]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_ledbat.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_ledbat.c
1 /*
2 * Copyright (c) 2010-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kernel.h>
31 #include <sys/protosw.h>
32 #include <sys/mcache.h>
33 #include <sys/sysctl.h>
34
35 #include <net/route.h>
36 #include <netinet/in.h>
37 #include <netinet/in_systm.h>
38 #include <netinet/ip.h>
39
40 #include <netinet/ip6.h>
41 #include <netinet/ip_var.h>
42 #include <netinet/tcp.h>
43 #include <netinet/tcp_fsm.h>
44 #include <netinet/tcp_timer.h>
45 #include <netinet/tcp_var.h>
46 #include <netinet/tcpip.h>
47 #include <netinet/tcp_cc.h>
48
49 #include <libkern/OSAtomic.h>
50
51 /* This file implements an alternate TCP congestion control algorithm
52 * for background transport developed by LEDBAT working group at IETF and
53 * described in draft: draft-ietf-ledbat-congestion-02
54 */
55
56 int tcp_ledbat_init(struct tcpcb *tp);
57 int tcp_ledbat_cleanup(struct tcpcb *tp);
58 void tcp_ledbat_cwnd_init(struct tcpcb *tp);
59 void tcp_ledbat_congestion_avd(struct tcpcb *tp, struct tcphdr *th);
60 void tcp_ledbat_ack_rcvd(struct tcpcb *tp, struct tcphdr *th);
61 void tcp_ledbat_pre_fr(struct tcpcb *tp);
62 void tcp_ledbat_post_fr(struct tcpcb *tp, struct tcphdr *th);
63 void tcp_ledbat_after_idle(struct tcpcb *tp);
64 void tcp_ledbat_after_timeout(struct tcpcb *tp);
65 static int tcp_ledbat_delay_ack(struct tcpcb *tp, struct tcphdr *th);
66 void tcp_ledbat_switch_cc(struct tcpcb *tp, uint16_t old_cc_index);
67
68 struct tcp_cc_algo tcp_cc_ledbat = {
69 .name = "ledbat",
70 .init = tcp_ledbat_init,
71 .cleanup = tcp_ledbat_cleanup,
72 .cwnd_init = tcp_ledbat_cwnd_init,
73 .congestion_avd = tcp_ledbat_congestion_avd,
74 .ack_rcvd = tcp_ledbat_ack_rcvd,
75 .pre_fr = tcp_ledbat_pre_fr,
76 .post_fr = tcp_ledbat_post_fr,
77 .after_idle = tcp_ledbat_after_idle,
78 .after_timeout = tcp_ledbat_after_timeout,
79 .delay_ack = tcp_ledbat_delay_ack,
80 .switch_to = tcp_ledbat_switch_cc
81 };
82
83 /* Target queuing delay in milliseconds. This includes the processing
84 * and scheduling delay on both of the end-hosts. A LEDBAT sender tries
85 * to keep queuing delay below this limit. When the queuing delay
86 * goes above this limit, a LEDBAT sender will start reducing the
87 * congestion window.
88 *
89 * The LEDBAT draft says that target queue delay MUST be 100 ms for
90 * inter-operability.
91 */
92 SYSCTL_SKMEM_TCP_INT(OID_AUTO, bg_target_qdelay, CTLFLAG_RW | CTLFLAG_LOCKED,
93 int, target_qdelay, 100, "Target queuing delay");
94
95 /* Allowed increase and tether are used to place an upper bound on
96 * congestion window based on the amount of data that is outstanding.
97 * This will limit the congestion window when the amount of data in
98 * flight is little because the application is writing to the socket
99 * intermittently and is preventing the connection from becoming idle .
100 *
101 * max_allowed_cwnd = allowed_increase + (tether * flight_size)
102 * cwnd = min(cwnd, max_allowed_cwnd)
103 *
104 * 'Allowed_increase' parameter is set to 8. If the flight size is zero, then
105 * we want the congestion window to be at least 8 packets to reduce the
106 * delay induced by delayed ack. This helps when the receiver is acking
107 * more than 2 packets at a time (stretching acks for better performance).
108 *
109 * 'Tether' is also set to 2. We do not want this to limit the growth of cwnd
110 * during slow-start.
111 */
112 SYSCTL_SKMEM_TCP_INT(OID_AUTO, bg_allowed_increase, CTLFLAG_RW | CTLFLAG_LOCKED,
113 int, allowed_increase, 8,
114 "Additive constant used to calculate max allowed congestion window");
115
116 /* Left shift for cwnd to get tether value of 2 */
117 SYSCTL_SKMEM_TCP_INT(OID_AUTO, bg_tether_shift, CTLFLAG_RW | CTLFLAG_LOCKED,
118 int, tether_shift, 1, "Tether shift for max allowed congestion window");
119
120 /* Start with an initial window of 2. This will help to get more accurate
121 * minimum RTT measurement in the beginning. It will help to probe
122 * the path slowly and will not add to the existing delay if the path is
123 * already congested. Using 2 packets will reduce the delay induced by delayed-ack.
124 */
125 SYSCTL_SKMEM_TCP_INT(OID_AUTO, bg_ss_fltsz, CTLFLAG_RW | CTLFLAG_LOCKED,
126 uint32_t, bg_ss_fltsz, 2, "Initial congestion window for background transport");
127
128 extern int rtt_samples_per_slot;
129
130 static void
131 update_cwnd(struct tcpcb *tp, uint32_t incr)
132 {
133 uint32_t max_allowed_cwnd = 0, flight_size = 0;
134 uint32_t base_rtt;
135
136 base_rtt = get_base_rtt(tp);
137
138 /* If we do not have a good RTT measurement yet, increment
139 * congestion window by the default value.
140 */
141 if (base_rtt == 0 || tp->t_rttcur == 0) {
142 tp->snd_cwnd += incr;
143 goto check_max;
144 }
145
146 if (tp->t_rttcur <= (base_rtt + target_qdelay)) {
147 /*
148 * Delay decreased or remained the same, we can increase
149 * the congestion window according to RFC 3465.
150 *
151 * Move background slow-start threshold to current
152 * congestion window so that the next time (after some idle
153 * period), we can attempt to do slow-start till here if there
154 * is no increase in rtt
155 */
156 if (tp->bg_ssthresh < tp->snd_cwnd) {
157 tp->bg_ssthresh = tp->snd_cwnd;
158 }
159 tp->snd_cwnd += incr;
160 } else {
161 /* In response to an increase in rtt, reduce the congestion
162 * window by one-eighth. This will help to yield immediately
163 * to a competing stream.
164 */
165 uint32_t redwin;
166
167 redwin = tp->snd_cwnd >> 3;
168 tp->snd_cwnd -= redwin;
169 if (tp->snd_cwnd < bg_ss_fltsz * tp->t_maxseg) {
170 tp->snd_cwnd = bg_ss_fltsz * tp->t_maxseg;
171 }
172
173 /* Lower background slow-start threshold so that the connection
174 * will go into congestion avoidance phase
175 */
176 if (tp->bg_ssthresh > tp->snd_cwnd) {
177 tp->bg_ssthresh = tp->snd_cwnd;
178 }
179 }
180 check_max:
181 /* Calculate the outstanding flight size and restrict the
182 * congestion window to a factor of flight size.
183 */
184 flight_size = tp->snd_max - tp->snd_una;
185
186 max_allowed_cwnd = (allowed_increase * tp->t_maxseg)
187 + (flight_size << tether_shift);
188 tp->snd_cwnd = min(tp->snd_cwnd, max_allowed_cwnd);
189 return;
190 }
191
192 int
193 tcp_ledbat_init(struct tcpcb *tp)
194 {
195 #pragma unused(tp)
196 OSIncrementAtomic((volatile SInt32 *)&tcp_cc_ledbat.num_sockets);
197 return 0;
198 }
199
200 int
201 tcp_ledbat_cleanup(struct tcpcb *tp)
202 {
203 #pragma unused(tp)
204 OSDecrementAtomic((volatile SInt32 *)&tcp_cc_ledbat.num_sockets);
205 return 0;
206 }
207
208 /* Initialize the congestion window for a connection
209 *
210 */
211
212 void
213 tcp_ledbat_cwnd_init(struct tcpcb *tp)
214 {
215 tp->snd_cwnd = tp->t_maxseg * bg_ss_fltsz;
216 tp->bg_ssthresh = tp->snd_ssthresh;
217 }
218
219 /* Function to handle an in-sequence ack which is fast-path processing
220 * of an in sequence ack in tcp_input function (called as header prediction).
221 * This gets called only during congestion avoidance phase.
222 */
223 void
224 tcp_ledbat_congestion_avd(struct tcpcb *tp, struct tcphdr *th)
225 {
226 int acked = 0;
227 u_int32_t incr = 0;
228
229 acked = BYTES_ACKED(th, tp);
230 tp->t_bytes_acked += acked;
231 if (tp->t_bytes_acked > tp->snd_cwnd) {
232 tp->t_bytes_acked -= tp->snd_cwnd;
233 incr = tp->t_maxseg;
234 }
235
236 if (tp->snd_cwnd < tp->snd_wnd && incr > 0) {
237 update_cwnd(tp, incr);
238 }
239 }
240 /* Function to process an ack.
241 */
242 void
243 tcp_ledbat_ack_rcvd(struct tcpcb *tp, struct tcphdr *th)
244 {
245 /*
246 * RFC 3465 - Appropriate Byte Counting.
247 *
248 * If the window is currently less than ssthresh,
249 * open the window by the number of bytes ACKed by
250 * the last ACK, however clamp the window increase
251 * to an upper limit "L".
252 *
253 * In congestion avoidance phase, open the window by
254 * one segment each time "bytes_acked" grows to be
255 * greater than or equal to the congestion window.
256 */
257
258 uint32_t cw = tp->snd_cwnd;
259 uint32_t incr = tp->t_maxseg;
260 uint32_t acked = 0;
261
262 acked = BYTES_ACKED(th, tp);
263 tp->t_bytes_acked += acked;
264 if (cw >= tp->bg_ssthresh) {
265 /* congestion-avoidance */
266 if (tp->t_bytes_acked < cw) {
267 /* No need to increase yet. */
268 incr = 0;
269 }
270 } else {
271 /*
272 * If the user explicitly enables RFC3465
273 * use 2*SMSS for the "L" param. Otherwise
274 * use the more conservative 1*SMSS.
275 *
276 * (See RFC 3465 2.3 Choosing the Limit)
277 */
278 u_int abc_lim;
279
280 abc_lim = (tp->snd_nxt == tp->snd_max) ? incr * 2 : incr;
281
282 incr = ulmin(acked, abc_lim);
283 }
284 if (tp->t_bytes_acked >= cw) {
285 tp->t_bytes_acked -= cw;
286 }
287 if (incr > 0) {
288 update_cwnd(tp, incr);
289 }
290 }
291
292 void
293 tcp_ledbat_pre_fr(struct tcpcb *tp)
294 {
295 uint32_t win;
296
297 win = min(tp->snd_wnd, tp->snd_cwnd) /
298 2 / tp->t_maxseg;
299 if (win < 2) {
300 win = 2;
301 }
302 tp->snd_ssthresh = win * tp->t_maxseg;
303 if (tp->bg_ssthresh > tp->snd_ssthresh) {
304 tp->bg_ssthresh = tp->snd_ssthresh;
305 }
306
307 tcp_cc_resize_sndbuf(tp);
308 }
309
310 void
311 tcp_ledbat_post_fr(struct tcpcb *tp, struct tcphdr *th)
312 {
313 int32_t ss;
314
315 if (th) {
316 ss = tp->snd_max - th->th_ack;
317 } else {
318 ss = tp->snd_max - tp->snd_una;
319 }
320
321 /*
322 * Complete ack. Inflate the congestion window to
323 * ssthresh and exit fast recovery.
324 *
325 * Window inflation should have left us with approx.
326 * snd_ssthresh outstanding data. But in case we
327 * would be inclined to send a burst, better to do
328 * it via the slow start mechanism.
329 *
330 * If the flight size is zero, then make congestion
331 * window to be worth at least 2 segments to avoid
332 * delayed acknowledgement (draft-ietf-tcpm-rfc3782-bis-05).
333 */
334 if (ss < (int32_t)tp->snd_ssthresh) {
335 tp->snd_cwnd = max(ss, tp->t_maxseg) + tp->t_maxseg;
336 } else {
337 tp->snd_cwnd = tp->snd_ssthresh;
338 }
339 tp->t_bytes_acked = 0;
340 }
341
342 /*
343 * Function to handle connections that have been idle for
344 * some time. Slow start to get ack "clock" running again.
345 * Clear base history after idle time.
346 */
347 void
348 tcp_ledbat_after_idle(struct tcpcb *tp)
349 {
350 /* Reset the congestion window */
351 tp->snd_cwnd = tp->t_maxseg * bg_ss_fltsz;
352 }
353
354 /* Function to change the congestion window when the retransmit
355 * timer fires. The behavior is the same as that for best-effort
356 * TCP, reduce congestion window to one segment and start probing
357 * the link using "slow start". The slow start threshold is set
358 * to half of the current window. Lower the background slow start
359 * threshold also.
360 */
361 void
362 tcp_ledbat_after_timeout(struct tcpcb *tp)
363 {
364 if (tp->t_state >= TCPS_ESTABLISHED) {
365 u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg;
366 if (win < 2) {
367 win = 2;
368 }
369 tp->snd_ssthresh = win * tp->t_maxseg;
370
371 if (tp->bg_ssthresh > tp->snd_ssthresh) {
372 tp->bg_ssthresh = tp->snd_ssthresh;
373 }
374
375 tp->snd_cwnd = tp->t_maxseg;
376 tcp_cc_resize_sndbuf(tp);
377 }
378 }
379
380 /*
381 * Indicate whether this ack should be delayed.
382 * We can delay the ack if:
383 * - our last ack wasn't a 0-sized window.
384 * - the peer hasn't sent us a TH_PUSH data packet: if he did, take this
385 * as a clue that we need to ACK without any delay. This helps higher
386 * level protocols who won't send us more data even if the window is
387 * open because their last "segment" hasn't been ACKed
388 * Otherwise the receiver will ack every other full-sized segment or when the
389 * delayed ack timer fires. This will help to generate better rtt estimates for
390 * the other end if it is a ledbat sender.
391 *
392 */
393
394 static int
395 tcp_ledbat_delay_ack(struct tcpcb *tp, struct tcphdr *th)
396 {
397 if (tcp_ack_strategy == TCP_ACK_STRATEGY_MODERN) {
398 return tcp_cc_delay_ack(tp, th);
399 } else {
400 if ((tp->t_flags & TF_RXWIN0SENT) == 0 &&
401 (th->th_flags & TH_PUSH) == 0 && (tp->t_unacksegs == 1)) {
402 return 1;
403 }
404 return 0;
405 }
406 }
407
408 /* Change a connection to use ledbat. First, lower bg_ssthresh value
409 * if it needs to be.
410 */
411 void
412 tcp_ledbat_switch_cc(struct tcpcb *tp, uint16_t old_cc_index)
413 {
414 #pragma unused(old_cc_index)
415 uint32_t cwnd;
416
417 if (tp->bg_ssthresh == 0 || tp->bg_ssthresh > tp->snd_ssthresh) {
418 tp->bg_ssthresh = tp->snd_ssthresh;
419 }
420
421 cwnd = min(tp->snd_wnd, tp->snd_cwnd);
422
423 if (tp->snd_cwnd > tp->bg_ssthresh) {
424 cwnd = cwnd / tp->t_maxseg;
425 } else {
426 cwnd = cwnd / 2 / tp->t_maxseg;
427 }
428
429 if (cwnd < bg_ss_fltsz) {
430 cwnd = bg_ss_fltsz;
431 }
432
433 tp->snd_cwnd = cwnd * tp->t_maxseg;
434 tp->t_bytes_acked = 0;
435
436 OSIncrementAtomic((volatile SInt32 *)&tcp_cc_ledbat.num_sockets);
437 }