3728 pktinfo
->ipi6_ifindex
== 0 &&
3729 IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
3730 ip6_clearpktopts(opt
, optname
);
3734 if (uproto
== IPPROTO_TCP
&& optname
== IPV6_PKTINFO
&&
3735 sticky
&& !IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
3739 /* validate the interface index if specified. */
3740 ifnet_head_lock_shared();
3742 if (pktinfo
->ipi6_ifindex
> if_index
) {
3747 if (pktinfo
->ipi6_ifindex
) {
3748 ifp
= ifindex2ifnet
[pktinfo
->ipi6_ifindex
];
3758 * We store the address anyway, and let in6_selectsrc()
3759 * validate the specified address. This is because ipi6_addr
3760 * may not have enough information about its scope zone, and
3761 * we may need additional information (such as outgoing
3762 * interface or the scope zone of a destination address) to
3763 * disambiguate the scope.
3764 * XXX: the delay of the validation may confuse the
3765 * application when it is used as a sticky option.
3767 if (opt
->ip6po_pktinfo
== NULL
) {
3768 opt
->ip6po_pktinfo
= _MALLOC(sizeof(*pktinfo
),
3769 M_IP6OPT
, M_NOWAIT
);
3770 if (opt
->ip6po_pktinfo
== NULL
) {
3774 bcopy(pktinfo
, opt
->ip6po_pktinfo
, sizeof(*pktinfo
));
3778 case IPV6_2292HOPLIMIT
:
3779 case IPV6_HOPLIMIT
: {
3783 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3784 * to simplify the ordering among hoplimit options.
3786 if (optname
== IPV6_HOPLIMIT
&& sticky
) {
3790 if (len
!= sizeof(int)) {
3793 hlimp
= (int *)(void *)buf
;
3794 if (*hlimp
< -1 || *hlimp
> IPV6_MAXHLIM
) {
3798 opt
->ip6po_hlim
= *hlimp
;
3805 if (len
!= sizeof(int)) {
3808 tclass
= *(int *)(void *)buf
;
3809 if (tclass
< -1 || tclass
> 255) {
3813 opt
->ip6po_tclass
= tclass
;
3817 case IPV6_2292NEXTHOP
:
3819 error
= suser(kauth_cred_get(), 0);
3824 if (len
== 0) { /* just remove the option */
3825 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3829 /* check if cmsg_len is large enough for sa_len */
3830 if (len
< sizeof(struct sockaddr
) || len
< *buf
) {
3834 switch (SA(buf
)->sa_family
) {
3836 struct sockaddr_in6
*sa6
= SIN6(buf
);
3838 if (sa6
->sin6_len
!= sizeof(struct sockaddr_in6
)) {
3842 if (IN6_IS_ADDR_UNSPECIFIED(&sa6
->sin6_addr
) ||
3843 IN6_IS_ADDR_MULTICAST(&sa6
->sin6_addr
)) {
3846 if ((error
= sa6_embedscope(sa6
, ip6_use_defzone
))
3852 case AF_LINK
: /* should eventually be supported */
3854 return EAFNOSUPPORT
;
3857 /* turn off the previous option, then set the new option. */
3858 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3859 opt
->ip6po_nexthop
= _MALLOC(*buf
, M_IP6OPT
, M_NOWAIT
);
3860 if (opt
->ip6po_nexthop
== NULL
) {
3863 bcopy(buf
, opt
->ip6po_nexthop
, *buf
);
3866 case IPV6_2292HOPOPTS
:
3867 case IPV6_HOPOPTS
: {
3868 struct ip6_hbh
*hbh
;
3872 * XXX: We don't allow a non-privileged user to set ANY HbH
3873 * options, since per-option restriction has too much
3876 error
= suser(kauth_cred_get(), 0);
3882 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3883 break; /* just remove the option */
3886 /* message length validation */
3887 if (len
< sizeof(struct ip6_hbh
)) {
3890 hbh
= (struct ip6_hbh
*)(void *)buf
;
3891 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
3892 if (len
!= hbhlen
) {
3896 /* turn off the previous option, then set the new option. */
3897 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3898 opt
->ip6po_hbh
= _MALLOC(hbhlen
, M_IP6OPT
, M_NOWAIT
);
3899 if (opt
->ip6po_hbh
== NULL
) {
3902 bcopy(hbh
, opt
->ip6po_hbh
, hbhlen
);
3903 capture_exthdrstat_out
= TRUE
;
3907 case IPV6_2292DSTOPTS
:
3909 case IPV6_RTHDRDSTOPTS
: {
3910 struct ip6_dest
*dest
, **newdest
= NULL
;
3913 error
= suser(kauth_cred_get(), 0);
3919 ip6_clearpktopts(opt
, optname
);
3920 break; /* just remove the option */
3923 /* message length validation */
3924 if (len
< sizeof(struct ip6_dest
)) {
3927 dest
= (struct ip6_dest
*)(void *)buf
;
3928 destlen
= (dest
->ip6d_len
+ 1) << 3;
3929 if (len
!= destlen
) {
3934 * Determine the position that the destination options header
3935 * should be inserted; before or after the routing header.
3938 case IPV6_2292DSTOPTS
:
3940 * The old advacned API is ambiguous on this point.
3941 * Our approach is to determine the position based
3942 * according to the existence of a routing header.
3943 * Note, however, that this depends on the order of the
3944 * extension headers in the ancillary data; the 1st
3945 * part of the destination options header must appear
3946 * before the routing header in the ancillary data,
3948 * RFC3542 solved the ambiguity by introducing
3949 * separate ancillary data or option types.
3951 if (opt
->ip6po_rthdr
== NULL
) {
3952 newdest
= &opt
->ip6po_dest1
;
3954 newdest
= &opt
->ip6po_dest2
;
3957 case IPV6_RTHDRDSTOPTS
:
3958 newdest
= &opt
->ip6po_dest1
;
3961 newdest
= &opt
->ip6po_dest2
;
3965 /* turn off the previous option, then set the new option. */
3966 ip6_clearpktopts(opt
, optname
);
3967 *newdest
= _MALLOC(destlen
, M_IP6OPT
, M_NOWAIT
);
3968 if (*newdest
== NULL
) {
3971 bcopy(dest
, *newdest
, destlen
);
3972 capture_exthdrstat_out
= TRUE
;
3976 case IPV6_2292RTHDR
:
3978 struct ip6_rthdr
*rth
;
3982 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3983 break; /* just remove the option */
3986 /* message length validation */
3987 if (len
< sizeof(struct ip6_rthdr
)) {
3990 rth
= (struct ip6_rthdr
*)(void *)buf
;
3991 rthlen
= (rth
->ip6r_len
+ 1) << 3;
3992 if (len
!= rthlen
) {
3996 switch (rth
->ip6r_type
) {
3997 case IPV6_RTHDR_TYPE_0
:
3998 if (rth
->ip6r_len
== 0) { /* must contain one addr */
4001 if (rth
->ip6r_len
% 2) { /* length must be even */
4004 if (rth
->ip6r_len
/ 2 != rth
->ip6r_segleft
) {
4009 return EINVAL
; /* not supported */
4012 /* turn off the previous option */
4013 ip6_clearpktopts(opt
, IPV6_RTHDR
);
4014 opt
->ip6po_rthdr
= _MALLOC(rthlen
, M_IP6OPT
, M_NOWAIT
);
4015 if (opt
->ip6po_rthdr
== NULL
) {
4018 bcopy(rth
, opt
->ip6po_rthdr
, rthlen
);
4019 capture_exthdrstat_out
= TRUE
;
4023 case IPV6_USE_MIN_MTU
:
4024 if (len
!= sizeof(int)) {
4027 minmtupolicy
= *(int *)(void *)buf
;
4028 if (minmtupolicy
!= IP6PO_MINMTU_MCASTONLY
&&
4029 minmtupolicy
!= IP6PO_MINMTU_DISABLE
&&
4030 minmtupolicy
!= IP6PO_MINMTU_ALL
) {
4033 opt
->ip6po_minmtu
= minmtupolicy
;
4037 if (len
!= sizeof(int)) {
4041 if (uproto
== IPPROTO_TCP
|| *(int *)(void *)buf
== 0) {
4043 * we ignore this option for TCP sockets.
4044 * (RFC3542 leaves this case unspecified.)
4046 opt
->ip6po_flags
&= ~IP6PO_DONTFRAG
;
4048 opt
->ip6po_flags
|= IP6PO_DONTFRAG
;
4052 case IPV6_PREFER_TEMPADDR
:
4053 if (len
!= sizeof(int)) {
4056 preftemp
= *(int *)(void *)buf
;
4057 if (preftemp
!= IP6PO_TEMPADDR_SYSTEM
&&
4058 preftemp
!= IP6PO_TEMPADDR_NOTPREFER
&&
4059 preftemp
!= IP6PO_TEMPADDR_PREFER
) {
4062 opt
->ip6po_prefer_tempaddr
= preftemp
;
4067 } /* end of switch */
4069 if (capture_exthdrstat_out
) {
4070 if (uproto
== IPPROTO_TCP
) {
4071 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_sock_inet6_stream_exthdr_out
);
4072 } else if (uproto
== IPPROTO_UDP
) {
4073 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_sock_inet6_dgram_exthdr_out
);
4081 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
4082 * packet to the input queue of a specified interface. Note that this
4083 * calls the output routine of the loopback "driver", but with an interface
4084 * pointer that might NOT be &loif -- easier than replicating that code here.
4087 ip6_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
4088 struct sockaddr_in6
*dst
, uint32_t optlen
, int32_t nxt0
)
4091 struct ip6_hdr
*ip6
;
4092 struct in6_addr src
;
4094 if (lo_ifp
== NULL
) {
4099 * Copy the packet header as it's needed for the checksum.
4100 * Make sure to deep-copy IPv6 header portion in case the data
4101 * is in an mbuf cluster, so that we can safely override the IPv6
4102 * header portion later.
4104 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
4105 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) ||
4106 copym
->m_len
< sizeof(struct ip6_hdr
))) {
4107 copym
= m_pullup(copym
, sizeof(struct ip6_hdr
));
4110 if (copym
== NULL
) {
4114 ip6
= mtod(copym
, struct ip6_hdr
*);
4117 * clear embedded scope identifiers if necessary.
4118 * in6_clearscope will touch the addresses only when necessary.
4120 in6_clearscope(&ip6
->ip6_src
);
4121 in6_clearscope(&ip6
->ip6_dst
);
4123 if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
) {
4124 in6_delayed_cksum_offset(copym
, 0, optlen
, nxt0
);
4128 * Stuff the 'real' ifp into the pkthdr, to be used in matching
4129 * in ip6_input(); we need the loopback ifp/dl_tag passed as args
4130 * to make the loopback driver compliant with the data link
4133 copym
->m_pkthdr
.rcvif
= origifp
;
4136 * Also record the source interface (which owns the source address).
4137 * This is basically a stripped down version of ifa_foraddr6().
4139 if (srcifp
== NULL
) {
4140 struct in6_ifaddr
*ia
;
4142 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
4143 for (ia
= in6_ifaddrs
; ia
!= NULL
; ia
= ia
->ia_next
) {
4144 IFA_LOCK_SPIN(&ia
->ia_ifa
);
4145 /* compare against src addr with embedded scope */
4146 if (IN6_ARE_ADDR_EQUAL(&ia
->ia_addr
.sin6_addr
, &src
)) {
4147 srcifp
= ia
->ia_ifp
;
4148 IFA_UNLOCK(&ia
->ia_ifa
);
4151 IFA_UNLOCK(&ia
->ia_ifa
);
4153 lck_rw_done(&in6_ifaddr_rwlock
);
4155 if (srcifp
!= NULL
) {
4156 ip6_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
4158 ip6_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
4160 dlil_output(lo_ifp
, PF_INET6
, copym
, NULL
, SA(dst
), 0, NULL
);
4164 * Chop IPv6 header off from the payload.
4167 ip6_splithdr(struct mbuf
*m
, struct ip6_exthdrs
*exthdrs
)
4170 struct ip6_hdr
*ip6
;
4172 ip6
= mtod(m
, struct ip6_hdr
*);
4173 if (m
->m_len
> sizeof(*ip6
)) {
4174 MGETHDR(mh
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
4179 M_COPY_PKTHDR(mh
, m
);
4180 MH_ALIGN(mh
, sizeof(*ip6
));
4181 m
->m_flags
&= ~M_PKTHDR
;
4182 m
->m_len
-= sizeof(*ip6
);
4183 m
->m_data
+= sizeof(*ip6
);
4186 m
->m_len
= sizeof(*ip6
);
4187 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
), sizeof(*ip6
));
4189 exthdrs
->ip6e_ip6
= m
;
4194 ip6_output_checksum(struct ifnet
*ifp
, uint32_t mtu
, struct mbuf
*m
,
4195 int nxt0
, uint32_t tlen
, uint32_t optlen
)
4197 uint32_t sw_csum
, hwcap
= ifp
->if_hwassist
;
4198 int tso
= TSO_IPV6_OK(ifp
, m
);
4201 /* do all in software; checksum offload is disabled */
4202 sw_csum
= CSUM_DELAY_IPV6_DATA
& m
->m_pkthdr
.csum_flags
;
4204 /* do in software what the hardware cannot */
4205 sw_csum
= m
->m_pkthdr
.csum_flags
&
4206 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
4210 sw_csum
|= (CSUM_DELAY_IPV6_DATA
&
4211 m
->m_pkthdr
.csum_flags
);
4212 } else if (!(sw_csum
& CSUM_DELAY_IPV6_DATA
) &&
4213 (hwcap
& CSUM_PARTIAL
)) {
4215 * Partial checksum offload, ere), if no extension headers,
4216 * and TCP only (no UDP support, as the hardware may not be
4217 * able to convert +0 to -0 (0xffff) per RFC1122 4.1.3.4.
4218 * unless the interface supports "invert zero" capability.)
4220 if (hwcksum_tx
&& !tso
&&
4221 ((m
->m_pkthdr
.csum_flags
& CSUM_TCPIPV6
) ||
4222 ((hwcap
& CSUM_ZERO_INVERT
) &&
4223 (m
->m_pkthdr
.csum_flags
& CSUM_ZERO_INVERT
))) &&
4225 uint16_t start
= sizeof(struct ip6_hdr
);
4227 m
->m_pkthdr
.csum_data
& 0xffff;
4228 m
->m_pkthdr
.csum_flags
|=
4229 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
4230 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
4231 m
->m_pkthdr
.csum_tx_start
= start
;
4234 sw_csum
|= (CSUM_DELAY_IPV6_DATA
&
4235 m
->m_pkthdr
.csum_flags
);
4239 if (sw_csum
& CSUM_DELAY_IPV6_DATA
) {
4240 in6_delayed_cksum_offset(m
, 0, optlen
, nxt0
);
4241 sw_csum
&= ~CSUM_DELAY_IPV6_DATA
;
4246 * Drop off bits that aren't supported by hardware;
4247 * also make sure to preserve non-checksum related bits.
4249 m
->m_pkthdr
.csum_flags
=
4250 ((m
->m_pkthdr
.csum_flags
&
4251 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
4252 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
4254 /* drop all bits; checksum offload is disabled */
4255 m
->m_pkthdr
.csum_flags
= 0;
4260 * Compute IPv6 extension header length.
4263 ip6_optlen(struct in6pcb
*in6p
)
4267 if (!in6p
->in6p_outputopts
) {
4273 (((struct ip6_ext *)(x)) ? \
4274 (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
4276 len
+= elen(in6p
->in6p_outputopts
->ip6po_hbh
);
4277 if (in6p
->in6p_outputopts
->ip6po_rthdr
) {
4278 /* dest1 is valid with rthdr only */
4279 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest1
);
4281 len
+= elen(in6p
->in6p_outputopts
->ip6po_rthdr
);
4282 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest2
);
4288 sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS
4290 #pragma unused(arg1, arg2)
4293 i
= ip6_output_measure
;
4294 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
4295 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
4299 if (i
< 0 || i
> 1) {
4303 if (ip6_output_measure
!= i
&& i
== 1) {
4304 net_perf_initialize(&net_perf
, ip6_output_measure_bins
);
4306 ip6_output_measure
= i
;
4312 sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS
4314 #pragma unused(arg1, arg2)
4318 i
= ip6_output_measure_bins
;
4319 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
4320 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
4324 if (!net_perf_validate_bins(i
)) {
4328 ip6_output_measure_bins
= i
;
4334 sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS
4336 #pragma unused(oidp, arg1, arg2)
4337 if (req
->oldptr
== USER_ADDR_NULL
) {
4338 req
->oldlen
= (size_t)sizeof(struct ipstat
);
4341 return SYSCTL_OUT(req
, &net_perf
, MIN(sizeof(net_perf
), req
->oldlen
));