2 * Copyright (c) 1999-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Kernel Control domain - allows control connections to
31 * and to read/write data.
33 * Vincent Lubet, 040506
34 * Christophe Allie, 010928
35 * Justin C. Walker, 990319
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/syslog.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/protosw.h>
45 #include <sys/domain.h>
46 #include <sys/malloc.h>
48 #include <sys/sys_domain.h>
49 #include <sys/kern_event.h>
50 #include <sys/kern_control.h>
51 #include <sys/kauth.h>
52 #include <sys/sysctl.h>
53 #include <sys/proc_info.h>
54 #include <net/if_var.h>
56 #include <mach/vm_types.h>
58 #include <kern/thread.h>
61 TAILQ_ENTRY(kctl
) next
; /* controller chain */
64 /* controller information provided when registering */
65 char name
[MAX_KCTL_NAME
]; /* unique identifier */
69 /* misc communication information */
70 u_int32_t flags
; /* support flags */
71 u_int32_t recvbufsize
; /* request more than the default buffer size */
72 u_int32_t sendbufsize
; /* request more than the default buffer size */
74 /* Dispatch functions */
75 ctl_bind_func bind
; /* Prepare contact */
76 ctl_connect_func connect
; /* Make contact */
77 ctl_disconnect_func disconnect
; /* Break contact */
78 ctl_send_func send
; /* Send data to nke */
79 ctl_send_list_func send_list
; /* Send list of packets */
80 ctl_setopt_func setopt
; /* set kctl configuration */
81 ctl_getopt_func getopt
; /* get kctl configuration */
82 ctl_rcvd_func rcvd
; /* Notify nke when client reads data */
84 TAILQ_HEAD(, ctl_cb
) kcb_head
;
88 #if DEVELOPMENT || DEBUG
90 KCTL_DISCONNECTED
= 0,
94 #endif /* DEVELOPMENT || DEBUG */
97 TAILQ_ENTRY(ctl_cb
) next
; /* controller chain */
99 struct socket
*so
; /* controlling socket */
100 struct kctl
*kctl
; /* back pointer to controller */
102 struct sockaddr_ctl sac
;
104 u_int32_t kcb_usecount
;
105 #if DEVELOPMENT || DEBUG
106 enum ctl_status status
;
107 #endif /* DEVELOPMENT || DEBUG */
111 #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t))
115 #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n))
119 * Definitions and vars for we support
122 #define CTL_SENDSIZE (2 * 1024) /* default buffer size */
123 #define CTL_RECVSIZE (8 * 1024) /* default buffer size */
126 * Definitions and vars for we support
129 static u_int32_t ctl_maxunit
= 65536;
130 static lck_grp_attr_t
*ctl_lck_grp_attr
= 0;
131 static lck_attr_t
*ctl_lck_attr
= 0;
132 static lck_grp_t
*ctl_lck_grp
= 0;
133 static lck_mtx_t
*ctl_mtx
;
135 /* all the controllers are chained */
136 TAILQ_HEAD(kctl_list
, kctl
) ctl_head
;
138 static int ctl_attach(struct socket
*, int, struct proc
*);
139 static int ctl_detach(struct socket
*);
140 static int ctl_sofreelastref(struct socket
*so
);
141 static int ctl_bind(struct socket
*, struct sockaddr
*, struct proc
*);
142 static int ctl_connect(struct socket
*, struct sockaddr
*, struct proc
*);
143 static int ctl_disconnect(struct socket
*);
144 static int ctl_ioctl(struct socket
*so
, u_long cmd
, caddr_t data
,
145 struct ifnet
*ifp
, struct proc
*p
);
146 static int ctl_send(struct socket
*, int, struct mbuf
*,
147 struct sockaddr
*, struct mbuf
*, struct proc
*);
148 static int ctl_send_list(struct socket
*, int, struct mbuf
*,
149 struct sockaddr
*, struct mbuf
*, struct proc
*);
150 static int ctl_ctloutput(struct socket
*, struct sockopt
*);
151 static int ctl_peeraddr(struct socket
*so
, struct sockaddr
**nam
);
152 static int ctl_usr_rcvd(struct socket
*so
, int flags
);
154 static struct kctl
*ctl_find_by_name(const char *);
155 static struct kctl
*ctl_find_by_id_unit(u_int32_t id
, u_int32_t unit
);
157 static struct socket
*kcb_find_socket(kern_ctl_ref kctlref
, u_int32_t unit
,
159 static struct ctl_cb
*kcb_find(struct kctl
*, u_int32_t unit
);
160 static void ctl_post_msg(u_int32_t event_code
, u_int32_t id
);
162 static int ctl_lock(struct socket
*, int, void *);
163 static int ctl_unlock(struct socket
*, int, void *);
164 static lck_mtx_t
* ctl_getlock(struct socket
*, int);
166 static struct pr_usrreqs ctl_usrreqs
= {
167 .pru_attach
= ctl_attach
,
168 .pru_bind
= ctl_bind
,
169 .pru_connect
= ctl_connect
,
170 .pru_control
= ctl_ioctl
,
171 .pru_detach
= ctl_detach
,
172 .pru_disconnect
= ctl_disconnect
,
173 .pru_peeraddr
= ctl_peeraddr
,
174 .pru_rcvd
= ctl_usr_rcvd
,
175 .pru_send
= ctl_send
,
176 .pru_send_list
= ctl_send_list
,
177 .pru_sosend
= sosend
,
178 .pru_sosend_list
= sosend_list
,
179 .pru_soreceive
= soreceive
,
180 .pru_soreceive_list
= soreceive_list
,
183 static struct protosw kctlsw
[] = {
185 .pr_type
= SOCK_DGRAM
,
186 .pr_protocol
= SYSPROTO_CONTROL
,
187 .pr_flags
= PR_ATOMIC
| PR_CONNREQUIRED
| PR_PCBLOCK
| PR_WANTRCVD
,
188 .pr_ctloutput
= ctl_ctloutput
,
189 .pr_usrreqs
= &ctl_usrreqs
,
191 .pr_unlock
= ctl_unlock
,
192 .pr_getlock
= ctl_getlock
,
195 .pr_type
= SOCK_STREAM
,
196 .pr_protocol
= SYSPROTO_CONTROL
,
197 .pr_flags
= PR_CONNREQUIRED
| PR_PCBLOCK
| PR_WANTRCVD
,
198 .pr_ctloutput
= ctl_ctloutput
,
199 .pr_usrreqs
= &ctl_usrreqs
,
201 .pr_unlock
= ctl_unlock
,
202 .pr_getlock
= ctl_getlock
,
206 __private_extern__
int kctl_reg_list SYSCTL_HANDLER_ARGS
;
207 __private_extern__
int kctl_pcblist SYSCTL_HANDLER_ARGS
;
208 __private_extern__
int kctl_getstat SYSCTL_HANDLER_ARGS
;
211 SYSCTL_NODE(_net_systm
, OID_AUTO
, kctl
,
212 CTLFLAG_RW
| CTLFLAG_LOCKED
, 0, "Kernel control family");
214 struct kctlstat kctlstat
;
215 SYSCTL_PROC(_net_systm_kctl
, OID_AUTO
, stats
,
216 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
217 kctl_getstat
, "S,kctlstat", "");
219 SYSCTL_PROC(_net_systm_kctl
, OID_AUTO
, reg_list
,
220 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
221 kctl_reg_list
, "S,xkctl_reg", "");
223 SYSCTL_PROC(_net_systm_kctl
, OID_AUTO
, pcblist
,
224 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
225 kctl_pcblist
, "S,xkctlpcb", "");
227 u_int32_t ctl_autorcvbuf_max
= 256 * 1024;
228 SYSCTL_INT(_net_systm_kctl
, OID_AUTO
, autorcvbufmax
,
229 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ctl_autorcvbuf_max
, 0, "");
231 u_int32_t ctl_autorcvbuf_high
= 0;
232 SYSCTL_INT(_net_systm_kctl
, OID_AUTO
, autorcvbufhigh
,
233 CTLFLAG_RD
| CTLFLAG_LOCKED
, &ctl_autorcvbuf_high
, 0, "");
235 u_int32_t ctl_debug
= 0;
236 SYSCTL_INT(_net_systm_kctl
, OID_AUTO
, debug
,
237 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ctl_debug
, 0, "");
239 #if DEVELOPMENT || DEBUG
240 u_int32_t ctl_panic_debug
= 0;
241 SYSCTL_INT(_net_systm_kctl
, OID_AUTO
, panicdebug
,
242 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ctl_panic_debug
, 0, "");
243 #endif /* DEVELOPMENT || DEBUG */
245 #define KCTL_TBL_INC 16
247 static uintptr_t kctl_tbl_size
= 0;
248 static u_int32_t kctl_tbl_growing
= 0;
249 static u_int32_t kctl_tbl_growing_waiting
= 0;
250 static uintptr_t kctl_tbl_count
= 0;
251 static struct kctl
**kctl_table
= NULL
;
252 static uintptr_t kctl_ref_gencnt
= 0;
254 static void kctl_tbl_grow(void);
255 static kern_ctl_ref
kctl_make_ref(struct kctl
*kctl
);
256 static void kctl_delete_ref(kern_ctl_ref
);
257 static struct kctl
*kctl_from_ref(kern_ctl_ref
);
260 * Install the protosw's for the Kernel Control manager.
262 __private_extern__
void
263 kern_control_init(struct domain
*dp
)
267 int kctl_proto_count
= (sizeof(kctlsw
) / sizeof(struct protosw
));
269 VERIFY(!(dp
->dom_flags
& DOM_INITIALIZED
));
270 VERIFY(dp
== systemdomain
);
272 ctl_lck_grp_attr
= lck_grp_attr_alloc_init();
273 if (ctl_lck_grp_attr
== NULL
) {
274 panic("%s: lck_grp_attr_alloc_init failed\n", __func__
);
278 ctl_lck_grp
= lck_grp_alloc_init("Kernel Control Protocol",
280 if (ctl_lck_grp
== NULL
) {
281 panic("%s: lck_grp_alloc_init failed\n", __func__
);
285 ctl_lck_attr
= lck_attr_alloc_init();
286 if (ctl_lck_attr
== NULL
) {
287 panic("%s: lck_attr_alloc_init failed\n", __func__
);
291 ctl_mtx
= lck_mtx_alloc_init(ctl_lck_grp
, ctl_lck_attr
);
292 if (ctl_mtx
== NULL
) {
293 panic("%s: lck_mtx_alloc_init failed\n", __func__
);
296 TAILQ_INIT(&ctl_head
);
298 for (i
= 0, pr
= &kctlsw
[0]; i
< kctl_proto_count
; i
++, pr
++) {
299 net_add_proto(pr
, dp
, 1);
304 kcb_delete(struct ctl_cb
*kcb
)
308 lck_mtx_free(kcb
->mtx
, ctl_lck_grp
);
315 * Kernel Controller user-request functions
316 * attach function must exist and succeed
317 * detach not necessary
318 * we need a pcb for the per socket mutex
321 ctl_attach(struct socket
*so
, int proto
, struct proc
*p
)
323 #pragma unused(proto, p)
325 struct ctl_cb
*kcb
= 0;
327 MALLOC(kcb
, struct ctl_cb
*, sizeof(struct ctl_cb
), M_TEMP
, M_WAITOK
);
332 bzero(kcb
, sizeof(struct ctl_cb
));
334 kcb
->mtx
= lck_mtx_alloc_init(ctl_lck_grp
, ctl_lck_attr
);
335 if (kcb
->mtx
== NULL
) {
340 so
->so_pcb
= (caddr_t
)kcb
;
351 ctl_sofreelastref(struct socket
*so
)
353 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
359 if ((kctl
= kcb
->kctl
) != 0) {
360 lck_mtx_lock(ctl_mtx
);
361 TAILQ_REMOVE(&kctl
->kcb_head
, kcb
, next
);
362 kctlstat
.kcs_pcbcount
--;
363 kctlstat
.kcs_gencnt
++;
364 lck_mtx_unlock(ctl_mtx
);
368 sofreelastref(so
, 1);
373 * Use this function to serialize calls into the kctl subsystem
376 ctl_kcb_increment_use_count(struct ctl_cb
*kcb
, lck_mtx_t
*mutex_held
)
378 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
379 while (kcb
->kcb_usecount
> 0) {
380 msleep(&kcb
->kcb_usecount
, mutex_held
, PSOCK
| PCATCH
, "kcb_usecount", NULL
);
386 clt_kcb_decrement_use_count(struct ctl_cb
*kcb
)
388 assert(kcb
->kcb_usecount
!= 0);
390 wakeup_one((caddr_t
)&kcb
->kcb_usecount
);
394 ctl_detach(struct socket
*so
)
396 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
402 lck_mtx_t
*mtx_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
403 ctl_kcb_increment_use_count(kcb
, mtx_held
);
405 if (kcb
->kctl
!= NULL
&& kcb
->kctl
->bind
!= NULL
&&
406 kcb
->userdata
!= NULL
&& !(so
->so_state
& SS_ISCONNECTED
)) {
407 // The unit was bound, but not connected
408 // Invoke the disconnected call to cleanup
409 if (kcb
->kctl
->disconnect
!= NULL
) {
410 socket_unlock(so
, 0);
411 (*kcb
->kctl
->disconnect
)(kcb
->kctl
->kctlref
,
412 kcb
->sac
.sc_unit
, kcb
->userdata
);
417 soisdisconnected(so
);
418 #if DEVELOPMENT || DEBUG
419 kcb
->status
= KCTL_DISCONNECTED
;
420 #endif /* DEVELOPMENT || DEBUG */
421 so
->so_flags
|= SOF_PCBCLEARING
;
422 clt_kcb_decrement_use_count(kcb
);
427 ctl_setup_kctl(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
429 struct kctl
*kctl
= NULL
;
431 struct sockaddr_ctl sa
;
432 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
433 struct ctl_cb
*kcb_next
= NULL
;
435 u_int32_t recvbufsize
, sendbufsize
;
438 panic("ctl_setup_kctl so_pcb null\n");
441 if (kcb
->kctl
!= NULL
) {
442 // Already set up, skip
446 if (nam
->sa_len
!= sizeof(struct sockaddr_ctl
)) {
450 bcopy(nam
, &sa
, sizeof(struct sockaddr_ctl
));
452 lck_mtx_lock(ctl_mtx
);
453 kctl
= ctl_find_by_id_unit(sa
.sc_id
, sa
.sc_unit
);
455 lck_mtx_unlock(ctl_mtx
);
459 if (((kctl
->flags
& CTL_FLAG_REG_SOCK_STREAM
) &&
460 (so
->so_type
!= SOCK_STREAM
)) ||
461 (!(kctl
->flags
& CTL_FLAG_REG_SOCK_STREAM
) &&
462 (so
->so_type
!= SOCK_DGRAM
))) {
463 lck_mtx_unlock(ctl_mtx
);
467 if (kctl
->flags
& CTL_FLAG_PRIVILEGED
) {
469 lck_mtx_unlock(ctl_mtx
);
472 if (kauth_cred_issuser(kauth_cred_get()) == 0) {
473 lck_mtx_unlock(ctl_mtx
);
478 if ((kctl
->flags
& CTL_FLAG_REG_ID_UNIT
) || sa
.sc_unit
!= 0) {
479 if (kcb_find(kctl
, sa
.sc_unit
) != NULL
) {
480 lck_mtx_unlock(ctl_mtx
);
484 /* Find an unused ID, assumes control IDs are in order */
487 TAILQ_FOREACH(kcb_next
, &kctl
->kcb_head
, next
) {
488 if (kcb_next
->sac
.sc_unit
> unit
) {
489 /* Found a gap, lets fill it in */
492 unit
= kcb_next
->sac
.sc_unit
+ 1;
493 if (unit
== ctl_maxunit
) {
498 if (unit
== ctl_maxunit
) {
499 lck_mtx_unlock(ctl_mtx
);
506 bcopy(&sa
, &kcb
->sac
, sizeof(struct sockaddr_ctl
));
508 if (kcb_next
!= NULL
) {
509 TAILQ_INSERT_BEFORE(kcb_next
, kcb
, next
);
511 TAILQ_INSERT_TAIL(&kctl
->kcb_head
, kcb
, next
);
513 kctlstat
.kcs_pcbcount
++;
514 kctlstat
.kcs_gencnt
++;
515 kctlstat
.kcs_connections
++;
516 lck_mtx_unlock(ctl_mtx
);
519 * rdar://15526688: Limit the send and receive sizes to sb_max
520 * by using the same scaling as sbreserve()
522 sbmaxsize
= (u_quad_t
)sb_max
* MCLBYTES
/ (MSIZE
+ MCLBYTES
);
524 if (kctl
->sendbufsize
> sbmaxsize
) {
525 sendbufsize
= sbmaxsize
;
527 sendbufsize
= kctl
->sendbufsize
;
530 if (kctl
->recvbufsize
> sbmaxsize
) {
531 recvbufsize
= sbmaxsize
;
533 recvbufsize
= kctl
->recvbufsize
;
536 error
= soreserve(so
, sendbufsize
, recvbufsize
);
539 printf("%s - soreserve(%llx, %u, %u) error %d\n",
540 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(so
),
541 sendbufsize
, recvbufsize
, error
);
548 soisdisconnected(so
);
549 #if DEVELOPMENT || DEBUG
550 kcb
->status
= KCTL_DISCONNECTED
;
551 #endif /* DEVELOPMENT || DEBUG */
552 lck_mtx_lock(ctl_mtx
);
553 TAILQ_REMOVE(&kctl
->kcb_head
, kcb
, next
);
555 kcb
->sac
.sc_unit
= 0;
556 kctlstat
.kcs_pcbcount
--;
557 kctlstat
.kcs_gencnt
++;
558 kctlstat
.kcs_conn_fail
++;
559 lck_mtx_unlock(ctl_mtx
);
565 ctl_bind(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
568 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
571 panic("ctl_bind so_pcb null\n");
574 lck_mtx_t
*mtx_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
575 ctl_kcb_increment_use_count(kcb
, mtx_held
);
577 error
= ctl_setup_kctl(so
, nam
, p
);
582 if (kcb
->kctl
== NULL
) {
583 panic("ctl_bind kctl null\n");
586 if (kcb
->kctl
->bind
== NULL
) {
591 socket_unlock(so
, 0);
592 error
= (*kcb
->kctl
->bind
)(kcb
->kctl
->kctlref
, &kcb
->sac
, &kcb
->userdata
);
596 clt_kcb_decrement_use_count(kcb
);
601 ctl_connect(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
604 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
607 panic("ctl_connect so_pcb null\n");
610 lck_mtx_t
*mtx_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
611 ctl_kcb_increment_use_count(kcb
, mtx_held
);
613 #if DEVELOPMENT || DEBUG
614 if (kcb
->status
!= KCTL_DISCONNECTED
&& ctl_panic_debug
) {
615 panic("kctl already connecting/connected");
617 kcb
->status
= KCTL_CONNECTING
;
618 #endif /* DEVELOPMENT || DEBUG */
620 error
= ctl_setup_kctl(so
, nam
, p
);
625 if (kcb
->kctl
== NULL
) {
626 panic("ctl_connect kctl null\n");
630 socket_unlock(so
, 0);
631 error
= (*kcb
->kctl
->connect
)(kcb
->kctl
->kctlref
, &kcb
->sac
, &kcb
->userdata
);
637 #if DEVELOPMENT || DEBUG
638 kcb
->status
= KCTL_CONNECTED
;
639 #endif /* DEVELOPMENT || DEBUG */
642 if (error
&& kcb
->kctl
->disconnect
) {
644 * XXX Make sure we Don't check the return value
645 * of disconnect here.
646 * ipsec/utun_ctl_disconnect will return error when
647 * disconnect gets called after connect failure.
648 * However if we decide to check for disconnect return
649 * value here. Please make sure to revisit
650 * ipsec/utun_ctl_disconnect.
652 socket_unlock(so
, 0);
653 (*kcb
->kctl
->disconnect
)(kcb
->kctl
->kctlref
, kcb
->sac
.sc_unit
, kcb
->userdata
);
657 soisdisconnected(so
);
658 #if DEVELOPMENT || DEBUG
659 kcb
->status
= KCTL_DISCONNECTED
;
660 #endif /* DEVELOPMENT || DEBUG */
661 lck_mtx_lock(ctl_mtx
);
662 TAILQ_REMOVE(&kcb
->kctl
->kcb_head
, kcb
, next
);
664 kcb
->sac
.sc_unit
= 0;
665 kctlstat
.kcs_pcbcount
--;
666 kctlstat
.kcs_gencnt
++;
667 kctlstat
.kcs_conn_fail
++;
668 lck_mtx_unlock(ctl_mtx
);
671 clt_kcb_decrement_use_count(kcb
);
676 ctl_disconnect(struct socket
*so
)
678 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
680 if ((kcb
= (struct ctl_cb
*)so
->so_pcb
)) {
681 lck_mtx_t
*mtx_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
682 ctl_kcb_increment_use_count(kcb
, mtx_held
);
683 struct kctl
*kctl
= kcb
->kctl
;
685 if (kctl
&& kctl
->disconnect
) {
686 socket_unlock(so
, 0);
687 (*kctl
->disconnect
)(kctl
->kctlref
, kcb
->sac
.sc_unit
,
692 soisdisconnected(so
);
693 #if DEVELOPMENT || DEBUG
694 kcb
->status
= KCTL_DISCONNECTED
;
695 #endif /* DEVELOPMENT || DEBUG */
697 socket_unlock(so
, 0);
698 lck_mtx_lock(ctl_mtx
);
700 kcb
->sac
.sc_unit
= 0;
701 while (kcb
->usecount
!= 0) {
702 msleep(&kcb
->usecount
, ctl_mtx
, 0, "kcb->usecount", 0);
704 TAILQ_REMOVE(&kctl
->kcb_head
, kcb
, next
);
705 kctlstat
.kcs_pcbcount
--;
706 kctlstat
.kcs_gencnt
++;
707 lck_mtx_unlock(ctl_mtx
);
709 clt_kcb_decrement_use_count(kcb
);
715 ctl_peeraddr(struct socket
*so
, struct sockaddr
**nam
)
717 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
719 struct sockaddr_ctl sc
;
721 if (kcb
== NULL
) { /* sanity check */
725 if ((kctl
= kcb
->kctl
) == NULL
) {
729 bzero(&sc
, sizeof(struct sockaddr_ctl
));
730 sc
.sc_len
= sizeof(struct sockaddr_ctl
);
731 sc
.sc_family
= AF_SYSTEM
;
732 sc
.ss_sysaddr
= AF_SYS_CONTROL
;
734 sc
.sc_unit
= kcb
->sac
.sc_unit
;
736 *nam
= dup_sockaddr((struct sockaddr
*)&sc
, 1);
742 ctl_sbrcv_trim(struct socket
*so
)
744 struct sockbuf
*sb
= &so
->so_rcv
;
746 if (sb
->sb_hiwat
> sb
->sb_idealsize
) {
751 * The difference between the ideal size and the
752 * current size is the upper bound of the trimage
754 diff
= sb
->sb_hiwat
- sb
->sb_idealsize
;
756 * We cannot trim below the outstanding data
758 trim
= sb
->sb_hiwat
- sb
->sb_cc
;
760 trim
= imin(trim
, (int32_t)diff
);
763 sbreserve(sb
, (sb
->sb_hiwat
- trim
));
766 printf("%s - shrunk to %d\n",
767 __func__
, sb
->sb_hiwat
);
774 ctl_usr_rcvd(struct socket
*so
, int flags
)
777 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
784 lck_mtx_t
*mtx_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
785 ctl_kcb_increment_use_count(kcb
, mtx_held
);
787 if ((kctl
= kcb
->kctl
) == NULL
) {
793 socket_unlock(so
, 0);
794 (*kctl
->rcvd
)(kctl
->kctlref
, kcb
->sac
.sc_unit
, kcb
->userdata
, flags
);
801 clt_kcb_decrement_use_count(kcb
);
806 ctl_send(struct socket
*so
, int flags
, struct mbuf
*m
,
807 struct sockaddr
*addr
, struct mbuf
*control
,
810 #pragma unused(addr, p)
812 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
819 if (kcb
== NULL
) { /* sanity check */
823 lck_mtx_t
*mtx_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
824 ctl_kcb_increment_use_count(kcb
, mtx_held
);
826 if (error
== 0 && (kctl
= kcb
->kctl
) == NULL
) {
830 if (error
== 0 && kctl
->send
) {
831 so_tc_update_stats(m
, so
, m_get_service_class(m
));
832 socket_unlock(so
, 0);
833 error
= (*kctl
->send
)(kctl
->kctlref
, kcb
->sac
.sc_unit
, kcb
->userdata
,
843 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_send_fail
);
845 clt_kcb_decrement_use_count(kcb
);
851 ctl_send_list(struct socket
*so
, int flags
, struct mbuf
*m
,
852 __unused
struct sockaddr
*addr
, struct mbuf
*control
,
853 __unused
struct proc
*p
)
856 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
860 m_freem_list(control
);
863 if (kcb
== NULL
) { /* sanity check */
867 lck_mtx_t
*mtx_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
868 ctl_kcb_increment_use_count(kcb
, mtx_held
);
870 if (error
== 0 && (kctl
= kcb
->kctl
) == NULL
) {
874 if (error
== 0 && kctl
->send_list
) {
877 for (nxt
= m
; nxt
!= NULL
; nxt
= nxt
->m_nextpkt
) {
878 so_tc_update_stats(nxt
, so
, m_get_service_class(nxt
));
881 socket_unlock(so
, 0);
882 error
= (*kctl
->send_list
)(kctl
->kctlref
, kcb
->sac
.sc_unit
,
883 kcb
->userdata
, m
, flags
);
885 } else if (error
== 0 && kctl
->send
) {
886 while (m
!= NULL
&& error
== 0) {
887 struct mbuf
*nextpkt
= m
->m_nextpkt
;
890 so_tc_update_stats(m
, so
, m_get_service_class(m
));
891 socket_unlock(so
, 0);
892 error
= (*kctl
->send
)(kctl
->kctlref
, kcb
->sac
.sc_unit
,
893 kcb
->userdata
, m
, flags
);
907 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_send_list_fail
);
909 clt_kcb_decrement_use_count(kcb
);
915 ctl_rcvbspace(struct socket
*so
, u_int32_t datasize
,
916 u_int32_t kctlflags
, u_int32_t flags
)
918 struct sockbuf
*sb
= &so
->so_rcv
;
919 u_int32_t space
= sbspace(sb
);
922 if ((kctlflags
& CTL_FLAG_REG_CRIT
) == 0) {
923 if ((u_int32_t
) space
>= datasize
) {
928 } else if ((flags
& CTL_DATA_CRIT
) == 0) {
930 * Reserve 25% for critical messages
932 if (space
< (sb
->sb_hiwat
>> 2) ||
939 u_int32_t autorcvbuf_max
;
942 * Allow overcommit of 25%
944 autorcvbuf_max
= min(sb
->sb_idealsize
+ (sb
->sb_idealsize
>> 2),
947 if ((u_int32_t
) space
>= datasize
) {
949 } else if (tcp_cansbgrow(sb
) &&
950 sb
->sb_hiwat
< autorcvbuf_max
) {
952 * Grow with a little bit of leeway
954 u_int32_t grow
= datasize
- space
+ MSIZE
;
957 min((sb
->sb_hiwat
+ grow
), autorcvbuf_max
)) == 1) {
958 if (sb
->sb_hiwat
> ctl_autorcvbuf_high
) {
959 ctl_autorcvbuf_high
= sb
->sb_hiwat
;
965 if ((u_int32_t
) sbspace(sb
) >= datasize
) {
972 printf("%s - grown to %d error %d\n",
973 __func__
, sb
->sb_hiwat
, error
);
986 ctl_enqueuembuf(kern_ctl_ref kctlref
, u_int32_t unit
, struct mbuf
*m
,
991 int len
= m
->m_pkthdr
.len
;
994 so
= kcb_find_socket(kctlref
, unit
, &kctlflags
);
999 if (ctl_rcvbspace(so
, len
, kctlflags
, flags
) != 0) {
1001 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
1004 if ((flags
& CTL_DATA_EOR
)) {
1005 m
->m_flags
|= M_EOR
;
1008 so_recv_data_stat(so
, m
, 0);
1009 if (sbappend(&so
->so_rcv
, m
) != 0) {
1010 if ((flags
& CTL_DATA_NOWAKEUP
) == 0) {
1015 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
1018 if (ctl_debug
&& error
!= 0 && (flags
& CTL_DATA_CRIT
)) {
1019 printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
1020 __func__
, error
, len
,
1021 so
->so_rcv
.sb_hiwat
, so
->so_rcv
.sb_cc
);
1024 socket_unlock(so
, 1);
1026 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fail
);
1033 * Compute space occupied by mbuf like sbappendrecord
1036 m_space(struct mbuf
*m
)
1041 for (nxt
= m
; nxt
!= NULL
; nxt
= nxt
->m_next
) {
1042 space
+= nxt
->m_len
;
1049 ctl_enqueuembuf_list(void *kctlref
, u_int32_t unit
, struct mbuf
*m_list
,
1050 u_int32_t flags
, struct mbuf
**m_remain
)
1052 struct socket
*so
= NULL
;
1054 struct mbuf
*m
, *nextpkt
;
1057 u_int32_t kctlflags
;
1060 * Need to point the beginning of the list in case of early exit
1065 * kcb_find_socket takes the socket lock with a reference
1067 so
= kcb_find_socket(kctlref
, unit
, &kctlflags
);
1073 if (kctlflags
& CTL_FLAG_REG_SOCK_STREAM
) {
1077 if (flags
& CTL_DATA_EOR
) {
1082 for (m
= m_list
; m
!= NULL
; m
= nextpkt
) {
1083 nextpkt
= m
->m_nextpkt
;
1085 if (m
->m_pkthdr
.len
== 0 && ctl_debug
) {
1086 printf("%s: %llx m_pkthdr.len is 0",
1087 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(m
));
1091 * The mbuf is either appended or freed by sbappendrecord()
1092 * so it's not reliable from a data standpoint
1095 if (ctl_rcvbspace(so
, len
, kctlflags
, flags
) != 0) {
1097 OSIncrementAtomic64(
1098 (SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
1102 * Unlink from the list, m is on its own
1104 m
->m_nextpkt
= NULL
;
1105 so_recv_data_stat(so
, m
, 0);
1106 if (sbappendrecord(&so
->so_rcv
, m
) != 0) {
1110 * We free or return the remaining
1115 OSIncrementAtomic64(
1116 (SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
1121 if (needwakeup
&& (flags
& CTL_DATA_NOWAKEUP
) == 0) {
1127 if (ctl_debug
&& error
!= 0 && (flags
& CTL_DATA_CRIT
)) {
1128 printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
1129 __func__
, error
, len
,
1130 so
->so_rcv
.sb_hiwat
, so
->so_rcv
.sb_cc
);
1133 socket_unlock(so
, 1);
1138 if (m
!= NULL
&& socket_debug
&& so
!= NULL
&&
1139 (so
->so_options
& SO_DEBUG
)) {
1142 printf("%s m_list %llx\n", __func__
,
1143 (uint64_t) VM_KERNEL_ADDRPERM(m_list
));
1144 for (n
= m
; n
!= NULL
; n
= n
->m_nextpkt
) {
1145 printf(" remain %llx m_next %llx\n",
1146 (uint64_t) VM_KERNEL_ADDRPERM(n
),
1147 (uint64_t) VM_KERNEL_ADDRPERM(n
->m_next
));
1156 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fail
);
1162 ctl_enqueuedata(void *kctlref
, u_int32_t unit
, void *data
, size_t len
,
1168 unsigned int num_needed
;
1171 u_int32_t kctlflags
;
1173 so
= kcb_find_socket(kctlref
, unit
, &kctlflags
);
1178 if (ctl_rcvbspace(so
, len
, kctlflags
, flags
) != 0) {
1180 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
1185 m
= m_allocpacket_internal(&num_needed
, len
, NULL
, M_NOWAIT
, 1, 0);
1187 kctlstat
.kcs_enqdata_mb_alloc_fail
++;
1189 printf("%s: m_allocpacket_internal(%lu) failed\n",
1196 for (n
= m
; n
!= NULL
; n
= n
->m_next
) {
1197 size_t mlen
= mbuf_maxlen(n
);
1199 if (mlen
+ curlen
> len
) {
1200 mlen
= len
- curlen
;
1203 bcopy((char *)data
+ curlen
, n
->m_data
, mlen
);
1206 mbuf_pkthdr_setlen(m
, curlen
);
1208 if ((flags
& CTL_DATA_EOR
)) {
1209 m
->m_flags
|= M_EOR
;
1211 so_recv_data_stat(so
, m
, 0);
1212 if (sbappend(&so
->so_rcv
, m
) != 0) {
1213 if ((flags
& CTL_DATA_NOWAKEUP
) == 0) {
1217 kctlstat
.kcs_enqdata_sbappend_fail
++;
1219 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
1223 if (ctl_debug
&& error
!= 0 && (flags
& CTL_DATA_CRIT
)) {
1224 printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
1225 __func__
, error
, (int)len
,
1226 so
->so_rcv
.sb_hiwat
, so
->so_rcv
.sb_cc
);
1229 socket_unlock(so
, 1);
1231 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fail
);
1237 ctl_getenqueuepacketcount(kern_ctl_ref kctlref
, u_int32_t unit
, u_int32_t
*pcnt
)
1247 so
= kcb_find_socket(kctlref
, unit
, NULL
);
1253 m1
= so
->so_rcv
.sb_mb
;
1254 while (m1
!= NULL
) {
1255 if (m1
->m_type
== MT_DATA
||
1256 m1
->m_type
== MT_HEADER
||
1257 m1
->m_type
== MT_OOBDATA
) {
1264 socket_unlock(so
, 1);
1270 ctl_getenqueuespace(kern_ctl_ref kctlref
, u_int32_t unit
, size_t *space
)
1275 if (space
== NULL
) {
1279 so
= kcb_find_socket(kctlref
, unit
, NULL
);
1284 avail
= sbspace(&so
->so_rcv
);
1285 *space
= (avail
< 0) ? 0 : avail
;
1286 socket_unlock(so
, 1);
1292 ctl_getenqueuereadable(kern_ctl_ref kctlref
, u_int32_t unit
,
1293 u_int32_t
*difference
)
1297 if (difference
== NULL
) {
1301 so
= kcb_find_socket(kctlref
, unit
, NULL
);
1306 if (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
) {
1309 *difference
= (so
->so_rcv
.sb_lowat
- so
->so_rcv
.sb_cc
);
1311 socket_unlock(so
, 1);
1317 ctl_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
1319 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
1325 if (sopt
->sopt_level
!= SYSPROTO_CONTROL
) {
1329 if (kcb
== NULL
) { /* sanity check */
1333 if ((kctl
= kcb
->kctl
) == NULL
) {
1337 lck_mtx_t
*mtx_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
1338 ctl_kcb_increment_use_count(kcb
, mtx_held
);
1340 switch (sopt
->sopt_dir
) {
1342 if (kctl
->setopt
== NULL
) {
1346 if (sopt
->sopt_valsize
!= 0) {
1347 MALLOC(data
, void *, sopt
->sopt_valsize
, M_TEMP
,
1353 error
= sooptcopyin(sopt
, data
,
1354 sopt
->sopt_valsize
, sopt
->sopt_valsize
);
1357 socket_unlock(so
, 0);
1358 error
= (*kctl
->setopt
)(kctl
->kctlref
,
1359 kcb
->sac
.sc_unit
, kcb
->userdata
, sopt
->sopt_name
,
1360 data
, sopt
->sopt_valsize
);
1370 if (kctl
->getopt
== NULL
) {
1375 if (sopt
->sopt_valsize
&& sopt
->sopt_val
) {
1376 MALLOC(data
, void *, sopt
->sopt_valsize
, M_TEMP
,
1383 * 4108337 - copy user data in case the
1384 * kernel control needs it
1386 error
= sooptcopyin(sopt
, data
,
1387 sopt
->sopt_valsize
, sopt
->sopt_valsize
);
1391 len
= sopt
->sopt_valsize
;
1392 socket_unlock(so
, 0);
1393 error
= (*kctl
->getopt
)(kctl
->kctlref
, kcb
->sac
.sc_unit
,
1394 kcb
->userdata
, sopt
->sopt_name
,
1396 if (data
!= NULL
&& len
> sopt
->sopt_valsize
) {
1397 panic_plain("ctl_ctloutput: ctl %s returned "
1398 "len (%lu) > sopt_valsize (%lu)\n",
1399 kcb
->kctl
->name
, len
,
1400 sopt
->sopt_valsize
);
1405 error
= sooptcopyout(sopt
, data
, len
);
1407 sopt
->sopt_valsize
= len
;
1418 clt_kcb_decrement_use_count(kcb
);
1423 ctl_ioctl(struct socket
*so
, u_long cmd
, caddr_t data
,
1424 struct ifnet
*ifp
, struct proc
*p
)
1426 #pragma unused(so, ifp, p)
1427 int error
= ENOTSUP
;
1430 /* get the number of controllers */
1431 case CTLIOCGCOUNT
: {
1435 lck_mtx_lock(ctl_mtx
);
1436 TAILQ_FOREACH(kctl
, &ctl_head
, next
)
1438 lck_mtx_unlock(ctl_mtx
);
1440 bcopy(&n
, data
, sizeof(n
));
1445 struct ctl_info ctl_info
;
1446 struct kctl
*kctl
= 0;
1449 bcopy(data
, &ctl_info
, sizeof(ctl_info
));
1450 name_len
= strnlen(ctl_info
.ctl_name
, MAX_KCTL_NAME
);
1452 if (name_len
== 0 || name_len
+ 1 > MAX_KCTL_NAME
) {
1456 lck_mtx_lock(ctl_mtx
);
1457 kctl
= ctl_find_by_name(ctl_info
.ctl_name
);
1458 lck_mtx_unlock(ctl_mtx
);
1463 ctl_info
.ctl_id
= kctl
->id
;
1464 bcopy(&ctl_info
, data
, sizeof(ctl_info
));
1469 /* add controls to get list of NKEs */
1478 struct kctl
**new_table
;
1481 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1483 if (kctl_tbl_growing
) {
1484 /* Another thread is allocating */
1485 kctl_tbl_growing_waiting
++;
1488 (void) msleep((caddr_t
) &kctl_tbl_growing
, ctl_mtx
,
1489 PSOCK
| PCATCH
, "kctl_tbl_growing", 0);
1490 } while (kctl_tbl_growing
);
1491 kctl_tbl_growing_waiting
--;
1493 /* Another thread grew the table */
1494 if (kctl_table
!= NULL
&& kctl_tbl_count
< kctl_tbl_size
) {
1498 /* Verify we have a sane size */
1499 if (kctl_tbl_size
+ KCTL_TBL_INC
>= UINT16_MAX
) {
1500 kctlstat
.kcs_tbl_size_too_big
++;
1502 printf("%s kctl_tbl_size %lu too big\n",
1503 __func__
, kctl_tbl_size
);
1507 kctl_tbl_growing
= 1;
1509 new_size
= kctl_tbl_size
+ KCTL_TBL_INC
;
1511 lck_mtx_unlock(ctl_mtx
);
1512 new_table
= _MALLOC(sizeof(struct kctl
*) * new_size
,
1513 M_TEMP
, M_WAIT
| M_ZERO
);
1514 lck_mtx_lock(ctl_mtx
);
1516 if (new_table
!= NULL
) {
1517 if (kctl_table
!= NULL
) {
1518 bcopy(kctl_table
, new_table
,
1519 kctl_tbl_size
* sizeof(struct kctl
*));
1521 _FREE(kctl_table
, M_TEMP
);
1523 kctl_table
= new_table
;
1524 kctl_tbl_size
= new_size
;
1527 kctl_tbl_growing
= 0;
1529 if (kctl_tbl_growing_waiting
) {
1530 wakeup(&kctl_tbl_growing
);
1534 #define KCTLREF_INDEX_MASK 0x0000FFFF
1535 #define KCTLREF_GENCNT_MASK 0xFFFF0000
1536 #define KCTLREF_GENCNT_SHIFT 16
1539 kctl_make_ref(struct kctl
*kctl
)
1543 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1545 if (kctl_tbl_count
>= kctl_tbl_size
) {
1549 kctl
->kctlref
= NULL
;
1550 for (i
= 0; i
< kctl_tbl_size
; i
++) {
1551 if (kctl_table
[i
] == NULL
) {
1555 * Reference is index plus one
1557 kctl_ref_gencnt
+= 1;
1560 * Add generation count as salt to reference to prevent
1561 * use after deregister
1563 ref
= ((kctl_ref_gencnt
<< KCTLREF_GENCNT_SHIFT
) &
1564 KCTLREF_GENCNT_MASK
) +
1565 ((i
+ 1) & KCTLREF_INDEX_MASK
);
1567 kctl
->kctlref
= (void *)(ref
);
1568 kctl_table
[i
] = kctl
;
1574 if (kctl
->kctlref
== NULL
) {
1575 panic("%s no space in table", __func__
);
1578 if (ctl_debug
> 0) {
1579 printf("%s %p for %p\n",
1580 __func__
, kctl
->kctlref
, kctl
);
1583 return kctl
->kctlref
;
1587 kctl_delete_ref(kern_ctl_ref kctlref
)
1590 * Reference is index plus one
1592 uintptr_t i
= (((uintptr_t)kctlref
) & KCTLREF_INDEX_MASK
) - 1;
1594 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1596 if (i
< kctl_tbl_size
) {
1597 struct kctl
*kctl
= kctl_table
[i
];
1599 if (kctl
->kctlref
== kctlref
) {
1600 kctl_table
[i
] = NULL
;
1603 kctlstat
.kcs_bad_kctlref
++;
1606 kctlstat
.kcs_bad_kctlref
++;
1610 static struct kctl
*
1611 kctl_from_ref(kern_ctl_ref kctlref
)
1614 * Reference is index plus one
1616 uintptr_t i
= (((uintptr_t)kctlref
) & KCTLREF_INDEX_MASK
) - 1;
1617 struct kctl
*kctl
= NULL
;
1619 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1621 if (i
>= kctl_tbl_size
) {
1622 kctlstat
.kcs_bad_kctlref
++;
1625 kctl
= kctl_table
[i
];
1626 if (kctl
->kctlref
!= kctlref
) {
1627 kctlstat
.kcs_bad_kctlref
++;
1634 * Register/unregister a NKE
1637 ctl_register(struct kern_ctl_reg
*userkctl
, kern_ctl_ref
*kctlref
)
1639 struct kctl
*kctl
= NULL
;
1640 struct kctl
*kctl_next
= NULL
;
1643 int is_extended
= 0;
1645 if (userkctl
== NULL
) { /* sanity check */
1648 if (userkctl
->ctl_connect
== NULL
) {
1651 name_len
= strlen(userkctl
->ctl_name
);
1652 if (name_len
== 0 || name_len
+ 1 > MAX_KCTL_NAME
) {
1656 MALLOC(kctl
, struct kctl
*, sizeof(*kctl
), M_TEMP
, M_WAITOK
);
1660 bzero((char *)kctl
, sizeof(*kctl
));
1662 lck_mtx_lock(ctl_mtx
);
1664 if (kctl_make_ref(kctl
) == NULL
) {
1665 lck_mtx_unlock(ctl_mtx
);
1671 * Kernel Control IDs
1673 * CTL_FLAG_REG_ID_UNIT indicates the control ID and unit number are
1674 * static. If they do not exist, add them to the list in order. If the
1675 * flag is not set, we must find a new unique value. We assume the
1676 * list is in order. We find the last item in the list and add one. If
1677 * this leads to wrapping the id around, we start at the front of the
1678 * list and look for a gap.
1681 if ((userkctl
->ctl_flags
& CTL_FLAG_REG_ID_UNIT
) == 0) {
1682 /* Must dynamically assign an unused ID */
1684 /* Verify the same name isn't already registered */
1685 if (ctl_find_by_name(userkctl
->ctl_name
) != NULL
) {
1686 kctl_delete_ref(kctl
->kctlref
);
1687 lck_mtx_unlock(ctl_mtx
);
1692 /* Start with 1 in case the list is empty */
1694 kctl_next
= TAILQ_LAST(&ctl_head
, kctl_list
);
1696 if (kctl_next
!= NULL
) {
1697 /* List was not empty, add one to the last item */
1698 id
= kctl_next
->id
+ 1;
1702 * If this wrapped the id number, start looking at
1703 * the front of the list for an unused id.
1706 /* Find the next unused ID */
1709 TAILQ_FOREACH(kctl_next
, &ctl_head
, next
) {
1710 if (kctl_next
->id
> id
) {
1711 /* We found a gap */
1715 id
= kctl_next
->id
+ 1;
1720 userkctl
->ctl_id
= id
;
1722 kctl
->reg_unit
= -1;
1724 TAILQ_FOREACH(kctl_next
, &ctl_head
, next
) {
1725 if (kctl_next
->id
> userkctl
->ctl_id
) {
1730 if (ctl_find_by_id_unit(userkctl
->ctl_id
, userkctl
->ctl_unit
)) {
1731 kctl_delete_ref(kctl
->kctlref
);
1732 lck_mtx_unlock(ctl_mtx
);
1736 kctl
->id
= userkctl
->ctl_id
;
1737 kctl
->reg_unit
= userkctl
->ctl_unit
;
1740 is_extended
= (userkctl
->ctl_flags
& CTL_FLAG_REG_EXTENDED
);
1742 strlcpy(kctl
->name
, userkctl
->ctl_name
, MAX_KCTL_NAME
);
1743 kctl
->flags
= userkctl
->ctl_flags
;
1746 * Let the caller know the default send and receive sizes
1748 if (userkctl
->ctl_sendsize
== 0) {
1749 kctl
->sendbufsize
= CTL_SENDSIZE
;
1750 userkctl
->ctl_sendsize
= kctl
->sendbufsize
;
1752 kctl
->sendbufsize
= userkctl
->ctl_sendsize
;
1754 if (userkctl
->ctl_recvsize
== 0) {
1755 kctl
->recvbufsize
= CTL_RECVSIZE
;
1756 userkctl
->ctl_recvsize
= kctl
->recvbufsize
;
1758 kctl
->recvbufsize
= userkctl
->ctl_recvsize
;
1761 kctl
->bind
= userkctl
->ctl_bind
;
1762 kctl
->connect
= userkctl
->ctl_connect
;
1763 kctl
->disconnect
= userkctl
->ctl_disconnect
;
1764 kctl
->send
= userkctl
->ctl_send
;
1765 kctl
->setopt
= userkctl
->ctl_setopt
;
1766 kctl
->getopt
= userkctl
->ctl_getopt
;
1768 kctl
->rcvd
= userkctl
->ctl_rcvd
;
1769 kctl
->send_list
= userkctl
->ctl_send_list
;
1772 TAILQ_INIT(&kctl
->kcb_head
);
1775 TAILQ_INSERT_BEFORE(kctl_next
, kctl
, next
);
1777 TAILQ_INSERT_TAIL(&ctl_head
, kctl
, next
);
1780 kctlstat
.kcs_reg_count
++;
1781 kctlstat
.kcs_gencnt
++;
1783 lck_mtx_unlock(ctl_mtx
);
1785 *kctlref
= kctl
->kctlref
;
1787 ctl_post_msg(KEV_CTL_REGISTERED
, kctl
->id
);
1792 ctl_deregister(void *kctlref
)
1796 lck_mtx_lock(ctl_mtx
);
1797 if ((kctl
= kctl_from_ref(kctlref
)) == NULL
) {
1798 kctlstat
.kcs_bad_kctlref
++;
1799 lck_mtx_unlock(ctl_mtx
);
1800 if (ctl_debug
!= 0) {
1801 printf("%s invalid kctlref %p\n",
1807 if (!TAILQ_EMPTY(&kctl
->kcb_head
)) {
1808 lck_mtx_unlock(ctl_mtx
);
1812 TAILQ_REMOVE(&ctl_head
, kctl
, next
);
1814 kctlstat
.kcs_reg_count
--;
1815 kctlstat
.kcs_gencnt
++;
1817 kctl_delete_ref(kctl
->kctlref
);
1818 lck_mtx_unlock(ctl_mtx
);
1820 ctl_post_msg(KEV_CTL_DEREGISTERED
, kctl
->id
);
1826 * Must be called with global ctl_mtx lock taked
1828 static struct kctl
*
1829 ctl_find_by_name(const char *name
)
1833 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1835 TAILQ_FOREACH(kctl
, &ctl_head
, next
)
1836 if (strncmp(kctl
->name
, name
, sizeof(kctl
->name
)) == 0) {
1844 ctl_id_by_name(const char *name
)
1846 u_int32_t ctl_id
= 0;
1849 lck_mtx_lock(ctl_mtx
);
1850 kctl
= ctl_find_by_name(name
);
1854 lck_mtx_unlock(ctl_mtx
);
1860 ctl_name_by_id(u_int32_t id
, char *out_name
, size_t maxsize
)
1865 lck_mtx_lock(ctl_mtx
);
1866 TAILQ_FOREACH(kctl
, &ctl_head
, next
) {
1867 if (kctl
->id
== id
) {
1873 if (maxsize
> MAX_KCTL_NAME
) {
1874 maxsize
= MAX_KCTL_NAME
;
1876 strlcpy(out_name
, kctl
->name
, maxsize
);
1879 lck_mtx_unlock(ctl_mtx
);
1881 return found
? 0 : ENOENT
;
1885 * Must be called with global ctl_mtx lock taked
1888 static struct kctl
*
1889 ctl_find_by_id_unit(u_int32_t id
, u_int32_t unit
)
1893 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1895 TAILQ_FOREACH(kctl
, &ctl_head
, next
) {
1896 if (kctl
->id
== id
&& (kctl
->flags
& CTL_FLAG_REG_ID_UNIT
) == 0) {
1898 } else if (kctl
->id
== id
&& kctl
->reg_unit
== unit
) {
1906 * Must be called with kernel controller lock taken
1908 static struct ctl_cb
*
1909 kcb_find(struct kctl
*kctl
, u_int32_t unit
)
1913 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1915 TAILQ_FOREACH(kcb
, &kctl
->kcb_head
, next
)
1916 if (kcb
->sac
.sc_unit
== unit
) {
1923 static struct socket
*
1924 kcb_find_socket(kern_ctl_ref kctlref
, u_int32_t unit
, u_int32_t
*kctlflags
)
1926 struct socket
*so
= NULL
;
1932 lr_saved
= __builtin_return_address(0);
1934 lck_mtx_lock(ctl_mtx
);
1936 * First validate the kctlref
1938 if ((kctl
= kctl_from_ref(kctlref
)) == NULL
) {
1939 kctlstat
.kcs_bad_kctlref
++;
1940 lck_mtx_unlock(ctl_mtx
);
1941 if (ctl_debug
!= 0) {
1942 printf("%s invalid kctlref %p\n",
1948 kcb
= kcb_find(kctl
, unit
);
1949 if (kcb
== NULL
|| kcb
->kctl
!= kctl
|| (so
= kcb
->so
) == NULL
) {
1950 lck_mtx_unlock(ctl_mtx
);
1954 * This prevents the socket from being closed
1958 * Respect lock ordering: socket before ctl_mtx
1960 lck_mtx_unlock(ctl_mtx
);
1964 * The socket lock history is more useful if we store
1965 * the address of the caller.
1967 i
= (so
->next_lock_lr
+ SO_LCKDBG_MAX
- 1) % SO_LCKDBG_MAX
;
1968 so
->lock_lr
[i
] = lr_saved
;
1970 lck_mtx_lock(ctl_mtx
);
1972 if ((kctl
= kctl_from_ref(kctlref
)) == NULL
|| kcb
->kctl
== NULL
) {
1973 lck_mtx_unlock(ctl_mtx
);
1974 socket_unlock(so
, 1);
1976 lck_mtx_lock(ctl_mtx
);
1977 } else if (kctlflags
!= NULL
) {
1978 *kctlflags
= kctl
->flags
;
1982 if (kcb
->usecount
== 0) {
1983 wakeup((event_t
)&kcb
->usecount
);
1986 lck_mtx_unlock(ctl_mtx
);
1992 ctl_post_msg(u_int32_t event_code
, u_int32_t id
)
1994 struct ctl_event_data ctl_ev_data
;
1995 struct kev_msg ev_msg
;
1997 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_NOTOWNED
);
1999 bzero(&ev_msg
, sizeof(struct kev_msg
));
2000 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
2002 ev_msg
.kev_class
= KEV_SYSTEM_CLASS
;
2003 ev_msg
.kev_subclass
= KEV_CTL_SUBCLASS
;
2004 ev_msg
.event_code
= event_code
;
2006 /* common nke subclass data */
2007 bzero(&ctl_ev_data
, sizeof(ctl_ev_data
));
2008 ctl_ev_data
.ctl_id
= id
;
2009 ev_msg
.dv
[0].data_ptr
= &ctl_ev_data
;
2010 ev_msg
.dv
[0].data_length
= sizeof(ctl_ev_data
);
2012 ev_msg
.dv
[1].data_length
= 0;
2014 kev_post_msg(&ev_msg
);
2018 ctl_lock(struct socket
*so
, int refcount
, void *lr
)
2023 lr_saved
= __builtin_return_address(0);
2028 if (so
->so_pcb
!= NULL
) {
2029 lck_mtx_lock(((struct ctl_cb
*)so
->so_pcb
)->mtx
);
2031 panic("ctl_lock: so=%p NO PCB! lr=%p lrh= %s\n",
2032 so
, lr_saved
, solockhistory_nr(so
));
2036 if (so
->so_usecount
< 0) {
2037 panic("ctl_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
2038 so
, so
->so_pcb
, lr_saved
, so
->so_usecount
,
2039 solockhistory_nr(so
));
2047 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
2048 so
->next_lock_lr
= (so
->next_lock_lr
+ 1) % SO_LCKDBG_MAX
;
2053 ctl_unlock(struct socket
*so
, int refcount
, void *lr
)
2056 lck_mtx_t
*mutex_held
;
2059 lr_saved
= __builtin_return_address(0);
2064 #if (MORE_KCTLLOCK_DEBUG && (DEVELOPMENT || DEBUG))
2065 printf("ctl_unlock: so=%llx sopcb=%x lock=%llx ref=%u lr=%llx\n",
2066 (uint64_t)VM_KERNEL_ADDRPERM(so
),
2067 (uint64_t)VM_KERNEL_ADDRPERM(so
->so_pcb
,
2068 (uint64_t)VM_KERNEL_ADDRPERM(((struct ctl_cb
*)so
->so_pcb
)->mtx
),
2069 so
->so_usecount
, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved
));
2070 #endif /* (MORE_KCTLLOCK_DEBUG && (DEVELOPMENT || DEBUG)) */
2075 if (so
->so_usecount
< 0) {
2076 panic("ctl_unlock: so=%p usecount=%x lrh= %s\n",
2077 so
, so
->so_usecount
, solockhistory_nr(so
));
2080 if (so
->so_pcb
== NULL
) {
2081 panic("ctl_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
2082 so
, so
->so_usecount
, (void *)lr_saved
,
2083 solockhistory_nr(so
));
2086 mutex_held
= ((struct ctl_cb
*)so
->so_pcb
)->mtx
;
2088 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
2089 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
2090 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
2091 lck_mtx_unlock(mutex_held
);
2093 if (so
->so_usecount
== 0) {
2094 ctl_sofreelastref(so
);
2101 ctl_getlock(struct socket
*so
, int flags
)
2103 #pragma unused(flags)
2104 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
2107 if (so
->so_usecount
< 0) {
2108 panic("ctl_getlock: so=%p usecount=%x lrh= %s\n",
2109 so
, so
->so_usecount
, solockhistory_nr(so
));
2113 panic("ctl_getlock: so=%p NULL NO so_pcb %s\n",
2114 so
, solockhistory_nr(so
));
2115 return so
->so_proto
->pr_domain
->dom_mtx
;
2119 __private_extern__
int
2120 kctl_reg_list SYSCTL_HANDLER_ARGS
2122 #pragma unused(oidp, arg1, arg2)
2125 struct xsystmgen xsg
;
2128 size_t item_size
= ROUNDUP64(sizeof(struct xkctl_reg
));
2130 buf
= _MALLOC(item_size
, M_TEMP
, M_WAITOK
| M_ZERO
);
2135 lck_mtx_lock(ctl_mtx
);
2137 n
= kctlstat
.kcs_reg_count
;
2139 if (req
->oldptr
== USER_ADDR_NULL
) {
2140 req
->oldidx
= (n
+ n
/ 8) * sizeof(struct xkctl_reg
);
2143 if (req
->newptr
!= USER_ADDR_NULL
) {
2147 bzero(&xsg
, sizeof(xsg
));
2148 xsg
.xg_len
= sizeof(xsg
);
2150 xsg
.xg_gen
= kctlstat
.kcs_gencnt
;
2151 xsg
.xg_sogen
= so_gencnt
;
2152 error
= SYSCTL_OUT(req
, &xsg
, sizeof(xsg
));
2157 * We are done if there is no pcb
2164 for (i
= 0, kctl
= TAILQ_FIRST(&ctl_head
);
2165 i
< n
&& kctl
!= NULL
;
2166 i
++, kctl
= TAILQ_NEXT(kctl
, next
)) {
2167 struct xkctl_reg
*xkr
= (struct xkctl_reg
*)buf
;
2169 u_int32_t pcbcount
= 0;
2171 TAILQ_FOREACH(kcb
, &kctl
->kcb_head
, next
)
2174 bzero(buf
, item_size
);
2176 xkr
->xkr_len
= sizeof(struct xkctl_reg
);
2177 xkr
->xkr_kind
= XSO_KCREG
;
2178 xkr
->xkr_id
= kctl
->id
;
2179 xkr
->xkr_reg_unit
= kctl
->reg_unit
;
2180 xkr
->xkr_flags
= kctl
->flags
;
2181 xkr
->xkr_kctlref
= (uint64_t)(kctl
->kctlref
);
2182 xkr
->xkr_recvbufsize
= kctl
->recvbufsize
;
2183 xkr
->xkr_sendbufsize
= kctl
->sendbufsize
;
2184 xkr
->xkr_lastunit
= kctl
->lastunit
;
2185 xkr
->xkr_pcbcount
= pcbcount
;
2186 xkr
->xkr_connect
= (uint64_t)VM_KERNEL_UNSLIDE(kctl
->connect
);
2187 xkr
->xkr_disconnect
=
2188 (uint64_t)VM_KERNEL_UNSLIDE(kctl
->disconnect
);
2189 xkr
->xkr_send
= (uint64_t)VM_KERNEL_UNSLIDE(kctl
->send
);
2190 xkr
->xkr_send_list
=
2191 (uint64_t)VM_KERNEL_UNSLIDE(kctl
->send_list
);
2192 xkr
->xkr_setopt
= (uint64_t)VM_KERNEL_UNSLIDE(kctl
->setopt
);
2193 xkr
->xkr_getopt
= (uint64_t)VM_KERNEL_UNSLIDE(kctl
->getopt
);
2194 xkr
->xkr_rcvd
= (uint64_t)VM_KERNEL_UNSLIDE(kctl
->rcvd
);
2195 strlcpy(xkr
->xkr_name
, kctl
->name
, sizeof(xkr
->xkr_name
));
2197 error
= SYSCTL_OUT(req
, buf
, item_size
);
2202 * Give the user an updated idea of our state.
2203 * If the generation differs from what we told
2204 * her before, she knows that something happened
2205 * while we were processing this request, and it
2206 * might be necessary to retry.
2208 bzero(&xsg
, sizeof(xsg
));
2209 xsg
.xg_len
= sizeof(xsg
);
2211 xsg
.xg_gen
= kctlstat
.kcs_gencnt
;
2212 xsg
.xg_sogen
= so_gencnt
;
2213 error
= SYSCTL_OUT(req
, &xsg
, sizeof(xsg
));
2220 lck_mtx_unlock(ctl_mtx
);
2229 __private_extern__
int
2230 kctl_pcblist SYSCTL_HANDLER_ARGS
2232 #pragma unused(oidp, arg1, arg2)
2235 struct xsystmgen xsg
;
2238 size_t item_size
= ROUNDUP64(sizeof(struct xkctlpcb
)) +
2239 ROUNDUP64(sizeof(struct xsocket_n
)) +
2240 2 * ROUNDUP64(sizeof(struct xsockbuf_n
)) +
2241 ROUNDUP64(sizeof(struct xsockstat_n
));
2243 buf
= _MALLOC(item_size
, M_TEMP
, M_WAITOK
| M_ZERO
);
2248 lck_mtx_lock(ctl_mtx
);
2250 n
= kctlstat
.kcs_pcbcount
;
2252 if (req
->oldptr
== USER_ADDR_NULL
) {
2253 req
->oldidx
= (n
+ n
/ 8) * item_size
;
2256 if (req
->newptr
!= USER_ADDR_NULL
) {
2260 bzero(&xsg
, sizeof(xsg
));
2261 xsg
.xg_len
= sizeof(xsg
);
2263 xsg
.xg_gen
= kctlstat
.kcs_gencnt
;
2264 xsg
.xg_sogen
= so_gencnt
;
2265 error
= SYSCTL_OUT(req
, &xsg
, sizeof(xsg
));
2270 * We are done if there is no pcb
2277 for (i
= 0, kctl
= TAILQ_FIRST(&ctl_head
);
2278 i
< n
&& kctl
!= NULL
;
2279 kctl
= TAILQ_NEXT(kctl
, next
)) {
2282 for (kcb
= TAILQ_FIRST(&kctl
->kcb_head
);
2283 i
< n
&& kcb
!= NULL
;
2284 i
++, kcb
= TAILQ_NEXT(kcb
, next
)) {
2285 struct xkctlpcb
*xk
= (struct xkctlpcb
*)buf
;
2286 struct xsocket_n
*xso
= (struct xsocket_n
*)
2287 ADVANCE64(xk
, sizeof(*xk
));
2288 struct xsockbuf_n
*xsbrcv
= (struct xsockbuf_n
*)
2289 ADVANCE64(xso
, sizeof(*xso
));
2290 struct xsockbuf_n
*xsbsnd
= (struct xsockbuf_n
*)
2291 ADVANCE64(xsbrcv
, sizeof(*xsbrcv
));
2292 struct xsockstat_n
*xsostats
= (struct xsockstat_n
*)
2293 ADVANCE64(xsbsnd
, sizeof(*xsbsnd
));
2295 bzero(buf
, item_size
);
2297 xk
->xkp_len
= sizeof(struct xkctlpcb
);
2298 xk
->xkp_kind
= XSO_KCB
;
2299 xk
->xkp_unit
= kcb
->sac
.sc_unit
;
2300 xk
->xkp_kctpcb
= (uint64_t)VM_KERNEL_ADDRPERM(kcb
);
2301 xk
->xkp_kctlref
= (uint64_t)VM_KERNEL_ADDRPERM(kctl
);
2302 xk
->xkp_kctlid
= kctl
->id
;
2303 strlcpy(xk
->xkp_kctlname
, kctl
->name
,
2304 sizeof(xk
->xkp_kctlname
));
2306 sotoxsocket_n(kcb
->so
, xso
);
2307 sbtoxsockbuf_n(kcb
->so
?
2308 &kcb
->so
->so_rcv
: NULL
, xsbrcv
);
2309 sbtoxsockbuf_n(kcb
->so
?
2310 &kcb
->so
->so_snd
: NULL
, xsbsnd
);
2311 sbtoxsockstat_n(kcb
->so
, xsostats
);
2313 error
= SYSCTL_OUT(req
, buf
, item_size
);
2319 * Give the user an updated idea of our state.
2320 * If the generation differs from what we told
2321 * her before, she knows that something happened
2322 * while we were processing this request, and it
2323 * might be necessary to retry.
2325 bzero(&xsg
, sizeof(xsg
));
2326 xsg
.xg_len
= sizeof(xsg
);
2328 xsg
.xg_gen
= kctlstat
.kcs_gencnt
;
2329 xsg
.xg_sogen
= so_gencnt
;
2330 error
= SYSCTL_OUT(req
, &xsg
, sizeof(xsg
));
2337 lck_mtx_unlock(ctl_mtx
);
2343 kctl_getstat SYSCTL_HANDLER_ARGS
2345 #pragma unused(oidp, arg1, arg2)
2348 lck_mtx_lock(ctl_mtx
);
2350 if (req
->newptr
!= USER_ADDR_NULL
) {
2354 if (req
->oldptr
== USER_ADDR_NULL
) {
2355 req
->oldidx
= sizeof(struct kctlstat
);
2359 error
= SYSCTL_OUT(req
, &kctlstat
,
2360 MIN(sizeof(struct kctlstat
), req
->oldlen
));
2362 lck_mtx_unlock(ctl_mtx
);
2367 kctl_fill_socketinfo(struct socket
*so
, struct socket_info
*si
)
2369 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
2370 struct kern_ctl_info
*kcsi
=
2371 &si
->soi_proto
.pri_kern_ctl
;
2372 struct kctl
*kctl
= kcb
->kctl
;
2374 si
->soi_kind
= SOCKINFO_KERN_CTL
;
2380 kcsi
->kcsi_id
= kctl
->id
;
2381 kcsi
->kcsi_reg_unit
= kctl
->reg_unit
;
2382 kcsi
->kcsi_flags
= kctl
->flags
;
2383 kcsi
->kcsi_recvbufsize
= kctl
->recvbufsize
;
2384 kcsi
->kcsi_sendbufsize
= kctl
->sendbufsize
;
2385 kcsi
->kcsi_unit
= kcb
->sac
.sc_unit
;
2386 strlcpy(kcsi
->kcsi_name
, kctl
->name
, MAX_KCTL_NAME
);