2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/reason.h>
91 #include <sys/resourcevar.h>
92 #include <sys/vnode_internal.h>
93 #include <sys/file_internal.h>
95 #include <sys/codesign.h>
96 #include <sys/sysproto.h>
98 #include <sys/persona.h>
100 #include <sys/doc_tombstone.h>
102 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
103 extern void (*dtrace_proc_waitfor_exec_ptr
)(proc_t
);
104 extern void dtrace_proc_fork(proc_t
, proc_t
, int);
107 * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
108 * we will store its value before actually calling it.
110 static void (*dtrace_proc_waitfor_hook
)(proc_t
) = NULL
;
112 #include <sys/dtrace_ptss.h>
115 #include <security/audit/audit.h>
117 #include <mach/mach_types.h>
118 #include <kern/coalition.h>
119 #include <kern/kern_types.h>
120 #include <kern/kalloc.h>
121 #include <kern/mach_param.h>
122 #include <kern/task.h>
123 #include <kern/thread.h>
124 #include <kern/thread_call.h>
125 #include <kern/zalloc.h>
130 #include <security/mac_framework.h>
131 #include <security/mac_mach_internal.h>
134 #include <vm/vm_map.h>
135 #include <vm/vm_protos.h>
136 #include <vm/vm_shared_region.h>
138 #include <sys/shm_internal.h> /* for shmfork() */
139 #include <mach/task.h> /* for thread_create() */
140 #include <mach/thread_act.h> /* for thread_resume() */
144 #if CONFIG_MEMORYSTATUS
145 #include <sys/kern_memorystatus.h>
148 /* XXX routines which should have Mach prototypes, but don't */
149 void thread_set_parent(thread_t parent
, int pid
);
150 extern void act_thread_catt(void *ctx
);
151 void thread_set_child(thread_t child
, int pid
);
152 void *act_thread_csave(void);
153 extern boolean_t
task_is_exec_copy(task_t
);
154 int nextpidversion
= 0;
157 thread_t
cloneproc(task_t
, coalition_t
*, proc_t
, int, int);
158 proc_t
forkproc(proc_t
);
159 void forkproc_free(proc_t
);
160 thread_t
fork_create_child(task_t parent_task
,
161 coalition_t
*parent_coalitions
,
167 void proc_vfork_begin(proc_t parent_proc
);
168 void proc_vfork_end(proc_t parent_proc
);
170 static LCK_GRP_DECLARE(rethrottle_lock_grp
, "rethrottle");
171 static ZONE_DECLARE(uthread_zone
, "uthreads",
172 sizeof(struct uthread
), ZC_ZFREE_CLEARMEM
);
174 SECURITY_READ_ONLY_LATE(zone_t
) proc_zone
;
175 ZONE_INIT(&proc_zone
, "proc", sizeof(struct proc
), ZC_ZFREE_CLEARMEM
,
178 ZONE_DECLARE(proc_stats_zone
, "pstats",
179 sizeof(struct pstats
), ZC_NOENCRYPT
| ZC_ZFREE_CLEARMEM
);
181 ZONE_DECLARE(proc_sigacts_zone
, "sigacts",
182 sizeof(struct sigacts
), ZC_NOENCRYPT
);
184 #define DOFORK 0x1 /* fork() system call */
185 #define DOVFORK 0x2 /* vfork() system call */
190 * Description: start a vfork on a process
192 * Parameters: parent_proc process (re)entering vfork state
196 * Notes: Although this function increments a count, a count in
197 * excess of 1 is not currently supported. According to the
198 * POSIX standard, calling anything other than execve() or
199 * _exit() following a vfork(), including calling vfork()
200 * itself again, will result in undefined behaviour
203 proc_vfork_begin(proc_t parent_proc
)
205 proc_lock(parent_proc
);
206 parent_proc
->p_lflag
|= P_LVFORK
;
207 parent_proc
->p_vforkcnt
++;
208 proc_unlock(parent_proc
);
214 * Description: stop a vfork on a process
216 * Parameters: parent_proc process leaving vfork state
220 * Notes: Decrements the count; currently, reentrancy of vfork()
221 * is unsupported on the current process
224 proc_vfork_end(proc_t parent_proc
)
226 proc_lock(parent_proc
);
227 parent_proc
->p_vforkcnt
--;
228 if (parent_proc
->p_vforkcnt
< 0) {
229 panic("vfork cnt is -ve");
231 if (parent_proc
->p_vforkcnt
== 0) {
232 parent_proc
->p_lflag
&= ~P_LVFORK
;
234 proc_unlock(parent_proc
);
241 * Description: vfork system call
243 * Parameters: void [no arguments]
245 * Retval: 0 (to child process)
246 * !0 pid of child (to parent process)
247 * -1 error (see "Returns:")
249 * Returns: EAGAIN Administrative limit reached
250 * EINVAL vfork() called during vfork()
251 * ENOMEM Failed to allocate new process
253 * Note: After a successful call to this function, the parent process
254 * has its task, thread, and uthread lent to the child process,
255 * and control is returned to the caller; if this function is
256 * invoked as a system call, the return is to user space, and
257 * is effectively running on the child process.
259 * Subsequent calls that operate on process state are permitted,
260 * though discouraged, and will operate on the child process; any
261 * operations on the task, thread, or uthread will result in
262 * changes in the parent state, and, if inheritable, the child
263 * state, when a task, thread, and uthread are realized for the
264 * child process at execve() time, will also be effected. Given
265 * this, it's recemmended that people use the posix_spawn() call
268 * BLOCK DIAGRAM OF VFORK
272 * ,----------------. ,-------------.
274 * | parent_thread | ------> | parent_task |
276 * `----------------' `-------------'
277 * uthread | ^ bsd_info | ^
278 * v | vc_thread v | task
279 * ,----------------. ,-------------.
281 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
283 * `----------------' `-------------'
290 * ,----------------. ,-------------.
292 * ,----> | parent_thread | ------> | parent_task |
294 * | `----------------' `-------------'
295 * | uthread | ^ bsd_info | ^
296 * | v | vc_thread v | task
297 * | ,----------------. ,-------------.
299 * | | parent_uthread | <.list. | parent_proc |
301 * | `----------------' `-------------'
304 * | ,----------------.
306 * p_vforkact | child_proc | <-- current_proc()
311 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
313 thread_t child_thread
;
316 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
, NULL
)) != 0) {
319 uthread_t ut
= get_bsdthread_info(current_thread());
320 proc_t child_proc
= ut
->uu_proc
;
322 retval
[0] = child_proc
->p_pid
;
323 retval
[1] = 1; /* flag child return for user space */
326 * Drop the signal lock on the child which was taken on our
327 * behalf by forkproc()/cloneproc() to prevent signals being
328 * received by the child in a partially constructed state.
330 proc_signalend(child_proc
, 0);
331 proc_transend(child_proc
, 0);
333 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
334 DTRACE_PROC1(create
, proc_t
, child_proc
);
335 ut
->uu_flag
&= ~UT_VFORKING
;
345 * Description: common code used by all new process creation other than the
346 * bootstrap of the initial process on the system
348 * Parameters: parent_proc parent process of the process being
349 * child_threadp pointer to location to receive the
350 * Mach thread_t of the child process
352 * kind kind of creation being requested
353 * coalitions if spawn, the set of coalitions the
354 * child process should join, or NULL to
355 * inherit the parent's. On non-spawns,
356 * this param is ignored and the child
357 * always inherits the parent's
360 * Notes: Permissable values for 'kind':
362 * PROC_CREATE_FORK Create a complete process which will
363 * return actively running in both the
364 * parent and the child; the child copies
365 * the parent address space.
366 * PROC_CREATE_SPAWN Create a complete process which will
367 * return actively running in the parent
368 * only after returning actively running
369 * in the child; the child address space
370 * is newly created by an image activator,
371 * after which the child is run.
372 * PROC_CREATE_VFORK Creates a partial process which will
373 * borrow the parent task, thread, and
374 * uthread to return running in the child;
375 * the child address space and other parts
376 * are lazily created at execve() time, or
377 * the child is terminated, and the parent
378 * does not actively run until that
381 * At first it may seem strange that we return the child thread
382 * address rather than process structure, since the process is
383 * the only part guaranteed to be "new"; however, since we do
384 * not actualy adjust other references between Mach and BSD (see
385 * the block diagram above the implementation of vfork()), this
386 * is the only method which guarantees us the ability to get
387 * back to the other information.
390 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
, coalition_t
*coalitions
)
392 thread_t parent_thread
= (thread_t
)current_thread();
393 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
394 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
395 thread_t child_thread
= NULL
;
400 rlim_t rlimit_nproc_cur
;
403 * Although process entries are dynamically created, we still keep
404 * a global limit on the maximum number we will create. Don't allow
405 * a nonprivileged user to use the last process; don't let root
406 * exceed the limit. The variable nprocs is the current number of
407 * processes, maxproc is the limit.
409 uid
= kauth_getruid();
411 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
412 #if (DEVELOPMENT || DEBUG) && !defined(XNU_TARGET_OS_OSX)
414 * On the development kernel, panic so that the fact that we hit
415 * the process limit is obvious, as this may very well wedge the
418 panic("The process table is full; parent pid=%d", parent_proc
->p_pid
);
427 * Increment the count of procs running with this uid. Don't allow
428 * a nonprivileged user to exceed their current limit, which is
429 * always less than what an rlim_t can hold.
430 * (locking protection is provided by list lock held in chgproccnt)
432 count
= chgproccnt(uid
, 1);
433 rlimit_nproc_cur
= proc_limitgetcur(parent_proc
, RLIMIT_NPROC
, TRUE
);
435 (rlim_t
)count
> rlimit_nproc_cur
) {
436 #if (DEVELOPMENT || DEBUG) && !defined(XNU_TARGET_OS_OSX)
438 * On the development kernel, panic so that the fact that we hit
439 * the per user process limit is obvious. This may be less dire
440 * than hitting the global process limit, but we cannot rely on
443 panic("The per-user process limit has been hit; parent pid=%d, uid=%d", parent_proc
->p_pid
, uid
);
451 * Determine if MAC policies applied to the process will allow
452 * it to fork. This is an advisory-only check.
454 err
= mac_proc_check_fork(parent_proc
);
461 case PROC_CREATE_VFORK
:
463 * Prevent a vfork while we are in vfork(); we should
464 * also likely preventing a fork here as well, and this
465 * check should then be outside the switch statement,
466 * since the proc struct contents will copy from the
467 * child and the tash/thread/uthread from the parent in
468 * that case. We do not support vfork() in vfork()
469 * because we don't have to; the same non-requirement
470 * is true of both fork() and posix_spawn() and any
471 * call other than execve() amd _exit(), but we've
472 * been historically lenient, so we continue to be so
475 * <rdar://6640521> Probably a source of random panics
477 if (parent_uthread
->uu_flag
& UT_VFORK
) {
478 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
484 * Flag us in progress; if we chose to support vfork() in
485 * vfork(), we would chain our parent at this point (in
486 * effect, a stack push). We don't, since we actually want
487 * to disallow everything not specified in the standard
489 proc_vfork_begin(parent_proc
);
491 /* The newly created process comes with signal lock held */
492 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
493 /* Failed to allocate new process */
494 proc_vfork_end(parent_proc
);
499 // XXX BEGIN: wants to move to be common code (and safe)
502 * allow policies to associate the credential/label that
503 * we referenced from the parent ... with the child
504 * JMM - this really isn't safe, as we can drop that
505 * association without informing the policy in other
506 * situations (keep long enough to get policies changed)
508 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
512 * Propogate change of PID - may get new cred if auditing.
514 * NOTE: This has no effect in the vfork case, since
515 * child_proc->task != current_task(), but we duplicate it
516 * because this is probably, ultimately, wrong, since we
517 * will be running in the "child" which is the parent task
518 * with the wrong token until we get to the execve() or
519 * _exit() call; a lot of "undefined" can happen before
522 * <rdar://6640530> disallow everything but exeve()/_exit()?
524 set_security_token(child_proc
);
526 AUDIT_ARG(pid
, child_proc
->p_pid
);
528 // XXX END: wants to move to be common code (and safe)
531 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
533 * Note: this is where we would "push" state instead of setting
534 * it for nested vfork() support (see proc_vfork_end() for
535 * description if issues here).
537 child_proc
->task
= parent_proc
->task
;
539 child_proc
->p_lflag
|= P_LINVFORK
;
540 child_proc
->p_vforkact
= parent_thread
;
541 child_proc
->p_stat
= SRUN
;
544 * Until UT_VFORKING is cleared at the end of the vfork
545 * syscall, the process identity of this thread is slightly
548 * As long as UT_VFORK and it's associated field (uu_proc)
549 * is set, current_proc() will always return the child process.
551 * However dtrace_proc_selfpid() returns the parent pid to
552 * ensure that e.g. the proc:::create probe actions accrue
553 * to the parent. (Otherwise the child magically seems to
554 * have created itself!)
556 parent_uthread
->uu_flag
|= UT_VFORK
| UT_VFORKING
;
557 parent_uthread
->uu_proc
= child_proc
;
558 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
559 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
561 /* temporarily drop thread-set-id state */
562 if (parent_uthread
->uu_flag
& UT_SETUID
) {
563 parent_uthread
->uu_flag
|= UT_WASSETUID
;
564 parent_uthread
->uu_flag
&= ~UT_SETUID
;
567 /* blow thread state information */
568 /* XXX is this actually necessary, given syscall return? */
569 thread_set_child(parent_thread
, child_proc
->p_pid
);
571 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
574 * Preserve synchronization semantics of vfork. If
575 * waiting for child to exec or exit, set P_PPWAIT
576 * on child, and sleep on our proc (in case of exit).
578 child_proc
->p_lflag
|= P_LPPWAIT
;
579 pinsertchild(parent_proc
, child_proc
); /* set visible */
583 case PROC_CREATE_SPAWN
:
585 * A spawned process differs from a forked process in that
586 * the spawned process does not carry around the parents
587 * baggage with regard to address space copying, dtrace,
594 case PROC_CREATE_FORK
:
596 * When we clone the parent process, we are going to inherit
597 * its task attributes and memory, since when we fork, we
598 * will, in effect, create a duplicate of it, with only minor
599 * differences. Contrarily, spawned processes do not inherit.
601 if ((child_thread
= cloneproc(parent_proc
->task
,
602 spawn
? coalitions
: NULL
,
604 spawn
? FALSE
: TRUE
,
606 /* Failed to create thread */
611 /* copy current thread state into the child thread (only for fork) */
613 thread_dup(child_thread
);
616 /* child_proc = child_thread->task->proc; */
617 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
619 // XXX BEGIN: wants to move to be common code (and safe)
622 * allow policies to associate the credential/label that
623 * we referenced from the parent ... with the child
624 * JMM - this really isn't safe, as we can drop that
625 * association without informing the policy in other
626 * situations (keep long enough to get policies changed)
628 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
632 * Propogate change of PID - may get new cred if auditing.
634 * NOTE: This has no effect in the vfork case, since
635 * child_proc->task != current_task(), but we duplicate it
636 * because this is probably, ultimately, wrong, since we
637 * will be running in the "child" which is the parent task
638 * with the wrong token until we get to the execve() or
639 * _exit() call; a lot of "undefined" can happen before
642 * <rdar://6640530> disallow everything but exeve()/_exit()?
644 set_security_token(child_proc
);
646 AUDIT_ARG(pid
, child_proc
->p_pid
);
648 // XXX END: wants to move to be common code (and safe)
651 * Blow thread state information; this is what gives the child
652 * process its "return" value from a fork() call.
654 * Note: this should probably move to fork() proper, since it
655 * is not relevent to spawn, and the value won't matter
656 * until we resume the child there. If you are in here
657 * refactoring code, consider doing this at the same time.
659 thread_set_child(child_thread
, child_proc
->p_pid
);
661 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
664 dtrace_proc_fork(parent_proc
, child_proc
, spawn
);
665 #endif /* CONFIG_DTRACE */
668 * Of note, we need to initialize the bank context behind
669 * the protection of the proc_trans lock to prevent a race with exit.
671 task_bank_init(get_threadtask(child_thread
));
677 panic("fork1 called with unknown kind %d", kind
);
682 /* return the thread pointer to the caller */
683 *child_threadp
= child_thread
;
687 * In the error case, we return a 0 value for the returned pid (but
688 * it is ignored in the trampoline due to the error return); this
689 * is probably not necessary.
692 (void)chgproccnt(uid
, -1);
702 * Description: "Return" to parent vfork thread() following execve/_exit;
703 * this is done by reassociating the parent process structure
704 * with the task, thread, and uthread.
706 * Refer to the ASCII art above vfork() to figure out the
707 * state we're undoing.
709 * Parameters: child_proc Child process
710 * retval System call return value array
711 * rval Return value to present to parent
715 * Notes: The caller resumes or exits the parent, as appropriate, after
716 * calling this function.
719 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
721 task_t parent_task
= get_threadtask(child_proc
->p_vforkact
);
722 proc_t parent_proc
= get_bsdtask_info(parent_task
);
723 thread_t th
= current_thread();
724 uthread_t uth
= get_bsdthread_info(th
);
726 act_thread_catt(uth
->uu_userstate
);
728 /* clear vfork state in parent proc structure */
729 proc_vfork_end(parent_proc
);
731 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
732 uth
->uu_userstate
= 0;
733 uth
->uu_flag
&= ~UT_VFORK
;
734 /* restore thread-set-id state */
735 if (uth
->uu_flag
& UT_WASSETUID
) {
736 uth
->uu_flag
|= UT_SETUID
;
737 uth
->uu_flag
&= ~UT_WASSETUID
;
740 uth
->uu_sigmask
= uth
->uu_vforkmask
;
742 proc_lock(child_proc
);
743 child_proc
->p_lflag
&= ~P_LINVFORK
;
744 child_proc
->p_vforkact
= 0;
745 proc_unlock(child_proc
);
747 thread_set_parent(th
, rval
);
751 retval
[1] = 0; /* mark parent */
759 * Description: Common operations associated with the creation of a child
762 * Parameters: parent_task parent task
763 * parent_coalitions parent's set of coalitions
764 * child_proc child process
765 * inherit_memory TRUE, if the parents address space is
766 * to be inherited by the child
767 * is_64bit_addr TRUE, if the child being created will
768 * be associated with a 64 bit address space
769 * is_64bit_data TRUE if the child being created will use a
770 * 64-bit register state
771 * in_exec TRUE, if called from execve or posix spawn set exec
772 * FALSE, if called from fork or vfexec
774 * Note: This code is called in the fork() case, from the execve() call
775 * graph, if implementing an execve() following a vfork(), from
776 * the posix_spawn() call graph (which implicitly includes a
777 * vfork() equivalent call, and in the system bootstrap case.
779 * It creates a new task and thread (and as a side effect of the
780 * thread creation, a uthread) in the parent coalition set, which is
781 * then associated with the process 'child'. If the parent
782 * process address space is to be inherited, then a flag
783 * indicates that the newly created task should inherit this from
786 * As a special concession to bootstrapping the initial process
787 * in the system, it's possible for 'parent_task' to be TASK_NULL;
788 * in this case, 'inherit_memory' MUST be FALSE.
791 fork_create_child(task_t parent_task
,
792 coalition_t
*parent_coalitions
,
799 thread_t child_thread
= NULL
;
801 kern_return_t result
;
803 /* Create a new task for the child process */
804 result
= task_create_internal(parent_task
,
810 in_exec
? TPF_EXEC_COPY
: TPF_NONE
, /* Mark the task exec copy if in execve */
811 (TRW_LRETURNWAIT
| TRW_LRETURNWAITER
), /* All created threads will wait in task_wait_to_return */
813 if (result
!= KERN_SUCCESS
) {
814 printf("%s: task_create_internal failed. Code: %d\n",
821 * Set the child process task to the new task if not in exec,
822 * will set the task for exec case in proc_exec_switch_task after image activation.
824 child_proc
->task
= child_task
;
827 /* Set child task process to child proc */
828 set_bsdtask_info(child_task
, child_proc
);
830 /* Propagate CPU limit timer from parent */
831 if (timerisset(&child_proc
->p_rlim_cpu
)) {
832 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
836 * Set child process BSD visible scheduler priority if nice value
837 * inherited from parent
839 if (child_proc
->p_nice
!= 0) {
840 resetpriority(child_proc
);
844 * Create a new thread for the child process. Pin it and make it immovable.
845 * The new thread is waiting on the event triggered by 'task_clear_return_wait'
847 result
= thread_create_waiting(child_task
,
848 (thread_continue_t
)task_wait_to_return
,
849 task_get_return_wait_event(child_task
),
850 TH_CREATE_WAITING_OPTION_PINNED
| TH_CREATE_WAITING_OPTION_IMMOVABLE
,
853 if (result
!= KERN_SUCCESS
) {
854 printf("%s: thread_create failed. Code: %d\n",
856 task_deallocate(child_task
);
861 * Tag thread as being the first thread in its task.
863 thread_set_tag(child_thread
, THREAD_TAG_MAINTHREAD
);
866 thread_yield_internal(1);
875 * Description: fork system call.
877 * Parameters: parent Parent process to fork
878 * uap (void) [unused]
879 * retval Return value
882 * EAGAIN Resource unavailable, try again
884 * Notes: Attempts to create a new child process which inherits state
885 * from the parent process. If successful, the call returns
886 * having created an initially suspended child process with an
887 * extra Mach task and thread reference, for which the thread
888 * is initially suspended. Until we resume the child process,
889 * it is not yet running.
891 * The return information to the child is contained in the
892 * thread state structure of the new child, and does not
893 * become visible to the child through a normal return process,
894 * since it never made the call into the kernel itself in the
897 * After resuming the thread, this function returns directly to
898 * the parent process which invoked the fork() system call.
900 * Important: The child thread_resume occurs before the parent returns;
901 * depending on scheduling latency, this means that it is not
902 * deterministic as to whether the parent or child is scheduled
903 * to run first. It is entirely possible that the child could
904 * run to completion prior to the parent running.
907 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
909 thread_t child_thread
;
912 retval
[1] = 0; /* flag parent return for user space */
914 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
, NULL
)) == 0) {
918 /* Return to the parent */
919 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
920 retval
[0] = child_proc
->p_pid
;
923 * Drop the signal lock on the child which was taken on our
924 * behalf by forkproc()/cloneproc() to prevent signals being
925 * received by the child in a partially constructed state.
927 proc_signalend(child_proc
, 0);
928 proc_transend(child_proc
, 0);
930 /* flag the fork has occurred */
931 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
932 DTRACE_PROC1(create
, proc_t
, child_proc
);
935 if ((dtrace_proc_waitfor_hook
= dtrace_proc_waitfor_exec_ptr
) != NULL
) {
936 (*dtrace_proc_waitfor_hook
)(child_proc
);
940 /* "Return" to the child */
941 task_clear_return_wait(get_threadtask(child_thread
), TCRW_CLEAR_ALL_WAIT
);
943 /* drop the extra references we got during the creation */
944 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
945 task_deallocate(child_task
);
947 thread_deallocate(child_thread
);
957 * Description: Create a new process from a specified process.
959 * Parameters: parent_task The parent task to be cloned, or
960 * TASK_NULL is task characteristics
961 * are not to be inherited
962 * be cloned, or TASK_NULL if the new
963 * task is not to inherit the VM
964 * characteristics of the parent
965 * parent_proc The parent process to be cloned
966 * inherit_memory True if the child is to inherit
967 * memory from the parent; if this is
968 * non-NULL, then the parent_task must
970 * memstat_internal Whether to track the process in the
971 * jetsam priority list (if configured)
973 * Returns: !NULL pointer to new child thread
974 * NULL Failure (unspecified)
976 * Note: On return newly created child process has signal lock held
977 * to block delivery of signal to it if called with lock set.
978 * fork() code needs to explicity remove this lock before
979 * signals can be delivered
981 * In the case of bootstrap, this function can be called from
982 * bsd_utaskbootstrap() in order to bootstrap the first process;
983 * the net effect is to provide a uthread structure for the
984 * kernel process associated with the kernel task.
986 * XXX: Tristating using the value parent_task as the major key
987 * and inherit_memory as the minor key is something we should
988 * refactor later; we owe the current semantics, ultimately,
989 * to the semantics of task_create_internal. For now, we will
990 * live with this being somewhat awkward.
993 cloneproc(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t parent_proc
, int inherit_memory
, int memstat_internal
)
995 #if !CONFIG_MEMORYSTATUS
996 #pragma unused(memstat_internal)
1000 thread_t child_thread
= NULL
;
1002 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
1003 /* Failed to allocate new process */
1008 * In the case where the parent_task is TASK_NULL (during the init path)
1009 * we make the assumption that the register size will be the same as the
1010 * address space size since there's no way to determine the possible
1011 * register size until an image is exec'd.
1013 * The only architecture that has different address space and register sizes
1014 * (arm64_32) isn't being used within kernel-space, so the above assumption
1015 * always holds true for the init path.
1017 const int parent_64bit_addr
= parent_proc
->p_flag
& P_LP64
;
1018 const int parent_64bit_data
= (parent_task
== TASK_NULL
) ? parent_64bit_addr
: task_get_64bit_data(parent_task
);
1020 child_thread
= fork_create_child(parent_task
,
1028 if (child_thread
== NULL
) {
1030 * Failed to create thread; now we must deconstruct the new
1031 * process previously obtained from forkproc().
1033 forkproc_free(child_proc
);
1037 child_task
= get_threadtask(child_thread
);
1038 if (parent_64bit_addr
) {
1039 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
1041 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
1044 #if CONFIG_MEMORYSTATUS
1045 if (memstat_internal
) {
1047 child_proc
->p_memstat_state
|= P_MEMSTAT_INTERNAL
;
1052 /* make child visible */
1053 pinsertchild(parent_proc
, child_proc
);
1056 * Make child runnable, set start time.
1058 child_proc
->p_stat
= SRUN
;
1060 return child_thread
;
1065 * Destroy a process structure that resulted from a call to forkproc(), but
1066 * which must be returned to the system because of a subsequent failure
1067 * preventing it from becoming active.
1069 * Parameters: p The incomplete process from forkproc()
1073 * Note: This function should only be used in an error handler following
1074 * a call to forkproc().
1076 * Operations occur in reverse order of those in forkproc().
1079 forkproc_free(proc_t p
)
1082 persona_proc_drop(p
);
1083 #endif /* CONFIG_PERSONAS */
1086 pth_proc_hashdelete(p
);
1089 /* We held signal and a transition locks; drop them */
1090 proc_signalend(p
, 0);
1091 proc_transend(p
, 0);
1094 * If we have our own copy of the resource limits structure, we
1095 * need to free it. If it's a shared copy, we need to drop our
1101 /* Need to drop references to the shared memory segment(s), if any */
1104 * Use shmexec(): we have no address space, so no mappings
1106 * XXX Yes, the routine is badly named.
1112 /* Need to undo the effects of the fdcopy(), if any */
1116 * Drop the reference on a text vnode pointer, if any
1117 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1118 * XXX if anyone ever uses this field, we will be extremely unhappy.
1121 vnode_rele(p
->p_textvp
);
1125 /* Update the audit session proc count */
1126 AUDIT_SESSION_PROCEXIT(p
);
1128 lck_mtx_destroy(&p
->p_mlock
, &proc_mlock_grp
);
1129 lck_mtx_destroy(&p
->p_fdmlock
, &proc_fdmlock_grp
);
1130 lck_mtx_destroy(&p
->p_ucred_mlock
, &proc_ucred_mlock_grp
);
1132 lck_mtx_destroy(&p
->p_dtrace_sprlock
, &proc_lck_grp
);
1134 lck_spin_destroy(&p
->p_slock
, &proc_slock_grp
);
1135 lck_rw_destroy(&p
->p_dirs_lock
, &proc_dirslock_grp
);
1137 /* Release the credential reference */
1138 kauth_cred_t tmp_ucred
= p
->p_ucred
;
1139 kauth_cred_unref(&tmp_ucred
);
1140 p
->p_ucred
= tmp_ucred
;
1143 /* Decrement the count of processes in the system */
1146 /* Take it out of process hash */
1147 LIST_REMOVE(p
, p_hash
);
1151 thread_call_free(p
->p_rcall
);
1153 /* Free allocated memory */
1154 zfree(proc_sigacts_zone
, p
->p_sigacts
);
1155 p
->p_sigacts
= NULL
;
1156 zfree(proc_stats_zone
, p
->p_stats
);
1158 if (p
->p_subsystem_root_path
) {
1159 zfree(ZV_NAMEI
, p
->p_subsystem_root_path
);
1162 proc_checkdeadrefs(p
);
1163 zfree(proc_zone
, p
);
1170 * Description: Create a new process structure, given a parent process
1173 * Parameters: parent_proc The parent process
1175 * Returns: !NULL The new process structure
1176 * NULL Error (insufficient free memory)
1178 * Note: When successful, the newly created process structure is
1179 * partially initialized; if a caller needs to deconstruct the
1180 * returned structure, they must call forkproc_free() to do so.
1183 forkproc(proc_t parent_proc
)
1185 proc_t child_proc
; /* Our new process */
1186 static int nextpid
= 0, pidwrap
= 0;
1187 static uint64_t nextuniqueid
= 0;
1189 struct session
*sessp
;
1190 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1191 rlim_t rlimit_cpu_cur
;
1193 child_proc
= zalloc_flags(proc_zone
, Z_WAITOK
| Z_ZERO
);
1194 child_proc
->p_stats
= zalloc_flags(proc_stats_zone
, Z_WAITOK
| Z_ZERO
);
1195 child_proc
->p_sigacts
= zalloc_flags(proc_sigacts_zone
, Z_WAITOK
);
1197 /* allocate a callout for use by interval timers */
1198 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1199 if (child_proc
->p_rcall
== NULL
) {
1200 zfree(proc_sigacts_zone
, child_proc
->p_sigacts
);
1201 zfree(proc_stats_zone
, child_proc
->p_stats
);
1202 zfree(proc_zone
, child_proc
);
1209 * Find an unused PID.
1217 * If the process ID prototype has wrapped around,
1218 * restart somewhat above 0, as the low-numbered procs
1219 * tend to include daemons that don't exit.
1221 if (nextpid
>= PID_MAX
) {
1226 /* if the pid stays in hash both for zombie and runniing state */
1227 if (pfind_locked(nextpid
) != PROC_NULL
) {
1232 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1236 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1242 child_proc
->p_pid
= nextpid
;
1243 child_proc
->p_idversion
= OSIncrementAtomic(&nextpidversion
);
1244 /* kernel process is handcrafted and not from fork, so start from 1 */
1245 child_proc
->p_uniqueid
= ++nextuniqueid
;
1247 if (child_proc
->p_pid
!= 0) {
1248 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
) {
1249 panic("proc in the list already\n");
1253 /* Insert in the hash */
1254 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1255 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1258 if (child_proc
->p_uniqueid
== startup_serial_num_procs
) {
1260 * Turn off startup serial logging now that we have reached
1261 * the defined number of startup processes.
1263 startup_serial_logging_active
= false;
1267 * We've identified the PID we are going to use; initialize the new
1268 * process structure.
1270 child_proc
->p_stat
= SIDL
;
1271 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1274 * The zero'ing of the proc was at the allocation time due to need
1275 * for insertion to hash. Copy the section that is to be copied
1276 * directly from the parent.
1278 __nochk_bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1279 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1281 #if defined(HAS_APPLE_PAC)
1283 * The p_textvp and p_pgrp pointers are address-diversified by PAC, so we must
1284 * resign them here for the new proc
1286 if (parent_proc
->p_textvp
) {
1287 child_proc
->p_textvp
= parent_proc
->p_textvp
;
1290 if (parent_proc
->p_pgrp
) {
1291 child_proc
->p_pgrp
= parent_proc
->p_pgrp
;
1293 #endif /* defined(HAS_APPLE_PAC) */
1295 child_proc
->p_sessionid
= parent_proc
->p_sessionid
;
1298 * Some flags are inherited from the parent.
1299 * Duplicate sub-structures as needed.
1300 * Increase reference counts on shared objects.
1301 * The p_stats and p_sigacts substructs are set in vm_fork.
1303 #if CONFIG_DELAY_IDLE_SLEEP
1304 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_TRANSLATED
| P_DISABLE_ASLR
| P_DELAYIDLESLEEP
| P_SUGID
| P_AFFINITY
));
1305 #else /* CONFIG_DELAY_IDLE_SLEEP */
1306 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_TRANSLATED
| P_DISABLE_ASLR
| P_SUGID
));
1307 #endif /* CONFIG_DELAY_IDLE_SLEEP */
1309 child_proc
->p_vfs_iopolicy
= (parent_proc
->p_vfs_iopolicy
& (P_VFS_IOPOLICY_VALID_MASK
));
1311 child_proc
->p_responsible_pid
= parent_proc
->p_responsible_pid
;
1314 * Note that if the current thread has an assumed identity, this
1315 * credential will be granted to the new process.
1317 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1318 /* update cred on proc */
1319 PROC_UPDATE_CREDS_ONPROC(child_proc
);
1320 /* update audit session proc count */
1321 AUDIT_SESSION_PROCNEW(child_proc
);
1323 lck_mtx_init(&child_proc
->p_mlock
, &proc_mlock_grp
, &proc_lck_attr
);
1324 lck_mtx_init(&child_proc
->p_fdmlock
, &proc_fdmlock_grp
, &proc_lck_attr
);
1325 lck_mtx_init(&child_proc
->p_ucred_mlock
, &proc_ucred_mlock_grp
, &proc_lck_attr
);
1327 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, &proc_lck_grp
, &proc_lck_attr
);
1329 lck_spin_init(&child_proc
->p_slock
, &proc_slock_grp
, &proc_lck_attr
);
1330 lck_rw_init(&child_proc
->p_dirs_lock
, &proc_dirslock_grp
, &proc_lck_attr
);
1332 klist_init(&child_proc
->p_klist
);
1334 if (child_proc
->p_textvp
!= NULLVP
) {
1335 /* bump references to the text vnode */
1336 /* Need to hold iocount across the ref call */
1337 if ((error
= vnode_getwithref(child_proc
->p_textvp
)) == 0) {
1338 error
= vnode_ref(child_proc
->p_textvp
);
1339 vnode_put(child_proc
->p_textvp
);
1343 child_proc
->p_textvp
= NULLVP
;
1348 * Copy the parents per process open file table to the child; if
1349 * there is a per-thread current working directory, set the childs
1350 * per-process current working directory to that instead of the
1353 * XXX may fail to copy descriptors to child
1355 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1358 if (parent_proc
->vm_shm
) {
1359 /* XXX may fail to attach shm to child */
1360 (void)shmfork(parent_proc
, child_proc
);
1365 * Child inherits the parent's plimit
1367 proc_limitfork(parent_proc
, child_proc
);
1369 rlimit_cpu_cur
= proc_limitgetcur(child_proc
, RLIMIT_CPU
, TRUE
);
1370 if (rlimit_cpu_cur
!= RLIM_INFINITY
) {
1371 child_proc
->p_rlim_cpu
.tv_sec
= (rlimit_cpu_cur
> __INT_MAX__
) ? __INT_MAX__
: rlimit_cpu_cur
;
1374 /* Intialize new process stats, including start time */
1375 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1376 microtime_with_abstime(&child_proc
->p_start
, &child_proc
->p_stats
->ps_start
);
1378 if (parent_proc
->p_sigacts
!= NULL
) {
1379 (void)memcpy(child_proc
->p_sigacts
,
1380 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1382 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1385 sessp
= proc_session(parent_proc
);
1386 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
) {
1387 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1389 session_rele(sessp
);
1392 * block all signals to reach the process.
1393 * no transition race should be occuring with the child yet,
1394 * but indicate that the process is in (the creation) transition.
1396 proc_signalstart(child_proc
, 0);
1397 proc_transstart(child_proc
, 0, 0);
1399 child_proc
->p_pcaction
= 0;
1401 TAILQ_INIT(&child_proc
->p_uthlist
);
1402 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1403 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1405 /* Inherit the parent flags for code sign */
1406 child_proc
->p_csflags
= (parent_proc
->p_csflags
& ~CS_KILLED
);
1409 * Copy work queue information
1411 * Note: This should probably only happen in the case where we are
1412 * creating a child that is a copy of the parent; since this
1413 * routine is called in the non-duplication case of vfork()
1414 * or posix_spawn(), then this information should likely not
1417 * <rdar://6640553> Work queue pointers that no longer point to code
1419 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1420 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1421 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1422 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1423 child_proc
->p_lflag
|= P_LREGISTER
;
1425 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1426 child_proc
->p_dispatchqueue_serialno_offset
= parent_proc
->p_dispatchqueue_serialno_offset
;
1427 child_proc
->p_dispatchqueue_label_offset
= parent_proc
->p_dispatchqueue_label_offset
;
1428 child_proc
->p_return_to_kernel_offset
= parent_proc
->p_return_to_kernel_offset
;
1429 child_proc
->p_mach_thread_self_offset
= parent_proc
->p_mach_thread_self_offset
;
1430 child_proc
->p_pth_tsd_offset
= parent_proc
->p_pth_tsd_offset
;
1432 pth_proc_hashinit(child_proc
);
1436 child_proc
->p_persona
= NULL
;
1437 error
= persona_proc_inherit(child_proc
, parent_proc
);
1439 printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n", persona_get_uid(parent_proc
->p_persona
));
1440 forkproc_free(child_proc
);
1446 #if CONFIG_MEMORYSTATUS
1447 /* Memorystatus init */
1448 child_proc
->p_memstat_state
= 0;
1449 child_proc
->p_memstat_effectivepriority
= JETSAM_PRIORITY_DEFAULT
;
1450 child_proc
->p_memstat_requestedpriority
= JETSAM_PRIORITY_DEFAULT
;
1451 child_proc
->p_memstat_assertionpriority
= 0;
1452 child_proc
->p_memstat_userdata
= 0;
1453 child_proc
->p_memstat_idle_start
= 0;
1454 child_proc
->p_memstat_idle_delta
= 0;
1455 child_proc
->p_memstat_memlimit
= 0;
1456 child_proc
->p_memstat_memlimit_active
= 0;
1457 child_proc
->p_memstat_memlimit_inactive
= 0;
1458 child_proc
->p_memstat_relaunch_flags
= P_MEMSTAT_RELAUNCH_UNKNOWN
;
1460 child_proc
->p_memstat_freeze_sharedanon_pages
= 0;
1462 child_proc
->p_memstat_dirty
= 0;
1463 child_proc
->p_memstat_idledeadline
= 0;
1464 #endif /* CONFIG_MEMORYSTATUS */
1466 if (parent_proc
->p_subsystem_root_path
) {
1467 size_t parent_length
= strlen(parent_proc
->p_subsystem_root_path
) + 1;
1468 assert(parent_length
<= MAXPATHLEN
);
1469 child_proc
->p_subsystem_root_path
= zalloc_flags(ZV_NAMEI
,
1471 memcpy(child_proc
->p_subsystem_root_path
, parent_proc
->p_subsystem_root_path
, parent_length
);
1481 LCK_MTX_ASSERT(&proc_list_mlock
, LCK_MTX_ASSERT_NOTOWNED
);
1482 lck_mtx_lock(&p
->p_mlock
);
1486 proc_unlock(proc_t p
)
1488 lck_mtx_unlock(&p
->p_mlock
);
1492 proc_spinlock(proc_t p
)
1494 lck_spin_lock_grp(&p
->p_slock
, &proc_slock_grp
);
1498 proc_spinunlock(proc_t p
)
1500 lck_spin_unlock(&p
->p_slock
);
1504 proc_list_lock(void)
1506 lck_mtx_lock(&proc_list_mlock
);
1510 proc_list_unlock(void)
1512 lck_mtx_unlock(&proc_list_mlock
);
1516 proc_ucred_lock(proc_t p
)
1518 lck_mtx_lock(&p
->p_ucred_mlock
);
1522 proc_ucred_unlock(proc_t p
)
1524 lck_mtx_unlock(&p
->p_ucred_mlock
);
1528 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1532 uthread_t uth_parent
;
1535 ut
= zalloc_flags(uthread_zone
, Z_WAITOK
| Z_ZERO
);
1537 p
= (proc_t
) get_bsdtask_info(task
);
1538 uth
= (uthread_t
)ut
;
1539 uth
->uu_thread
= thread
;
1541 lck_spin_init(&uth
->uu_rethrottle_lock
, &rethrottle_lock_grp
,
1545 * Thread inherits credential from the creating thread, if both
1546 * are in the same task.
1548 * If the creating thread has no credential or is from another
1549 * task we can leave the new thread credential NULL. If it needs
1550 * one later, it will be lazily assigned from the task's process.
1552 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1553 if ((noinherit
== 0) && task
== current_task() &&
1554 uth_parent
!= NULL
&&
1555 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1557 * XXX The new thread is, in theory, being created in context
1558 * XXX of parent thread, so a direct reference to the parent
1561 kauth_cred_ref(uth_parent
->uu_ucred
);
1562 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1563 /* the credential we just inherited is an assumed credential */
1564 if (uth_parent
->uu_flag
& UT_SETUID
) {
1565 uth
->uu_flag
|= UT_SETUID
;
1568 /* sometimes workqueue threads are created out task context */
1569 if ((task
!= kernel_task
) && (p
!= PROC_NULL
)) {
1570 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1572 uth
->uu_ucred
= NOCRED
;
1577 if ((task
!= kernel_task
) && p
) {
1579 if (noinherit
!= 0) {
1580 /* workq threads will not inherit masks */
1581 uth
->uu_sigmask
= ~workq_threadmask
;
1582 } else if (uth_parent
) {
1583 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
) {
1584 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1586 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1589 uth
->uu_context
.vc_thread
= thread
;
1591 * Do not add the uthread to proc uthlist for exec copy task,
1592 * since they do not hold a ref on proc.
1594 if (!task_is_exec_copy(task
)) {
1595 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1600 if (p
->p_dtrace_ptss_pages
!= NULL
&& !task_is_exec_copy(task
)) {
1601 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1610 * This routine frees the thread name field of the uthread_t structure. Split out of
1611 * uthread_cleanup() so thread name does not get deallocated while generating a corpse fork.
1614 uthread_cleanup_name(void *uthread
)
1616 uthread_t uth
= (uthread_t
)uthread
;
1620 * Set pth_name to NULL before calling free().
1621 * Previously there was a race condition in the
1622 * case this code was executing during a stackshot
1623 * where the stackshot could try and copy pth_name
1624 * after it had been freed and before if was marked
1627 if (uth
->pth_name
!= NULL
) {
1628 void *pth_name
= uth
->pth_name
;
1629 uth
->pth_name
= NULL
;
1630 kfree(pth_name
, MAXTHREADNAMESIZE
);
1636 * This routine frees all the BSD context in uthread except the credential.
1637 * It does not free the uthread structure as well
1640 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
)
1642 uthread_t uth
= (uthread_t
)uthread
;
1643 proc_t p
= (proc_t
)bsd_info
;
1646 if (__improbable(uthread_get_proc_refcount(uthread
) != 0)) {
1647 panic("uthread_cleanup called for uthread %p with uu_proc_refcount != 0", uthread
);
1651 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1653 * task is marked as a low priority I/O type
1654 * and we've somehow managed to not dismiss the throttle
1655 * through the normal exit paths back to user space...
1656 * no need to throttle this thread since its going away
1657 * but we do need to update our bookeeping w/r to throttled threads
1659 * Calling this routine will clean up any throttle info reference
1660 * still inuse by the thread.
1662 throttle_lowpri_io(0);
1665 * Per-thread audit state should never last beyond system
1666 * call return. Since we don't audit the thread creation/
1667 * removal, the thread state pointer should never be
1668 * non-NULL when we get here.
1670 assert(uth
->uu_ar
== NULL
);
1672 if (uth
->uu_kqr_bound
) {
1673 kqueue_threadreq_unbind(p
, uth
->uu_kqr_bound
);
1676 if (uth
->uu_select
.nbytes
) {
1677 select_cleanup_uthread(&uth
->uu_select
);
1681 vnode_rele(uth
->uu_cdir
);
1682 uth
->uu_cdir
= NULLVP
;
1685 if (uth
->uu_wqset
) {
1686 if (waitq_set_is_valid(uth
->uu_wqset
)) {
1687 waitq_set_deinit(uth
->uu_wqset
);
1689 kheap_free(KHEAP_DEFAULT
, uth
->uu_wqset
, uth
->uu_wqstate_sz
);
1690 uth
->uu_wqset
= NULL
;
1691 uth
->uu_wqstate_sz
= 0;
1694 os_reason_free(uth
->uu_exit_reason
);
1696 if ((task
!= kernel_task
) && p
) {
1697 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1698 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1701 * Remove the thread from the process list and
1702 * transfer [appropriate] pending signals to the process.
1703 * Do not remove the uthread from proc uthlist for exec
1704 * copy task, since they does not have a ref on proc and
1705 * would not have been added to the list.
1707 if (get_bsdtask_info(task
) == p
&& !task_is_exec_copy(task
)) {
1710 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1711 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1715 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1716 uth
->t_dtrace_scratch
= NULL
;
1717 if (tmpptr
!= NULL
&& !task_is_exec_copy(task
)) {
1718 dtrace_ptss_release_entry(p
, tmpptr
);
1724 /* This routine releases the credential stored in uthread */
1726 uthread_cred_free(void *uthread
)
1728 uthread_t uth
= (uthread_t
)uthread
;
1730 /* and free the uthread itself */
1731 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1732 kauth_cred_t oldcred
= uth
->uu_ucred
;
1733 uth
->uu_ucred
= NOCRED
;
1734 kauth_cred_unref(&oldcred
);
1738 /* This routine frees the uthread structure held in thread structure */
1740 uthread_zone_free(void *uthread
)
1742 uthread_t uth
= (uthread_t
)uthread
;
1744 if (uth
->t_tombstone
) {
1745 kfree(uth
->t_tombstone
, sizeof(struct doc_tombstone
));
1746 uth
->t_tombstone
= NULL
;
1749 lck_spin_destroy(&uth
->uu_rethrottle_lock
, &rethrottle_lock_grp
);
1751 uthread_cleanup_name(uthread
);
1752 /* and free the uthread itself */
1753 zfree(uthread_zone
, uthread
);