]> git.saurik.com Git - apple/xnu.git/blob - osfmk/arm/machine_routines_common.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / arm / machine_routines_common.c
1 /*
2 * Copyright (c) 2007-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <arm/machine_cpu.h>
30 #include <arm/cpu_internal.h>
31 #include <arm/cpuid.h>
32 #include <arm/cpu_data.h>
33 #include <arm/cpu_data_internal.h>
34 #include <arm/misc_protos.h>
35 #include <arm/machdep_call.h>
36 #include <arm/machine_routines.h>
37 #include <arm/rtclock.h>
38 #include <kern/machine.h>
39 #include <kern/thread.h>
40 #include <kern/thread_group.h>
41 #include <kern/policy_internal.h>
42 #include <kern/startup.h>
43 #include <machine/config.h>
44 #include <machine/atomic.h>
45 #include <pexpert/pexpert.h>
46
47 #if MONOTONIC
48 #include <kern/monotonic.h>
49 #include <machine/monotonic.h>
50 #endif /* MONOTONIC */
51
52 #include <mach/machine.h>
53
54 #if !HAS_CONTINUOUS_HWCLOCK
55 extern uint64_t mach_absolutetime_asleep;
56 #else
57 extern uint64_t wake_abstime;
58 static uint64_t wake_conttime = UINT64_MAX;
59 #endif
60
61 extern volatile uint32_t debug_enabled;
62
63 static int max_cpus_initialized = 0;
64 #define MAX_CPUS_SET 0x1
65 #define MAX_CPUS_WAIT 0x2
66
67 LCK_GRP_DECLARE(max_cpus_grp, "max_cpus");
68 LCK_MTX_DECLARE(max_cpus_lock, &max_cpus_grp);
69 uint32_t lockdown_done = 0;
70 boolean_t is_clock_configured = FALSE;
71
72
73 static void
74 sched_perfcontrol_oncore_default(perfcontrol_state_t new_thread_state __unused, going_on_core_t on __unused)
75 {
76 }
77
78 static void
79 sched_perfcontrol_switch_default(perfcontrol_state_t old_thread_state __unused, perfcontrol_state_t new_thread_state __unused)
80 {
81 }
82
83 static void
84 sched_perfcontrol_offcore_default(perfcontrol_state_t old_thread_state __unused, going_off_core_t off __unused, boolean_t thread_terminating __unused)
85 {
86 }
87
88 static void
89 sched_perfcontrol_thread_group_default(thread_group_data_t data __unused)
90 {
91 }
92
93 static void
94 sched_perfcontrol_max_runnable_latency_default(perfcontrol_max_runnable_latency_t latencies __unused)
95 {
96 }
97
98 static void
99 sched_perfcontrol_work_interval_notify_default(perfcontrol_state_t thread_state __unused,
100 perfcontrol_work_interval_t work_interval __unused)
101 {
102 }
103
104 static void
105 sched_perfcontrol_work_interval_ctl_default(perfcontrol_state_t thread_state __unused,
106 perfcontrol_work_interval_instance_t instance __unused)
107 {
108 }
109
110 static void
111 sched_perfcontrol_deadline_passed_default(__unused uint64_t deadline)
112 {
113 }
114
115 static void
116 sched_perfcontrol_csw_default(
117 __unused perfcontrol_event event, __unused uint32_t cpu_id, __unused uint64_t timestamp,
118 __unused uint32_t flags, __unused struct perfcontrol_thread_data *offcore,
119 __unused struct perfcontrol_thread_data *oncore,
120 __unused struct perfcontrol_cpu_counters *cpu_counters, __unused void *unused)
121 {
122 }
123
124 static void
125 sched_perfcontrol_state_update_default(
126 __unused perfcontrol_event event, __unused uint32_t cpu_id, __unused uint64_t timestamp,
127 __unused uint32_t flags, __unused struct perfcontrol_thread_data *thr_data,
128 __unused void *unused)
129 {
130 }
131
132 static void
133 sched_perfcontrol_thread_group_blocked_default(
134 __unused thread_group_data_t blocked_tg, __unused thread_group_data_t blocking_tg,
135 __unused uint32_t flags, __unused perfcontrol_state_t blocked_thr_state)
136 {
137 }
138
139 static void
140 sched_perfcontrol_thread_group_unblocked_default(
141 __unused thread_group_data_t unblocked_tg, __unused thread_group_data_t unblocking_tg,
142 __unused uint32_t flags, __unused perfcontrol_state_t unblocked_thr_state)
143 {
144 }
145
146 sched_perfcontrol_offcore_t sched_perfcontrol_offcore = sched_perfcontrol_offcore_default;
147 sched_perfcontrol_context_switch_t sched_perfcontrol_switch = sched_perfcontrol_switch_default;
148 sched_perfcontrol_oncore_t sched_perfcontrol_oncore = sched_perfcontrol_oncore_default;
149 sched_perfcontrol_thread_group_init_t sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default;
150 sched_perfcontrol_thread_group_deinit_t sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default;
151 sched_perfcontrol_thread_group_flags_update_t sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default;
152 sched_perfcontrol_max_runnable_latency_t sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default;
153 sched_perfcontrol_work_interval_notify_t sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default;
154 sched_perfcontrol_work_interval_ctl_t sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default;
155 sched_perfcontrol_deadline_passed_t sched_perfcontrol_deadline_passed = sched_perfcontrol_deadline_passed_default;
156 sched_perfcontrol_csw_t sched_perfcontrol_csw = sched_perfcontrol_csw_default;
157 sched_perfcontrol_state_update_t sched_perfcontrol_state_update = sched_perfcontrol_state_update_default;
158 sched_perfcontrol_thread_group_blocked_t sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default;
159 sched_perfcontrol_thread_group_unblocked_t sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default;
160
161 void
162 sched_perfcontrol_register_callbacks(sched_perfcontrol_callbacks_t callbacks, unsigned long size_of_state)
163 {
164 assert(callbacks == NULL || callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_2);
165
166 if (size_of_state > sizeof(struct perfcontrol_state)) {
167 panic("%s: Invalid required state size %lu", __FUNCTION__, size_of_state);
168 }
169
170 if (callbacks) {
171 #if CONFIG_THREAD_GROUPS
172 if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_3) {
173 if (callbacks->thread_group_init != NULL) {
174 sched_perfcontrol_thread_group_init = callbacks->thread_group_init;
175 } else {
176 sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default;
177 }
178 if (callbacks->thread_group_deinit != NULL) {
179 sched_perfcontrol_thread_group_deinit = callbacks->thread_group_deinit;
180 } else {
181 sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default;
182 }
183 // tell CLPC about existing thread groups
184 thread_group_resync(TRUE);
185 }
186
187 if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_6) {
188 if (callbacks->thread_group_flags_update != NULL) {
189 sched_perfcontrol_thread_group_flags_update = callbacks->thread_group_flags_update;
190 } else {
191 sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default;
192 }
193 }
194
195 if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_8) {
196 if (callbacks->thread_group_blocked != NULL) {
197 sched_perfcontrol_thread_group_blocked = callbacks->thread_group_blocked;
198 } else {
199 sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default;
200 }
201
202 if (callbacks->thread_group_unblocked != NULL) {
203 sched_perfcontrol_thread_group_unblocked = callbacks->thread_group_unblocked;
204 } else {
205 sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default;
206 }
207 }
208 #endif
209
210 if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_7) {
211 if (callbacks->work_interval_ctl != NULL) {
212 sched_perfcontrol_work_interval_ctl = callbacks->work_interval_ctl;
213 } else {
214 sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default;
215 }
216 }
217
218 if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_5) {
219 if (callbacks->csw != NULL) {
220 sched_perfcontrol_csw = callbacks->csw;
221 } else {
222 sched_perfcontrol_csw = sched_perfcontrol_csw_default;
223 }
224
225 if (callbacks->state_update != NULL) {
226 sched_perfcontrol_state_update = callbacks->state_update;
227 } else {
228 sched_perfcontrol_state_update = sched_perfcontrol_state_update_default;
229 }
230 }
231
232 if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_4) {
233 if (callbacks->deadline_passed != NULL) {
234 sched_perfcontrol_deadline_passed = callbacks->deadline_passed;
235 } else {
236 sched_perfcontrol_deadline_passed = sched_perfcontrol_deadline_passed_default;
237 }
238 }
239
240 if (callbacks->offcore != NULL) {
241 sched_perfcontrol_offcore = callbacks->offcore;
242 } else {
243 sched_perfcontrol_offcore = sched_perfcontrol_offcore_default;
244 }
245
246 if (callbacks->context_switch != NULL) {
247 sched_perfcontrol_switch = callbacks->context_switch;
248 } else {
249 sched_perfcontrol_switch = sched_perfcontrol_switch_default;
250 }
251
252 if (callbacks->oncore != NULL) {
253 sched_perfcontrol_oncore = callbacks->oncore;
254 } else {
255 sched_perfcontrol_oncore = sched_perfcontrol_oncore_default;
256 }
257
258 if (callbacks->max_runnable_latency != NULL) {
259 sched_perfcontrol_max_runnable_latency = callbacks->max_runnable_latency;
260 } else {
261 sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default;
262 }
263
264 if (callbacks->work_interval_notify != NULL) {
265 sched_perfcontrol_work_interval_notify = callbacks->work_interval_notify;
266 } else {
267 sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default;
268 }
269 } else {
270 /* reset to defaults */
271 #if CONFIG_THREAD_GROUPS
272 thread_group_resync(FALSE);
273 #endif
274 sched_perfcontrol_offcore = sched_perfcontrol_offcore_default;
275 sched_perfcontrol_switch = sched_perfcontrol_switch_default;
276 sched_perfcontrol_oncore = sched_perfcontrol_oncore_default;
277 sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default;
278 sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default;
279 sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default;
280 sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default;
281 sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default;
282 sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default;
283 sched_perfcontrol_csw = sched_perfcontrol_csw_default;
284 sched_perfcontrol_state_update = sched_perfcontrol_state_update_default;
285 sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default;
286 sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default;
287 }
288 }
289
290
291 static void
292 machine_switch_populate_perfcontrol_thread_data(struct perfcontrol_thread_data *data,
293 thread_t thread,
294 uint64_t same_pri_latency)
295 {
296 bzero(data, sizeof(struct perfcontrol_thread_data));
297 data->perfctl_class = thread_get_perfcontrol_class(thread);
298 data->energy_estimate_nj = 0;
299 data->thread_id = thread->thread_id;
300 #if CONFIG_THREAD_GROUPS
301 struct thread_group *tg = thread_group_get(thread);
302 data->thread_group_id = thread_group_get_id(tg);
303 data->thread_group_data = thread_group_get_machine_data(tg);
304 #endif
305 data->scheduling_latency_at_same_basepri = same_pri_latency;
306 data->perfctl_state = FIND_PERFCONTROL_STATE(thread);
307 }
308
309 static void
310 machine_switch_populate_perfcontrol_cpu_counters(struct perfcontrol_cpu_counters *cpu_counters)
311 {
312 #if MONOTONIC
313 mt_perfcontrol(&cpu_counters->instructions, &cpu_counters->cycles);
314 #else /* MONOTONIC */
315 cpu_counters->instructions = 0;
316 cpu_counters->cycles = 0;
317 #endif /* !MONOTONIC */
318 }
319
320 int perfcontrol_callout_stats_enabled = 0;
321 static _Atomic uint64_t perfcontrol_callout_stats[PERFCONTROL_CALLOUT_MAX][PERFCONTROL_STAT_MAX];
322 static _Atomic uint64_t perfcontrol_callout_count[PERFCONTROL_CALLOUT_MAX];
323
324 #if MONOTONIC
325 static inline
326 bool
327 perfcontrol_callout_counters_begin(uint64_t *counters)
328 {
329 if (!perfcontrol_callout_stats_enabled) {
330 return false;
331 }
332 mt_fixed_counts(counters);
333 return true;
334 }
335
336 static inline
337 void
338 perfcontrol_callout_counters_end(uint64_t *start_counters,
339 perfcontrol_callout_type_t type)
340 {
341 uint64_t end_counters[MT_CORE_NFIXED];
342 mt_fixed_counts(end_counters);
343 os_atomic_add(&perfcontrol_callout_stats[type][PERFCONTROL_STAT_CYCLES],
344 end_counters[MT_CORE_CYCLES] - start_counters[MT_CORE_CYCLES], relaxed);
345 #ifdef MT_CORE_INSTRS
346 os_atomic_add(&perfcontrol_callout_stats[type][PERFCONTROL_STAT_INSTRS],
347 end_counters[MT_CORE_INSTRS] - start_counters[MT_CORE_INSTRS], relaxed);
348 #endif /* defined(MT_CORE_INSTRS) */
349 os_atomic_inc(&perfcontrol_callout_count[type], relaxed);
350 }
351 #endif /* MONOTONIC */
352
353 uint64_t
354 perfcontrol_callout_stat_avg(perfcontrol_callout_type_t type,
355 perfcontrol_callout_stat_t stat)
356 {
357 if (!perfcontrol_callout_stats_enabled) {
358 return 0;
359 }
360 return os_atomic_load_wide(&perfcontrol_callout_stats[type][stat], relaxed) /
361 os_atomic_load_wide(&perfcontrol_callout_count[type], relaxed);
362 }
363
364
365 void
366 machine_switch_perfcontrol_context(perfcontrol_event event,
367 uint64_t timestamp,
368 uint32_t flags,
369 uint64_t new_thread_same_pri_latency,
370 thread_t old,
371 thread_t new)
372 {
373
374 if (sched_perfcontrol_switch != sched_perfcontrol_switch_default) {
375 perfcontrol_state_t old_perfcontrol_state = FIND_PERFCONTROL_STATE(old);
376 perfcontrol_state_t new_perfcontrol_state = FIND_PERFCONTROL_STATE(new);
377 sched_perfcontrol_switch(old_perfcontrol_state, new_perfcontrol_state);
378 }
379
380 if (sched_perfcontrol_csw != sched_perfcontrol_csw_default) {
381 uint32_t cpu_id = (uint32_t)cpu_number();
382 struct perfcontrol_cpu_counters cpu_counters;
383 struct perfcontrol_thread_data offcore, oncore;
384 machine_switch_populate_perfcontrol_thread_data(&offcore, old, 0);
385 machine_switch_populate_perfcontrol_thread_data(&oncore, new,
386 new_thread_same_pri_latency);
387 machine_switch_populate_perfcontrol_cpu_counters(&cpu_counters);
388
389 #if MONOTONIC
390 uint64_t counters[MT_CORE_NFIXED];
391 bool ctrs_enabled = perfcontrol_callout_counters_begin(counters);
392 #endif /* MONOTONIC */
393 sched_perfcontrol_csw(event, cpu_id, timestamp, flags,
394 &offcore, &oncore, &cpu_counters, NULL);
395 #if MONOTONIC
396 if (ctrs_enabled) {
397 perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_CONTEXT);
398 }
399 #endif /* MONOTONIC */
400
401 #if __arm64__
402 old->machine.energy_estimate_nj += offcore.energy_estimate_nj;
403 new->machine.energy_estimate_nj += oncore.energy_estimate_nj;
404 #endif
405 }
406 }
407
408 void
409 machine_switch_perfcontrol_state_update(perfcontrol_event event,
410 uint64_t timestamp,
411 uint32_t flags,
412 thread_t thread)
413 {
414
415 if (sched_perfcontrol_state_update == sched_perfcontrol_state_update_default) {
416 return;
417 }
418 uint32_t cpu_id = (uint32_t)cpu_number();
419 struct perfcontrol_thread_data data;
420 machine_switch_populate_perfcontrol_thread_data(&data, thread, 0);
421
422 #if MONOTONIC
423 uint64_t counters[MT_CORE_NFIXED];
424 bool ctrs_enabled = perfcontrol_callout_counters_begin(counters);
425 #endif /* MONOTONIC */
426 sched_perfcontrol_state_update(event, cpu_id, timestamp, flags,
427 &data, NULL);
428 #if MONOTONIC
429 if (ctrs_enabled) {
430 perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_STATE_UPDATE);
431 }
432 #endif /* MONOTONIC */
433
434 #if __arm64__
435 thread->machine.energy_estimate_nj += data.energy_estimate_nj;
436 #endif
437 }
438
439 void
440 machine_thread_going_on_core(thread_t new_thread,
441 thread_urgency_t urgency,
442 uint64_t sched_latency,
443 uint64_t same_pri_latency,
444 uint64_t timestamp)
445 {
446 if (sched_perfcontrol_oncore == sched_perfcontrol_oncore_default) {
447 return;
448 }
449 struct going_on_core on_core;
450 perfcontrol_state_t state = FIND_PERFCONTROL_STATE(new_thread);
451
452 on_core.thread_id = new_thread->thread_id;
453 on_core.energy_estimate_nj = 0;
454 on_core.qos_class = (uint16_t)proc_get_effective_thread_policy(new_thread, TASK_POLICY_QOS);
455 on_core.urgency = (uint16_t)urgency;
456 on_core.is_32_bit = thread_is_64bit_data(new_thread) ? FALSE : TRUE;
457 on_core.is_kernel_thread = new_thread->task == kernel_task;
458 #if CONFIG_THREAD_GROUPS
459 struct thread_group *tg = thread_group_get(new_thread);
460 on_core.thread_group_id = thread_group_get_id(tg);
461 on_core.thread_group_data = thread_group_get_machine_data(tg);
462 #endif
463 on_core.scheduling_latency = sched_latency;
464 on_core.start_time = timestamp;
465 on_core.scheduling_latency_at_same_basepri = same_pri_latency;
466
467 #if MONOTONIC
468 uint64_t counters[MT_CORE_NFIXED];
469 bool ctrs_enabled = perfcontrol_callout_counters_begin(counters);
470 #endif /* MONOTONIC */
471 sched_perfcontrol_oncore(state, &on_core);
472 #if MONOTONIC
473 if (ctrs_enabled) {
474 perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_ON_CORE);
475 }
476 #endif /* MONOTONIC */
477
478 #if __arm64__
479 new_thread->machine.energy_estimate_nj += on_core.energy_estimate_nj;
480 #endif
481 }
482
483 void
484 machine_thread_going_off_core(thread_t old_thread, boolean_t thread_terminating,
485 uint64_t last_dispatch, __unused boolean_t thread_runnable)
486 {
487 if (sched_perfcontrol_offcore == sched_perfcontrol_offcore_default) {
488 return;
489 }
490 struct going_off_core off_core;
491 perfcontrol_state_t state = FIND_PERFCONTROL_STATE(old_thread);
492
493 off_core.thread_id = old_thread->thread_id;
494 off_core.energy_estimate_nj = 0;
495 off_core.end_time = last_dispatch;
496 #if CONFIG_THREAD_GROUPS
497 struct thread_group *tg = thread_group_get(old_thread);
498 off_core.thread_group_id = thread_group_get_id(tg);
499 off_core.thread_group_data = thread_group_get_machine_data(tg);
500 #endif
501
502 #if MONOTONIC
503 uint64_t counters[MT_CORE_NFIXED];
504 bool ctrs_enabled = perfcontrol_callout_counters_begin(counters);
505 #endif /* MONOTONIC */
506 sched_perfcontrol_offcore(state, &off_core, thread_terminating);
507 #if MONOTONIC
508 if (ctrs_enabled) {
509 perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_OFF_CORE);
510 }
511 #endif /* MONOTONIC */
512
513 #if __arm64__
514 old_thread->machine.energy_estimate_nj += off_core.energy_estimate_nj;
515 #endif
516 }
517
518 #if CONFIG_THREAD_GROUPS
519 void
520 machine_thread_group_init(struct thread_group *tg)
521 {
522 if (sched_perfcontrol_thread_group_init == sched_perfcontrol_thread_group_default) {
523 return;
524 }
525 struct thread_group_data data;
526 data.thread_group_id = thread_group_get_id(tg);
527 data.thread_group_data = thread_group_get_machine_data(tg);
528 data.thread_group_size = thread_group_machine_data_size();
529 data.thread_group_flags = thread_group_get_flags(tg);
530 sched_perfcontrol_thread_group_init(&data);
531 }
532
533 void
534 machine_thread_group_deinit(struct thread_group *tg)
535 {
536 if (sched_perfcontrol_thread_group_deinit == sched_perfcontrol_thread_group_default) {
537 return;
538 }
539 struct thread_group_data data;
540 data.thread_group_id = thread_group_get_id(tg);
541 data.thread_group_data = thread_group_get_machine_data(tg);
542 data.thread_group_size = thread_group_machine_data_size();
543 data.thread_group_flags = thread_group_get_flags(tg);
544 sched_perfcontrol_thread_group_deinit(&data);
545 }
546
547 void
548 machine_thread_group_flags_update(struct thread_group *tg, uint32_t flags)
549 {
550 if (sched_perfcontrol_thread_group_flags_update == sched_perfcontrol_thread_group_default) {
551 return;
552 }
553 struct thread_group_data data;
554 data.thread_group_id = thread_group_get_id(tg);
555 data.thread_group_data = thread_group_get_machine_data(tg);
556 data.thread_group_size = thread_group_machine_data_size();
557 data.thread_group_flags = flags;
558 sched_perfcontrol_thread_group_flags_update(&data);
559 }
560
561 void
562 machine_thread_group_blocked(struct thread_group *blocked_tg,
563 struct thread_group *blocking_tg,
564 uint32_t flags,
565 thread_t blocked_thread)
566 {
567 if (sched_perfcontrol_thread_group_blocked == sched_perfcontrol_thread_group_blocked_default) {
568 return;
569 }
570
571 spl_t s = splsched();
572
573 perfcontrol_state_t state = FIND_PERFCONTROL_STATE(blocked_thread);
574 struct thread_group_data blocked_data;
575 assert(blocked_tg != NULL);
576
577 blocked_data.thread_group_id = thread_group_get_id(blocked_tg);
578 blocked_data.thread_group_data = thread_group_get_machine_data(blocked_tg);
579 blocked_data.thread_group_size = thread_group_machine_data_size();
580
581 if (blocking_tg == NULL) {
582 /*
583 * For special cases such as the render server, the blocking TG is a
584 * well known TG. Only in that case, the blocking_tg should be NULL.
585 */
586 assert(flags & PERFCONTROL_CALLOUT_BLOCKING_TG_RENDER_SERVER);
587 sched_perfcontrol_thread_group_blocked(&blocked_data, NULL, flags, state);
588 } else {
589 struct thread_group_data blocking_data;
590 blocking_data.thread_group_id = thread_group_get_id(blocking_tg);
591 blocking_data.thread_group_data = thread_group_get_machine_data(blocking_tg);
592 blocking_data.thread_group_size = thread_group_machine_data_size();
593 sched_perfcontrol_thread_group_blocked(&blocked_data, &blocking_data, flags, state);
594 }
595 KDBG(MACHDBG_CODE(DBG_MACH_THREAD_GROUP, MACH_THREAD_GROUP_BLOCK) | DBG_FUNC_START,
596 thread_tid(blocked_thread), thread_group_get_id(blocked_tg),
597 blocking_tg ? thread_group_get_id(blocking_tg) : THREAD_GROUP_INVALID,
598 flags);
599
600 splx(s);
601 }
602
603 void
604 machine_thread_group_unblocked(struct thread_group *unblocked_tg,
605 struct thread_group *unblocking_tg,
606 uint32_t flags,
607 thread_t unblocked_thread)
608 {
609 if (sched_perfcontrol_thread_group_unblocked == sched_perfcontrol_thread_group_unblocked_default) {
610 return;
611 }
612
613 spl_t s = splsched();
614
615 perfcontrol_state_t state = FIND_PERFCONTROL_STATE(unblocked_thread);
616 struct thread_group_data unblocked_data;
617 assert(unblocked_tg != NULL);
618
619 unblocked_data.thread_group_id = thread_group_get_id(unblocked_tg);
620 unblocked_data.thread_group_data = thread_group_get_machine_data(unblocked_tg);
621 unblocked_data.thread_group_size = thread_group_machine_data_size();
622
623 if (unblocking_tg == NULL) {
624 /*
625 * For special cases such as the render server, the unblocking TG is a
626 * well known TG. Only in that case, the unblocking_tg should be NULL.
627 */
628 assert(flags & PERFCONTROL_CALLOUT_BLOCKING_TG_RENDER_SERVER);
629 sched_perfcontrol_thread_group_unblocked(&unblocked_data, NULL, flags, state);
630 } else {
631 struct thread_group_data unblocking_data;
632 unblocking_data.thread_group_id = thread_group_get_id(unblocking_tg);
633 unblocking_data.thread_group_data = thread_group_get_machine_data(unblocking_tg);
634 unblocking_data.thread_group_size = thread_group_machine_data_size();
635 sched_perfcontrol_thread_group_unblocked(&unblocked_data, &unblocking_data, flags, state);
636 }
637 KDBG(MACHDBG_CODE(DBG_MACH_THREAD_GROUP, MACH_THREAD_GROUP_BLOCK) | DBG_FUNC_END,
638 thread_tid(unblocked_thread), thread_group_get_id(unblocked_tg),
639 unblocking_tg ? thread_group_get_id(unblocking_tg) : THREAD_GROUP_INVALID,
640 flags);
641
642 splx(s);
643 }
644
645 #endif /* CONFIG_THREAD_GROUPS */
646
647 void
648 machine_max_runnable_latency(uint64_t bg_max_latency,
649 uint64_t default_max_latency,
650 uint64_t realtime_max_latency)
651 {
652 if (sched_perfcontrol_max_runnable_latency == sched_perfcontrol_max_runnable_latency_default) {
653 return;
654 }
655 struct perfcontrol_max_runnable_latency latencies = {
656 .max_scheduling_latencies = {
657 [THREAD_URGENCY_NONE] = 0,
658 [THREAD_URGENCY_BACKGROUND] = bg_max_latency,
659 [THREAD_URGENCY_NORMAL] = default_max_latency,
660 [THREAD_URGENCY_REAL_TIME] = realtime_max_latency
661 }
662 };
663
664 sched_perfcontrol_max_runnable_latency(&latencies);
665 }
666
667 void
668 machine_work_interval_notify(thread_t thread,
669 struct kern_work_interval_args* kwi_args)
670 {
671 if (sched_perfcontrol_work_interval_notify == sched_perfcontrol_work_interval_notify_default) {
672 return;
673 }
674 perfcontrol_state_t state = FIND_PERFCONTROL_STATE(thread);
675 struct perfcontrol_work_interval work_interval = {
676 .thread_id = thread->thread_id,
677 .qos_class = (uint16_t)proc_get_effective_thread_policy(thread, TASK_POLICY_QOS),
678 .urgency = kwi_args->urgency,
679 .flags = kwi_args->notify_flags,
680 .work_interval_id = kwi_args->work_interval_id,
681 .start = kwi_args->start,
682 .finish = kwi_args->finish,
683 .deadline = kwi_args->deadline,
684 .next_start = kwi_args->next_start,
685 .create_flags = kwi_args->create_flags,
686 };
687 #if CONFIG_THREAD_GROUPS
688 struct thread_group *tg;
689 tg = thread_group_get(thread);
690 work_interval.thread_group_id = thread_group_get_id(tg);
691 work_interval.thread_group_data = thread_group_get_machine_data(tg);
692 #endif
693 sched_perfcontrol_work_interval_notify(state, &work_interval);
694 }
695
696
697 void
698 machine_perfcontrol_deadline_passed(uint64_t deadline)
699 {
700 if (sched_perfcontrol_deadline_passed != sched_perfcontrol_deadline_passed_default) {
701 sched_perfcontrol_deadline_passed(deadline);
702 }
703 }
704
705 #if INTERRUPT_MASKED_DEBUG
706 /*
707 * ml_spin_debug_reset()
708 * Reset the timestamp on a thread that has been unscheduled
709 * to avoid false alarms. Alarm will go off if interrupts are held
710 * disabled for too long, starting from now.
711 *
712 * Call ml_get_timebase() directly to prevent extra overhead on newer
713 * platforms that's enabled in DEVELOPMENT kernel configurations.
714 */
715 void
716 ml_spin_debug_reset(thread_t thread)
717 {
718 if (thread->machine.intmask_timestamp) {
719 thread->machine.intmask_timestamp = ml_get_timebase();
720 }
721 }
722
723 /*
724 * ml_spin_debug_clear()
725 * Clear the timestamp on a thread that has been unscheduled
726 * to avoid false alarms
727 */
728 void
729 ml_spin_debug_clear(thread_t thread)
730 {
731 thread->machine.intmask_timestamp = 0;
732 }
733
734 /*
735 * ml_spin_debug_clear_self()
736 * Clear the timestamp on the current thread to prevent
737 * false alarms
738 */
739 void
740 ml_spin_debug_clear_self()
741 {
742 ml_spin_debug_clear(current_thread());
743 }
744
745 static inline void
746 __ml_check_interrupts_disabled_duration(thread_t thread, uint64_t timeout, bool is_int_handler)
747 {
748 uint64_t start;
749 uint64_t now;
750
751 start = is_int_handler ? thread->machine.inthandler_timestamp : thread->machine.intmask_timestamp;
752 if (start != 0) {
753 now = ml_get_timebase();
754
755 if ((now - start) > timeout * debug_cpu_performance_degradation_factor) {
756 mach_timebase_info_data_t timebase;
757 clock_timebase_info(&timebase);
758
759 #ifndef KASAN
760 /*
761 * Disable the actual panic for KASAN due to the overhead of KASAN itself, leave the rest of the
762 * mechanism enabled so that KASAN can catch any bugs in the mechanism itself.
763 */
764 if (is_int_handler) {
765 panic("Processing of an interrupt (type = %u, handler address = %p, vector = %p) took %llu nanoseconds (timeout = %llu ns)",
766 thread->machine.int_type, (void *)thread->machine.int_handler_addr, (void *)thread->machine.int_vector,
767 (((now - start) * timebase.numer) / timebase.denom),
768 ((timeout * debug_cpu_performance_degradation_factor) * timebase.numer) / timebase.denom);
769 } else {
770 panic("Interrupts held disabled for %llu nanoseconds (timeout = %llu ns)",
771 (((now - start) * timebase.numer) / timebase.denom),
772 ((timeout * debug_cpu_performance_degradation_factor) * timebase.numer) / timebase.denom);
773 }
774 #endif
775 }
776 }
777
778 return;
779 }
780
781 void
782 ml_check_interrupts_disabled_duration(thread_t thread)
783 {
784 __ml_check_interrupts_disabled_duration(thread, interrupt_masked_timeout, false);
785 }
786
787 void
788 ml_check_stackshot_interrupt_disabled_duration(thread_t thread)
789 {
790 /* Use MAX() to let the user bump the timeout further if needed */
791 __ml_check_interrupts_disabled_duration(thread, MAX(stackshot_interrupt_masked_timeout, interrupt_masked_timeout), false);
792 }
793
794 void
795 ml_check_interrupt_handler_duration(thread_t thread)
796 {
797 __ml_check_interrupts_disabled_duration(thread, interrupt_masked_timeout, true);
798 }
799
800 void
801 ml_irq_debug_start(uintptr_t handler, uintptr_t vector)
802 {
803 INTERRUPT_MASKED_DEBUG_START(handler, DBG_INTR_TYPE_OTHER);
804 current_thread()->machine.int_vector = (uintptr_t)VM_KERNEL_STRIP_PTR(vector);
805 }
806
807 void
808 ml_irq_debug_end()
809 {
810 INTERRUPT_MASKED_DEBUG_END();
811 }
812 #endif // INTERRUPT_MASKED_DEBUG
813
814
815 boolean_t
816 ml_set_interrupts_enabled(boolean_t enable)
817 {
818 thread_t thread;
819 uint64_t state;
820
821 #if __arm__
822 #define INTERRUPT_MASK PSR_IRQF
823 state = __builtin_arm_rsr("cpsr");
824 #else
825 #define INTERRUPT_MASK DAIF_IRQF
826 state = __builtin_arm_rsr("DAIF");
827 #endif
828 if (enable && (state & INTERRUPT_MASK)) {
829 assert(getCpuDatap()->cpu_int_state == NULL); // Make sure we're not enabling interrupts from primary interrupt context
830 #if INTERRUPT_MASKED_DEBUG
831 if (interrupt_masked_debug) {
832 // Interrupts are currently masked, we will enable them (after finishing this check)
833 thread = current_thread();
834 if (stackshot_active()) {
835 ml_check_stackshot_interrupt_disabled_duration(thread);
836 } else {
837 ml_check_interrupts_disabled_duration(thread);
838 }
839 thread->machine.intmask_timestamp = 0;
840 }
841 #endif // INTERRUPT_MASKED_DEBUG
842 if (get_preemption_level() == 0) {
843 thread = current_thread();
844 while (thread->machine.CpuDatap->cpu_pending_ast & AST_URGENT) {
845 #if __ARM_USER_PROTECT__
846 uintptr_t up = arm_user_protect_begin(thread);
847 #endif
848 ast_taken_kernel();
849 #if __ARM_USER_PROTECT__
850 arm_user_protect_end(thread, up, FALSE);
851 #endif
852 }
853 }
854 #if __arm__
855 __asm__ volatile ("cpsie if" ::: "memory"); // Enable IRQ FIQ
856 #else
857 __builtin_arm_wsr("DAIFClr", DAIFSC_STANDARD_DISABLE);
858 #endif
859 } else if (!enable && ((state & INTERRUPT_MASK) == 0)) {
860 #if __arm__
861 __asm__ volatile ("cpsid if" ::: "memory"); // Mask IRQ FIQ
862 #else
863 __builtin_arm_wsr("DAIFSet", DAIFSC_STANDARD_DISABLE);
864 #endif
865 #if INTERRUPT_MASKED_DEBUG
866 if (interrupt_masked_debug) {
867 // Interrupts were enabled, we just masked them
868 current_thread()->machine.intmask_timestamp = ml_get_timebase();
869 }
870 #endif
871 }
872 return (state & INTERRUPT_MASK) == 0;
873 }
874
875 boolean_t
876 ml_early_set_interrupts_enabled(boolean_t enable)
877 {
878 return ml_set_interrupts_enabled(enable);
879 }
880
881 /*
882 * Routine: ml_at_interrupt_context
883 * Function: Check if running at interrupt context
884 */
885 boolean_t
886 ml_at_interrupt_context(void)
887 {
888 /* Do not use a stack-based check here, as the top-level exception handler
889 * is free to use some other stack besides the per-CPU interrupt stack.
890 * Interrupts should always be disabled if we're at interrupt context.
891 * Check that first, as we may be in a preemptible non-interrupt context, in
892 * which case we could be migrated to a different CPU between obtaining
893 * the per-cpu data pointer and loading cpu_int_state. We then might end
894 * up checking the interrupt state of a different CPU, resulting in a false
895 * positive. But if interrupts are disabled, we also know we cannot be
896 * preempted. */
897 return !ml_get_interrupts_enabled() && (getCpuDatap()->cpu_int_state != NULL);
898 }
899
900 vm_offset_t
901 ml_stack_remaining(void)
902 {
903 uintptr_t local = (uintptr_t) &local;
904 vm_offset_t intstack_top_ptr;
905
906 /* Since this is a stack-based check, we don't need to worry about
907 * preemption as we do in ml_at_interrupt_context(). If we are preemptible,
908 * then the sp should never be within any CPU's interrupt stack unless
909 * something has gone horribly wrong. */
910 intstack_top_ptr = getCpuDatap()->intstack_top;
911 if ((local < intstack_top_ptr) && (local > intstack_top_ptr - INTSTACK_SIZE)) {
912 return local - (getCpuDatap()->intstack_top - INTSTACK_SIZE);
913 } else {
914 return local - current_thread()->kernel_stack;
915 }
916 }
917
918 static boolean_t ml_quiescing = FALSE;
919
920 void
921 ml_set_is_quiescing(boolean_t quiescing)
922 {
923 ml_quiescing = quiescing;
924 os_atomic_thread_fence(release);
925 }
926
927 boolean_t
928 ml_is_quiescing(void)
929 {
930 os_atomic_thread_fence(acquire);
931 return ml_quiescing;
932 }
933
934 uint64_t
935 ml_get_booter_memory_size(void)
936 {
937 uint64_t size;
938 uint64_t roundsize = 512 * 1024 * 1024ULL;
939 size = BootArgs->memSizeActual;
940 if (!size) {
941 size = BootArgs->memSize;
942 if (size < (2 * roundsize)) {
943 roundsize >>= 1;
944 }
945 size = (size + roundsize - 1) & ~(roundsize - 1);
946 }
947
948 size -= BootArgs->memSize;
949
950 return size;
951 }
952
953 uint64_t
954 ml_get_abstime_offset(void)
955 {
956 return rtclock_base_abstime;
957 }
958
959 uint64_t
960 ml_get_conttime_offset(void)
961 {
962 #if HIBERNATION && HAS_CONTINUOUS_HWCLOCK
963 return hwclock_conttime_offset;
964 #elif HAS_CONTINUOUS_HWCLOCK
965 return 0;
966 #else
967 return rtclock_base_abstime + mach_absolutetime_asleep;
968 #endif
969 }
970
971 uint64_t
972 ml_get_time_since_reset(void)
973 {
974 #if HAS_CONTINUOUS_HWCLOCK
975 if (wake_conttime == UINT64_MAX) {
976 return UINT64_MAX;
977 } else {
978 return mach_continuous_time() - wake_conttime;
979 }
980 #else
981 /* The timebase resets across S2R, so just return the raw value. */
982 return ml_get_hwclock();
983 #endif
984 }
985
986 void
987 ml_set_reset_time(__unused uint64_t wake_time)
988 {
989 #if HAS_CONTINUOUS_HWCLOCK
990 wake_conttime = wake_time;
991 #endif
992 }
993
994 uint64_t
995 ml_get_conttime_wake_time(void)
996 {
997 #if HAS_CONTINUOUS_HWCLOCK
998 /*
999 * For now, we will reconstitute the timebase value from
1000 * cpu_timebase_init and use it as the wake time.
1001 */
1002 return wake_abstime - ml_get_abstime_offset();
1003 #else /* HAS_CONTINOUS_HWCLOCK */
1004 /* The wake time is simply our continuous time offset. */
1005 return ml_get_conttime_offset();
1006 #endif /* HAS_CONTINOUS_HWCLOCK */
1007 }
1008
1009 /*
1010 * ml_snoop_thread_is_on_core(thread_t thread)
1011 * Check if the given thread is currently on core. This function does not take
1012 * locks, disable preemption, or otherwise guarantee synchronization. The
1013 * result should be considered advisory.
1014 */
1015 bool
1016 ml_snoop_thread_is_on_core(thread_t thread)
1017 {
1018 unsigned int cur_cpu_num = 0;
1019 const unsigned int max_cpu_id = ml_get_max_cpu_number();
1020
1021 for (cur_cpu_num = 0; cur_cpu_num <= max_cpu_id; cur_cpu_num++) {
1022 if (CpuDataEntries[cur_cpu_num].cpu_data_vaddr) {
1023 if (CpuDataEntries[cur_cpu_num].cpu_data_vaddr->cpu_active_thread == thread) {
1024 return true;
1025 }
1026 }
1027 }
1028
1029 return false;
1030 }
1031
1032 int
1033 ml_early_cpu_max_number(void)
1034 {
1035 assert(startup_phase >= STARTUP_SUB_TUNABLES);
1036 return ml_get_max_cpu_number();
1037 }
1038
1039 void
1040 ml_set_max_cpus(unsigned int max_cpus __unused)
1041 {
1042 lck_mtx_lock(&max_cpus_lock);
1043 if (max_cpus_initialized != MAX_CPUS_SET) {
1044 if (max_cpus_initialized == MAX_CPUS_WAIT) {
1045 thread_wakeup((event_t) &max_cpus_initialized);
1046 }
1047 max_cpus_initialized = MAX_CPUS_SET;
1048 }
1049 lck_mtx_unlock(&max_cpus_lock);
1050 }
1051
1052 unsigned int
1053 ml_wait_max_cpus(void)
1054 {
1055 assert(lockdown_done);
1056 lck_mtx_lock(&max_cpus_lock);
1057 while (max_cpus_initialized != MAX_CPUS_SET) {
1058 max_cpus_initialized = MAX_CPUS_WAIT;
1059 lck_mtx_sleep(&max_cpus_lock, LCK_SLEEP_DEFAULT, &max_cpus_initialized, THREAD_UNINT);
1060 }
1061 lck_mtx_unlock(&max_cpus_lock);
1062 return machine_info.max_cpus;
1063 }
1064 void
1065 machine_conf(void)
1066 {
1067 /*
1068 * This is known to be inaccurate. mem_size should always be capped at 2 GB
1069 */
1070 machine_info.memory_size = (uint32_t)mem_size;
1071
1072 // rdar://problem/58285685: Userland expects _COMM_PAGE_LOGICAL_CPUS to report
1073 // (max_cpu_id+1) rather than a literal *count* of logical CPUs.
1074 unsigned int num_cpus = ml_get_topology_info()->max_cpu_id + 1;
1075 machine_info.max_cpus = num_cpus;
1076 machine_info.physical_cpu_max = num_cpus;
1077 machine_info.logical_cpu_max = num_cpus;
1078 }
1079
1080 void
1081 machine_init(void)
1082 {
1083 debug_log_init();
1084 clock_config();
1085 is_clock_configured = TRUE;
1086 if (debug_enabled) {
1087 pmap_map_globals();
1088 }
1089 ml_lockdown_init();
1090 }