2 * Copyright (c) 2004-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
70 #include <sys/domain.h>
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
75 #include <kern/zalloc.h>
77 #include <net/route.h>
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
84 #include <netinet6/in6_pcb.h>
85 #include <netinet/ip6.h>
86 #include <netinet6/ip6_var.h>
87 #include <netinet/tcp.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcpip.h>
93 #include <netinet/tcp_cache.h>
95 #include <netinet/tcp_debug.h>
97 #include <sys/kdebug.h>
100 #include <netinet6/ipsec.h>
103 #include <libkern/OSAtomic.h>
105 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, sack
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
106 int, tcp_do_sack
, 1, "Enable/Disable TCP SACK support");
107 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, sack_maxholes
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
108 static int, tcp_sack_maxholes
, 128,
109 "Maximum number of TCP SACK holes allowed per connection");
111 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, sack_globalmaxholes
,
112 CTLFLAG_RW
| CTLFLAG_LOCKED
, static int, tcp_sack_globalmaxholes
, 65536,
113 "Global maximum number of TCP SACK holes");
115 static SInt32 tcp_sack_globalholes
= 0;
116 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sack_globalholes
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
117 &tcp_sack_globalholes
, 0,
118 "Global number of TCP SACK holes currently allocated");
120 extern struct zone
*sack_hole_zone
;
122 #define TCP_VALIDATE_SACK_SEQ_NUMBERS(_tp_, _sb_, _ack_) \
123 (SEQ_GT((_sb_)->end, (_sb_)->start) && \
124 SEQ_GT((_sb_)->start, (_tp_)->snd_una) && \
125 SEQ_GT((_sb_)->start, (_ack_)) && \
126 SEQ_LT((_sb_)->start, (_tp_)->snd_max) && \
127 SEQ_GT((_sb_)->end, (_tp_)->snd_una) && \
128 SEQ_LEQ((_sb_)->end, (_tp_)->snd_max))
131 * This function is called upon receipt of new valid data (while not in header
132 * prediction mode), and it updates the ordered list of sacks.
135 tcp_update_sack_list(struct tcpcb
*tp
, tcp_seq rcv_start
, tcp_seq rcv_end
)
138 * First reported block MUST be the most recent one. Subsequent
139 * blocks SHOULD be in the order in which they arrived at the
140 * receiver. These two conditions make the implementation fully
141 * compliant with RFC 2018.
143 struct sackblk head_blk
, saved_blks
[MAX_SACK_BLKS
];
144 int num_head
, num_saved
, i
;
146 /* SACK block for the received segment. */
147 head_blk
.start
= rcv_start
;
148 head_blk
.end
= rcv_end
;
151 * Merge updated SACK blocks into head_blk, and
152 * save unchanged SACK blocks into saved_blks[].
153 * num_saved will have the number of the saved SACK blocks.
156 for (i
= 0; i
< tp
->rcv_numsacks
; i
++) {
157 tcp_seq start
= tp
->sackblks
[i
].start
;
158 tcp_seq end
= tp
->sackblks
[i
].end
;
159 if (SEQ_GEQ(start
, end
) || SEQ_LEQ(start
, tp
->rcv_nxt
)) {
161 * Discard this SACK block.
163 } else if (SEQ_LEQ(head_blk
.start
, end
) &&
164 SEQ_GEQ(head_blk
.end
, start
)) {
166 * Merge this SACK block into head_blk.
167 * This SACK block itself will be discarded.
169 if (SEQ_GT(head_blk
.start
, start
)) {
170 head_blk
.start
= start
;
172 if (SEQ_LT(head_blk
.end
, end
)) {
177 * Save this SACK block.
179 saved_blks
[num_saved
].start
= start
;
180 saved_blks
[num_saved
].end
= end
;
186 * Update SACK list in tp->sackblks[].
189 if (SEQ_GT(head_blk
.start
, tp
->rcv_nxt
)) {
191 * The received data segment is an out-of-order segment.
192 * Put head_blk at the top of SACK list.
194 tp
->sackblks
[0] = head_blk
;
197 * If the number of saved SACK blocks exceeds its limit,
198 * discard the last SACK block.
200 if (num_saved
>= MAX_SACK_BLKS
) {
206 * Copy the saved SACK blocks back.
208 bcopy(saved_blks
, &tp
->sackblks
[num_head
], sizeof(struct sackblk
) * num_saved
);
211 /* Save the number of SACK blocks. */
212 tp
->rcv_numsacks
= num_head
+ num_saved
;
214 /* If we are requesting SACK recovery, reset the stretch-ack state
215 * so that connection will generate more acks after recovery and
216 * sender's cwnd will open.
218 if ((tp
->t_flags
& TF_STRETCHACK
) != 0 && tp
->rcv_numsacks
> 0) {
219 tcp_reset_stretch_ack(tp
);
221 if (tp
->rcv_numsacks
> 0) {
222 tp
->t_forced_acks
= TCP_FORCED_ACKS_COUNT
;
226 if (tp
->acc_iaj
> 0 && tp
->rcv_numsacks
> 0) {
229 #endif /* TRAFFIC_MGT */
233 * Delete all receiver-side SACK information.
236 tcp_clean_sackreport( struct tcpcb
*tp
)
238 tp
->rcv_numsacks
= 0;
239 bzero(&tp
->sackblks
[0], sizeof(struct sackblk
) * MAX_SACK_BLKS
);
243 * Allocate struct sackhole.
245 static struct sackhole
*
246 tcp_sackhole_alloc(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
248 struct sackhole
*hole
;
250 if (tp
->snd_numholes
>= tcp_sack_maxholes
||
251 tcp_sack_globalholes
>= tcp_sack_globalmaxholes
) {
252 tcpstat
.tcps_sack_sboverflow
++;
256 hole
= (struct sackhole
*)zalloc(sack_hole_zone
);
266 OSIncrementAtomic(&tcp_sack_globalholes
);
272 * Free struct sackhole.
275 tcp_sackhole_free(struct tcpcb
*tp
, struct sackhole
*hole
)
277 zfree(sack_hole_zone
, hole
);
280 OSDecrementAtomic(&tcp_sack_globalholes
);
284 * Insert new SACK hole into scoreboard.
286 static struct sackhole
*
287 tcp_sackhole_insert(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
,
288 struct sackhole
*after
)
290 struct sackhole
*hole
;
292 /* Allocate a new SACK hole. */
293 hole
= tcp_sackhole_alloc(tp
, start
, end
);
297 hole
->rxmit_start
= tcp_now
;
298 /* Insert the new SACK hole into scoreboard */
300 TAILQ_INSERT_AFTER(&tp
->snd_holes
, after
, hole
, scblink
);
302 TAILQ_INSERT_TAIL(&tp
->snd_holes
, hole
, scblink
);
305 /* Update SACK hint. */
306 if (tp
->sackhint
.nexthole
== NULL
) {
307 tp
->sackhint
.nexthole
= hole
;
314 * Remove SACK hole from scoreboard.
317 tcp_sackhole_remove(struct tcpcb
*tp
, struct sackhole
*hole
)
319 /* Update SACK hint. */
320 if (tp
->sackhint
.nexthole
== hole
) {
321 tp
->sackhint
.nexthole
= TAILQ_NEXT(hole
, scblink
);
324 /* Remove this SACK hole. */
325 TAILQ_REMOVE(&tp
->snd_holes
, hole
, scblink
);
327 /* Free this SACK hole. */
328 tcp_sackhole_free(tp
, hole
);
331 * When a new ack with SACK is received, check if it indicates packet
332 * reordering. If there is packet reordering, the socket is marked and
333 * the late time offset by which the packet was reordered with
334 * respect to its closest neighboring packets is computed.
337 tcp_sack_detect_reordering(struct tcpcb
*tp
, struct sackhole
*s
,
338 tcp_seq sacked_seq
, tcp_seq snd_fack
)
340 int32_t rext
= 0, reordered
= 0;
343 * If the SACK hole is past snd_fack, this is from new SACK
344 * information, so we can ignore it.
346 if (SEQ_GT(s
->end
, snd_fack
)) {
350 * If there has been a retransmit timeout, then the timestamp on
351 * the SACK segment will be newer. This might lead to a
352 * false-positive. Avoid re-ordering detection in this case.
354 if (tp
->t_rxtshift
> 0) {
359 * Detect reordering from SACK information by checking
360 * if recently sacked data was never retransmitted from this hole.
362 * First, we look for the byte in the list of retransmitted segments. This one
363 * will contain even the segments that are retransmitted thanks to RTO/TLP.
365 * Then, we check the sackhole which indicates whether or not the sackhole
366 * was subject to retransmission.
368 if (SEQ_LT(s
->rxmit
, sacked_seq
) &&
369 (!tcp_do_better_lr
|| tcp_rxtseg_find(tp
, sacked_seq
- 1, sacked_seq
- 1) == NULL
)) {
371 tcpstat
.tcps_avoid_rxmt
++;
375 if (!(tp
->t_flagsext
& TF_PKTS_REORDERED
)) {
376 tp
->t_flagsext
|= TF_PKTS_REORDERED
;
377 tcpstat
.tcps_detect_reordering
++;
380 tcpstat
.tcps_reordered_pkts
++;
381 tp
->t_reordered_pkts
++;
384 * If reordering is seen on a connection wth ECN enabled,
385 * increment the heuristic
387 if (TCP_ECN_ENABLED(tp
)) {
388 INP_INC_IFNET_STAT(tp
->t_inpcb
, ecn_fallback_reorder
);
389 tcpstat
.tcps_ecn_fallback_reorder
++;
390 tcp_heuristic_ecn_aggressive(tp
);
393 VERIFY(SEQ_GEQ(snd_fack
, s
->rxmit
));
395 if (s
->rxmit_start
> 0) {
396 rext
= timer_diff(tcp_now
, 0, s
->rxmit_start
, 0);
402 * We take the maximum reorder window to schedule
403 * DELAYFR timer as that will take care of jitter
404 * on the network path.
406 * Computing average and standard deviation seems
407 * to cause unnecessary retransmissions when there
410 * We set a maximum of SRTT/2 and a minimum of
411 * 10 ms on the reorder window.
413 tp
->t_reorderwin
= max(tp
->t_reorderwin
, rext
);
414 tp
->t_reorderwin
= min(tp
->t_reorderwin
,
415 (tp
->t_srtt
>> (TCP_RTT_SHIFT
- 1)));
416 tp
->t_reorderwin
= max(tp
->t_reorderwin
, 10);
422 tcp_sack_update_byte_counter(struct tcpcb
*tp
, uint32_t start
, uint32_t end
,
423 uint32_t *newbytes_acked
, uint32_t *towards_fr_acked
)
425 *newbytes_acked
+= (end
- start
);
426 if (SEQ_GEQ(start
, tp
->send_highest_sack
)) {
427 *towards_fr_acked
+= (end
- start
);
432 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
433 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
434 * the sequence space).
437 tcp_sack_doack(struct tcpcb
*tp
, struct tcpopt
*to
, struct tcphdr
*th
,
438 u_int32_t
*newbytes_acked
, uint32_t *after_rexmit_acked
)
440 struct sackhole
*cur
, *temp
;
441 struct sackblk sack
, sack_blocks
[TCP_MAX_SACK
+ 1], *sblkp
;
442 int i
, j
, num_sack_blks
;
443 tcp_seq old_snd_fack
= 0, th_ack
= th
->th_ack
;
447 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
448 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
450 if (SEQ_LT(tp
->snd_una
, th_ack
) && !TAILQ_EMPTY(&tp
->snd_holes
)) {
451 sack_blocks
[num_sack_blks
].start
= tp
->snd_una
;
452 sack_blocks
[num_sack_blks
++].end
= th_ack
;
455 * Append received valid SACK blocks to sack_blocks[].
456 * Check that the SACK block range is valid.
458 for (i
= 0; i
< to
->to_nsacks
; i
++) {
459 bcopy((to
->to_sacks
+ i
* TCPOLEN_SACK
),
460 &sack
, sizeof(sack
));
461 sack
.start
= ntohl(sack
.start
);
462 sack
.end
= ntohl(sack
.end
);
463 if (TCP_VALIDATE_SACK_SEQ_NUMBERS(tp
, &sack
, th_ack
)) {
464 sack_blocks
[num_sack_blks
++] = sack
;
469 * Return if SND.UNA is not advanced and no valid SACK block
472 if (num_sack_blks
== 0) {
476 VERIFY(num_sack_blks
<= (TCP_MAX_SACK
+ 1));
478 * Sort the SACK blocks so we can update the scoreboard
479 * with just one pass. The overhead of sorting upto 4+1 elements
480 * is less than making upto 4+1 passes over the scoreboard.
482 for (i
= 0; i
< num_sack_blks
; i
++) {
483 for (j
= i
+ 1; j
< num_sack_blks
; j
++) {
484 if (SEQ_GT(sack_blocks
[i
].end
, sack_blocks
[j
].end
)) {
485 sack
= sack_blocks
[i
];
486 sack_blocks
[i
] = sack_blocks
[j
];
487 sack_blocks
[j
] = sack
;
491 if (TAILQ_EMPTY(&tp
->snd_holes
)) {
493 * Empty scoreboard. Need to initialize snd_fack (it may be
494 * uninitialized or have a bogus value). Scoreboard holes
495 * (from the sack blocks received) are created later below (in
496 * the logic that adds holes to the tail of the scoreboard).
498 tp
->snd_fack
= SEQ_MAX(tp
->snd_una
, th_ack
);
501 old_snd_fack
= tp
->snd_fack
;
503 * In the while-loop below, incoming SACK blocks (sack_blocks[])
504 * and SACK holes (snd_holes) are traversed from their tails with
505 * just one pass in order to reduce the number of compares especially
506 * when the bandwidth-delay product is large.
507 * Note: Typically, in the first RTT of SACK recovery, the highest
508 * three or four SACK blocks with the same ack number are received.
509 * In the second RTT, if retransmitted data segments are not lost,
510 * the highest three or four SACK blocks with ack number advancing
513 sblkp
= &sack_blocks
[num_sack_blks
- 1]; /* Last SACK block */
514 if (SEQ_LT(tp
->snd_fack
, sblkp
->start
)) {
516 * The highest SACK block is beyond fack.
517 * Append new SACK hole at the tail.
518 * If the second or later highest SACK blocks are also
519 * beyond the current fack, they will be inserted by
520 * way of hole splitting in the while-loop below.
522 temp
= tcp_sackhole_insert(tp
, tp
->snd_fack
, sblkp
->start
, NULL
);
524 tp
->snd_fack
= sblkp
->end
;
525 tcp_sack_update_byte_counter(tp
, sblkp
->start
, sblkp
->end
, newbytes_acked
, after_rexmit_acked
);
527 /* Go to the previous sack block. */
531 * We failed to add a new hole based on the current
532 * sack block. Skip over all the sack blocks that
533 * fall completely to the right of snd_fack and proceed
534 * to trim the scoreboard based on the remaining sack
535 * blocks. This also trims the scoreboard for th_ack
536 * (which is sack_blocks[0]).
538 while (sblkp
>= sack_blocks
&&
539 SEQ_LT(tp
->snd_fack
, sblkp
->start
)) {
542 if (sblkp
>= sack_blocks
&&
543 SEQ_LT(tp
->snd_fack
, sblkp
->end
)) {
544 tcp_sack_update_byte_counter(tp
, tp
->snd_fack
, sblkp
->end
, newbytes_acked
, after_rexmit_acked
);
545 tp
->snd_fack
= sblkp
->end
;
548 } else if (SEQ_LT(tp
->snd_fack
, sblkp
->end
)) {
549 /* fack is advanced. */
550 tcp_sack_update_byte_counter(tp
, tp
->snd_fack
, sblkp
->end
, newbytes_acked
, after_rexmit_acked
);
551 tp
->snd_fack
= sblkp
->end
;
553 /* We must have at least one SACK hole in scoreboard */
554 cur
= TAILQ_LAST(&tp
->snd_holes
, sackhole_head
); /* Last SACK hole */
556 * Since the incoming sack blocks are sorted, we can process them
557 * making one sweep of the scoreboard.
559 while (sblkp
>= sack_blocks
&& cur
!= NULL
) {
560 if (SEQ_GEQ(sblkp
->start
, cur
->end
)) {
562 * SACKs data beyond the current hole.
563 * Go to the previous sack block.
568 if (SEQ_LEQ(sblkp
->end
, cur
->start
)) {
570 * SACKs data before the current hole.
571 * Go to the previous hole.
573 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
576 tp
->sackhint
.sack_bytes_rexmit
-= (cur
->rxmit
- cur
->start
);
577 if (tp
->sackhint
.sack_bytes_rexmit
< 0) {
578 tp
->sackhint
.sack_bytes_rexmit
= 0;
581 if (SEQ_LEQ(sblkp
->start
, cur
->start
)) {
582 /* Data acks at least the beginning of hole */
583 if (SEQ_GEQ(sblkp
->end
, cur
->end
)) {
584 /* Acks entire hole, so delete hole */
585 tcp_sack_update_byte_counter(tp
, cur
->start
, cur
->end
, newbytes_acked
, after_rexmit_acked
);
587 tcp_sack_detect_reordering(tp
, cur
,
588 cur
->end
, old_snd_fack
);
590 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
591 tcp_sackhole_remove(tp
, temp
);
593 * The sack block may ack all or part of the next
594 * hole too, so continue onto the next hole.
598 /* Move start of hole forward */
599 tcp_sack_update_byte_counter(tp
, cur
->start
, sblkp
->end
, newbytes_acked
, after_rexmit_acked
);
600 tcp_sack_detect_reordering(tp
, cur
,
601 sblkp
->end
, old_snd_fack
);
602 cur
->start
= sblkp
->end
;
603 cur
->rxmit
= SEQ_MAX(cur
->rxmit
, cur
->start
);
606 /* Data acks at least the end of hole */
607 if (SEQ_GEQ(sblkp
->end
, cur
->end
)) {
608 /* Move end of hole backward */
609 tcp_sack_update_byte_counter(tp
, sblkp
->start
, cur
->end
, newbytes_acked
, after_rexmit_acked
);
610 tcp_sack_detect_reordering(tp
, cur
,
611 cur
->end
, old_snd_fack
);
612 cur
->end
= sblkp
->start
;
613 cur
->rxmit
= SEQ_MIN(cur
->rxmit
, cur
->end
);
616 * ACKs some data in the middle of a hole;
617 * need to split current hole
619 tcp_sack_detect_reordering(tp
, cur
,
620 sblkp
->end
, old_snd_fack
);
621 temp
= tcp_sackhole_insert(tp
, sblkp
->end
,
624 tcp_sack_update_byte_counter(tp
, sblkp
->start
, sblkp
->end
, newbytes_acked
, after_rexmit_acked
);
625 if (SEQ_GT(cur
->rxmit
, temp
->rxmit
)) {
626 temp
->rxmit
= cur
->rxmit
;
627 tp
->sackhint
.sack_bytes_rexmit
631 cur
->end
= sblkp
->start
;
632 cur
->rxmit
= SEQ_MIN(cur
->rxmit
,
635 * Reset the rxmit_start to that of
636 * the current hole as that will
637 * help to compute the reorder
640 temp
->rxmit_start
= cur
->rxmit_start
;
644 tp
->sackhint
.sack_bytes_rexmit
+= (cur
->rxmit
- cur
->start
);
646 * Testing sblkp->start against cur->start tells us whether
647 * we're done with the sack block or the sack hole.
648 * Accordingly, we advance one or the other.
650 if (SEQ_LEQ(sblkp
->start
, cur
->start
)) {
651 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
659 * Free all SACK holes to clear the scoreboard.
662 tcp_free_sackholes(struct tcpcb
*tp
)
666 while ((q
= TAILQ_FIRST(&tp
->snd_holes
)) != NULL
) {
667 tcp_sackhole_remove(tp
, q
);
669 tp
->sackhint
.sack_bytes_rexmit
= 0;
670 tp
->sackhint
.sack_bytes_acked
= 0;
671 tp
->t_new_dupacks
= 0;
672 tp
->sackhint
.nexthole
= NULL
;
673 tp
->sack_newdata
= 0;
677 * Partial ack handling within a sack recovery episode.
678 * Keeping this very simple for now. When a partial ack
679 * is received, force snd_cwnd to a value that will allow
680 * the sender to transmit no more than 2 segments.
681 * If necessary, a better scheme can be adopted at a
682 * later point, but for now, the goal is to prevent the
683 * sender from bursting a large amount of data in the midst
687 tcp_sack_partialack(struct tcpcb
*tp
, struct tcphdr
*th
)
691 tp
->t_timer
[TCPT_REXMT
] = 0;
693 /* send one or 2 segments based on how much new data was acked */
694 if (((BYTES_ACKED(th
, tp
)) / tp
->t_maxseg
) > 2) {
697 if (tcp_do_better_lr
) {
698 tp
->snd_cwnd
= tcp_flight_size(tp
) + num_segs
* tp
->t_maxseg
;
700 tp
->snd_cwnd
= (tp
->sackhint
.sack_bytes_rexmit
+
701 (tp
->snd_nxt
- tp
->sack_newdata
) +
702 num_segs
* tp
->t_maxseg
);
704 if (tp
->snd_cwnd
> tp
->snd_ssthresh
) {
705 tp
->snd_cwnd
= tp
->snd_ssthresh
;
707 if (SEQ_LT(tp
->snd_fack
, tp
->snd_recover
) &&
708 tp
->snd_fack
== th
->th_ack
&& TAILQ_EMPTY(&tp
->snd_holes
)) {
709 struct sackhole
*temp
;
711 * we received a partial ack but there is no sack_hole
712 * that will cover the remaining seq space. In this case,
713 * create a hole from snd_fack to snd_recover so that
714 * the sack recovery will continue.
716 temp
= tcp_sackhole_insert(tp
, tp
->snd_fack
,
717 tp
->snd_recover
, NULL
);
719 tp
->snd_fack
= tp
->snd_recover
;
722 (void) tcp_output(tp
);
726 * Debug version of tcp_sack_output() that walks the scoreboard. Used for
727 * now to sanity check the hint.
729 static struct sackhole
*
730 tcp_sack_output_debug(struct tcpcb
*tp
, int *sack_bytes_rexmt
)
734 *sack_bytes_rexmt
= 0;
735 TAILQ_FOREACH(p
, &tp
->snd_holes
, scblink
) {
736 if (SEQ_LT(p
->rxmit
, p
->end
)) {
737 if (SEQ_LT(p
->rxmit
, tp
->snd_una
)) {/* old SACK hole */
740 *sack_bytes_rexmt
+= (p
->rxmit
- p
->start
);
743 *sack_bytes_rexmt
+= (p
->rxmit
- p
->start
);
749 * Returns the next hole to retransmit and the number of retransmitted bytes
750 * from the scoreboard. We store both the next hole and the number of
751 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
752 * reception). This avoids scoreboard traversals completely.
754 * The loop here will traverse *at most* one link. Here's the argument.
755 * For the loop to traverse more than 1 link before finding the next hole to
756 * retransmit, we would need to have at least 1 node following the current hint
757 * with (rxmit == end). But, for all holes following the current hint,
758 * (start == rxmit), since we have not yet retransmitted from them. Therefore,
759 * in order to traverse more 1 link in the loop below, we need to have at least
760 * one node following the current hint with (start == rxmit == end).
761 * But that can't happen, (start == end) means that all the data in that hole
762 * has been sacked, in which case, the hole would have been removed from the
766 tcp_sack_output(struct tcpcb
*tp
, int *sack_bytes_rexmt
)
768 struct sackhole
*hole
= NULL
, *dbg_hole
= NULL
;
771 dbg_hole
= tcp_sack_output_debug(tp
, &dbg_bytes_rexmt
);
772 *sack_bytes_rexmt
= tp
->sackhint
.sack_bytes_rexmit
;
773 hole
= tp
->sackhint
.nexthole
;
774 if (hole
== NULL
|| SEQ_LT(hole
->rxmit
, hole
->end
)) {
777 while ((hole
= TAILQ_NEXT(hole
, scblink
)) != NULL
) {
778 if (SEQ_LT(hole
->rxmit
, hole
->end
)) {
779 tp
->sackhint
.nexthole
= hole
;
784 if (dbg_hole
!= hole
) {
785 printf("%s: Computed sack hole not the same as cached value\n", __func__
);
788 if (*sack_bytes_rexmt
!= dbg_bytes_rexmt
) {
789 printf("%s: Computed sack_bytes_retransmitted (%d) not "
790 "the same as cached value (%d)\n",
791 __func__
, dbg_bytes_rexmt
, *sack_bytes_rexmt
);
792 *sack_bytes_rexmt
= dbg_bytes_rexmt
;
798 tcp_sack_lost_rexmit(struct tcpcb
*tp
)
800 struct sackhole
*hole
= TAILQ_FIRST(&tp
->snd_holes
);
803 hole
->rxmit
= hole
->start
;
804 hole
->rxmit_start
= tcp_now
;
806 hole
= TAILQ_NEXT(hole
, scblink
);
809 tp
->sackhint
.nexthole
= TAILQ_FIRST(&tp
->snd_holes
);
810 tp
->sackhint
.sack_bytes_rexmit
= 0;
811 tp
->sack_newdata
= tp
->snd_nxt
;
815 * After a timeout, the SACK list may be rebuilt. This SACK information
816 * should be used to avoid retransmitting SACKed data. This function
817 * traverses the SACK list to see if snd_nxt should be moved forward.
820 tcp_sack_adjust(struct tcpcb
*tp
)
822 struct sackhole
*p
, *cur
= TAILQ_FIRST(&tp
->snd_holes
);
825 return; /* No holes */
827 if (SEQ_GEQ(tp
->snd_nxt
, tp
->snd_fack
)) {
828 return; /* We're already beyond any SACKed blocks */
831 * Two cases for which we want to advance snd_nxt:
832 * i) snd_nxt lies between end of one hole and beginning of another
833 * ii) snd_nxt lies between end of last hole and snd_fack
835 while ((p
= TAILQ_NEXT(cur
, scblink
)) != NULL
) {
836 if (SEQ_LT(tp
->snd_nxt
, cur
->end
)) {
839 if (SEQ_GEQ(tp
->snd_nxt
, p
->start
)) {
842 tp
->snd_nxt
= p
->start
;
846 if (SEQ_LT(tp
->snd_nxt
, cur
->end
)) {
849 tp
->snd_nxt
= tp
->snd_fack
;
854 * This function returns TRUE if more than (tcprexmtthresh - 1) * SMSS
855 * bytes with sequence numbers greater than snd_una have been SACKed.
858 tcp_sack_byte_islost(struct tcpcb
*tp
)
860 u_int32_t unacked_bytes
, sndhole_bytes
= 0;
861 struct sackhole
*sndhole
;
862 if (!SACK_ENABLED(tp
) || IN_FASTRECOVERY(tp
) ||
863 TAILQ_EMPTY(&tp
->snd_holes
) ||
864 (tp
->t_flagsext
& TF_PKTS_REORDERED
)) {
868 unacked_bytes
= tp
->snd_max
- tp
->snd_una
;
870 TAILQ_FOREACH(sndhole
, &tp
->snd_holes
, scblink
) {
871 sndhole_bytes
+= (sndhole
->end
- sndhole
->start
);
874 VERIFY(unacked_bytes
>= sndhole_bytes
);
875 return (unacked_bytes
- sndhole_bytes
) >
876 ((tcprexmtthresh
- 1) * tp
->t_maxseg
);
880 * Process any DSACK options that might be present on an input packet
884 tcp_sack_process_dsack(struct tcpcb
*tp
, struct tcpopt
*to
,
887 struct sackblk first_sack
, second_sack
;
888 struct tcp_rxt_seg
*rxseg
;
890 bcopy(to
->to_sacks
, &first_sack
, sizeof(first_sack
));
891 first_sack
.start
= ntohl(first_sack
.start
);
892 first_sack
.end
= ntohl(first_sack
.end
);
894 if (to
->to_nsacks
> 1) {
895 bcopy((to
->to_sacks
+ TCPOLEN_SACK
), &second_sack
,
896 sizeof(second_sack
));
897 second_sack
.start
= ntohl(second_sack
.start
);
898 second_sack
.end
= ntohl(second_sack
.end
);
901 if (SEQ_LT(first_sack
.start
, th
->th_ack
) &&
902 SEQ_LEQ(first_sack
.end
, th
->th_ack
)) {
904 * There is a dsack option reporting a duplicate segment
905 * also covered by cumulative acknowledgement.
907 * Validate the sequence numbers before looking at dsack
908 * option. The duplicate notification can come after
909 * snd_una moves forward. In order to set a window of valid
910 * sequence numbers to look for, we set a maximum send
911 * window within which the DSACK option will be processed.
913 if (!(TCP_DSACK_SEQ_IN_WINDOW(tp
, first_sack
.start
, th
->th_ack
) &&
914 TCP_DSACK_SEQ_IN_WINDOW(tp
, first_sack
.end
, th
->th_ack
))) {
916 to
->to_sacks
+= TCPOLEN_SACK
;
917 tcpstat
.tcps_dsack_recvd_old
++;
920 * returning true here so that the ack will not be
921 * treated as duplicate ack.
925 } else if (to
->to_nsacks
> 1 &&
926 SEQ_LEQ(second_sack
.start
, first_sack
.start
) &&
927 SEQ_GEQ(second_sack
.end
, first_sack
.end
)) {
929 * there is a dsack option in the first block not
930 * covered by the cumulative acknowledgement but covered
931 * by the second sack block.
933 * verify the sequence numbes on the second sack block
934 * before processing the DSACK option. Returning false
935 * here will treat the ack as a duplicate ack.
937 if (!TCP_VALIDATE_SACK_SEQ_NUMBERS(tp
, &second_sack
,
940 to
->to_sacks
+= TCPOLEN_SACK
;
941 tcpstat
.tcps_dsack_recvd_old
++;
945 /* no dsack options, proceed with processing the sack */
949 /* Update the tcpopt pointer to exclude dsack block */
951 to
->to_sacks
+= TCPOLEN_SACK
;
952 tcpstat
.tcps_dsack_recvd
++;
955 /* If the DSACK is for TLP mark it as such */
956 if ((tp
->t_flagsext
& TF_SENT_TLPROBE
) &&
957 first_sack
.end
== tp
->t_tlphighrxt
) {
958 if ((rxseg
= tcp_rxtseg_find(tp
, first_sack
.start
,
959 (first_sack
.end
- 1))) != NULL
) {
960 rxseg
->rx_flags
|= TCP_RXT_DSACK_FOR_TLP
;
963 /* Update the sender's retransmit segment state */
964 if (((tp
->t_rxtshift
== 1 && first_sack
.start
== tp
->snd_una
) ||
965 ((tp
->t_flagsext
& TF_SENT_TLPROBE
) &&
966 first_sack
.end
== tp
->t_tlphighrxt
)) &&
967 TAILQ_EMPTY(&tp
->snd_holes
) &&
968 SEQ_GT(th
->th_ack
, tp
->snd_una
)) {
970 * If the dsack is for a retransmitted packet and one of
971 * the two cases is true, it indicates ack loss:
972 * - retransmit timeout and first_sack.start == snd_una
973 * - TLP probe and first_sack.end == tlphighrxt
975 * Ignore dsack and do not update state when there is
978 tcpstat
.tcps_dsack_ackloss
++;
982 tcp_rxtseg_set_spurious(tp
, first_sack
.start
, (first_sack
.end
- 1));