2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1991, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/malloc.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/proc.h>
104 #include <sys/sysctl.h>
105 #include <sys/kauth.h>
106 #include <sys/priv.h>
107 #include <kern/locks.h>
110 #include <net/if_types.h>
111 #include <net/route.h>
112 #include <net/restricted_in_port.h>
114 #include <netinet/in.h>
115 #include <netinet/in_var.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #include <netinet/in_pcb.h>
120 #include <netinet6/in6_var.h>
121 #include <netinet/ip6.h>
122 #include <netinet6/in6_pcb.h>
123 #include <netinet6/ip6_var.h>
124 #include <netinet6/scope6_var.h>
125 #include <netinet6/nd6.h>
127 #include <net/net_osdep.h>
131 SYSCTL_DECL(_net_inet6_ip6
);
133 static int ip6_select_srcif_debug
= 0;
134 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_srcif_debug
,
135 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_srcif_debug
, 0,
136 "log source interface selection debug info");
138 static int ip6_select_srcaddr_debug
= 0;
139 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_srcaddr_debug
,
140 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_srcaddr_debug
, 0,
141 "log source address selection debug info");
143 static int ip6_select_src_expensive_secondary_if
= 0;
144 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_src_expensive_secondary_if
,
145 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_src_expensive_secondary_if
, 0,
146 "allow source interface selection to use expensive secondaries");
148 static int ip6_select_src_strong_end
= 1;
149 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_src_strong_end
,
150 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_src_strong_end
, 0,
151 "limit source address selection to outgoing interface");
153 #define ADDR_LABEL_NOTAPP (-1)
154 struct in6_addrpolicy defaultaddrpolicy
;
156 int ip6_prefer_tempaddr
= 1;
157 #ifdef ENABLE_ADDRSEL
158 extern lck_mtx_t
*addrsel_mutex
;
159 #define ADDRSEL_LOCK() lck_mtx_lock(addrsel_mutex)
160 #define ADDRSEL_UNLOCK() lck_mtx_unlock(addrsel_mutex)
162 #define ADDRSEL_LOCK()
163 #define ADDRSEL_UNLOCK()
166 static int selectroute(struct sockaddr_in6
*, struct sockaddr_in6
*,
167 struct ip6_pktopts
*, struct ip6_moptions
*, struct in6_ifaddr
**,
168 struct route_in6
*, struct ifnet
**, struct rtentry
**, int, int,
169 struct ip6_out_args
*ip6oa
);
170 static int in6_selectif(struct sockaddr_in6
*, struct ip6_pktopts
*,
171 struct ip6_moptions
*, struct route_in6
*ro
,
172 struct ip6_out_args
*, struct ifnet
**);
173 static void init_policy_queue(void);
174 static int add_addrsel_policyent(const struct in6_addrpolicy
*);
175 #ifdef ENABLE_ADDRSEL
176 static int delete_addrsel_policyent(const struct in6_addrpolicy
*);
178 static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy
*, void *),
180 static int dump_addrsel_policyent(const struct in6_addrpolicy
*, void *);
181 static struct in6_addrpolicy
*match_addrsel_policy(struct sockaddr_in6
*);
182 void addrsel_policy_init(void);
184 #define SASEL_DO_DBG(inp) \
185 (ip6_select_srcaddr_debug && (inp) != NULL && \
186 (inp)->inp_socket != NULL && \
187 ((inp)->inp_socket->so_options & SO_DEBUG))
189 #define SASEL_LOG(fmt, ...) \
192 printf("%s:%d " fmt "\n",\
193 __FUNCTION__, __LINE__, ##__VA_ARGS__); \
197 * Return an IPv6 address, which is the most appropriate for a given
198 * destination and user specified options.
199 * If necessary, this function lookups the routing table and returns
200 * an entry to the caller for later use.
202 #define REPLACE(r) do {\
203 SASEL_LOG("REPLACE r %d ia %s ifp1 %s\n", \
204 (r), s_src, ifp1->if_xname); \
209 #define NEXTSRC(r) do {\
210 SASEL_LOG("NEXTSRC r %d ia %s ifp1 %s\n", \
211 (r), s_src, ifp1->if_xname); \
212 goto next; /* XXX: we can't use 'continue' here */ \
215 #define BREAK(r) do { \
216 SASEL_LOG("BREAK r %d ia %s ifp1 %s\n", \
217 (r), s_src, ifp1->if_xname); \
219 goto out; /* XXX: we can't use 'break' here */ \
224 in6_selectsrc_core_ifa(struct sockaddr_in6
*addr
, struct ifnet
*ifp
, int srcsel_debug
)
227 struct ifnet
*src_ifp
= NULL
;
228 struct in6_addr src_storage
= {};
229 struct in6_addr
*in6
= NULL
;
230 struct ifaddr
*ifa
= NULL
;
232 if ((in6
= in6_selectsrc_core(addr
,
233 (ip6_prefer_tempaddr
? IPV6_SRCSEL_HINT_PREFER_TMPADDR
: 0),
234 ifp
, 0, &src_storage
, &src_ifp
, &err
, &ifa
)) == NULL
) {
238 VERIFY(src_ifp
== NULL
);
246 if (src_ifp
!= ifp
) {
258 ifnet_lock_shared(ifp
);
259 if ((ifa
->ifa_debug
& IFD_DETACHING
) != 0) {
261 ifnet_lock_done(ifp
);
266 ifnet_lock_done(ifp
);
269 SASEL_LOG("Returned with error: %d", err
);
270 if (src_ifp
!= NULL
) {
271 ifnet_release(src_ifp
);
277 in6_selectsrc_core(struct sockaddr_in6
*dstsock
, uint32_t hint_mask
,
278 struct ifnet
*ifp
, int srcsel_debug
, struct in6_addr
*src_storage
,
279 struct ifnet
**sifp
, int *errorp
, struct ifaddr
**ifapp
)
282 int bestrule
= IP6S_SRCRULE_0
;
283 struct in6_addrpolicy
*dst_policy
= NULL
, *best_policy
= NULL
;
285 struct in6_ifaddr
*ia
= NULL
, *ia_best
= NULL
;
286 char s_src
[MAX_IPv6_STR_LEN
] = {0};
287 char s_dst
[MAX_IPv6_STR_LEN
] = {0};
288 const struct in6_addr
*tmp
= NULL
;
289 int dst_scope
= -1, best_scope
= -1, best_matchlen
= -1;
290 uint64_t secs
= net_uptime();
291 VERIFY(dstsock
!= NULL
);
292 VERIFY(src_storage
!= NULL
);
303 dst
= dstsock
->sin6_addr
; /* make a copy for local operation */
306 (void) inet_ntop(AF_INET6
, &dst
, s_dst
, sizeof(s_src
));
309 (void) inet_ntop(AF_INET6
, tmp
, s_src
, sizeof(s_src
));
310 printf("%s out src %s dst %s ifp %s\n",
311 __func__
, s_src
, s_dst
, ifp
->if_xname
);
314 *errorp
= in6_setscope(&dst
, ifp
, &odstzone
);
320 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
321 for (ia
= in6_ifaddrs
; ia
; ia
= ia
->ia_next
) {
322 int new_scope
= -1, new_matchlen
= -1;
323 struct in6_addrpolicy
*new_policy
= NULL
;
324 u_int32_t srczone
= 0, osrczone
, dstzone
;
326 struct ifnet
*ifp1
= ia
->ia_ifp
;
330 (void) inet_ntop(AF_INET6
, &ia
->ia_addr
.sin6_addr
,
331 s_src
, sizeof(s_src
));
334 IFA_LOCK(&ia
->ia_ifa
);
337 * Simply skip addresses reserved for CLAT46
339 if (ia
->ia6_flags
& IN6_IFF_CLAT46
) {
340 SASEL_LOG("NEXT ia %s address on ifp1 %s skipped as it is "
341 "reserved for CLAT46", s_src
, ifp1
->if_xname
);
346 * XXX By default we are strong end system and will
347 * limit candidate set of source address to the ones
348 * configured on the outgoing interface.
350 if (ip6_select_src_strong_end
&&
352 SASEL_LOG("NEXT ia %s ifp1 %s address is not on outgoing "
353 "interface \n", s_src
, ifp1
->if_xname
);
358 * We'll never take an address that breaks the scope zone
359 * of the destination. We also skip an address if its zone
360 * does not contain the outgoing interface.
361 * XXX: we should probably use sin6_scope_id here.
363 if (in6_setscope(&dst
, ifp1
, &dstzone
) ||
364 odstzone
!= dstzone
) {
365 SASEL_LOG("NEXT ia %s ifp1 %s odstzone %d != dstzone %d\n",
366 s_src
, ifp1
->if_xname
, odstzone
, dstzone
);
369 src
= ia
->ia_addr
.sin6_addr
;
370 if (in6_setscope(&src
, ifp
, &osrczone
) ||
371 in6_setscope(&src
, ifp1
, &srczone
) ||
372 osrczone
!= srczone
) {
373 SASEL_LOG("NEXT ia %s ifp1 %s osrczone %d != srczone %d\n",
374 s_src
, ifp1
->if_xname
, osrczone
, srczone
);
377 /* avoid unusable addresses */
379 (IN6_IFF_NOTREADY
| IN6_IFF_ANYCAST
| IN6_IFF_DETACHED
))) {
380 SASEL_LOG("NEXT ia %s ifp1 %s ia6_flags 0x%x\n",
381 s_src
, ifp1
->if_xname
, ia
->ia6_flags
);
384 if (!ip6_use_deprecated
&& IFA6_IS_DEPRECATED(ia
, secs
)) {
385 SASEL_LOG("NEXT ia %s ifp1 %s IFA6_IS_DEPRECATED\n",
386 s_src
, ifp1
->if_xname
);
389 if (!nd6_optimistic_dad
&&
390 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0) {
391 SASEL_LOG("NEXT ia %s ifp1 %s IN6_IFF_OPTIMISTIC\n",
392 s_src
, ifp1
->if_xname
);
395 /* Rule 1: Prefer same address */
396 if (IN6_ARE_ADDR_EQUAL(&dst
, &ia
->ia_addr
.sin6_addr
)) {
397 BREAK(IP6S_SRCRULE_1
); /* there should be no better candidate */
399 if (ia_best
== NULL
) {
400 REPLACE(IP6S_SRCRULE_0
);
403 /* Rule 2: Prefer appropriate scope */
405 dst_scope
= in6_addrscope(&dst
);
407 new_scope
= in6_addrscope(&ia
->ia_addr
.sin6_addr
);
408 if (IN6_ARE_SCOPE_CMP(best_scope
, new_scope
) < 0) {
409 if (IN6_ARE_SCOPE_CMP(best_scope
, dst_scope
) < 0) {
410 REPLACE(IP6S_SRCRULE_2
);
412 NEXTSRC(IP6S_SRCRULE_2
);
413 } else if (IN6_ARE_SCOPE_CMP(new_scope
, best_scope
) < 0) {
414 if (IN6_ARE_SCOPE_CMP(new_scope
, dst_scope
) < 0) {
415 NEXTSRC(IP6S_SRCRULE_2
);
417 REPLACE(IP6S_SRCRULE_2
);
421 * Rule 3: Avoid deprecated addresses. Note that the case of
422 * !ip6_use_deprecated is already rejected above.
424 if (!IFA6_IS_DEPRECATED(ia_best
, secs
) &&
425 IFA6_IS_DEPRECATED(ia
, secs
)) {
426 NEXTSRC(IP6S_SRCRULE_3
);
428 if (IFA6_IS_DEPRECATED(ia_best
, secs
) &&
429 !IFA6_IS_DEPRECATED(ia
, secs
)) {
430 REPLACE(IP6S_SRCRULE_3
);
434 * RFC 4429 says that optimistic addresses are equivalent to
435 * deprecated addresses, so avoid them here.
437 if ((ia_best
->ia6_flags
& IN6_IFF_OPTIMISTIC
) == 0 &&
438 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0) {
439 NEXTSRC(IP6S_SRCRULE_3
);
441 if ((ia_best
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0 &&
442 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) == 0) {
443 REPLACE(IP6S_SRCRULE_3
);
446 /* Rule 4: Prefer home addresses */
448 * XXX: This is a TODO. We should probably merge the MIP6
452 /* Rule 5: Prefer outgoing interface */
454 * XXX By default we are strong end with source address
455 * selection. That means all address selection candidate
456 * addresses will be the ones hosted on the outgoing interface
457 * making the following check redundant.
459 if (ip6_select_src_strong_end
== 0) {
460 if (ia_best
->ia_ifp
== ifp
&& ia
->ia_ifp
!= ifp
) {
461 NEXTSRC(IP6S_SRCRULE_5
);
463 if (ia_best
->ia_ifp
!= ifp
&& ia
->ia_ifp
== ifp
) {
464 REPLACE(IP6S_SRCRULE_5
);
469 * Rule 6: Prefer matching label
470 * Note that best_policy should be non-NULL here.
472 if (dst_policy
== NULL
) {
473 dst_policy
= in6_addrsel_lookup_policy(dstsock
);
475 if (dst_policy
->label
!= ADDR_LABEL_NOTAPP
) {
476 new_policy
= in6_addrsel_lookup_policy(&ia
->ia_addr
);
477 if (dst_policy
->label
== best_policy
->label
&&
478 dst_policy
->label
!= new_policy
->label
) {
479 NEXTSRC(IP6S_SRCRULE_6
);
481 if (dst_policy
->label
!= best_policy
->label
&&
482 dst_policy
->label
== new_policy
->label
) {
483 REPLACE(IP6S_SRCRULE_6
);
488 * Rule 7: Prefer temporary addresses.
489 * We allow users to reverse the logic by configuring
490 * a sysctl variable, so that transparency conscious users can
491 * always prefer stable addresses.
493 if (!(ia_best
->ia6_flags
& IN6_IFF_TEMPORARY
) &&
494 (ia
->ia6_flags
& IN6_IFF_TEMPORARY
)) {
495 if (hint_mask
& IPV6_SRCSEL_HINT_PREFER_TMPADDR
) {
496 REPLACE(IP6S_SRCRULE_7
);
498 NEXTSRC(IP6S_SRCRULE_7
);
501 if ((ia_best
->ia6_flags
& IN6_IFF_TEMPORARY
) &&
502 !(ia
->ia6_flags
& IN6_IFF_TEMPORARY
)) {
503 if (hint_mask
& IPV6_SRCSEL_HINT_PREFER_TMPADDR
) {
504 NEXTSRC(IP6S_SRCRULE_7
);
506 REPLACE(IP6S_SRCRULE_7
);
511 * Rule 7x: prefer addresses on alive interfaces.
512 * This is a KAME specific rule.
514 if ((ia_best
->ia_ifp
->if_flags
& IFF_UP
) &&
515 !(ia
->ia_ifp
->if_flags
& IFF_UP
)) {
516 NEXTSRC(IP6S_SRCRULE_7x
);
518 if (!(ia_best
->ia_ifp
->if_flags
& IFF_UP
) &&
519 (ia
->ia_ifp
->if_flags
& IFF_UP
)) {
520 REPLACE(IP6S_SRCRULE_7x
);
524 * Rule 8: Use longest matching prefix.
526 new_matchlen
= in6_matchlen(&ia
->ia_addr
.sin6_addr
, &dst
);
527 if (best_matchlen
< new_matchlen
) {
528 REPLACE(IP6S_SRCRULE_8
);
530 if (new_matchlen
< best_matchlen
) {
531 NEXTSRC(IP6S_SRCRULE_8
);
535 * Last resort: just keep the current candidate.
536 * Or, do we need more rules?
538 if (ifp1
!= ifp
&& (ifp1
->if_eflags
& IFEF_EXPENSIVE
) &&
539 ip6_select_src_expensive_secondary_if
== 0) {
540 SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
541 s_src
, ifp1
->if_xname
);
542 ip6stat
.ip6s_sources_skip_expensive_secondary_if
++;
545 SASEL_LOG("NEXT ia %s ifp1 %s last resort\n",
546 s_src
, ifp1
->if_xname
);
547 IFA_UNLOCK(&ia
->ia_ifa
);
552 * Ignore addresses on secondary interfaces that are marked
555 if (ifp1
!= ifp
&& (ifp1
->if_eflags
& IFEF_EXPENSIVE
) &&
556 ip6_select_src_expensive_secondary_if
== 0) {
557 SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
558 s_src
, ifp1
->if_xname
);
559 ip6stat
.ip6s_sources_skip_expensive_secondary_if
++;
563 best_scope
= (new_scope
>= 0 ? new_scope
:
564 in6_addrscope(&ia
->ia_addr
.sin6_addr
));
565 best_policy
= (new_policy
? new_policy
:
566 in6_addrsel_lookup_policy(&ia
->ia_addr
));
567 best_matchlen
= (new_matchlen
>= 0 ? new_matchlen
:
568 in6_matchlen(&ia
->ia_addr
.sin6_addr
, &dst
));
569 SASEL_LOG("NEXT ia %s ifp1 %s best_scope %d new_scope %d dst_scope %d\n",
570 s_src
, ifp1
->if_xname
, best_scope
, new_scope
, dst_scope
);
571 IFA_ADDREF_LOCKED(&ia
->ia_ifa
); /* for ia_best */
572 IFA_UNLOCK(&ia
->ia_ifa
);
573 if (ia_best
!= NULL
) {
574 IFA_REMREF(&ia_best
->ia_ifa
);
580 IFA_UNLOCK(&ia
->ia_ifa
);
584 IFA_ADDREF_LOCKED(&ia
->ia_ifa
); /* for ia_best */
585 IFA_UNLOCK(&ia
->ia_ifa
);
586 if (ia_best
!= NULL
) {
587 IFA_REMREF(&ia_best
->ia_ifa
);
593 lck_rw_done(&in6_ifaddr_rwlock
);
595 if ((ia
= ia_best
) == NULL
) {
597 *errorp
= EADDRNOTAVAIL
;
604 *sifp
= ia
->ia_ifa
.ifa_ifp
;
605 ifnet_reference(*sifp
);
608 IFA_LOCK_SPIN(&ia
->ia_ifa
);
609 if (bestrule
< IP6S_SRCRULE_COUNT
) {
610 ip6stat
.ip6s_sources_rule
[bestrule
]++;
612 *src_storage
= satosin6(&ia
->ia_addr
)->sin6_addr
;
613 IFA_UNLOCK(&ia
->ia_ifa
);
616 *ifapp
= &ia
->ia_ifa
;
618 IFA_REMREF(&ia
->ia_ifa
);
623 (void) inet_ntop(AF_INET6
, &dst
, s_dst
, sizeof(s_src
));
625 tmp
= (src_storage
!= NULL
) ? src_storage
: &in6addr_any
;
626 (void) inet_ntop(AF_INET6
, tmp
, s_src
, sizeof(s_src
));
628 printf("%s out src %s dst %s dst_scope %d best_scope %d\n",
629 __func__
, s_src
, s_dst
, dst_scope
, best_scope
);
636 * Regardless of error, it will return an ifp with a reference held if the
637 * caller provides a non-NULL ifpp. The caller is responsible for checking
638 * if the returned ifp is valid and release its reference at all times.
641 in6_selectsrc(struct sockaddr_in6
*dstsock
, struct ip6_pktopts
*opts
,
642 struct inpcb
*inp
, struct route_in6
*ro
,
643 struct ifnet
**ifpp
, struct in6_addr
*src_storage
, unsigned int ifscope
,
646 struct ifnet
*ifp
= NULL
;
647 struct in6_pktinfo
*pi
= NULL
;
648 struct ip6_moptions
*mopts
;
649 struct ip6_out_args ip6oa
;
650 boolean_t inp_debug
= FALSE
;
651 uint32_t hint_mask
= 0;
652 int prefer_tempaddr
= 0;
653 struct ifnet
*sifp
= NULL
;
655 bzero(&ip6oa
, sizeof(ip6oa
));
656 ip6oa
.ip6oa_boundif
= ifscope
;
657 ip6oa
.ip6oa_flags
= IP6OAF_SELECT_SRCIF
;
658 ip6oa
.ip6oa_sotc
= SO_TC_UNSPEC
;
659 ip6oa
.ip6oa_netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
667 inp_debug
= SASEL_DO_DBG(inp
);
668 mopts
= inp
->in6p_moptions
;
669 if (INP_NO_CELLULAR(inp
)) {
670 ip6oa
.ip6oa_flags
|= IP6OAF_NO_CELLULAR
;
672 if (INP_NO_EXPENSIVE(inp
)) {
673 ip6oa
.ip6oa_flags
|= IP6OAF_NO_EXPENSIVE
;
675 if (INP_NO_CONSTRAINED(inp
)) {
676 ip6oa
.ip6oa_flags
|= IP6OAF_NO_CONSTRAINED
;
678 if (INP_AWDL_UNRESTRICTED(inp
)) {
679 ip6oa
.ip6oa_flags
|= IP6OAF_AWDL_UNRESTRICTED
;
681 if (INP_INTCOPROC_ALLOWED(inp
)) {
682 ip6oa
.ip6oa_flags
|= IP6OAF_INTCOPROC_ALLOWED
;
686 /* Allow the kernel to retransmit packets. */
687 ip6oa
.ip6oa_flags
|= IP6OAF_INTCOPROC_ALLOWED
|
688 IP6OAF_AWDL_UNRESTRICTED
;
691 if (ip6oa
.ip6oa_boundif
!= IFSCOPE_NONE
) {
692 ip6oa
.ip6oa_flags
|= IP6OAF_BOUND_IF
;
696 * If the source address is explicitly specified by the caller,
697 * check if the requested source address is indeed a unicast address
698 * assigned to the node, and can be used as the packet's source
699 * address. If everything is okay, use the address as source.
701 if (opts
&& (pi
= opts
->ip6po_pktinfo
) &&
702 !IN6_IS_ADDR_UNSPECIFIED(&pi
->ipi6_addr
)) {
703 struct sockaddr_in6 srcsock
;
704 struct in6_ifaddr
*ia6
;
706 /* get the outgoing interface */
707 if ((*errorp
= in6_selectif(dstsock
, opts
, mopts
, ro
, &ip6oa
,
714 * determine the appropriate zone id of the source based on
715 * the zone of the destination and the outgoing interface.
716 * If the specified address is ambiguous wrt the scope zone,
717 * the interface must be specified; otherwise, ifa_ifwithaddr()
718 * will fail matching the address.
720 bzero(&srcsock
, sizeof(srcsock
));
721 srcsock
.sin6_family
= AF_INET6
;
722 srcsock
.sin6_len
= sizeof(srcsock
);
723 srcsock
.sin6_addr
= pi
->ipi6_addr
;
725 *errorp
= in6_setscope(&srcsock
.sin6_addr
, ifp
, NULL
);
731 ia6
= (struct in6_ifaddr
*)ifa_ifwithaddr((struct sockaddr
*)
734 *errorp
= EADDRNOTAVAIL
;
738 IFA_LOCK_SPIN(&ia6
->ia_ifa
);
739 if ((ia6
->ia6_flags
& (IN6_IFF_ANYCAST
| IN6_IFF_NOTREADY
| IN6_IFF_CLAT46
)) ||
740 (inp
&& inp_restricted_send(inp
, ia6
->ia_ifa
.ifa_ifp
))) {
741 IFA_UNLOCK(&ia6
->ia_ifa
);
742 IFA_REMREF(&ia6
->ia_ifa
);
743 *errorp
= EHOSTUNREACH
;
748 *src_storage
= satosin6(&ia6
->ia_addr
)->sin6_addr
;
749 IFA_UNLOCK(&ia6
->ia_ifa
);
750 IFA_REMREF(&ia6
->ia_ifa
);
755 * Otherwise, if the socket has already bound the source, just use it.
757 if (inp
!= NULL
&& !IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
)) {
758 src_storage
= &inp
->in6p_laddr
;
763 * If the address is not specified, choose the best one based on
764 * the outgoing interface and the destination address.
766 /* get the outgoing interface */
767 if ((*errorp
= in6_selectif(dstsock
, opts
, mopts
, ro
, &ip6oa
,
776 opts
->ip6po_prefer_tempaddr
== IP6PO_TEMPADDR_SYSTEM
) {
777 prefer_tempaddr
= ip6_prefer_tempaddr
;
778 } else if (opts
->ip6po_prefer_tempaddr
== IP6PO_TEMPADDR_NOTPREFER
) {
784 if (prefer_tempaddr
) {
785 hint_mask
|= IPV6_SRCSEL_HINT_PREFER_TMPADDR
;
788 if (in6_selectsrc_core(dstsock
, hint_mask
, ifp
, inp_debug
, src_storage
,
789 &sifp
, errorp
, NULL
) == NULL
) {
794 VERIFY(sifp
!= NULL
);
796 if (inp
&& inp_restricted_send(inp
, sifp
)) {
798 *errorp
= EHOSTUNREACH
;
807 /* if ifp is non-NULL, refcnt held in in6_selectif() */
809 } else if (ifp
!= NULL
) {
816 * Given a source IPv6 address (and route, if available), determine the best
817 * interface to send the packet from. Checking for (and updating) the
818 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
819 * without any locks, based on the assumption that in the event this is
820 * called from ip6_output(), the output operation is single-threaded per-pcb,
821 * i.e. for any given pcb there can only be one thread performing output at
824 * This routine is analogous to in_selectsrcif() for IPv4. Regardless of
825 * error, it will return an ifp with a reference held if the caller provides
826 * a non-NULL retifp. The caller is responsible for checking if the
827 * returned ifp is valid and release its reference at all times.
829 * clone - meaningful only for bsdi and freebsd
832 selectroute(struct sockaddr_in6
*srcsock
, struct sockaddr_in6
*dstsock
,
833 struct ip6_pktopts
*opts
, struct ip6_moptions
*mopts
,
834 struct in6_ifaddr
**retsrcia
, struct route_in6
*ro
,
835 struct ifnet
**retifp
, struct rtentry
**retrt
, int clone
,
836 int norouteok
, struct ip6_out_args
*ip6oa
)
839 struct ifnet
*ifp
= NULL
, *ifp0
= NULL
;
840 struct route_in6
*route
= NULL
;
841 struct sockaddr_in6
*sin6_next
;
842 struct in6_pktinfo
*pi
= NULL
;
843 struct in6_addr
*dst
= &dstsock
->sin6_addr
;
844 struct ifaddr
*ifa
= NULL
;
845 char s_src
[MAX_IPv6_STR_LEN
], s_dst
[MAX_IPv6_STR_LEN
];
846 boolean_t select_srcif
, proxied_ifa
= FALSE
, local_dst
= FALSE
;
847 unsigned int ifscope
= ((ip6oa
!= NULL
) ?
848 ip6oa
->ip6oa_boundif
: IFSCOPE_NONE
);
849 boolean_t is_direct
= FALSE
;
851 if (retifp
!= NULL
) {
859 if (ip6_select_srcif_debug
) {
861 src
= (srcsock
!= NULL
) ? srcsock
->sin6_addr
: in6addr_any
;
862 (void) inet_ntop(AF_INET6
, &src
, s_src
, sizeof(s_src
));
863 (void) inet_ntop(AF_INET6
, dst
, s_dst
, sizeof(s_dst
));
867 * If the destination address is UNSPECIFIED addr, bail out.
869 if (IN6_IS_ADDR_UNSPECIFIED(dst
)) {
870 error
= EHOSTUNREACH
;
875 * Perform source interface selection if Scoped Routing
876 * is enabled and a source address that isn't unspecified.
878 select_srcif
= (srcsock
!= NULL
&&
879 !IN6_IS_ADDR_UNSPECIFIED(&srcsock
->sin6_addr
));
882 * For scoped routing, if interface scope is 0 or src/dst addr is linklocal
883 * or dst addr is multicast, source interface selection should be performed even
884 * if the destination is directly reachable.
886 if (ifscope
!= IFSCOPE_NONE
&&
887 !(srcsock
!= NULL
&& IN6_IS_ADDR_LINKLOCAL(&srcsock
->sin6_addr
)) &&
888 !IN6_IS_ADDR_MULTICAST(dst
) && !IN6_IS_ADDR_LINKLOCAL(dst
)) {
889 struct rtentry
*temp_rt
= NULL
;
891 lck_mtx_lock(rnh_lock
);
892 temp_rt
= rt_lookup(TRUE
, (struct sockaddr
*)dstsock
,
893 NULL
, rt_tables
[AF_INET6
], ifscope
);
894 lck_mtx_unlock(rnh_lock
);
897 * If the destination is directly reachable, relax
898 * the behavior around select_srcif, i.e. don't force
899 * the packet to go out from the interface that is hosting
900 * the source address.
901 * It happens when we share v6 with NAT66 and want
902 * the external interface's v6 address to be reachable
903 * to the clients we are sharing v6 connectivity with
906 if (temp_rt
!= NULL
) {
907 if ((temp_rt
->rt_flags
& RTF_GATEWAY
) == 0) {
908 select_srcif
= FALSE
;
915 if (ip6_select_srcif_debug
) {
916 printf("%s src %s dst %s ifscope %d is_direct %d select_srcif %d\n",
917 __func__
, s_src
, s_dst
, ifscope
, is_direct
, select_srcif
);
920 /* If the caller specified the outgoing interface explicitly, use it */
921 if (opts
!= NULL
&& (pi
= opts
->ip6po_pktinfo
) != NULL
&&
922 pi
->ipi6_ifindex
!= 0) {
924 * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF.
926 ifscope
= pi
->ipi6_ifindex
;
927 ifnet_head_lock_shared();
928 /* ifp may be NULL if detached or out of range */
930 ((ifscope
<= if_index
) ? ifindex2ifnet
[ifscope
] : NULL
);
932 if (norouteok
|| retrt
== NULL
|| IN6_IS_ADDR_MULTICAST(dst
)) {
934 * We do not have to check or get the route for
935 * multicast. If the caller didn't ask/care for
936 * the route and we have no interface to use,
940 error
= EHOSTUNREACH
;
949 * If the destination address is a multicast address and the outgoing
950 * interface for the address is specified by the caller, use it.
952 if (IN6_IS_ADDR_MULTICAST(dst
) && mopts
!= NULL
) {
954 if ((ifp
= ifp0
= mopts
->im6o_multicast_ifp
) != NULL
) {
956 goto done
; /* we do not need a route for multicast. */
963 * If the outgoing interface was not set via IPV6_BOUND_IF or
964 * IPV6_PKTINFO, use the scope ID in the destination address.
966 if (ifscope
== IFSCOPE_NONE
) {
967 ifscope
= dstsock
->sin6_scope_id
;
971 * Perform source interface selection; the source IPv6 address
972 * must belong to one of the addresses of the interface used
973 * by the route. For performance reasons, do this only if
974 * there is no route, or if the routing table has changed,
975 * or if we haven't done source interface selection on this
976 * route (for this PCB instance) before.
980 } else if (!ROUTE_UNUSABLE(ro
) && ro
->ro_srcia
!= NULL
&&
981 (ro
->ro_flags
& ROF_SRCIF_SELECTED
)) {
982 if (ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) {
986 IFA_ADDREF(ifa
); /* for caller */
991 * Given the source IPv6 address, find a suitable source interface
992 * to use for transmission; if a scope ID has been specified,
993 * optimize the search by looking at the addresses only for that
994 * interface. This is still suboptimal, however, as we need to
995 * traverse the per-interface list.
997 if (ifscope
!= IFSCOPE_NONE
|| (ro
!= NULL
&& ro
->ro_rt
!= NULL
)) {
998 unsigned int scope
= ifscope
;
999 struct ifnet
*rt_ifp
;
1001 rt_ifp
= (ro
->ro_rt
!= NULL
) ? ro
->ro_rt
->rt_ifp
: NULL
;
1004 * If no scope is specified and the route is stale (pointing
1005 * to a defunct interface) use the current primary interface;
1006 * this happens when switching between interfaces configured
1007 * with the same IPv6 address. Otherwise pick up the scope
1008 * information from the route; the ULP may have looked up a
1009 * correct route and we just need to verify it here and mark
1010 * it with the ROF_SRCIF_SELECTED flag below.
1012 if (scope
== IFSCOPE_NONE
) {
1013 scope
= rt_ifp
->if_index
;
1014 if (scope
!= get_primary_ifscope(AF_INET6
) &&
1015 ROUTE_UNUSABLE(ro
)) {
1016 scope
= get_primary_ifscope(AF_INET6
);
1020 ifa
= (struct ifaddr
*)
1021 ifa_foraddr6_scoped(&srcsock
->sin6_addr
, scope
);
1024 * If we are forwarding and proxying prefix(es), see if the
1025 * source address is one of ours and is a proxied address;
1028 if (ifa
== NULL
&& ip6_forwarding
&& nd6_prproxy
) {
1029 ifa
= (struct ifaddr
*)
1030 ifa_foraddr6(&srcsock
->sin6_addr
);
1031 if (ifa
!= NULL
&& !(proxied_ifa
=
1032 nd6_prproxy_ifaddr((struct in6_ifaddr
*)ifa
))) {
1038 if (ip6_select_srcif_debug
&& ifa
!= NULL
) {
1039 if (ro
->ro_rt
!= NULL
) {
1040 printf("%s %s->%s ifscope %d->%d ifa_if %s "
1043 s_src
, s_dst
, ifscope
,
1044 scope
, if_name(ifa
->ifa_ifp
),
1047 printf("%s %s->%s ifscope %d->%d ifa_if %s\n",
1049 s_src
, s_dst
, ifscope
, scope
,
1050 if_name(ifa
->ifa_ifp
));
1056 * Slow path; search for an interface having the corresponding source
1057 * IPv6 address if the scope was not specified by the caller, and:
1059 * 1) There currently isn't any route, or,
1060 * 2) The interface used by the route does not own that source
1061 * IPv6 address; in this case, the route will get blown away
1062 * and we'll do a more specific scoped search using the newly
1065 if (ifa
== NULL
&& ifscope
== IFSCOPE_NONE
) {
1066 struct ifaddr
*ifadst
;
1068 /* Check if the destination address is one of ours */
1069 ifadst
= (struct ifaddr
*)ifa_foraddr6(&dstsock
->sin6_addr
);
1070 if (ifadst
!= NULL
) {
1075 ifa
= (struct ifaddr
*)ifa_foraddr6(&srcsock
->sin6_addr
);
1077 if (ip6_select_srcif_debug
&& ifa
!= NULL
) {
1078 printf("%s %s->%s ifscope %d ifa_if %s\n",
1080 s_src
, s_dst
, ifscope
, if_name(ifa
->ifa_ifp
));
1081 } else if (ip6_select_srcif_debug
) {
1082 printf("%s %s->%s ifscope %d ifa_if NULL\n",
1084 s_src
, s_dst
, ifscope
);
1089 if (ifa
!= NULL
&& !proxied_ifa
&& !local_dst
) {
1090 ifscope
= ifa
->ifa_ifp
->if_index
;
1094 * If the next hop address for the packet is specified by the caller,
1095 * use it as the gateway.
1097 if (opts
!= NULL
&& opts
->ip6po_nexthop
!= NULL
) {
1098 struct route_in6
*ron
;
1100 sin6_next
= satosin6(opts
->ip6po_nexthop
);
1102 /* at this moment, we only support AF_INET6 next hops */
1103 if (sin6_next
->sin6_family
!= AF_INET6
) {
1104 error
= EAFNOSUPPORT
; /* or should we proceed? */
1109 * If the next hop is an IPv6 address, then the node identified
1110 * by that address must be a neighbor of the sending host.
1112 ron
= &opts
->ip6po_nextroute
;
1113 if (ron
->ro_rt
!= NULL
) {
1114 RT_LOCK(ron
->ro_rt
);
1116 if (ROUTE_UNUSABLE(ron
) || (ron
->ro_rt
!= NULL
&&
1117 (!(ron
->ro_rt
->rt_flags
& RTF_LLINFO
) ||
1118 (select_srcif
&& (ifa
== NULL
||
1119 (ifa
->ifa_ifp
!= ron
->ro_rt
->rt_ifp
&& !proxied_ifa
))))) ||
1120 !IN6_ARE_ADDR_EQUAL(&satosin6(&ron
->ro_dst
)->sin6_addr
,
1121 &sin6_next
->sin6_addr
)) {
1122 if (ron
->ro_rt
!= NULL
) {
1123 RT_UNLOCK(ron
->ro_rt
);
1127 *satosin6(&ron
->ro_dst
) = *sin6_next
;
1129 if (ron
->ro_rt
== NULL
) {
1130 rtalloc_scoped((struct route
*)ron
, ifscope
);
1131 if (ron
->ro_rt
!= NULL
) {
1132 RT_LOCK(ron
->ro_rt
);
1134 if (ROUTE_UNUSABLE(ron
) ||
1135 !(ron
->ro_rt
->rt_flags
& RTF_LLINFO
) ||
1136 !IN6_ARE_ADDR_EQUAL(&satosin6(rt_key(ron
->ro_rt
))->
1137 sin6_addr
, &sin6_next
->sin6_addr
)) {
1138 if (ron
->ro_rt
!= NULL
) {
1139 RT_UNLOCK(ron
->ro_rt
);
1143 error
= EHOSTUNREACH
;
1148 ifp
= ifp0
= ron
->ro_rt
->rt_ifp
;
1151 * When cloning is required, try to allocate a route to the
1152 * destination so that the caller can store path MTU
1157 /* Keep the route locked */
1160 RT_UNLOCK(ron
->ro_rt
);
1163 RT_UNLOCK(ron
->ro_rt
);
1167 * Use a cached route if it exists and is valid, else try to allocate
1168 * a new one. Note that we should check the address family of the
1169 * cached destination, in case of sharing the cache with IPv4.
1174 if (ro
->ro_rt
!= NULL
) {
1175 RT_LOCK_SPIN(ro
->ro_rt
);
1177 if (ROUTE_UNUSABLE(ro
) || (ro
->ro_rt
!= NULL
&&
1178 (satosin6(&ro
->ro_dst
)->sin6_family
!= AF_INET6
||
1179 !IN6_ARE_ADDR_EQUAL(&satosin6(&ro
->ro_dst
)->sin6_addr
, dst
) ||
1180 (select_srcif
&& (ifa
== NULL
||
1181 (ifa
->ifa_ifp
!= ro
->ro_rt
->rt_ifp
&& !proxied_ifa
)))))) {
1182 if (ro
->ro_rt
!= NULL
) {
1183 RT_UNLOCK(ro
->ro_rt
);
1188 if (ro
->ro_rt
== NULL
) {
1189 struct sockaddr_in6
*sa6
;
1191 if (ro
->ro_rt
!= NULL
) {
1192 RT_UNLOCK(ro
->ro_rt
);
1194 /* No route yet, so try to acquire one */
1195 bzero(&ro
->ro_dst
, sizeof(struct sockaddr_in6
));
1196 sa6
= (struct sockaddr_in6
*)&ro
->ro_dst
;
1197 sa6
->sin6_family
= AF_INET6
;
1198 sa6
->sin6_len
= sizeof(struct sockaddr_in6
);
1199 sa6
->sin6_addr
= *dst
;
1200 if (IN6_IS_ADDR_MULTICAST(dst
)) {
1201 ro
->ro_rt
= rtalloc1_scoped(
1202 &((struct route
*)ro
)->ro_dst
, 0, 0, ifscope
);
1204 rtalloc_scoped((struct route
*)ro
, ifscope
);
1206 if (ro
->ro_rt
!= NULL
) {
1207 RT_LOCK_SPIN(ro
->ro_rt
);
1212 * Do not care about the result if we have the nexthop
1213 * explicitly specified (in case we're asked to clone.)
1215 if (opts
!= NULL
&& opts
->ip6po_nexthop
!= NULL
) {
1216 if (ro
->ro_rt
!= NULL
) {
1217 RT_UNLOCK(ro
->ro_rt
);
1222 if (ro
->ro_rt
!= NULL
) {
1223 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
1224 ifp
= ifp0
= ro
->ro_rt
->rt_ifp
;
1226 error
= EHOSTUNREACH
;
1232 boolean_t has_route
= (route
!= NULL
&& route
->ro_rt
!= NULL
);
1233 boolean_t srcif_selected
= FALSE
;
1236 RT_LOCK_ASSERT_HELD(route
->ro_rt
);
1239 * If there is a non-loopback route with the wrong interface,
1240 * or if there is no interface configured with such an address,
1241 * blow it away. Except for local/loopback, we look for one
1242 * with a matching interface scope/index.
1244 if (has_route
&& (ifa
== NULL
||
1245 (ifa
->ifa_ifp
!= ifp
&& ifp
!= lo_ifp
) ||
1246 !(route
->ro_rt
->rt_flags
& RTF_UP
))) {
1248 * If the destination address belongs to a proxied
1249 * prefix, relax the requirement and allow the packet
1250 * to come out of the proxy interface with the source
1251 * address of the real interface.
1253 if (ifa
!= NULL
&& proxied_ifa
&&
1254 (route
->ro_rt
->rt_flags
& (RTF_UP
| RTF_PROXY
)) ==
1255 (RTF_UP
| RTF_PROXY
)) {
1256 srcif_selected
= TRUE
;
1258 if (ip6_select_srcif_debug
) {
1260 printf("%s->%s ifscope %d "
1261 "ro_if %s != ifa_if %s "
1262 "(cached route cleared)\n",
1264 ifscope
, if_name(ifp
),
1265 if_name(ifa
->ifa_ifp
));
1267 printf("%s->%s ifscope %d "
1268 "ro_if %s (no ifa_if "
1269 "found)\n", s_src
, s_dst
,
1270 ifscope
, if_name(ifp
));
1273 RT_UNLOCK(route
->ro_rt
);
1274 ROUTE_RELEASE(route
);
1275 error
= EHOSTUNREACH
;
1276 /* Undo the settings done above */
1278 ifp
= NULL
; /* ditch ifp; keep ifp0 */
1281 } else if (has_route
) {
1282 srcif_selected
= TRUE
;
1285 if (srcif_selected
) {
1287 if (ifa
!= route
->ro_srcia
||
1288 !(route
->ro_flags
& ROF_SRCIF_SELECTED
)) {
1289 RT_CONVERT_LOCK(route
->ro_rt
);
1291 IFA_ADDREF(ifa
); /* for route_in6 */
1293 if (route
->ro_srcia
!= NULL
) {
1294 IFA_REMREF(route
->ro_srcia
);
1296 route
->ro_srcia
= ifa
;
1297 route
->ro_flags
|= ROF_SRCIF_SELECTED
;
1298 RT_GENID_SYNC(route
->ro_rt
);
1300 RT_UNLOCK(route
->ro_rt
);
1303 if (ro
->ro_rt
!= NULL
) {
1304 RT_UNLOCK(ro
->ro_rt
);
1306 if (ifp
!= NULL
&& opts
!= NULL
&&
1307 opts
->ip6po_pktinfo
!= NULL
&&
1308 opts
->ip6po_pktinfo
->ipi6_ifindex
!= 0) {
1310 * Check if the outgoing interface conflicts with the
1311 * interface specified by ipi6_ifindex (if specified).
1312 * Note that loopback interface is always okay.
1313 * (this may happen when we are sending a packet to
1314 * one of our own addresses.)
1316 if (!(ifp
->if_flags
& IFF_LOOPBACK
) && ifp
->if_index
!=
1317 opts
->ip6po_pktinfo
->ipi6_ifindex
) {
1318 error
= EHOSTUNREACH
;
1326 * Check for interface restrictions.
1328 #define CHECK_RESTRICTIONS(_ip6oa, _ifp) \
1329 ((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \
1330 IFNET_IS_CELLULAR(_ifp)) || \
1331 (((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \
1332 IFNET_IS_EXPENSIVE(_ifp)) || \
1333 (((_ip6oa)->ip6oa_flags & IP6OAF_NO_CONSTRAINED) && \
1334 IFNET_IS_CONSTRAINED(_ifp)) || \
1335 (!((_ip6oa)->ip6oa_flags & IP6OAF_INTCOPROC_ALLOWED) && \
1336 IFNET_IS_INTCOPROC(_ifp)) || \
1337 (!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \
1338 IFNET_IS_AWDL_RESTRICTED(_ifp)))
1340 if (error
== 0 && ip6oa
!= NULL
&&
1341 ((ifp
&& CHECK_RESTRICTIONS(ip6oa
, ifp
)) ||
1342 (route
&& route
->ro_rt
&&
1343 CHECK_RESTRICTIONS(ip6oa
, route
->ro_rt
->rt_ifp
)))) {
1344 if (route
!= NULL
&& route
->ro_rt
!= NULL
) {
1345 ROUTE_RELEASE(route
);
1348 ifp
= NULL
; /* ditch ifp; keep ifp0 */
1349 error
= EHOSTUNREACH
;
1350 ip6oa
->ip6oa_retflags
|= IP6OARF_IFDENIED
;
1352 #undef CHECK_RESTRICTIONS
1355 * If the interface is disabled for IPv6, then ENETDOWN error.
1358 ifp
!= NULL
&& (ifp
->if_eflags
& IFEF_IPV6_DISABLED
)) {
1362 if (ifp
== NULL
&& (route
== NULL
|| route
->ro_rt
== NULL
)) {
1364 * This can happen if the caller did not pass a cached route
1365 * nor any other hints. We treat this case an error.
1367 error
= EHOSTUNREACH
;
1369 if (error
== EHOSTUNREACH
|| error
== ENETDOWN
) {
1370 ip6stat
.ip6s_noroute
++;
1374 * We'll return ifp regardless of error, so pick it up from ifp0
1375 * in case it was nullified above. Caller is responsible for
1376 * releasing the ifp if it is non-NULL.
1379 if (retifp
!= NULL
) {
1381 ifnet_reference(ifp
); /* for caller */
1386 if (retsrcia
!= NULL
) {
1388 IFA_ADDREF(ifa
); /* for caller */
1390 *retsrcia
= (struct in6_ifaddr
*)ifa
;
1394 if (retrt
!= NULL
&& route
!= NULL
) {
1395 *retrt
= route
->ro_rt
; /* ro_rt may be NULL */
1398 if (ip6_select_srcif_debug
) {
1399 printf("%s %s->%s ifscope %d ifa_if %s ro_if %s (error=%d)\n",
1401 s_src
, s_dst
, ifscope
,
1402 (ifa
!= NULL
) ? if_name(ifa
->ifa_ifp
) : "NONE",
1403 (ifp
!= NULL
) ? if_name(ifp
) : "NONE", error
);
1414 * Regardless of error, it will return an ifp with a reference held if the
1415 * caller provides a non-NULL retifp. The caller is responsible for checking
1416 * if the returned ifp is valid and release its reference at all times.
1419 in6_selectif(struct sockaddr_in6
*dstsock
, struct ip6_pktopts
*opts
,
1420 struct ip6_moptions
*mopts
, struct route_in6
*ro
,
1421 struct ip6_out_args
*ip6oa
, struct ifnet
**retifp
)
1424 struct route_in6 sro
;
1425 struct rtentry
*rt
= NULL
;
1428 bzero(&sro
, sizeof(sro
));
1432 if ((err
= selectroute(NULL
, dstsock
, opts
, mopts
, NULL
, ro
, retifp
,
1433 &rt
, 0, 1, ip6oa
)) != 0) {
1438 * do not use a rejected or black hole route.
1439 * XXX: this check should be done in the L2 output routine.
1440 * However, if we skipped this check here, we'd see the following
1442 * - install a rejected route for a scoped address prefix
1444 * - send a packet to a destination that matches the scoped prefix,
1445 * with ambiguity about the scope zone.
1446 * - pick the outgoing interface from the route, and disambiguate the
1447 * scope zone with the interface.
1448 * - ip6_output() would try to get another route with the "new"
1449 * destination, which may be valid.
1450 * - we'd see no error on output.
1451 * Although this may not be very harmful, it should still be confusing.
1452 * We thus reject the case here.
1454 if (rt
&& (rt
->rt_flags
& (RTF_REJECT
| RTF_BLACKHOLE
))) {
1455 err
= ((rt
->rt_flags
& RTF_HOST
) ? EHOSTUNREACH
: ENETUNREACH
);
1460 * Adjust the "outgoing" interface. If we're going to loop the packet
1461 * back to ourselves, the ifp would be the loopback interface.
1462 * However, we'd rather know the interface associated to the
1463 * destination address (which should probably be one of our own
1466 if (rt
!= NULL
&& rt
->rt_ifa
!= NULL
&& rt
->rt_ifa
->ifa_ifp
!= NULL
&&
1468 ifnet_reference(rt
->rt_ifa
->ifa_ifp
);
1469 if (*retifp
!= NULL
) {
1470 ifnet_release(*retifp
);
1472 *retifp
= rt
->rt_ifa
->ifa_ifp
;
1477 VERIFY(rt
== NULL
|| rt
== ro
->ro_rt
);
1482 * retifp might point to a valid ifp with a reference held;
1483 * caller is responsible for releasing it if non-NULL.
1489 * Regardless of error, it will return an ifp with a reference held if the
1490 * caller provides a non-NULL retifp. The caller is responsible for checking
1491 * if the returned ifp is valid and release its reference at all times.
1493 * clone - meaningful only for bsdi and freebsd
1496 in6_selectroute(struct sockaddr_in6
*srcsock
, struct sockaddr_in6
*dstsock
,
1497 struct ip6_pktopts
*opts
, struct ip6_moptions
*mopts
,
1498 struct in6_ifaddr
**retsrcia
, struct route_in6
*ro
, struct ifnet
**retifp
,
1499 struct rtentry
**retrt
, int clone
, struct ip6_out_args
*ip6oa
)
1501 return selectroute(srcsock
, dstsock
, opts
, mopts
, retsrcia
, ro
, retifp
,
1502 retrt
, clone
, 0, ip6oa
);
1506 * Default hop limit selection. The precedence is as follows:
1507 * 1. Hoplimit value specified via ioctl.
1508 * 2. (If the outgoing interface is detected) the current
1509 * hop limit of the interface specified by router advertisement.
1510 * 3. The system default hoplimit.
1513 in6_selecthlim(struct in6pcb
*in6p
, struct ifnet
*ifp
)
1515 if (in6p
&& in6p
->in6p_hops
>= 0) {
1516 return in6p
->in6p_hops
;
1517 } else if (NULL
!= ifp
) {
1519 struct nd_ifinfo
*ndi
= ND_IFINFO(ifp
);
1520 if (ndi
&& ndi
->initialized
) {
1521 /* access chlim without lock, for performance */
1524 chlim
= ip6_defhlim
;
1533 * XXX: this is borrowed from in6_pcbbind(). If possible, we should
1534 * share this function by all *bsd*...
1537 in6_pcbsetport(struct in6_addr
*laddr
, struct inpcb
*inp
, struct proc
*p
,
1540 struct socket
*so
= inp
->inp_socket
;
1541 u_int16_t lport
= 0, first
, last
, *lastport
;
1542 int count
, error
= 0, wild
= 0;
1543 boolean_t counting_down
;
1545 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
1547 #pragma unused(laddr)
1548 if (!locked
) { /* Make sure we don't run into a deadlock: 4052373 */
1549 if (!lck_rw_try_lock_exclusive(pcbinfo
->ipi_lock
)) {
1550 socket_unlock(inp
->inp_socket
, 0);
1551 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
1552 socket_lock(inp
->inp_socket
, 0);
1556 * Check if a local port was assigned to the inp while
1557 * this thread was waiting for the pcbinfo lock
1559 if (inp
->inp_lport
!= 0) {
1560 VERIFY(inp
->inp_flags2
& INP2_INHASHLIST
);
1561 lck_rw_done(pcbinfo
->ipi_lock
);
1564 * It is not an error if another thread allocated
1571 /* XXX: this is redundant when called from in6_pcbbind */
1572 if ((so
->so_options
& (SO_REUSEADDR
| SO_REUSEPORT
)) == 0) {
1573 wild
= INPLOOKUP_WILDCARD
;
1576 if (inp
->inp_flags
& INP_HIGHPORT
) {
1577 first
= ipport_hifirstauto
; /* sysctl */
1578 last
= ipport_hilastauto
;
1579 lastport
= &pcbinfo
->ipi_lasthi
;
1580 } else if (inp
->inp_flags
& INP_LOWPORT
) {
1581 cred
= kauth_cred_proc_ref(p
);
1582 error
= priv_check_cred(cred
, PRIV_NETINET_RESERVEDPORT
, 0);
1583 kauth_cred_unref(&cred
);
1586 lck_rw_done(pcbinfo
->ipi_lock
);
1590 first
= ipport_lowfirstauto
; /* 1023 */
1591 last
= ipport_lowlastauto
; /* 600 */
1592 lastport
= &pcbinfo
->ipi_lastlow
;
1594 first
= ipport_firstauto
; /* sysctl */
1595 last
= ipport_lastauto
;
1596 lastport
= &pcbinfo
->ipi_lastport
;
1599 * Simple check to ensure all ports are not used up causing
1605 count
= first
- last
;
1606 counting_down
= TRUE
;
1609 count
= last
- first
;
1610 counting_down
= FALSE
;
1613 if (count
-- < 0) { /* completely used? */
1615 * Undo any address bind that may have
1618 inp
->in6p_laddr
= in6addr_any
;
1619 inp
->in6p_last_outifp
= NULL
;
1621 lck_rw_done(pcbinfo
->ipi_lock
);
1625 if (counting_down
) {
1627 if (*lastport
> first
|| *lastport
< last
) {
1632 if (*lastport
< first
|| *lastport
> last
) {
1636 lport
= htons(*lastport
);
1639 * Skip if this is a restricted port as we do not want to
1640 * restricted ports as ephemeral
1642 if (IS_RESTRICTED_IN_PORT(lport
)) {
1646 found
= (in6_pcblookup_local(pcbinfo
, &inp
->in6p_laddr
,
1647 lport
, wild
) == NULL
);
1650 inp
->inp_lport
= lport
;
1651 inp
->inp_flags
|= INP_ANONPORT
;
1653 if (in_pcbinshash(inp
, 1) != 0) {
1654 inp
->in6p_laddr
= in6addr_any
;
1655 inp
->in6p_last_outifp
= NULL
;
1658 inp
->inp_flags
&= ~INP_ANONPORT
;
1660 lck_rw_done(pcbinfo
->ipi_lock
);
1666 lck_rw_done(pcbinfo
->ipi_lock
);
1672 * The followings are implementation of the policy table using a
1673 * simple tail queue.
1674 * XXX such details should be hidden.
1675 * XXX implementation using binary tree should be more efficient.
1677 struct addrsel_policyent
{
1678 TAILQ_ENTRY(addrsel_policyent
) ape_entry
;
1679 struct in6_addrpolicy ape_policy
;
1682 TAILQ_HEAD(addrsel_policyhead
, addrsel_policyent
);
1684 struct addrsel_policyhead addrsel_policytab
;
1687 init_policy_queue(void)
1689 TAILQ_INIT(&addrsel_policytab
);
1693 addrsel_policy_init(void)
1696 * Default address selection policy based on RFC 6724.
1698 static const struct in6_addrpolicy defaddrsel
[] = {
1699 /* Loopback -- prefix=::1/128, precedence=50, label=0 */
1702 .sin6_family
= AF_INET6
,
1703 .sin6_addr
= IN6ADDR_LOOPBACK_INIT
,
1704 .sin6_len
= sizeof(struct sockaddr_in6
)
1707 .sin6_family
= AF_INET6
,
1708 .sin6_addr
= IN6MASK128
,
1709 .sin6_len
= sizeof(struct sockaddr_in6
)
1715 /* Unspecified -- prefix=::/0, precedence=40, label=1 */
1718 .sin6_family
= AF_INET6
,
1719 .sin6_addr
= IN6ADDR_ANY_INIT
,
1720 .sin6_len
= sizeof(struct sockaddr_in6
)
1723 .sin6_family
= AF_INET6
,
1724 .sin6_addr
= IN6MASK0
,
1725 .sin6_len
= sizeof(struct sockaddr_in6
)
1731 /* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */
1734 .sin6_family
= AF_INET6
,
1735 .sin6_addr
= IN6ADDR_V4MAPPED_INIT
,
1736 .sin6_len
= sizeof(struct sockaddr_in6
)
1739 .sin6_family
= AF_INET6
,
1740 .sin6_addr
= IN6MASK96
,
1741 .sin6_len
= sizeof(struct sockaddr_in6
)
1747 /* 6to4 -- prefix=2002::/16, precedence=30, label=2 */
1750 .sin6_family
= AF_INET6
,
1751 .sin6_addr
= {{{ 0x20, 0x02 }}},
1752 .sin6_len
= sizeof(struct sockaddr_in6
)
1755 .sin6_family
= AF_INET6
,
1756 .sin6_addr
= IN6MASK16
,
1757 .sin6_len
= sizeof(struct sockaddr_in6
)
1763 /* Teredo -- prefix=2001::/32, precedence=5, label=5 */
1766 .sin6_family
= AF_INET6
,
1767 .sin6_addr
= {{{ 0x20, 0x01 }}},
1768 .sin6_len
= sizeof(struct sockaddr_in6
)
1771 .sin6_family
= AF_INET6
,
1772 .sin6_addr
= IN6MASK32
,
1773 .sin6_len
= sizeof(struct sockaddr_in6
)
1779 /* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */
1782 .sin6_family
= AF_INET6
,
1783 .sin6_addr
= {{{ 0xfc }}},
1784 .sin6_len
= sizeof(struct sockaddr_in6
)
1787 .sin6_family
= AF_INET6
,
1788 .sin6_addr
= IN6MASK7
,
1789 .sin6_len
= sizeof(struct sockaddr_in6
)
1795 /* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */
1798 .sin6_family
= AF_INET6
,
1799 .sin6_addr
= IN6ADDR_ANY_INIT
,
1800 .sin6_len
= sizeof(struct sockaddr_in6
)
1803 .sin6_family
= AF_INET6
,
1804 .sin6_addr
= IN6MASK96
,
1805 .sin6_len
= sizeof(struct sockaddr_in6
)
1811 /* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */
1814 .sin6_family
= AF_INET6
,
1815 .sin6_addr
= {{{ 0xfe, 0xc0 }}},
1816 .sin6_len
= sizeof(struct sockaddr_in6
)
1819 .sin6_family
= AF_INET6
,
1820 .sin6_addr
= IN6MASK16
,
1821 .sin6_len
= sizeof(struct sockaddr_in6
)
1827 /* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */
1830 .sin6_family
= AF_INET6
,
1831 .sin6_addr
= {{{ 0x3f, 0xfe }}},
1832 .sin6_len
= sizeof(struct sockaddr_in6
)
1835 .sin6_family
= AF_INET6
,
1836 .sin6_addr
= IN6MASK16
,
1837 .sin6_len
= sizeof(struct sockaddr_in6
)
1845 init_policy_queue();
1847 /* initialize the "last resort" policy */
1848 bzero(&defaultaddrpolicy
, sizeof(defaultaddrpolicy
));
1849 defaultaddrpolicy
.label
= ADDR_LABEL_NOTAPP
;
1851 for (i
= 0; i
< sizeof(defaddrsel
) / sizeof(defaddrsel
[0]); i
++) {
1852 add_addrsel_policyent(&defaddrsel
[i
]);
1856 struct in6_addrpolicy
*
1857 in6_addrsel_lookup_policy(struct sockaddr_in6
*key
)
1859 struct in6_addrpolicy
*match
= NULL
;
1862 match
= match_addrsel_policy(key
);
1864 if (match
== NULL
) {
1865 match
= &defaultaddrpolicy
;
1874 static struct in6_addrpolicy
*
1875 match_addrsel_policy(struct sockaddr_in6
*key
)
1877 struct addrsel_policyent
*pent
;
1878 struct in6_addrpolicy
*bestpol
= NULL
, *pol
;
1879 int matchlen
, bestmatchlen
= -1;
1880 u_char
*mp
, *ep
, *k
, *p
, m
;
1882 TAILQ_FOREACH(pent
, &addrsel_policytab
, ape_entry
) {
1885 pol
= &pent
->ape_policy
;
1886 mp
= (u_char
*)&pol
->addrmask
.sin6_addr
;
1887 ep
= mp
+ 16; /* XXX: scope field? */
1888 k
= (u_char
*)&key
->sin6_addr
;
1889 p
= (u_char
*)&pol
->addr
.sin6_addr
;
1890 for (; mp
< ep
&& *mp
; mp
++, k
++, p
++) {
1892 if ((*k
& m
) != *p
) {
1893 goto next
; /* not match */
1895 if (m
== 0xff) { /* short cut for a typical case */
1905 /* matched. check if this is better than the current best. */
1906 if (bestpol
== NULL
||
1907 matchlen
> bestmatchlen
) {
1909 bestmatchlen
= matchlen
;
1920 add_addrsel_policyent(const struct in6_addrpolicy
*newpolicy
)
1922 struct addrsel_policyent
*new, *pol
;
1924 MALLOC(new, struct addrsel_policyent
*, sizeof(*new), M_IFADDR
,
1929 /* duplication check */
1930 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1931 if (IN6_ARE_ADDR_EQUAL(&newpolicy
->addr
.sin6_addr
,
1932 &pol
->ape_policy
.addr
.sin6_addr
) &&
1933 IN6_ARE_ADDR_EQUAL(&newpolicy
->addrmask
.sin6_addr
,
1934 &pol
->ape_policy
.addrmask
.sin6_addr
)) {
1936 FREE(new, M_IFADDR
);
1937 return EEXIST
; /* or override it? */
1941 bzero(new, sizeof(*new));
1943 /* XXX: should validate entry */
1944 new->ape_policy
= *newpolicy
;
1946 TAILQ_INSERT_TAIL(&addrsel_policytab
, new, ape_entry
);
1951 #ifdef ENABLE_ADDRSEL
1953 delete_addrsel_policyent(const struct in6_addrpolicy
*key
)
1955 struct addrsel_policyent
*pol
;
1960 /* search for the entry in the table */
1961 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1962 if (IN6_ARE_ADDR_EQUAL(&key
->addr
.sin6_addr
,
1963 &pol
->ape_policy
.addr
.sin6_addr
) &&
1964 IN6_ARE_ADDR_EQUAL(&key
->addrmask
.sin6_addr
,
1965 &pol
->ape_policy
.addrmask
.sin6_addr
)) {
1974 TAILQ_REMOVE(&addrsel_policytab
, pol
, ape_entry
);
1975 FREE(pol
, M_IFADDR
);
1981 #endif /* ENABLE_ADDRSEL */
1984 walk_addrsel_policy(int (*callback
)(const struct in6_addrpolicy
*, void *),
1987 struct addrsel_policyent
*pol
;
1991 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1992 if ((error
= (*callback
)(&pol
->ape_policy
, w
)) != 0) {
2001 * Subroutines to manage the address selection policy table via sysctl.
2004 struct sysctl_req
*w_req
;
2009 dump_addrsel_policyent(const struct in6_addrpolicy
*pol
, void *arg
)
2012 struct walkarg
*w
= arg
;
2014 error
= SYSCTL_OUT(w
->w_req
, pol
, sizeof(*pol
));
2020 in6_src_sysctl SYSCTL_HANDLER_ARGS
2022 #pragma unused(oidp, arg1, arg2)
2028 bzero(&w
, sizeof(w
));
2031 return walk_addrsel_policy(dump_addrsel_policyent
, &w
);
2035 SYSCTL_NODE(_net_inet6_ip6
, IPV6CTL_ADDRCTLPOLICY
, addrctlpolicy
,
2036 CTLFLAG_RD
| CTLFLAG_LOCKED
, in6_src_sysctl
, "");
2038 in6_src_ioctl(u_long cmd
, caddr_t data
)
2041 struct in6_addrpolicy ent0
;
2043 if (cmd
!= SIOCAADDRCTL_POLICY
&& cmd
!= SIOCDADDRCTL_POLICY
) {
2044 return EOPNOTSUPP
; /* check for safety */
2046 bcopy(data
, &ent0
, sizeof(ent0
));
2048 if (ent0
.label
== ADDR_LABEL_NOTAPP
) {
2051 /* check if the prefix mask is consecutive. */
2052 if (in6_mask2len(&ent0
.addrmask
.sin6_addr
, NULL
) < 0) {
2055 /* clear trailing garbages (if any) of the prefix address. */
2056 for (i
= 0; i
< 4; i
++) {
2057 ent0
.addr
.sin6_addr
.s6_addr32
[i
] &=
2058 ent0
.addrmask
.sin6_addr
.s6_addr32
[i
];
2063 case SIOCAADDRCTL_POLICY
:
2064 #ifdef ENABLE_ADDRSEL
2065 return add_addrsel_policyent(&ent0
);
2069 case SIOCDADDRCTL_POLICY
:
2070 #ifdef ENABLE_ADDRSEL
2071 return delete_addrsel_policyent(&ent0
);
2077 return 0; /* XXX: compromise compilers */
2081 * generate kernel-internal form (scopeid embedded into s6_addr16[1]).
2082 * If the address scope of is link-local, embed the interface index in the
2083 * address. The routine determines our precedence
2084 * between advanced API scope/interface specification and basic API
2087 * this function should be nuked in the future, when we get rid of
2088 * embedded scopeid thing.
2090 * XXX actually, it is over-specification to return ifp against sin6_scope_id.
2091 * there can be multiple interfaces that belong to a particular scope zone
2092 * (in specification, we have 1:N mapping between a scope zone and interfaces).
2093 * we may want to change the function to return something other than ifp.
2096 in6_embedscope(struct in6_addr
*in6
, const struct sockaddr_in6
*sin6
,
2097 struct in6pcb
*in6p
, struct ifnet
**ifpp
, struct ip6_pktopts
*opt
)
2099 struct ifnet
*ifp
= NULL
;
2101 struct ip6_pktopts
*optp
= NULL
;
2103 *in6
= sin6
->sin6_addr
;
2104 scopeid
= sin6
->sin6_scope_id
;
2110 * don't try to read sin6->sin6_addr beyond here, since the caller may
2111 * ask us to overwrite existing sockaddr_in6
2114 #ifdef ENABLE_DEFAULT_SCOPE
2116 scopeid
= scope6_addr2default(in6
);
2120 if (IN6_IS_SCOPE_LINKLOCAL(in6
) || IN6_IS_ADDR_MC_INTFACELOCAL(in6
)) {
2121 struct in6_pktinfo
*pi
;
2122 struct ifnet
*im6o_multicast_ifp
= NULL
;
2124 if (in6p
!= NULL
&& IN6_IS_ADDR_MULTICAST(in6
) &&
2125 in6p
->in6p_moptions
!= NULL
) {
2126 IM6O_LOCK(in6p
->in6p_moptions
);
2127 im6o_multicast_ifp
=
2128 in6p
->in6p_moptions
->im6o_multicast_ifp
;
2129 IM6O_UNLOCK(in6p
->in6p_moptions
);
2134 } else if (in6p
!= NULL
) {
2135 optp
= in6p
->in6p_outputopts
;
2138 * KAME assumption: link id == interface id
2140 if (in6p
!= NULL
&& optp
!= NULL
&&
2141 (pi
= optp
->ip6po_pktinfo
) != NULL
&&
2142 pi
->ipi6_ifindex
!= 0) {
2143 /* ifp is needed here if only we're returning it */
2145 ifnet_head_lock_shared();
2146 ifp
= ifindex2ifnet
[pi
->ipi6_ifindex
];
2149 in6
->s6_addr16
[1] = htons(pi
->ipi6_ifindex
);
2150 } else if (in6p
!= NULL
&& IN6_IS_ADDR_MULTICAST(in6
) &&
2151 in6p
->in6p_moptions
!= NULL
&& im6o_multicast_ifp
!= NULL
) {
2152 ifp
= im6o_multicast_ifp
;
2153 in6
->s6_addr16
[1] = htons(ifp
->if_index
);
2154 } else if (scopeid
!= 0) {
2156 * Since scopeid is unsigned, we only have to check it
2157 * against if_index (ifnet_head_lock not needed since
2158 * if_index is an ever-increasing integer.)
2160 if (if_index
< scopeid
) {
2161 return ENXIO
; /* XXX EINVAL? */
2163 /* ifp is needed here only if we're returning it */
2165 ifnet_head_lock_shared();
2166 ifp
= ifindex2ifnet
[scopeid
];
2169 /* XXX assignment to 16bit from 32bit variable */
2170 in6
->s6_addr16
[1] = htons(scopeid
& 0xffff);
2175 ifnet_reference(ifp
); /* for caller */
2185 * generate standard sockaddr_in6 from embedded form.
2186 * touches sin6_addr and sin6_scope_id only.
2188 * this function should be nuked in the future, when we get rid of
2189 * embedded scopeid thing.
2193 struct sockaddr_in6
*sin6
,
2194 const struct in6_addr
*in6
,
2199 sin6
->sin6_addr
= *in6
;
2202 * don't try to read *in6 beyond here, since the caller may
2203 * ask us to overwrite existing sockaddr_in6
2206 sin6
->sin6_scope_id
= 0;
2207 if (IN6_IS_SCOPE_LINKLOCAL(in6
) || IN6_IS_ADDR_MC_INTFACELOCAL(in6
)) {
2209 * KAME assumption: link id == interface id
2211 scopeid
= ntohs(sin6
->sin6_addr
.s6_addr16
[1]);
2216 * Since scopeid is unsigned, we only have to check it
2219 if (if_index
< scopeid
) {
2222 if (ifp
&& ifp
->if_index
!= scopeid
) {
2225 sin6
->sin6_addr
.s6_addr16
[1] = 0;
2226 sin6
->sin6_scope_id
= scopeid
;