2 * Copyright (c) 2018-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <sys/errno.h>
31 #include <mach/mach_types.h>
32 #include <mach/mach_traps.h>
33 #include <mach/host_priv.h>
34 #include <mach/kern_return.h>
35 #include <mach/memory_object_control.h>
36 #include <mach/memory_object_types.h>
37 #include <mach/port.h>
38 #include <mach/policy.h>
40 #include <mach/thread_act.h>
41 #include <mach/mach_vm.h>
43 #include <kern/host.h>
44 #include <kern/kalloc.h>
45 #include <kern/queue.h>
46 #include <kern/thread.h>
47 #include <kern/ipc_kobject.h>
49 #include <ipc/ipc_port.h>
50 #include <ipc/ipc_space.h>
52 #include <vm/memory_object.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_fault.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pageout.h>
57 #include <vm/vm_protos.h>
58 #include <vm/vm_shared_region.h>
60 #if __has_feature(ptrauth_calls)
62 extern boolean_t diversify_user_jop
;
63 #endif /* __has_feature(ptrauth_calls) */
66 * SHARED REGION MEMORY PAGER
68 * This external memory manager (EMM) handles mappings of a dyld shared cache
69 * in shared regions, applying any necessary modifications (sliding,
70 * pointer signing, ...).
72 * It mostly handles page-in requests (from memory_object_data_request()) by
73 * getting the original data from its backing VM object, itself backed by
74 * the dyld shared cache file, modifying it if needed and providing it to VM.
76 * The modified pages will never be dirtied, so the memory manager doesn't
77 * need to handle page-out requests (from memory_object_data_return()). The
78 * pages need to be mapped copy-on-write, so that the originals stay clean.
80 * We don't expect to have to handle a large number of shared cache files,
81 * so the data structures are very simple (simple linked list) for now.
84 /* forward declarations */
85 void shared_region_pager_reference(memory_object_t mem_obj
);
86 void shared_region_pager_deallocate(memory_object_t mem_obj
);
87 kern_return_t
shared_region_pager_init(memory_object_t mem_obj
,
88 memory_object_control_t control
,
89 memory_object_cluster_size_t pg_size
);
90 kern_return_t
shared_region_pager_terminate(memory_object_t mem_obj
);
91 kern_return_t
shared_region_pager_data_request(memory_object_t mem_obj
,
92 memory_object_offset_t offset
,
93 memory_object_cluster_size_t length
,
94 vm_prot_t protection_required
,
95 memory_object_fault_info_t fault_info
);
96 kern_return_t
shared_region_pager_data_return(memory_object_t mem_obj
,
97 memory_object_offset_t offset
,
98 memory_object_cluster_size_t data_cnt
,
99 memory_object_offset_t
*resid_offset
,
102 boolean_t kernel_copy
,
104 kern_return_t
shared_region_pager_data_initialize(memory_object_t mem_obj
,
105 memory_object_offset_t offset
,
106 memory_object_cluster_size_t data_cnt
);
107 kern_return_t
shared_region_pager_data_unlock(memory_object_t mem_obj
,
108 memory_object_offset_t offset
,
109 memory_object_size_t size
,
110 vm_prot_t desired_access
);
111 kern_return_t
shared_region_pager_synchronize(memory_object_t mem_obj
,
112 memory_object_offset_t offset
,
113 memory_object_size_t length
,
114 vm_sync_t sync_flags
);
115 kern_return_t
shared_region_pager_map(memory_object_t mem_obj
,
117 kern_return_t
shared_region_pager_last_unmap(memory_object_t mem_obj
);
118 boolean_t
shared_region_pager_backing_object(
119 memory_object_t mem_obj
,
120 memory_object_offset_t mem_obj_offset
,
121 vm_object_t
*backing_object
,
122 vm_object_offset_t
*backing_offset
);
125 * Vector of VM operations for this EMM.
126 * These routines are invoked by VM via the memory_object_*() interfaces.
128 const struct memory_object_pager_ops shared_region_pager_ops
= {
129 .memory_object_reference
= shared_region_pager_reference
,
130 .memory_object_deallocate
= shared_region_pager_deallocate
,
131 .memory_object_init
= shared_region_pager_init
,
132 .memory_object_terminate
= shared_region_pager_terminate
,
133 .memory_object_data_request
= shared_region_pager_data_request
,
134 .memory_object_data_return
= shared_region_pager_data_return
,
135 .memory_object_data_initialize
= shared_region_pager_data_initialize
,
136 .memory_object_data_unlock
= shared_region_pager_data_unlock
,
137 .memory_object_synchronize
= shared_region_pager_synchronize
,
138 .memory_object_map
= shared_region_pager_map
,
139 .memory_object_last_unmap
= shared_region_pager_last_unmap
,
140 .memory_object_data_reclaim
= NULL
,
141 .memory_object_backing_object
= shared_region_pager_backing_object
,
142 .memory_object_pager_name
= "shared_region"
145 #if __has_feature(ptrauth_calls)
147 * Track mappings between shared_region_id and the key used to sign
148 * authenticated pointers.
150 typedef struct shared_region_jop_key_map
{
151 queue_chain_t srk_queue
;
152 char *srk_shared_region_id
;
153 uint64_t srk_jop_key
;
154 os_refcnt_t srk_ref_count
; /* count of tasks active with this shared_region_id */
155 } *shared_region_jop_key_map_t
;
157 os_refgrp_decl(static, srk_refgrp
, "shared region key ref cnts", NULL
);
160 * The list is protected by the "shared_region_key_map" lock.
162 int shared_region_key_count
= 0; /* number of active shared_region_id keys */
163 queue_head_t shared_region_jop_key_queue
= QUEUE_HEAD_INITIALIZER(shared_region_jop_key_queue
);
164 LCK_GRP_DECLARE(shared_region_jop_key_lck_grp
, "shared_region_jop_key");
165 LCK_MTX_DECLARE(shared_region_jop_key_lock
, &shared_region_jop_key_lck_grp
);
168 * Find the pointer signing key for the give shared_region_id.
171 shared_region_find_key(char *shared_region_id
)
173 shared_region_jop_key_map_t region
;
176 lck_mtx_lock(&shared_region_jop_key_lock
);
177 queue_iterate(&shared_region_jop_key_queue
, region
, shared_region_jop_key_map_t
, srk_queue
) {
178 if (strcmp(region
->srk_shared_region_id
, shared_region_id
) == 0) {
182 panic("shared_region_find_key() no key for region '%s'", shared_region_id
);
185 key
= region
->srk_jop_key
;
186 lck_mtx_unlock(&shared_region_jop_key_lock
);
191 * Return a authentication key to use for the given shared_region_id.
192 * If inherit is TRUE, then the key must match inherited_key.
193 * Creates an additional reference when successful.
196 shared_region_key_alloc(char *shared_region_id
, bool inherit
, uint64_t inherited_key
)
198 shared_region_jop_key_map_t region
;
199 shared_region_jop_key_map_t
new = NULL
;
201 assert(shared_region_id
!= NULL
);
203 lck_mtx_lock(&shared_region_jop_key_lock
);
204 queue_iterate(&shared_region_jop_key_queue
, region
, shared_region_jop_key_map_t
, srk_queue
) {
205 if (strcmp(region
->srk_shared_region_id
, shared_region_id
) == 0) {
206 os_ref_retain_locked(®ion
->srk_ref_count
);
212 * ID was not found, if first time, allocate a new one and redo the lookup.
215 lck_mtx_unlock(&shared_region_jop_key_lock
);
216 new = kalloc(sizeof *new);
217 uint_t len
= strlen(shared_region_id
) + 1;
218 new->srk_shared_region_id
= kheap_alloc(KHEAP_DATA_BUFFERS
, len
, Z_WAITOK
);
219 strlcpy(new->srk_shared_region_id
, shared_region_id
, len
);
220 os_ref_init(&new->srk_ref_count
, &srk_refgrp
);
222 if (diversify_user_jop
&& inherit
) {
223 new->srk_jop_key
= inherited_key
;
224 } else if (diversify_user_jop
&& strlen(shared_region_id
) > 0) {
225 new->srk_jop_key
= generate_jop_key();
227 new->srk_jop_key
= ml_default_jop_pid();
234 * Use the newly allocated entry
236 ++shared_region_key_count
;
237 queue_enter_first(&shared_region_jop_key_queue
, new, shared_region_jop_key_map_t
, srk_queue
);
242 if (inherit
&& inherited_key
!= region
->srk_jop_key
) {
243 panic("shared_region_key_alloc() inherited key mismatch");
245 lck_mtx_unlock(&shared_region_jop_key_lock
);
248 * free any unused new entry
251 kheap_free(KHEAP_DATA_BUFFERS
, new->srk_shared_region_id
, strlen(new->srk_shared_region_id
) + 1);
252 kfree(new, sizeof *new);
257 * Mark the end of using a shared_region_id's key
260 shared_region_key_dealloc(char *shared_region_id
)
262 shared_region_jop_key_map_t region
;
264 assert(shared_region_id
!= NULL
);
265 lck_mtx_lock(&shared_region_jop_key_lock
);
266 queue_iterate(&shared_region_jop_key_queue
, region
, shared_region_jop_key_map_t
, srk_queue
) {
267 if (strcmp(region
->srk_shared_region_id
, shared_region_id
) == 0) {
271 panic("shared_region_key_dealloc() Shared region ID '%s' not found", shared_region_id
);
274 if (os_ref_release_locked(®ion
->srk_ref_count
) == 0) {
275 queue_remove(&shared_region_jop_key_queue
, region
, shared_region_jop_key_map_t
, srk_queue
);
276 --shared_region_key_count
;
280 lck_mtx_unlock(&shared_region_jop_key_lock
);
282 if (region
!= NULL
) {
283 kheap_free(KHEAP_DATA_BUFFERS
, region
->srk_shared_region_id
, strlen(region
->srk_shared_region_id
) + 1);
284 kfree(region
, sizeof *region
);
287 #endif /* __has_feature(ptrauth_calls) */
290 * The "shared_region_pager" describes a memory object backed by
291 * the "shared_region" EMM.
293 typedef struct shared_region_pager
{
294 struct memory_object srp_header
; /* mandatory generic header */
296 /* pager-specific data */
297 queue_chain_t srp_queue
; /* next & prev pagers */
298 #if MEMORY_OBJECT_HAS_REFCOUNT
299 #define srp_ref_count srp_header.mo_ref
301 os_ref_atomic_t srp_ref_count
; /* active uses */
303 bool srp_is_mapped
; /* has active mappings */
304 bool srp_is_ready
; /* is this pager ready? */
305 vm_object_t srp_backing_object
; /* VM object for shared cache */
306 vm_object_offset_t srp_backing_offset
;
307 vm_shared_region_slide_info_t srp_slide_info
;
308 #if __has_feature(ptrauth_calls)
309 uint64_t srp_jop_key
; /* zero if used for arm64 */
310 #endif /* __has_feature(ptrauth_calls) */
311 } *shared_region_pager_t
;
312 #define SHARED_REGION_PAGER_NULL ((shared_region_pager_t) NULL)
315 * List of memory objects managed by this EMM.
316 * The list is protected by the "shared_region_pager_lock" lock.
318 int shared_region_pager_count
= 0; /* number of pagers */
319 int shared_region_pager_count_mapped
= 0; /* number of unmapped pagers */
320 queue_head_t shared_region_pager_queue
= QUEUE_HEAD_INITIALIZER(shared_region_pager_queue
);
321 LCK_GRP_DECLARE(shared_region_pager_lck_grp
, "shared_region_pager");
322 LCK_MTX_DECLARE(shared_region_pager_lock
, &shared_region_pager_lck_grp
);
325 * Maximum number of unmapped pagers we're willing to keep around.
327 int shared_region_pager_cache_limit
= 0;
330 * Statistics & counters.
332 int shared_region_pager_count_max
= 0;
333 int shared_region_pager_count_unmapped_max
= 0;
334 int shared_region_pager_num_trim_max
= 0;
335 int shared_region_pager_num_trim_total
= 0;
337 uint64_t shared_region_pager_copied
= 0;
338 uint64_t shared_region_pager_slid
= 0;
339 uint64_t shared_region_pager_slid_error
= 0;
340 uint64_t shared_region_pager_reclaimed
= 0;
342 /* internal prototypes */
343 shared_region_pager_t
shared_region_pager_lookup(memory_object_t mem_obj
);
344 void shared_region_pager_dequeue(shared_region_pager_t pager
);
345 void shared_region_pager_deallocate_internal(shared_region_pager_t pager
,
347 void shared_region_pager_terminate_internal(shared_region_pager_t pager
);
348 void shared_region_pager_trim(void);
352 int shared_region_pagerdebug
= 0;
353 #define PAGER_ALL 0xffffffff
354 #define PAGER_INIT 0x00000001
355 #define PAGER_PAGEIN 0x00000002
357 #define PAGER_DEBUG(LEVEL, A) \
359 if ((shared_region_pagerdebug & (LEVEL)) == (LEVEL)) { \
364 #define PAGER_DEBUG(LEVEL, A)
368 * shared_region_pager_init()
370 * Initialize the memory object and makes it ready to be used and mapped.
373 shared_region_pager_init(
374 memory_object_t mem_obj
,
375 memory_object_control_t control
,
379 memory_object_cluster_size_t pg_size
)
381 shared_region_pager_t pager
;
383 memory_object_attr_info_data_t attributes
;
385 PAGER_DEBUG(PAGER_ALL
,
386 ("shared_region_pager_init: %p, %p, %x\n",
387 mem_obj
, control
, pg_size
));
389 if (control
== MEMORY_OBJECT_CONTROL_NULL
) {
390 return KERN_INVALID_ARGUMENT
;
393 pager
= shared_region_pager_lookup(mem_obj
);
395 memory_object_control_reference(control
);
397 pager
->srp_header
.mo_control
= control
;
399 attributes
.copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
400 /* attributes.cluster_size = (1 << (CLUSTER_SHIFT + PAGE_SHIFT));*/
401 attributes
.cluster_size
= (1 << (PAGE_SHIFT
));
402 attributes
.may_cache_object
= FALSE
;
403 attributes
.temporary
= TRUE
;
405 kr
= memory_object_change_attributes(
407 MEMORY_OBJECT_ATTRIBUTE_INFO
,
408 (memory_object_info_t
) &attributes
,
409 MEMORY_OBJECT_ATTR_INFO_COUNT
);
410 if (kr
!= KERN_SUCCESS
) {
411 panic("shared_region_pager_init: "
412 "memory_object_change_attributes() failed");
415 #if CONFIG_SECLUDED_MEMORY
416 if (secluded_for_filecache
) {
419 * XXX FBDP do we want this in the secluded pool?
420 * Ideally, we'd want the shared region used by Camera to
421 * NOT be in the secluded pool, but all other shared regions
422 * in the secluded pool...
424 memory_object_mark_eligible_for_secluded(control
, TRUE
);
427 #endif /* CONFIG_SECLUDED_MEMORY */
433 * shared_region_data_return()
435 * Handles page-out requests from VM. This should never happen since
436 * the pages provided by this EMM are not supposed to be dirty or dirtied
437 * and VM should simply discard the contents and reclaim the pages if it
441 shared_region_pager_data_return(
442 __unused memory_object_t mem_obj
,
443 __unused memory_object_offset_t offset
,
444 __unused memory_object_cluster_size_t data_cnt
,
445 __unused memory_object_offset_t
*resid_offset
,
446 __unused
int *io_error
,
447 __unused boolean_t dirty
,
448 __unused boolean_t kernel_copy
,
449 __unused
int upl_flags
)
451 panic("shared_region_pager_data_return: should never get called");
456 shared_region_pager_data_initialize(
457 __unused memory_object_t mem_obj
,
458 __unused memory_object_offset_t offset
,
459 __unused memory_object_cluster_size_t data_cnt
)
461 panic("shared_region_pager_data_initialize: should never get called");
466 shared_region_pager_data_unlock(
467 __unused memory_object_t mem_obj
,
468 __unused memory_object_offset_t offset
,
469 __unused memory_object_size_t size
,
470 __unused vm_prot_t desired_access
)
476 * shared_region_pager_data_request()
478 * Handles page-in requests from VM.
480 int shared_region_pager_data_request_debug
= 0;
482 shared_region_pager_data_request(
483 memory_object_t mem_obj
,
484 memory_object_offset_t offset
,
485 memory_object_cluster_size_t length
,
489 vm_prot_t protection_required
,
490 memory_object_fault_info_t mo_fault_info
)
492 shared_region_pager_t pager
;
493 memory_object_control_t mo_control
;
497 upl_page_info_t
*upl_pl
;
498 unsigned int pl_count
;
499 vm_object_t src_top_object
, src_page_object
, dst_object
;
500 kern_return_t kr
, retval
;
501 vm_offset_t src_vaddr
, dst_vaddr
;
502 vm_offset_t cur_offset
;
503 vm_offset_t offset_in_page
;
504 kern_return_t error_code
;
506 vm_page_t src_page
, top_page
;
508 struct vm_object_fault_info fault_info
;
509 mach_vm_offset_t slide_start_address
;
511 PAGER_DEBUG(PAGER_ALL
, ("shared_region_pager_data_request: %p, %llx, %x, %x\n", mem_obj
, offset
, length
, protection_required
));
513 retval
= KERN_SUCCESS
;
514 src_top_object
= VM_OBJECT_NULL
;
515 src_page_object
= VM_OBJECT_NULL
;
518 fault_info
= *((struct vm_object_fault_info
*)(uintptr_t)mo_fault_info
);
519 fault_info
.stealth
= TRUE
;
520 fault_info
.io_sync
= FALSE
;
521 fault_info
.mark_zf_absent
= FALSE
;
522 fault_info
.batch_pmap_op
= FALSE
;
523 interruptible
= fault_info
.interruptible
;
525 pager
= shared_region_pager_lookup(mem_obj
);
526 assert(pager
->srp_is_ready
);
527 assert(os_ref_get_count_raw(&pager
->srp_ref_count
) > 1); /* pager is alive */
528 assert(pager
->srp_is_mapped
); /* pager is mapped */
530 PAGER_DEBUG(PAGER_PAGEIN
, ("shared_region_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj
, offset
, length
, protection_required
, pager
));
533 * Gather in a UPL all the VM pages requested by VM.
535 mo_control
= pager
->srp_header
.mo_control
;
539 UPL_RET_ONLY_ABSENT
|
542 UPL_CLEAN_IN_PLACE
| /* triggers UPL_CLEAR_DIRTY */
545 kr
= memory_object_upl_request(mo_control
,
547 &upl
, NULL
, NULL
, upl_flags
, VM_KERN_MEMORY_SECURITY
);
548 if (kr
!= KERN_SUCCESS
) {
552 dst_object
= memory_object_control_to_vm_object(mo_control
);
553 assert(dst_object
!= VM_OBJECT_NULL
);
556 * We'll map the original data in the kernel address space from the
557 * backing VM object (itself backed by the shared cache file via
560 src_top_object
= pager
->srp_backing_object
;
561 assert(src_top_object
!= VM_OBJECT_NULL
);
562 vm_object_reference(src_top_object
); /* keep the source object alive */
564 slide_start_address
= pager
->srp_slide_info
->si_slid_address
;
566 fault_info
.lo_offset
+= pager
->srp_backing_offset
;
567 fault_info
.hi_offset
+= pager
->srp_backing_offset
;
570 * Fill in the contents of the pages requested by VM.
572 upl_pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
573 pl_count
= length
/ PAGE_SIZE
;
575 retval
== KERN_SUCCESS
&& cur_offset
< length
;
576 cur_offset
+= PAGE_SIZE
) {
579 if (!upl_page_present(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
))) {
580 /* this page is not in the UPL: skip it */
585 * Map the source (dyld shared cache) page in the kernel's
586 * virtual address space.
587 * We already hold a reference on the src_top_object.
590 vm_object_lock(src_top_object
);
591 vm_object_paging_begin(src_top_object
);
594 src_page
= VM_PAGE_NULL
;
595 kr
= vm_fault_page(src_top_object
,
596 pager
->srp_backing_offset
+ offset
+ cur_offset
,
599 FALSE
, /* src_page not looked up */
609 case VM_FAULT_SUCCESS
:
612 goto retry_src_fault
;
613 case VM_FAULT_MEMORY_SHORTAGE
:
614 if (vm_page_wait(interruptible
)) {
615 goto retry_src_fault
;
618 case VM_FAULT_INTERRUPTED
:
619 retval
= MACH_SEND_INTERRUPTED
;
621 case VM_FAULT_SUCCESS_NO_VM_PAGE
:
622 /* success but no VM page: fail */
623 vm_object_paging_end(src_top_object
);
624 vm_object_unlock(src_top_object
);
626 case VM_FAULT_MEMORY_ERROR
:
627 /* the page is not there ! */
631 retval
= KERN_MEMORY_ERROR
;
635 panic("shared_region_pager_data_request: "
636 "vm_fault_page() unexpected error 0x%x\n",
639 assert(src_page
!= VM_PAGE_NULL
);
640 assert(src_page
->vmp_busy
);
642 if (src_page
->vmp_q_state
!= VM_PAGE_ON_SPECULATIVE_Q
) {
643 vm_page_lockspin_queues();
644 if (src_page
->vmp_q_state
!= VM_PAGE_ON_SPECULATIVE_Q
) {
645 vm_page_speculate(src_page
, FALSE
);
647 vm_page_unlock_queues();
651 * Establish pointers to the source
652 * and destination physical pages.
655 upl_phys_page(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
));
656 assert(dst_pnum
!= 0);
658 src_vaddr
= (vm_map_offset_t
)
659 phystokv((pmap_paddr_t
)VM_PAGE_GET_PHYS_PAGE(src_page
)
661 dst_vaddr
= (vm_map_offset_t
)
662 phystokv((pmap_paddr_t
)dst_pnum
<< PAGE_SHIFT
);
663 src_page_object
= VM_PAGE_OBJECT(src_page
);
666 * Validate the original page...
668 if (src_page_object
->code_signed
) {
669 vm_page_validate_cs_mapped(
670 src_page
, PAGE_SIZE
, 0,
671 (const void *) src_vaddr
);
674 * ... and transfer the results to the destination page.
676 UPL_SET_CS_VALIDATED(upl_pl
, cur_offset
/ PAGE_SIZE
,
677 src_page
->vmp_cs_validated
);
678 UPL_SET_CS_TAINTED(upl_pl
, cur_offset
/ PAGE_SIZE
,
679 src_page
->vmp_cs_tainted
);
680 UPL_SET_CS_NX(upl_pl
, cur_offset
/ PAGE_SIZE
,
681 src_page
->vmp_cs_nx
);
684 * The page provider might access a mapped file, so let's
685 * release the object lock for the source page to avoid a
686 * potential deadlock.
687 * The source page is kept busy and we have a
688 * "paging_in_progress" reference on its object, so it's safe
689 * to unlock the object here.
691 assert(src_page
->vmp_busy
);
692 assert(src_page_object
->paging_in_progress
> 0);
693 vm_object_unlock(src_page_object
);
696 * Process the original contents of the source page
697 * into the destination page.
699 for (offset_in_page
= 0;
700 offset_in_page
< PAGE_SIZE
;
701 offset_in_page
+= PAGE_SIZE_FOR_SR_SLIDE
) {
702 vm_object_offset_t chunk_offset
;
703 vm_object_offset_t offset_in_backing_object
;
704 vm_object_offset_t offset_in_sliding_range
;
706 chunk_offset
= offset
+ cur_offset
+ offset_in_page
;
708 bcopy((const char *)(src_vaddr
+
710 (char *)(dst_vaddr
+ offset_in_page
),
711 PAGE_SIZE_FOR_SR_SLIDE
);
713 offset_in_backing_object
= (chunk_offset
+
714 pager
->srp_backing_offset
);
715 if ((offset_in_backing_object
< pager
->srp_slide_info
->si_start
) ||
716 (offset_in_backing_object
>= pager
->srp_slide_info
->si_end
)) {
717 /* chunk is outside of sliding range: done */
718 shared_region_pager_copied
++;
722 offset_in_sliding_range
= offset_in_backing_object
- pager
->srp_slide_info
->si_start
;
723 kr
= vm_shared_region_slide_page(pager
->srp_slide_info
,
724 dst_vaddr
+ offset_in_page
,
725 (mach_vm_offset_t
) (offset_in_sliding_range
+ slide_start_address
),
726 (uint32_t) (offset_in_sliding_range
/ PAGE_SIZE_FOR_SR_SLIDE
),
727 #if __has_feature(ptrauth_calls)
728 pager
->srp_slide_info
->si_ptrauth
? pager
->srp_jop_key
: 0
729 #else /* __has_feature(ptrauth_calls) */
731 #endif /* __has_feature(ptrauth_calls) */
733 if (shared_region_pager_data_request_debug
) {
734 printf("shared_region_data_request"
735 "(%p,0x%llx+0x%llx+0x%04llx): 0x%llx "
736 "in sliding range [0x%llx:0x%llx]: "
737 "SLIDE offset 0x%llx="
738 "(0x%llx+0x%llx+0x%llx+0x%04llx)"
739 "[0x%016llx 0x%016llx] "
747 (uint64_t) cur_offset
,
748 (uint64_t) offset_in_page
,
750 pager
->srp_slide_info
->si_start
,
751 pager
->srp_slide_info
->si_end
,
752 (pager
->srp_backing_offset
+
756 pager
->srp_backing_offset
,
758 (uint64_t) cur_offset
,
759 (uint64_t) offset_in_page
,
760 *(uint64_t *)(dst_vaddr
+ offset_in_page
),
761 *(uint64_t *)(dst_vaddr
+ offset_in_page
+ 8),
762 src_page_object
->code_signed
,
763 src_page
->vmp_cs_validated
,
764 src_page
->vmp_cs_tainted
,
768 if (kr
!= KERN_SUCCESS
) {
769 shared_region_pager_slid_error
++;
772 shared_region_pager_slid
++;
775 assert(VM_PAGE_OBJECT(src_page
) == src_page_object
);
776 assert(src_page
->vmp_busy
);
777 assert(src_page_object
->paging_in_progress
> 0);
778 vm_object_lock(src_page_object
);
781 * Cleanup the result of vm_fault_page() of the source page.
783 PAGE_WAKEUP_DONE(src_page
);
784 src_page
= VM_PAGE_NULL
;
785 vm_object_paging_end(src_page_object
);
786 vm_object_unlock(src_page_object
);
788 if (top_page
!= VM_PAGE_NULL
) {
789 assert(VM_PAGE_OBJECT(top_page
) == src_top_object
);
790 vm_object_lock(src_top_object
);
791 VM_PAGE_FREE(top_page
);
792 vm_object_paging_end(src_top_object
);
793 vm_object_unlock(src_top_object
);
799 /* clean up the UPL */
802 * The pages are currently dirty because we've just been
803 * writing on them, but as far as we're concerned, they're
804 * clean since they contain their "original" contents as
805 * provided by us, the pager.
806 * Tell the UPL to mark them "clean".
808 upl_clear_dirty(upl
, TRUE
);
810 /* abort or commit the UPL */
811 if (retval
!= KERN_SUCCESS
) {
815 assertf(page_aligned(upl
->u_offset
) && page_aligned(upl
->u_size
),
816 "upl %p offset 0x%llx size 0x%x\n",
817 upl
, upl
->u_offset
, upl
->u_size
);
818 upl_commit_range(upl
, 0, upl
->u_size
,
819 UPL_COMMIT_CS_VALIDATED
| UPL_COMMIT_WRITTEN_BY_KERNEL
,
820 upl_pl
, pl_count
, &empty
);
823 /* and deallocate the UPL */
827 if (src_top_object
!= VM_OBJECT_NULL
) {
828 vm_object_deallocate(src_top_object
);
834 * shared_region_pager_reference()
836 * Get a reference on this memory object.
837 * For external usage only. Assumes that the initial reference count is not 0,
838 * i.e one should not "revive" a dead pager this way.
841 shared_region_pager_reference(
842 memory_object_t mem_obj
)
844 shared_region_pager_t pager
;
846 pager
= shared_region_pager_lookup(mem_obj
);
848 lck_mtx_lock(&shared_region_pager_lock
);
849 os_ref_retain_locked_raw(&pager
->srp_ref_count
, NULL
);
850 lck_mtx_unlock(&shared_region_pager_lock
);
855 * shared_region_pager_dequeue:
857 * Removes a pager from the list of pagers.
859 * The caller must hold "shared_region_pager_lock".
862 shared_region_pager_dequeue(
863 shared_region_pager_t pager
)
865 assert(!pager
->srp_is_mapped
);
867 queue_remove(&shared_region_pager_queue
,
869 shared_region_pager_t
,
871 pager
->srp_queue
.next
= NULL
;
872 pager
->srp_queue
.prev
= NULL
;
874 shared_region_pager_count
--;
878 * shared_region_pager_terminate_internal:
880 * Trigger the asynchronous termination of the memory object associated
882 * When the memory object is terminated, there will be one more call
883 * to memory_object_deallocate() (i.e. shared_region_pager_deallocate())
884 * to finish the clean up.
886 * "shared_region_pager_lock" should not be held by the caller.
887 * We don't need the lock because the pager has already been removed from
888 * the pagers' list and is now ours exclusively.
891 shared_region_pager_terminate_internal(
892 shared_region_pager_t pager
)
894 assert(pager
->srp_is_ready
);
895 assert(!pager
->srp_is_mapped
);
896 assert(os_ref_get_count_raw(&pager
->srp_ref_count
) == 1);
898 if (pager
->srp_backing_object
!= VM_OBJECT_NULL
) {
899 vm_object_deallocate(pager
->srp_backing_object
);
900 pager
->srp_backing_object
= VM_OBJECT_NULL
;
902 /* trigger the destruction of the memory object */
903 memory_object_destroy(pager
->srp_header
.mo_control
, 0);
907 * shared_region_pager_deallocate_internal()
909 * Release a reference on this pager and free it when the last reference goes away.
910 * Can be called with shared_region_pager_lock held or not, but always returns
914 shared_region_pager_deallocate_internal(
915 shared_region_pager_t pager
,
918 boolean_t needs_trimming
;
920 os_ref_count_t ref_count
;
923 lck_mtx_lock(&shared_region_pager_lock
);
926 /* if we have too many unmapped pagers, trim some */
927 count_unmapped
= shared_region_pager_count
- shared_region_pager_count_mapped
;
928 needs_trimming
= (count_unmapped
> shared_region_pager_cache_limit
);
930 /* drop a reference on this pager */
931 ref_count
= os_ref_release_locked_raw(&pager
->srp_ref_count
, NULL
);
933 if (ref_count
== 1) {
935 * Only the "named" reference is left, which means that
936 * no one is really holding on to this pager anymore.
939 shared_region_pager_dequeue(pager
);
940 /* the pager is all ours: no need for the lock now */
941 lck_mtx_unlock(&shared_region_pager_lock
);
942 shared_region_pager_terminate_internal(pager
);
943 } else if (ref_count
== 0) {
945 * Dropped the existence reference; the memory object has
946 * been terminated. Do some final cleanup and release the
949 lck_mtx_unlock(&shared_region_pager_lock
);
951 vm_shared_region_slide_info_t si
= pager
->srp_slide_info
;
952 #if __has_feature(ptrauth_calls)
954 * The slide_info for auth sections lives in the shared region.
955 * Just deallocate() on the shared region and clear the field.
958 if (si
->si_shared_region
!= NULL
) {
959 assert(si
->si_ptrauth
);
960 vm_shared_region_deallocate(si
->si_shared_region
);
961 pager
->srp_slide_info
= NULL
;
965 #endif /* __has_feature(ptrauth_calls) */
967 vm_object_deallocate(si
->si_slide_object
);
968 /* free the slide_info_entry */
969 kheap_free(KHEAP_DATA_BUFFERS
, si
->si_slide_info_entry
, si
->si_slide_info_size
);
970 kfree(si
, sizeof *si
);
971 pager
->srp_slide_info
= NULL
;
974 if (pager
->srp_header
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
) {
975 memory_object_control_deallocate(pager
->srp_header
.mo_control
);
976 pager
->srp_header
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
978 kfree(pager
, sizeof(*pager
));
979 pager
= SHARED_REGION_PAGER_NULL
;
981 /* there are still plenty of references: keep going... */
982 lck_mtx_unlock(&shared_region_pager_lock
);
985 if (needs_trimming
) {
986 shared_region_pager_trim();
988 /* caution: lock is not held on return... */
992 * shared_region_pager_deallocate()
994 * Release a reference on this pager and free it when the last
995 * reference goes away.
998 shared_region_pager_deallocate(
999 memory_object_t mem_obj
)
1001 shared_region_pager_t pager
;
1003 PAGER_DEBUG(PAGER_ALL
, ("shared_region_pager_deallocate: %p\n", mem_obj
));
1004 pager
= shared_region_pager_lookup(mem_obj
);
1005 shared_region_pager_deallocate_internal(pager
, FALSE
);
1012 shared_region_pager_terminate(
1016 memory_object_t mem_obj
)
1018 PAGER_DEBUG(PAGER_ALL
, ("shared_region_pager_terminate: %p\n", mem_obj
));
1020 return KERN_SUCCESS
;
1027 shared_region_pager_synchronize(
1028 __unused memory_object_t mem_obj
,
1029 __unused memory_object_offset_t offset
,
1030 __unused memory_object_size_t length
,
1031 __unused vm_sync_t sync_flags
)
1033 panic("shared_region_pager_synchronize: memory_object_synchronize no longer supported\n");
1034 return KERN_FAILURE
;
1038 * shared_region_pager_map()
1040 * This allows VM to let us, the EMM, know that this memory object
1041 * is currently mapped one or more times. This is called by VM each time
1042 * the memory object gets mapped, but we only take one extra reference the
1043 * first time it is called.
1046 shared_region_pager_map(
1047 memory_object_t mem_obj
,
1048 __unused vm_prot_t prot
)
1050 shared_region_pager_t pager
;
1052 PAGER_DEBUG(PAGER_ALL
, ("shared_region_pager_map: %p\n", mem_obj
));
1054 pager
= shared_region_pager_lookup(mem_obj
);
1056 lck_mtx_lock(&shared_region_pager_lock
);
1057 assert(pager
->srp_is_ready
);
1058 assert(os_ref_get_count_raw(&pager
->srp_ref_count
) > 0); /* pager is alive */
1059 if (!pager
->srp_is_mapped
) {
1060 pager
->srp_is_mapped
= TRUE
;
1061 os_ref_retain_locked_raw(&pager
->srp_ref_count
, NULL
);
1062 shared_region_pager_count_mapped
++;
1064 lck_mtx_unlock(&shared_region_pager_lock
);
1066 return KERN_SUCCESS
;
1070 * shared_region_pager_last_unmap()
1072 * This is called by VM when this memory object is no longer mapped anywhere.
1075 shared_region_pager_last_unmap(
1076 memory_object_t mem_obj
)
1078 shared_region_pager_t pager
;
1081 PAGER_DEBUG(PAGER_ALL
,
1082 ("shared_region_pager_last_unmap: %p\n", mem_obj
));
1084 pager
= shared_region_pager_lookup(mem_obj
);
1086 lck_mtx_lock(&shared_region_pager_lock
);
1087 if (pager
->srp_is_mapped
) {
1089 * All the mappings are gone, so let go of the one extra
1090 * reference that represents all the mappings of this pager.
1092 shared_region_pager_count_mapped
--;
1093 count_unmapped
= (shared_region_pager_count
- shared_region_pager_count_mapped
);
1094 if (count_unmapped
> shared_region_pager_count_unmapped_max
) {
1095 shared_region_pager_count_unmapped_max
= count_unmapped
;
1097 pager
->srp_is_mapped
= FALSE
;
1098 shared_region_pager_deallocate_internal(pager
, TRUE
);
1099 /* caution: deallocate_internal() released the lock ! */
1101 lck_mtx_unlock(&shared_region_pager_lock
);
1104 return KERN_SUCCESS
;
1108 shared_region_pager_backing_object(
1109 memory_object_t mem_obj
,
1110 memory_object_offset_t offset
,
1111 vm_object_t
*backing_object
,
1112 vm_object_offset_t
*backing_offset
)
1114 shared_region_pager_t pager
;
1116 PAGER_DEBUG(PAGER_ALL
,
1117 ("shared_region_pager_backing_object: %p\n", mem_obj
));
1119 pager
= shared_region_pager_lookup(mem_obj
);
1121 *backing_object
= pager
->srp_backing_object
;
1122 *backing_offset
= pager
->srp_backing_offset
+ offset
;
1131 shared_region_pager_t
1132 shared_region_pager_lookup(
1133 memory_object_t mem_obj
)
1135 shared_region_pager_t pager
;
1137 assert(mem_obj
->mo_pager_ops
== &shared_region_pager_ops
);
1138 pager
= (shared_region_pager_t
)(uintptr_t) mem_obj
;
1139 assert(os_ref_get_count_raw(&pager
->srp_ref_count
) > 0);
1144 * Create and return a pager for the given object with the
1145 * given slide information.
1147 static shared_region_pager_t
1148 shared_region_pager_create(
1149 vm_object_t backing_object
,
1150 vm_object_offset_t backing_offset
,
1151 struct vm_shared_region_slide_info
*slide_info
,
1152 #if !__has_feature(ptrauth_calls)
1154 #endif /* !__has_feature(ptrauth_calls) */
1157 shared_region_pager_t pager
;
1158 memory_object_control_t control
;
1162 pager
= (shared_region_pager_t
) kalloc(sizeof(*pager
));
1163 if (pager
== SHARED_REGION_PAGER_NULL
) {
1164 return SHARED_REGION_PAGER_NULL
;
1168 * The vm_map call takes both named entry ports and raw memory
1169 * objects in the same parameter. We need to make sure that
1170 * vm_map does not see this object as a named entry port. So,
1171 * we reserve the first word in the object for a fake ip_kotype
1172 * setting - that will tell vm_map to use it as a memory object.
1174 pager
->srp_header
.mo_ikot
= IKOT_MEMORY_OBJECT
;
1175 pager
->srp_header
.mo_pager_ops
= &shared_region_pager_ops
;
1176 pager
->srp_header
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
1178 pager
->srp_is_ready
= FALSE
;/* not ready until it has a "name" */
1179 /* existence reference (for the cache) + 1 for the caller */
1180 os_ref_init_count_raw(&pager
->srp_ref_count
, NULL
, 2);
1181 pager
->srp_is_mapped
= FALSE
;
1182 pager
->srp_backing_object
= backing_object
;
1183 pager
->srp_backing_offset
= backing_offset
;
1184 pager
->srp_slide_info
= slide_info
;
1185 #if __has_feature(ptrauth_calls)
1186 pager
->srp_jop_key
= jop_key
;
1188 * If we're getting slide_info from the shared_region,
1189 * take a reference, so it can't disappear from under us.
1191 if (slide_info
->si_shared_region
) {
1192 assert(slide_info
->si_ptrauth
);
1193 vm_shared_region_reference(slide_info
->si_shared_region
);
1195 #endif /* __has_feature(ptrauth_calls) */
1197 vm_object_reference(backing_object
);
1199 lck_mtx_lock(&shared_region_pager_lock
);
1200 /* enter new pager at the head of our list of pagers */
1201 queue_enter_first(&shared_region_pager_queue
,
1203 shared_region_pager_t
,
1205 shared_region_pager_count
++;
1206 if (shared_region_pager_count
> shared_region_pager_count_max
) {
1207 shared_region_pager_count_max
= shared_region_pager_count
;
1209 lck_mtx_unlock(&shared_region_pager_lock
);
1211 kr
= memory_object_create_named((memory_object_t
) pager
,
1214 assert(kr
== KERN_SUCCESS
);
1216 memory_object_mark_trusted(control
);
1218 lck_mtx_lock(&shared_region_pager_lock
);
1219 /* the new pager is now ready to be used */
1220 pager
->srp_is_ready
= TRUE
;
1221 object
= memory_object_to_vm_object((memory_object_t
) pager
);
1224 * No one knows about this object and so we get away without the object lock.
1225 * This object is _eventually_ backed by the dyld shared cache and so we want
1226 * to benefit from the lock priority boosting.
1228 object
->object_is_shared_cache
= TRUE
;
1229 lck_mtx_unlock(&shared_region_pager_lock
);
1231 /* wakeup anyone waiting for this pager to be ready */
1232 thread_wakeup(&pager
->srp_is_ready
);
1238 * shared_region_pager_setup()
1240 * Provide the caller with a memory object backed by the provided
1241 * "backing_object" VM object.
1244 shared_region_pager_setup(
1245 vm_object_t backing_object
,
1246 vm_object_offset_t backing_offset
,
1247 struct vm_shared_region_slide_info
*slide_info
,
1250 shared_region_pager_t pager
;
1252 /* create new pager */
1253 pager
= shared_region_pager_create(backing_object
,
1254 backing_offset
, slide_info
, jop_key
);
1255 if (pager
== SHARED_REGION_PAGER_NULL
) {
1256 /* could not create a new pager */
1257 return MEMORY_OBJECT_NULL
;
1260 lck_mtx_lock(&shared_region_pager_lock
);
1261 while (!pager
->srp_is_ready
) {
1262 lck_mtx_sleep(&shared_region_pager_lock
,
1264 &pager
->srp_is_ready
,
1267 lck_mtx_unlock(&shared_region_pager_lock
);
1269 return (memory_object_t
) pager
;
1272 #if __has_feature(ptrauth_calls)
1274 * shared_region_pager_match()
1276 * Provide the caller with a memory object backed by the provided
1277 * "backing_object" VM object.
1280 shared_region_pager_match(
1281 vm_object_t backing_object
,
1282 vm_object_offset_t backing_offset
,
1283 vm_shared_region_slide_info_t slide_info
,
1286 shared_region_pager_t pager
;
1287 vm_shared_region_slide_info_t si
;
1289 lck_mtx_lock(&shared_region_pager_lock
);
1290 queue_iterate(&shared_region_pager_queue
, pager
, shared_region_pager_t
, srp_queue
) {
1291 if (pager
->srp_backing_object
!= backing_object
->copy
) {
1294 if (pager
->srp_backing_offset
!= backing_offset
) {
1297 si
= pager
->srp_slide_info
;
1299 /* If there's no AUTH section then it can't match (slide_info is always !NULL) */
1300 if (!si
->si_ptrauth
) {
1303 if (pager
->srp_jop_key
!= jop_key
) {
1306 if (si
->si_slide
!= slide_info
->si_slide
) {
1309 if (si
->si_start
!= slide_info
->si_start
) {
1312 if (si
->si_end
!= slide_info
->si_end
) {
1315 if (si
->si_slide_object
!= slide_info
->si_slide_object
) {
1318 if (si
->si_slide_info_size
!= slide_info
->si_slide_info_size
) {
1321 if (memcmp(si
->si_slide_info_entry
, slide_info
->si_slide_info_entry
, si
->si_slide_info_size
) != 0) {
1324 /* the caller expects a reference on this */
1325 os_ref_retain_locked_raw(&pager
->srp_ref_count
, NULL
);
1326 lck_mtx_unlock(&shared_region_pager_lock
);
1327 return (memory_object_t
)pager
;
1331 * We didn't find a pre-existing pager, so create one.
1333 * Note slight race condition here since we drop the lock. This could lead to more than one
1334 * thread calling setup with the same arguments here. That shouldn't break anything, just
1335 * waste a little memory.
1337 lck_mtx_unlock(&shared_region_pager_lock
);
1338 return shared_region_pager_setup(backing_object
->copy
, backing_offset
, slide_info
, jop_key
);
1342 shared_region_pager_match_task_key(memory_object_t memobj
, __unused task_t task
)
1344 __unused shared_region_pager_t pager
= (shared_region_pager_t
)memobj
;
1346 assert(pager
->srp_jop_key
== task
->jop_pid
);
1348 #endif /* __has_feature(ptrauth_calls) */
1351 shared_region_pager_trim(void)
1353 shared_region_pager_t pager
, prev_pager
;
1354 queue_head_t trim_queue
;
1358 lck_mtx_lock(&shared_region_pager_lock
);
1361 * We have too many pagers, try and trim some unused ones,
1362 * starting with the oldest pager at the end of the queue.
1364 queue_init(&trim_queue
);
1367 for (pager
= (shared_region_pager_t
)queue_last(&shared_region_pager_queue
);
1368 !queue_end(&shared_region_pager_queue
, (queue_entry_t
) pager
);
1369 pager
= prev_pager
) {
1370 /* get prev elt before we dequeue */
1371 prev_pager
= (shared_region_pager_t
)queue_prev(&pager
->srp_queue
);
1373 if (os_ref_get_count_raw(&pager
->srp_ref_count
) == 2 &&
1374 pager
->srp_is_ready
&&
1375 !pager
->srp_is_mapped
) {
1376 /* this pager can be trimmed */
1378 /* remove this pager from the main list ... */
1379 shared_region_pager_dequeue(pager
);
1380 /* ... and add it to our trim queue */
1381 queue_enter_first(&trim_queue
,
1383 shared_region_pager_t
,
1386 /* do we have enough pagers to trim? */
1387 count_unmapped
= (shared_region_pager_count
- shared_region_pager_count_mapped
);
1388 if (count_unmapped
<= shared_region_pager_cache_limit
) {
1393 if (num_trim
> shared_region_pager_num_trim_max
) {
1394 shared_region_pager_num_trim_max
= num_trim
;
1396 shared_region_pager_num_trim_total
+= num_trim
;
1398 lck_mtx_unlock(&shared_region_pager_lock
);
1400 /* terminate the trimmed pagers */
1401 while (!queue_empty(&trim_queue
)) {
1402 queue_remove_first(&trim_queue
,
1404 shared_region_pager_t
,
1406 pager
->srp_queue
.next
= NULL
;
1407 pager
->srp_queue
.prev
= NULL
;
1408 assert(os_ref_get_count_raw(&pager
->srp_ref_count
) == 2);
1410 * We can't call deallocate_internal() because the pager
1411 * has already been dequeued, but we still need to remove
1414 (void)os_ref_release_locked_raw(&pager
->srp_ref_count
, NULL
);
1415 shared_region_pager_terminate_internal(pager
);