]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/in6_src.c
xnu-6153.81.5.tar.gz
[apple/xnu.git] / bsd / netinet6 / in6_src.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Copyright (c) 1982, 1986, 1991, 1993
60 * The Regents of the University of California. All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
91 */
92
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/malloc.h>
97 #include <sys/mbuf.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/proc.h>
104 #include <sys/sysctl.h>
105 #include <sys/kauth.h>
106 #include <sys/priv.h>
107 #include <kern/locks.h>
108
109 #include <net/if.h>
110 #include <net/if_types.h>
111 #include <net/route.h>
112 #include <net/restricted_in_port.h>
113
114 #include <netinet/in.h>
115 #include <netinet/in_var.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #include <netinet/in_pcb.h>
119
120 #include <netinet6/in6_var.h>
121 #include <netinet/ip6.h>
122 #include <netinet6/in6_pcb.h>
123 #include <netinet6/ip6_var.h>
124 #include <netinet6/scope6_var.h>
125 #include <netinet6/nd6.h>
126
127 #include <net/net_osdep.h>
128
129 #include "loop.h"
130
131 SYSCTL_DECL(_net_inet6_ip6);
132
133 static int ip6_select_srcif_debug = 0;
134 SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcif_debug,
135 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcif_debug, 0,
136 "log source interface selection debug info");
137
138 static int ip6_select_srcaddr_debug = 0;
139 SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcaddr_debug,
140 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcaddr_debug, 0,
141 "log source address selection debug info");
142
143 static int ip6_select_src_expensive_secondary_if = 0;
144 SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_src_expensive_secondary_if,
145 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_src_expensive_secondary_if, 0,
146 "allow source interface selection to use expensive secondaries");
147
148 static int ip6_select_src_strong_end = 1;
149 SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_src_strong_end,
150 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_src_strong_end, 0,
151 "limit source address selection to outgoing interface");
152
153 #define ADDR_LABEL_NOTAPP (-1)
154 struct in6_addrpolicy defaultaddrpolicy;
155
156 int ip6_prefer_tempaddr = 1;
157 #ifdef ENABLE_ADDRSEL
158 extern lck_mtx_t *addrsel_mutex;
159 #define ADDRSEL_LOCK() lck_mtx_lock(addrsel_mutex)
160 #define ADDRSEL_UNLOCK() lck_mtx_unlock(addrsel_mutex)
161 #else
162 #define ADDRSEL_LOCK()
163 #define ADDRSEL_UNLOCK()
164 #endif
165
166 static int selectroute(struct sockaddr_in6 *, struct sockaddr_in6 *,
167 struct ip6_pktopts *, struct ip6_moptions *, struct in6_ifaddr **,
168 struct route_in6 *, struct ifnet **, struct rtentry **, int, int,
169 struct ip6_out_args *ip6oa);
170 static int in6_selectif(struct sockaddr_in6 *, struct ip6_pktopts *,
171 struct ip6_moptions *, struct route_in6 *ro,
172 struct ip6_out_args *, struct ifnet **);
173 static void init_policy_queue(void);
174 static int add_addrsel_policyent(const struct in6_addrpolicy *);
175 #ifdef ENABLE_ADDRSEL
176 static int delete_addrsel_policyent(const struct in6_addrpolicy *);
177 #endif
178 static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy *, void *),
179 void *);
180 static int dump_addrsel_policyent(const struct in6_addrpolicy *, void *);
181 static struct in6_addrpolicy *match_addrsel_policy(struct sockaddr_in6 *);
182 void addrsel_policy_init(void);
183
184 #define SASEL_DO_DBG(inp) \
185 (ip6_select_srcaddr_debug && (inp) != NULL && \
186 (inp)->inp_socket != NULL && \
187 ((inp)->inp_socket->so_options & SO_DEBUG))
188
189 #define SASEL_LOG(fmt, ...) \
190 do { \
191 if (srcsel_debug) \
192 printf("%s:%d " fmt "\n",\
193 __FUNCTION__, __LINE__, ##__VA_ARGS__); \
194 } while (0); \
195
196 /*
197 * Return an IPv6 address, which is the most appropriate for a given
198 * destination and user specified options.
199 * If necessary, this function lookups the routing table and returns
200 * an entry to the caller for later use.
201 */
202 #define REPLACE(r) do {\
203 SASEL_LOG("REPLACE r %d ia %s ifp1 %s\n", \
204 (r), s_src, ifp1->if_xname); \
205 srcrule = (r); \
206 goto replace; \
207 } while (0)
208
209 #define NEXTSRC(r) do {\
210 SASEL_LOG("NEXTSRC r %d ia %s ifp1 %s\n", \
211 (r), s_src, ifp1->if_xname); \
212 goto next; /* XXX: we can't use 'continue' here */ \
213 } while (0)
214
215 #define BREAK(r) do { \
216 SASEL_LOG("BREAK r %d ia %s ifp1 %s\n", \
217 (r), s_src, ifp1->if_xname); \
218 srcrule = (r); \
219 goto out; /* XXX: we can't use 'break' here */ \
220 } while (0)
221
222
223 struct ifaddr *
224 in6_selectsrc_core_ifa(struct sockaddr_in6 *addr, struct ifnet *ifp, int srcsel_debug)
225 {
226 int err = 0;
227 struct ifnet *src_ifp = NULL;
228 struct in6_addr src_storage = {};
229 struct in6_addr *in6 = NULL;
230 struct ifaddr *ifa = NULL;
231
232 if ((in6 = in6_selectsrc_core(addr,
233 (ip6_prefer_tempaddr ? IPV6_SRCSEL_HINT_PREFER_TMPADDR : 0),
234 ifp, 0, &src_storage, &src_ifp, &err, &ifa)) == NULL) {
235 if (err == 0) {
236 err = EADDRNOTAVAIL;
237 }
238 VERIFY(src_ifp == NULL);
239 if (ifa != NULL) {
240 IFA_REMREF(ifa);
241 ifa = NULL;
242 }
243 goto done;
244 }
245
246 if (src_ifp != ifp) {
247 if (err == 0) {
248 err = ENETUNREACH;
249 }
250 if (ifa != NULL) {
251 IFA_REMREF(ifa);
252 ifa = NULL;
253 }
254 goto done;
255 }
256
257 VERIFY(ifa != NULL);
258 ifnet_lock_shared(ifp);
259 if ((ifa->ifa_debug & IFD_DETACHING) != 0) {
260 err = EHOSTUNREACH;
261 ifnet_lock_done(ifp);
262 IFA_REMREF(ifa);
263 ifa = NULL;
264 goto done;
265 }
266 ifnet_lock_done(ifp);
267
268 done:
269 SASEL_LOG("Returned with error: %d", err);
270 if (src_ifp != NULL) {
271 ifnet_release(src_ifp);
272 }
273 return ifa;
274 }
275
276 struct in6_addr *
277 in6_selectsrc_core(struct sockaddr_in6 *dstsock, uint32_t hint_mask,
278 struct ifnet *ifp, int srcsel_debug, struct in6_addr *src_storage,
279 struct ifnet **sifp, int *errorp, struct ifaddr **ifapp)
280 {
281 u_int32_t odstzone;
282 int bestrule = IP6S_SRCRULE_0;
283 struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL;
284 struct in6_addr dst;
285 struct in6_ifaddr *ia = NULL, *ia_best = NULL;
286 char s_src[MAX_IPv6_STR_LEN] = {0};
287 char s_dst[MAX_IPv6_STR_LEN] = {0};
288 const struct in6_addr *tmp = NULL;
289 int dst_scope = -1, best_scope = -1, best_matchlen = -1;
290 uint64_t secs = net_uptime();
291 VERIFY(dstsock != NULL);
292 VERIFY(src_storage != NULL);
293 VERIFY(ifp != NULL);
294
295 if (sifp != NULL) {
296 *sifp = NULL;
297 }
298
299 if (ifapp != NULL) {
300 *ifapp = NULL;
301 }
302
303 dst = dstsock->sin6_addr; /* make a copy for local operation */
304
305 if (srcsel_debug) {
306 (void) inet_ntop(AF_INET6, &dst, s_dst, sizeof(s_src));
307
308 tmp = &in6addr_any;
309 (void) inet_ntop(AF_INET6, tmp, s_src, sizeof(s_src));
310 printf("%s out src %s dst %s ifp %s\n",
311 __func__, s_src, s_dst, ifp->if_xname);
312 }
313
314 *errorp = in6_setscope(&dst, ifp, &odstzone);
315 if (*errorp != 0) {
316 src_storage = NULL;
317 goto done;
318 }
319
320 lck_rw_lock_shared(&in6_ifaddr_rwlock);
321 for (ia = in6_ifaddrs; ia; ia = ia->ia_next) {
322 int new_scope = -1, new_matchlen = -1;
323 struct in6_addrpolicy *new_policy = NULL;
324 u_int32_t srczone = 0, osrczone, dstzone;
325 struct in6_addr src;
326 struct ifnet *ifp1 = ia->ia_ifp;
327 int srcrule;
328
329 if (srcsel_debug) {
330 (void) inet_ntop(AF_INET6, &ia->ia_addr.sin6_addr,
331 s_src, sizeof(s_src));
332 }
333
334 IFA_LOCK(&ia->ia_ifa);
335
336 /*
337 * Simply skip addresses reserved for CLAT46
338 */
339 if (ia->ia6_flags & IN6_IFF_CLAT46) {
340 SASEL_LOG("NEXT ia %s address on ifp1 %s skipped as it is "
341 "reserved for CLAT46", s_src, ifp1->if_xname);
342 goto next;
343 }
344
345 /*
346 * XXX By default we are strong end system and will
347 * limit candidate set of source address to the ones
348 * configured on the outgoing interface.
349 */
350 if (ip6_select_src_strong_end &&
351 ifp1 != ifp) {
352 SASEL_LOG("NEXT ia %s ifp1 %s address is not on outgoing "
353 "interface \n", s_src, ifp1->if_xname);
354 goto next;
355 }
356
357 /*
358 * We'll never take an address that breaks the scope zone
359 * of the destination. We also skip an address if its zone
360 * does not contain the outgoing interface.
361 * XXX: we should probably use sin6_scope_id here.
362 */
363 if (in6_setscope(&dst, ifp1, &dstzone) ||
364 odstzone != dstzone) {
365 SASEL_LOG("NEXT ia %s ifp1 %s odstzone %d != dstzone %d\n",
366 s_src, ifp1->if_xname, odstzone, dstzone);
367 goto next;
368 }
369 src = ia->ia_addr.sin6_addr;
370 if (in6_setscope(&src, ifp, &osrczone) ||
371 in6_setscope(&src, ifp1, &srczone) ||
372 osrczone != srczone) {
373 SASEL_LOG("NEXT ia %s ifp1 %s osrczone %d != srczone %d\n",
374 s_src, ifp1->if_xname, osrczone, srczone);
375 goto next;
376 }
377 /* avoid unusable addresses */
378 if ((ia->ia6_flags &
379 (IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED))) {
380 SASEL_LOG("NEXT ia %s ifp1 %s ia6_flags 0x%x\n",
381 s_src, ifp1->if_xname, ia->ia6_flags);
382 goto next;
383 }
384 if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia, secs)) {
385 SASEL_LOG("NEXT ia %s ifp1 %s IFA6_IS_DEPRECATED\n",
386 s_src, ifp1->if_xname);
387 goto next;
388 }
389 if (!nd6_optimistic_dad &&
390 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) {
391 SASEL_LOG("NEXT ia %s ifp1 %s IN6_IFF_OPTIMISTIC\n",
392 s_src, ifp1->if_xname);
393 goto next;
394 }
395 /* Rule 1: Prefer same address */
396 if (IN6_ARE_ADDR_EQUAL(&dst, &ia->ia_addr.sin6_addr)) {
397 BREAK(IP6S_SRCRULE_1); /* there should be no better candidate */
398 }
399 if (ia_best == NULL) {
400 REPLACE(IP6S_SRCRULE_0);
401 }
402
403 /* Rule 2: Prefer appropriate scope */
404 if (dst_scope < 0) {
405 dst_scope = in6_addrscope(&dst);
406 }
407 new_scope = in6_addrscope(&ia->ia_addr.sin6_addr);
408 if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) {
409 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0) {
410 REPLACE(IP6S_SRCRULE_2);
411 }
412 NEXTSRC(IP6S_SRCRULE_2);
413 } else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) {
414 if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0) {
415 NEXTSRC(IP6S_SRCRULE_2);
416 }
417 REPLACE(IP6S_SRCRULE_2);
418 }
419
420 /*
421 * Rule 3: Avoid deprecated addresses. Note that the case of
422 * !ip6_use_deprecated is already rejected above.
423 */
424 if (!IFA6_IS_DEPRECATED(ia_best, secs) &&
425 IFA6_IS_DEPRECATED(ia, secs)) {
426 NEXTSRC(IP6S_SRCRULE_3);
427 }
428 if (IFA6_IS_DEPRECATED(ia_best, secs) &&
429 !IFA6_IS_DEPRECATED(ia, secs)) {
430 REPLACE(IP6S_SRCRULE_3);
431 }
432
433 /*
434 * RFC 4429 says that optimistic addresses are equivalent to
435 * deprecated addresses, so avoid them here.
436 */
437 if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) == 0 &&
438 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) {
439 NEXTSRC(IP6S_SRCRULE_3);
440 }
441 if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) != 0 &&
442 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0) {
443 REPLACE(IP6S_SRCRULE_3);
444 }
445
446 /* Rule 4: Prefer home addresses */
447 /*
448 * XXX: This is a TODO. We should probably merge the MIP6
449 * case above.
450 */
451
452 /* Rule 5: Prefer outgoing interface */
453 /*
454 * XXX By default we are strong end with source address
455 * selection. That means all address selection candidate
456 * addresses will be the ones hosted on the outgoing interface
457 * making the following check redundant.
458 */
459 if (ip6_select_src_strong_end == 0) {
460 if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp) {
461 NEXTSRC(IP6S_SRCRULE_5);
462 }
463 if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp) {
464 REPLACE(IP6S_SRCRULE_5);
465 }
466 }
467
468 /*
469 * Rule 6: Prefer matching label
470 * Note that best_policy should be non-NULL here.
471 */
472 if (dst_policy == NULL) {
473 dst_policy = in6_addrsel_lookup_policy(dstsock);
474 }
475 if (dst_policy->label != ADDR_LABEL_NOTAPP) {
476 new_policy = in6_addrsel_lookup_policy(&ia->ia_addr);
477 if (dst_policy->label == best_policy->label &&
478 dst_policy->label != new_policy->label) {
479 NEXTSRC(IP6S_SRCRULE_6);
480 }
481 if (dst_policy->label != best_policy->label &&
482 dst_policy->label == new_policy->label) {
483 REPLACE(IP6S_SRCRULE_6);
484 }
485 }
486
487 /*
488 * Rule 7: Prefer temporary addresses.
489 * We allow users to reverse the logic by configuring
490 * a sysctl variable, so that transparency conscious users can
491 * always prefer stable addresses.
492 */
493 if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
494 (ia->ia6_flags & IN6_IFF_TEMPORARY)) {
495 if (hint_mask & IPV6_SRCSEL_HINT_PREFER_TMPADDR) {
496 REPLACE(IP6S_SRCRULE_7);
497 } else {
498 NEXTSRC(IP6S_SRCRULE_7);
499 }
500 }
501 if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
502 !(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
503 if (hint_mask & IPV6_SRCSEL_HINT_PREFER_TMPADDR) {
504 NEXTSRC(IP6S_SRCRULE_7);
505 } else {
506 REPLACE(IP6S_SRCRULE_7);
507 }
508 }
509
510 /*
511 * Rule 7x: prefer addresses on alive interfaces.
512 * This is a KAME specific rule.
513 */
514 if ((ia_best->ia_ifp->if_flags & IFF_UP) &&
515 !(ia->ia_ifp->if_flags & IFF_UP)) {
516 NEXTSRC(IP6S_SRCRULE_7x);
517 }
518 if (!(ia_best->ia_ifp->if_flags & IFF_UP) &&
519 (ia->ia_ifp->if_flags & IFF_UP)) {
520 REPLACE(IP6S_SRCRULE_7x);
521 }
522
523 /*
524 * Rule 8: Use longest matching prefix.
525 */
526 new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst);
527 if (best_matchlen < new_matchlen) {
528 REPLACE(IP6S_SRCRULE_8);
529 }
530 if (new_matchlen < best_matchlen) {
531 NEXTSRC(IP6S_SRCRULE_8);
532 }
533
534 /*
535 * Last resort: just keep the current candidate.
536 * Or, do we need more rules?
537 */
538 if (ifp1 != ifp && (ifp1->if_eflags & IFEF_EXPENSIVE) &&
539 ip6_select_src_expensive_secondary_if == 0) {
540 SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
541 s_src, ifp1->if_xname);
542 ip6stat.ip6s_sources_skip_expensive_secondary_if++;
543 goto next;
544 }
545 SASEL_LOG("NEXT ia %s ifp1 %s last resort\n",
546 s_src, ifp1->if_xname);
547 IFA_UNLOCK(&ia->ia_ifa);
548 continue;
549
550 replace:
551 /*
552 * Ignore addresses on secondary interfaces that are marked
553 * expensive
554 */
555 if (ifp1 != ifp && (ifp1->if_eflags & IFEF_EXPENSIVE) &&
556 ip6_select_src_expensive_secondary_if == 0) {
557 SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
558 s_src, ifp1->if_xname);
559 ip6stat.ip6s_sources_skip_expensive_secondary_if++;
560 goto next;
561 }
562 bestrule = srcrule;
563 best_scope = (new_scope >= 0 ? new_scope :
564 in6_addrscope(&ia->ia_addr.sin6_addr));
565 best_policy = (new_policy ? new_policy :
566 in6_addrsel_lookup_policy(&ia->ia_addr));
567 best_matchlen = (new_matchlen >= 0 ? new_matchlen :
568 in6_matchlen(&ia->ia_addr.sin6_addr, &dst));
569 SASEL_LOG("NEXT ia %s ifp1 %s best_scope %d new_scope %d dst_scope %d\n",
570 s_src, ifp1->if_xname, best_scope, new_scope, dst_scope);
571 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for ia_best */
572 IFA_UNLOCK(&ia->ia_ifa);
573 if (ia_best != NULL) {
574 IFA_REMREF(&ia_best->ia_ifa);
575 }
576 ia_best = ia;
577 continue;
578
579 next:
580 IFA_UNLOCK(&ia->ia_ifa);
581 continue;
582
583 out:
584 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for ia_best */
585 IFA_UNLOCK(&ia->ia_ifa);
586 if (ia_best != NULL) {
587 IFA_REMREF(&ia_best->ia_ifa);
588 }
589 ia_best = ia;
590 break;
591 }
592
593 lck_rw_done(&in6_ifaddr_rwlock);
594
595 if ((ia = ia_best) == NULL) {
596 if (*errorp == 0) {
597 *errorp = EADDRNOTAVAIL;
598 }
599 src_storage = NULL;
600 goto done;
601 }
602
603 if (sifp != NULL) {
604 *sifp = ia->ia_ifa.ifa_ifp;
605 ifnet_reference(*sifp);
606 }
607
608 IFA_LOCK_SPIN(&ia->ia_ifa);
609 if (bestrule < IP6S_SRCRULE_COUNT) {
610 ip6stat.ip6s_sources_rule[bestrule]++;
611 }
612 *src_storage = satosin6(&ia->ia_addr)->sin6_addr;
613 IFA_UNLOCK(&ia->ia_ifa);
614
615 if (ifapp != NULL) {
616 *ifapp = &ia->ia_ifa;
617 } else {
618 IFA_REMREF(&ia->ia_ifa);
619 }
620
621 done:
622 if (srcsel_debug) {
623 (void) inet_ntop(AF_INET6, &dst, s_dst, sizeof(s_src));
624
625 tmp = (src_storage != NULL) ? src_storage : &in6addr_any;
626 (void) inet_ntop(AF_INET6, tmp, s_src, sizeof(s_src));
627
628 printf("%s out src %s dst %s dst_scope %d best_scope %d\n",
629 __func__, s_src, s_dst, dst_scope, best_scope);
630 }
631
632 return src_storage;
633 }
634
635 /*
636 * Regardless of error, it will return an ifp with a reference held if the
637 * caller provides a non-NULL ifpp. The caller is responsible for checking
638 * if the returned ifp is valid and release its reference at all times.
639 */
640 struct in6_addr *
641 in6_selectsrc(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts,
642 struct inpcb *inp, struct route_in6 *ro,
643 struct ifnet **ifpp, struct in6_addr *src_storage, unsigned int ifscope,
644 int *errorp)
645 {
646 struct ifnet *ifp = NULL;
647 struct in6_pktinfo *pi = NULL;
648 struct ip6_moptions *mopts;
649 struct ip6_out_args ip6oa;
650 boolean_t inp_debug = FALSE;
651 uint32_t hint_mask = 0;
652 int prefer_tempaddr = 0;
653 struct ifnet *sifp = NULL;
654
655 bzero(&ip6oa, sizeof(ip6oa));
656 ip6oa.ip6oa_boundif = ifscope;
657 ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF;
658 ip6oa.ip6oa_sotc = SO_TC_UNSPEC;
659 ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC;
660
661 *errorp = 0;
662 if (ifpp != NULL) {
663 *ifpp = NULL;
664 }
665
666 if (inp != NULL) {
667 inp_debug = SASEL_DO_DBG(inp);
668 mopts = inp->in6p_moptions;
669 if (INP_NO_CELLULAR(inp)) {
670 ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
671 }
672 if (INP_NO_EXPENSIVE(inp)) {
673 ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE;
674 }
675 if (INP_NO_CONSTRAINED(inp)) {
676 ip6oa.ip6oa_flags |= IP6OAF_NO_CONSTRAINED;
677 }
678 if (INP_AWDL_UNRESTRICTED(inp)) {
679 ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED;
680 }
681 if (INP_INTCOPROC_ALLOWED(inp)) {
682 ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED;
683 }
684 } else {
685 mopts = NULL;
686 /* Allow the kernel to retransmit packets. */
687 ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED |
688 IP6OAF_AWDL_UNRESTRICTED;
689 }
690
691 if (ip6oa.ip6oa_boundif != IFSCOPE_NONE) {
692 ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
693 }
694
695 /*
696 * If the source address is explicitly specified by the caller,
697 * check if the requested source address is indeed a unicast address
698 * assigned to the node, and can be used as the packet's source
699 * address. If everything is okay, use the address as source.
700 */
701 if (opts && (pi = opts->ip6po_pktinfo) &&
702 !IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) {
703 struct sockaddr_in6 srcsock;
704 struct in6_ifaddr *ia6;
705
706 /* get the outgoing interface */
707 if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa,
708 &ifp)) != 0) {
709 src_storage = NULL;
710 goto done;
711 }
712
713 /*
714 * determine the appropriate zone id of the source based on
715 * the zone of the destination and the outgoing interface.
716 * If the specified address is ambiguous wrt the scope zone,
717 * the interface must be specified; otherwise, ifa_ifwithaddr()
718 * will fail matching the address.
719 */
720 bzero(&srcsock, sizeof(srcsock));
721 srcsock.sin6_family = AF_INET6;
722 srcsock.sin6_len = sizeof(srcsock);
723 srcsock.sin6_addr = pi->ipi6_addr;
724 if (ifp != NULL) {
725 *errorp = in6_setscope(&srcsock.sin6_addr, ifp, NULL);
726 if (*errorp != 0) {
727 src_storage = NULL;
728 goto done;
729 }
730 }
731 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr((struct sockaddr *)
732 (&srcsock));
733 if (ia6 == NULL) {
734 *errorp = EADDRNOTAVAIL;
735 src_storage = NULL;
736 goto done;
737 }
738 IFA_LOCK_SPIN(&ia6->ia_ifa);
739 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY | IN6_IFF_CLAT46)) ||
740 (inp && inp_restricted_send(inp, ia6->ia_ifa.ifa_ifp))) {
741 IFA_UNLOCK(&ia6->ia_ifa);
742 IFA_REMREF(&ia6->ia_ifa);
743 *errorp = EHOSTUNREACH;
744 src_storage = NULL;
745 goto done;
746 }
747
748 *src_storage = satosin6(&ia6->ia_addr)->sin6_addr;
749 IFA_UNLOCK(&ia6->ia_ifa);
750 IFA_REMREF(&ia6->ia_ifa);
751 goto done;
752 }
753
754 /*
755 * Otherwise, if the socket has already bound the source, just use it.
756 */
757 if (inp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
758 src_storage = &inp->in6p_laddr;
759 goto done;
760 }
761
762 /*
763 * If the address is not specified, choose the best one based on
764 * the outgoing interface and the destination address.
765 */
766 /* get the outgoing interface */
767 if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa,
768 &ifp)) != 0) {
769 src_storage = NULL;
770 goto done;
771 }
772
773 VERIFY(ifp != NULL);
774
775 if (opts == NULL ||
776 opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) {
777 prefer_tempaddr = ip6_prefer_tempaddr;
778 } else if (opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_NOTPREFER) {
779 prefer_tempaddr = 0;
780 } else {
781 prefer_tempaddr = 1;
782 }
783
784 if (prefer_tempaddr) {
785 hint_mask |= IPV6_SRCSEL_HINT_PREFER_TMPADDR;
786 }
787
788 if (in6_selectsrc_core(dstsock, hint_mask, ifp, inp_debug, src_storage,
789 &sifp, errorp, NULL) == NULL) {
790 src_storage = NULL;
791 goto done;
792 }
793
794 VERIFY(sifp != NULL);
795
796 if (inp && inp_restricted_send(inp, sifp)) {
797 src_storage = NULL;
798 *errorp = EHOSTUNREACH;
799 ifnet_release(sifp);
800 goto done;
801 } else {
802 ifnet_release(sifp);
803 }
804
805 done:
806 if (ifpp != NULL) {
807 /* if ifp is non-NULL, refcnt held in in6_selectif() */
808 *ifpp = ifp;
809 } else if (ifp != NULL) {
810 ifnet_release(ifp);
811 }
812 return src_storage;
813 }
814
815 /*
816 * Given a source IPv6 address (and route, if available), determine the best
817 * interface to send the packet from. Checking for (and updating) the
818 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
819 * without any locks, based on the assumption that in the event this is
820 * called from ip6_output(), the output operation is single-threaded per-pcb,
821 * i.e. for any given pcb there can only be one thread performing output at
822 * the IPv6 layer.
823 *
824 * This routine is analogous to in_selectsrcif() for IPv4. Regardless of
825 * error, it will return an ifp with a reference held if the caller provides
826 * a non-NULL retifp. The caller is responsible for checking if the
827 * returned ifp is valid and release its reference at all times.
828 *
829 * clone - meaningful only for bsdi and freebsd
830 */
831 static int
832 selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock,
833 struct ip6_pktopts *opts, struct ip6_moptions *mopts,
834 struct in6_ifaddr **retsrcia, struct route_in6 *ro,
835 struct ifnet **retifp, struct rtentry **retrt, int clone,
836 int norouteok, struct ip6_out_args *ip6oa)
837 {
838 int error = 0;
839 struct ifnet *ifp = NULL, *ifp0 = NULL;
840 struct route_in6 *route = NULL;
841 struct sockaddr_in6 *sin6_next;
842 struct in6_pktinfo *pi = NULL;
843 struct in6_addr *dst = &dstsock->sin6_addr;
844 struct ifaddr *ifa = NULL;
845 char s_src[MAX_IPv6_STR_LEN], s_dst[MAX_IPv6_STR_LEN];
846 boolean_t select_srcif, proxied_ifa = FALSE, local_dst = FALSE;
847 unsigned int ifscope = ((ip6oa != NULL) ?
848 ip6oa->ip6oa_boundif : IFSCOPE_NONE);
849 boolean_t is_direct = FALSE;
850
851 if (retifp != NULL) {
852 *retifp = NULL;
853 }
854
855 if (retrt != NULL) {
856 *retrt = NULL;
857 }
858
859 if (ip6_select_srcif_debug) {
860 struct in6_addr src;
861 src = (srcsock != NULL) ? srcsock->sin6_addr : in6addr_any;
862 (void) inet_ntop(AF_INET6, &src, s_src, sizeof(s_src));
863 (void) inet_ntop(AF_INET6, dst, s_dst, sizeof(s_dst));
864 }
865
866 /*
867 * If the destination address is UNSPECIFIED addr, bail out.
868 */
869 if (IN6_IS_ADDR_UNSPECIFIED(dst)) {
870 error = EHOSTUNREACH;
871 goto done;
872 }
873
874 /*
875 * Perform source interface selection if Scoped Routing
876 * is enabled and a source address that isn't unspecified.
877 */
878 select_srcif = (srcsock != NULL &&
879 !IN6_IS_ADDR_UNSPECIFIED(&srcsock->sin6_addr));
880
881 /*
882 * For scoped routing, if interface scope is 0 or src/dst addr is linklocal
883 * or dst addr is multicast, source interface selection should be performed even
884 * if the destination is directly reachable.
885 */
886 if (ifscope != IFSCOPE_NONE &&
887 !(srcsock != NULL && IN6_IS_ADDR_LINKLOCAL(&srcsock->sin6_addr)) &&
888 !IN6_IS_ADDR_MULTICAST(dst) && !IN6_IS_ADDR_LINKLOCAL(dst)) {
889 struct rtentry *temp_rt = NULL;
890
891 lck_mtx_lock(rnh_lock);
892 temp_rt = rt_lookup(TRUE, (struct sockaddr *)dstsock,
893 NULL, rt_tables[AF_INET6], ifscope);
894 lck_mtx_unlock(rnh_lock);
895
896 /*
897 * If the destination is directly reachable, relax
898 * the behavior around select_srcif, i.e. don't force
899 * the packet to go out from the interface that is hosting
900 * the source address.
901 * It happens when we share v6 with NAT66 and want
902 * the external interface's v6 address to be reachable
903 * to the clients we are sharing v6 connectivity with
904 * using NAT.
905 */
906 if (temp_rt != NULL) {
907 if ((temp_rt->rt_flags & RTF_GATEWAY) == 0) {
908 select_srcif = FALSE;
909 is_direct = TRUE;
910 }
911 rtfree(temp_rt);
912 }
913 }
914
915 if (ip6_select_srcif_debug) {
916 printf("%s src %s dst %s ifscope %d is_direct %d select_srcif %d\n",
917 __func__, s_src, s_dst, ifscope, is_direct, select_srcif);
918 }
919
920 /* If the caller specified the outgoing interface explicitly, use it */
921 if (opts != NULL && (pi = opts->ip6po_pktinfo) != NULL &&
922 pi->ipi6_ifindex != 0) {
923 /*
924 * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF.
925 */
926 ifscope = pi->ipi6_ifindex;
927 ifnet_head_lock_shared();
928 /* ifp may be NULL if detached or out of range */
929 ifp = ifp0 =
930 ((ifscope <= if_index) ? ifindex2ifnet[ifscope] : NULL);
931 ifnet_head_done();
932 if (norouteok || retrt == NULL || IN6_IS_ADDR_MULTICAST(dst)) {
933 /*
934 * We do not have to check or get the route for
935 * multicast. If the caller didn't ask/care for
936 * the route and we have no interface to use,
937 * it's an error.
938 */
939 if (ifp == NULL) {
940 error = EHOSTUNREACH;
941 }
942 goto done;
943 } else {
944 goto getsrcif;
945 }
946 }
947
948 /*
949 * If the destination address is a multicast address and the outgoing
950 * interface for the address is specified by the caller, use it.
951 */
952 if (IN6_IS_ADDR_MULTICAST(dst) && mopts != NULL) {
953 IM6O_LOCK(mopts);
954 if ((ifp = ifp0 = mopts->im6o_multicast_ifp) != NULL) {
955 IM6O_UNLOCK(mopts);
956 goto done; /* we do not need a route for multicast. */
957 }
958 IM6O_UNLOCK(mopts);
959 }
960
961 getsrcif:
962 /*
963 * If the outgoing interface was not set via IPV6_BOUND_IF or
964 * IPV6_PKTINFO, use the scope ID in the destination address.
965 */
966 if (ifscope == IFSCOPE_NONE) {
967 ifscope = dstsock->sin6_scope_id;
968 }
969
970 /*
971 * Perform source interface selection; the source IPv6 address
972 * must belong to one of the addresses of the interface used
973 * by the route. For performance reasons, do this only if
974 * there is no route, or if the routing table has changed,
975 * or if we haven't done source interface selection on this
976 * route (for this PCB instance) before.
977 */
978 if (!select_srcif) {
979 goto getroute;
980 } else if (!ROUTE_UNUSABLE(ro) && ro->ro_srcia != NULL &&
981 (ro->ro_flags & ROF_SRCIF_SELECTED)) {
982 if (ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) {
983 local_dst = TRUE;
984 }
985 ifa = ro->ro_srcia;
986 IFA_ADDREF(ifa); /* for caller */
987 goto getroute;
988 }
989
990 /*
991 * Given the source IPv6 address, find a suitable source interface
992 * to use for transmission; if a scope ID has been specified,
993 * optimize the search by looking at the addresses only for that
994 * interface. This is still suboptimal, however, as we need to
995 * traverse the per-interface list.
996 */
997 if (ifscope != IFSCOPE_NONE || (ro != NULL && ro->ro_rt != NULL)) {
998 unsigned int scope = ifscope;
999 struct ifnet *rt_ifp;
1000
1001 rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL;
1002
1003 /*
1004 * If no scope is specified and the route is stale (pointing
1005 * to a defunct interface) use the current primary interface;
1006 * this happens when switching between interfaces configured
1007 * with the same IPv6 address. Otherwise pick up the scope
1008 * information from the route; the ULP may have looked up a
1009 * correct route and we just need to verify it here and mark
1010 * it with the ROF_SRCIF_SELECTED flag below.
1011 */
1012 if (scope == IFSCOPE_NONE) {
1013 scope = rt_ifp->if_index;
1014 if (scope != get_primary_ifscope(AF_INET6) &&
1015 ROUTE_UNUSABLE(ro)) {
1016 scope = get_primary_ifscope(AF_INET6);
1017 }
1018 }
1019
1020 ifa = (struct ifaddr *)
1021 ifa_foraddr6_scoped(&srcsock->sin6_addr, scope);
1022
1023 /*
1024 * If we are forwarding and proxying prefix(es), see if the
1025 * source address is one of ours and is a proxied address;
1026 * if so, use it.
1027 */
1028 if (ifa == NULL && ip6_forwarding && nd6_prproxy) {
1029 ifa = (struct ifaddr *)
1030 ifa_foraddr6(&srcsock->sin6_addr);
1031 if (ifa != NULL && !(proxied_ifa =
1032 nd6_prproxy_ifaddr((struct in6_ifaddr *)ifa))) {
1033 IFA_REMREF(ifa);
1034 ifa = NULL;
1035 }
1036 }
1037
1038 if (ip6_select_srcif_debug && ifa != NULL) {
1039 if (ro->ro_rt != NULL) {
1040 printf("%s %s->%s ifscope %d->%d ifa_if %s "
1041 "ro_if %s\n",
1042 __func__,
1043 s_src, s_dst, ifscope,
1044 scope, if_name(ifa->ifa_ifp),
1045 if_name(rt_ifp));
1046 } else {
1047 printf("%s %s->%s ifscope %d->%d ifa_if %s\n",
1048 __func__,
1049 s_src, s_dst, ifscope, scope,
1050 if_name(ifa->ifa_ifp));
1051 }
1052 }
1053 }
1054
1055 /*
1056 * Slow path; search for an interface having the corresponding source
1057 * IPv6 address if the scope was not specified by the caller, and:
1058 *
1059 * 1) There currently isn't any route, or,
1060 * 2) The interface used by the route does not own that source
1061 * IPv6 address; in this case, the route will get blown away
1062 * and we'll do a more specific scoped search using the newly
1063 * found interface.
1064 */
1065 if (ifa == NULL && ifscope == IFSCOPE_NONE) {
1066 struct ifaddr *ifadst;
1067
1068 /* Check if the destination address is one of ours */
1069 ifadst = (struct ifaddr *)ifa_foraddr6(&dstsock->sin6_addr);
1070 if (ifadst != NULL) {
1071 local_dst = TRUE;
1072 IFA_REMREF(ifadst);
1073 }
1074
1075 ifa = (struct ifaddr *)ifa_foraddr6(&srcsock->sin6_addr);
1076
1077 if (ip6_select_srcif_debug && ifa != NULL) {
1078 printf("%s %s->%s ifscope %d ifa_if %s\n",
1079 __func__,
1080 s_src, s_dst, ifscope, if_name(ifa->ifa_ifp));
1081 } else if (ip6_select_srcif_debug) {
1082 printf("%s %s->%s ifscope %d ifa_if NULL\n",
1083 __func__,
1084 s_src, s_dst, ifscope);
1085 }
1086 }
1087
1088 getroute:
1089 if (ifa != NULL && !proxied_ifa && !local_dst) {
1090 ifscope = ifa->ifa_ifp->if_index;
1091 }
1092
1093 /*
1094 * If the next hop address for the packet is specified by the caller,
1095 * use it as the gateway.
1096 */
1097 if (opts != NULL && opts->ip6po_nexthop != NULL) {
1098 struct route_in6 *ron;
1099
1100 sin6_next = satosin6(opts->ip6po_nexthop);
1101
1102 /* at this moment, we only support AF_INET6 next hops */
1103 if (sin6_next->sin6_family != AF_INET6) {
1104 error = EAFNOSUPPORT; /* or should we proceed? */
1105 goto done;
1106 }
1107
1108 /*
1109 * If the next hop is an IPv6 address, then the node identified
1110 * by that address must be a neighbor of the sending host.
1111 */
1112 ron = &opts->ip6po_nextroute;
1113 if (ron->ro_rt != NULL) {
1114 RT_LOCK(ron->ro_rt);
1115 }
1116 if (ROUTE_UNUSABLE(ron) || (ron->ro_rt != NULL &&
1117 (!(ron->ro_rt->rt_flags & RTF_LLINFO) ||
1118 (select_srcif && (ifa == NULL ||
1119 (ifa->ifa_ifp != ron->ro_rt->rt_ifp && !proxied_ifa))))) ||
1120 !IN6_ARE_ADDR_EQUAL(&satosin6(&ron->ro_dst)->sin6_addr,
1121 &sin6_next->sin6_addr)) {
1122 if (ron->ro_rt != NULL) {
1123 RT_UNLOCK(ron->ro_rt);
1124 }
1125
1126 ROUTE_RELEASE(ron);
1127 *satosin6(&ron->ro_dst) = *sin6_next;
1128 }
1129 if (ron->ro_rt == NULL) {
1130 rtalloc_scoped((struct route *)ron, ifscope);
1131 if (ron->ro_rt != NULL) {
1132 RT_LOCK(ron->ro_rt);
1133 }
1134 if (ROUTE_UNUSABLE(ron) ||
1135 !(ron->ro_rt->rt_flags & RTF_LLINFO) ||
1136 !IN6_ARE_ADDR_EQUAL(&satosin6(rt_key(ron->ro_rt))->
1137 sin6_addr, &sin6_next->sin6_addr)) {
1138 if (ron->ro_rt != NULL) {
1139 RT_UNLOCK(ron->ro_rt);
1140 }
1141
1142 ROUTE_RELEASE(ron);
1143 error = EHOSTUNREACH;
1144 goto done;
1145 }
1146 }
1147 route = ron;
1148 ifp = ifp0 = ron->ro_rt->rt_ifp;
1149
1150 /*
1151 * When cloning is required, try to allocate a route to the
1152 * destination so that the caller can store path MTU
1153 * information.
1154 */
1155 if (!clone) {
1156 if (select_srcif) {
1157 /* Keep the route locked */
1158 goto validateroute;
1159 }
1160 RT_UNLOCK(ron->ro_rt);
1161 goto done;
1162 }
1163 RT_UNLOCK(ron->ro_rt);
1164 }
1165
1166 /*
1167 * Use a cached route if it exists and is valid, else try to allocate
1168 * a new one. Note that we should check the address family of the
1169 * cached destination, in case of sharing the cache with IPv4.
1170 */
1171 if (ro == NULL) {
1172 goto done;
1173 }
1174 if (ro->ro_rt != NULL) {
1175 RT_LOCK_SPIN(ro->ro_rt);
1176 }
1177 if (ROUTE_UNUSABLE(ro) || (ro->ro_rt != NULL &&
1178 (satosin6(&ro->ro_dst)->sin6_family != AF_INET6 ||
1179 !IN6_ARE_ADDR_EQUAL(&satosin6(&ro->ro_dst)->sin6_addr, dst) ||
1180 (select_srcif && (ifa == NULL ||
1181 (ifa->ifa_ifp != ro->ro_rt->rt_ifp && !proxied_ifa)))))) {
1182 if (ro->ro_rt != NULL) {
1183 RT_UNLOCK(ro->ro_rt);
1184 }
1185
1186 ROUTE_RELEASE(ro);
1187 }
1188 if (ro->ro_rt == NULL) {
1189 struct sockaddr_in6 *sa6;
1190
1191 if (ro->ro_rt != NULL) {
1192 RT_UNLOCK(ro->ro_rt);
1193 }
1194 /* No route yet, so try to acquire one */
1195 bzero(&ro->ro_dst, sizeof(struct sockaddr_in6));
1196 sa6 = (struct sockaddr_in6 *)&ro->ro_dst;
1197 sa6->sin6_family = AF_INET6;
1198 sa6->sin6_len = sizeof(struct sockaddr_in6);
1199 sa6->sin6_addr = *dst;
1200 if (IN6_IS_ADDR_MULTICAST(dst)) {
1201 ro->ro_rt = rtalloc1_scoped(
1202 &((struct route *)ro)->ro_dst, 0, 0, ifscope);
1203 } else {
1204 rtalloc_scoped((struct route *)ro, ifscope);
1205 }
1206 if (ro->ro_rt != NULL) {
1207 RT_LOCK_SPIN(ro->ro_rt);
1208 }
1209 }
1210
1211 /*
1212 * Do not care about the result if we have the nexthop
1213 * explicitly specified (in case we're asked to clone.)
1214 */
1215 if (opts != NULL && opts->ip6po_nexthop != NULL) {
1216 if (ro->ro_rt != NULL) {
1217 RT_UNLOCK(ro->ro_rt);
1218 }
1219 goto done;
1220 }
1221
1222 if (ro->ro_rt != NULL) {
1223 RT_LOCK_ASSERT_HELD(ro->ro_rt);
1224 ifp = ifp0 = ro->ro_rt->rt_ifp;
1225 } else {
1226 error = EHOSTUNREACH;
1227 }
1228 route = ro;
1229
1230 validateroute:
1231 if (select_srcif) {
1232 boolean_t has_route = (route != NULL && route->ro_rt != NULL);
1233 boolean_t srcif_selected = FALSE;
1234
1235 if (has_route) {
1236 RT_LOCK_ASSERT_HELD(route->ro_rt);
1237 }
1238 /*
1239 * If there is a non-loopback route with the wrong interface,
1240 * or if there is no interface configured with such an address,
1241 * blow it away. Except for local/loopback, we look for one
1242 * with a matching interface scope/index.
1243 */
1244 if (has_route && (ifa == NULL ||
1245 (ifa->ifa_ifp != ifp && ifp != lo_ifp) ||
1246 !(route->ro_rt->rt_flags & RTF_UP))) {
1247 /*
1248 * If the destination address belongs to a proxied
1249 * prefix, relax the requirement and allow the packet
1250 * to come out of the proxy interface with the source
1251 * address of the real interface.
1252 */
1253 if (ifa != NULL && proxied_ifa &&
1254 (route->ro_rt->rt_flags & (RTF_UP | RTF_PROXY)) ==
1255 (RTF_UP | RTF_PROXY)) {
1256 srcif_selected = TRUE;
1257 } else {
1258 if (ip6_select_srcif_debug) {
1259 if (ifa != NULL) {
1260 printf("%s->%s ifscope %d "
1261 "ro_if %s != ifa_if %s "
1262 "(cached route cleared)\n",
1263 s_src, s_dst,
1264 ifscope, if_name(ifp),
1265 if_name(ifa->ifa_ifp));
1266 } else {
1267 printf("%s->%s ifscope %d "
1268 "ro_if %s (no ifa_if "
1269 "found)\n", s_src, s_dst,
1270 ifscope, if_name(ifp));
1271 }
1272 }
1273 RT_UNLOCK(route->ro_rt);
1274 ROUTE_RELEASE(route);
1275 error = EHOSTUNREACH;
1276 /* Undo the settings done above */
1277 route = NULL;
1278 ifp = NULL; /* ditch ifp; keep ifp0 */
1279 has_route = FALSE;
1280 }
1281 } else if (has_route) {
1282 srcif_selected = TRUE;
1283 }
1284
1285 if (srcif_selected) {
1286 VERIFY(has_route);
1287 if (ifa != route->ro_srcia ||
1288 !(route->ro_flags & ROF_SRCIF_SELECTED)) {
1289 RT_CONVERT_LOCK(route->ro_rt);
1290 if (ifa != NULL) {
1291 IFA_ADDREF(ifa); /* for route_in6 */
1292 }
1293 if (route->ro_srcia != NULL) {
1294 IFA_REMREF(route->ro_srcia);
1295 }
1296 route->ro_srcia = ifa;
1297 route->ro_flags |= ROF_SRCIF_SELECTED;
1298 RT_GENID_SYNC(route->ro_rt);
1299 }
1300 RT_UNLOCK(route->ro_rt);
1301 }
1302 } else {
1303 if (ro->ro_rt != NULL) {
1304 RT_UNLOCK(ro->ro_rt);
1305 }
1306 if (ifp != NULL && opts != NULL &&
1307 opts->ip6po_pktinfo != NULL &&
1308 opts->ip6po_pktinfo->ipi6_ifindex != 0) {
1309 /*
1310 * Check if the outgoing interface conflicts with the
1311 * interface specified by ipi6_ifindex (if specified).
1312 * Note that loopback interface is always okay.
1313 * (this may happen when we are sending a packet to
1314 * one of our own addresses.)
1315 */
1316 if (!(ifp->if_flags & IFF_LOOPBACK) && ifp->if_index !=
1317 opts->ip6po_pktinfo->ipi6_ifindex) {
1318 error = EHOSTUNREACH;
1319 goto done;
1320 }
1321 }
1322 }
1323
1324 done:
1325 /*
1326 * Check for interface restrictions.
1327 */
1328 #define CHECK_RESTRICTIONS(_ip6oa, _ifp) \
1329 ((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \
1330 IFNET_IS_CELLULAR(_ifp)) || \
1331 (((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \
1332 IFNET_IS_EXPENSIVE(_ifp)) || \
1333 (((_ip6oa)->ip6oa_flags & IP6OAF_NO_CONSTRAINED) && \
1334 IFNET_IS_CONSTRAINED(_ifp)) || \
1335 (!((_ip6oa)->ip6oa_flags & IP6OAF_INTCOPROC_ALLOWED) && \
1336 IFNET_IS_INTCOPROC(_ifp)) || \
1337 (!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \
1338 IFNET_IS_AWDL_RESTRICTED(_ifp)))
1339
1340 if (error == 0 && ip6oa != NULL &&
1341 ((ifp && CHECK_RESTRICTIONS(ip6oa, ifp)) ||
1342 (route && route->ro_rt &&
1343 CHECK_RESTRICTIONS(ip6oa, route->ro_rt->rt_ifp)))) {
1344 if (route != NULL && route->ro_rt != NULL) {
1345 ROUTE_RELEASE(route);
1346 route = NULL;
1347 }
1348 ifp = NULL; /* ditch ifp; keep ifp0 */
1349 error = EHOSTUNREACH;
1350 ip6oa->ip6oa_retflags |= IP6OARF_IFDENIED;
1351 }
1352 #undef CHECK_RESTRICTIONS
1353
1354 /*
1355 * If the interface is disabled for IPv6, then ENETDOWN error.
1356 */
1357 if (error == 0 &&
1358 ifp != NULL && (ifp->if_eflags & IFEF_IPV6_DISABLED)) {
1359 error = ENETDOWN;
1360 }
1361
1362 if (ifp == NULL && (route == NULL || route->ro_rt == NULL)) {
1363 /*
1364 * This can happen if the caller did not pass a cached route
1365 * nor any other hints. We treat this case an error.
1366 */
1367 error = EHOSTUNREACH;
1368 }
1369 if (error == EHOSTUNREACH || error == ENETDOWN) {
1370 ip6stat.ip6s_noroute++;
1371 }
1372
1373 /*
1374 * We'll return ifp regardless of error, so pick it up from ifp0
1375 * in case it was nullified above. Caller is responsible for
1376 * releasing the ifp if it is non-NULL.
1377 */
1378 ifp = ifp0;
1379 if (retifp != NULL) {
1380 if (ifp != NULL) {
1381 ifnet_reference(ifp); /* for caller */
1382 }
1383 *retifp = ifp;
1384 }
1385
1386 if (retsrcia != NULL) {
1387 if (ifa != NULL) {
1388 IFA_ADDREF(ifa); /* for caller */
1389 }
1390 *retsrcia = (struct in6_ifaddr *)ifa;
1391 }
1392
1393 if (error == 0) {
1394 if (retrt != NULL && route != NULL) {
1395 *retrt = route->ro_rt; /* ro_rt may be NULL */
1396 }
1397 }
1398 if (ip6_select_srcif_debug) {
1399 printf("%s %s->%s ifscope %d ifa_if %s ro_if %s (error=%d)\n",
1400 __func__,
1401 s_src, s_dst, ifscope,
1402 (ifa != NULL) ? if_name(ifa->ifa_ifp) : "NONE",
1403 (ifp != NULL) ? if_name(ifp) : "NONE", error);
1404 }
1405
1406 if (ifa != NULL) {
1407 IFA_REMREF(ifa);
1408 }
1409
1410 return error;
1411 }
1412
1413 /*
1414 * Regardless of error, it will return an ifp with a reference held if the
1415 * caller provides a non-NULL retifp. The caller is responsible for checking
1416 * if the returned ifp is valid and release its reference at all times.
1417 */
1418 int
1419 in6_selectif(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts,
1420 struct ip6_moptions *mopts, struct route_in6 *ro,
1421 struct ip6_out_args *ip6oa, struct ifnet **retifp)
1422 {
1423 int err = 0;
1424 struct route_in6 sro;
1425 struct rtentry *rt = NULL;
1426
1427 if (ro == NULL) {
1428 bzero(&sro, sizeof(sro));
1429 ro = &sro;
1430 }
1431
1432 if ((err = selectroute(NULL, dstsock, opts, mopts, NULL, ro, retifp,
1433 &rt, 0, 1, ip6oa)) != 0) {
1434 goto done;
1435 }
1436
1437 /*
1438 * do not use a rejected or black hole route.
1439 * XXX: this check should be done in the L2 output routine.
1440 * However, if we skipped this check here, we'd see the following
1441 * scenario:
1442 * - install a rejected route for a scoped address prefix
1443 * (like fe80::/10)
1444 * - send a packet to a destination that matches the scoped prefix,
1445 * with ambiguity about the scope zone.
1446 * - pick the outgoing interface from the route, and disambiguate the
1447 * scope zone with the interface.
1448 * - ip6_output() would try to get another route with the "new"
1449 * destination, which may be valid.
1450 * - we'd see no error on output.
1451 * Although this may not be very harmful, it should still be confusing.
1452 * We thus reject the case here.
1453 */
1454 if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE))) {
1455 err = ((rt->rt_flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH);
1456 goto done;
1457 }
1458
1459 /*
1460 * Adjust the "outgoing" interface. If we're going to loop the packet
1461 * back to ourselves, the ifp would be the loopback interface.
1462 * However, we'd rather know the interface associated to the
1463 * destination address (which should probably be one of our own
1464 * addresses.)
1465 */
1466 if (rt != NULL && rt->rt_ifa != NULL && rt->rt_ifa->ifa_ifp != NULL &&
1467 retifp != NULL) {
1468 ifnet_reference(rt->rt_ifa->ifa_ifp);
1469 if (*retifp != NULL) {
1470 ifnet_release(*retifp);
1471 }
1472 *retifp = rt->rt_ifa->ifa_ifp;
1473 }
1474
1475 done:
1476 if (ro == &sro) {
1477 VERIFY(rt == NULL || rt == ro->ro_rt);
1478 ROUTE_RELEASE(ro);
1479 }
1480
1481 /*
1482 * retifp might point to a valid ifp with a reference held;
1483 * caller is responsible for releasing it if non-NULL.
1484 */
1485 return err;
1486 }
1487
1488 /*
1489 * Regardless of error, it will return an ifp with a reference held if the
1490 * caller provides a non-NULL retifp. The caller is responsible for checking
1491 * if the returned ifp is valid and release its reference at all times.
1492 *
1493 * clone - meaningful only for bsdi and freebsd
1494 */
1495 int
1496 in6_selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock,
1497 struct ip6_pktopts *opts, struct ip6_moptions *mopts,
1498 struct in6_ifaddr **retsrcia, struct route_in6 *ro, struct ifnet **retifp,
1499 struct rtentry **retrt, int clone, struct ip6_out_args *ip6oa)
1500 {
1501 return selectroute(srcsock, dstsock, opts, mopts, retsrcia, ro, retifp,
1502 retrt, clone, 0, ip6oa);
1503 }
1504
1505 /*
1506 * Default hop limit selection. The precedence is as follows:
1507 * 1. Hoplimit value specified via ioctl.
1508 * 2. (If the outgoing interface is detected) the current
1509 * hop limit of the interface specified by router advertisement.
1510 * 3. The system default hoplimit.
1511 */
1512 int
1513 in6_selecthlim(struct in6pcb *in6p, struct ifnet *ifp)
1514 {
1515 if (in6p && in6p->in6p_hops >= 0) {
1516 return in6p->in6p_hops;
1517 } else if (NULL != ifp) {
1518 u_int8_t chlim;
1519 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1520 if (ndi && ndi->initialized) {
1521 /* access chlim without lock, for performance */
1522 chlim = ndi->chlim;
1523 } else {
1524 chlim = ip6_defhlim;
1525 }
1526 return chlim;
1527 }
1528
1529 return ip6_defhlim;
1530 }
1531
1532 /*
1533 * XXX: this is borrowed from in6_pcbbind(). If possible, we should
1534 * share this function by all *bsd*...
1535 */
1536 int
1537 in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct proc *p,
1538 int locked)
1539 {
1540 struct socket *so = inp->inp_socket;
1541 u_int16_t lport = 0, first, last, *lastport;
1542 int count, error = 0, wild = 0;
1543 boolean_t counting_down;
1544 bool found;
1545 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1546 kauth_cred_t cred;
1547 #pragma unused(laddr)
1548 if (!locked) { /* Make sure we don't run into a deadlock: 4052373 */
1549 if (!lck_rw_try_lock_exclusive(pcbinfo->ipi_lock)) {
1550 socket_unlock(inp->inp_socket, 0);
1551 lck_rw_lock_exclusive(pcbinfo->ipi_lock);
1552 socket_lock(inp->inp_socket, 0);
1553 }
1554
1555 /*
1556 * Check if a local port was assigned to the inp while
1557 * this thread was waiting for the pcbinfo lock
1558 */
1559 if (inp->inp_lport != 0) {
1560 VERIFY(inp->inp_flags2 & INP2_INHASHLIST);
1561 lck_rw_done(pcbinfo->ipi_lock);
1562
1563 /*
1564 * It is not an error if another thread allocated
1565 * a port
1566 */
1567 return 0;
1568 }
1569 }
1570
1571 /* XXX: this is redundant when called from in6_pcbbind */
1572 if ((so->so_options & (SO_REUSEADDR | SO_REUSEPORT)) == 0) {
1573 wild = INPLOOKUP_WILDCARD;
1574 }
1575
1576 if (inp->inp_flags & INP_HIGHPORT) {
1577 first = ipport_hifirstauto; /* sysctl */
1578 last = ipport_hilastauto;
1579 lastport = &pcbinfo->ipi_lasthi;
1580 } else if (inp->inp_flags & INP_LOWPORT) {
1581 cred = kauth_cred_proc_ref(p);
1582 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
1583 kauth_cred_unref(&cred);
1584 if (error != 0) {
1585 if (!locked) {
1586 lck_rw_done(pcbinfo->ipi_lock);
1587 }
1588 return error;
1589 }
1590 first = ipport_lowfirstauto; /* 1023 */
1591 last = ipport_lowlastauto; /* 600 */
1592 lastport = &pcbinfo->ipi_lastlow;
1593 } else {
1594 first = ipport_firstauto; /* sysctl */
1595 last = ipport_lastauto;
1596 lastport = &pcbinfo->ipi_lastport;
1597 }
1598 /*
1599 * Simple check to ensure all ports are not used up causing
1600 * a deadlock here.
1601 */
1602 found = false;
1603 if (first > last) {
1604 /* counting down */
1605 count = first - last;
1606 counting_down = TRUE;
1607 } else {
1608 /* counting up */
1609 count = last - first;
1610 counting_down = FALSE;
1611 }
1612 do {
1613 if (count-- < 0) { /* completely used? */
1614 /*
1615 * Undo any address bind that may have
1616 * occurred above.
1617 */
1618 inp->in6p_laddr = in6addr_any;
1619 inp->in6p_last_outifp = NULL;
1620 if (!locked) {
1621 lck_rw_done(pcbinfo->ipi_lock);
1622 }
1623 return EAGAIN;
1624 }
1625 if (counting_down) {
1626 --*lastport;
1627 if (*lastport > first || *lastport < last) {
1628 *lastport = first;
1629 }
1630 } else {
1631 ++*lastport;
1632 if (*lastport < first || *lastport > last) {
1633 *lastport = first;
1634 }
1635 }
1636 lport = htons(*lastport);
1637
1638 /*
1639 * Skip if this is a restricted port as we do not want to
1640 * restricted ports as ephemeral
1641 */
1642 if (IS_RESTRICTED_IN_PORT(lport)) {
1643 continue;
1644 }
1645
1646 found = (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr,
1647 lport, wild) == NULL);
1648 } while (!found);
1649
1650 inp->inp_lport = lport;
1651 inp->inp_flags |= INP_ANONPORT;
1652
1653 if (in_pcbinshash(inp, 1) != 0) {
1654 inp->in6p_laddr = in6addr_any;
1655 inp->in6p_last_outifp = NULL;
1656
1657 inp->inp_lport = 0;
1658 inp->inp_flags &= ~INP_ANONPORT;
1659 if (!locked) {
1660 lck_rw_done(pcbinfo->ipi_lock);
1661 }
1662 return EAGAIN;
1663 }
1664
1665 if (!locked) {
1666 lck_rw_done(pcbinfo->ipi_lock);
1667 }
1668 return 0;
1669 }
1670
1671 /*
1672 * The followings are implementation of the policy table using a
1673 * simple tail queue.
1674 * XXX such details should be hidden.
1675 * XXX implementation using binary tree should be more efficient.
1676 */
1677 struct addrsel_policyent {
1678 TAILQ_ENTRY(addrsel_policyent) ape_entry;
1679 struct in6_addrpolicy ape_policy;
1680 };
1681
1682 TAILQ_HEAD(addrsel_policyhead, addrsel_policyent);
1683
1684 struct addrsel_policyhead addrsel_policytab;
1685
1686 static void
1687 init_policy_queue(void)
1688 {
1689 TAILQ_INIT(&addrsel_policytab);
1690 }
1691
1692 void
1693 addrsel_policy_init(void)
1694 {
1695 /*
1696 * Default address selection policy based on RFC 6724.
1697 */
1698 static const struct in6_addrpolicy defaddrsel[] = {
1699 /* Loopback -- prefix=::1/128, precedence=50, label=0 */
1700 {
1701 .addr = {
1702 .sin6_family = AF_INET6,
1703 .sin6_addr = IN6ADDR_LOOPBACK_INIT,
1704 .sin6_len = sizeof(struct sockaddr_in6)
1705 },
1706 .addrmask = {
1707 .sin6_family = AF_INET6,
1708 .sin6_addr = IN6MASK128,
1709 .sin6_len = sizeof(struct sockaddr_in6)
1710 },
1711 .preced = 50,
1712 .label = 0
1713 },
1714
1715 /* Unspecified -- prefix=::/0, precedence=40, label=1 */
1716 {
1717 .addr = {
1718 .sin6_family = AF_INET6,
1719 .sin6_addr = IN6ADDR_ANY_INIT,
1720 .sin6_len = sizeof(struct sockaddr_in6)
1721 },
1722 .addrmask = {
1723 .sin6_family = AF_INET6,
1724 .sin6_addr = IN6MASK0,
1725 .sin6_len = sizeof(struct sockaddr_in6)
1726 },
1727 .preced = 40,
1728 .label = 1
1729 },
1730
1731 /* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */
1732 {
1733 .addr = {
1734 .sin6_family = AF_INET6,
1735 .sin6_addr = IN6ADDR_V4MAPPED_INIT,
1736 .sin6_len = sizeof(struct sockaddr_in6)
1737 },
1738 .addrmask = {
1739 .sin6_family = AF_INET6,
1740 .sin6_addr = IN6MASK96,
1741 .sin6_len = sizeof(struct sockaddr_in6)
1742 },
1743 .preced = 35,
1744 .label = 4
1745 },
1746
1747 /* 6to4 -- prefix=2002::/16, precedence=30, label=2 */
1748 {
1749 .addr = {
1750 .sin6_family = AF_INET6,
1751 .sin6_addr = {{{ 0x20, 0x02 }}},
1752 .sin6_len = sizeof(struct sockaddr_in6)
1753 },
1754 .addrmask = {
1755 .sin6_family = AF_INET6,
1756 .sin6_addr = IN6MASK16,
1757 .sin6_len = sizeof(struct sockaddr_in6)
1758 },
1759 .preced = 30,
1760 .label = 2
1761 },
1762
1763 /* Teredo -- prefix=2001::/32, precedence=5, label=5 */
1764 {
1765 .addr = {
1766 .sin6_family = AF_INET6,
1767 .sin6_addr = {{{ 0x20, 0x01 }}},
1768 .sin6_len = sizeof(struct sockaddr_in6)
1769 },
1770 .addrmask = {
1771 .sin6_family = AF_INET6,
1772 .sin6_addr = IN6MASK32,
1773 .sin6_len = sizeof(struct sockaddr_in6)
1774 },
1775 .preced = 5,
1776 .label = 5
1777 },
1778
1779 /* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */
1780 {
1781 .addr = {
1782 .sin6_family = AF_INET6,
1783 .sin6_addr = {{{ 0xfc }}},
1784 .sin6_len = sizeof(struct sockaddr_in6)
1785 },
1786 .addrmask = {
1787 .sin6_family = AF_INET6,
1788 .sin6_addr = IN6MASK7,
1789 .sin6_len = sizeof(struct sockaddr_in6)
1790 },
1791 .preced = 3,
1792 .label = 13
1793 },
1794
1795 /* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */
1796 {
1797 .addr = {
1798 .sin6_family = AF_INET6,
1799 .sin6_addr = IN6ADDR_ANY_INIT,
1800 .sin6_len = sizeof(struct sockaddr_in6)
1801 },
1802 .addrmask = {
1803 .sin6_family = AF_INET6,
1804 .sin6_addr = IN6MASK96,
1805 .sin6_len = sizeof(struct sockaddr_in6)
1806 },
1807 .preced = 1,
1808 .label = 3
1809 },
1810
1811 /* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */
1812 {
1813 .addr = {
1814 .sin6_family = AF_INET6,
1815 .sin6_addr = {{{ 0xfe, 0xc0 }}},
1816 .sin6_len = sizeof(struct sockaddr_in6)
1817 },
1818 .addrmask = {
1819 .sin6_family = AF_INET6,
1820 .sin6_addr = IN6MASK16,
1821 .sin6_len = sizeof(struct sockaddr_in6)
1822 },
1823 .preced = 1,
1824 .label = 11
1825 },
1826
1827 /* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */
1828 {
1829 .addr = {
1830 .sin6_family = AF_INET6,
1831 .sin6_addr = {{{ 0x3f, 0xfe }}},
1832 .sin6_len = sizeof(struct sockaddr_in6)
1833 },
1834 .addrmask = {
1835 .sin6_family = AF_INET6,
1836 .sin6_addr = IN6MASK16,
1837 .sin6_len = sizeof(struct sockaddr_in6)
1838 },
1839 .preced = 1,
1840 .label = 12
1841 },
1842 };
1843 int i;
1844
1845 init_policy_queue();
1846
1847 /* initialize the "last resort" policy */
1848 bzero(&defaultaddrpolicy, sizeof(defaultaddrpolicy));
1849 defaultaddrpolicy.label = ADDR_LABEL_NOTAPP;
1850
1851 for (i = 0; i < sizeof(defaddrsel) / sizeof(defaddrsel[0]); i++) {
1852 add_addrsel_policyent(&defaddrsel[i]);
1853 }
1854 }
1855
1856 struct in6_addrpolicy *
1857 in6_addrsel_lookup_policy(struct sockaddr_in6 *key)
1858 {
1859 struct in6_addrpolicy *match = NULL;
1860
1861 ADDRSEL_LOCK();
1862 match = match_addrsel_policy(key);
1863
1864 if (match == NULL) {
1865 match = &defaultaddrpolicy;
1866 } else {
1867 match->use++;
1868 }
1869 ADDRSEL_UNLOCK();
1870
1871 return match;
1872 }
1873
1874 static struct in6_addrpolicy *
1875 match_addrsel_policy(struct sockaddr_in6 *key)
1876 {
1877 struct addrsel_policyent *pent;
1878 struct in6_addrpolicy *bestpol = NULL, *pol;
1879 int matchlen, bestmatchlen = -1;
1880 u_char *mp, *ep, *k, *p, m;
1881
1882 TAILQ_FOREACH(pent, &addrsel_policytab, ape_entry) {
1883 matchlen = 0;
1884
1885 pol = &pent->ape_policy;
1886 mp = (u_char *)&pol->addrmask.sin6_addr;
1887 ep = mp + 16; /* XXX: scope field? */
1888 k = (u_char *)&key->sin6_addr;
1889 p = (u_char *)&pol->addr.sin6_addr;
1890 for (; mp < ep && *mp; mp++, k++, p++) {
1891 m = *mp;
1892 if ((*k & m) != *p) {
1893 goto next; /* not match */
1894 }
1895 if (m == 0xff) { /* short cut for a typical case */
1896 matchlen += 8;
1897 } else {
1898 while (m >= 0x80) {
1899 matchlen++;
1900 m <<= 1;
1901 }
1902 }
1903 }
1904
1905 /* matched. check if this is better than the current best. */
1906 if (bestpol == NULL ||
1907 matchlen > bestmatchlen) {
1908 bestpol = pol;
1909 bestmatchlen = matchlen;
1910 }
1911
1912 next:
1913 continue;
1914 }
1915
1916 return bestpol;
1917 }
1918
1919 static int
1920 add_addrsel_policyent(const struct in6_addrpolicy *newpolicy)
1921 {
1922 struct addrsel_policyent *new, *pol;
1923
1924 MALLOC(new, struct addrsel_policyent *, sizeof(*new), M_IFADDR,
1925 M_WAITOK);
1926
1927 ADDRSEL_LOCK();
1928
1929 /* duplication check */
1930 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1931 if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr,
1932 &pol->ape_policy.addr.sin6_addr) &&
1933 IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr,
1934 &pol->ape_policy.addrmask.sin6_addr)) {
1935 ADDRSEL_UNLOCK();
1936 FREE(new, M_IFADDR);
1937 return EEXIST; /* or override it? */
1938 }
1939 }
1940
1941 bzero(new, sizeof(*new));
1942
1943 /* XXX: should validate entry */
1944 new->ape_policy = *newpolicy;
1945
1946 TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry);
1947 ADDRSEL_UNLOCK();
1948
1949 return 0;
1950 }
1951 #ifdef ENABLE_ADDRSEL
1952 static int
1953 delete_addrsel_policyent(const struct in6_addrpolicy *key)
1954 {
1955 struct addrsel_policyent *pol;
1956
1957
1958 ADDRSEL_LOCK();
1959
1960 /* search for the entry in the table */
1961 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1962 if (IN6_ARE_ADDR_EQUAL(&key->addr.sin6_addr,
1963 &pol->ape_policy.addr.sin6_addr) &&
1964 IN6_ARE_ADDR_EQUAL(&key->addrmask.sin6_addr,
1965 &pol->ape_policy.addrmask.sin6_addr)) {
1966 break;
1967 }
1968 }
1969 if (pol == NULL) {
1970 ADDRSEL_UNLOCK();
1971 return ESRCH;
1972 }
1973
1974 TAILQ_REMOVE(&addrsel_policytab, pol, ape_entry);
1975 FREE(pol, M_IFADDR);
1976 pol = NULL;
1977 ADDRSEL_UNLOCK();
1978
1979 return 0;
1980 }
1981 #endif /* ENABLE_ADDRSEL */
1982
1983 int
1984 walk_addrsel_policy(int (*callback)(const struct in6_addrpolicy *, void *),
1985 void *w)
1986 {
1987 struct addrsel_policyent *pol;
1988 int error = 0;
1989
1990 ADDRSEL_LOCK();
1991 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1992 if ((error = (*callback)(&pol->ape_policy, w)) != 0) {
1993 ADDRSEL_UNLOCK();
1994 return error;
1995 }
1996 }
1997 ADDRSEL_UNLOCK();
1998 return error;
1999 }
2000 /*
2001 * Subroutines to manage the address selection policy table via sysctl.
2002 */
2003 struct walkarg {
2004 struct sysctl_req *w_req;
2005 };
2006
2007
2008 static int
2009 dump_addrsel_policyent(const struct in6_addrpolicy *pol, void *arg)
2010 {
2011 int error = 0;
2012 struct walkarg *w = arg;
2013
2014 error = SYSCTL_OUT(w->w_req, pol, sizeof(*pol));
2015
2016 return error;
2017 }
2018
2019 static int
2020 in6_src_sysctl SYSCTL_HANDLER_ARGS
2021 {
2022 #pragma unused(oidp, arg1, arg2)
2023 struct walkarg w;
2024
2025 if (req->newptr) {
2026 return EPERM;
2027 }
2028 bzero(&w, sizeof(w));
2029 w.w_req = req;
2030
2031 return walk_addrsel_policy(dump_addrsel_policyent, &w);
2032 }
2033
2034
2035 SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy,
2036 CTLFLAG_RD | CTLFLAG_LOCKED, in6_src_sysctl, "");
2037 int
2038 in6_src_ioctl(u_long cmd, caddr_t data)
2039 {
2040 int i;
2041 struct in6_addrpolicy ent0;
2042
2043 if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY) {
2044 return EOPNOTSUPP; /* check for safety */
2045 }
2046 bcopy(data, &ent0, sizeof(ent0));
2047
2048 if (ent0.label == ADDR_LABEL_NOTAPP) {
2049 return EINVAL;
2050 }
2051 /* check if the prefix mask is consecutive. */
2052 if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0) {
2053 return EINVAL;
2054 }
2055 /* clear trailing garbages (if any) of the prefix address. */
2056 for (i = 0; i < 4; i++) {
2057 ent0.addr.sin6_addr.s6_addr32[i] &=
2058 ent0.addrmask.sin6_addr.s6_addr32[i];
2059 }
2060 ent0.use = 0;
2061
2062 switch (cmd) {
2063 case SIOCAADDRCTL_POLICY:
2064 #ifdef ENABLE_ADDRSEL
2065 return add_addrsel_policyent(&ent0);
2066 #else
2067 return ENOTSUP;
2068 #endif
2069 case SIOCDADDRCTL_POLICY:
2070 #ifdef ENABLE_ADDRSEL
2071 return delete_addrsel_policyent(&ent0);
2072 #else
2073 return ENOTSUP;
2074 #endif
2075 }
2076
2077 return 0; /* XXX: compromise compilers */
2078 }
2079
2080 /*
2081 * generate kernel-internal form (scopeid embedded into s6_addr16[1]).
2082 * If the address scope of is link-local, embed the interface index in the
2083 * address. The routine determines our precedence
2084 * between advanced API scope/interface specification and basic API
2085 * specification.
2086 *
2087 * this function should be nuked in the future, when we get rid of
2088 * embedded scopeid thing.
2089 *
2090 * XXX actually, it is over-specification to return ifp against sin6_scope_id.
2091 * there can be multiple interfaces that belong to a particular scope zone
2092 * (in specification, we have 1:N mapping between a scope zone and interfaces).
2093 * we may want to change the function to return something other than ifp.
2094 */
2095 int
2096 in6_embedscope(struct in6_addr *in6, const struct sockaddr_in6 *sin6,
2097 struct in6pcb *in6p, struct ifnet **ifpp, struct ip6_pktopts *opt)
2098 {
2099 struct ifnet *ifp = NULL;
2100 u_int32_t scopeid;
2101 struct ip6_pktopts *optp = NULL;
2102
2103 *in6 = sin6->sin6_addr;
2104 scopeid = sin6->sin6_scope_id;
2105 if (ifpp != NULL) {
2106 *ifpp = NULL;
2107 }
2108
2109 /*
2110 * don't try to read sin6->sin6_addr beyond here, since the caller may
2111 * ask us to overwrite existing sockaddr_in6
2112 */
2113
2114 #ifdef ENABLE_DEFAULT_SCOPE
2115 if (scopeid == 0) {
2116 scopeid = scope6_addr2default(in6);
2117 }
2118 #endif
2119
2120 if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) {
2121 struct in6_pktinfo *pi;
2122 struct ifnet *im6o_multicast_ifp = NULL;
2123
2124 if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) &&
2125 in6p->in6p_moptions != NULL) {
2126 IM6O_LOCK(in6p->in6p_moptions);
2127 im6o_multicast_ifp =
2128 in6p->in6p_moptions->im6o_multicast_ifp;
2129 IM6O_UNLOCK(in6p->in6p_moptions);
2130 }
2131
2132 if (opt != NULL) {
2133 optp = opt;
2134 } else if (in6p != NULL) {
2135 optp = in6p->in6p_outputopts;
2136 }
2137 /*
2138 * KAME assumption: link id == interface id
2139 */
2140 if (in6p != NULL && optp != NULL &&
2141 (pi = optp->ip6po_pktinfo) != NULL &&
2142 pi->ipi6_ifindex != 0) {
2143 /* ifp is needed here if only we're returning it */
2144 if (ifpp != NULL) {
2145 ifnet_head_lock_shared();
2146 ifp = ifindex2ifnet[pi->ipi6_ifindex];
2147 ifnet_head_done();
2148 }
2149 in6->s6_addr16[1] = htons(pi->ipi6_ifindex);
2150 } else if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) &&
2151 in6p->in6p_moptions != NULL && im6o_multicast_ifp != NULL) {
2152 ifp = im6o_multicast_ifp;
2153 in6->s6_addr16[1] = htons(ifp->if_index);
2154 } else if (scopeid != 0) {
2155 /*
2156 * Since scopeid is unsigned, we only have to check it
2157 * against if_index (ifnet_head_lock not needed since
2158 * if_index is an ever-increasing integer.)
2159 */
2160 if (if_index < scopeid) {
2161 return ENXIO; /* XXX EINVAL? */
2162 }
2163 /* ifp is needed here only if we're returning it */
2164 if (ifpp != NULL) {
2165 ifnet_head_lock_shared();
2166 ifp = ifindex2ifnet[scopeid];
2167 ifnet_head_done();
2168 }
2169 /* XXX assignment to 16bit from 32bit variable */
2170 in6->s6_addr16[1] = htons(scopeid & 0xffff);
2171 }
2172
2173 if (ifpp != NULL) {
2174 if (ifp != NULL) {
2175 ifnet_reference(ifp); /* for caller */
2176 }
2177 *ifpp = ifp;
2178 }
2179 }
2180
2181 return 0;
2182 }
2183
2184 /*
2185 * generate standard sockaddr_in6 from embedded form.
2186 * touches sin6_addr and sin6_scope_id only.
2187 *
2188 * this function should be nuked in the future, when we get rid of
2189 * embedded scopeid thing.
2190 */
2191 int
2192 in6_recoverscope(
2193 struct sockaddr_in6 *sin6,
2194 const struct in6_addr *in6,
2195 struct ifnet *ifp)
2196 {
2197 u_int32_t scopeid;
2198
2199 sin6->sin6_addr = *in6;
2200
2201 /*
2202 * don't try to read *in6 beyond here, since the caller may
2203 * ask us to overwrite existing sockaddr_in6
2204 */
2205
2206 sin6->sin6_scope_id = 0;
2207 if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) {
2208 /*
2209 * KAME assumption: link id == interface id
2210 */
2211 scopeid = ntohs(sin6->sin6_addr.s6_addr16[1]);
2212 if (scopeid) {
2213 /*
2214 * sanity check
2215 *
2216 * Since scopeid is unsigned, we only have to check it
2217 * against if_index
2218 */
2219 if (if_index < scopeid) {
2220 return ENXIO;
2221 }
2222 if (ifp && ifp->if_index != scopeid) {
2223 return ENXIO;
2224 }
2225 sin6->sin6_addr.s6_addr16[1] = 0;
2226 sin6->sin6_scope_id = scopeid;
2227 }
2228 }
2229
2230 return 0;
2231 }