]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_sack.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_sack.c
1 /*
2 * Copyright (c) 2004-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 */
61
62 #define _IP_VHL
63
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/mbuf.h>
70 #include <sys/domain.h>
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74
75 #include <kern/zalloc.h>
76
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
84 #include <netinet6/in6_pcb.h>
85 #include <netinet/ip6.h>
86 #include <netinet6/ip6_var.h>
87 #include <netinet/tcp.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcpip.h>
93 #include <netinet/tcp_cache.h>
94 #if TCPDEBUG
95 #include <netinet/tcp_debug.h>
96 #endif
97 #include <sys/kdebug.h>
98
99 #if IPSEC
100 #include <netinet6/ipsec.h>
101 #endif /*IPSEC*/
102
103 #include <libkern/OSAtomic.h>
104
105 SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_LOCKED,
106 int, tcp_do_sack, 1, "Enable/Disable TCP SACK support");
107 SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack_maxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
108 static int, tcp_sack_maxholes, 128,
109 "Maximum number of TCP SACK holes allowed per connection");
110
111 SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack_globalmaxholes,
112 CTLFLAG_RW | CTLFLAG_LOCKED, static int, tcp_sack_globalmaxholes, 65536,
113 "Global maximum number of TCP SACK holes");
114
115 static SInt32 tcp_sack_globalholes = 0;
116 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalholes, CTLFLAG_RD | CTLFLAG_LOCKED,
117 &tcp_sack_globalholes, 0,
118 "Global number of TCP SACK holes currently allocated");
119
120 extern struct zone *sack_hole_zone;
121
122 #define TCP_VALIDATE_SACK_SEQ_NUMBERS(_tp_, _sb_, _ack_) \
123 (SEQ_GT((_sb_)->end, (_sb_)->start) && \
124 SEQ_GT((_sb_)->start, (_tp_)->snd_una) && \
125 SEQ_GT((_sb_)->start, (_ack_)) && \
126 SEQ_LT((_sb_)->start, (_tp_)->snd_max) && \
127 SEQ_GT((_sb_)->end, (_tp_)->snd_una) && \
128 SEQ_LEQ((_sb_)->end, (_tp_)->snd_max))
129
130 /*
131 * This function is called upon receipt of new valid data (while not in header
132 * prediction mode), and it updates the ordered list of sacks.
133 */
134 void
135 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
136 {
137 /*
138 * First reported block MUST be the most recent one. Subsequent
139 * blocks SHOULD be in the order in which they arrived at the
140 * receiver. These two conditions make the implementation fully
141 * compliant with RFC 2018.
142 */
143 struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
144 int num_head, num_saved, i;
145
146 /* SACK block for the received segment. */
147 head_blk.start = rcv_start;
148 head_blk.end = rcv_end;
149
150 /*
151 * Merge updated SACK blocks into head_blk, and
152 * save unchanged SACK blocks into saved_blks[].
153 * num_saved will have the number of the saved SACK blocks.
154 */
155 num_saved = 0;
156 for (i = 0; i < tp->rcv_numsacks; i++) {
157 tcp_seq start = tp->sackblks[i].start;
158 tcp_seq end = tp->sackblks[i].end;
159 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
160 /*
161 * Discard this SACK block.
162 */
163 } else if (SEQ_LEQ(head_blk.start, end) &&
164 SEQ_GEQ(head_blk.end, start)) {
165 /*
166 * Merge this SACK block into head_blk.
167 * This SACK block itself will be discarded.
168 */
169 if (SEQ_GT(head_blk.start, start)) {
170 head_blk.start = start;
171 }
172 if (SEQ_LT(head_blk.end, end)) {
173 head_blk.end = end;
174 }
175 } else {
176 /*
177 * Save this SACK block.
178 */
179 saved_blks[num_saved].start = start;
180 saved_blks[num_saved].end = end;
181 num_saved++;
182 }
183 }
184
185 /*
186 * Update SACK list in tp->sackblks[].
187 */
188 num_head = 0;
189 if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
190 /*
191 * The received data segment is an out-of-order segment.
192 * Put head_blk at the top of SACK list.
193 */
194 tp->sackblks[0] = head_blk;
195 num_head = 1;
196 /*
197 * If the number of saved SACK blocks exceeds its limit,
198 * discard the last SACK block.
199 */
200 if (num_saved >= MAX_SACK_BLKS) {
201 num_saved--;
202 }
203 }
204 if (num_saved > 0) {
205 /*
206 * Copy the saved SACK blocks back.
207 */
208 bcopy(saved_blks, &tp->sackblks[num_head], sizeof(struct sackblk) * num_saved);
209 }
210
211 /* Save the number of SACK blocks. */
212 tp->rcv_numsacks = num_head + num_saved;
213
214 /* If we are requesting SACK recovery, reset the stretch-ack state
215 * so that connection will generate more acks after recovery and
216 * sender's cwnd will open.
217 */
218 if ((tp->t_flags & TF_STRETCHACK) != 0 && tp->rcv_numsacks > 0) {
219 tcp_reset_stretch_ack(tp);
220 }
221 if (tp->rcv_numsacks > 0) {
222 tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
223 }
224
225 #if TRAFFIC_MGT
226 if (tp->acc_iaj > 0 && tp->rcv_numsacks > 0) {
227 reset_acc_iaj(tp);
228 }
229 #endif /* TRAFFIC_MGT */
230 }
231
232 /*
233 * Delete all receiver-side SACK information.
234 */
235 void
236 tcp_clean_sackreport( struct tcpcb *tp)
237 {
238 tp->rcv_numsacks = 0;
239 bzero(&tp->sackblks[0], sizeof(struct sackblk) * MAX_SACK_BLKS);
240 }
241
242 /*
243 * Allocate struct sackhole.
244 */
245 static struct sackhole *
246 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
247 {
248 struct sackhole *hole;
249
250 if (tp->snd_numholes >= tcp_sack_maxholes ||
251 tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
252 tcpstat.tcps_sack_sboverflow++;
253 return NULL;
254 }
255
256 hole = (struct sackhole *)zalloc(sack_hole_zone);
257 if (hole == NULL) {
258 return NULL;
259 }
260
261 hole->start = start;
262 hole->end = end;
263 hole->rxmit = start;
264
265 tp->snd_numholes++;
266 OSIncrementAtomic(&tcp_sack_globalholes);
267
268 return hole;
269 }
270
271 /*
272 * Free struct sackhole.
273 */
274 static void
275 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
276 {
277 zfree(sack_hole_zone, hole);
278
279 tp->snd_numholes--;
280 OSDecrementAtomic(&tcp_sack_globalholes);
281 }
282
283 /*
284 * Insert new SACK hole into scoreboard.
285 */
286 static struct sackhole *
287 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
288 struct sackhole *after)
289 {
290 struct sackhole *hole;
291
292 /* Allocate a new SACK hole. */
293 hole = tcp_sackhole_alloc(tp, start, end);
294 if (hole == NULL) {
295 return NULL;
296 }
297 hole->rxmit_start = tcp_now;
298 /* Insert the new SACK hole into scoreboard */
299 if (after != NULL) {
300 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
301 } else {
302 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
303 }
304
305 /* Update SACK hint. */
306 if (tp->sackhint.nexthole == NULL) {
307 tp->sackhint.nexthole = hole;
308 }
309
310 return hole;
311 }
312
313 /*
314 * Remove SACK hole from scoreboard.
315 */
316 static void
317 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
318 {
319 /* Update SACK hint. */
320 if (tp->sackhint.nexthole == hole) {
321 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
322 }
323
324 /* Remove this SACK hole. */
325 TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
326
327 /* Free this SACK hole. */
328 tcp_sackhole_free(tp, hole);
329 }
330 /*
331 * When a new ack with SACK is received, check if it indicates packet
332 * reordering. If there is packet reordering, the socket is marked and
333 * the late time offset by which the packet was reordered with
334 * respect to its closest neighboring packets is computed.
335 */
336 static void
337 tcp_sack_detect_reordering(struct tcpcb *tp, struct sackhole *s,
338 tcp_seq sacked_seq, tcp_seq snd_fack)
339 {
340 int32_t rext = 0, reordered = 0;
341
342 /*
343 * If the SACK hole is past snd_fack, this is from new SACK
344 * information, so we can ignore it.
345 */
346 if (SEQ_GT(s->end, snd_fack)) {
347 return;
348 }
349 /*
350 * If there has been a retransmit timeout, then the timestamp on
351 * the SACK segment will be newer. This might lead to a
352 * false-positive. Avoid re-ordering detection in this case.
353 */
354 if (tp->t_rxtshift > 0) {
355 return;
356 }
357
358 /*
359 * Detect reordering from SACK information by checking
360 * if recently sacked data was never retransmitted from this hole.
361 *
362 * First, we look for the byte in the list of retransmitted segments. This one
363 * will contain even the segments that are retransmitted thanks to RTO/TLP.
364 *
365 * Then, we check the sackhole which indicates whether or not the sackhole
366 * was subject to retransmission.
367 */
368 if (SEQ_LT(s->rxmit, sacked_seq) &&
369 (!tcp_do_better_lr || tcp_rxtseg_find(tp, sacked_seq - 1, sacked_seq - 1) == NULL)) {
370 reordered = 1;
371 tcpstat.tcps_avoid_rxmt++;
372 }
373
374 if (reordered) {
375 if (!(tp->t_flagsext & TF_PKTS_REORDERED)) {
376 tp->t_flagsext |= TF_PKTS_REORDERED;
377 tcpstat.tcps_detect_reordering++;
378 }
379
380 tcpstat.tcps_reordered_pkts++;
381 tp->t_reordered_pkts++;
382
383 /*
384 * If reordering is seen on a connection wth ECN enabled,
385 * increment the heuristic
386 */
387 if (TCP_ECN_ENABLED(tp)) {
388 INP_INC_IFNET_STAT(tp->t_inpcb, ecn_fallback_reorder);
389 tcpstat.tcps_ecn_fallback_reorder++;
390 tcp_heuristic_ecn_aggressive(tp);
391 }
392
393 VERIFY(SEQ_GEQ(snd_fack, s->rxmit));
394
395 if (s->rxmit_start > 0) {
396 rext = timer_diff(tcp_now, 0, s->rxmit_start, 0);
397 if (rext < 0) {
398 return;
399 }
400
401 /*
402 * We take the maximum reorder window to schedule
403 * DELAYFR timer as that will take care of jitter
404 * on the network path.
405 *
406 * Computing average and standard deviation seems
407 * to cause unnecessary retransmissions when there
408 * is high jitter.
409 *
410 * We set a maximum of SRTT/2 and a minimum of
411 * 10 ms on the reorder window.
412 */
413 tp->t_reorderwin = max(tp->t_reorderwin, rext);
414 tp->t_reorderwin = min(tp->t_reorderwin,
415 (tp->t_srtt >> (TCP_RTT_SHIFT - 1)));
416 tp->t_reorderwin = max(tp->t_reorderwin, 10);
417 }
418 }
419 }
420
421 static void
422 tcp_sack_update_byte_counter(struct tcpcb *tp, uint32_t start, uint32_t end,
423 uint32_t *newbytes_acked, uint32_t *towards_fr_acked)
424 {
425 *newbytes_acked += (end - start);
426 if (SEQ_GEQ(start, tp->send_highest_sack)) {
427 *towards_fr_acked += (end - start);
428 }
429 }
430
431 /*
432 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
433 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
434 * the sequence space).
435 */
436 void
437 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th,
438 u_int32_t *newbytes_acked, uint32_t *after_rexmit_acked)
439 {
440 struct sackhole *cur, *temp;
441 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
442 int i, j, num_sack_blks;
443 tcp_seq old_snd_fack = 0, th_ack = th->th_ack;
444
445 num_sack_blks = 0;
446 /*
447 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
448 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
449 */
450 if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
451 sack_blocks[num_sack_blks].start = tp->snd_una;
452 sack_blocks[num_sack_blks++].end = th_ack;
453 }
454 /*
455 * Append received valid SACK blocks to sack_blocks[].
456 * Check that the SACK block range is valid.
457 */
458 for (i = 0; i < to->to_nsacks; i++) {
459 bcopy((to->to_sacks + i * TCPOLEN_SACK),
460 &sack, sizeof(sack));
461 sack.start = ntohl(sack.start);
462 sack.end = ntohl(sack.end);
463 if (TCP_VALIDATE_SACK_SEQ_NUMBERS(tp, &sack, th_ack)) {
464 sack_blocks[num_sack_blks++] = sack;
465 }
466 }
467
468 /*
469 * Return if SND.UNA is not advanced and no valid SACK block
470 * is received.
471 */
472 if (num_sack_blks == 0) {
473 return;
474 }
475
476 VERIFY(num_sack_blks <= (TCP_MAX_SACK + 1));
477 /*
478 * Sort the SACK blocks so we can update the scoreboard
479 * with just one pass. The overhead of sorting upto 4+1 elements
480 * is less than making upto 4+1 passes over the scoreboard.
481 */
482 for (i = 0; i < num_sack_blks; i++) {
483 for (j = i + 1; j < num_sack_blks; j++) {
484 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
485 sack = sack_blocks[i];
486 sack_blocks[i] = sack_blocks[j];
487 sack_blocks[j] = sack;
488 }
489 }
490 }
491 if (TAILQ_EMPTY(&tp->snd_holes)) {
492 /*
493 * Empty scoreboard. Need to initialize snd_fack (it may be
494 * uninitialized or have a bogus value). Scoreboard holes
495 * (from the sack blocks received) are created later below (in
496 * the logic that adds holes to the tail of the scoreboard).
497 */
498 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
499 }
500
501 old_snd_fack = tp->snd_fack;
502 /*
503 * In the while-loop below, incoming SACK blocks (sack_blocks[])
504 * and SACK holes (snd_holes) are traversed from their tails with
505 * just one pass in order to reduce the number of compares especially
506 * when the bandwidth-delay product is large.
507 * Note: Typically, in the first RTT of SACK recovery, the highest
508 * three or four SACK blocks with the same ack number are received.
509 * In the second RTT, if retransmitted data segments are not lost,
510 * the highest three or four SACK blocks with ack number advancing
511 * are received.
512 */
513 sblkp = &sack_blocks[num_sack_blks - 1]; /* Last SACK block */
514 if (SEQ_LT(tp->snd_fack, sblkp->start)) {
515 /*
516 * The highest SACK block is beyond fack.
517 * Append new SACK hole at the tail.
518 * If the second or later highest SACK blocks are also
519 * beyond the current fack, they will be inserted by
520 * way of hole splitting in the while-loop below.
521 */
522 temp = tcp_sackhole_insert(tp, tp->snd_fack, sblkp->start, NULL);
523 if (temp != NULL) {
524 tp->snd_fack = sblkp->end;
525 tcp_sack_update_byte_counter(tp, sblkp->start, sblkp->end, newbytes_acked, after_rexmit_acked);
526
527 /* Go to the previous sack block. */
528 sblkp--;
529 } else {
530 /*
531 * We failed to add a new hole based on the current
532 * sack block. Skip over all the sack blocks that
533 * fall completely to the right of snd_fack and proceed
534 * to trim the scoreboard based on the remaining sack
535 * blocks. This also trims the scoreboard for th_ack
536 * (which is sack_blocks[0]).
537 */
538 while (sblkp >= sack_blocks &&
539 SEQ_LT(tp->snd_fack, sblkp->start)) {
540 sblkp--;
541 }
542 if (sblkp >= sack_blocks &&
543 SEQ_LT(tp->snd_fack, sblkp->end)) {
544 tcp_sack_update_byte_counter(tp, tp->snd_fack, sblkp->end, newbytes_acked, after_rexmit_acked);
545 tp->snd_fack = sblkp->end;
546 }
547 }
548 } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
549 /* fack is advanced. */
550 tcp_sack_update_byte_counter(tp, tp->snd_fack, sblkp->end, newbytes_acked, after_rexmit_acked);
551 tp->snd_fack = sblkp->end;
552 }
553 /* We must have at least one SACK hole in scoreboard */
554 cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
555 /*
556 * Since the incoming sack blocks are sorted, we can process them
557 * making one sweep of the scoreboard.
558 */
559 while (sblkp >= sack_blocks && cur != NULL) {
560 if (SEQ_GEQ(sblkp->start, cur->end)) {
561 /*
562 * SACKs data beyond the current hole.
563 * Go to the previous sack block.
564 */
565 sblkp--;
566 continue;
567 }
568 if (SEQ_LEQ(sblkp->end, cur->start)) {
569 /*
570 * SACKs data before the current hole.
571 * Go to the previous hole.
572 */
573 cur = TAILQ_PREV(cur, sackhole_head, scblink);
574 continue;
575 }
576 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
577 if (tp->sackhint.sack_bytes_rexmit < 0) {
578 tp->sackhint.sack_bytes_rexmit = 0;
579 }
580
581 if (SEQ_LEQ(sblkp->start, cur->start)) {
582 /* Data acks at least the beginning of hole */
583 if (SEQ_GEQ(sblkp->end, cur->end)) {
584 /* Acks entire hole, so delete hole */
585 tcp_sack_update_byte_counter(tp, cur->start, cur->end, newbytes_acked, after_rexmit_acked);
586
587 tcp_sack_detect_reordering(tp, cur,
588 cur->end, old_snd_fack);
589 temp = cur;
590 cur = TAILQ_PREV(cur, sackhole_head, scblink);
591 tcp_sackhole_remove(tp, temp);
592 /*
593 * The sack block may ack all or part of the next
594 * hole too, so continue onto the next hole.
595 */
596 continue;
597 } else {
598 /* Move start of hole forward */
599 tcp_sack_update_byte_counter(tp, cur->start, sblkp->end, newbytes_acked, after_rexmit_acked);
600 tcp_sack_detect_reordering(tp, cur,
601 sblkp->end, old_snd_fack);
602 cur->start = sblkp->end;
603 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
604 }
605 } else {
606 /* Data acks at least the end of hole */
607 if (SEQ_GEQ(sblkp->end, cur->end)) {
608 /* Move end of hole backward */
609 tcp_sack_update_byte_counter(tp, sblkp->start, cur->end, newbytes_acked, after_rexmit_acked);
610 tcp_sack_detect_reordering(tp, cur,
611 cur->end, old_snd_fack);
612 cur->end = sblkp->start;
613 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
614 } else {
615 /*
616 * ACKs some data in the middle of a hole;
617 * need to split current hole
618 */
619 tcp_sack_detect_reordering(tp, cur,
620 sblkp->end, old_snd_fack);
621 temp = tcp_sackhole_insert(tp, sblkp->end,
622 cur->end, cur);
623 if (temp != NULL) {
624 tcp_sack_update_byte_counter(tp, sblkp->start, sblkp->end, newbytes_acked, after_rexmit_acked);
625 if (SEQ_GT(cur->rxmit, temp->rxmit)) {
626 temp->rxmit = cur->rxmit;
627 tp->sackhint.sack_bytes_rexmit
628 += (temp->rxmit
629 - temp->start);
630 }
631 cur->end = sblkp->start;
632 cur->rxmit = SEQ_MIN(cur->rxmit,
633 cur->end);
634 /*
635 * Reset the rxmit_start to that of
636 * the current hole as that will
637 * help to compute the reorder
638 * window correctly
639 */
640 temp->rxmit_start = cur->rxmit_start;
641 }
642 }
643 }
644 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
645 /*
646 * Testing sblkp->start against cur->start tells us whether
647 * we're done with the sack block or the sack hole.
648 * Accordingly, we advance one or the other.
649 */
650 if (SEQ_LEQ(sblkp->start, cur->start)) {
651 cur = TAILQ_PREV(cur, sackhole_head, scblink);
652 } else {
653 sblkp--;
654 }
655 }
656 }
657
658 /*
659 * Free all SACK holes to clear the scoreboard.
660 */
661 void
662 tcp_free_sackholes(struct tcpcb *tp)
663 {
664 struct sackhole *q;
665
666 while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL) {
667 tcp_sackhole_remove(tp, q);
668 }
669 tp->sackhint.sack_bytes_rexmit = 0;
670 tp->sackhint.sack_bytes_acked = 0;
671 tp->t_new_dupacks = 0;
672 tp->sackhint.nexthole = NULL;
673 tp->sack_newdata = 0;
674 }
675
676 /*
677 * Partial ack handling within a sack recovery episode.
678 * Keeping this very simple for now. When a partial ack
679 * is received, force snd_cwnd to a value that will allow
680 * the sender to transmit no more than 2 segments.
681 * If necessary, a better scheme can be adopted at a
682 * later point, but for now, the goal is to prevent the
683 * sender from bursting a large amount of data in the midst
684 * of sack recovery.
685 */
686 void
687 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
688 {
689 int num_segs = 1;
690
691 tp->t_timer[TCPT_REXMT] = 0;
692 tp->t_rtttime = 0;
693 /* send one or 2 segments based on how much new data was acked */
694 if (((BYTES_ACKED(th, tp)) / tp->t_maxseg) > 2) {
695 num_segs = 2;
696 }
697 if (tcp_do_better_lr) {
698 tp->snd_cwnd = tcp_flight_size(tp) + num_segs * tp->t_maxseg;
699 } else {
700 tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
701 (tp->snd_nxt - tp->sack_newdata) +
702 num_segs * tp->t_maxseg);
703 }
704 if (tp->snd_cwnd > tp->snd_ssthresh) {
705 tp->snd_cwnd = tp->snd_ssthresh;
706 }
707 if (SEQ_LT(tp->snd_fack, tp->snd_recover) &&
708 tp->snd_fack == th->th_ack && TAILQ_EMPTY(&tp->snd_holes)) {
709 struct sackhole *temp;
710 /*
711 * we received a partial ack but there is no sack_hole
712 * that will cover the remaining seq space. In this case,
713 * create a hole from snd_fack to snd_recover so that
714 * the sack recovery will continue.
715 */
716 temp = tcp_sackhole_insert(tp, tp->snd_fack,
717 tp->snd_recover, NULL);
718 if (temp != NULL) {
719 tp->snd_fack = tp->snd_recover;
720 }
721 }
722 (void) tcp_output(tp);
723 }
724
725 /*
726 * Debug version of tcp_sack_output() that walks the scoreboard. Used for
727 * now to sanity check the hint.
728 */
729 static struct sackhole *
730 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
731 {
732 struct sackhole *p;
733
734 *sack_bytes_rexmt = 0;
735 TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
736 if (SEQ_LT(p->rxmit, p->end)) {
737 if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
738 continue;
739 }
740 *sack_bytes_rexmt += (p->rxmit - p->start);
741 break;
742 }
743 *sack_bytes_rexmt += (p->rxmit - p->start);
744 }
745 return p;
746 }
747
748 /*
749 * Returns the next hole to retransmit and the number of retransmitted bytes
750 * from the scoreboard. We store both the next hole and the number of
751 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
752 * reception). This avoids scoreboard traversals completely.
753 *
754 * The loop here will traverse *at most* one link. Here's the argument.
755 * For the loop to traverse more than 1 link before finding the next hole to
756 * retransmit, we would need to have at least 1 node following the current hint
757 * with (rxmit == end). But, for all holes following the current hint,
758 * (start == rxmit), since we have not yet retransmitted from them. Therefore,
759 * in order to traverse more 1 link in the loop below, we need to have at least
760 * one node following the current hint with (start == rxmit == end).
761 * But that can't happen, (start == end) means that all the data in that hole
762 * has been sacked, in which case, the hole would have been removed from the
763 * scoreboard.
764 */
765 struct sackhole *
766 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
767 {
768 struct sackhole *hole = NULL, *dbg_hole = NULL;
769 int dbg_bytes_rexmt;
770
771 dbg_hole = tcp_sack_output_debug(tp, &dbg_bytes_rexmt);
772 *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
773 hole = tp->sackhint.nexthole;
774 if (hole == NULL || SEQ_LT(hole->rxmit, hole->end)) {
775 goto out;
776 }
777 while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
778 if (SEQ_LT(hole->rxmit, hole->end)) {
779 tp->sackhint.nexthole = hole;
780 break;
781 }
782 }
783 out:
784 if (dbg_hole != hole) {
785 printf("%s: Computed sack hole not the same as cached value\n", __func__);
786 hole = dbg_hole;
787 }
788 if (*sack_bytes_rexmt != dbg_bytes_rexmt) {
789 printf("%s: Computed sack_bytes_retransmitted (%d) not "
790 "the same as cached value (%d)\n",
791 __func__, dbg_bytes_rexmt, *sack_bytes_rexmt);
792 *sack_bytes_rexmt = dbg_bytes_rexmt;
793 }
794 return hole;
795 }
796
797 void
798 tcp_sack_lost_rexmit(struct tcpcb *tp)
799 {
800 struct sackhole *hole = TAILQ_FIRST(&tp->snd_holes);
801
802 while (hole) {
803 hole->rxmit = hole->start;
804 hole->rxmit_start = tcp_now;
805
806 hole = TAILQ_NEXT(hole, scblink);
807 }
808
809 tp->sackhint.nexthole = TAILQ_FIRST(&tp->snd_holes);
810 tp->sackhint.sack_bytes_rexmit = 0;
811 tp->sack_newdata = tp->snd_nxt;
812 }
813
814 /*
815 * After a timeout, the SACK list may be rebuilt. This SACK information
816 * should be used to avoid retransmitting SACKed data. This function
817 * traverses the SACK list to see if snd_nxt should be moved forward.
818 */
819 void
820 tcp_sack_adjust(struct tcpcb *tp)
821 {
822 struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
823
824 if (cur == NULL) {
825 return; /* No holes */
826 }
827 if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack)) {
828 return; /* We're already beyond any SACKed blocks */
829 }
830 /*
831 * Two cases for which we want to advance snd_nxt:
832 * i) snd_nxt lies between end of one hole and beginning of another
833 * ii) snd_nxt lies between end of last hole and snd_fack
834 */
835 while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
836 if (SEQ_LT(tp->snd_nxt, cur->end)) {
837 return;
838 }
839 if (SEQ_GEQ(tp->snd_nxt, p->start)) {
840 cur = p;
841 } else {
842 tp->snd_nxt = p->start;
843 return;
844 }
845 }
846 if (SEQ_LT(tp->snd_nxt, cur->end)) {
847 return;
848 }
849 tp->snd_nxt = tp->snd_fack;
850 return;
851 }
852
853 /*
854 * This function returns TRUE if more than (tcprexmtthresh - 1) * SMSS
855 * bytes with sequence numbers greater than snd_una have been SACKed.
856 */
857 boolean_t
858 tcp_sack_byte_islost(struct tcpcb *tp)
859 {
860 u_int32_t unacked_bytes, sndhole_bytes = 0;
861 struct sackhole *sndhole;
862 if (!SACK_ENABLED(tp) || IN_FASTRECOVERY(tp) ||
863 TAILQ_EMPTY(&tp->snd_holes) ||
864 (tp->t_flagsext & TF_PKTS_REORDERED)) {
865 return FALSE;
866 }
867
868 unacked_bytes = tp->snd_max - tp->snd_una;
869
870 TAILQ_FOREACH(sndhole, &tp->snd_holes, scblink) {
871 sndhole_bytes += (sndhole->end - sndhole->start);
872 }
873
874 VERIFY(unacked_bytes >= sndhole_bytes);
875 return (unacked_bytes - sndhole_bytes) >
876 ((tcprexmtthresh - 1) * tp->t_maxseg);
877 }
878
879 /*
880 * Process any DSACK options that might be present on an input packet
881 */
882
883 boolean_t
884 tcp_sack_process_dsack(struct tcpcb *tp, struct tcpopt *to,
885 struct tcphdr *th)
886 {
887 struct sackblk first_sack, second_sack;
888 struct tcp_rxt_seg *rxseg;
889
890 bcopy(to->to_sacks, &first_sack, sizeof(first_sack));
891 first_sack.start = ntohl(first_sack.start);
892 first_sack.end = ntohl(first_sack.end);
893
894 if (to->to_nsacks > 1) {
895 bcopy((to->to_sacks + TCPOLEN_SACK), &second_sack,
896 sizeof(second_sack));
897 second_sack.start = ntohl(second_sack.start);
898 second_sack.end = ntohl(second_sack.end);
899 }
900
901 if (SEQ_LT(first_sack.start, th->th_ack) &&
902 SEQ_LEQ(first_sack.end, th->th_ack)) {
903 /*
904 * There is a dsack option reporting a duplicate segment
905 * also covered by cumulative acknowledgement.
906 *
907 * Validate the sequence numbers before looking at dsack
908 * option. The duplicate notification can come after
909 * snd_una moves forward. In order to set a window of valid
910 * sequence numbers to look for, we set a maximum send
911 * window within which the DSACK option will be processed.
912 */
913 if (!(TCP_DSACK_SEQ_IN_WINDOW(tp, first_sack.start, th->th_ack) &&
914 TCP_DSACK_SEQ_IN_WINDOW(tp, first_sack.end, th->th_ack))) {
915 to->to_nsacks--;
916 to->to_sacks += TCPOLEN_SACK;
917 tcpstat.tcps_dsack_recvd_old++;
918
919 /*
920 * returning true here so that the ack will not be
921 * treated as duplicate ack.
922 */
923 return TRUE;
924 }
925 } else if (to->to_nsacks > 1 &&
926 SEQ_LEQ(second_sack.start, first_sack.start) &&
927 SEQ_GEQ(second_sack.end, first_sack.end)) {
928 /*
929 * there is a dsack option in the first block not
930 * covered by the cumulative acknowledgement but covered
931 * by the second sack block.
932 *
933 * verify the sequence numbes on the second sack block
934 * before processing the DSACK option. Returning false
935 * here will treat the ack as a duplicate ack.
936 */
937 if (!TCP_VALIDATE_SACK_SEQ_NUMBERS(tp, &second_sack,
938 th->th_ack)) {
939 to->to_nsacks--;
940 to->to_sacks += TCPOLEN_SACK;
941 tcpstat.tcps_dsack_recvd_old++;
942 return TRUE;
943 }
944 } else {
945 /* no dsack options, proceed with processing the sack */
946 return FALSE;
947 }
948
949 /* Update the tcpopt pointer to exclude dsack block */
950 to->to_nsacks--;
951 to->to_sacks += TCPOLEN_SACK;
952 tcpstat.tcps_dsack_recvd++;
953 tp->t_dsack_recvd++;
954
955 /* If the DSACK is for TLP mark it as such */
956 if ((tp->t_flagsext & TF_SENT_TLPROBE) &&
957 first_sack.end == tp->t_tlphighrxt) {
958 if ((rxseg = tcp_rxtseg_find(tp, first_sack.start,
959 (first_sack.end - 1))) != NULL) {
960 rxseg->rx_flags |= TCP_RXT_DSACK_FOR_TLP;
961 }
962 }
963 /* Update the sender's retransmit segment state */
964 if (((tp->t_rxtshift == 1 && first_sack.start == tp->snd_una) ||
965 ((tp->t_flagsext & TF_SENT_TLPROBE) &&
966 first_sack.end == tp->t_tlphighrxt)) &&
967 TAILQ_EMPTY(&tp->snd_holes) &&
968 SEQ_GT(th->th_ack, tp->snd_una)) {
969 /*
970 * If the dsack is for a retransmitted packet and one of
971 * the two cases is true, it indicates ack loss:
972 * - retransmit timeout and first_sack.start == snd_una
973 * - TLP probe and first_sack.end == tlphighrxt
974 *
975 * Ignore dsack and do not update state when there is
976 * ack loss
977 */
978 tcpstat.tcps_dsack_ackloss++;
979
980 return TRUE;
981 } else {
982 tcp_rxtseg_set_spurious(tp, first_sack.start, (first_sack.end - 1));
983 }
984 return TRUE;
985 }