2 * Copyright (c) 2006-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
41 #include <IOKit/IOBSD.h>
43 #include <corpses/task_corpse.h>
44 #include <libkern/libkern.h>
45 #include <mach/coalition.h>
46 #include <mach/mach_time.h>
47 #include <mach/task.h>
48 #include <mach/host_priv.h>
49 #include <mach/mach_host.h>
51 #include <pexpert/pexpert.h>
52 #include <sys/coalition.h>
53 #include <sys/kern_event.h>
55 #include <sys/proc_info.h>
56 #include <sys/reason.h>
57 #include <sys/signal.h>
58 #include <sys/signalvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
64 #include <vm/vm_pageout.h>
65 #include <vm/vm_protos.h>
66 #include <mach/machine/sdt.h>
67 #include <libkern/section_keywords.h>
68 #include <stdatomic.h>
71 #include <vm/vm_map.h>
72 #endif /* CONFIG_FREEZE */
74 #include <sys/kern_memorystatus.h>
75 #include <sys/kern_memorystatus_freeze.h>
76 #include <sys/kern_memorystatus_notify.h>
78 /* For logging clarity */
79 static const char *memorystatus_kill_cause_name
[] = {
80 "", /* kMemorystatusInvalid */
81 "jettisoned", /* kMemorystatusKilled */
82 "highwater", /* kMemorystatusKilledHiwat */
83 "vnode-limit", /* kMemorystatusKilledVnodes */
84 "vm-pageshortage", /* kMemorystatusKilledVMPageShortage */
85 "proc-thrashing", /* kMemorystatusKilledProcThrashing */
86 "fc-thrashing", /* kMemorystatusKilledFCThrashing */
87 "per-process-limit", /* kMemorystatusKilledPerProcessLimit */
88 "disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */
89 "idle-exit", /* kMemorystatusKilledIdleExit */
90 "zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */
91 "vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */
92 "vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */
96 memorystatus_priority_band_name(int32_t priority
)
99 case JETSAM_PRIORITY_FOREGROUND
:
101 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY
:
102 return "AUDIO_AND_ACCESSORY";
103 case JETSAM_PRIORITY_CONDUCTOR
:
105 case JETSAM_PRIORITY_DRIVER_APPLE
:
106 return "DRIVER_APPLE";
107 case JETSAM_PRIORITY_HOME
:
109 case JETSAM_PRIORITY_EXECUTIVE
:
111 case JETSAM_PRIORITY_IMPORTANT
:
113 case JETSAM_PRIORITY_CRITICAL
:
120 /* Does cause indicate vm or fc thrashing? */
122 is_reason_thrashing(unsigned cause
)
125 case kMemorystatusKilledFCThrashing
:
126 case kMemorystatusKilledVMCompressorThrashing
:
127 case kMemorystatusKilledVMCompressorSpaceShortage
:
134 /* Is the zone map almost full? */
136 is_reason_zone_map_exhaustion(unsigned cause
)
138 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
145 * Returns the current zone map size and capacity to include in the jetsam snapshot.
146 * Defined in zalloc.c
148 extern void get_zone_map_size(uint64_t *current_size
, uint64_t *capacity
);
151 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
152 * Defined in zalloc.c
154 extern void get_largest_zone_info(char *zone_name
, size_t zone_name_len
, uint64_t *zone_size
);
157 * Active / Inactive limit support
158 * proc list must be locked
160 * The SET_*** macros are used to initialize a limit
161 * for the first time.
163 * The CACHE_*** macros are use to cache the limit that will
164 * soon be in effect down in the ledgers.
167 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
169 (p)->p_memstat_memlimit_active = (limit); \
171 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
173 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
177 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
179 (p)->p_memstat_memlimit_inactive = (limit); \
181 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
183 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
187 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
189 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
190 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
191 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
194 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
199 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
201 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
202 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
203 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
206 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
212 /* General tunables */
214 unsigned long delta_percentage
= 5;
215 unsigned long critical_threshold_percentage
= 5;
216 // On embedded devices with more than 3GB of memory we lower the critical percentage.
217 uint64_t config_jetsam_large_memory_cutoff
= 3UL * (1UL << 30);
218 unsigned long critical_threshold_percentage_larger_devices
= 4;
219 unsigned long delta_percentage_larger_devices
= 4;
220 unsigned long idle_offset_percentage
= 5;
221 unsigned long pressure_threshold_percentage
= 15;
222 unsigned long policy_more_free_offset_percentage
= 5;
223 unsigned long sysproc_aging_aggr_threshold_percentage
= 7;
226 * default jetsam snapshot support
228 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
229 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_copy
;
230 unsigned int memorystatus_jetsam_snapshot_count
= 0;
231 unsigned int memorystatus_jetsam_snapshot_copy_count
= 0;
232 unsigned int memorystatus_jetsam_snapshot_max
= 0;
233 unsigned int memorystatus_jetsam_snapshot_size
= 0;
234 uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
235 uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
237 /* General memorystatus stuff */
239 uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
240 uint64_t memorystatus_apps_idle_delay_time
= 0;
242 static lck_grp_attr_t
*memorystatus_jetsam_fg_band_lock_grp_attr
;
243 static lck_grp_t
*memorystatus_jetsam_fg_band_lock_grp
;
244 lck_mtx_t memorystatus_jetsam_fg_band_lock
;
246 /* Idle guard handling */
248 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
249 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
251 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
252 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
253 static void memorystatus_reschedule_idle_demotion_locked(void);
254 int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
255 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
256 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
257 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
258 void memorystatus_send_low_swap_note(void);
259 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
);
260 boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
,
261 uint32_t *errors
, uint64_t *memory_reclaimed
);
262 uint64_t memorystatus_available_memory_internal(proc_t p
);
264 unsigned int memorystatus_level
= 0;
265 static int memorystatus_list_count
= 0;
266 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
267 static thread_call_t memorystatus_idle_demotion_call
;
268 uint64_t memstat_idle_demotion_deadline
= 0;
269 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
270 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
272 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
274 #define kJetsamAgingPolicyNone (0)
275 #define kJetsamAgingPolicyLegacy (1)
276 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
277 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
278 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
280 unsigned int jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
282 extern int corpse_for_fatal_memkill
;
283 extern uint64_t vm_purgeable_purge_task_owned(task_t task
);
284 boolean_t
memorystatus_allowed_vm_map_fork(task_t
);
285 #if DEVELOPMENT || DEBUG
286 void memorystatus_abort_vm_map_fork(task_t
);
290 * Idle delay timeout factors for daemons based on relaunch behavior. Only used in
291 * kJetsamAgingPolicySysProcsReclaimedFirst aging policy.
293 #define kJetsamSysProcsIdleDelayTimeLowRatio (5)
294 #define kJetsamSysProcsIdleDelayTimeMedRatio (2)
295 #define kJetsamSysProcsIdleDelayTimeHighRatio (1)
296 static_assert(kJetsamSysProcsIdleDelayTimeLowRatio
<= DEFERRED_IDLE_EXIT_TIME_SECS
, "sysproc idle delay time for low relaunch daemons would be 0");
299 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, treat apps as well
300 * behaved daemons for aging purposes.
302 #define kJetsamAppsIdleDelayTimeRatio (kJetsamSysProcsIdleDelayTimeLowRatio)
305 memorystatus_sysprocs_idle_time(proc_t p
)
308 * The kJetsamAgingPolicySysProcsReclaimedFirst aging policy uses the relaunch behavior to
309 * determine the exact idle deferred time provided to the daemons. For all other aging
310 * policies, simply return the default aging idle time.
312 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
313 return memorystatus_sysprocs_idle_delay_time
;
316 uint64_t idle_delay_time
= 0;
318 * For system processes, base the idle delay time on the
319 * jetsam relaunch behavior specified by launchd. The idea
320 * is to provide extra protection to the daemons which would
321 * relaunch immediately after jetsam.
323 switch (p
->p_memstat_relaunch_flags
) {
324 case P_MEMSTAT_RELAUNCH_UNKNOWN
:
325 case P_MEMSTAT_RELAUNCH_LOW
:
326 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeLowRatio
;
328 case P_MEMSTAT_RELAUNCH_MED
:
329 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeMedRatio
;
331 case P_MEMSTAT_RELAUNCH_HIGH
:
332 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeHighRatio
;
335 panic("Unknown relaunch flags on process!");
338 return idle_delay_time
;
342 memorystatus_apps_idle_time(__unused proc_t p
)
345 * For kJetsamAgingPolicySysProcsReclaimedFirst, the Apps are considered as low
346 * relaunch candidates. So only provide limited protection to them. In the other
347 * aging policies, return the default aging idle time.
349 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
350 return memorystatus_apps_idle_delay_time
;
353 return memorystatus_apps_idle_delay_time
/ kJetsamAppsIdleDelayTimeRatio
;
359 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
362 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
364 #pragma unused(oidp, arg1, arg2)
366 int error
= 0, val
= 0;
367 memstat_bucket_t
*old_bucket
= 0;
368 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
369 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
370 proc_t p
= NULL
, next_proc
= NULL
;
373 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
374 if (error
|| !req
->newptr
) {
378 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
379 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
384 * We need to synchronize with any potential adding/removal from aging bands
385 * that might be in progress currently. We use the proc_list_lock() just for
386 * consistency with all the routines dealing with 'aging' processes. We need
387 * a lighterweight lock.
391 old_system_procs_aging_band
= system_procs_aging_band
;
392 old_applications_aging_band
= applications_aging_band
;
395 case kJetsamAgingPolicyNone
:
396 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
397 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
400 case kJetsamAgingPolicyLegacy
:
402 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
404 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
405 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
408 case kJetsamAgingPolicySysProcsReclaimedFirst
:
409 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
410 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
413 case kJetsamAgingPolicyAppsReclaimedFirst
:
414 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
415 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
422 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
423 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
424 p
= TAILQ_FIRST(&old_bucket
->list
);
427 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
430 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
431 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
434 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
442 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
443 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
444 p
= TAILQ_FIRST(&old_bucket
->list
);
447 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
450 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
451 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
454 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
462 jetsam_aging_policy
= val
;
463 system_procs_aging_band
= new_system_procs_aging_band
;
464 applications_aging_band
= new_applications_aging_band
;
471 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RW
,
472 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
476 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
478 #pragma unused(oidp, arg1, arg2)
480 int error
= 0, val
= 0, old_time_in_secs
= 0;
481 uint64_t old_time_in_ns
= 0;
483 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
484 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
486 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
487 if (error
|| !req
->newptr
) {
491 if ((val
< 0) || (val
> INT32_MAX
)) {
492 printf("jetsam: new idle delay interval has invalid value.\n");
496 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
501 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
502 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
506 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
508 #pragma unused(oidp, arg1, arg2)
510 int error
= 0, val
= 0, old_time_in_secs
= 0;
511 uint64_t old_time_in_ns
= 0;
513 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
514 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
516 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
517 if (error
|| !req
->newptr
) {
521 if ((val
< 0) || (val
> INT32_MAX
)) {
522 printf("jetsam: new idle delay interval has invalid value.\n");
526 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
531 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
532 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
534 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
536 static unsigned int memorystatus_dirty_count
= 0;
538 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
540 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
541 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
544 #if CONFIG_MEMORYSTATUS
545 int legacy_footprint_bonus_mb
= 50; /* This value was chosen after looking at the top 30 apps
546 * that needed the additional room in their footprint when
547 * the 'correct' accounting methods were applied to them.
550 #if DEVELOPMENT || DEBUG
551 SYSCTL_INT(_kern
, OID_AUTO
, legacy_footprint_bonus_mb
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &legacy_footprint_bonus_mb
, 0, "");
552 #endif /* DEVELOPMENT || DEBUG */
555 memorystatus_act_on_legacy_footprint_entitlement(proc_t p
, boolean_t footprint_increase
)
557 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
558 boolean_t memlimit_active_is_fatal
= FALSE
, memlimit_inactive_is_fatal
= 0, use_active_limit
= FALSE
;
566 if (p
->p_memstat_memlimit_active
> 0) {
567 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
568 } else if (p
->p_memstat_memlimit_active
== -1) {
569 memlimit_mb_active
= max_task_footprint_mb
;
572 * Nothing to do for '0' which is
573 * a special value only used internally
574 * to test 'no limits'.
580 if (p
->p_memstat_memlimit_inactive
> 0) {
581 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
582 } else if (p
->p_memstat_memlimit_inactive
== -1) {
583 memlimit_mb_inactive
= max_task_footprint_mb
;
586 * Nothing to do for '0' which is
587 * a special value only used internally
588 * to test 'no limits'.
594 if (footprint_increase
) {
595 memlimit_mb_active
+= legacy_footprint_bonus_mb
;
596 memlimit_mb_inactive
+= legacy_footprint_bonus_mb
;
598 memlimit_mb_active
-= legacy_footprint_bonus_mb
;
599 if (memlimit_mb_active
== max_task_footprint_mb
) {
600 memlimit_mb_active
= -1; /* reverting back to default system limit */
603 memlimit_mb_inactive
-= legacy_footprint_bonus_mb
;
604 if (memlimit_mb_inactive
== max_task_footprint_mb
) {
605 memlimit_mb_inactive
= -1; /* reverting back to default system limit */
609 memlimit_active_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
);
610 memlimit_inactive_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
);
612 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_mb_active
, memlimit_active_is_fatal
);
613 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_mb_inactive
, memlimit_inactive_is_fatal
);
615 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
616 use_active_limit
= TRUE
;
617 CACHE_ACTIVE_LIMITS_LOCKED(p
, memlimit_active_is_fatal
);
619 CACHE_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive_is_fatal
);
623 if (memorystatus_highwater_enabled
) {
624 task_set_phys_footprint_limit_internal(p
->task
,
625 (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1,
626 NULL
, /*return old value */
627 use_active_limit
, /*active limit?*/
628 (use_active_limit
? memlimit_active_is_fatal
: memlimit_inactive_is_fatal
));
635 memorystatus_act_on_ios13extended_footprint_entitlement(proc_t p
)
637 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
638 boolean_t memlimit_active_is_fatal
= FALSE
, memlimit_inactive_is_fatal
= 0, use_active_limit
= FALSE
;
640 if (max_mem
< 1500ULL * 1024 * 1024 ||
641 max_mem
> 2ULL * 1024 * 1024 * 1024) {
642 /* ios13extended_footprint is only for 2GB devices */
648 if (p
->p_memstat_memlimit_active
> 0) {
649 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
650 } else if (p
->p_memstat_memlimit_active
== -1) {
651 memlimit_mb_active
= max_task_footprint_mb
;
654 * Nothing to do for '0' which is
655 * a special value only used internally
656 * to test 'no limits'.
662 if (p
->p_memstat_memlimit_inactive
> 0) {
663 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
664 } else if (p
->p_memstat_memlimit_inactive
== -1) {
665 memlimit_mb_inactive
= max_task_footprint_mb
;
668 * Nothing to do for '0' which is
669 * a special value only used internally
670 * to test 'no limits'.
676 /* limit to "almost 2GB" */
677 int ios13extended_footprint_mb
= 1800;
678 if (memlimit_mb_active
> ios13extended_footprint_mb
) {
679 /* do not lower the current limit */
683 memlimit_mb_active
= ios13extended_footprint_mb
;
684 memlimit_mb_inactive
= ios13extended_footprint_mb
;
686 memlimit_active_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
);
687 memlimit_inactive_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
);
689 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_mb_active
, memlimit_active_is_fatal
);
690 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_mb_inactive
, memlimit_inactive_is_fatal
);
692 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
693 use_active_limit
= TRUE
;
694 CACHE_ACTIVE_LIMITS_LOCKED(p
, memlimit_active_is_fatal
);
696 CACHE_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive_is_fatal
);
700 if (memorystatus_highwater_enabled
) {
701 task_set_phys_footprint_limit_internal(p
->task
,
702 (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1,
703 NULL
, /*return old value */
704 use_active_limit
, /*active limit?*/
705 (use_active_limit
? memlimit_active_is_fatal
: memlimit_inactive_is_fatal
));
711 #endif /* CONFIG_MEMORYSTATUS */
712 #endif /* __arm64__ */
716 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_level
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_level
, 0, "");
718 #endif /* CONFIG_EMBEDDED */
721 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
723 user_addr_t level
= 0;
727 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
734 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
738 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
739 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
742 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
744 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
746 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
748 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
750 static void memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
751 static int memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
753 int proc_get_memstat_priority(proc_t
, boolean_t
);
755 static boolean_t memorystatus_idle_snapshot
= 0;
757 unsigned int memorystatus_delta
= 0;
759 /* Jetsam Loop Detection */
760 static boolean_t memorystatus_jld_enabled
= FALSE
; /* Enable jetsam loop detection */
761 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
762 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
763 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
766 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
767 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
770 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
771 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
773 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
775 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
778 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
779 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
780 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
782 #if DEVELOPMENT || DEBUG
784 * Jetsam Loop Detection tunables.
787 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
788 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
789 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
790 #endif /* DEVELOPMENT || DEBUG */
792 static uint32_t kill_under_pressure_cause
= 0;
795 * snapshot support for memstats collected at boot.
797 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
799 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
800 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
801 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
803 static void memorystatus_clear_errors(void);
804 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
805 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
806 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
807 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
808 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
);
810 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
812 static uint32_t memorystatus_build_state(proc_t p
);
813 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
815 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
,
816 uint32_t *errors
, uint64_t *memory_reclaimed
);
817 static boolean_t
memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
, int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
);
818 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
);
820 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
822 /* Priority Band Sorting Routines */
823 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
824 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
825 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
826 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
829 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
830 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
831 static int memstat_asc_cmp(const void *a
, const void *b
);
835 extern unsigned int vm_page_free_count
;
836 extern unsigned int vm_page_active_count
;
837 extern unsigned int vm_page_inactive_count
;
838 extern unsigned int vm_page_throttled_count
;
839 extern unsigned int vm_page_purgeable_count
;
840 extern unsigned int vm_page_wire_count
;
841 #if CONFIG_SECLUDED_MEMORY
842 extern unsigned int vm_page_secluded_count
;
843 extern unsigned int vm_page_secluded_count_over_target
;
844 #endif /* CONFIG_SECLUDED_MEMORY */
846 /* Aggressive jetsam pages threshold for sysproc aging policy */
847 unsigned int memorystatus_sysproc_aging_aggr_pages
= 0;
850 unsigned int memorystatus_available_pages
= (unsigned int)-1;
851 unsigned int memorystatus_available_pages_pressure
= 0;
852 unsigned int memorystatus_available_pages_critical
= 0;
853 unsigned int memorystatus_available_pages_critical_base
= 0;
854 unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
856 #if DEVELOPMENT || DEBUG
857 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
859 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_MASKED
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
860 #endif /* DEVELOPMENT || DEBUG */
862 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
863 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
864 static void memorystatus_update_levels_locked(boolean_t critical_only
);
865 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
867 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
868 extern void vm_thrashing_jetsam_done(void);
869 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
870 #if DEVELOPMENT || DEBUG
871 static inline uint32_t
872 roundToNearestMB(uint32_t in
)
874 return (in
+ ((1 << 20) - 1)) >> 20;
877 static int memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
);
880 int32_t max_kill_priority
= JETSAM_PRIORITY_MAX
;
882 #else /* CONFIG_JETSAM */
884 uint64_t memorystatus_available_pages
= (uint64_t)-1;
885 uint64_t memorystatus_available_pages_pressure
= (uint64_t)-1;
886 uint64_t memorystatus_available_pages_critical
= (uint64_t)-1;
888 int32_t max_kill_priority
= JETSAM_PRIORITY_IDLE
;
889 #endif /* CONFIG_JETSAM */
891 #if DEVELOPMENT || DEBUG
893 lck_grp_attr_t
*disconnect_page_mappings_lck_grp_attr
;
894 lck_grp_t
*disconnect_page_mappings_lck_grp
;
895 static lck_mtx_t disconnect_page_mappings_mutex
;
897 extern boolean_t kill_on_no_paging_space
;
898 #endif /* DEVELOPMENT || DEBUG */
903 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
905 #if DEVELOPMENT || DEBUG
907 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
910 memorystatus_debug_dump_bucket_locked(unsigned int bucket_index
)
914 int ledger_limit
= 0;
915 unsigned int b
= bucket_index
;
916 boolean_t traverse_all_buckets
= FALSE
;
918 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
919 traverse_all_buckets
= TRUE
;
922 traverse_all_buckets
= FALSE
;
927 * footprint reported in [pages / MB ]
928 * limits reported as:
929 * L-limit proc's Ledger limit
930 * C-limit proc's Cached limit, should match Ledger
931 * A-limit proc's Active limit
932 * IA-limit proc's Inactive limit
933 * F==Fatal, NF==NonFatal
936 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
937 printf("bucket [pid] [pages / MB] [state] [EP / RP / AP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
938 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
940 bytes
= get_task_phys_footprint(p
->task
);
941 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
942 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
944 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
945 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
946 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_assertionpriority
,
947 p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
949 p
->p_memstat_memlimit
,
950 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
951 p
->p_memstat_memlimit_active
,
952 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
953 p
->p_memstat_memlimit_inactive
,
954 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
955 (*p
->p_name
? p
->p_name
: "unknown"));
956 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
958 printf("memorystatus_debug_dump ***END***\n");
962 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
964 #pragma unused(oidp, arg2)
965 int bucket_index
= 0;
967 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
968 if (error
|| !req
->newptr
) {
971 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
972 if (error
|| !req
->newptr
) {
975 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
977 * All jetsam buckets will be dumped.
981 * Only a single bucket will be dumped.
986 memorystatus_debug_dump_bucket_locked(bucket_index
);
988 memorystatus_debug_dump_this_bucket
= bucket_index
;
993 * Debug aid to look at jetsam buckets and proc jetsam fields.
994 * Use this sysctl to act on a particular jetsam bucket.
995 * Writing the sysctl triggers the dump.
996 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
999 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
1002 /* Debug aid to aid determination of limit */
1005 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
1007 #pragma unused(oidp, arg2)
1010 int error
, enable
= 0;
1011 boolean_t use_active
; /* use the active limit and active limit attributes */
1014 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
1015 if (error
|| !req
->newptr
) {
1019 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
1020 if (error
|| !req
->newptr
) {
1024 if (!(enable
== 0 || enable
== 1)) {
1030 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
1032 use_active
= proc_jetsam_state_is_active_locked(p
);
1035 if (use_active
== TRUE
) {
1036 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1038 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1042 * Disabling limits does not touch the stored variants.
1043 * Set the cached limit fields to system_wide defaults.
1045 p
->p_memstat_memlimit
= -1;
1046 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
1051 * Enforce the cached limit by writing to the ledger.
1053 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1055 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
1058 memorystatus_highwater_enabled
= enable
;
1065 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
1067 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
1070 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
1071 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
1072 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
1073 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
1075 static unsigned int memorystatus_jetsam_panic_debug
= 0;
1077 #if VM_PRESSURE_EVENTS
1079 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1081 #endif /* VM_PRESSURE_EVENTS */
1083 #endif /* CONFIG_JETSAM */
1085 #endif /* DEVELOPMENT || DEBUG */
1087 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1090 thread_t
*new_thread
);
1092 #if DEVELOPMENT || DEBUG
1095 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1097 #pragma unused(arg1, arg2)
1098 int error
= 0, pid
= 0;
1101 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1102 if (error
|| !req
->newptr
) {
1106 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1109 vm_pageout_disconnect_all_pages();
1114 error
= task_disconnect_page_mappings(p
->task
);
1125 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1130 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
1131 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1133 #endif /* DEVELOPMENT || DEBUG */
1137 * Picks the sorting routine for a given jetsam priority band.
1140 * bucket_index - jetsam priority band to be sorted.
1141 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1142 * Currently sort_order is only meaningful when handling
1150 memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1152 int coal_sort_order
;
1155 * Verify the jetsam priority
1157 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1161 #if DEVELOPMENT || DEBUG
1162 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1163 coal_sort_order
= COALITION_SORT_DEFAULT
;
1165 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1168 /* Verify default */
1169 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1170 coal_sort_order
= COALITION_SORT_DEFAULT
;
1178 if (memstat_bucket
[bucket_index
].count
== 0) {
1183 switch (bucket_index
) {
1184 case JETSAM_PRIORITY_FOREGROUND
:
1185 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, coal_sort_order
) == 0) {
1187 * Fall back to per process sorting when zero coalitions are found.
1189 memorystatus_sort_by_largest_process_locked(bucket_index
);
1193 memorystatus_sort_by_largest_process_locked(bucket_index
);
1202 * Sort processes by size for a single jetsam bucket.
1206 memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1208 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1209 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1210 uint32_t pages
= 0, max_pages
= 0;
1211 memstat_bucket_t
*current_bucket
;
1213 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1217 current_bucket
= &memstat_bucket
[bucket_index
];
1219 p
= TAILQ_FIRST(¤t_bucket
->list
);
1222 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1227 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1228 /* traversing list until we find next largest process */
1230 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1231 if (pages
> max_pages
) {
1237 if (prev_max_proc
!= max_proc
) {
1238 /* found a larger process, place it in the list */
1239 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1240 if (insert_after_proc
== NULL
) {
1241 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1243 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1245 prev_max_proc
= max_proc
;
1248 insert_after_proc
= max_proc
;
1250 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1255 memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
)
1257 memstat_bucket_t
*current_bucket
;
1260 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1264 current_bucket
= &memstat_bucket
[*bucket_index
];
1265 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1266 if (!next_p
&& search
) {
1267 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1268 current_bucket
= &memstat_bucket
[*bucket_index
];
1269 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1277 memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
)
1279 memstat_bucket_t
*current_bucket
;
1282 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1286 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1287 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1288 current_bucket
= &memstat_bucket
[*bucket_index
];
1289 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1296 * Structure to hold state for a jetsam thread.
1297 * Typically there should be a single jetsam thread
1298 * unless parallel jetsam is enabled.
1300 struct jetsam_thread_state
{
1301 uint8_t inited
; /* boolean - if the thread is initialized */
1302 uint8_t limit_to_low_bands
; /* boolean */
1303 int memorystatus_wakeup
; /* wake channel */
1304 int index
; /* jetsam thread index */
1305 thread_t thread
; /* jetsam thread pointer */
1308 /* Maximum number of jetsam threads allowed */
1309 #define JETSAM_THREADS_LIMIT 3
1311 /* Number of active jetsam threads */
1312 _Atomic
int active_jetsam_threads
= 1;
1314 /* Number of maximum jetsam threads configured */
1315 int max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1318 * Global switch for enabling fast jetsam. Fast jetsam is
1319 * hooked up via the system_override() system call. It has the
1320 * following effects:
1321 * - Raise the jetsam threshold ("clear-the-deck")
1322 * - Enabled parallel jetsam on eligible devices
1325 int fast_jetsam_enabled
= 1;
1327 int fast_jetsam_enabled
= 0;
1328 #endif /* __AMP__ */
1330 /* Routine to find the jetsam state structure for the current jetsam thread */
1331 static inline struct jetsam_thread_state
*
1332 jetsam_current_thread(void)
1334 for (int thr_id
= 0; thr_id
< max_jetsam_threads
; thr_id
++) {
1335 if (jetsam_threads
[thr_id
].thread
== current_thread()) {
1336 return &(jetsam_threads
[thr_id
]);
1343 __private_extern__
void
1344 memorystatus_init(void)
1346 kern_return_t result
;
1350 memorystatus_freeze_jetsam_band
= JETSAM_PRIORITY_UI_SUPPORT
;
1351 memorystatus_frozen_processes_max
= FREEZE_PROCESSES_MAX
;
1352 memorystatus_frozen_shared_mb_max
= ((MAX_FROZEN_SHARED_MB_PERCENT
* max_task_footprint_mb
) / 100); /* 10% of the system wide task limit */
1353 memorystatus_freeze_shared_mb_per_process_max
= (memorystatus_frozen_shared_mb_max
/ 4);
1354 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1355 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1356 memorystatus_max_frozen_demotions_daily
= MAX_FROZEN_PROCESS_DEMOTIONS
;
1357 memorystatus_thaw_count_demotion_threshold
= MIN_THAW_DEMOTION_THRESHOLD
;
1360 #if DEVELOPMENT || DEBUG
1361 disconnect_page_mappings_lck_grp_attr
= lck_grp_attr_alloc_init();
1362 disconnect_page_mappings_lck_grp
= lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr
);
1364 lck_mtx_init(&disconnect_page_mappings_mutex
, disconnect_page_mappings_lck_grp
, NULL
);
1366 if (kill_on_no_paging_space
== TRUE
) {
1367 max_kill_priority
= JETSAM_PRIORITY_MAX
;
1371 memorystatus_jetsam_fg_band_lock_grp_attr
= lck_grp_attr_alloc_init();
1372 memorystatus_jetsam_fg_band_lock_grp
=
1373 lck_grp_alloc_init("memorystatus_jetsam_fg_band", memorystatus_jetsam_fg_band_lock_grp_attr
);
1374 lck_mtx_init(&memorystatus_jetsam_fg_band_lock
, memorystatus_jetsam_fg_band_lock_grp
, NULL
);
1377 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1378 TAILQ_INIT(&memstat_bucket
[i
].list
);
1379 memstat_bucket
[i
].count
= 0;
1380 memstat_bucket
[i
].relaunch_high_count
= 0;
1382 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1384 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1385 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1388 /* Apply overrides */
1389 if (!PE_parse_boot_argn("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
))) {
1390 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1392 if (delta_percentage
== 0) {
1393 delta_percentage
= 5;
1395 if (max_mem
> config_jetsam_large_memory_cutoff
) {
1396 critical_threshold_percentage
= critical_threshold_percentage_larger_devices
;
1397 delta_percentage
= delta_percentage_larger_devices
;
1399 assert(delta_percentage
< 100);
1400 if (!PE_parse_boot_argn("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
))) {
1401 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1403 assert(critical_threshold_percentage
< 100);
1404 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1405 assert(idle_offset_percentage
< 100);
1406 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1407 assert(pressure_threshold_percentage
< 100);
1408 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1409 assert(freeze_threshold_percentage
< 100);
1412 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1413 sizeof(jetsam_aging_policy
))) {
1414 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1415 sizeof(jetsam_aging_policy
))) {
1416 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1420 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1421 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1424 switch (jetsam_aging_policy
) {
1425 case kJetsamAgingPolicyNone
:
1426 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1427 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1430 case kJetsamAgingPolicyLegacy
:
1432 * Legacy behavior where some daemons get a 10s protection once
1433 * AND only before the first clean->dirty->clean transition before
1434 * going into IDLE band.
1436 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1437 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1440 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1441 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1442 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1445 case kJetsamAgingPolicyAppsReclaimedFirst
:
1446 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1447 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1455 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1456 * band and must be below it in priority. This is so that we don't have to make
1457 * our 'aging' code worry about a mix of processes, some of which need to age
1458 * and some others that need to stay elevated in the jetsam bands.
1460 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1461 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1463 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1464 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
))) {
1465 /* ...no boot-arg, so check the device tree */
1466 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1469 memorystatus_delta
= delta_percentage
* atop_64(max_mem
) / 100;
1470 memorystatus_available_pages_critical_idle_offset
= idle_offset_percentage
* atop_64(max_mem
) / 100;
1471 memorystatus_available_pages_critical_base
= (critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1472 memorystatus_policy_more_free_offset_pages
= (policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
;
1473 memorystatus_sysproc_aging_aggr_pages
= sysproc_aging_aggr_threshold_percentage
* atop_64(max_mem
) / 100;
1475 /* Jetsam Loop Detection */
1476 if (max_mem
<= (512 * 1024 * 1024)) {
1477 /* 512 MB devices */
1478 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1480 /* 1GB and larger devices */
1481 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1484 memorystatus_jld_enabled
= TRUE
;
1486 /* No contention at this point */
1487 memorystatus_update_levels_locked(FALSE
);
1489 #endif /* CONFIG_JETSAM */
1491 memorystatus_jetsam_snapshot_max
= maxproc
;
1493 memorystatus_jetsam_snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1494 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1496 memorystatus_jetsam_snapshot
=
1497 (memorystatus_jetsam_snapshot_t
*)kalloc(memorystatus_jetsam_snapshot_size
);
1498 if (!memorystatus_jetsam_snapshot
) {
1499 panic("Could not allocate memorystatus_jetsam_snapshot");
1502 memorystatus_jetsam_snapshot_copy
=
1503 (memorystatus_jetsam_snapshot_t
*)kalloc(memorystatus_jetsam_snapshot_size
);
1504 if (!memorystatus_jetsam_snapshot_copy
) {
1505 panic("Could not allocate memorystatus_jetsam_snapshot_copy");
1508 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1510 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1513 memorystatus_freeze_threshold
= (freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1516 /* Check the boot-arg to see if fast jetsam is allowed */
1517 if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled
, sizeof(fast_jetsam_enabled
))) {
1518 fast_jetsam_enabled
= 0;
1521 /* Check the boot-arg to configure the maximum number of jetsam threads */
1522 if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads
, sizeof(max_jetsam_threads
))) {
1523 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1526 /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */
1527 if (max_jetsam_threads
> JETSAM_THREADS_LIMIT
) {
1528 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1531 /* For low CPU systems disable fast jetsam mechanism */
1532 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
1533 max_jetsam_threads
= 1;
1534 fast_jetsam_enabled
= 0;
1537 /* Initialize the jetsam_threads state array */
1538 jetsam_threads
= kalloc(sizeof(struct jetsam_thread_state
) * max_jetsam_threads
);
1540 /* Initialize all the jetsam threads */
1541 for (i
= 0; i
< max_jetsam_threads
; i
++) {
1542 jetsam_threads
[i
].inited
= FALSE
;
1543 jetsam_threads
[i
].index
= i
;
1544 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &jetsam_threads
[i
].thread
);
1545 if (result
!= KERN_SUCCESS
) {
1546 panic("Could not create memorystatus_thread %d", i
);
1548 thread_deallocate(jetsam_threads
[i
].thread
);
1552 /* Centralised for the purposes of allowing panic-on-jetsam */
1554 vm_run_compactor(void);
1557 * The jetsam no frills kill call
1558 * Return: 0 on success
1559 * error code on failure (EINVAL...)
1562 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
)
1565 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1570 * Wrapper for processes exiting with memorystatus details
1573 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, uint64_t *footprint_of_killed_proc
)
1576 __unused pid_t victim_pid
= p
->p_pid
;
1577 uint64_t footprint
= get_task_phys_footprint(p
->task
);
1578 #if (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD)
1579 int32_t memstat_effectivepriority
= p
->p_memstat_effectivepriority
;
1580 #endif /* (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD) */
1582 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1583 victim_pid
, cause
, vm_page_free_count
, footprint
, 0);
1584 DTRACE_MEMORYSTATUS4(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
, uint64_t, footprint
);
1585 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1586 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1587 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1590 #pragma unused(cause)
1593 if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
1594 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p
->p_pid
,
1595 (*p
->p_name
? p
->p_name
: "unknown"),
1596 memorystatus_priority_band_name(p
->p_memstat_effectivepriority
), p
->p_memstat_effectivepriority
,
1597 (uint64_t)memorystatus_available_pages
);
1601 * The jetsam_reason (os_reason_t) has enough information about the kill cause.
1602 * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped.
1604 int jetsam_flags
= P_LTERM_JETSAM
;
1606 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1607 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1608 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1609 case kMemorystatusKilledVMCompressorThrashing
:
1610 case kMemorystatusKilledVMCompressorSpaceShortage
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1611 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1612 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1613 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1615 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1616 *footprint_of_killed_proc
= ((error
== 0) ? footprint
: 0);
1618 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1619 victim_pid
, memstat_effectivepriority
, vm_page_free_count
, error
, 0);
1621 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_START
,
1622 victim_pid
, cause
, vm_page_free_count
, *footprint_of_killed_proc
, 0);
1626 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_END
,
1627 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1637 memorystatus_check_levels_locked(void)
1641 memorystatus_update_levels_locked(TRUE
);
1642 #else /* CONFIG_JETSAM */
1644 * Nothing to do here currently since we update
1645 * memorystatus_available_pages in vm_pressure_response.
1647 #endif /* CONFIG_JETSAM */
1651 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1652 * For an application: that means no longer in the FG band
1653 * For a daemon: that means no longer in its 'requested' jetsam priority band
1657 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, int jetsam_prio
, boolean_t effective_now
)
1660 boolean_t enable
= FALSE
;
1663 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1665 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1673 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1674 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1676 * No change in state.
1682 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1683 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1685 if (effective_now
) {
1686 if (p
->p_memstat_effectivepriority
< jetsam_prio
) {
1687 if (memorystatus_highwater_enabled
) {
1689 * Process is about to transition from
1690 * inactive --> active
1691 * assign active state
1694 boolean_t use_active
= TRUE
;
1695 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1696 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1698 memorystatus_update_priority_locked(p
, jetsam_prio
, FALSE
, FALSE
);
1701 if (isProcessInAgingBands(p
)) {
1702 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1706 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1707 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1709 if (effective_now
) {
1710 if (p
->p_memstat_effectivepriority
== jetsam_prio
) {
1711 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1714 if (isProcessInAgingBands(p
)) {
1715 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1732 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1735 uint64_t current_time
= 0, idle_delay_time
= 0;
1736 int demote_prio_band
= 0;
1737 memstat_bucket_t
*demotion_bucket
;
1739 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1741 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1743 current_time
= mach_absolute_time();
1747 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1749 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1750 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
) {
1754 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1755 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1758 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1760 assert(p
->p_memstat_idledeadline
);
1762 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1764 if (current_time
>= p
->p_memstat_idledeadline
) {
1765 if ((isSysProc(p
) &&
1766 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1767 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1768 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1770 p
->p_memstat_idledeadline
+= idle_delay_time
;
1771 p
= TAILQ_NEXT(p
, p_memstat_list
);
1773 proc_t next_proc
= NULL
;
1775 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1776 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1778 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1784 // No further candidates
1790 memorystatus_reschedule_idle_demotion_locked();
1794 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1798 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1800 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1801 boolean_t present_in_apps_aging_bucket
= FALSE
;
1802 uint64_t idle_delay_time
= 0;
1804 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1808 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) ||
1809 (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
)) {
1811 * This process isn't going to be making the trip to the lower bands.
1816 if (isProcessInAgingBands(p
)) {
1817 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1818 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1821 if (isSysProc(p
) && system_procs_aging_band
) {
1822 present_in_sysprocs_aging_bucket
= TRUE
;
1823 } else if (isApp(p
) && applications_aging_band
) {
1824 present_in_apps_aging_bucket
= TRUE
;
1828 assert(!present_in_sysprocs_aging_bucket
);
1829 assert(!present_in_apps_aging_bucket
);
1831 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1832 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1835 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1838 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1840 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1841 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1844 assert(p
->p_memstat_idledeadline
);
1846 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1847 memorystatus_scheduled_idle_demotions_sysprocs
++;
1848 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1849 memorystatus_scheduled_idle_demotions_apps
++;
1854 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1856 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1857 boolean_t present_in_apps_aging_bucket
= FALSE
;
1859 if (!system_procs_aging_band
&& !applications_aging_band
) {
1863 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1867 if (isProcessInAgingBands(p
)) {
1868 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1869 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1872 if (isSysProc(p
) && system_procs_aging_band
) {
1873 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1874 assert(p
->p_memstat_idledeadline
);
1875 present_in_sysprocs_aging_bucket
= TRUE
;
1876 } else if (isApp(p
) && applications_aging_band
) {
1877 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1878 assert(p
->p_memstat_idledeadline
);
1879 present_in_apps_aging_bucket
= TRUE
;
1883 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1884 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1888 p
->p_memstat_idledeadline
= 0;
1889 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1892 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== TRUE
) {
1893 memorystatus_scheduled_idle_demotions_sysprocs
--;
1894 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1895 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1896 memorystatus_scheduled_idle_demotions_apps
--;
1897 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1900 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1904 memorystatus_reschedule_idle_demotion_locked(void)
1906 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1907 if (memstat_idle_demotion_deadline
) {
1908 /* Transitioned 1->0, so cancel next call */
1909 thread_call_cancel(memorystatus_idle_demotion_call
);
1910 memstat_idle_demotion_deadline
= 0;
1913 memstat_bucket_t
*demotion_bucket
;
1914 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1916 if (system_procs_aging_band
) {
1917 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1918 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1923 if (applications_aging_band
) {
1924 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
1925 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
1928 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
1930 p
= (p1
== NULL
) ? p2
: p1
;
1937 assert(p
&& p
->p_memstat_idledeadline
);
1938 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
) {
1939 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
1940 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
1951 memorystatus_add(proc_t p
, boolean_t locked
)
1953 memstat_bucket_t
*bucket
;
1955 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
1961 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
1963 /* Processes marked internal do not have priority tracked */
1964 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
1969 * Opt out system processes from being frozen by default.
1970 * For coalition-based freezing, we only want to freeze sysprocs that have specifically opted in.
1973 p
->p_memstat_state
|= P_MEMSTAT_FREEZE_DISABLED
;
1976 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
1978 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
1979 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
1980 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
1981 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
1982 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
1984 * Entering the idle band.
1985 * Record idle start time.
1987 p
->p_memstat_idle_start
= mach_absolute_time();
1990 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
1992 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
1993 bucket
->relaunch_high_count
++;
1996 memorystatus_list_count
++;
1998 memorystatus_check_levels_locked();
2010 * Moves a process from one jetsam bucket to another.
2011 * which changes the LRU position of the process.
2013 * Monitors transition between buckets and if necessary
2014 * will update cached memory limits accordingly.
2016 * skip_demotion_check:
2017 * - if the 'jetsam aging policy' is NOT 'legacy':
2018 * When this flag is TRUE, it means we are going
2019 * to age the ripe processes out of the aging bands and into the
2020 * IDLE band and apply their inactive memory limits.
2022 * - if the 'jetsam aging policy' is 'legacy':
2023 * When this flag is TRUE, it might mean the above aging mechanism
2025 * It might be that we have a process that has used up its 'idle deferral'
2026 * stay that is given to it once per lifetime. And in this case, the process
2027 * won't be going through any aging codepaths. But we still need to apply
2028 * the right inactive limits and so we explicitly set this to TRUE if the
2029 * new priority for the process is the IDLE band.
2032 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
2034 memstat_bucket_t
*old_bucket
, *new_bucket
;
2036 assert(priority
< MEMSTAT_BUCKET_COUNT
);
2038 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2039 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2043 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2044 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
2046 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
2048 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2050 if (skip_demotion_check
== FALSE
) {
2053 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2054 * the processes from the aging bands and balancing the demotion counts.
2055 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2058 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2060 * 2 types of processes can use the non-standard elevated inactive band:
2061 * - Frozen processes that always land in memorystatus_freeze_jetsam_band
2063 * - processes that specifically opt-in to the elevated inactive support e.g. docked processes.
2066 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2067 if (priority
<= memorystatus_freeze_jetsam_band
) {
2068 priority
= memorystatus_freeze_jetsam_band
;
2071 #endif /* CONFIG_FREEZE */
2073 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2074 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2077 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2079 } else if (isApp(p
)) {
2081 * Check to see if the application is being lowered in jetsam priority. If so, and:
2082 * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band.
2083 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2086 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2088 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2089 if (priority
<= memorystatus_freeze_jetsam_band
) {
2090 priority
= memorystatus_freeze_jetsam_band
;
2093 #endif /* CONFIG_FREEZE */
2095 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2096 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2100 if (applications_aging_band
) {
2101 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2102 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2105 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2106 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2107 priority
= applications_aging_band
;
2108 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2115 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2116 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2119 #if DEVELOPMENT || DEBUG
2120 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2121 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2122 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2123 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2124 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? (!(p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) { /* OR type (fatal vs non-fatal) */
2125 printf("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2127 #endif /* DEVELOPMENT || DEBUG */
2129 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2130 old_bucket
->count
--;
2131 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2132 old_bucket
->relaunch_high_count
--;
2135 new_bucket
= &memstat_bucket
[priority
];
2137 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2139 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2141 new_bucket
->count
++;
2142 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2143 new_bucket
->relaunch_high_count
++;
2146 if (memorystatus_highwater_enabled
) {
2148 boolean_t use_active
;
2151 * If cached limit data is updated, then the limits
2152 * will be enforced by writing to the ledgers.
2154 boolean_t ledger_update_needed
= TRUE
;
2157 * Here, we must update the cached memory limit if the task
2158 * is transitioning between:
2159 * active <--> inactive
2162 * dirty <--> clean is ignored
2164 * We bypass non-idle processes that have opted into dirty tracking because
2165 * a move between buckets does not imply a transition between the
2166 * dirty <--> clean state.
2169 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2170 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2171 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2174 ledger_update_needed
= FALSE
;
2176 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2178 * inactive --> active
2180 * assign active state
2182 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2184 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2186 * active --> inactive
2188 * assign inactive state
2190 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2194 * The transition between jetsam priority buckets apparently did
2195 * not affect active/inactive state.
2196 * This is not unusual... especially during startup when
2197 * processes are getting established in their respective bands.
2199 ledger_update_needed
= FALSE
;
2203 * Enforce the new limits by writing to the ledger
2205 if (ledger_update_needed
) {
2206 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
2208 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2209 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2210 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2211 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2216 * Record idle start or idle delta.
2218 if (p
->p_memstat_effectivepriority
== priority
) {
2220 * This process is not transitioning between
2221 * jetsam priority buckets. Do nothing.
2223 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2226 * Transitioning out of the idle priority bucket.
2227 * Record idle delta.
2229 assert(p
->p_memstat_idle_start
!= 0);
2230 now
= mach_absolute_time();
2231 if (now
> p
->p_memstat_idle_start
) {
2232 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2236 * About to become active and so memory footprint could change.
2237 * So mark it eligible for freeze-considerations next time around.
2239 if (p
->p_memstat_state
& P_MEMSTAT_FREEZE_IGNORE
) {
2240 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_IGNORE
;
2242 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2244 * Transitioning into the idle priority bucket.
2245 * Record idle start.
2247 p
->p_memstat_idle_start
= mach_absolute_time();
2250 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
2252 p
->p_memstat_effectivepriority
= priority
;
2254 #if CONFIG_SECLUDED_MEMORY
2255 if (secluded_for_apps
&&
2256 task_could_use_secluded_mem(p
->task
)) {
2257 task_set_can_use_secluded_mem(
2259 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2261 #endif /* CONFIG_SECLUDED_MEMORY */
2263 memorystatus_check_levels_locked();
2267 memorystatus_relaunch_flags_update(proc_t p
, int relaunch_flags
)
2269 p
->p_memstat_relaunch_flags
= relaunch_flags
;
2270 KDBG(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_RELAUNCH_FLAGS
), p
->p_pid
, relaunch_flags
, 0, 0, 0);
2276 * Description: Update the jetsam priority and memory limit attributes for a given process.
2279 * p init this process's jetsam information.
2280 * priority The jetsam priority band
2281 * user_data user specific data, unused by the kernel
2282 * is_assertion When true, a priority update is driven by an assertion.
2283 * effective guards against race if process's update already occurred
2284 * update_memlimit When true we know this is the init step via the posix_spawn path.
2286 * memlimit_active Value in megabytes; The monitored footprint level while the
2287 * process is active. Exceeding it may result in termination
2288 * based on it's associated fatal flag.
2290 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2291 * this describes whether or not it should be immediately fatal.
2293 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2294 * process is inactive. Exceeding it may result in termination
2295 * based on it's associated fatal flag.
2297 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2298 * this describes whether or not it should be immediatly fatal.
2300 * Returns: 0 Success
2305 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t is_assertion
, boolean_t effective
, boolean_t update_memlimit
,
2306 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2307 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
)
2310 boolean_t head_insert
= false;
2312 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2314 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2316 if (priority
== -1) {
2317 /* Use as shorthand for default priority */
2318 priority
= JETSAM_PRIORITY_DEFAULT
;
2319 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2320 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2321 priority
= JETSAM_PRIORITY_IDLE
;
2322 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2323 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2324 priority
= JETSAM_PRIORITY_IDLE
;
2326 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2334 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2336 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2339 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2343 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2345 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2352 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2353 p
->p_memstat_userdata
= user_data
;
2356 if (priority
== JETSAM_PRIORITY_IDLE
) {
2358 * Assertions relinquish control when the process is heading to IDLE.
2360 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2362 * Mark the process as no longer being managed by assertions.
2364 p
->p_memstat_state
&= ~P_MEMSTAT_PRIORITY_ASSERTION
;
2367 * Ignore an idle priority transition if the process is not
2368 * already managed by assertions. We won't treat this as
2369 * an error, but we will log the unexpected behavior and bail.
2371 os_log(OS_LOG_DEFAULT
, "memorystatus: Ignore assertion driven idle priority. Process not previously controlled %s:%d\n",
2372 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2380 * Process is now being managed by assertions,
2382 p
->p_memstat_state
|= P_MEMSTAT_PRIORITY_ASSERTION
;
2385 /* Always update the assertion priority in this path */
2387 p
->p_memstat_assertionpriority
= priority
;
2389 int memstat_dirty_flags
= memorystatus_dirty_get(p
, TRUE
); /* proc_list_lock is held */
2391 if (memstat_dirty_flags
!= 0) {
2393 * Calculate maximum priority only when dirty tracking processes are involved.
2396 if (memstat_dirty_flags
& PROC_DIRTY_IS_DIRTY
) {
2397 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2401 if (memstat_dirty_flags
& PROC_DIRTY_ALLOWS_IDLE_EXIT
) {
2403 * The aging policy must be evaluated and applied here because runnningboardd
2404 * has relinquished its hold on the jetsam priority by attempting to move a
2405 * clean process to the idle band.
2408 int newpriority
= JETSAM_PRIORITY_IDLE
;
2409 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2410 newpriority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2413 maxpriority
= MAX(p
->p_memstat_assertionpriority
, newpriority
);
2415 if (newpriority
== system_procs_aging_band
) {
2416 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2420 * Preserves requestedpriority when the process does not support pressured exit.
2422 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2425 priority
= maxpriority
;
2428 p
->p_memstat_requestedpriority
= priority
;
2431 if (update_memlimit
) {
2433 boolean_t use_active
;
2436 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2437 * Forked processes do not come through this path, so no ledger limits exist.
2438 * (That's why forked processes can consume unlimited memory.)
2441 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2442 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2443 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2444 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2446 if (memlimit_active
<= 0) {
2448 * This process will have a system_wide task limit when active.
2449 * System_wide task limit is always fatal.
2450 * It's quite common to see non-fatal flag passed in here.
2451 * It's not an error, we just ignore it.
2455 * For backward compatibility with some unexplained launchd behavior,
2456 * we allow a zero sized limit. But we still enforce system_wide limit
2457 * when written to the ledgers.
2460 if (memlimit_active
< 0) {
2461 memlimit_active
= -1; /* enforces system_wide task limit */
2463 memlimit_active_is_fatal
= TRUE
;
2466 if (memlimit_inactive
<= 0) {
2468 * This process will have a system_wide task limit when inactive.
2469 * System_wide task limit is always fatal.
2472 memlimit_inactive
= -1;
2473 memlimit_inactive_is_fatal
= TRUE
;
2477 * Initialize the active limit variants for this process.
2479 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2482 * Initialize the inactive limit variants for this process.
2484 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2487 * Initialize the cached limits for target process.
2488 * When the target process is dirty tracked, it's typically
2489 * in a clean state. Non dirty tracked processes are
2490 * typically active (Foreground or above).
2491 * But just in case, we don't make assumptions...
2494 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2495 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2498 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2503 * Enforce the cached limit by writing to the ledger.
2505 if (memorystatus_highwater_enabled
) {
2507 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
);
2509 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2510 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2511 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2512 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2517 * We can't add to the aging bands buckets here.
2518 * But, we could be removing it from those buckets.
2519 * Check and take appropriate steps if so.
2522 if (isProcessInAgingBands(p
)) {
2523 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && isApp(p
) && (priority
> applications_aging_band
)) {
2525 * Runningboardd is pulling up an application that is in the aging band.
2526 * We reset the app's state here so that it'll get a fresh stay in the
2527 * aging band on the way back.
2529 * We always handled the app 'aging' in the memorystatus_update_priority_locked()
2530 * function. Daemons used to be handled via the dirty 'set/clear/track' path.
2531 * But with extensions (daemon-app hybrid), runningboardd is now going through
2532 * this routine for daemons too and things have gotten a bit tangled. This should
2533 * be simplified/untangled at some point and might require some assistance from
2536 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2538 memorystatus_invalidate_idle_demotion_locked(p
, FALSE
);
2540 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2542 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2544 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2545 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2546 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2547 * is any other aging policy, then we don't need to worry because all processes
2548 * will go through the aging bands and then the demotion thread will take care to
2549 * move them into the IDLE band and apply the required limits.
2551 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2555 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2561 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2567 memorystatus_remove(proc_t p
)
2570 memstat_bucket_t
*bucket
;
2571 boolean_t reschedule
= FALSE
;
2573 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2576 * Check if this proc is locked (because we're performing a freeze).
2577 * If so, we fail and instruct the caller to try again later.
2579 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
2583 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2585 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2587 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2588 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2590 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2591 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2599 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2600 uint64_t now
= mach_absolute_time();
2601 if (now
> p
->p_memstat_idle_start
) {
2602 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2606 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2608 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2609 bucket
->relaunch_high_count
--;
2612 memorystatus_list_count
--;
2614 /* If awaiting demotion to the idle band, clean up */
2616 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2617 memorystatus_reschedule_idle_demotion_locked();
2620 memorystatus_check_levels_locked();
2623 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2624 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
2625 p
->p_memstat_state
&= ~P_MEMSTAT_REFREEZE_ELIGIBLE
;
2626 memorystatus_refreeze_eligible_count
--;
2629 memorystatus_frozen_count
--;
2630 memorystatus_frozen_shared_mb
-= p
->p_memstat_freeze_sharedanon_pages
;
2631 p
->p_memstat_freeze_sharedanon_pages
= 0;
2634 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2635 memorystatus_suspended_count
--;
2649 * Validate dirty tracking flags with process state.
2655 * The proc_list_lock is held by the caller.
2659 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
)
2661 /* See that the process isn't marked for termination */
2662 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2666 /* Idle exit requires that process be tracked */
2667 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2668 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2672 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2673 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2674 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2678 /* Only one type of DEFER behavior is allowed.*/
2679 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2680 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) {
2684 /* Deferral is only relevant if idle exit is specified */
2685 if (((pcontrol
& PROC_DIRTY_DEFER
) ||
2686 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) &&
2687 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2695 memorystatus_update_idle_priority_locked(proc_t p
)
2699 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2701 assert(isSysProc(p
));
2703 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2704 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2706 priority
= p
->p_memstat_requestedpriority
;
2709 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2711 * This process has a jetsam priority managed by an assertion.
2712 * Policy is to choose the max priority.
2714 if (p
->p_memstat_assertionpriority
> priority
) {
2715 os_log(OS_LOG_DEFAULT
, "memorystatus: assertion priority %d overrides priority %d for %s:%d\n",
2716 p
->p_memstat_assertionpriority
, priority
,
2717 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2718 priority
= p
->p_memstat_assertionpriority
;
2722 if (priority
!= p
->p_memstat_effectivepriority
) {
2723 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2724 (priority
== JETSAM_PRIORITY_IDLE
)) {
2726 * This process is on its way into the IDLE band. The system is
2727 * using 'legacy' jetsam aging policy. That means, this process
2728 * has already used up its idle-deferral aging time that is given
2729 * once per its lifetime. So we need to set the INACTIVE limits
2730 * explicitly because it won't be going through the demotion paths
2731 * that take care to apply the limits appropriately.
2734 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2736 * This process has the 'elevated inactive jetsam band' attribute.
2737 * So, there will be no trip to IDLE after all.
2738 * Instead, we pin the process in the elevated band,
2739 * where its ACTIVE limits will apply.
2742 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2745 memorystatus_update_priority_locked(p
, priority
, false, true);
2747 memorystatus_update_priority_locked(p
, priority
, false, false);
2753 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2754 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2755 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2756 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2758 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2759 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2760 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2761 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2762 * band. The deferral can be cleared early by clearing the appropriate flag.
2764 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2765 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2766 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2770 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
)
2772 unsigned int old_dirty
;
2773 boolean_t reschedule
= FALSE
;
2774 boolean_t already_deferred
= FALSE
;
2775 boolean_t defer_now
= FALSE
;
2778 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2779 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2783 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2785 * Process is on its way out.
2791 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2796 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2801 old_dirty
= p
->p_memstat_dirty
;
2803 /* These bits are cumulative, as per <rdar://problem/11159924> */
2804 if (pcontrol
& PROC_DIRTY_TRACK
) {
2805 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2808 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2809 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2812 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2813 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2816 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2817 already_deferred
= TRUE
;
2821 /* This can be set and cleared exactly once. */
2822 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
2823 if ((pcontrol
& (PROC_DIRTY_DEFER
)) &&
2824 !(old_dirty
& P_DIRTY_DEFER
)) {
2825 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2828 if ((pcontrol
& (PROC_DIRTY_DEFER_ALWAYS
)) &&
2829 !(old_dirty
& P_DIRTY_DEFER_ALWAYS
)) {
2830 p
->p_memstat_dirty
|= P_DIRTY_DEFER_ALWAYS
;
2836 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2837 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2838 defer_now
? "Y" : "N",
2839 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2842 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2843 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2844 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2845 if (defer_now
&& !already_deferred
) {
2847 * Request to defer a clean process that's idle-exit enabled
2848 * and not already in the jetsam deferred band. Most likely a
2851 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2853 } else if (!defer_now
) {
2855 * The process isn't asking for the 'aging' facility.
2856 * Could be that it is:
2859 if (already_deferred
) {
2861 * already in the aging bands. Traditionally,
2862 * some processes have tried to use this to
2863 * opt out of the 'aging' facility.
2866 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2869 * agnostic to the 'aging' facility. In that case,
2870 * we'll go ahead and opt it in because this is likely
2871 * a new launch (clean process, dirty tracking enabled)
2874 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2882 * We are trying to operate on a dirty process. Dirty processes have to
2883 * be removed from the deferred band. The question is do we reset the
2884 * deferred state or not?
2886 * This could be a legal request like:
2887 * - this process had opted into the 'aging' band
2888 * - but it's now dirty and requests to opt out.
2889 * In this case, we remove the process from the band and reset its
2890 * state too. It'll opt back in properly when needed.
2892 * OR, this request could be a user-space bug. E.g.:
2893 * - this process had opted into the 'aging' band when clean
2894 * - and, then issues another request to again put it into the band except
2895 * this time the process is dirty.
2896 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2897 * the deferred band with its state intact. So our request below is no-op.
2898 * But we do it here anyways for coverage.
2900 * memorystatus_update_idle_priority_locked()
2901 * single-mindedly treats a dirty process as "cannot be in the aging band".
2904 if (!defer_now
&& already_deferred
) {
2905 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2908 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2910 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2915 memorystatus_update_idle_priority_locked(p
);
2918 memorystatus_reschedule_idle_demotion_locked();
2930 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
)
2933 boolean_t kill
= false;
2934 boolean_t reschedule
= FALSE
;
2935 boolean_t was_dirty
= FALSE
;
2936 boolean_t now_dirty
= FALSE
;
2938 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
2939 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
2943 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2945 * Process is on its way out.
2951 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2956 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2960 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
2961 /* Dirty tracking not enabled */
2963 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2965 * Process is set to be terminated and we're attempting to mark it dirty.
2966 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
2970 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
2971 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
2972 /* Mark the process as having been dirtied at some point */
2973 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
2974 memorystatus_dirty_count
++;
2976 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
2977 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
2978 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
2979 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
2981 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2982 /* Kill previously terminated processes if set clean */
2985 p
->p_memstat_dirty
&= ~flag
;
2986 memorystatus_dirty_count
--;
2998 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3002 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
3003 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
3004 /* Manage idle exit deferral, if applied */
3005 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3007 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
3008 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
3009 * P_DIRTY_DEFER: one-time protection window given at launch
3010 * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode.
3012 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
3013 * in that band on it's way to IDLE.
3016 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3018 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
3020 * The process will move from its aging band to its higher requested
3023 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
3025 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
3029 * Process is back from "dirty" to "clean".
3032 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3033 if (((p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) == FALSE
) &&
3034 (mach_absolute_time() >= p
->p_memstat_idledeadline
)) {
3036 * The process' hasn't enrolled in the "always defer after dirty"
3037 * mode and its deadline has expired. It currently
3038 * does not reside in any of the aging buckets.
3040 * It's on its way to the JETSAM_PRIORITY_IDLE
3041 * bucket via memorystatus_update_idle_priority_locked()
3044 * So all we need to do is reset all the state on the
3045 * process that's related to the aging bucket i.e.
3046 * the AGING_IN_PROGRESS flag and the timer deadline.
3049 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3053 * Process enrolled in "always stop in deferral band after dirty" OR
3054 * it still has some protection window left and so
3055 * we just re-arm the timer without modifying any
3056 * state on the process iff it still wants into that band.
3059 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3060 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3062 } else if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
3063 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
3068 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3074 memorystatus_update_idle_priority_locked(p
);
3076 if (memorystatus_highwater_enabled
) {
3077 boolean_t ledger_update_needed
= TRUE
;
3078 boolean_t use_active
;
3081 * We are in this path because this process transitioned between
3082 * dirty <--> clean state. Update the cached memory limits.
3085 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
3087 * process is pinned in elevated band
3091 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3093 ledger_update_needed
= TRUE
;
3096 * process is clean...but if it has opted into pressured-exit
3097 * we don't apply the INACTIVE limit till the process has aged
3098 * out and is entering the IDLE band.
3099 * See memorystatus_update_priority_locked() for that.
3102 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3103 ledger_update_needed
= FALSE
;
3105 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3107 ledger_update_needed
= TRUE
;
3112 * Enforce the new limits by writing to the ledger.
3114 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3115 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3116 * We aren't traversing the jetsam bucket list here, so we should be safe.
3117 * See rdar://21394491.
3120 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
3122 if (p
->p_memstat_memlimit
> 0) {
3123 ledger_limit
= p
->p_memstat_memlimit
;
3128 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, use_active
, is_fatal
);
3130 proc_rele_locked(p
);
3132 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3133 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
3134 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
3135 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
3139 /* If the deferral state changed, reschedule the demotion timer */
3141 memorystatus_reschedule_idle_demotion_locked();
3146 if (proc_ref_locked(p
) == p
) {
3148 psignal(p
, SIGKILL
);
3150 proc_rele_locked(p
);
3161 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
)
3165 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3167 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
3171 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3173 * Process is on its way out.
3179 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3184 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3185 /* Dirty tracking not enabled */
3190 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) == 0) {
3195 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
3196 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
3199 /* This can be set and cleared exactly once. */
3200 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
3201 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3202 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER
);
3205 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3206 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER_ALWAYS
);
3209 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3210 memorystatus_update_idle_priority_locked(p
);
3211 memorystatus_reschedule_idle_demotion_locked();
3222 memorystatus_dirty_get(proc_t p
, boolean_t locked
)
3230 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3231 ret
|= PROC_DIRTY_TRACKED
;
3232 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3233 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3235 if (p
->p_memstat_dirty
& P_DIRTY
) {
3236 ret
|= PROC_DIRTY_IS_DIRTY
;
3238 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3239 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3251 memorystatus_on_terminate(proc_t p
)
3257 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3259 if ((p
->p_memstat_dirty
& (P_DIRTY_TRACK
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) {
3260 /* Clean; mark as terminated and issue SIGKILL */
3263 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3273 memorystatus_on_suspend(proc_t p
)
3277 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3281 memorystatus_suspended_count
++;
3283 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3288 memorystatus_on_resume(proc_t p
)
3298 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3301 * Now that we don't _thaw_ a process completely,
3302 * resuming it (and having some on-demand swapins)
3303 * shouldn't preclude it from being counted as frozen.
3305 * memorystatus_frozen_count--;
3307 * We preserve the P_MEMSTAT_FROZEN state since the process
3308 * could have state on disk AND so will deserve some protection
3309 * in the jetsam bands.
3311 if ((p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) == 0) {
3312 p
->p_memstat_state
|= P_MEMSTAT_REFREEZE_ELIGIBLE
;
3313 memorystatus_refreeze_eligible_count
++;
3315 p
->p_memstat_thaw_count
++;
3317 memorystatus_thaw_count
++;
3320 memorystatus_suspended_count
--;
3326 * P_MEMSTAT_FROZEN will remain unchanged. This used to be:
3327 * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
3329 p
->p_memstat_state
&= ~P_MEMSTAT_SUSPENDED
;
3335 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3336 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3342 memorystatus_on_inactivity(proc_t p
)
3346 /* Wake the freeze thread */
3347 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3352 * The proc_list_lock is held by the caller.
3355 memorystatus_build_state(proc_t p
)
3357 uint32_t snapshot_state
= 0;
3360 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3361 snapshot_state
|= kMemorystatusSuspended
;
3363 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3364 snapshot_state
|= kMemorystatusFrozen
;
3366 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
3367 snapshot_state
|= kMemorystatusWasThawed
;
3369 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
3370 snapshot_state
|= kMemorystatusAssertion
;
3374 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3375 snapshot_state
|= kMemorystatusTracked
;
3377 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3378 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3380 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3381 snapshot_state
|= kMemorystatusDirty
;
3384 return snapshot_state
;
3388 kill_idle_exit_proc(void)
3390 proc_t p
, victim_p
= PROC_NULL
;
3391 uint64_t current_time
, footprint_of_killed_proc
;
3392 boolean_t killed
= FALSE
;
3394 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3396 /* Pick next idle exit victim. */
3397 current_time
= mach_absolute_time();
3399 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3400 if (jetsam_reason
== OS_REASON_NULL
) {
3401 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3406 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3408 /* No need to look beyond the idle band */
3409 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3413 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
| P_DIRTY_IS_DIRTY
| P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3414 if (current_time
>= p
->p_memstat_idledeadline
) {
3415 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3416 victim_p
= proc_ref_locked(p
);
3421 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3427 printf("memorystatus: killing_idle_process pid %d [%s] jetsam_reason->osr_code: %llu\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "unknown"), jetsam_reason
->osr_code
);
3428 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
, &footprint_of_killed_proc
);
3429 proc_rele(victim_p
);
3431 os_reason_free(jetsam_reason
);
3438 memorystatus_thread_wake(void)
3441 int active_thr
= atomic_load(&active_jetsam_threads
);
3443 /* Wakeup all the jetsam threads */
3444 for (thr_id
= 0; thr_id
< active_thr
; thr_id
++) {
3445 thread_wakeup((event_t
)&jetsam_threads
[thr_id
].memorystatus_wakeup
);
3452 memorystatus_thread_pool_max()
3454 /* Increase the jetsam thread pool to max_jetsam_threads */
3455 int max_threads
= max_jetsam_threads
;
3456 printf("Expanding memorystatus pool to %d!\n", max_threads
);
3457 atomic_store(&active_jetsam_threads
, max_threads
);
3461 memorystatus_thread_pool_default()
3463 /* Restore the jetsam thread pool to a single thread */
3464 printf("Reverting memorystatus pool back to 1\n");
3465 atomic_store(&active_jetsam_threads
, 1);
3468 #endif /* CONFIG_JETSAM */
3470 extern void vm_pressure_response(void);
3473 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3475 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3477 assert(jetsam_thread
!= NULL
);
3479 assert_wait_timeout(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, NSEC_PER_MSEC
);
3481 assert_wait(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
);
3484 return thread_block(continuation
);
3488 memorystatus_avail_pages_below_pressure(void)
3492 * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should
3493 * key off of the system having dynamic swap support. With full swap support,
3494 * the system shouldn't really need to worry about various page thresholds.
3496 return memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3497 #else /* CONFIG_EMBEDDED */
3499 #endif /* CONFIG_EMBEDDED */
3503 memorystatus_avail_pages_below_critical(void)
3506 return memorystatus_available_pages
<= memorystatus_available_pages_critical
;
3507 #else /* CONFIG_EMBEDDED */
3509 #endif /* CONFIG_EMBEDDED */
3513 memorystatus_post_snapshot(int32_t priority
, uint32_t cause
)
3515 boolean_t is_idle_priority
;
3517 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3518 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
);
3520 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
|| priority
== JETSAM_PRIORITY_IDLE_DEFERRED
);
3523 #pragma unused(cause)
3525 * Don't generate logs for steady-state idle-exit kills,
3526 * unless it is overridden for debug or by the device
3530 return !is_idle_priority
|| memorystatus_idle_snapshot
;
3532 #else /* CONFIG_EMBEDDED */
3534 * Don't generate logs for steady-state idle-exit kills,
3536 * - it is overridden for debug or by the device
3539 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3542 boolean_t snapshot_eligible_kill_cause
= (is_reason_thrashing(cause
) || is_reason_zone_map_exhaustion(cause
));
3543 return !is_idle_priority
|| memorystatus_idle_snapshot
|| snapshot_eligible_kill_cause
;
3544 #endif /* CONFIG_EMBEDDED */
3548 memorystatus_action_needed(void)
3551 return is_reason_thrashing(kill_under_pressure_cause
) ||
3552 is_reason_zone_map_exhaustion(kill_under_pressure_cause
) ||
3553 memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3554 #else /* CONFIG_EMBEDDED */
3555 return is_reason_thrashing(kill_under_pressure_cause
) ||
3556 is_reason_zone_map_exhaustion(kill_under_pressure_cause
);
3557 #endif /* CONFIG_EMBEDDED */
3561 memorystatus_act_on_hiwat_processes(uint32_t *errors
, uint32_t *hwm_kill
, boolean_t
*post_snapshot
, __unused boolean_t
*is_critical
, uint64_t *memory_reclaimed
)
3563 boolean_t purged
= FALSE
, killed
= FALSE
;
3565 *memory_reclaimed
= 0;
3566 killed
= memorystatus_kill_hiwat_proc(errors
, &purged
, memory_reclaimed
);
3569 *hwm_kill
= *hwm_kill
+ 1;
3570 *post_snapshot
= TRUE
;
3573 if (purged
== FALSE
) {
3574 /* couldn't purge and couldn't kill */
3575 memorystatus_hwm_candidates
= FALSE
;
3580 /* No highwater processes to kill. Continue or stop for now? */
3581 if (!is_reason_thrashing(kill_under_pressure_cause
) &&
3582 !is_reason_zone_map_exhaustion(kill_under_pressure_cause
) &&
3583 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3585 * We are _not_ out of pressure but we are above the critical threshold and there's:
3586 * - no compressor thrashing
3587 * - enough zone memory
3588 * - no more HWM processes left.
3589 * For now, don't kill any other processes.
3592 if (*hwm_kill
== 0) {
3593 memorystatus_thread_wasted_wakeup
++;
3596 *is_critical
= FALSE
;
3600 #endif /* CONFIG_JETSAM */
3606 * kJetsamHighRelaunchCandidatesThreshold defines the percentage of candidates
3607 * in the idle & deferred bands that need to be bad candidates in order to trigger
3608 * aggressive jetsam.
3610 #define kJetsamHighRelaunchCandidatesThreshold (100)
3612 /* kJetsamMinCandidatesThreshold defines the minimum number of candidates in the
3613 * idle/deferred bands to trigger aggressive jetsam. This value basically decides
3614 * how much memory the system is ready to hold in the lower bands without triggering
3615 * aggressive jetsam. This number should ideally be tuned based on the memory config
3618 #define kJetsamMinCandidatesThreshold (5)
3621 memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused
int jld_eval_aggressive_count
, __unused
int *jld_idle_kills
, __unused
int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3623 boolean_t aggressive_jetsam_needed
= false;
3626 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, we maintain the jetsam
3627 * relaunch behavior for all daemons. Also, daemons and apps are aged in deferred bands on
3628 * every dirty->clean transition. For this aging policy, the best way to determine if
3629 * aggressive jetsam is needed, is to see if the kill candidates are mostly bad candidates.
3630 * If yes, then we need to go to higher bands to reclaim memory.
3633 /* Get total candidate counts for idle and idle deferred bands */
3634 *total_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].count
+ memstat_bucket
[system_procs_aging_band
].count
;
3635 /* Get counts of bad kill candidates in idle and idle deferred bands */
3636 int bad_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].relaunch_high_count
+ memstat_bucket
[system_procs_aging_band
].relaunch_high_count
;
3638 *elevated_bucket_count
= memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
].count
;
3642 /* Check if the number of bad candidates is greater than kJetsamHighRelaunchCandidatesThreshold % */
3643 aggressive_jetsam_needed
= (((bad_candidates
* 100) / *total_candidates
) >= kJetsamHighRelaunchCandidatesThreshold
);
3646 * Since the new aging policy bases the aggressive jetsam trigger on percentage of
3647 * bad candidates, it is prone to being overly aggressive. In order to mitigate that,
3648 * make sure the system is really under memory pressure before triggering aggressive
3651 if (memorystatus_available_pages
> memorystatus_sysproc_aging_aggr_pages
) {
3652 aggressive_jetsam_needed
= false;
3655 #if DEVELOPMENT || DEBUG
3656 printf("memorystatus: aggressive%d: [%s] Bad Candidate Threshold Check (total: %d, bad: %d, threshold: %d %%); Memory Pressure Check (available_pgs: %llu, threshold_pgs: %llu)\n",
3657 jld_eval_aggressive_count
, aggressive_jetsam_needed
? "PASSED" : "FAILED", *total_candidates
, bad_candidates
,
3658 kJetsamHighRelaunchCandidatesThreshold
, (uint64_t)memorystatus_available_pages
, (uint64_t)memorystatus_sysproc_aging_aggr_pages
);
3659 #endif /* DEVELOPMENT || DEBUG */
3660 return aggressive_jetsam_needed
;
3664 memorystatus_aggressive_jetsam_needed_default(__unused
int jld_eval_aggressive_count
, int *jld_idle_kills
, int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3666 boolean_t aggressive_jetsam_needed
= false;
3667 /* Jetsam Loop Detection - locals */
3668 memstat_bucket_t
*bucket
;
3669 int jld_bucket_count
= 0;
3672 switch (jetsam_aging_policy
) {
3673 case kJetsamAgingPolicyLegacy
:
3674 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3675 jld_bucket_count
= bucket
->count
;
3676 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3677 jld_bucket_count
+= bucket
->count
;
3679 case kJetsamAgingPolicyAppsReclaimedFirst
:
3680 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3681 jld_bucket_count
= bucket
->count
;
3682 bucket
= &memstat_bucket
[system_procs_aging_band
];
3683 jld_bucket_count
+= bucket
->count
;
3684 bucket
= &memstat_bucket
[applications_aging_band
];
3685 jld_bucket_count
+= bucket
->count
;
3687 case kJetsamAgingPolicyNone
:
3689 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3690 jld_bucket_count
= bucket
->count
;
3694 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3695 *elevated_bucket_count
= bucket
->count
;
3696 *total_candidates
= jld_bucket_count
;
3699 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3701 #if DEVELOPMENT || DEBUG
3702 if (aggressive_jetsam_needed
) {
3703 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3704 jld_eval_aggressive_count
,
3705 jld_idle_kill_candidates
,
3708 #endif /* DEVELOPMENT || DEBUG */
3709 return aggressive_jetsam_needed
;
3713 memorystatus_act_aggressive(uint32_t cause
, os_reason_t jetsam_reason
, int *jld_idle_kills
, boolean_t
*corpse_list_purged
, boolean_t
*post_snapshot
, uint64_t *memory_reclaimed
)
3715 boolean_t aggressive_jetsam_needed
= false;
3717 uint32_t errors
= 0;
3718 uint64_t footprint_of_killed_proc
= 0;
3719 int elevated_bucket_count
= 0;
3720 int total_candidates
= 0;
3721 *memory_reclaimed
= 0;
3724 * The aggressive jetsam logic looks at the number of times it has been in the
3725 * aggressive loop to determine the max priority band it should kill upto. The
3726 * static variables below are used to track that property.
3728 * To reset those values, the implementation checks if it has been
3729 * memorystatus_jld_eval_period_msecs since the parameters were reset.
3731 static int jld_eval_aggressive_count
= 0;
3732 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3733 static uint64_t jld_timestamp_msecs
= 0;
3734 static int jld_idle_kill_candidates
= 0;
3736 if (memorystatus_jld_enabled
== FALSE
) {
3737 /* If aggressive jetsam is disabled, nothing to do here */
3741 /* Get current timestamp (msecs only) */
3742 struct timeval jld_now_tstamp
= {0, 0};
3743 uint64_t jld_now_msecs
= 0;
3744 microuptime(&jld_now_tstamp
);
3745 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3748 * The aggressive jetsam logic looks at the number of candidates and their
3749 * properties to decide if aggressive jetsam should be engaged.
3751 if (jetsam_aging_policy
== kJetsamAgingPolicySysProcsReclaimedFirst
) {
3753 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, the logic looks at the number of
3754 * candidates in the idle and deferred band and how many out of them are marked as high relaunch
3757 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_sysproc_aging(jld_eval_aggressive_count
,
3758 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3761 * The other aging policies look at number of candidate processes over a specific time window and
3762 * evaluate if the system is in a jetsam loop. If yes, aggressive jetsam is triggered.
3764 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_default(jld_eval_aggressive_count
,
3765 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3769 * Check if its been really long since the aggressive jetsam evaluation
3770 * parameters have been refreshed. This logic also resets the jld_eval_aggressive_count
3771 * counter to make sure we reset the aggressive jetsam severity.
3773 boolean_t param_reval
= false;
3775 if ((total_candidates
== 0) ||
3776 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3777 jld_timestamp_msecs
= jld_now_msecs
;
3778 jld_idle_kill_candidates
= total_candidates
;
3779 *jld_idle_kills
= 0;
3780 jld_eval_aggressive_count
= 0;
3781 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3786 * If the parameters have been updated, re-evaluate the aggressive_jetsam_needed condition for
3787 * the non kJetsamAgingPolicySysProcsReclaimedFirst policy since its based on jld_idle_kill_candidates etc.
3789 if ((param_reval
== true) && (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
)) {
3790 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3794 * It is also possible that the system is down to a very small number of processes in the candidate
3795 * bands. In that case, the decisions made by the memorystatus_aggressive_jetsam_needed_* routines
3796 * would not be useful. In that case, do not trigger aggressive jetsam.
3798 if (total_candidates
< kJetsamMinCandidatesThreshold
) {
3799 #if DEVELOPMENT || DEBUG
3800 printf("memorystatus: aggressive: [FAILED] Low Candidate Count (current: %d, threshold: %d)\n", total_candidates
, kJetsamMinCandidatesThreshold
);
3801 #endif /* DEVELOPMENT || DEBUG */
3802 aggressive_jetsam_needed
= false;
3805 if (aggressive_jetsam_needed
== false) {
3806 /* Either the aging policy or the candidate count decided that aggressive jetsam is not needed. Nothing more to do here. */
3810 /* Looks like aggressive jetsam is needed */
3811 jld_eval_aggressive_count
++;
3813 if (jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) {
3814 memorystatus_issue_fg_band_notify();
3817 * If we reach this aggressive cycle, corpses might be causing memory pressure.
3818 * So, in an effort to avoid jetsams in the FG band, we will attempt to purge
3819 * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT.
3821 if (total_corpses_count() > 0 && !*corpse_list_purged
) {
3822 task_purge_all_corpses();
3823 *corpse_list_purged
= TRUE
;
3825 } else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3827 * Bump up the jetsam priority limit (eg: the bucket index)
3828 * Enforce bucket index sanity.
3830 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3831 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3833 * Do nothing. Stick with the default level.
3836 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3840 /* Visit elevated processes first */
3841 while (elevated_bucket_count
) {
3842 elevated_bucket_count
--;
3845 * memorystatus_kill_elevated_process() drops a reference,
3846 * so take another one so we can continue to use this exit reason
3847 * even after it returns.
3850 os_reason_ref(jetsam_reason
);
3851 killed
= memorystatus_kill_elevated_process(
3854 JETSAM_PRIORITY_ELEVATED_INACTIVE
,
3855 jld_eval_aggressive_count
,
3856 &errors
, &footprint_of_killed_proc
);
3858 *post_snapshot
= TRUE
;
3859 *memory_reclaimed
+= footprint_of_killed_proc
;
3860 if (memorystatus_avail_pages_below_pressure()) {
3862 * Still under pressure.
3863 * Find another pinned processes.
3871 * No pinned processes left to kill.
3872 * Abandon elevated band.
3879 * memorystatus_kill_processes_aggressive() allocates its own
3880 * jetsam_reason so the kMemorystatusKilledProcThrashing cause
3881 * is consistent throughout the aggressive march.
3883 killed
= memorystatus_kill_processes_aggressive(
3884 kMemorystatusKilledProcThrashing
,
3885 jld_eval_aggressive_count
,
3886 jld_priority_band_max
,
3887 &errors
, &footprint_of_killed_proc
);
3890 /* Always generate logs after aggressive kill */
3891 *post_snapshot
= TRUE
;
3892 *memory_reclaimed
+= footprint_of_killed_proc
;
3893 *jld_idle_kills
= 0;
3902 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
3904 boolean_t post_snapshot
= FALSE
;
3905 uint32_t errors
= 0;
3906 uint32_t hwm_kill
= 0;
3907 boolean_t sort_flag
= TRUE
;
3908 boolean_t corpse_list_purged
= FALSE
;
3909 int jld_idle_kills
= 0;
3910 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3911 uint64_t total_memory_reclaimed
= 0;
3913 assert(jetsam_thread
!= NULL
);
3914 if (jetsam_thread
->inited
== FALSE
) {
3916 * It's the first time the thread has run, so just mark the thread as privileged and block.
3917 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
3921 thread_wire(host_priv_self(), current_thread(), TRUE
);
3922 snprintf(name
, 32, "VM_memorystatus_%d", jetsam_thread
->index
+ 1);
3924 /* Limit all but one thread to the lower jetsam bands, as that's where most of the victims are. */
3925 if (jetsam_thread
->index
== 0) {
3926 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
3927 thread_vm_bind_group_add();
3929 jetsam_thread
->limit_to_low_bands
= FALSE
;
3931 jetsam_thread
->limit_to_low_bands
= TRUE
;
3933 thread_set_thread_name(current_thread(), name
);
3934 jetsam_thread
->inited
= TRUE
;
3935 memorystatus_thread_block(0, memorystatus_thread
);
3938 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
3939 memorystatus_available_pages
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
, 0);
3942 * Jetsam aware version.
3944 * The VM pressure notification thread is working it's way through clients in parallel.
3946 * So, while the pressure notification thread is targeting processes in order of
3947 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
3948 * any processes that have exceeded their highwater mark.
3950 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
3951 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
3953 while (memorystatus_action_needed()) {
3957 uint64_t memory_reclaimed
= 0;
3958 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
3959 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3961 cause
= kill_under_pressure_cause
;
3963 case kMemorystatusKilledFCThrashing
:
3964 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
3966 case kMemorystatusKilledVMCompressorThrashing
:
3967 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
;
3969 case kMemorystatusKilledVMCompressorSpaceShortage
:
3970 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
;
3972 case kMemorystatusKilledZoneMapExhaustion
:
3973 jetsam_reason_code
= JETSAM_REASON_ZONE_MAP_EXHAUSTION
;
3975 case kMemorystatusKilledVMPageShortage
:
3978 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
3979 cause
= kMemorystatusKilledVMPageShortage
;
3984 boolean_t is_critical
= TRUE
;
3985 if (memorystatus_act_on_hiwat_processes(&errors
, &hwm_kill
, &post_snapshot
, &is_critical
, &memory_reclaimed
)) {
3986 total_memory_reclaimed
+= memory_reclaimed
;
3987 if (is_critical
== FALSE
) {
3989 * For now, don't kill any other processes.
3997 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
3998 if (jetsam_reason
== OS_REASON_NULL
) {
3999 printf("memorystatus_thread: failed to allocate jetsam reason\n");
4002 /* Only unlimited jetsam threads should act aggressive */
4003 if (!jetsam_thread
->limit_to_low_bands
&&
4004 memorystatus_act_aggressive(cause
, jetsam_reason
, &jld_idle_kills
, &corpse_list_purged
, &post_snapshot
, &memory_reclaimed
)) {
4005 total_memory_reclaimed
+= memory_reclaimed
;
4010 * memorystatus_kill_top_process() drops a reference,
4011 * so take another one so we can continue to use this exit reason
4012 * even after it returns
4014 os_reason_ref(jetsam_reason
);
4017 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
, &memory_reclaimed
);
4021 total_memory_reclaimed
+= memory_reclaimed
;
4022 if (memorystatus_post_snapshot(priority
, cause
) == TRUE
) {
4023 post_snapshot
= TRUE
;
4026 /* Jetsam Loop Detection */
4027 if (memorystatus_jld_enabled
== TRUE
) {
4028 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
4032 * We've reached into bands beyond idle deferred.
4033 * We make no attempt to monitor them
4039 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
4040 * then we attempt to relieve pressure by purging corpse memory and notifying
4041 * anybody wanting to know this.
4043 if (priority
>= JETSAM_PRIORITY_UI_SUPPORT
) {
4044 memorystatus_issue_fg_band_notify();
4045 if (total_corpses_count() > 0 && !corpse_list_purged
) {
4046 task_purge_all_corpses();
4047 corpse_list_purged
= TRUE
;
4053 if (memorystatus_avail_pages_below_critical()) {
4055 * Still under pressure and unable to kill a process - purge corpse memory
4057 if (total_corpses_count() > 0) {
4058 task_purge_all_corpses();
4059 corpse_list_purged
= TRUE
;
4062 if (!jetsam_thread
->limit_to_low_bands
&& memorystatus_avail_pages_below_critical()) {
4064 * Still under pressure and unable to kill a process - panic
4066 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)memorystatus_available_pages
);
4073 * We do not want to over-kill when thrashing has been detected.
4074 * To avoid that, we reset the flag here and notify the
4077 if (is_reason_thrashing(kill_under_pressure_cause
)) {
4078 kill_under_pressure_cause
= 0;
4080 vm_thrashing_jetsam_done();
4081 #endif /* CONFIG_JETSAM */
4082 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause
)) {
4083 kill_under_pressure_cause
= 0;
4086 os_reason_free(jetsam_reason
);
4089 kill_under_pressure_cause
= 0;
4092 memorystatus_clear_errors();
4095 if (post_snapshot
) {
4097 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4098 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
4099 uint64_t timestamp_now
= mach_absolute_time();
4100 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4101 memorystatus_jetsam_snapshot
->js_gencount
++;
4102 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4103 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4105 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4108 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4116 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
4117 memorystatus_available_pages
, total_memory_reclaimed
, 0, 0, 0);
4119 memorystatus_thread_block(0, memorystatus_thread
);
4124 * when an idle-exitable proc was killed
4126 * when there are no more idle-exitable procs found
4127 * when the attempt to kill an idle-exitable proc failed
4130 memorystatus_idle_exit_from_VM(void)
4133 * This routine should no longer be needed since we are
4134 * now using jetsam bands on all platforms and so will deal
4135 * with IDLE processes within the memorystatus thread itself.
4137 * But we still use it because we observed that macos systems
4138 * started heavy compression/swapping with a bunch of
4139 * idle-exitable processes alive and doing nothing. We decided
4140 * to rather kill those processes than start swapping earlier.
4143 return kill_idle_exit_proc();
4147 * Callback invoked when allowable physical memory footprint exceeded
4148 * (dirty pages + IOKit mappings)
4150 * This is invoked for both advisory, non-fatal per-task high watermarks,
4151 * as well as the fatal task memory limits.
4154 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4156 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4158 proc_t p
= current_proc();
4160 #if VM_PRESSURE_EVENTS
4161 if (warning
== TRUE
) {
4163 * This is a warning path which implies that the current process is close, but has
4164 * not yet exceeded its per-process memory limit.
4166 if (memorystatus_warn_process(p
->p_pid
, memlimit_is_active
, memlimit_is_fatal
, FALSE
/* not exceeded */) != TRUE
) {
4167 /* Print warning, since it's possible that task has not registered for pressure notifications */
4168 os_log(OS_LOG_DEFAULT
, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
4172 #endif /* VM_PRESSURE_EVENTS */
4174 if (memlimit_is_fatal
) {
4176 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
4177 * has violated either the system-wide per-task memory limit OR its own task limit.
4179 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
4180 if (jetsam_reason
== NULL
) {
4181 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
4182 } else if (corpse_for_fatal_memkill
!= 0 && proc_send_synchronous_EXC_RESOURCE(p
) == FALSE
) {
4183 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
4184 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
4187 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
4188 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
4192 * HWM offender exists. Done without locks or synchronization.
4193 * See comment near its declaration for more details.
4195 memorystatus_hwm_candidates
= TRUE
;
4197 #if VM_PRESSURE_EVENTS
4199 * The current process is not in the warning path.
4200 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
4201 * Failure to send note is ignored here.
4203 (void)memorystatus_warn_process(p
->p_pid
, memlimit_is_active
, memlimit_is_fatal
, TRUE
/* exceeded */);
4205 #endif /* VM_PRESSURE_EVENTS */
4210 memorystatus_log_exception(const int max_footprint_mb
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4212 proc_t p
= current_proc();
4215 * The limit violation is logged here, but only once per process per limit.
4216 * Soft memory limit is a non-fatal high-water-mark
4217 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
4220 os_log_with_startup_serial(OS_LOG_DEFAULT
, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
4221 ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), (p
? p
->p_pid
: -1), (memlimit_is_active
? "Active" : "Inactive"),
4222 (memlimit_is_fatal
? "Hard" : "Soft"), max_footprint_mb
,
4223 (memlimit_is_fatal
? "fatal" : "non-fatal"));
4231 * Evaluates process state to determine which limit
4232 * should be applied (active vs. inactive limit).
4234 * Processes that have the 'elevated inactive jetsam band' attribute
4235 * are first evaluated based on their current priority band.
4236 * presently elevated ==> active
4238 * Processes that opt into dirty tracking are evaluated
4239 * based on clean vs dirty state.
4241 * clean ==> inactive
4243 * Process that do not opt into dirty tracking are
4244 * evalulated based on priority level.
4245 * Foreground or above ==> active
4246 * Below Foreground ==> inactive
4248 * Return: TRUE if active
4253 proc_jetsam_state_is_active_locked(proc_t p
)
4255 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) &&
4256 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
)) {
4258 * process has the 'elevated inactive jetsam band' attribute
4259 * and process is present in the elevated band
4260 * implies active state
4263 } else if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
4265 * process has opted into dirty tracking
4266 * active state is based on dirty vs. clean
4268 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
4271 * implies active state
4277 * implies inactive state
4281 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
4283 * process is Foreground or higher
4284 * implies active state
4289 * process found below Foreground
4290 * implies inactive state
4297 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4301 uint32_t errors
= 0;
4302 uint64_t memory_reclaimed
= 0;
4304 if (victim_pid
== -1) {
4305 /* No pid, so kill first process */
4306 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
, &memory_reclaimed
);
4308 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
4312 memorystatus_clear_errors();
4316 /* Fire off snapshot notification */
4318 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4319 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
4320 uint64_t timestamp_now
= mach_absolute_time();
4321 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4322 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4323 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4325 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4328 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4340 * Jetsam a specific process.
4343 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4347 uint64_t killtime
= 0;
4348 uint64_t footprint_of_killed_proc
;
4350 clock_usec_t tv_usec
;
4353 /* TODO - add a victim queue and push this into the main jetsam thread */
4355 p
= proc_find(victim_pid
);
4357 os_reason_free(jetsam_reason
);
4363 if (memorystatus_jetsam_snapshot_count
== 0) {
4364 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
4367 killtime
= mach_absolute_time();
4368 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4369 tv_msec
= tv_usec
/ 1000;
4371 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4375 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
4377 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
4378 (unsigned long)tv_sec
, tv_msec
, victim_pid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
4379 memorystatus_kill_cause_name
[cause
], (p
? p
->p_memstat_effectivepriority
: -1),
4380 footprint_of_killed_proc
>> 10, (uint64_t)memorystatus_available_pages
);
4389 * Toggle the P_MEMSTAT_TERMINATED state.
4390 * Takes the proc_list_lock.
4393 proc_memstat_terminated(proc_t p
, boolean_t set
)
4395 #if DEVELOPMENT || DEBUG
4399 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4401 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4406 #pragma unused(p, set)
4410 #endif /* DEVELOPMENT || DEBUG */
4417 * This is invoked when cpulimits have been exceeded while in fatal mode.
4418 * The jetsam_flags do not apply as those are for memory related kills.
4419 * We call this routine so that the offending process is killed with
4420 * a non-zero exit status.
4423 jetsam_on_ledger_cpulimit_exceeded(void)
4426 int jetsam_flags
= 0; /* make it obvious */
4427 proc_t p
= current_proc();
4428 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4430 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4431 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
4433 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
4434 if (jetsam_reason
== OS_REASON_NULL
) {
4435 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4438 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
4441 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4445 #endif /* CONFIG_JETSAM */
4448 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
4453 *count
= get_task_memory_region_count(task
);
4457 #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
4458 #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
4460 #if DEVELOPMENT || DEBUG
4463 * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
4464 * set a new pidwatch value
4466 * get the current pidwatch value
4468 * The pidwatch_val starts out with a PID to watch for in the map_fork path.
4470 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
4471 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
4472 * - set to -1ull if the map_fork() is aborted for other reasons.
4475 uint64_t memorystatus_vm_map_fork_pidwatch_val
= 0;
4477 static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS
{
4478 #pragma unused(oidp, arg1, arg2)
4480 uint64_t new_value
= 0;
4481 uint64_t old_value
= 0;
4485 * The pid is held in the low 32 bits.
4486 * The 'allowed' flags are in the upper 32 bits.
4488 old_value
= memorystatus_vm_map_fork_pidwatch_val
;
4490 error
= sysctl_io_number(req
, old_value
, sizeof(old_value
), &new_value
, NULL
);
4492 if (error
|| !req
->newptr
) {
4494 * No new value passed in.
4500 * A new pid was passed in via req->newptr.
4501 * Ignore any attempt to set the higher order bits.
4503 memorystatus_vm_map_fork_pidwatch_val
= new_value
& 0xFFFFFFFF;
4504 printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value
, new_value
);
4509 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_map_fork_pidwatch
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
4510 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch
, "Q", "get/set pid watched for in vm_map_fork");
4514 * Record if a watched process fails to qualify for a vm_map_fork().
4517 memorystatus_abort_vm_map_fork(task_t task
)
4519 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4520 proc_t p
= get_bsdtask_info(task
);
4521 if (p
!= NULL
&& memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
) {
4522 memorystatus_vm_map_fork_pidwatch_val
= -1ull;
4528 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4530 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4531 proc_t p
= get_bsdtask_info(task
);
4532 if (p
&& (memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
)) {
4533 memorystatus_vm_map_fork_pidwatch_val
|= x
;
4538 #else /* DEVELOPMENT || DEBUG */
4542 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4544 #pragma unused(task)
4548 #endif /* DEVELOPMENT || DEBUG */
4551 * Called during EXC_RESOURCE handling when a process exceeds a soft
4552 * memory limit. This is the corpse fork path and here we decide if
4553 * vm_map_fork will be allowed when creating the corpse.
4554 * The task being considered is suspended.
4556 * By default, a vm_map_fork is allowed to proceed.
4558 * A few simple policy assumptions:
4559 * Desktop platform is not considered in this path.
4560 * The vm_map_fork is always allowed.
4562 * If the device has a zero system-wide task limit,
4563 * then the vm_map_fork is allowed.
4565 * And if a process's memory footprint calculates less
4566 * than or equal to quarter of the system-wide task limit,
4567 * then the vm_map_fork is allowed. This calculation
4568 * is based on the assumption that a process can
4569 * munch memory up to the system-wide task limit.
4571 extern boolean_t corpse_threshold_system_limit
;
4573 memorystatus_allowed_vm_map_fork(task_t task
)
4575 boolean_t is_allowed
= TRUE
; /* default */
4579 uint64_t footprint_in_bytes
;
4580 uint64_t max_allowed_bytes
;
4582 if (max_task_footprint_mb
== 0) {
4583 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4587 footprint_in_bytes
= get_task_phys_footprint(task
);
4590 * Maximum is 1/4 of the system-wide task limit by default.
4592 max_allowed_bytes
= ((uint64_t)max_task_footprint_mb
* 1024 * 1024) >> 2;
4594 #if DEBUG || DEVELOPMENT
4595 if (corpse_threshold_system_limit
) {
4596 max_allowed_bytes
= (uint64_t)max_task_footprint_mb
* (1UL << 20);
4598 #endif /* DEBUG || DEVELOPMENT */
4600 if (footprint_in_bytes
> max_allowed_bytes
) {
4601 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes
, max_allowed_bytes
);
4602 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED
);
4605 #endif /* CONFIG_EMBEDDED */
4607 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4612 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4619 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4620 assert(((uint32_t)pages
) == pages
);
4621 *footprint
= (uint32_t)pages
;
4623 if (max_footprint_lifetime
) {
4624 pages
= (get_task_phys_footprint_lifetime_max(task
) / PAGE_SIZE_64
);
4625 assert(((uint32_t)pages
) == pages
);
4626 *max_footprint_lifetime
= (uint32_t)pages
;
4628 if (purgeable_pages
) {
4629 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4630 assert(((uint32_t)pages
) == pages
);
4631 *purgeable_pages
= (uint32_t)pages
;
4636 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4637 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4638 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4639 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4640 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
)
4644 if (internal_pages
) {
4645 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4648 if (internal_compressed_pages
) {
4649 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4652 if (purgeable_nonvolatile_pages
) {
4653 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4656 if (purgeable_nonvolatile_compressed_pages
) {
4657 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4660 if (alternate_accounting_pages
) {
4661 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4664 if (alternate_accounting_compressed_pages
) {
4665 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4668 if (iokit_mapped_pages
) {
4669 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4672 if (page_table_pages
) {
4673 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4678 * This routine only acts on the global jetsam event snapshot.
4679 * Updating the process's entry can race when the memorystatus_thread
4680 * has chosen to kill a process that is racing to exit on another core.
4683 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4685 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4686 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4687 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4691 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4693 if (memorystatus_jetsam_snapshot_count
== 0) {
4695 * No active snapshot.
4702 * Sanity check as this routine should only be called
4703 * from a jetsam kill path.
4705 assert(kill_cause
!= 0 && killtime
!= 0);
4707 snapshot
= memorystatus_jetsam_snapshot
;
4708 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4710 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4711 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4712 entry
= &snapshot_list
[i
];
4714 if (entry
->killed
|| entry
->jse_killtime
) {
4716 * We apparently raced on the exit path
4717 * for this process, as it's snapshot entry
4718 * has already recorded a kill.
4720 assert(entry
->killed
&& entry
->jse_killtime
);
4725 * Update the entry we just found in the snapshot.
4728 entry
->killed
= kill_cause
;
4729 entry
->jse_killtime
= killtime
;
4730 entry
->jse_gencount
= snapshot
->js_gencount
;
4731 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4733 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4734 #else /* CONFIG_FREEZE */
4735 entry
->jse_thaw_count
= 0;
4736 #endif /* CONFIG_FREEZE */
4739 * If a process has moved between bands since snapshot was
4740 * initialized, then likely these fields changed too.
4742 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4743 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4744 entry
->priority
= p
->p_memstat_effectivepriority
;
4745 entry
->state
= memorystatus_build_state(p
);
4746 entry
->user_data
= p
->p_memstat_userdata
;
4747 entry
->fds
= p
->p_fd
->fd_nfiles
;
4751 * Always update the page counts on a kill.
4755 uint32_t max_pages_lifetime
= 0;
4756 uint32_t purgeable_pages
= 0;
4758 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4759 entry
->pages
= (uint64_t)pages
;
4760 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4761 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4763 uint64_t internal_pages
= 0;
4764 uint64_t internal_compressed_pages
= 0;
4765 uint64_t purgeable_nonvolatile_pages
= 0;
4766 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4767 uint64_t alternate_accounting_pages
= 0;
4768 uint64_t alternate_accounting_compressed_pages
= 0;
4769 uint64_t iokit_mapped_pages
= 0;
4770 uint64_t page_table_pages
= 0;
4772 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4773 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4774 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4775 &iokit_mapped_pages
, &page_table_pages
);
4777 entry
->jse_internal_pages
= internal_pages
;
4778 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4779 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4780 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4781 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4782 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4783 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4784 entry
->jse_page_table_pages
= page_table_pages
;
4786 uint64_t region_count
= 0;
4787 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4788 entry
->jse_memory_region_count
= region_count
;
4794 if (entry
== NULL
) {
4796 * The entry was not found in the snapshot, so the process must have
4797 * launched after the snapshot was initialized.
4798 * Let's try to append the new entry.
4800 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4802 * A populated snapshot buffer exists
4803 * and there is room to init a new entry.
4805 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4807 unsigned int next
= memorystatus_jetsam_snapshot_count
;
4809 if (memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[next
], (snapshot
->js_gencount
)) == TRUE
) {
4810 entry
= &snapshot_list
[next
];
4811 entry
->killed
= kill_cause
;
4812 entry
->jse_killtime
= killtime
;
4814 snapshot
->entry_count
= ++next
;
4815 memorystatus_jetsam_snapshot_count
= next
;
4817 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4819 * We just used the last slot in the snapshot buffer.
4820 * We only want to log it once... so we do it here
4821 * when we notice we've hit the max.
4823 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4824 memorystatus_jetsam_snapshot_count
);
4831 if (entry
== NULL
) {
4833 * If we reach here, the snapshot buffer could not be updated.
4834 * Most likely, the buffer is full, in which case we would have
4835 * logged a warning in the previous call.
4837 * For now, we will stop appending snapshot entries.
4838 * When the buffer is consumed, the snapshot state will reset.
4841 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
4842 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
4850 memorystatus_pages_update(unsigned int pages_avail
)
4852 memorystatus_available_pages
= pages_avail
;
4854 #if VM_PRESSURE_EVENTS
4856 * Since memorystatus_available_pages changes, we should
4857 * re-evaluate the pressure levels on the system and
4858 * check if we need to wake the pressure thread.
4859 * We also update memorystatus_level in that routine.
4861 vm_pressure_response();
4863 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
4864 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
4865 memorystatus_thread_wake();
4870 * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect
4871 * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this
4872 * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here
4873 * will result in the "mutex with preemption disabled" panic.
4876 if (memorystatus_freeze_thread_should_run() == TRUE
) {
4878 * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process).
4879 * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here.
4881 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
4882 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
4885 #endif /* CONFIG_FREEZE */
4887 #else /* VM_PRESSURE_EVENTS */
4889 boolean_t critical
, delta
;
4891 if (!memorystatus_delta
) {
4895 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
4896 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
4897 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
4899 if (critical
|| delta
) {
4900 unsigned int total_pages
;
4902 total_pages
= (unsigned int) atop_64(max_mem
);
4903 #if CONFIG_SECLUDED_MEMORY
4904 total_pages
-= vm_page_secluded_count
;
4905 #endif /* CONFIG_SECLUDED_MEMORY */
4906 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
4907 memorystatus_thread_wake();
4909 #endif /* VM_PRESSURE_EVENTS */
4911 #endif /* CONFIG_JETSAM */
4914 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
4917 clock_usec_t tv_usec
;
4919 uint32_t max_pages_lifetime
= 0;
4920 uint32_t purgeable_pages
= 0;
4921 uint64_t internal_pages
= 0;
4922 uint64_t internal_compressed_pages
= 0;
4923 uint64_t purgeable_nonvolatile_pages
= 0;
4924 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4925 uint64_t alternate_accounting_pages
= 0;
4926 uint64_t alternate_accounting_compressed_pages
= 0;
4927 uint64_t iokit_mapped_pages
= 0;
4928 uint64_t page_table_pages
= 0;
4929 uint64_t region_count
= 0;
4930 uint64_t cids
[COALITION_NUM_TYPES
];
4932 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4934 entry
->pid
= p
->p_pid
;
4935 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
4936 entry
->priority
= p
->p_memstat_effectivepriority
;
4938 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4939 entry
->pages
= (uint64_t)pages
;
4940 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4941 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4943 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4944 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4945 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4946 &iokit_mapped_pages
, &page_table_pages
);
4948 entry
->jse_internal_pages
= internal_pages
;
4949 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4950 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4951 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4952 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4953 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4954 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4955 entry
->jse_page_table_pages
= page_table_pages
;
4957 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4958 entry
->jse_memory_region_count
= region_count
;
4960 entry
->state
= memorystatus_build_state(p
);
4961 entry
->user_data
= p
->p_memstat_userdata
;
4962 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
4963 entry
->fds
= p
->p_fd
->fd_nfiles
;
4965 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
4966 entry
->cpu_time
.tv_sec
= (int64_t)tv_sec
;
4967 entry
->cpu_time
.tv_usec
= (int64_t)tv_usec
;
4969 assert(p
->p_stats
!= NULL
);
4970 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
4971 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
4972 entry
->killed
= 0; /* the jetsam kill cause */
4973 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
4975 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
4978 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4979 #else /* CONFIG_FREEZE */
4980 entry
->jse_thaw_count
= 0;
4981 #endif /* CONFIG_FREEZE */
4983 proc_coalitionids(p
, cids
);
4984 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
4990 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
4992 kern_return_t kr
= KERN_SUCCESS
;
4993 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
4994 vm_statistics64_data_t vm_stat
;
4996 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
)) != KERN_SUCCESS
) {
4997 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
4998 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
5000 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
5001 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
5002 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
5003 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
5004 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
5005 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
5007 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
5008 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
5009 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
5010 snapshot
->stats
.compressions
= vm_stat
.compressions
;
5011 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
5012 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
5013 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
5016 get_zone_map_size(&snapshot
->stats
.zone_map_size
, &snapshot
->stats
.zone_map_capacity
);
5018 bzero(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
));
5019 get_largest_zone_info(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
),
5020 &snapshot
->stats
.largest_zone_size
);
5024 * Collect vm statistics at boot.
5025 * Called only once (see kern_exec.c)
5026 * Data can be consumed at any time.
5029 memorystatus_init_at_boot_snapshot()
5031 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
5032 memorystatus_at_boot_snapshot
.entry_count
= 0;
5033 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
5034 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
5038 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
5041 unsigned int b
= 0, i
= 0;
5043 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
5044 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
5045 unsigned int snapshot_max
= 0;
5047 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
5051 * This is an on_demand snapshot
5053 snapshot
= od_snapshot
;
5054 snapshot_list
= od_snapshot
->entries
;
5055 snapshot_max
= ods_list_count
;
5058 * This is a jetsam event snapshot
5060 snapshot
= memorystatus_jetsam_snapshot
;
5061 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
5062 snapshot_max
= memorystatus_jetsam_snapshot_max
;
5066 * Init the snapshot header information
5068 memorystatus_init_snapshot_vmstats(snapshot
);
5069 snapshot
->snapshot_time
= mach_absolute_time();
5070 snapshot
->notification_time
= 0;
5071 snapshot
->js_gencount
= 0;
5073 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
5076 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
5078 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
5082 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5084 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
5085 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
5087 if (++i
== snapshot_max
) {
5092 snapshot
->entry_count
= i
;
5095 /* update the system buffer count */
5096 memorystatus_jetsam_snapshot_count
= i
;
5100 #if DEVELOPMENT || DEBUG
5104 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, uint32_t buffer_size
)
5107 memorystatus_jetsam_panic_options_t debug
;
5109 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
5113 ret
= copyin(buffer
, &debug
, buffer_size
);
5118 /* Panic bits match kMemorystatusKilled* enum */
5119 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
5121 /* Copyout new value */
5122 debug
.data
= memorystatus_jetsam_panic_debug
;
5123 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
5127 #endif /* CONFIG_JETSAM */
5130 * Triggers a sort_order on a specified jetsam priority band.
5131 * This is for testing only, used to force a path through the sort
5135 memorystatus_cmd_test_jetsam_sort(int priority
, int sort_order
)
5139 unsigned int bucket_index
= 0;
5141 if (priority
== -1) {
5142 /* Use as shorthand for default priority */
5143 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
5145 bucket_index
= (unsigned int)priority
;
5148 error
= memorystatus_sort_bucket(bucket_index
, sort_order
);
5153 #endif /* DEVELOPMENT || DEBUG */
5156 * Prepare the process to be killed (set state, update snapshot) and kill it.
5158 static uint64_t memorystatus_purge_before_jetsam_success
= 0;
5161 memorystatus_kill_proc(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, boolean_t
*killed
, uint64_t *footprint_of_killed_proc
)
5164 uint32_t aPid_ep
= 0;
5166 uint64_t killtime
= 0;
5168 clock_usec_t tv_usec
;
5170 boolean_t retval
= FALSE
;
5173 aPid_ep
= p
->p_memstat_effectivepriority
;
5175 if (cause
!= kMemorystatusKilledVnodes
&& cause
!= kMemorystatusKilledZoneMapExhaustion
) {
5177 * Genuine memory pressure and not other (vnode/zone) resource exhaustion.
5179 boolean_t success
= FALSE
;
5180 uint64_t num_pages_purged
;
5181 uint64_t num_pages_reclaimed
= 0;
5182 uint64_t num_pages_unsecluded
= 0;
5184 networking_memstatus_callout(p
, cause
);
5185 num_pages_purged
= vm_purgeable_purge_task_owned(p
->task
);
5186 num_pages_reclaimed
+= num_pages_purged
;
5187 #if CONFIG_SECLUDED_MEMORY
5188 if (cause
== kMemorystatusKilledVMPageShortage
&&
5189 vm_page_secluded_count
> 0 &&
5190 task_can_use_secluded_mem(p
->task
, FALSE
)) {
5192 * We're about to kill a process that has access
5193 * to the secluded pool. Drain that pool into the
5194 * free or active queues to make these pages re-appear
5195 * as "available", which might make us no longer need
5196 * to kill that process.
5197 * Since the secluded pool does not get refilled while
5198 * a process has access to it, it should remain
5201 num_pages_unsecluded
= vm_page_secluded_drain();
5202 num_pages_reclaimed
+= num_pages_unsecluded
;
5204 #endif /* CONFIG_SECLUDED_MEMORY */
5206 if (num_pages_reclaimed
) {
5208 * We actually reclaimed something and so let's
5209 * check if we need to continue with the kill.
5211 if (cause
== kMemorystatusKilledHiwat
) {
5212 uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5213 uint64_t memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5214 success
= (footprint_in_bytes
<= memlimit_in_bytes
);
5216 success
= (memorystatus_avail_pages_below_pressure() == FALSE
);
5217 #if CONFIG_SECLUDED_MEMORY
5218 if (!success
&& num_pages_unsecluded
) {
5220 * We just drained the secluded pool
5221 * because we're about to kill a
5222 * process that has access to it.
5223 * This is an important process and
5224 * we'd rather not kill it unless
5225 * absolutely necessary, so declare
5226 * success even if draining the pool
5227 * did not quite get us out of the
5228 * "pressure" level but still got
5229 * us out of the "critical" level.
5231 success
= (memorystatus_avail_pages_below_critical() == FALSE
);
5233 #endif /* CONFIG_SECLUDED_MEMORY */
5237 memorystatus_purge_before_jetsam_success
++;
5239 os_log_with_startup_serial(OS_LOG_DEFAULT
, "memorystatus: reclaimed %llu pages (%llu purged, %llu unsecluded) from pid %d [%s] and avoided %s\n",
5240 num_pages_reclaimed
, num_pages_purged
, num_pages_unsecluded
, aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), memorystatus_kill_cause_name
[cause
]);
5249 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5250 MEMORYSTATUS_DEBUG(1, "jetsam: killing pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5251 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5252 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
5253 p
->p_memstat_memlimit
);
5254 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5256 killtime
= mach_absolute_time();
5257 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5258 tv_msec
= tv_usec
/ 1000;
5261 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5264 char kill_reason_string
[128];
5266 if (cause
== kMemorystatusKilledHiwat
) {
5267 strlcpy(kill_reason_string
, "killing_highwater_process", 128);
5269 if (aPid_ep
== JETSAM_PRIORITY_IDLE
) {
5270 strlcpy(kill_reason_string
, "killing_idle_process", 128);
5272 strlcpy(kill_reason_string
, "killing_top_process", 128);
5277 * memorystatus_do_kill drops a reference, so take another one so we can
5278 * continue to use this exit reason even after memorystatus_do_kill()
5281 os_reason_ref(jetsam_reason
);
5283 retval
= memorystatus_do_kill(p
, cause
, jetsam_reason
, footprint_of_killed_proc
);
5286 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu",
5287 (unsigned long)tv_sec
, tv_msec
, kill_reason_string
,
5288 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5289 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5290 (*footprint_of_killed_proc
) >> 10, (uint64_t)memorystatus_available_pages
);
5296 * Jetsam the first process in the queue.
5299 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
5300 int32_t *priority
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5303 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5304 boolean_t new_snapshot
= FALSE
, force_new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5307 int32_t local_max_kill_prio
= JETSAM_PRIORITY_IDLE
;
5308 uint64_t footprint_of_killed_proc
= 0;
5310 #ifndef CONFIG_FREEZE
5314 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5315 memorystatus_available_pages
, 0, 0, 0, 0);
5319 if (sort_flag
== TRUE
) {
5320 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5323 local_max_kill_prio
= max_kill_priority
;
5325 force_new_snapshot
= FALSE
;
5327 #else /* CONFIG_JETSAM */
5329 if (sort_flag
== TRUE
) {
5330 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE
, JETSAM_SORT_DEFAULT
);
5334 * On macos, we currently only have 2 reasons to be here:
5336 * kMemorystatusKilledZoneMapExhaustion
5338 * kMemorystatusKilledVMCompressorSpaceShortage
5340 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
5341 * any and all processes as eligible kill candidates since we need to avoid a panic.
5343 * Since this function can be called async. it is harder to toggle the max_kill_priority
5344 * value before and after a call. And so we use this local variable to set the upper band
5345 * on the eligible kill bands.
5347 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
5348 local_max_kill_prio
= JETSAM_PRIORITY_MAX
;
5350 local_max_kill_prio
= max_kill_priority
;
5354 * And, because we are here under extreme circumstances, we force a snapshot even for
5357 force_new_snapshot
= TRUE
;
5359 #endif /* CONFIG_JETSAM */
5361 if (cause
!= kMemorystatusKilledZoneMapExhaustion
&&
5362 jetsam_current_thread() != NULL
&&
5363 jetsam_current_thread()->limit_to_low_bands
&&
5364 local_max_kill_prio
> JETSAM_PRIORITY_BACKGROUND
) {
5365 local_max_kill_prio
= JETSAM_PRIORITY_BACKGROUND
;
5370 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5371 while (next_p
&& (next_p
->p_memstat_effectivepriority
<= local_max_kill_prio
)) {
5373 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5377 aPid_ep
= p
->p_memstat_effectivepriority
;
5379 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5380 continue; /* with lock held */
5383 if (cause
== kMemorystatusKilledVnodes
) {
5385 * If the system runs out of vnodes, we systematically jetsam
5386 * processes in hopes of stumbling onto a vnode gain that helps
5387 * the system recover. The process that happens to trigger
5388 * this path has no known relationship to the vnode shortage.
5389 * Deadlock avoidance: attempt to safeguard the caller.
5392 if (p
== current_proc()) {
5393 /* do not jetsam the current process */
5400 boolean_t reclaim_proc
= !(p
->p_memstat_state
& P_MEMSTAT_LOCKED
);
5401 if (any
|| reclaim_proc
) {
5412 if (proc_ref_locked(p
) == p
) {
5414 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5415 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5416 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5417 * acquisition of the proc lock.
5419 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5422 * We need to restart the search again because
5423 * proc_ref_locked _can_ drop the proc_list lock
5424 * and we could have lost our stored next_p via
5425 * an exit() on another core.
5428 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5433 * Capture a snapshot if none exists and:
5434 * - we are forcing a new snapshot creation, either because:
5435 * - on a particular platform we need these snapshots every time, OR
5436 * - a boot-arg/embedded device tree property has been set.
5437 * - priority was not requested (this is something other than an ambient kill)
5438 * - the priority was requested *and* the targeted process is not at idle priority
5440 if ((memorystatus_jetsam_snapshot_count
== 0) &&
5441 (force_new_snapshot
|| memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
5442 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5443 new_snapshot
= TRUE
;
5448 freed_mem
= memorystatus_kill_proc(p
, cause
, jetsam_reason
, &killed
, &footprint_of_killed_proc
); /* purged and/or killed 'p' */
5452 *memory_reclaimed
= footprint_of_killed_proc
;
5454 *priority
= aPid_ep
;
5459 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5467 * Failure - first unwind the state,
5468 * then fall through to restart the search.
5471 proc_rele_locked(p
);
5472 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5473 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5477 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5484 os_reason_free(jetsam_reason
);
5487 *memory_reclaimed
= 0;
5489 /* Clear snapshot if freshly captured and no target was found */
5492 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5497 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5498 memorystatus_available_pages
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5504 * Jetsam aggressively
5507 memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
,
5508 int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5511 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5512 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5515 int32_t aPid_ep
= 0;
5516 unsigned int memorystatus_level_snapshot
= 0;
5517 uint64_t killtime
= 0;
5519 clock_usec_t tv_usec
;
5521 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5522 uint64_t footprint_of_killed_proc
= 0;
5524 *memory_reclaimed
= 0;
5526 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5527 memorystatus_available_pages
, priority_max
, 0, 0, 0);
5529 if (priority_max
>= JETSAM_PRIORITY_FOREGROUND
) {
5531 * Check if aggressive jetsam has been asked to kill upto or beyond the
5532 * JETSAM_PRIORITY_FOREGROUND bucket. If yes, sort the FG band based on
5533 * coalition footprint.
5535 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5538 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, cause
);
5539 if (jetsam_reason
== OS_REASON_NULL
) {
5540 printf("memorystatus_kill_processes_aggressive: failed to allocate exit reason\n");
5545 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5547 if (((next_p
->p_listflag
& P_LIST_EXITED
) != 0) ||
5548 ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
)) {
5550 * We have raced with next_p running on another core.
5551 * It may be exiting or it may have moved to a different
5552 * jetsam priority band. This means we have lost our
5553 * place in line while traversing the jetsam list. We
5554 * attempt to recover by rewinding to the beginning of the band
5555 * we were already traversing. By doing this, we do not guarantee
5556 * that no process escapes this aggressive march, but we can make
5557 * skipping an entire range of processes less likely. (PR-21069019)
5560 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5561 aggr_count
, i
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), next_p
->p_pid
);
5563 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5568 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5570 if (p
->p_memstat_effectivepriority
> priority_max
) {
5572 * Bail out of this killing spree if we have
5573 * reached beyond the priority_max jetsam band.
5574 * That is, we kill up to and through the
5575 * priority_max jetsam band.
5582 aPid_ep
= p
->p_memstat_effectivepriority
;
5584 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5589 * Capture a snapshot if none exists.
5591 if (memorystatus_jetsam_snapshot_count
== 0) {
5592 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5593 new_snapshot
= TRUE
;
5597 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5598 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5599 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5600 * acquisition of the proc lock.
5602 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5604 killtime
= mach_absolute_time();
5605 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5606 tv_msec
= tv_usec
/ 1000;
5608 /* Shift queue, update stats */
5609 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5612 * In order to kill the target process, we will drop the proc_list_lock.
5613 * To guaranteee that p and next_p don't disappear out from under the lock,
5614 * we must take a ref on both.
5615 * If we cannot get a reference, then it's likely we've raced with
5616 * that process exiting on another core.
5618 if (proc_ref_locked(p
) == p
) {
5620 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
5624 * We must have raced with next_p exiting on another core.
5625 * Recover by getting the next eligible process in the band.
5628 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5629 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
5632 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
5637 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5638 (unsigned long)tv_sec
, tv_msec
,
5639 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5640 aggr_count
, aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5641 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)memorystatus_available_pages
);
5643 memorystatus_level_snapshot
= memorystatus_level
;
5646 * memorystatus_do_kill() drops a reference, so take another one so we can
5647 * continue to use this exit reason even after memorystatus_do_kill()
5650 os_reason_ref(jetsam_reason
);
5651 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5655 *memory_reclaimed
+= footprint_of_killed_proc
;
5662 * Continue the killing spree.
5666 proc_rele_locked(next_p
);
5669 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
5670 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
5671 #if DEVELOPMENT || DEBUG
5672 printf("Disabling Lenient mode after one-time deployment.\n");
5673 #endif /* DEVELOPMENT || DEBUG */
5674 memorystatus_aggressive_jetsam_lenient
= FALSE
;
5683 * Failure - first unwind the state,
5684 * then fall through to restart the search.
5687 proc_rele_locked(p
);
5689 proc_rele_locked(next_p
);
5691 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5692 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5698 * Failure - restart the search at the beginning of
5699 * the band we were already traversing.
5701 * We might have raced with "p" exiting on another core, resulting in no
5702 * ref on "p". Or, we may have failed to kill "p".
5704 * Either way, we fall thru to here, leaving the proc in the
5705 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
5707 * And, we hold the the proc_list_lock at this point.
5710 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5716 os_reason_free(jetsam_reason
);
5718 /* Clear snapshot if freshly captured and no target was found */
5719 if (new_snapshot
&& (kill_count
== 0)) {
5721 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5725 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5726 memorystatus_available_pages
, 0, kill_count
, *memory_reclaimed
, 0);
5728 if (kill_count
> 0) {
5736 memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
)
5739 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5740 boolean_t new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5743 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5744 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
5745 memorystatus_available_pages
, 0, 0, 0, 0);
5747 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
5748 if (jetsam_reason
== OS_REASON_NULL
) {
5749 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
5754 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5756 uint64_t footprint_in_bytes
= 0;
5757 uint64_t memlimit_in_bytes
= 0;
5761 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5764 aPid_ep
= p
->p_memstat_effectivepriority
;
5766 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5770 /* skip if no limit set */
5771 if (p
->p_memstat_memlimit
<= 0) {
5775 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5776 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5777 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
5781 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5792 if (memorystatus_jetsam_snapshot_count
== 0) {
5793 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5794 new_snapshot
= TRUE
;
5797 if (proc_ref_locked(p
) == p
) {
5799 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5800 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5801 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5802 * acquisition of the proc lock.
5804 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5809 * We need to restart the search again because
5810 * proc_ref_locked _can_ drop the proc_list lock
5811 * and we could have lost our stored next_p via
5812 * an exit() on another core.
5815 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5819 footprint_in_bytes
= 0;
5820 freed_mem
= memorystatus_kill_proc(p
, kMemorystatusKilledHiwat
, jetsam_reason
, &killed
, &footprint_in_bytes
); /* purged and/or killed 'p' */
5824 if (killed
== FALSE
) {
5825 /* purged 'p'..don't reset HWM candidate count */
5829 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5832 *memory_reclaimed
= footprint_in_bytes
;
5838 * Failure - first unwind the state,
5839 * then fall through to restart the search.
5842 proc_rele_locked(p
);
5843 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5844 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5848 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5855 os_reason_free(jetsam_reason
);
5858 *memory_reclaimed
= 0;
5860 /* Clear snapshot if freshly captured and no target was found */
5863 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5868 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
5869 memorystatus_available_pages
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5875 * Jetsam a process pinned in the elevated band.
5877 * Return: true -- a pinned process was jetsammed
5878 * false -- no pinned process was jetsammed
5881 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5884 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5885 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5888 uint64_t killtime
= 0;
5890 clock_usec_t tv_usec
;
5892 uint64_t footprint_of_killed_proc
= 0;
5895 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5896 memorystatus_available_pages
, 0, 0, 0, 0);
5899 boolean_t consider_frozen_only
= FALSE
;
5901 if (band
== (unsigned int) memorystatus_freeze_jetsam_band
) {
5902 consider_frozen_only
= TRUE
;
5904 #endif /* CONFIG_FREEZE */
5908 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
5911 next_p
= memorystatus_get_next_proc_locked(&band
, p
, FALSE
);
5914 aPid_ep
= p
->p_memstat_effectivepriority
;
5917 * Only pick a process pinned in this elevated band
5919 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
5923 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5928 if (consider_frozen_only
&& !(p
->p_memstat_state
& P_MEMSTAT_FROZEN
)) {
5932 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5935 #endif /* CONFIG_FREEZE */
5937 #if DEVELOPMENT || DEBUG
5938 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
5940 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5941 memorystatus_available_pages
);
5942 #endif /* DEVELOPMENT || DEBUG */
5944 if (memorystatus_jetsam_snapshot_count
== 0) {
5945 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5946 new_snapshot
= TRUE
;
5949 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5951 killtime
= mach_absolute_time();
5952 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5953 tv_msec
= tv_usec
/ 1000;
5955 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5957 if (proc_ref_locked(p
) == p
) {
5961 * memorystatus_do_kill drops a reference, so take another one so we can
5962 * continue to use this exit reason even after memorystatus_do_kill()
5965 os_reason_ref(jetsam_reason
);
5966 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5968 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
5969 (unsigned long)tv_sec
, tv_msec
,
5971 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5972 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5973 footprint_of_killed_proc
>> 10, (uint64_t)memorystatus_available_pages
);
5977 *memory_reclaimed
= footprint_of_killed_proc
;
5984 * Failure - first unwind the state,
5985 * then fall through to restart the search.
5988 proc_rele_locked(p
);
5989 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5990 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5995 * Failure - restart the search.
5997 * We might have raced with "p" exiting on another core, resulting in no
5998 * ref on "p". Or, we may have failed to kill "p".
6000 * Either way, we fall thru to here, leaving the proc in the
6001 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
6003 * And, we hold the the proc_list_lock at this point.
6006 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
6012 os_reason_free(jetsam_reason
);
6014 if (kill_count
== 0) {
6015 *memory_reclaimed
= 0;
6017 /* Clear snapshot if freshly captured and no target was found */
6020 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6025 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
6026 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, *memory_reclaimed
, 0);
6032 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
)
6035 * TODO: allow a general async path
6037 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
6038 * add the appropriate exit reason code mapping.
6040 if ((victim_pid
!= -1) ||
6041 (cause
!= kMemorystatusKilledVMPageShortage
&&
6042 cause
!= kMemorystatusKilledVMCompressorThrashing
&&
6043 cause
!= kMemorystatusKilledVMCompressorSpaceShortage
&&
6044 cause
!= kMemorystatusKilledFCThrashing
&&
6045 cause
!= kMemorystatusKilledZoneMapExhaustion
)) {
6049 kill_under_pressure_cause
= cause
;
6050 memorystatus_thread_wake();
6055 memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async
)
6058 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage
);
6060 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
);
6061 if (jetsam_reason
== OS_REASON_NULL
) {
6062 printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n");
6065 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage
, jetsam_reason
);
6071 memorystatus_kill_on_VM_compressor_thrashing(boolean_t async
)
6074 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing
);
6076 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
);
6077 if (jetsam_reason
== OS_REASON_NULL
) {
6078 printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n");
6081 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing
, jetsam_reason
);
6086 memorystatus_kill_on_VM_page_shortage(boolean_t async
)
6089 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
6091 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
6092 if (jetsam_reason
== OS_REASON_NULL
) {
6093 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
6096 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
6101 memorystatus_kill_on_FC_thrashing(boolean_t async
)
6104 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
6106 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
6107 if (jetsam_reason
== OS_REASON_NULL
) {
6108 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
6111 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
6116 memorystatus_kill_on_vnode_limit(void)
6118 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
6119 if (jetsam_reason
== OS_REASON_NULL
) {
6120 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
6123 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
6126 #endif /* CONFIG_JETSAM */
6129 memorystatus_kill_on_zone_map_exhaustion(pid_t pid
)
6131 boolean_t res
= FALSE
;
6133 res
= memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion
);
6135 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_ZONE_MAP_EXHAUSTION
);
6136 if (jetsam_reason
== OS_REASON_NULL
) {
6137 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
6140 res
= memorystatus_kill_process_sync(pid
, kMemorystatusKilledZoneMapExhaustion
, jetsam_reason
);
6146 memorystatus_on_pageout_scan_end(void)
6151 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6153 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
6155 uint32_t list_count
, i
= 0;
6156 memorystatus_priority_entry_t
*list_entry
;
6159 list_count
= memorystatus_list_count
;
6160 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
6162 /* Just a size check? */
6167 /* Otherwise, validate the size of the buffer */
6168 if (*buffer_size
< *list_size
) {
6172 *list_ptr
= (memorystatus_priority_entry_t
*)kalloc(*list_size
);
6177 memset(*list_ptr
, 0, *list_size
);
6179 *buffer_size
= *list_size
;
6182 list_entry
= *list_ptr
;
6186 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6187 while (p
&& (*list_size
< *buffer_size
)) {
6188 list_entry
->pid
= p
->p_pid
;
6189 list_entry
->priority
= p
->p_memstat_effectivepriority
;
6190 list_entry
->user_data
= p
->p_memstat_userdata
;
6192 if (p
->p_memstat_memlimit
<= 0) {
6193 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
6195 list_entry
->limit
= p
->p_memstat_memlimit
;
6198 list_entry
->state
= memorystatus_build_state(p
);
6201 *list_size
+= sizeof(memorystatus_priority_entry_t
);
6203 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6208 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
6214 memorystatus_get_priority_pid(pid_t pid
, user_addr_t buffer
, size_t buffer_size
)
6217 memorystatus_priority_entry_t mp_entry
;
6220 /* Validate inputs */
6221 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_entry_t
))) {
6225 proc_t p
= proc_find(pid
);
6230 memset(&mp_entry
, 0, sizeof(memorystatus_priority_entry_t
));
6232 mp_entry
.pid
= p
->p_pid
;
6233 mp_entry
.priority
= p
->p_memstat_effectivepriority
;
6234 mp_entry
.user_data
= p
->p_memstat_userdata
;
6235 if (p
->p_memstat_memlimit
<= 0) {
6236 ret
= task_get_phys_footprint_limit(p
->task
, &mp_entry
.limit
);
6237 if (ret
!= KERN_SUCCESS
) {
6242 mp_entry
.limit
= p
->p_memstat_memlimit
;
6244 mp_entry
.state
= memorystatus_build_state(p
);
6248 error
= copyout(&mp_entry
, buffer
, buffer_size
);
6254 memorystatus_cmd_get_priority_list(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6257 boolean_t size_only
;
6261 * When a non-zero pid is provided, the 'list' has only one entry.
6264 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6267 list_size
= sizeof(memorystatus_priority_entry_t
) * 1;
6269 error
= memorystatus_get_priority_pid(pid
, buffer
, buffer_size
);
6272 memorystatus_priority_entry_t
*list
= NULL
;
6273 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
6277 error
= copyout(list
, buffer
, list_size
);
6282 kfree(list
, buffer_size
);
6287 *retval
= list_size
;
6294 memorystatus_clear_errors(void)
6299 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
6303 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6305 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
6306 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
6308 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6313 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
6318 memorystatus_update_levels_locked(boolean_t critical_only
)
6320 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
6323 * If there's an entry in the first bucket, we have idle processes.
6326 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
6327 if (first_bucket
->count
) {
6328 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
6330 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6332 * The critical threshold must never exceed the pressure threshold
6334 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6338 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
6339 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
6342 if (critical_only
) {
6346 #if VM_PRESSURE_EVENTS
6347 memorystatus_available_pages_pressure
= pressure_threshold_percentage
* (atop_64(max_mem
) / 100);
6352 memorystatus_fast_jetsam_override(boolean_t enable_override
)
6354 /* If fast jetsam is not enabled, simply return */
6355 if (!fast_jetsam_enabled
) {
6359 if (enable_override
) {
6360 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
) {
6364 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
6365 memorystatus_thread_pool_max();
6366 memorystatus_update_levels_locked(TRUE
);
6369 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0) {
6373 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
6374 memorystatus_thread_pool_default();
6375 memorystatus_update_levels_locked(TRUE
);
6382 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6384 #pragma unused(arg1, arg2, oidp)
6385 int error
= 0, more_free
= 0;
6388 * TODO: Enable this privilege check?
6390 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6395 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
6396 if (error
|| !req
->newptr
) {
6401 memorystatus_fast_jetsam_override(true);
6403 memorystatus_fast_jetsam_override(false);
6408 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
6409 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
6411 #endif /* CONFIG_JETSAM */
6414 * Get the at_boot snapshot
6417 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6419 size_t input_size
= *snapshot_size
;
6422 * The at_boot snapshot has no entry list.
6424 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
6431 * Validate the size of the snapshot buffer
6433 if (input_size
< *snapshot_size
) {
6438 * Update the notification_time only
6440 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
6441 *snapshot
= &memorystatus_at_boot_snapshot
;
6443 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
6444 (long)input_size
, (long)*snapshot_size
, 0);
6449 * Get the previous fully populated snapshot
6452 memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6454 size_t input_size
= *snapshot_size
;
6456 if (memorystatus_jetsam_snapshot_copy_count
> 0) {
6457 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_copy_count
));
6466 if (input_size
< *snapshot_size
) {
6470 *snapshot
= memorystatus_jetsam_snapshot_copy
;
6472 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6473 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_copy_count
);
6479 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6481 size_t input_size
= *snapshot_size
;
6482 uint32_t ods_list_count
= memorystatus_list_count
;
6483 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
6485 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
6492 * Validate the size of the snapshot buffer.
6493 * This is inherently racey. May want to revisit
6494 * this error condition and trim the output when
6497 if (input_size
< *snapshot_size
) {
6502 * Allocate and initialize a snapshot buffer.
6504 ods
= (memorystatus_jetsam_snapshot_t
*)kalloc(*snapshot_size
);
6509 memset(ods
, 0, *snapshot_size
);
6512 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
6516 * Return the kernel allocated, on_demand buffer.
6517 * The caller of this routine will copy the data out
6518 * to user space and then free the kernel allocated
6523 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6524 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
6530 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6532 size_t input_size
= *snapshot_size
;
6534 if (memorystatus_jetsam_snapshot_count
> 0) {
6535 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
6544 if (input_size
< *snapshot_size
) {
6548 *snapshot
= memorystatus_jetsam_snapshot
;
6550 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6551 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
6558 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6561 boolean_t size_only
;
6562 boolean_t is_default_snapshot
= FALSE
;
6563 boolean_t is_on_demand_snapshot
= FALSE
;
6564 boolean_t is_at_boot_snapshot
= FALSE
;
6565 memorystatus_jetsam_snapshot_t
*snapshot
;
6567 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6571 is_default_snapshot
= TRUE
;
6572 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
6574 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
| MEMORYSTATUS_SNAPSHOT_COPY
)) {
6576 * Unsupported bit set in flag.
6581 if (flags
& (flags
- 0x1)) {
6583 * Can't have multiple flags set at the same time.
6588 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
6589 is_on_demand_snapshot
= TRUE
;
6591 * When not requesting the size only, the following call will allocate
6592 * an on_demand snapshot buffer, which is freed below.
6594 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
6595 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
6596 is_at_boot_snapshot
= TRUE
;
6597 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
6598 } else if (flags
& MEMORYSTATUS_SNAPSHOT_COPY
) {
6599 error
= memorystatus_get_jetsam_snapshot_copy(&snapshot
, &buffer_size
, size_only
);
6602 * Invalid flag setting.
6613 * Copy the data out to user space and clear the snapshot buffer.
6614 * If working with the jetsam snapshot,
6615 * clearing the buffer means, reset the count.
6616 * If working with an on_demand snapshot
6617 * clearing the buffer means, free it.
6618 * If working with the at_boot snapshot
6619 * there is nothing to clear or update.
6620 * If working with a copy of the snapshot
6621 * there is nothing to clear or update.
6624 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
6625 if (is_default_snapshot
) {
6627 * The jetsam snapshot is never freed, its count is simply reset.
6628 * However, we make a copy for any parties that might be interested
6629 * in the previous fully populated snapshot.
6632 memcpy(memorystatus_jetsam_snapshot_copy
, memorystatus_jetsam_snapshot
, memorystatus_jetsam_snapshot_size
);
6633 memorystatus_jetsam_snapshot_copy_count
= memorystatus_jetsam_snapshot_count
;
6634 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6635 memorystatus_jetsam_snapshot_last_timestamp
= 0;
6640 if (is_on_demand_snapshot
) {
6642 * The on_demand snapshot is always freed,
6643 * even if the copyout failed.
6646 kfree(snapshot
, buffer_size
);
6652 *retval
= buffer_size
;
6659 * Routine: memorystatus_cmd_grp_set_priorities
6660 * Purpose: Update priorities for a group of processes.
6663 * Move each process out of its effective priority
6664 * band and into a new priority band.
6665 * Maintains relative order from lowest to highest priority.
6666 * In single band, maintains relative order from head to tail.
6668 * eg: before [effectivepriority | pid]
6670 * [17 | p55, p67, p19 ]
6675 * after [ new band | pid]
6676 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
6678 * Returns: 0 on success, else non-zero.
6680 * Caveat: We know there is a race window regarding recycled pids.
6681 * A process could be killed before the kernel can act on it here.
6682 * If a pid cannot be found in any of the jetsam priority bands,
6683 * then we simply ignore it. No harm.
6684 * But, if the pid has been recycled then it could be an issue.
6685 * In that scenario, we might move an unsuspecting process to the new
6686 * priority band. It's not clear how the kernel can safeguard
6687 * against this, but it would be an extremely rare case anyway.
6688 * The caller of this api might avoid such race conditions by
6689 * ensuring that the processes passed in the pid list are suspended.
6694 memorystatus_cmd_grp_set_priorities(user_addr_t buffer
, size_t buffer_size
)
6697 * We only handle setting priority
6702 memorystatus_properties_entry_v1_t
*entries
= NULL
;
6703 uint32_t entry_count
= 0;
6705 /* This will be the ordered proc list */
6706 typedef struct memorystatus_internal_properties
{
6709 } memorystatus_internal_properties_t
;
6711 memorystatus_internal_properties_t
*table
= NULL
;
6712 size_t table_size
= 0;
6713 uint32_t table_count
= 0;
6716 uint32_t bucket_index
= 0;
6717 boolean_t head_insert
;
6718 int32_t new_priority
;
6723 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
6728 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
6729 if ((entries
= (memorystatus_properties_entry_v1_t
*)kalloc(buffer_size
)) == NULL
) {
6734 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, 0, 0, 0);
6736 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
6740 /* Verify sanity of input priorities */
6741 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
6742 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
6751 for (i
= 0; i
< entry_count
; i
++) {
6752 if (entries
[i
].priority
== -1) {
6753 /* Use as shorthand for default priority */
6754 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
6755 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
6756 /* Both the aging bands are reserved for internal use;
6757 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
6758 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
6759 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
6760 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
6762 /* Deal with this later */
6763 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
6770 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
6771 if ((table
= (memorystatus_internal_properties_t
*)kalloc(table_size
)) == NULL
) {
6775 memset(table
, 0, table_size
);
6779 * For each jetsam bucket entry, spin through the input property list.
6780 * When a matching pid is found, populate an adjacent table with the
6781 * appropriate proc pointer and new property values.
6782 * This traversal automatically preserves order from lowest
6783 * to highest priority.
6790 /* Create the ordered table */
6791 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
6792 while (p
&& (table_count
< entry_count
)) {
6793 for (i
= 0; i
< entry_count
; i
++) {
6794 if (p
->p_pid
== entries
[i
].pid
) {
6795 /* Build the table data */
6796 table
[table_count
].proc
= p
;
6797 table
[table_count
].priority
= entries
[i
].priority
;
6802 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
6805 /* We now have ordered list of procs ready to move */
6806 for (i
= 0; i
< table_count
; i
++) {
6810 /* Allow head inserts -- but relative order is now */
6811 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
6812 new_priority
= JETSAM_PRIORITY_IDLE
;
6815 new_priority
= table
[i
].priority
;
6816 head_insert
= false;
6820 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
6825 * Take appropriate steps if moving proc out of
6826 * either of the aging bands.
6828 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
6829 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
6832 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
6838 * if (table_count != entry_count)
6839 * then some pids were not found in a jetsam band.
6840 * harmless but interesting...
6843 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, table_count
, 0, 0);
6846 kfree(entries
, buffer_size
);
6849 kfree(table
, table_size
);
6855 memorystatus_internal_probabilities_t
*memorystatus_global_probabilities_table
= NULL
;
6856 size_t memorystatus_global_probabilities_size
= 0;
6859 memorystatus_cmd_grp_set_probabilities(user_addr_t buffer
, size_t buffer_size
)
6862 memorystatus_properties_entry_v1_t
*entries
= NULL
;
6863 uint32_t entry_count
= 0, i
= 0;
6864 memorystatus_internal_probabilities_t
*tmp_table_new
= NULL
, *tmp_table_old
= NULL
;
6865 size_t tmp_table_new_size
= 0, tmp_table_old_size
= 0;
6868 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
6873 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
6875 if ((entries
= (memorystatus_properties_entry_v1_t
*) kalloc(buffer_size
)) == NULL
) {
6880 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, 0, 0, 0);
6882 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
6886 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
6887 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
6896 /* Verify sanity of input priorities */
6897 for (i
= 0; i
< entry_count
; i
++) {
6899 * 0 - low probability of use.
6900 * 1 - high probability of use.
6902 * Keeping this field an int (& not a bool) to allow
6903 * us to experiment with different values/approaches
6906 if (entries
[i
].use_probability
> 1) {
6912 tmp_table_new_size
= sizeof(memorystatus_internal_probabilities_t
) * entry_count
;
6914 if ((tmp_table_new
= (memorystatus_internal_probabilities_t
*) kalloc(tmp_table_new_size
)) == NULL
) {
6918 memset(tmp_table_new
, 0, tmp_table_new_size
);
6922 if (memorystatus_global_probabilities_table
) {
6923 tmp_table_old
= memorystatus_global_probabilities_table
;
6924 tmp_table_old_size
= memorystatus_global_probabilities_size
;
6927 memorystatus_global_probabilities_table
= tmp_table_new
;
6928 memorystatus_global_probabilities_size
= tmp_table_new_size
;
6929 tmp_table_new
= NULL
;
6931 for (i
= 0; i
< entry_count
; i
++) {
6932 /* Build the table data */
6933 strlcpy(memorystatus_global_probabilities_table
[i
].proc_name
, entries
[i
].proc_name
, MAXCOMLEN
+ 1);
6934 memorystatus_global_probabilities_table
[i
].use_probability
= entries
[i
].use_probability
;
6940 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, tmp_table_new_size
, 0, 0);
6943 kfree(entries
, buffer_size
);
6947 if (tmp_table_old
) {
6948 kfree(tmp_table_old
, tmp_table_old_size
);
6949 tmp_table_old
= NULL
;
6956 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
6960 if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) {
6961 error
= memorystatus_cmd_grp_set_priorities(buffer
, buffer_size
);
6962 } else if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) {
6963 error
= memorystatus_cmd_grp_set_probabilities(buffer
, buffer_size
);
6972 * This routine is used to update a process's jetsam priority position and stored user_data.
6973 * It is not used for the setting of memory limits, which is why the last 6 args to the
6974 * memorystatus_update() call are 0 or FALSE.
6976 * Flags passed into this call are used to distinguish the motivation behind a jetsam priority
6977 * transition. By default, the kernel updates the process's original requested priority when
6978 * no flag is passed. But when the MEMORYSTATUS_SET_PRIORITY_ASSERTION flag is used, the kernel
6979 * updates the process's assertion driven priority.
6981 * The assertion flag was introduced for use by the device's assertion mediator (eg: runningboardd).
6982 * When an assertion is controlling a process's jetsam priority, it may conflict with that process's
6983 * dirty/clean (active/inactive) jetsam state. The kernel attempts to resolve a priority transition
6984 * conflict by reviewing the process state and then choosing the maximum jetsam band at play,
6985 * eg: requested priority versus assertion priority.
6989 memorystatus_cmd_set_priority_properties(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
6992 boolean_t is_assertion
= FALSE
; /* priority is driven by an assertion */
6993 memorystatus_priority_properties_t mpp_entry
;
6995 /* Validate inputs */
6996 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
7000 /* Validate flags */
7003 * Default. This path updates requestedpriority.
7006 if (flags
& ~(MEMORYSTATUS_SET_PRIORITY_ASSERTION
)) {
7008 * Unsupported bit set in flag.
7011 } else if (flags
& MEMORYSTATUS_SET_PRIORITY_ASSERTION
) {
7012 is_assertion
= TRUE
;
7016 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
7026 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7032 os_log(OS_LOG_DEFAULT
, "memorystatus: set assertion priority(%d) target %s:%d\n",
7033 mpp_entry
.priority
, (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
7036 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, is_assertion
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
);
7044 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7047 memorystatus_memlimit_properties_t mmp_entry
;
7049 /* Validate inputs */
7050 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7054 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
7057 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
7064 memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
* p_entry
)
7066 memset(p_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
7068 if (p
->p_memstat_memlimit_active
> 0) {
7069 p_entry
->memlimit_active
= p
->p_memstat_memlimit_active
;
7071 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_active
);
7074 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
7075 p_entry
->memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7079 * Get the inactive limit and attributes
7081 if (p
->p_memstat_memlimit_inactive
<= 0) {
7082 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_inactive
);
7084 p_entry
->memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
7086 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
7087 p_entry
->memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7092 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7093 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7094 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7095 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7096 * to the task's ledgers via task_set_phys_footprint_limit().
7099 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7101 memorystatus_memlimit_properties2_t mmp_entry
;
7103 /* Validate inputs */
7104 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) ||
7105 ((buffer_size
!= sizeof(memorystatus_memlimit_properties_t
)) &&
7106 (buffer_size
!= sizeof(memorystatus_memlimit_properties2_t
)))) {
7110 memset(&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties2_t
));
7112 proc_t p
= proc_find(pid
);
7118 * Get the active limit and attributes.
7119 * No locks taken since we hold a reference to the proc.
7122 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
.v1
);
7125 #if DEVELOPMENT || DEBUG
7127 * Get the limit increased via SPI
7129 mmp_entry
.memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
7130 mmp_entry
.memlimit_increase_bytes
= p
->p_memlimit_increase
;
7131 #endif /* DEVELOPMENT || DEBUG */
7132 #endif /* CONFIG_JETSAM */
7136 int error
= copyout(&mmp_entry
, buffer
, buffer_size
);
7143 * SPI for kbd - pr24956468
7144 * This is a very simple snapshot that calculates how much a
7145 * process's phys_footprint exceeds a specific memory limit.
7146 * Only the inactive memory limit is supported for now.
7147 * The delta is returned as bytes in excess or zero.
7150 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7153 uint64_t footprint_in_bytes
= 0;
7154 uint64_t delta_in_bytes
= 0;
7155 int32_t memlimit_mb
= 0;
7156 uint64_t memlimit_bytes
= 0;
7158 /* Validate inputs */
7159 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
7163 proc_t p
= proc_find(pid
);
7169 * Get the inactive limit.
7170 * No locks taken since we hold a reference to the proc.
7173 if (p
->p_memstat_memlimit_inactive
<= 0) {
7174 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
7176 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
7179 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7183 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
7186 * Computed delta always returns >= 0 bytes
7188 if (footprint_in_bytes
> memlimit_bytes
) {
7189 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
7192 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
7199 memorystatus_cmd_get_pressure_status(int32_t *retval
)
7203 /* Need privilege for check */
7204 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7209 /* Inherently racy, so it's not worth taking a lock here */
7210 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7216 memorystatus_get_pressure_status_kdp()
7218 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7222 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7224 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7225 * So, with 2-level HWM preserving previous behavior will map as follows.
7226 * - treat the limit passed in as both an active and inactive limit.
7227 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7229 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7230 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7231 * - so mapping is (active/non-fatal, inactive/non-fatal)
7233 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7234 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7235 * - so mapping is (active/fatal, inactive/fatal)
7240 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
)
7243 memorystatus_memlimit_properties_t entry
;
7245 entry
.memlimit_active
= high_water_mark
;
7246 entry
.memlimit_active_attr
= 0;
7247 entry
.memlimit_inactive
= high_water_mark
;
7248 entry
.memlimit_inactive_attr
= 0;
7250 if (is_fatal_limit
== TRUE
) {
7251 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7252 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7255 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
7258 #endif /* CONFIG_JETSAM */
7261 memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
)
7265 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
7268 * Store the active limit variants in the proc.
7270 SET_ACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_active
, p_entry
->memlimit_active_attr
);
7273 * Store the inactive limit variants in the proc.
7275 SET_INACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_inactive
, p_entry
->memlimit_inactive_attr
);
7278 * Enforce appropriate limit variant by updating the cached values
7279 * and writing the ledger.
7280 * Limit choice is based on process active/inactive state.
7283 if (memorystatus_highwater_enabled
) {
7285 boolean_t use_active
;
7287 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
7288 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7291 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7295 /* Enforce the limit by writing to the ledgers */
7296 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
) == 0) ? 0 : EINVAL
;
7298 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7299 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
7300 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
7301 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
7302 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
7309 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
)
7311 memorystatus_memlimit_properties_t set_entry
;
7313 proc_t p
= proc_find(pid
);
7319 * Check for valid attribute flags.
7321 const uint32_t valid_attrs
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7322 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
7326 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
7332 * Setup the active memlimit properties
7334 set_entry
.memlimit_active
= entry
->memlimit_active
;
7335 set_entry
.memlimit_active_attr
= entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7338 * Setup the inactive memlimit properties
7340 set_entry
.memlimit_inactive
= entry
->memlimit_inactive
;
7341 set_entry
.memlimit_inactive_attr
= entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7344 * Setting a limit of <= 0 implies that the process has no
7345 * high-water-mark and has no per-task-limit. That means
7346 * the system_wide task limit is in place, which by the way,
7350 if (set_entry
.memlimit_active
<= 0) {
7352 * Enforce the fatal system_wide task limit while process is active.
7354 set_entry
.memlimit_active
= -1;
7355 set_entry
.memlimit_active_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7358 #if DEVELOPMENT || DEBUG
7360 /* add the current increase to it, for roots */
7361 set_entry
.memlimit_active
+= roundToNearestMB(p
->p_memlimit_increase
);
7363 #endif /* DEVELOPMENT || DEBUG */
7364 #endif /* CONFIG_JETSAM */
7366 if (set_entry
.memlimit_inactive
<= 0) {
7368 * Enforce the fatal system_wide task limit while process is inactive.
7370 set_entry
.memlimit_inactive
= -1;
7371 set_entry
.memlimit_inactive_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7374 #if DEVELOPMENT || DEBUG
7376 /* add the current increase to it, for roots */
7377 set_entry
.memlimit_inactive
+= roundToNearestMB(p
->p_memlimit_increase
);
7379 #endif /* DEVELOPMENT || DEBUG */
7380 #endif /* CONFIG_JETSAM */
7384 int error
= memorystatus_set_memlimit_properties_internal(p
, &set_entry
);
7393 * Returns the jetsam priority (effective or requested) of the process
7394 * associated with this task.
7397 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
7400 if (effective_priority
) {
7401 return p
->p_memstat_effectivepriority
;
7403 return p
->p_memstat_requestedpriority
;
7410 memorystatus_get_process_is_managed(pid_t pid
, int *is_managed
)
7414 /* Validate inputs */
7425 *is_managed
= ((p
->p_memstat_state
& P_MEMSTAT_MANAGED
) ? 1 : 0);
7426 proc_rele_locked(p
);
7433 memorystatus_set_process_is_managed(pid_t pid
, boolean_t set_managed
)
7437 /* Validate inputs */
7448 if (set_managed
== TRUE
) {
7449 p
->p_memstat_state
|= P_MEMSTAT_MANAGED
;
7451 * The P_MEMSTAT_MANAGED bit is set by assertiond for Apps.
7452 * Also opt them in to being frozen (they might have started
7453 * off with the P_MEMSTAT_FREEZE_DISABLED bit set.)
7455 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_DISABLED
;
7457 p
->p_memstat_state
&= ~P_MEMSTAT_MANAGED
;
7459 proc_rele_locked(p
);
7466 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
)
7469 boolean_t skip_auth_check
= FALSE
;
7470 os_reason_t jetsam_reason
= OS_REASON_NULL
;
7474 #pragma unused(jetsam_reason)
7477 /* We don't need entitlements if we're setting/ querying the freeze preference for a process. Skip the check below. */
7478 if (args
->command
== MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
|| args
->command
== MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
) {
7479 skip_auth_check
= TRUE
;
7482 /* Need to be root or have entitlement. */
7483 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
) && !skip_auth_check
) {
7490 * Do not enforce it for snapshots.
7492 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
7493 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
7499 switch (args
->command
) {
7500 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
7501 error
= memorystatus_cmd_get_priority_list(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7503 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
7504 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7506 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
7507 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7509 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
7510 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7512 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
7513 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7515 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
7516 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7518 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
7519 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7521 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
7522 error
= memorystatus_cmd_get_pressure_status(ret
);
7525 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
7527 * This call does not distinguish between active and inactive limits.
7528 * Default behavior in 2-level HWM world is to set both.
7529 * Non-fatal limit is also assumed for both.
7531 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
7533 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
7535 * This call does not distinguish between active and inactive limits.
7536 * Default behavior in 2-level HWM world is to set both.
7537 * Fatal limit is also assumed for both.
7539 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
7541 #endif /* CONFIG_JETSAM */
7543 #if DEVELOPMENT || DEBUG
7544 case MEMORYSTATUS_CMD_TEST_JETSAM
:
7545 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
7546 if (jetsam_reason
== OS_REASON_NULL
) {
7547 printf("memorystatus_control: failed to allocate jetsam reason\n");
7550 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
7552 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
7553 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
);
7556 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
7557 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
7559 #endif /* CONFIG_JETSAM */
7560 #else /* DEVELOPMENT || DEBUG */
7561 #pragma unused(jetsam_reason)
7562 #endif /* DEVELOPMENT || DEBUG */
7563 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
7564 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
7565 #if DEVELOPMENT || DEBUG
7566 printf("Enabling Lenient Mode\n");
7567 #endif /* DEVELOPMENT || DEBUG */
7569 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
7570 memorystatus_aggressive_jetsam_lenient
= TRUE
;
7574 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
7575 #if DEVELOPMENT || DEBUG
7576 printf("Disabling Lenient mode\n");
7577 #endif /* DEVELOPMENT || DEBUG */
7578 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
7579 memorystatus_aggressive_jetsam_lenient
= FALSE
;
7582 case MEMORYSTATUS_CMD_GET_AGGRESSIVE_JETSAM_LENIENT_MODE
:
7583 *ret
= (memorystatus_aggressive_jetsam_lenient
? 1 : 0);
7586 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
7587 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
7588 error
= memorystatus_low_mem_privileged_listener(args
->command
);
7591 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
7592 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
7593 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, args
->flags
? TRUE
: FALSE
);
7595 case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED
:
7596 error
= memorystatus_set_process_is_managed(args
->pid
, args
->flags
);
7599 case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED
:
7600 error
= memorystatus_get_process_is_managed(args
->pid
, ret
);
7604 case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
:
7605 error
= memorystatus_set_process_is_freezable(args
->pid
, args
->flags
? TRUE
: FALSE
);
7608 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
:
7609 error
= memorystatus_get_process_is_freezable(args
->pid
, ret
);
7612 #if DEVELOPMENT || DEBUG
7613 case MEMORYSTATUS_CMD_FREEZER_CONTROL
:
7614 error
= memorystatus_freezer_control(args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7616 #endif /* DEVELOPMENT || DEBUG */
7617 #endif /* CONFIG_FREEZE */
7620 #if DEVELOPMENT || DEBUG
7621 case MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT
:
7622 error
= memorystatus_cmd_increase_jetsam_task_limit(args
->pid
, args
->flags
);
7624 #endif /* DEVELOPMENT */
7625 #endif /* CONFIG_JETSAM */
7635 /* Coalition support */
7637 /* sorting info for a particular priority bucket */
7638 typedef struct memstat_sort_info
{
7639 coalition_t msi_coal
;
7640 uint64_t msi_page_count
;
7643 } memstat_sort_info_t
;
7646 * qsort from smallest page count to largest page count
7648 * return < 0 for a < b
7653 memstat_asc_cmp(const void *a
, const void *b
)
7655 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
7656 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
7658 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
7662 * Return the number of pids rearranged during this sort.
7665 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
7667 #define MAX_SORT_PIDS 80
7668 #define MAX_COAL_LEADERS 10
7670 unsigned int b
= bucket_index
;
7674 coalition_t coal
= COALITION_NULL
;
7676 int total_pids_moved
= 0;
7680 * The system is typically under memory pressure when in this
7681 * path, hence, we want to avoid dynamic memory allocation.
7683 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
7684 pid_t pid_list
[MAX_SORT_PIDS
];
7686 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7691 * Clear the array that holds coalition leader information
7693 for (i
= 0; i
< MAX_COAL_LEADERS
; i
++) {
7694 leaders
[i
].msi_coal
= COALITION_NULL
;
7695 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
7696 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
7697 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
7700 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
7702 coal
= task_get_coalition(p
->task
, COALITION_TYPE_JETSAM
);
7703 if (coalition_is_leader(p
->task
, coal
)) {
7704 if (nleaders
< MAX_COAL_LEADERS
) {
7705 int coal_ntasks
= 0;
7706 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
7707 leaders
[nleaders
].msi_coal
= coal
;
7708 leaders
[nleaders
].msi_page_count
= coal_page_count
;
7709 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
7710 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
7714 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
7715 * Abandoned coalitions will linger at the tail of the priority band
7716 * when this sort session ends.
7717 * TODO: should this be an assert?
7719 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
7720 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
7724 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
7727 if (nleaders
== 0) {
7728 /* Nothing to sort */
7733 * Sort the coalition leader array, from smallest coalition page count
7734 * to largest coalition page count. When inserted in the priority bucket,
7735 * smallest coalition is handled first, resulting in the last to be jetsammed.
7738 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
7742 for (i
= 0; i
< nleaders
; i
++) {
7743 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
7744 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
7745 leaders
[i
].msi_ntasks
);
7750 * During coalition sorting, processes in a priority band are rearranged
7751 * by being re-inserted at the head of the queue. So, when handling a
7752 * list, the first process that gets moved to the head of the queue,
7753 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
7755 * So, for example, the coalition leader is expected to jetsam last,
7756 * after its coalition members. Therefore, the coalition leader is
7757 * inserted at the head of the queue first.
7759 * After processing a coalition, the jetsam order is as follows:
7760 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
7764 * Coalition members are rearranged in the priority bucket here,
7765 * based on their coalition role.
7767 total_pids_moved
= 0;
7768 for (i
= 0; i
< nleaders
; i
++) {
7769 /* a bit of bookkeeping */
7772 /* Coalition leaders are jetsammed last, so move into place first */
7773 pid_list
[0] = leaders
[i
].msi_pid
;
7774 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
7776 /* xpc services should jetsam after extensions */
7777 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
7778 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7781 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7782 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7785 /* extensions should jetsam after unmarked processes */
7786 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
7787 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7790 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7791 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7794 /* undefined coalition members should be the first to jetsam */
7795 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
7796 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7799 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7800 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7804 if (pids_moved
== leaders
[i
].msi_ntasks
) {
7806 * All the pids in the coalition were found in this band.
7808 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
7809 pids_moved
, leaders
[i
].msi_ntasks
);
7810 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
7812 * Apparently new coalition members showed up during the sort?
7814 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
7815 pids_moved
, leaders
[i
].msi_ntasks
);
7818 * Apparently not all the pids in the coalition were found in this band?
7820 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
7821 pids_moved
, leaders
[i
].msi_ntasks
);
7825 total_pids_moved
+= pids_moved
;
7828 return total_pids_moved
;
7833 * Traverse a list of pids, searching for each within the priority band provided.
7834 * If pid is found, move it to the front of the priority band.
7835 * Never searches outside the priority band provided.
7838 * bucket_index - jetsam priority band.
7839 * pid_list - pointer to a list of pids.
7840 * list_sz - number of pids in the list.
7842 * Pid list ordering is important in that,
7843 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
7844 * The sort_order is set by the coalition default.
7847 * the number of pids found and hence moved within the priority band.
7850 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
7852 memstat_bucket_t
*current_bucket
;
7856 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
7860 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7864 current_bucket
= &memstat_bucket
[bucket_index
];
7865 for (i
= 0; i
< list_sz
; i
++) {
7866 unsigned int b
= bucket_index
;
7868 proc_t aProc
= NULL
;
7872 list_index
= ((list_sz
- 1) - i
);
7873 aPid
= pid_list
[list_index
];
7875 /* never search beyond bucket_index provided */
7876 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
7878 if (p
->p_pid
== aPid
) {
7882 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
7885 if (aProc
== NULL
) {
7886 /* pid not found in this band, just skip it */
7889 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
7890 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
7898 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
)
7900 int32_t i
= JETSAM_PRIORITY_IDLE
;
7903 if (max_bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7907 while (i
<= max_bucket_index
) {
7908 count
+= memstat_bucket
[i
++].count
;
7915 memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
)
7918 if (!p
|| (!isApp(p
)) || (p
->p_memstat_state
& (P_MEMSTAT_INTERNAL
| P_MEMSTAT_MANAGED
))) {
7920 * Ineligible processes OR system processes e.g. launchd.
7922 * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e.
7923 * they're managed by assertiond. These are iOS apps that have been ported
7924 * to macOS. assertiond might be in the process of modifying the app's
7925 * priority / memory limit - so it might have the proc_list lock, and then try
7926 * to take the task lock. Meanwhile we've entered this function with the task lock
7927 * held, and we need the proc_list lock below. So we'll deadlock with assertiond.
7929 * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list
7930 * lock here, since assertiond only sets this bit on process launch.
7937 * We would like to use memorystatus_update() here to move the processes
7938 * within the bands. Unfortunately memorystatus_update() calls
7939 * memorystatus_update_priority_locked() which uses any band transitions
7940 * as an indication to modify ledgers. For that it needs the task lock
7941 * and since we came into this function with the task lock held, we'll deadlock.
7943 * Unfortunately we can't completely disable ledger updates because we still
7944 * need the ledger updates for a subset of processes i.e. daemons.
7945 * When all processes on all platforms support memory limits, we can simply call
7946 * memorystatus_update().
7948 * It also has some logic to deal with 'aging' which, currently, is only applicable
7949 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
7950 * to do this explicit band transition.
7953 memstat_bucket_t
*current_bucket
, *new_bucket
;
7954 int32_t priority
= 0;
7958 if (((p
->p_listflag
& P_LIST_EXITED
) != 0) ||
7959 (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
))) {
7961 * If the process is on its way out OR
7962 * jetsam has alread tried and failed to kill this process,
7963 * let's skip the whole jetsam band transition.
7970 current_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
7971 new_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
7972 priority
= JETSAM_PRIORITY_IDLE
;
7974 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
7976 * It is possible that someone pulled this process
7977 * out of the IDLE band without updating its app-nap
7984 current_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
7985 new_bucket
= &memstat_bucket
[p
->p_memstat_requestedpriority
];
7986 priority
= p
->p_memstat_requestedpriority
;
7989 TAILQ_REMOVE(¤t_bucket
->list
, p
, p_memstat_list
);
7990 current_bucket
->count
--;
7991 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
7992 current_bucket
->relaunch_high_count
--;
7994 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
7995 new_bucket
->count
++;
7996 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
7997 new_bucket
->relaunch_high_count
++;
8000 * Record idle start or idle delta.
8002 if (p
->p_memstat_effectivepriority
== priority
) {
8004 * This process is not transitioning between
8005 * jetsam priority buckets. Do nothing.
8007 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
8010 * Transitioning out of the idle priority bucket.
8011 * Record idle delta.
8013 assert(p
->p_memstat_idle_start
!= 0);
8014 now
= mach_absolute_time();
8015 if (now
> p
->p_memstat_idle_start
) {
8016 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
8018 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
8020 * Transitioning into the idle priority bucket.
8021 * Record idle start.
8023 p
->p_memstat_idle_start
= mach_absolute_time();
8026 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
8028 p
->p_memstat_effectivepriority
= priority
;
8034 #else /* !CONFIG_JETSAM */
8036 #pragma unused(is_appnap)
8038 #endif /* !CONFIG_JETSAM */
8042 memorystatus_available_memory_internal(proc_t p
)
8044 #ifdef XNU_TARGET_OS_OSX
8048 const uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
8049 int32_t memlimit_mb
;
8050 int64_t memlimit_bytes
;
8053 if (isApp(p
) == FALSE
) {
8057 if (p
->p_memstat_memlimit
> 0) {
8058 memlimit_mb
= p
->p_memstat_memlimit
;
8059 } else if (task_convert_phys_footprint_limit(-1, &memlimit_mb
) != KERN_SUCCESS
) {
8063 if (memlimit_mb
<= 0) {
8064 memlimit_bytes
= INT_MAX
& ~((1 << 20) - 1);
8066 memlimit_bytes
= ((int64_t) memlimit_mb
) << 20;
8069 rc
= memlimit_bytes
- footprint_in_bytes
;
8071 return (rc
>= 0) ? rc
: 0;
8076 memorystatus_available_memory(struct proc
*p
, __unused
struct memorystatus_available_memory_args
*args
, uint64_t *ret
)
8078 *ret
= memorystatus_available_memory_internal(p
);
8084 #if DEVELOPMENT || DEBUG
8086 memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
)
8088 memorystatus_memlimit_properties_t mmp_entry
;
8090 /* Validate inputs */
8091 if ((pid
== 0) || (byte_increase
== 0)) {
8095 proc_t p
= proc_find(pid
);
8101 const uint32_t current_memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
8102 const uint32_t page_aligned_increase
= round_page(p
->p_memlimit_increase
+ byte_increase
); /* round to page */
8106 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
);
8108 if (mmp_entry
.memlimit_active
> 0) {
8109 mmp_entry
.memlimit_active
-= current_memlimit_increase
;
8110 mmp_entry
.memlimit_active
+= roundToNearestMB(page_aligned_increase
);
8113 if (mmp_entry
.memlimit_inactive
> 0) {
8114 mmp_entry
.memlimit_inactive
-= current_memlimit_increase
;
8115 mmp_entry
.memlimit_inactive
+= roundToNearestMB(page_aligned_increase
);
8119 * Store the updated delta limit in the proc.
8121 p
->p_memlimit_increase
= page_aligned_increase
;
8123 int error
= memorystatus_set_memlimit_properties_internal(p
, &mmp_entry
);
8130 #endif /* DEVELOPMENT */
8131 #endif /* CONFIG_JETSAM */