]> git.saurik.com Git - apple/xnu.git/blob - osfmk/arm/machine_routines.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / arm / machine_routines.c
1 /*
2 * Copyright (c) 2007-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <arm/proc_reg.h>
30 #include <arm/machine_cpu.h>
31 #include <arm/cpu_internal.h>
32 #include <arm/cpuid.h>
33 #include <arm/io_map_entries.h>
34 #include <arm/cpu_data.h>
35 #include <arm/cpu_data_internal.h>
36 #include <arm/machine_routines.h>
37 #include <arm/misc_protos.h>
38 #include <arm/rtclock.h>
39 #include <arm/caches_internal.h>
40 #include <console/serial_protos.h>
41 #include <kern/machine.h>
42 #include <prng/random.h>
43 #include <kern/startup.h>
44 #include <kern/sched.h>
45 #include <kern/thread.h>
46 #include <mach/machine.h>
47 #include <machine/atomic.h>
48 #include <vm/pmap.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_map.h>
51 #include <sys/kdebug.h>
52 #include <kern/coalition.h>
53 #include <pexpert/device_tree.h>
54 #include <arm/cpuid_internal.h>
55 #include <arm/cpu_capabilities.h>
56
57 #include <IOKit/IOPlatformExpert.h>
58
59 #if KPC
60 #include <kern/kpc.h>
61 #endif
62
63 /* arm32 only supports a highly simplified topology, fixed at 1 cluster */
64 static ml_topology_cpu_t topology_cpu_array[MAX_CPUS];
65 static ml_topology_cluster_t topology_cluster = {
66 .cluster_id = 0,
67 .cluster_type = CLUSTER_TYPE_SMP,
68 .first_cpu_id = 0,
69 };
70 static ml_topology_info_t topology_info = {
71 .version = CPU_TOPOLOGY_VERSION,
72 .num_clusters = 1,
73 .max_cluster_id = 0,
74 .cpus = topology_cpu_array,
75 .clusters = &topology_cluster,
76 .boot_cpu = &topology_cpu_array[0],
77 .boot_cluster = &topology_cluster,
78 };
79
80 uint32_t LockTimeOut;
81 uint32_t LockTimeOutUsec;
82 uint64_t TLockTimeOut;
83 uint64_t MutexSpin;
84 extern uint32_t lockdown_done;
85 uint64_t low_MutexSpin;
86 int64_t high_MutexSpin;
87
88 void
89 machine_startup(__unused boot_args * args)
90 {
91 machine_conf();
92
93 /*
94 * Kick off the kernel bootstrap.
95 */
96 kernel_bootstrap();
97 /* NOTREACHED */
98 }
99
100 char *
101 machine_boot_info(
102 __unused char *buf,
103 __unused vm_size_t size)
104 {
105 return PE_boot_args();
106 }
107
108 void
109 slave_machine_init(__unused void *param)
110 {
111 cpu_machine_init(); /* Initialize the processor */
112 clock_init(); /* Init the clock */
113 }
114
115 /*
116 * Routine: machine_processor_shutdown
117 * Function:
118 */
119 thread_t
120 machine_processor_shutdown(
121 __unused thread_t thread,
122 void (*doshutdown)(processor_t),
123 processor_t processor)
124 {
125 return Shutdown_context(doshutdown, processor);
126 }
127
128 /*
129 * Routine: ml_init_lock_timeout
130 * Function:
131 */
132 void
133 ml_init_lock_timeout(void)
134 {
135 uint64_t abstime;
136 uint64_t mtxspin;
137 uint64_t default_timeout_ns = NSEC_PER_SEC >> 2;
138 uint32_t slto;
139
140 if (PE_parse_boot_argn("slto_us", &slto, sizeof(slto))) {
141 default_timeout_ns = slto * NSEC_PER_USEC;
142 }
143
144 nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
145 LockTimeOutUsec = (uint32_t)(default_timeout_ns / NSEC_PER_USEC);
146 LockTimeOut = (uint32_t)abstime;
147 TLockTimeOut = LockTimeOut;
148
149 if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof(mtxspin))) {
150 if (mtxspin > USEC_PER_SEC >> 4) {
151 mtxspin = USEC_PER_SEC >> 4;
152 }
153 nanoseconds_to_absolutetime(mtxspin * NSEC_PER_USEC, &abstime);
154 } else {
155 nanoseconds_to_absolutetime(10 * NSEC_PER_USEC, &abstime);
156 }
157 MutexSpin = abstime;
158 low_MutexSpin = MutexSpin;
159 /*
160 * high_MutexSpin should be initialized as low_MutexSpin * real_ncpus, but
161 * real_ncpus is not set at this time
162 *
163 * NOTE: active spinning is disabled in arm. It can be activated
164 * by setting high_MutexSpin through the sysctl.
165 */
166 high_MutexSpin = low_MutexSpin;
167 }
168
169 /*
170 * This is called when all of the ml_processor_info_t structures have been
171 * initialized and all the processors have been started through processor_start().
172 *
173 * Required by the scheduler subsystem.
174 */
175 void
176 ml_cpu_init_completed(void)
177 {
178 }
179
180 /*
181 * This is called from the machine-independent routine cpu_up()
182 * to perform machine-dependent info updates.
183 */
184 void
185 ml_cpu_up(void)
186 {
187 os_atomic_inc(&machine_info.physical_cpu, relaxed);
188 os_atomic_inc(&machine_info.logical_cpu, relaxed);
189 }
190
191 /*
192 * This is called from the machine-independent routine cpu_down()
193 * to perform machine-dependent info updates.
194 */
195 void
196 ml_cpu_down(void)
197 {
198 cpu_data_t *cpu_data_ptr;
199
200 os_atomic_dec(&machine_info.physical_cpu, relaxed);
201 os_atomic_dec(&machine_info.logical_cpu, relaxed);
202
203 /*
204 * If we want to deal with outstanding IPIs, we need to
205 * do relatively early in the processor_doshutdown path,
206 * as we pend decrementer interrupts using the IPI
207 * mechanism if we cannot immediately service them (if
208 * IRQ is masked). Do so now.
209 *
210 * We aren't on the interrupt stack here; would it make
211 * more sense to disable signaling and then enable
212 * interrupts? It might be a bit cleaner.
213 */
214 cpu_data_ptr = getCpuDatap();
215 cpu_data_ptr->cpu_running = FALSE;
216
217 cpu_signal_handler_internal(TRUE);
218 }
219
220 /*
221 * Routine: ml_cpu_get_info
222 * Function:
223 */
224 void
225 ml_cpu_get_info(ml_cpu_info_t * ml_cpu_info)
226 {
227 cache_info_t *cpuid_cache_info;
228
229 cpuid_cache_info = cache_info();
230 ml_cpu_info->vector_unit = 0;
231 ml_cpu_info->cache_line_size = cpuid_cache_info->c_linesz;
232 ml_cpu_info->l1_icache_size = cpuid_cache_info->c_isize;
233 ml_cpu_info->l1_dcache_size = cpuid_cache_info->c_dsize;
234
235 #if (__ARM_ARCH__ >= 7)
236 ml_cpu_info->l2_settings = 1;
237 ml_cpu_info->l2_cache_size = cpuid_cache_info->c_l2size;
238 #else
239 ml_cpu_info->l2_settings = 0;
240 ml_cpu_info->l2_cache_size = 0xFFFFFFFF;
241 #endif
242 ml_cpu_info->l3_settings = 0;
243 ml_cpu_info->l3_cache_size = 0xFFFFFFFF;
244 }
245
246 unsigned int
247 ml_get_machine_mem(void)
248 {
249 return machine_info.memory_size;
250 }
251
252 /* Return max offset */
253 vm_map_offset_t
254 ml_get_max_offset(
255 boolean_t is64,
256 unsigned int option)
257 {
258 unsigned int pmap_max_offset_option = 0;
259
260 switch (option) {
261 case MACHINE_MAX_OFFSET_DEFAULT:
262 pmap_max_offset_option = ARM_PMAP_MAX_OFFSET_DEFAULT;
263 break;
264 case MACHINE_MAX_OFFSET_MIN:
265 pmap_max_offset_option = ARM_PMAP_MAX_OFFSET_MIN;
266 break;
267 case MACHINE_MAX_OFFSET_MAX:
268 pmap_max_offset_option = ARM_PMAP_MAX_OFFSET_MAX;
269 break;
270 case MACHINE_MAX_OFFSET_DEVICE:
271 pmap_max_offset_option = ARM_PMAP_MAX_OFFSET_DEVICE;
272 break;
273 default:
274 panic("ml_get_max_offset(): Illegal option 0x%x\n", option);
275 break;
276 }
277 return pmap_max_offset(is64, pmap_max_offset_option);
278 }
279
280 void
281 ml_panic_trap_to_debugger(__unused const char *panic_format_str,
282 __unused va_list *panic_args,
283 __unused unsigned int reason,
284 __unused void *ctx,
285 __unused uint64_t panic_options_mask,
286 __unused unsigned long panic_caller)
287 {
288 return;
289 }
290
291 __attribute__((noreturn))
292 void
293 halt_all_cpus(boolean_t reboot)
294 {
295 if (reboot) {
296 printf("MACH Reboot\n");
297 PEHaltRestart(kPERestartCPU);
298 } else {
299 printf("CPU halted\n");
300 PEHaltRestart(kPEHaltCPU);
301 }
302 while (1) {
303 ;
304 }
305 }
306
307 __attribute__((noreturn))
308 void
309 halt_cpu(void)
310 {
311 halt_all_cpus(FALSE);
312 }
313
314 /*
315 * Routine: machine_signal_idle
316 * Function:
317 */
318 void
319 machine_signal_idle(
320 processor_t processor)
321 {
322 cpu_signal(processor_to_cpu_datap(processor), SIGPnop, (void *)NULL, (void *)NULL);
323 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), processor->cpu_id, 0 /* nop */, 0, 0, 0);
324 }
325
326 void
327 machine_signal_idle_deferred(
328 processor_t processor)
329 {
330 cpu_signal_deferred(processor_to_cpu_datap(processor));
331 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_DEFERRED_AST), processor->cpu_id, 0 /* nop */, 0, 0, 0);
332 }
333
334 void
335 machine_signal_idle_cancel(
336 processor_t processor)
337 {
338 cpu_signal_cancel(processor_to_cpu_datap(processor));
339 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_CANCEL_AST), processor->cpu_id, 0 /* nop */, 0, 0, 0);
340 }
341
342 /*
343 * Routine: ml_install_interrupt_handler
344 * Function: Initialize Interrupt Handler
345 */
346 void
347 ml_install_interrupt_handler(
348 void *nub,
349 int source,
350 void *target,
351 IOInterruptHandler handler,
352 void *refCon)
353 {
354 cpu_data_t *cpu_data_ptr;
355 boolean_t current_state;
356
357 current_state = ml_set_interrupts_enabled(FALSE);
358 cpu_data_ptr = getCpuDatap();
359
360 cpu_data_ptr->interrupt_nub = nub;
361 cpu_data_ptr->interrupt_source = source;
362 cpu_data_ptr->interrupt_target = target;
363 cpu_data_ptr->interrupt_handler = handler;
364 cpu_data_ptr->interrupt_refCon = refCon;
365
366 (void) ml_set_interrupts_enabled(current_state);
367 }
368
369 /*
370 * Routine: ml_init_interrupt
371 * Function: Initialize Interrupts
372 */
373 void
374 ml_init_interrupt(void)
375 {
376 }
377
378 /*
379 * Routine: ml_init_timebase
380 * Function: register and setup Timebase, Decremeter services
381 */
382 void
383 ml_init_timebase(
384 void *args,
385 tbd_ops_t tbd_funcs,
386 vm_offset_t int_address,
387 vm_offset_t int_value)
388 {
389 cpu_data_t *cpu_data_ptr;
390
391 cpu_data_ptr = (cpu_data_t *)args;
392
393 if ((cpu_data_ptr == &BootCpuData)
394 && (rtclock_timebase_func.tbd_fiq_handler == (void *)NULL)) {
395 rtclock_timebase_func = *tbd_funcs;
396 rtclock_timebase_addr = int_address;
397 rtclock_timebase_val = int_value;
398 }
399 }
400
401 void
402 ml_parse_cpu_topology(void)
403 {
404 DTEntry entry, child;
405 OpaqueDTEntryIterator iter;
406 uint32_t cpu_boot_arg;
407 int err;
408
409 err = SecureDTLookupEntry(NULL, "/cpus", &entry);
410 assert(err == kSuccess);
411
412 err = SecureDTInitEntryIterator(entry, &iter);
413 assert(err == kSuccess);
414
415 cpu_boot_arg = MAX_CPUS;
416 PE_parse_boot_argn("cpus", &cpu_boot_arg, sizeof(cpu_boot_arg));
417
418 ml_topology_cluster_t *cluster = &topology_info.clusters[0];
419 unsigned int cpu_id = 0;
420 while (kSuccess == SecureDTIterateEntries(&iter, &child)) {
421 #if MACH_ASSERT
422 unsigned int propSize;
423 void const *prop = NULL;
424 if (cpu_id == 0) {
425 if (kSuccess != SecureDTGetProperty(child, "state", &prop, &propSize)) {
426 panic("unable to retrieve state for cpu %u", cpu_id);
427 }
428
429 if (strncmp((char const *)prop, "running", propSize) != 0) {
430 panic("cpu 0 has not been marked as running!");
431 }
432 }
433 assert(kSuccess == SecureDTGetProperty(child, "reg", &prop, &propSize));
434 assert(cpu_id == *((uint32_t const *)prop));
435 #endif
436 if (cpu_id >= cpu_boot_arg) {
437 break;
438 }
439
440 ml_topology_cpu_t *cpu = &topology_info.cpus[cpu_id];
441
442 cpu->cpu_id = cpu_id;
443 cpu->phys_id = cpu_id;
444 cpu->cluster_type = cluster->cluster_type;
445
446 cluster->num_cpus++;
447 cluster->cpu_mask |= 1ULL << cpu_id;
448
449 topology_info.num_cpus++;
450 topology_info.max_cpu_id = cpu_id;
451
452 cpu_id++;
453 }
454
455 if (cpu_id == 0) {
456 panic("No cpus found!");
457 }
458 }
459
460 const ml_topology_info_t *
461 ml_get_topology_info(void)
462 {
463 return &topology_info;
464 }
465
466 unsigned int
467 ml_get_cpu_count(void)
468 {
469 return topology_info.num_cpus;
470 }
471
472 unsigned int
473 ml_get_cluster_count(void)
474 {
475 return topology_info.num_clusters;
476 }
477
478 int
479 ml_get_boot_cpu_number(void)
480 {
481 return 0;
482 }
483
484 cluster_type_t
485 ml_get_boot_cluster(void)
486 {
487 return CLUSTER_TYPE_SMP;
488 }
489
490 int
491 ml_get_cpu_number(uint32_t phys_id)
492 {
493 if (phys_id > (uint32_t)ml_get_max_cpu_number()) {
494 return -1;
495 }
496
497 return (int)phys_id;
498 }
499
500 int
501 ml_get_cluster_number(__unused uint32_t phys_id)
502 {
503 return 0;
504 }
505
506 int
507 ml_get_max_cpu_number(void)
508 {
509 return topology_info.num_cpus - 1;
510 }
511
512 int
513 ml_get_max_cluster_number(void)
514 {
515 return topology_info.max_cluster_id;
516 }
517
518 unsigned int
519 ml_get_first_cpu_id(unsigned int cluster_id)
520 {
521 return topology_info.clusters[cluster_id].first_cpu_id;
522 }
523
524 kern_return_t
525 ml_processor_register(ml_processor_info_t *in_processor_info,
526 processor_t * processor_out, ipi_handler_t *ipi_handler_out,
527 perfmon_interrupt_handler_func *pmi_handler_out)
528 {
529 cpu_data_t *this_cpu_datap;
530 boolean_t is_boot_cpu;
531
532 const unsigned int max_cpu_id = ml_get_max_cpu_number();
533 if (in_processor_info->phys_id > max_cpu_id) {
534 /*
535 * The physical CPU ID indicates that we have more CPUs than
536 * this xnu build support. This probably means we have an
537 * incorrect board configuration.
538 *
539 * TODO: Should this just return a failure instead? A panic
540 * is simply a convenient way to catch bugs in the pexpert
541 * headers.
542 */
543 panic("phys_id %u is too large for max_cpu_id (%u)", in_processor_info->phys_id, max_cpu_id);
544 }
545
546 /* Fail the registration if the number of CPUs has been limited by boot-arg. */
547 if ((in_processor_info->phys_id >= topology_info.num_cpus) ||
548 (in_processor_info->log_id > (uint32_t)ml_get_max_cpu_number())) {
549 return KERN_FAILURE;
550 }
551
552 if (in_processor_info->log_id != (uint32_t)ml_get_boot_cpu_number()) {
553 is_boot_cpu = FALSE;
554 this_cpu_datap = cpu_data_alloc(FALSE);
555 cpu_data_init(this_cpu_datap);
556 } else {
557 this_cpu_datap = &BootCpuData;
558 is_boot_cpu = TRUE;
559 }
560
561 this_cpu_datap->cpu_id = in_processor_info->cpu_id;
562
563 this_cpu_datap->cpu_console_buf = console_cpu_alloc(is_boot_cpu);
564 if (this_cpu_datap->cpu_console_buf == (void *)(NULL)) {
565 goto processor_register_error;
566 }
567
568 if (!is_boot_cpu) {
569 if (cpu_data_register(this_cpu_datap) != KERN_SUCCESS) {
570 goto processor_register_error;
571 }
572 }
573
574 this_cpu_datap->cpu_idle_notify = in_processor_info->processor_idle;
575 this_cpu_datap->cpu_cache_dispatch = (cache_dispatch_t) in_processor_info->platform_cache_dispatch;
576 nanoseconds_to_absolutetime((uint64_t) in_processor_info->powergate_latency, &this_cpu_datap->cpu_idle_latency);
577 this_cpu_datap->cpu_reset_assist = kvtophys(in_processor_info->powergate_stub_addr);
578
579 this_cpu_datap->idle_timer_notify = in_processor_info->idle_timer;
580 this_cpu_datap->idle_timer_refcon = in_processor_info->idle_timer_refcon;
581
582 this_cpu_datap->platform_error_handler = in_processor_info->platform_error_handler;
583 this_cpu_datap->cpu_regmap_paddr = in_processor_info->regmap_paddr;
584 this_cpu_datap->cpu_phys_id = in_processor_info->phys_id;
585 this_cpu_datap->cpu_l2_access_penalty = in_processor_info->l2_access_penalty;
586
587 processor_t processor = PERCPU_GET_RELATIVE(processor, cpu_data, this_cpu_datap);
588 if (!is_boot_cpu) {
589 processor_init(processor, this_cpu_datap->cpu_number,
590 processor_pset(master_processor));
591
592 if (this_cpu_datap->cpu_l2_access_penalty) {
593 /*
594 * Cores that have a non-zero L2 access penalty compared
595 * to the boot processor should be de-prioritized by the
596 * scheduler, so that threads use the cores with better L2
597 * preferentially.
598 */
599 processor_set_primary(processor, master_processor);
600 }
601 }
602
603 *processor_out = processor;
604 *ipi_handler_out = cpu_signal_handler;
605 *pmi_handler_out = NULL;
606 if (in_processor_info->idle_tickle != (idle_tickle_t *) NULL) {
607 *in_processor_info->idle_tickle = (idle_tickle_t) cpu_idle_tickle;
608 }
609
610 #if KPC
611 if (kpc_register_cpu(this_cpu_datap) != TRUE) {
612 goto processor_register_error;
613 }
614 #endif
615
616 if (!is_boot_cpu) {
617 random_cpu_init(this_cpu_datap->cpu_number);
618 }
619
620 return KERN_SUCCESS;
621
622 processor_register_error:
623 #if KPC
624 kpc_unregister_cpu(this_cpu_datap);
625 #endif
626 if (!is_boot_cpu) {
627 cpu_data_free(this_cpu_datap);
628 }
629 return KERN_FAILURE;
630 }
631
632 void
633 ml_init_arm_debug_interface(
634 void * in_cpu_datap,
635 vm_offset_t virt_address)
636 {
637 ((cpu_data_t *)in_cpu_datap)->cpu_debug_interface_map = virt_address;
638 do_debugid();
639 }
640
641 /*
642 * Routine: init_ast_check
643 * Function:
644 */
645 void
646 init_ast_check(
647 __unused processor_t processor)
648 {
649 }
650
651 /*
652 * Routine: cause_ast_check
653 * Function:
654 */
655 void
656 cause_ast_check(
657 processor_t processor)
658 {
659 if (current_processor() != processor) {
660 cpu_signal(processor_to_cpu_datap(processor), SIGPast, (void *)NULL, (void *)NULL);
661 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), processor->cpu_id, 1 /* ast */, 0, 0, 0);
662 }
663 }
664
665 extern uint32_t cpu_idle_count;
666
667 void
668 ml_get_power_state(boolean_t *icp, boolean_t *pidlep)
669 {
670 *icp = ml_at_interrupt_context();
671 *pidlep = (cpu_idle_count == real_ncpus);
672 }
673
674 /*
675 * Routine: ml_cause_interrupt
676 * Function: Generate a fake interrupt
677 */
678 void
679 ml_cause_interrupt(void)
680 {
681 return; /* BS_XXX */
682 }
683
684 /* Map memory map IO space */
685 vm_offset_t
686 ml_io_map(
687 vm_offset_t phys_addr,
688 vm_size_t size)
689 {
690 return io_map(phys_addr, size, VM_WIMG_IO);
691 }
692
693 /* Map memory map IO space (with protections specified) */
694 vm_offset_t
695 ml_io_map_with_prot(
696 vm_offset_t phys_addr,
697 vm_size_t size,
698 vm_prot_t prot)
699 {
700 return io_map_with_prot(phys_addr, size, VM_WIMG_IO, prot);
701 }
702
703 vm_offset_t
704 ml_io_map_wcomb(
705 vm_offset_t phys_addr,
706 vm_size_t size)
707 {
708 return io_map(phys_addr, size, VM_WIMG_WCOMB);
709 }
710
711 void
712 ml_io_unmap(vm_offset_t addr, vm_size_t sz)
713 {
714 pmap_remove(kernel_pmap, addr, addr + sz);
715 kmem_free(kernel_map, addr, sz);
716 }
717
718 /* boot memory allocation */
719 vm_offset_t
720 ml_static_malloc(
721 __unused vm_size_t size)
722 {
723 return (vm_offset_t) NULL;
724 }
725
726 vm_map_address_t
727 ml_map_high_window(
728 vm_offset_t phys_addr,
729 vm_size_t len)
730 {
731 return pmap_map_high_window_bd(phys_addr, len, VM_PROT_READ | VM_PROT_WRITE);
732 }
733
734 vm_offset_t
735 ml_static_ptovirt(
736 vm_offset_t paddr)
737 {
738 return phystokv(paddr);
739 }
740
741 vm_offset_t
742 ml_static_vtop(
743 vm_offset_t vaddr)
744 {
745 assertf(((vm_address_t)(vaddr) - gVirtBase) < gPhysSize, "%s: illegal vaddr: %p", __func__, (void*)vaddr);
746 return (vm_address_t)(vaddr) - gVirtBase + gPhysBase;
747 }
748
749 /*
750 * Return the maximum contiguous KVA range that can be accessed from this
751 * physical address. For arm64, we employ a segmented physical aperture
752 * relocation table which can limit the available range for a given PA to
753 * something less than the extent of physical memory. But here, we still
754 * have a flat physical aperture, so no such requirement exists.
755 */
756 vm_map_address_t
757 phystokv_range(pmap_paddr_t pa, vm_size_t *max_len)
758 {
759 vm_size_t len = gPhysSize - (pa - gPhysBase);
760 if (*max_len > len) {
761 *max_len = len;
762 }
763 assertf((pa - gPhysBase) < gPhysSize, "%s: illegal PA: 0x%lx", __func__, (unsigned long)pa);
764 return pa - gPhysBase + gVirtBase;
765 }
766
767 vm_offset_t
768 ml_static_slide(
769 vm_offset_t vaddr)
770 {
771 return VM_KERNEL_SLIDE(vaddr);
772 }
773
774 kern_return_t
775 ml_static_verify_page_protections(
776 uint64_t base, uint64_t size, vm_prot_t prot)
777 {
778 /* XXX Implement Me */
779 (void)base;
780 (void)size;
781 (void)prot;
782 return KERN_FAILURE;
783 }
784
785
786 vm_offset_t
787 ml_static_unslide(
788 vm_offset_t vaddr)
789 {
790 return VM_KERNEL_UNSLIDE(vaddr);
791 }
792
793 kern_return_t
794 ml_static_protect(
795 vm_offset_t vaddr, /* kernel virtual address */
796 vm_size_t size,
797 vm_prot_t new_prot)
798 {
799 pt_entry_t arm_prot = 0;
800 pt_entry_t arm_block_prot = 0;
801 vm_offset_t vaddr_cur;
802 ppnum_t ppn;
803 kern_return_t result = KERN_SUCCESS;
804
805 if (vaddr < VM_MIN_KERNEL_ADDRESS) {
806 return KERN_FAILURE;
807 }
808
809 assert((vaddr & (ARM_PGBYTES - 1)) == 0); /* must be page aligned */
810
811 if ((new_prot & VM_PROT_WRITE) && (new_prot & VM_PROT_EXECUTE)) {
812 panic("ml_static_protect(): WX request on %p", (void *) vaddr);
813 }
814 if (lockdown_done && (new_prot & VM_PROT_EXECUTE)) {
815 panic("ml_static_protect(): attempt to inject executable mapping on %p", (void *) vaddr);
816 }
817
818 /* Set up the protection bits, and block bits so we can validate block mappings. */
819 if (new_prot & VM_PROT_WRITE) {
820 arm_prot |= ARM_PTE_AP(AP_RWNA);
821 arm_block_prot |= ARM_TTE_BLOCK_AP(AP_RWNA);
822 } else {
823 arm_prot |= ARM_PTE_AP(AP_RONA);
824 arm_block_prot |= ARM_TTE_BLOCK_AP(AP_RONA);
825 }
826
827 if (!(new_prot & VM_PROT_EXECUTE)) {
828 arm_prot |= ARM_PTE_NX;
829 arm_block_prot |= ARM_TTE_BLOCK_NX;
830 }
831
832 for (vaddr_cur = vaddr;
833 vaddr_cur < ((vaddr + size) & ~ARM_PGMASK);
834 vaddr_cur += ARM_PGBYTES) {
835 ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
836 if (ppn != (vm_offset_t) NULL) {
837 tt_entry_t *ttp = &kernel_pmap->tte[ttenum(vaddr_cur)];
838 tt_entry_t tte = *ttp;
839
840 if ((tte & ARM_TTE_TYPE_MASK) != ARM_TTE_TYPE_TABLE) {
841 if (((tte & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_BLOCK) &&
842 ((tte & (ARM_TTE_BLOCK_APMASK | ARM_TTE_BLOCK_NX_MASK)) == arm_block_prot)) {
843 /*
844 * We can support ml_static_protect on a block mapping if the mapping already has
845 * the desired protections. We still want to run checks on a per-page basis.
846 */
847 continue;
848 }
849
850 result = KERN_FAILURE;
851 break;
852 }
853
854 pt_entry_t *pte_p = (pt_entry_t *) ttetokv(tte) + ptenum(vaddr_cur);
855 pt_entry_t ptmp = *pte_p;
856
857 ptmp = (ptmp & ~(ARM_PTE_APMASK | ARM_PTE_NX_MASK)) | arm_prot;
858 *pte_p = ptmp;
859 }
860 }
861
862 if (vaddr_cur > vaddr) {
863 flush_mmu_tlb_region(vaddr, (vm_size_t)(vaddr_cur - vaddr));
864 }
865
866 return result;
867 }
868
869 /*
870 * Routine: ml_static_mfree
871 * Function:
872 */
873 void
874 ml_static_mfree(
875 vm_offset_t vaddr,
876 vm_size_t size)
877 {
878 vm_offset_t vaddr_cur;
879 ppnum_t ppn;
880 uint32_t freed_pages = 0;
881 uint32_t freed_kernelcache_pages = 0;
882
883 /* It is acceptable (if bad) to fail to free. */
884 if (vaddr < VM_MIN_KERNEL_ADDRESS) {
885 return;
886 }
887
888 assert((vaddr & (PAGE_SIZE - 1)) == 0); /* must be page aligned */
889
890 for (vaddr_cur = vaddr;
891 vaddr_cur < trunc_page_32(vaddr + size);
892 vaddr_cur += PAGE_SIZE) {
893 ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
894 if (ppn != (vm_offset_t) NULL) {
895 /*
896 * It is not acceptable to fail to update the protections on a page
897 * we will release to the VM. We need to either panic or continue.
898 * For now, we'll panic (to help flag if there is memory we can
899 * reclaim).
900 */
901 if (ml_static_protect(vaddr_cur, PAGE_SIZE, VM_PROT_WRITE | VM_PROT_READ) != KERN_SUCCESS) {
902 panic("Failed ml_static_mfree on %p", (void *) vaddr_cur);
903 }
904 vm_page_create(ppn, (ppn + 1));
905 freed_pages++;
906 if (vaddr_cur >= segLOWEST && vaddr_cur < end_kern) {
907 freed_kernelcache_pages++;
908 }
909 }
910 }
911 vm_page_lockspin_queues();
912 vm_page_wire_count -= freed_pages;
913 vm_page_wire_count_initial -= freed_pages;
914 vm_page_kernelcache_count -= freed_kernelcache_pages;
915 vm_page_unlock_queues();
916 #if DEBUG
917 kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
918 #endif
919 }
920
921
922 /* virtual to physical on wired pages */
923 vm_offset_t
924 ml_vtophys(vm_offset_t vaddr)
925 {
926 return kvtophys(vaddr);
927 }
928
929 /*
930 * Routine: ml_nofault_copy
931 * Function: Perform a physical mode copy if the source and destination have
932 * valid translations in the kernel pmap. If translations are present, they are
933 * assumed to be wired; e.g., no attempt is made to guarantee that the
934 * translations obtained remain valid for the duration of the copy process.
935 */
936 vm_size_t
937 ml_nofault_copy(vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
938 {
939 addr64_t cur_phys_dst, cur_phys_src;
940 uint32_t count, nbytes = 0;
941
942 while (size > 0) {
943 if (!(cur_phys_src = kvtophys(virtsrc))) {
944 break;
945 }
946 if (!(cur_phys_dst = kvtophys(virtdst))) {
947 break;
948 }
949 if (!pmap_valid_address(trunc_page_64(cur_phys_dst)) ||
950 !pmap_valid_address(trunc_page_64(cur_phys_src))) {
951 break;
952 }
953 count = PAGE_SIZE - (cur_phys_src & PAGE_MASK);
954 if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK))) {
955 count = PAGE_SIZE - (cur_phys_dst & PAGE_MASK);
956 }
957 if (count > size) {
958 count = size;
959 }
960
961 bcopy_phys(cur_phys_src, cur_phys_dst, count);
962
963 nbytes += count;
964 virtsrc += count;
965 virtdst += count;
966 size -= count;
967 }
968
969 return nbytes;
970 }
971
972 /*
973 * Routine: ml_validate_nofault
974 * Function: Validate that ths address range has a valid translations
975 * in the kernel pmap. If translations are present, they are
976 * assumed to be wired; i.e. no attempt is made to guarantee
977 * that the translation persist after the check.
978 * Returns: TRUE if the range is mapped and will not cause a fault,
979 * FALSE otherwise.
980 */
981
982 boolean_t
983 ml_validate_nofault(
984 vm_offset_t virtsrc, vm_size_t size)
985 {
986 addr64_t cur_phys_src;
987 uint32_t count;
988
989 while (size > 0) {
990 if (!(cur_phys_src = kvtophys(virtsrc))) {
991 return FALSE;
992 }
993 if (!pmap_valid_address(trunc_page_64(cur_phys_src))) {
994 return FALSE;
995 }
996 count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
997 if (count > size) {
998 count = (uint32_t)size;
999 }
1000
1001 virtsrc += count;
1002 size -= count;
1003 }
1004
1005 return TRUE;
1006 }
1007
1008 void
1009 ml_get_bouncepool_info(vm_offset_t * phys_addr, vm_size_t * size)
1010 {
1011 *phys_addr = 0;
1012 *size = 0;
1013 }
1014
1015 /*
1016 * Stubs for CPU Stepper
1017 */
1018 void
1019 active_rt_threads(__unused boolean_t active)
1020 {
1021 }
1022
1023 void
1024 thread_tell_urgency(__unused thread_urgency_t urgency,
1025 __unused uint64_t rt_period,
1026 __unused uint64_t rt_deadline,
1027 __unused uint64_t sched_latency,
1028 __unused thread_t nthread)
1029 {
1030 }
1031
1032 void
1033 machine_run_count(__unused uint32_t count)
1034 {
1035 }
1036
1037 processor_t
1038 machine_choose_processor(__unused processor_set_t pset, processor_t processor)
1039 {
1040 return processor;
1041 }
1042
1043 boolean_t
1044 machine_timeout_suspended(void)
1045 {
1046 return FALSE;
1047 }
1048
1049 kern_return_t
1050 ml_interrupt_prewarm(__unused uint64_t deadline)
1051 {
1052 return KERN_FAILURE;
1053 }
1054
1055 uint64_t
1056 ml_get_hwclock(void)
1057 {
1058 uint64_t high_first = 0;
1059 uint64_t high_second = 0;
1060 uint64_t low = 0;
1061
1062 __builtin_arm_isb(ISB_SY);
1063
1064 do {
1065 high_first = __builtin_arm_mrrc(15, 0, 14) >> 32;
1066 low = __builtin_arm_mrrc(15, 0, 14) & 0xFFFFFFFFULL;
1067 high_second = __builtin_arm_mrrc(15, 0, 14) >> 32;
1068 } while (high_first != high_second);
1069
1070 return (high_first << 32) | (low);
1071 }
1072
1073 boolean_t
1074 ml_delay_should_spin(uint64_t interval)
1075 {
1076 cpu_data_t *cdp = getCpuDatap();
1077
1078 if (cdp->cpu_idle_latency) {
1079 return (interval < cdp->cpu_idle_latency) ? TRUE : FALSE;
1080 } else {
1081 /*
1082 * Early boot, latency is unknown. Err on the side of blocking,
1083 * which should always be safe, even if slow
1084 */
1085 return FALSE;
1086 }
1087 }
1088
1089 void
1090 ml_delay_on_yield(void)
1091 {
1092 }
1093
1094 boolean_t
1095 ml_thread_is64bit(thread_t thread)
1096 {
1097 return thread_is_64bit_addr(thread);
1098 }
1099
1100 void
1101 ml_timer_evaluate(void)
1102 {
1103 }
1104
1105 boolean_t
1106 ml_timer_forced_evaluation(void)
1107 {
1108 return FALSE;
1109 }
1110
1111 uint64_t
1112 ml_energy_stat(__unused thread_t t)
1113 {
1114 return 0;
1115 }
1116
1117
1118 void
1119 ml_gpu_stat_update(__unused uint64_t gpu_ns_delta)
1120 {
1121 /*
1122 * For now: update the resource coalition stats of the
1123 * current thread's coalition
1124 */
1125 task_coalition_update_gpu_stats(current_task(), gpu_ns_delta);
1126 }
1127
1128 uint64_t
1129 ml_gpu_stat(__unused thread_t t)
1130 {
1131 return 0;
1132 }
1133
1134 #if !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME
1135 static void
1136 timer_state_event(boolean_t switch_to_kernel)
1137 {
1138 thread_t thread = current_thread();
1139 if (!thread->precise_user_kernel_time) {
1140 return;
1141 }
1142
1143 processor_t pd = current_processor();
1144 uint64_t now = ml_get_timebase();
1145
1146 timer_stop(pd->current_state, now);
1147 pd->current_state = (switch_to_kernel) ? &pd->system_state : &pd->user_state;
1148 timer_start(pd->current_state, now);
1149
1150 timer_stop(pd->thread_timer, now);
1151 pd->thread_timer = (switch_to_kernel) ? &thread->system_timer : &thread->user_timer;
1152 timer_start(pd->thread_timer, now);
1153 }
1154
1155 void
1156 timer_state_event_user_to_kernel(void)
1157 {
1158 timer_state_event(TRUE);
1159 }
1160
1161 void
1162 timer_state_event_kernel_to_user(void)
1163 {
1164 timer_state_event(FALSE);
1165 }
1166 #endif /* !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME */
1167
1168 uint32_t
1169 get_arm_cpu_version(void)
1170 {
1171 uint32_t value = machine_read_midr();
1172
1173 /* Compose the register values into 8 bits; variant[7:4], revision[3:0]. */
1174 return ((value & MIDR_REV_MASK) >> MIDR_REV_SHIFT) | ((value & MIDR_VAR_MASK) >> (MIDR_VAR_SHIFT - 4));
1175 }
1176
1177 boolean_t
1178 user_cont_hwclock_allowed(void)
1179 {
1180 return FALSE;
1181 }
1182
1183 uint8_t
1184 user_timebase_type(void)
1185 {
1186 #if __ARM_TIME__
1187 return USER_TIMEBASE_SPEC;
1188 #else
1189 return USER_TIMEBASE_NONE;
1190 #endif
1191 }
1192
1193 /*
1194 * The following are required for parts of the kernel
1195 * that cannot resolve these functions as inlines:
1196 */
1197 extern thread_t current_act(void) __attribute__((const));
1198 thread_t
1199 current_act(void)
1200 {
1201 return current_thread_fast();
1202 }
1203
1204 #undef current_thread
1205 extern thread_t current_thread(void) __attribute__((const));
1206 thread_t
1207 current_thread(void)
1208 {
1209 return current_thread_fast();
1210 }
1211
1212 #if __ARM_USER_PROTECT__
1213 uintptr_t
1214 arm_user_protect_begin(thread_t thread)
1215 {
1216 uintptr_t ttbr0, asid = 0; // kernel asid
1217
1218 ttbr0 = __builtin_arm_mrc(15, 0, 2, 0, 0); // Get TTBR0
1219 if (ttbr0 != thread->machine.kptw_ttb) {
1220 __builtin_arm_mcr(15, 0, thread->machine.kptw_ttb, 2, 0, 0); // Set TTBR0
1221 __builtin_arm_mcr(15, 0, asid, 13, 0, 1); // Set CONTEXTIDR
1222 __builtin_arm_isb(ISB_SY);
1223 }
1224 return ttbr0;
1225 }
1226
1227 void
1228 arm_user_protect_end(thread_t thread, uintptr_t ttbr0, boolean_t disable_interrupts)
1229 {
1230 if ((ttbr0 != thread->machine.kptw_ttb) && (thread->machine.uptw_ttb != thread->machine.kptw_ttb)) {
1231 if (disable_interrupts) {
1232 __asm__ volatile ("cpsid if" ::: "memory"); // Disable FIQ/IRQ
1233 }
1234 __builtin_arm_mcr(15, 0, thread->machine.uptw_ttb, 2, 0, 0); // Set TTBR0
1235 __builtin_arm_mcr(15, 0, thread->machine.asid, 13, 0, 1); // Set CONTEXTIDR with thread asid
1236 __builtin_arm_dsb(DSB_ISH);
1237 __builtin_arm_isb(ISB_SY);
1238 }
1239 }
1240 #endif // __ARM_USER_PROTECT__
1241
1242 void
1243 machine_lockdown(void)
1244 {
1245 arm_vm_prot_finalize(PE_state.bootArgs);
1246 lockdown_done = 1;
1247 }
1248
1249 void
1250 ml_lockdown_init(void)
1251 {
1252 }
1253
1254 void
1255 ml_hibernate_active_pre(void)
1256 {
1257 }
1258
1259 void
1260 ml_hibernate_active_post(void)
1261 {
1262 }
1263
1264 size_t
1265 ml_get_vm_reserved_regions(bool vm_is64bit, struct vm_reserved_region **regions)
1266 {
1267 #pragma unused(vm_is64bit)
1268 assert(regions != NULL);
1269
1270 *regions = NULL;
1271 return 0;
1272 }