2 * Copyright (c) 2008 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <mach/kern_return.h>
30 #include <mach/memory_object_control.h>
33 #include <kern/ipc_kobject.h>
34 #include <kern/kalloc.h>
35 #include <kern/queue.h>
37 #include <vm/vm_kern.h>
38 #include <vm/vm_map.h>
39 #include <vm/vm_pageout.h>
40 #include <vm/vm_protos.h>
44 * APPLE SWAPFILE MEMORY PAGER
46 * This external memory manager (EMM) handles mappings of the swap files.
47 * Swap files are not regular files and are used solely to store contents of
48 * anonymous memory mappings while not resident in memory.
49 * There's no valid reason to map a swap file. This just puts extra burden
50 * on the system, is potentially a security issue and is not reliable since
51 * the contents can change at any time with pageout operations.
52 * Here are some of the issues with mapping a swap file.
54 * Each page in the swap file belong to an anonymous memory object. Mapping
55 * the swap file makes those pages also accessible via a vnode memory
56 * object and each page can now be resident twice.
58 * Mapping a swap file allows access to other processes' memory. Swap files
59 * are only accessible by the "root" super-user, who can already access any
60 * process's memory, so this is not a real issue but if permissions on the
61 * swap file got changed, it could become one.
62 * Swap files are not "zero-filled" on creation, so until their contents are
63 * overwritten with pageout operations, they still contain whatever was on
64 * the disk blocks they were allocated. The "super-user" could see the
65 * contents of free blocks anyway, so this is not a new security issue but
66 * it may be perceive as one.
68 * When swap is encrypted, one does not expect to find any clear contents
69 * in the swap files. Since unused blocks are not scrubbed, they could still
70 * contain clear contents. If these contents are visible through a mapping
71 * of the swap file, it makes it look like swap is not really encrypted.
73 * We can't legitimately prevent a user process with appropriate privileges
74 * from mapping a swap file, but we can prevent it from accessing its actual
76 * This pager mostly handles page-in request (from memory_object_data_request())
77 * for swap file mappings and just returns bogus data.
78 * Pageouts are not handled, so mmap() has to make sure it does not allow
79 * writable (i.e. MAP_SHARED and PROT_WRITE) mappings of swap files.
82 /* forward declarations */
83 void swapfile_pager_reference(memory_object_t mem_obj
);
84 void swapfile_pager_deallocate(memory_object_t mem_obj
);
85 kern_return_t
swapfile_pager_init(memory_object_t mem_obj
,
86 memory_object_control_t control
,
87 memory_object_cluster_size_t pg_size
);
88 kern_return_t
swapfile_pager_terminate(memory_object_t mem_obj
);
89 kern_return_t
swapfile_pager_data_request(memory_object_t mem_obj
,
90 memory_object_offset_t offset
,
91 memory_object_cluster_size_t length
,
92 vm_prot_t protection_required
,
93 memory_object_fault_info_t fault_info
);
94 kern_return_t
swapfile_pager_data_return(memory_object_t mem_obj
,
95 memory_object_offset_t offset
,
96 memory_object_cluster_size_t data_cnt
,
97 memory_object_offset_t
*resid_offset
,
100 boolean_t kernel_copy
,
102 kern_return_t
swapfile_pager_data_initialize(memory_object_t mem_obj
,
103 memory_object_offset_t offset
,
104 memory_object_cluster_size_t data_cnt
);
105 kern_return_t
swapfile_pager_data_unlock(memory_object_t mem_obj
,
106 memory_object_offset_t offset
,
107 memory_object_size_t size
,
108 vm_prot_t desired_access
);
109 kern_return_t
swapfile_pager_synchronize(memory_object_t mem_obj
,
110 memory_object_offset_t offset
,
111 memory_object_size_t length
,
112 vm_sync_t sync_flags
);
113 kern_return_t
swapfile_pager_map(memory_object_t mem_obj
,
115 kern_return_t
swapfile_pager_last_unmap(memory_object_t mem_obj
);
118 * Vector of VM operations for this EMM.
119 * These routines are invoked by VM via the memory_object_*() interfaces.
121 const struct memory_object_pager_ops swapfile_pager_ops
= {
122 swapfile_pager_reference
,
123 swapfile_pager_deallocate
,
125 swapfile_pager_terminate
,
126 swapfile_pager_data_request
,
127 swapfile_pager_data_return
,
128 swapfile_pager_data_initialize
,
129 swapfile_pager_data_unlock
,
130 swapfile_pager_synchronize
,
132 swapfile_pager_last_unmap
,
137 * The "swapfile_pager" describes a memory object backed by
138 * the "swapfile" EMM.
140 typedef struct swapfile_pager
{
141 struct ipc_object_header pager_header
; /* fake ip_kotype() */
142 memory_object_pager_ops_t pager_ops
; /* == &swapfile_pager_ops */
143 queue_chain_t pager_queue
; /* next & prev pagers */
144 unsigned int ref_count
; /* reference count */
145 boolean_t is_ready
; /* is this pager ready ? */
146 boolean_t is_mapped
; /* is this pager mapped ? */
147 memory_object_control_t pager_control
; /* mem object control handle */
148 struct vnode
*swapfile_vnode
;/* the swapfile's vnode */
150 #define SWAPFILE_PAGER_NULL ((swapfile_pager_t) NULL)
151 #define pager_ikot pager_header.io_bits
154 * List of memory objects managed by this EMM.
155 * The list is protected by the "swapfile_pager_lock" lock.
157 int swapfile_pager_count
= 0; /* number of pagers */
158 queue_head_t swapfile_pager_queue
;
159 decl_lck_mtx_data(,swapfile_pager_lock
)
162 * Statistics & counters.
164 int swapfile_pager_count_max
= 0;
167 lck_grp_t swapfile_pager_lck_grp
;
168 lck_grp_attr_t swapfile_pager_lck_grp_attr
;
169 lck_attr_t swapfile_pager_lck_attr
;
172 /* internal prototypes */
173 swapfile_pager_t
swapfile_pager_create(struct vnode
*vp
);
174 swapfile_pager_t
swapfile_pager_lookup(memory_object_t mem_obj
);
175 void swapfile_pager_dequeue(swapfile_pager_t pager
);
176 void swapfile_pager_deallocate_internal(swapfile_pager_t pager
,
178 void swapfile_pager_terminate_internal(swapfile_pager_t pager
);
182 int swapfile_pagerdebug
= 0;
183 #define PAGER_ALL 0xffffffff
184 #define PAGER_INIT 0x00000001
185 #define PAGER_PAGEIN 0x00000002
187 #define PAGER_DEBUG(LEVEL, A) \
189 if ((swapfile_pagerdebug & LEVEL)==LEVEL) { \
194 #define PAGER_DEBUG(LEVEL, A)
199 swapfile_pager_bootstrap(void)
201 lck_grp_attr_setdefault(&swapfile_pager_lck_grp_attr
);
202 lck_grp_init(&swapfile_pager_lck_grp
, "swapfile pager", &swapfile_pager_lck_grp_attr
);
203 lck_attr_setdefault(&swapfile_pager_lck_attr
);
204 lck_mtx_init(&swapfile_pager_lock
, &swapfile_pager_lck_grp
, &swapfile_pager_lck_attr
);
205 queue_init(&swapfile_pager_queue
);
209 * swapfile_pager_init()
211 * Initialize the memory object and makes it ready to be used and mapped.
215 memory_object_t mem_obj
,
216 memory_object_control_t control
,
220 memory_object_cluster_size_t pg_size
)
222 swapfile_pager_t pager
;
224 memory_object_attr_info_data_t attributes
;
226 PAGER_DEBUG(PAGER_ALL
,
227 ("swapfile_pager_init: %p, %p, %x\n",
228 mem_obj
, control
, pg_size
));
230 if (control
== MEMORY_OBJECT_CONTROL_NULL
)
231 return KERN_INVALID_ARGUMENT
;
233 pager
= swapfile_pager_lookup(mem_obj
);
235 memory_object_control_reference(control
);
237 pager
->pager_control
= control
;
239 attributes
.copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
240 attributes
.cluster_size
= (1 << (PAGE_SHIFT
));
241 attributes
.may_cache_object
= FALSE
;
242 attributes
.temporary
= TRUE
;
244 kr
= memory_object_change_attributes(
246 MEMORY_OBJECT_ATTRIBUTE_INFO
,
247 (memory_object_info_t
) &attributes
,
248 MEMORY_OBJECT_ATTR_INFO_COUNT
);
249 if (kr
!= KERN_SUCCESS
)
250 panic("swapfile_pager_init: "
251 "memory_object_change_attributes() failed");
257 * swapfile_data_return()
259 * Handles page-out requests from VM. This should never happen since
260 * the pages provided by this EMM are not supposed to be dirty or dirtied
261 * and VM should simply discard the contents and reclaim the pages if it
265 swapfile_pager_data_return(
266 __unused memory_object_t mem_obj
,
267 __unused memory_object_offset_t offset
,
268 __unused memory_object_cluster_size_t data_cnt
,
269 __unused memory_object_offset_t
*resid_offset
,
270 __unused
int *io_error
,
271 __unused boolean_t dirty
,
272 __unused boolean_t kernel_copy
,
273 __unused
int upl_flags
)
275 panic("swapfile_pager_data_return: should never get called");
280 swapfile_pager_data_initialize(
281 __unused memory_object_t mem_obj
,
282 __unused memory_object_offset_t offset
,
283 __unused memory_object_cluster_size_t data_cnt
)
285 panic("swapfile_pager_data_initialize: should never get called");
290 swapfile_pager_data_unlock(
291 __unused memory_object_t mem_obj
,
292 __unused memory_object_offset_t offset
,
293 __unused memory_object_size_t size
,
294 __unused vm_prot_t desired_access
)
300 * swapfile_pager_data_request()
302 * Handles page-in requests from VM.
305 swapfile_pager_data_request(
306 memory_object_t mem_obj
,
307 memory_object_offset_t offset
,
308 memory_object_cluster_size_t length
,
312 vm_prot_t protection_required
,
313 __unused memory_object_fault_info_t mo_fault_info
)
315 swapfile_pager_t pager
;
316 memory_object_control_t mo_control
;
320 upl_page_info_t
*upl_pl
= NULL
;
321 unsigned int pl_count
;
322 vm_object_t dst_object
;
323 kern_return_t kr
, retval
;
324 vm_map_offset_t kernel_mapping
;
325 vm_offset_t dst_vaddr
;
327 vm_offset_t cur_offset
;
328 vm_map_entry_t map_entry
;
330 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_data_request: %p, %llx, %x, %x\n", mem_obj
, offset
, length
, protection_required
));
336 pager
= swapfile_pager_lookup(mem_obj
);
337 assert(pager
->is_ready
);
338 assert(pager
->ref_count
> 1); /* pager is alive and mapped */
340 PAGER_DEBUG(PAGER_PAGEIN
, ("swapfile_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj
, offset
, length
, protection_required
, pager
));
343 * Gather in a UPL all the VM pages requested by VM.
345 mo_control
= pager
->pager_control
;
349 UPL_RET_ONLY_ABSENT
|
352 UPL_CLEAN_IN_PLACE
| /* triggers UPL_CLEAR_DIRTY */
355 kr
= memory_object_upl_request(mo_control
,
357 &upl
, NULL
, NULL
, upl_flags
);
358 if (kr
!= KERN_SUCCESS
) {
362 dst_object
= mo_control
->moc_object
;
363 assert(dst_object
!= VM_OBJECT_NULL
);
367 * Reserve a virtual page in the kernel address space to map each
368 * destination physical page when it's its turn to be processed.
370 vm_object_reference(kernel_object
); /* ref. for mapping */
371 kr
= vm_map_find_space(kernel_map
,
377 if (kr
!= KERN_SUCCESS
) {
378 vm_object_deallocate(kernel_object
);
382 map_entry
->object
.vm_object
= kernel_object
;
383 map_entry
->offset
= kernel_mapping
- VM_MIN_KERNEL_ADDRESS
;
384 vm_map_unlock(kernel_map
);
385 dst_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping
);
386 dst_ptr
= (char *) dst_vaddr
;
389 * Fill in the contents of the pages requested by VM.
391 upl_pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
392 pl_count
= length
/ PAGE_SIZE
;
393 for (cur_offset
= 0; cur_offset
< length
; cur_offset
+= PAGE_SIZE
) {
396 if (!upl_page_present(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
))) {
397 /* this page is not in the UPL: skip it */
402 * Establish an explicit pmap mapping of the destination
404 * We can't do a regular VM mapping because the VM page
408 upl_phys_page(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
));
409 assert(dst_pnum
!= 0);
410 pmap_enter(kernel_pmap
,
413 VM_PROT_READ
| VM_PROT_WRITE
,
414 dst_object
->wimg_bits
& VM_WIMG_MASK
,
417 memset(dst_ptr
, '\0', PAGE_SIZE
);
418 /* add an end-of-line to keep line counters happy */
419 dst_ptr
[PAGE_SIZE
-1] = '\n';
422 * Remove the pmap mapping of the destination page
425 pmap_remove(kernel_pmap
,
426 (addr64_t
) kernel_mapping
,
427 (addr64_t
) (kernel_mapping
+ PAGE_SIZE_64
));
431 retval
= KERN_SUCCESS
;
434 /* clean up the UPL */
437 * The pages are currently dirty because we've just been
438 * writing on them, but as far as we're concerned, they're
439 * clean since they contain their "original" contents as
440 * provided by us, the pager.
441 * Tell the UPL to mark them "clean".
443 upl_clear_dirty(upl
, TRUE
);
445 /* abort or commit the UPL */
446 if (retval
!= KERN_SUCCESS
) {
450 upl_commit_range(upl
, 0, upl
->size
,
451 UPL_COMMIT_CS_VALIDATED
,
452 upl_pl
, pl_count
, &empty
);
455 /* and deallocate the UPL */
459 if (kernel_mapping
!= 0) {
460 /* clean up the mapping of the source and destination pages */
461 kr
= vm_map_remove(kernel_map
,
463 kernel_mapping
+ PAGE_SIZE_64
,
465 assert(kr
== KERN_SUCCESS
);
474 * swapfile_pager_reference()
476 * Get a reference on this memory object.
477 * For external usage only. Assumes that the initial reference count is not 0,
478 * i.e one should not "revive" a dead pager this way.
481 swapfile_pager_reference(
482 memory_object_t mem_obj
)
484 swapfile_pager_t pager
;
486 pager
= swapfile_pager_lookup(mem_obj
);
488 lck_mtx_lock(&swapfile_pager_lock
);
489 assert(pager
->ref_count
> 0);
491 lck_mtx_unlock(&swapfile_pager_lock
);
496 * swapfile_pager_dequeue:
498 * Removes a pager from the list of pagers.
500 * The caller must hold "swapfile_pager_lock".
503 swapfile_pager_dequeue(
504 swapfile_pager_t pager
)
506 assert(!pager
->is_mapped
);
508 queue_remove(&swapfile_pager_queue
,
512 pager
->pager_queue
.next
= NULL
;
513 pager
->pager_queue
.prev
= NULL
;
515 swapfile_pager_count
--;
519 * swapfile_pager_terminate_internal:
521 * Trigger the asynchronous termination of the memory object associated
523 * When the memory object is terminated, there will be one more call
524 * to memory_object_deallocate() (i.e. swapfile_pager_deallocate())
525 * to finish the clean up.
527 * "swapfile_pager_lock" should not be held by the caller.
528 * We don't need the lock because the pager has already been removed from
529 * the pagers' list and is now ours exclusively.
532 swapfile_pager_terminate_internal(
533 swapfile_pager_t pager
)
535 assert(pager
->is_ready
);
536 assert(!pager
->is_mapped
);
538 if (pager
->swapfile_vnode
!= NULL
) {
539 pager
->swapfile_vnode
= NULL
;
542 /* trigger the destruction of the memory object */
543 memory_object_destroy(pager
->pager_control
, 0);
547 * swapfile_pager_deallocate_internal()
549 * Release a reference on this pager and free it when the last
550 * reference goes away.
551 * Can be called with swapfile_pager_lock held or not but always returns
555 swapfile_pager_deallocate_internal(
556 swapfile_pager_t pager
,
560 lck_mtx_lock(&swapfile_pager_lock
);
563 /* drop a reference on this pager */
566 if (pager
->ref_count
== 1) {
568 * Only the "named" reference is left, which means that
569 * no one is really holding on to this pager anymore.
572 swapfile_pager_dequeue(pager
);
573 /* the pager is all ours: no need for the lock now */
574 lck_mtx_unlock(&swapfile_pager_lock
);
575 swapfile_pager_terminate_internal(pager
);
576 } else if (pager
->ref_count
== 0) {
578 * Dropped the existence reference; the memory object has
579 * been terminated. Do some final cleanup and release the
582 lck_mtx_unlock(&swapfile_pager_lock
);
583 if (pager
->pager_control
!= MEMORY_OBJECT_CONTROL_NULL
) {
584 memory_object_control_deallocate(pager
->pager_control
);
585 pager
->pager_control
= MEMORY_OBJECT_CONTROL_NULL
;
587 kfree(pager
, sizeof (*pager
));
588 pager
= SWAPFILE_PAGER_NULL
;
590 /* there are still plenty of references: keep going... */
591 lck_mtx_unlock(&swapfile_pager_lock
);
594 /* caution: lock is not held on return... */
598 * swapfile_pager_deallocate()
600 * Release a reference on this pager and free it when the last
601 * reference goes away.
604 swapfile_pager_deallocate(
605 memory_object_t mem_obj
)
607 swapfile_pager_t pager
;
609 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_deallocate: %p\n", mem_obj
));
610 pager
= swapfile_pager_lookup(mem_obj
);
611 swapfile_pager_deallocate_internal(pager
, FALSE
);
618 swapfile_pager_terminate(
622 memory_object_t mem_obj
)
624 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_terminate: %p\n", mem_obj
));
633 swapfile_pager_synchronize(
634 memory_object_t mem_obj
,
635 memory_object_offset_t offset
,
636 memory_object_size_t length
,
637 __unused vm_sync_t sync_flags
)
639 swapfile_pager_t pager
;
641 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_synchronize: %p\n", mem_obj
));
643 pager
= swapfile_pager_lookup(mem_obj
);
645 memory_object_synchronize_completed(pager
->pager_control
,
652 * swapfile_pager_map()
654 * This allows VM to let us, the EMM, know that this memory object
655 * is currently mapped one or more times. This is called by VM each time
656 * the memory object gets mapped and we take one extra reference on the
657 * memory object to account for all its mappings.
661 memory_object_t mem_obj
,
662 __unused vm_prot_t prot
)
664 swapfile_pager_t pager
;
666 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_map: %p\n", mem_obj
));
668 pager
= swapfile_pager_lookup(mem_obj
);
670 lck_mtx_lock(&swapfile_pager_lock
);
671 assert(pager
->is_ready
);
672 assert(pager
->ref_count
> 0); /* pager is alive */
673 if (pager
->is_mapped
== FALSE
) {
675 * First mapping of this pager: take an extra reference
676 * that will remain until all the mappings of this pager
679 pager
->is_mapped
= TRUE
;
682 lck_mtx_unlock(&swapfile_pager_lock
);
688 * swapfile_pager_last_unmap()
690 * This is called by VM when this memory object is no longer mapped anywhere.
693 swapfile_pager_last_unmap(
694 memory_object_t mem_obj
)
696 swapfile_pager_t pager
;
698 PAGER_DEBUG(PAGER_ALL
,
699 ("swapfile_pager_last_unmap: %p\n", mem_obj
));
701 pager
= swapfile_pager_lookup(mem_obj
);
703 lck_mtx_lock(&swapfile_pager_lock
);
704 if (pager
->is_mapped
) {
706 * All the mappings are gone, so let go of the one extra
707 * reference that represents all the mappings of this pager.
709 pager
->is_mapped
= FALSE
;
710 swapfile_pager_deallocate_internal(pager
, TRUE
);
711 /* caution: deallocate_internal() released the lock ! */
713 lck_mtx_unlock(&swapfile_pager_lock
);
724 swapfile_pager_lookup(
725 memory_object_t mem_obj
)
727 swapfile_pager_t pager
;
729 pager
= (swapfile_pager_t
) mem_obj
;
730 assert(pager
->pager_ops
== &swapfile_pager_ops
);
731 assert(pager
->ref_count
> 0);
736 swapfile_pager_create(
739 swapfile_pager_t pager
, pager2
;
740 memory_object_control_t control
;
743 pager
= (swapfile_pager_t
) kalloc(sizeof (*pager
));
744 if (pager
== SWAPFILE_PAGER_NULL
) {
745 return SWAPFILE_PAGER_NULL
;
749 * The vm_map call takes both named entry ports and raw memory
750 * objects in the same parameter. We need to make sure that
751 * vm_map does not see this object as a named entry port. So,
752 * we reserve the second word in the object for a fake ip_kotype
753 * setting - that will tell vm_map to use it as a memory object.
755 pager
->pager_ops
= &swapfile_pager_ops
;
756 pager
->pager_ikot
= IKOT_MEMORY_OBJECT
;
757 pager
->is_ready
= FALSE
;/* not ready until it has a "name" */
758 pager
->ref_count
= 1; /* setup reference */
759 pager
->is_mapped
= FALSE
;
760 pager
->pager_control
= MEMORY_OBJECT_CONTROL_NULL
;
761 pager
->swapfile_vnode
= vp
;
763 lck_mtx_lock(&swapfile_pager_lock
);
764 /* see if anyone raced us to create a pager for the same object */
765 queue_iterate(&swapfile_pager_queue
,
769 if (pager2
->swapfile_vnode
== vp
) {
773 if (! queue_end(&swapfile_pager_queue
,
774 (queue_entry_t
) pager2
)) {
775 /* while we hold the lock, transfer our setup ref to winner */
777 /* we lost the race, down with the loser... */
778 lck_mtx_unlock(&swapfile_pager_lock
);
779 pager
->swapfile_vnode
= NULL
;
780 kfree(pager
, sizeof (*pager
));
781 /* ... and go with the winner */
783 /* let the winner make sure the pager gets ready */
787 /* enter new pager at the head of our list of pagers */
788 queue_enter_first(&swapfile_pager_queue
,
792 swapfile_pager_count
++;
793 if (swapfile_pager_count
> swapfile_pager_count_max
) {
794 swapfile_pager_count_max
= swapfile_pager_count
;
796 lck_mtx_unlock(&swapfile_pager_lock
);
798 kr
= memory_object_create_named((memory_object_t
) pager
,
801 assert(kr
== KERN_SUCCESS
);
803 lck_mtx_lock(&swapfile_pager_lock
);
804 /* the new pager is now ready to be used */
805 pager
->is_ready
= TRUE
;
806 lck_mtx_unlock(&swapfile_pager_lock
);
808 /* wakeup anyone waiting for this pager to be ready */
809 thread_wakeup(&pager
->is_ready
);
815 * swapfile_pager_setup()
817 * Provide the caller with a memory object backed by the provided
818 * "backing_object" VM object. If such a memory object already exists,
819 * re-use it, otherwise create a new memory object.
822 swapfile_pager_setup(
825 swapfile_pager_t pager
;
827 lck_mtx_lock(&swapfile_pager_lock
);
829 queue_iterate(&swapfile_pager_queue
,
833 if (pager
->swapfile_vnode
== vp
) {
837 if (queue_end(&swapfile_pager_queue
,
838 (queue_entry_t
) pager
)) {
839 /* no existing pager for this backing object */
840 pager
= SWAPFILE_PAGER_NULL
;
842 /* make sure pager doesn't disappear */
846 lck_mtx_unlock(&swapfile_pager_lock
);
848 if (pager
== SWAPFILE_PAGER_NULL
) {
849 pager
= swapfile_pager_create(vp
);
850 if (pager
== SWAPFILE_PAGER_NULL
) {
851 return MEMORY_OBJECT_NULL
;
855 lck_mtx_lock(&swapfile_pager_lock
);
856 while (!pager
->is_ready
) {
857 lck_mtx_sleep(&swapfile_pager_lock
,
862 lck_mtx_unlock(&swapfile_pager_lock
);
864 return (memory_object_t
) pager
;
867 memory_object_control_t
868 swapfile_pager_control(
869 memory_object_t mem_obj
)
871 swapfile_pager_t pager
;
873 pager
= swapfile_pager_lookup(mem_obj
);
875 return pager
->pager_control
;