]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_dummynet.c
xnu-1504.9.26.tar.gz
[apple/xnu.git] / bsd / netinet / ip_dummynet.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
31 * All rights reserved
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
55 */
56
57 #define DUMMYNET_DEBUG
58
59 /*
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * used in conjunction with the ipfw package.
62 * Description of the data structures used is in ip_dummynet.h
63 * Here you mainly find the following blocks of code:
64 * + variable declarations;
65 * + heap management functions;
66 * + scheduler and dummynet functions;
67 * + configuration and initialization.
68 *
69 * NOTA BENE: critical sections are protected by the "dummynet lock".
70 *
71 * Most important Changes:
72 *
73 * 010124: Fixed WF2Q behaviour
74 * 010122: Fixed spl protection.
75 * 000601: WF2Q support
76 * 000106: large rewrite, use heaps to handle very many pipes.
77 * 980513: initial release
78 *
79 * include files marked with XXX are probably not needed
80 */
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/queue.h> /* XXX */
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/time.h>
91 #include <sys/sysctl.h>
92 #include <net/if.h>
93 #include <net/route.h>
94 #include <net/kpi_protocol.h>
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_fw.h>
100 #include <netinet/ip_dummynet.h>
101 #include <netinet/ip_var.h>
102
103 /*
104 * We keep a private variable for the simulation time, but we could
105 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
106 */
107 static dn_key curr_time = 0 ; /* current simulation time */
108
109 /* this is for the timer that fires to call dummynet() - we only enable the timer when
110 there are packets to process, otherwise it's disabled */
111 static int timer_enabled = 0;
112
113 static int dn_hash_size = 64 ; /* default hash size */
114
115 /* statistics on number of queue searches and search steps */
116 static int searches, search_steps ;
117 static int pipe_expire = 1 ; /* expire queue if empty */
118 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
119
120 static int red_lookup_depth = 256; /* RED - default lookup table depth */
121 static int red_avg_pkt_size = 512; /* RED - default medium packet size */
122 static int red_max_pkt_size = 1500; /* RED - default max packet size */
123
124 /*
125 * Three heaps contain queues and pipes that the scheduler handles:
126 *
127 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
128 *
129 * wfq_ready_heap contains the pipes associated with WF2Q flows
130 *
131 * extract_heap contains pipes associated with delay lines.
132 *
133 */
134 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
135
136 static int heap_init(struct dn_heap *h, int size) ;
137 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
138 static void heap_extract(struct dn_heap *h, void *obj);
139
140
141 static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
142 struct mbuf **tail);
143 static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
144 struct mbuf **tail);
145 static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
146 struct mbuf **tail);
147
148 /*
149 * Packets are retrieved from queues in Dummynet in chains instead of
150 * packet-by-packet. The entire list of packets is first dequeued and
151 * sent out by the following function.
152 */
153 static void dummynet_send(struct mbuf *m);
154
155 /* Flag to signify the existance of a dequeued packet chain */
156 static int serialize = 0;
157
158 #define HASHSIZE 16
159 #define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
160 static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
161 static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
162
163
164 #ifdef SYSCTL_NODE
165 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
166 CTLFLAG_RW, 0, "Dummynet");
167 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
168 CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
169 SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
170 CTLFLAG_RD, &curr_time, "Current tick");
171 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
172 CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
173 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
174 CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
175 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
176 CTLFLAG_RD, &searches, 0, "Number of queue searches");
177 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
178 CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
179 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
180 CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
181 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
182 CTLFLAG_RW, &dn_max_ratio, 0,
183 "Max ratio between dynamic queues and buckets");
184 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
185 CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
186 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
187 CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
188 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
189 CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
190 #endif
191
192 #ifdef DUMMYNET_DEBUG
193 int dummynet_debug = 0;
194 #ifdef SYSCTL_NODE
195 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
196 0, "control debugging printfs");
197 #endif
198 #define DPRINTF(X) if (dummynet_debug) printf X
199 #else
200 #define DPRINTF(X)
201 #endif
202
203 /* contrary to the comment above random(), it does not actually
204 * return a value [0, 2^31 - 1], which breaks plr amongst other
205 * things. Masking it should work even if the behavior of
206 * the function is fixed.
207 */
208 #define MY_RANDOM (random() & 0x7FFFFFFF)
209
210 /* dummynet lock */
211 static lck_grp_t *dn_mutex_grp;
212 static lck_grp_attr_t *dn_mutex_grp_attr;
213 static lck_attr_t *dn_mutex_attr;
214 static lck_mtx_t *dn_mutex;
215
216 static int config_pipe(struct dn_pipe *p);
217 static int ip_dn_ctl(struct sockopt *sopt);
218
219 static void dummynet(void *);
220 static void dummynet_flush(void);
221 void dummynet_drain(void);
222 static ip_dn_io_t dummynet_io;
223 static void dn_rule_delete(void *);
224
225 int if_tx_rdy(struct ifnet *ifp);
226
227 static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
228 static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
229 static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
230 static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
231 static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
232
233 static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
234 static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
235 static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
236 static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
237 static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
238
239
240 /*
241 * Heap management functions.
242 *
243 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
244 * Some macros help finding parent/children so we can optimize them.
245 *
246 * heap_init() is called to expand the heap when needed.
247 * Increment size in blocks of 16 entries.
248 * XXX failure to allocate a new element is a pretty bad failure
249 * as we basically stall a whole queue forever!!
250 * Returns 1 on error, 0 on success
251 */
252 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
253 #define HEAP_LEFT(x) ( 2*(x) + 1 )
254 #define HEAP_IS_LEFT(x) ( (x) & 1 )
255 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
256 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
257 #define HEAP_INCREMENT 15
258
259
260 int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
261 {
262 struct dn_pipe_32 user_pipe_32;
263 int error=0;
264
265 error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
266 if ( !error ){
267 p->pipe_nr = user_pipe_32.pipe_nr;
268 p->bandwidth = user_pipe_32.bandwidth;
269 p->delay = user_pipe_32.delay;
270 p->V = user_pipe_32.V;
271 p->sum = user_pipe_32.sum;
272 p->numbytes = user_pipe_32.numbytes;
273 p->sched_time = user_pipe_32.sched_time;
274 bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
275 p->ready = user_pipe_32.ready;
276
277 p->fs.fs_nr = user_pipe_32.fs.fs_nr;
278 p->fs.flags_fs = user_pipe_32.fs.flags_fs;
279 p->fs.parent_nr = user_pipe_32.fs.parent_nr;
280 p->fs.weight = user_pipe_32.fs.weight;
281 p->fs.qsize = user_pipe_32.fs.qsize;
282 p->fs.plr = user_pipe_32.fs.plr;
283 p->fs.flow_mask = user_pipe_32.fs.flow_mask;
284 p->fs.rq_size = user_pipe_32.fs.rq_size;
285 p->fs.rq_elements = user_pipe_32.fs.rq_elements;
286 p->fs.last_expired = user_pipe_32.fs.last_expired;
287 p->fs.backlogged = user_pipe_32.fs.backlogged;
288 p->fs.w_q = user_pipe_32.fs.w_q;
289 p->fs.max_th = user_pipe_32.fs.max_th;
290 p->fs.min_th = user_pipe_32.fs.min_th;
291 p->fs.max_p = user_pipe_32.fs.max_p;
292 p->fs.c_1 = user_pipe_32.fs.c_1;
293 p->fs.c_2 = user_pipe_32.fs.c_2;
294 p->fs.c_3 = user_pipe_32.fs.c_3;
295 p->fs.c_4 = user_pipe_32.fs.c_4;
296 p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
297 p->fs.lookup_step = user_pipe_32.fs.lookup_step;
298 p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
299 p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
300 p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
301 }
302 return error;
303 }
304
305
306 int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
307 {
308 struct dn_pipe_64 user_pipe_64;
309 int error=0;
310
311 error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
312 if ( !error ){
313 p->pipe_nr = user_pipe_64.pipe_nr;
314 p->bandwidth = user_pipe_64.bandwidth;
315 p->delay = user_pipe_64.delay;
316 p->V = user_pipe_64.V;
317 p->sum = user_pipe_64.sum;
318 p->numbytes = user_pipe_64.numbytes;
319 p->sched_time = user_pipe_64.sched_time;
320 bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
321 p->ready = user_pipe_64.ready;
322
323 p->fs.fs_nr = user_pipe_64.fs.fs_nr;
324 p->fs.flags_fs = user_pipe_64.fs.flags_fs;
325 p->fs.parent_nr = user_pipe_64.fs.parent_nr;
326 p->fs.weight = user_pipe_64.fs.weight;
327 p->fs.qsize = user_pipe_64.fs.qsize;
328 p->fs.plr = user_pipe_64.fs.plr;
329 p->fs.flow_mask = user_pipe_64.fs.flow_mask;
330 p->fs.rq_size = user_pipe_64.fs.rq_size;
331 p->fs.rq_elements = user_pipe_64.fs.rq_elements;
332 p->fs.last_expired = user_pipe_64.fs.last_expired;
333 p->fs.backlogged = user_pipe_64.fs.backlogged;
334 p->fs.w_q = user_pipe_64.fs.w_q;
335 p->fs.max_th = user_pipe_64.fs.max_th;
336 p->fs.min_th = user_pipe_64.fs.min_th;
337 p->fs.max_p = user_pipe_64.fs.max_p;
338 p->fs.c_1 = user_pipe_64.fs.c_1;
339 p->fs.c_2 = user_pipe_64.fs.c_2;
340 p->fs.c_3 = user_pipe_64.fs.c_3;
341 p->fs.c_4 = user_pipe_64.fs.c_4;
342 p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
343 p->fs.lookup_step = user_pipe_64.fs.lookup_step;
344 p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
345 p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
346 p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
347 }
348 return error;
349 }
350
351 static void
352 cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
353 {
354 fs_bp->fs_nr = set->fs_nr;
355 fs_bp->flags_fs = set->flags_fs ;
356 fs_bp->parent_nr = set->parent_nr ;
357 fs_bp->weight = set->weight ;
358 fs_bp->qsize = set->qsize ;
359 fs_bp->plr = set->plr ;
360 fs_bp->flow_mask = set->flow_mask ;
361 fs_bp->rq_size = set->rq_size ;
362 fs_bp->rq_elements = set->rq_elements ;
363 fs_bp->last_expired = set->last_expired ;
364 fs_bp->backlogged = set->backlogged ;
365 fs_bp->w_q = set->w_q ;
366 fs_bp->max_th = set->max_th ;
367 fs_bp->min_th = set->min_th ;
368 fs_bp->max_p = set->max_p ;
369 fs_bp->c_1 = set->c_1 ;
370 fs_bp->c_2 = set->c_2 ;
371 fs_bp->c_3 = set->c_3 ;
372 fs_bp->c_4 = set->c_4 ;
373 fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
374 fs_bp->lookup_depth = set->lookup_depth ;
375 fs_bp->lookup_step = set->lookup_step ;
376 fs_bp->lookup_weight = set->lookup_weight ;
377 fs_bp->avg_pkt_size = set->avg_pkt_size ;
378 fs_bp->max_pkt_size = set->max_pkt_size ;
379 }
380
381 static void
382 cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
383 {
384 fs_bp->fs_nr = set->fs_nr;
385 fs_bp->flags_fs = set->flags_fs ;
386 fs_bp->parent_nr = set->parent_nr ;
387 fs_bp->weight = set->weight ;
388 fs_bp->qsize = set->qsize ;
389 fs_bp->plr = set->plr ;
390 fs_bp->flow_mask = set->flow_mask ;
391 fs_bp->rq_size = set->rq_size ;
392 fs_bp->rq_elements = set->rq_elements ;
393 fs_bp->last_expired = set->last_expired ;
394 fs_bp->backlogged = set->backlogged ;
395 fs_bp->w_q = set->w_q ;
396 fs_bp->max_th = set->max_th ;
397 fs_bp->min_th = set->min_th ;
398 fs_bp->max_p = set->max_p ;
399 fs_bp->c_1 = set->c_1 ;
400 fs_bp->c_2 = set->c_2 ;
401 fs_bp->c_3 = set->c_3 ;
402 fs_bp->c_4 = set->c_4 ;
403 fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
404 fs_bp->lookup_depth = set->lookup_depth ;
405 fs_bp->lookup_step = set->lookup_step ;
406 fs_bp->lookup_weight = set->lookup_weight ;
407 fs_bp->avg_pkt_size = set->avg_pkt_size ;
408 fs_bp->max_pkt_size = set->max_pkt_size ;
409 }
410
411 static
412 void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
413 {
414 qp->id = q->id;
415 qp->len = q->len;
416 qp->len_bytes = q->len_bytes;
417 qp->numbytes = q->numbytes;
418 qp->tot_pkts = q->tot_pkts;
419 qp->tot_bytes = q->tot_bytes;
420 qp->drops = q->drops;
421 qp->hash_slot = q->hash_slot;
422 qp->avg = q->avg;
423 qp->count = q->count;
424 qp->random = q->random;
425 qp->q_time = q->q_time;
426 qp->heap_pos = q->heap_pos;
427 qp->sched_time = q->sched_time;
428 qp->S = q->S;
429 qp->F = q->F;
430 }
431
432 static
433 void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
434 {
435 qp->id = q->id;
436 qp->len = q->len;
437 qp->len_bytes = q->len_bytes;
438 qp->numbytes = q->numbytes;
439 qp->tot_pkts = q->tot_pkts;
440 qp->tot_bytes = q->tot_bytes;
441 qp->drops = q->drops;
442 qp->hash_slot = q->hash_slot;
443 qp->avg = q->avg;
444 qp->count = q->count;
445 qp->random = q->random;
446 qp->q_time = q->q_time;
447 qp->heap_pos = q->heap_pos;
448 qp->sched_time = q->sched_time;
449 qp->S = q->S;
450 qp->F = q->F;
451 }
452
453 static
454 char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
455 {
456 char *bp;
457
458 pipe_bp->pipe_nr = p->pipe_nr;
459 pipe_bp->bandwidth = p->bandwidth;
460 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
461 pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
462 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
463 pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
464 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
465 pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
466 pipe_bp->V = p->V;
467 pipe_bp->sum = p->sum;
468 pipe_bp->numbytes = p->numbytes;
469 pipe_bp->sched_time = p->sched_time;
470 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
471 pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
472 pipe_bp->ready = p->ready;
473
474 cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
475
476 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
477 /*
478 * XXX the following is a hack based on ->next being the
479 * first field in dn_pipe and dn_flow_set. The correct
480 * solution would be to move the dn_flow_set to the beginning
481 * of struct dn_pipe.
482 */
483 pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
484 /* clean pointers */
485 pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
486 pipe_bp->fs.next = (user32_addr_t)0 ;
487 pipe_bp->fs.pipe = (user32_addr_t)0 ;
488 pipe_bp->fs.rq = (user32_addr_t)0 ;
489 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
490 return( dn_copy_set_32( &(p->fs), bp) );
491 }
492
493 static
494 char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
495 {
496 char *bp;
497
498 pipe_bp->pipe_nr = p->pipe_nr;
499 pipe_bp->bandwidth = p->bandwidth;
500 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
501 pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
502 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
503 pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
504 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
505 pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
506 pipe_bp->V = p->V;
507 pipe_bp->sum = p->sum;
508 pipe_bp->numbytes = p->numbytes;
509 pipe_bp->sched_time = p->sched_time;
510 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
511 pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
512 pipe_bp->ready = p->ready;
513
514 cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
515
516 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
517 /*
518 * XXX the following is a hack based on ->next being the
519 * first field in dn_pipe and dn_flow_set. The correct
520 * solution would be to move the dn_flow_set to the beginning
521 * of struct dn_pipe.
522 */
523 pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
524 /* clean pointers */
525 pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
526 pipe_bp->fs.next = USER_ADDR_NULL ;
527 pipe_bp->fs.pipe = USER_ADDR_NULL ;
528 pipe_bp->fs.rq = USER_ADDR_NULL ;
529 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
530 return( dn_copy_set_64( &(p->fs), bp) );
531 }
532
533 static int
534 heap_init(struct dn_heap *h, int new_size)
535 {
536 struct dn_heap_entry *p;
537
538 if (h->size >= new_size ) {
539 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
540 h->size, new_size);
541 return 0 ;
542 }
543 new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
544 p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
545 if (p == NULL) {
546 printf("dummynet: heap_init, resize %d failed\n", new_size );
547 return 1 ; /* error */
548 }
549 if (h->size > 0) {
550 bcopy(h->p, p, h->size * sizeof(*p) );
551 FREE(h->p, M_DUMMYNET);
552 }
553 h->p = p ;
554 h->size = new_size ;
555 return 0 ;
556 }
557
558 /*
559 * Insert element in heap. Normally, p != NULL, we insert p in
560 * a new position and bubble up. If p == NULL, then the element is
561 * already in place, and key is the position where to start the
562 * bubble-up.
563 * Returns 1 on failure (cannot allocate new heap entry)
564 *
565 * If offset > 0 the position (index, int) of the element in the heap is
566 * also stored in the element itself at the given offset in bytes.
567 */
568 #define SET_OFFSET(heap, node) \
569 if (heap->offset > 0) \
570 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
571 /*
572 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
573 */
574 #define RESET_OFFSET(heap, node) \
575 if (heap->offset > 0) \
576 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
577 static int
578 heap_insert(struct dn_heap *h, dn_key key1, void *p)
579 {
580 int son = h->elements ;
581
582 if (p == NULL) /* data already there, set starting point */
583 son = key1 ;
584 else { /* insert new element at the end, possibly resize */
585 son = h->elements ;
586 if (son == h->size) /* need resize... */
587 if (heap_init(h, h->elements+1) )
588 return 1 ; /* failure... */
589 h->p[son].object = p ;
590 h->p[son].key = key1 ;
591 h->elements++ ;
592 }
593 while (son > 0) { /* bubble up */
594 int father = HEAP_FATHER(son) ;
595 struct dn_heap_entry tmp ;
596
597 if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
598 break ; /* found right position */
599 /* son smaller than father, swap and repeat */
600 HEAP_SWAP(h->p[son], h->p[father], tmp) ;
601 SET_OFFSET(h, son);
602 son = father ;
603 }
604 SET_OFFSET(h, son);
605 return 0 ;
606 }
607
608 /*
609 * remove top element from heap, or obj if obj != NULL
610 */
611 static void
612 heap_extract(struct dn_heap *h, void *obj)
613 {
614 int child, father, maxelt = h->elements - 1 ;
615
616 if (maxelt < 0) {
617 printf("dummynet: warning, extract from empty heap 0x%p\n", h);
618 return ;
619 }
620 father = 0 ; /* default: move up smallest child */
621 if (obj != NULL) { /* extract specific element, index is at offset */
622 if (h->offset <= 0)
623 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
624 father = *((int *)((char *)obj + h->offset)) ;
625 if (father < 0 || father >= h->elements) {
626 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
627 father, h->elements);
628 panic("dummynet: heap_extract");
629 }
630 }
631 RESET_OFFSET(h, father);
632 child = HEAP_LEFT(father) ; /* left child */
633 while (child <= maxelt) { /* valid entry */
634 if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
635 child = child+1 ; /* take right child, otherwise left */
636 h->p[father] = h->p[child] ;
637 SET_OFFSET(h, father);
638 father = child ;
639 child = HEAP_LEFT(child) ; /* left child for next loop */
640 }
641 h->elements-- ;
642 if (father != maxelt) {
643 /*
644 * Fill hole with last entry and bubble up, reusing the insert code
645 */
646 h->p[father] = h->p[maxelt] ;
647 heap_insert(h, father, NULL); /* this one cannot fail */
648 }
649 }
650
651 #if 0
652 /*
653 * change object position and update references
654 * XXX this one is never used!
655 */
656 static void
657 heap_move(struct dn_heap *h, dn_key new_key, void *object)
658 {
659 int temp;
660 int i ;
661 int maxelt = h->elements-1 ;
662 struct dn_heap_entry buf ;
663
664 if (h->offset <= 0)
665 panic("cannot move items on this heap");
666
667 i = *((int *)((char *)object + h->offset));
668 if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
669 h->p[i].key = new_key ;
670 for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
671 i = temp ) { /* bubble up */
672 HEAP_SWAP(h->p[i], h->p[temp], buf) ;
673 SET_OFFSET(h, i);
674 }
675 } else { /* must move down */
676 h->p[i].key = new_key ;
677 while ( (temp = HEAP_LEFT(i)) <= maxelt ) { /* found left child */
678 if ((temp != maxelt) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
679 temp++ ; /* select child with min key */
680 if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
681 HEAP_SWAP(h->p[i], h->p[temp], buf) ;
682 SET_OFFSET(h, i);
683 } else
684 break ;
685 i = temp ;
686 }
687 }
688 SET_OFFSET(h, i);
689 }
690 #endif /* heap_move, unused */
691
692 /*
693 * heapify() will reorganize data inside an array to maintain the
694 * heap property. It is needed when we delete a bunch of entries.
695 */
696 static void
697 heapify(struct dn_heap *h)
698 {
699 int i ;
700
701 for (i = 0 ; i < h->elements ; i++ )
702 heap_insert(h, i , NULL) ;
703 }
704
705 /*
706 * cleanup the heap and free data structure
707 */
708 static void
709 heap_free(struct dn_heap *h)
710 {
711 if (h->size >0 )
712 FREE(h->p, M_DUMMYNET);
713 bzero(h, sizeof(*h));
714 }
715
716 /*
717 * --- end of heap management functions ---
718 */
719
720 /*
721 * Return the mbuf tag holding the dummynet state. As an optimization
722 * this is assumed to be the first tag on the list. If this turns out
723 * wrong we'll need to search the list.
724 */
725 static struct dn_pkt_tag *
726 dn_tag_get(struct mbuf *m)
727 {
728 struct m_tag *mtag = m_tag_first(m);
729 /* KASSERT(mtag != NULL &&
730 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
731 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET,
732 ("packet on dummynet queue w/o dummynet tag!"));
733 */
734 return (struct dn_pkt_tag *)(mtag+1);
735 }
736
737 /*
738 * Scheduler functions:
739 *
740 * transmit_event() is called when the delay-line needs to enter
741 * the scheduler, either because of existing pkts getting ready,
742 * or new packets entering the queue. The event handled is the delivery
743 * time of the packet.
744 *
745 * ready_event() does something similar with fixed-rate queues, and the
746 * event handled is the finish time of the head pkt.
747 *
748 * wfq_ready_event() does something similar with WF2Q queues, and the
749 * event handled is the start time of the head pkt.
750 *
751 * In all cases, we make sure that the data structures are consistent
752 * before passing pkts out, because this might trigger recursive
753 * invocations of the procedures.
754 */
755 static void
756 transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
757 {
758 struct mbuf *m ;
759 struct dn_pkt_tag *pkt ;
760
761 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
762
763 /* Extract packets only if no pending chain is being currently processed */
764 if (serialize == 0) {
765 while ((m = pipe->head) != NULL) {
766 pkt = dn_tag_get(m);
767 if (!DN_KEY_LEQ(pkt->output_time, curr_time))
768 break;
769
770 pipe->head = m->m_nextpkt;
771 if (*tail != NULL)
772 (*tail)->m_nextpkt = m;
773 else
774 *head = m;
775 *tail = m;
776 }
777 if (*tail != NULL)
778 (*tail)->m_nextpkt = NULL;
779 }
780
781 /* if there are leftover packets, put the pipe into the heap for next ready event */
782 if ((m = pipe->head) != NULL) {
783 pkt = dn_tag_get(m);
784 /* XXX should check errors on heap_insert, by draining the
785 * whole pipe p and hoping in the future we are more successful
786 */
787 heap_insert(&extract_heap, pkt->output_time, pipe);
788 }
789 }
790
791 /*
792 * the following macro computes how many ticks we have to wait
793 * before being able to transmit a packet. The credit is taken from
794 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
795 */
796
797 /* hz is 100, which gives a granularity of 10ms in the old timer.
798 * The timer has been changed to fire every 1ms, so the use of
799 * hz has been modified here. All instances of hz have been left
800 * in place but adjusted by a factor of 10 so that hz is functionally
801 * equal to 1000.
802 */
803 #define SET_TICKS(_m, q, p) \
804 ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
805 p->bandwidth ;
806
807 /*
808 * extract pkt from queue, compute output time (could be now)
809 * and put into delay line (p_queue)
810 */
811 static void
812 move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
813 struct dn_pipe *p, int len)
814 {
815 struct dn_pkt_tag *dt = dn_tag_get(pkt);
816
817 q->head = pkt->m_nextpkt ;
818 q->len-- ;
819 q->len_bytes -= len ;
820
821 dt->output_time = curr_time + p->delay ;
822
823 if (p->head == NULL)
824 p->head = pkt;
825 else
826 p->tail->m_nextpkt = pkt;
827 p->tail = pkt;
828 p->tail->m_nextpkt = NULL;
829 }
830
831 /*
832 * ready_event() is invoked every time the queue must enter the
833 * scheduler, either because the first packet arrives, or because
834 * a previously scheduled event fired.
835 * On invokation, drain as many pkts as possible (could be 0) and then
836 * if there are leftover packets reinsert the pkt in the scheduler.
837 */
838 static void
839 ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
840 {
841 struct mbuf *pkt;
842 struct dn_pipe *p = q->fs->pipe ;
843 int p_was_empty ;
844
845 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
846
847 if (p == NULL) {
848 printf("dummynet: ready_event pipe is gone\n");
849 return ;
850 }
851 p_was_empty = (p->head == NULL) ;
852
853 /*
854 * schedule fixed-rate queues linked to this pipe:
855 * Account for the bw accumulated since last scheduling, then
856 * drain as many pkts as allowed by q->numbytes and move to
857 * the delay line (in p) computing output time.
858 * bandwidth==0 (no limit) means we can drain the whole queue,
859 * setting len_scaled = 0 does the job.
860 */
861 q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
862 while ( (pkt = q->head) != NULL ) {
863 int len = pkt->m_pkthdr.len;
864 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
865 if (len_scaled > q->numbytes )
866 break ;
867 q->numbytes -= len_scaled ;
868 move_pkt(pkt, q, p, len);
869 }
870 /*
871 * If we have more packets queued, schedule next ready event
872 * (can only occur when bandwidth != 0, otherwise we would have
873 * flushed the whole queue in the previous loop).
874 * To this purpose we record the current time and compute how many
875 * ticks to go for the finish time of the packet.
876 */
877 if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
878 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
879 q->sched_time = curr_time ;
880 heap_insert(&ready_heap, curr_time + t, (void *)q );
881 /* XXX should check errors on heap_insert, and drain the whole
882 * queue on error hoping next time we are luckier.
883 */
884 } else { /* RED needs to know when the queue becomes empty */
885 q->q_time = curr_time;
886 q->numbytes = 0;
887 }
888 /*
889 * If the delay line was empty call transmit_event(p) now.
890 * Otherwise, the scheduler will take care of it.
891 */
892 if (p_was_empty)
893 transmit_event(p, head, tail);
894 }
895
896 /*
897 * Called when we can transmit packets on WF2Q queues. Take pkts out of
898 * the queues at their start time, and enqueue into the delay line.
899 * Packets are drained until p->numbytes < 0. As long as
900 * len_scaled >= p->numbytes, the packet goes into the delay line
901 * with a deadline p->delay. For the last packet, if p->numbytes<0,
902 * there is an additional delay.
903 */
904 static void
905 ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
906 {
907 int p_was_empty = (p->head == NULL) ;
908 struct dn_heap *sch = &(p->scheduler_heap);
909 struct dn_heap *neh = &(p->not_eligible_heap) ;
910 int64_t p_numbytes = p->numbytes;
911
912 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
913
914 if (p->if_name[0] == 0) /* tx clock is simulated */
915 p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
916 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
917 if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
918 return ;
919 else {
920 DPRINTF(("dummynet: pipe %d ready from %s --\n",
921 p->pipe_nr, p->if_name));
922 }
923 }
924
925 /*
926 * While we have backlogged traffic AND credit, we need to do
927 * something on the queue.
928 */
929 while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
930 if (sch->elements > 0) { /* have some eligible pkts to send out */
931 struct dn_flow_queue *q = sch->p[0].object ;
932 struct mbuf *pkt = q->head;
933 struct dn_flow_set *fs = q->fs;
934 u_int64_t len = pkt->m_pkthdr.len;
935 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
936
937 heap_extract(sch, NULL); /* remove queue from heap */
938 p_numbytes -= len_scaled ;
939 move_pkt(pkt, q, p, len);
940
941 p->V += (len<<MY_M) / p->sum ; /* update V */
942 q->S = q->F ; /* update start time */
943 if (q->len == 0) { /* Flow not backlogged any more */
944 fs->backlogged-- ;
945 heap_insert(&(p->idle_heap), q->F, q);
946 } else { /* still backlogged */
947 /*
948 * update F and position in backlogged queue, then
949 * put flow in not_eligible_heap (we will fix this later).
950 */
951 len = (q->head)->m_pkthdr.len;
952 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
953 if (DN_KEY_LEQ(q->S, p->V))
954 heap_insert(neh, q->S, q);
955 else
956 heap_insert(sch, q->F, q);
957 }
958 }
959 /*
960 * now compute V = max(V, min(S_i)). Remember that all elements in sch
961 * have by definition S_i <= V so if sch is not empty, V is surely
962 * the max and we must not update it. Conversely, if sch is empty
963 * we only need to look at neh.
964 */
965 if (sch->elements == 0 && neh->elements > 0)
966 p->V = MAX64 ( p->V, neh->p[0].key );
967 /* move from neh to sch any packets that have become eligible */
968 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
969 struct dn_flow_queue *q = neh->p[0].object ;
970 heap_extract(neh, NULL);
971 heap_insert(sch, q->F, q);
972 }
973
974 if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
975 p_numbytes = -1 ; /* mark not ready for I/O */
976 break ;
977 }
978 }
979 if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
980 && p->idle_heap.elements > 0) {
981 /*
982 * no traffic and no events scheduled. We can get rid of idle-heap.
983 */
984 int i ;
985
986 for (i = 0 ; i < p->idle_heap.elements ; i++) {
987 struct dn_flow_queue *q = p->idle_heap.p[i].object ;
988
989 q->F = 0 ;
990 q->S = q->F + 1 ;
991 }
992 p->sum = 0 ;
993 p->V = 0 ;
994 p->idle_heap.elements = 0 ;
995 }
996 /*
997 * If we are getting clocks from dummynet (not a real interface) and
998 * If we are under credit, schedule the next ready event.
999 * Also fix the delivery time of the last packet.
1000 */
1001 if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
1002 dn_key t=0 ; /* number of ticks i have to wait */
1003
1004 if (p->bandwidth > 0)
1005 t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
1006 dn_tag_get(p->tail)->output_time += t ;
1007 p->sched_time = curr_time ;
1008 heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
1009 /* XXX should check errors on heap_insert, and drain the whole
1010 * queue on error hoping next time we are luckier.
1011 */
1012 }
1013
1014 /* Fit (adjust if necessary) 64bit result into 32bit variable. */
1015 if (p_numbytes > INT_MAX)
1016 p->numbytes = INT_MAX;
1017 else if (p_numbytes < INT_MIN)
1018 p->numbytes = INT_MIN;
1019 else
1020 p->numbytes = p_numbytes;
1021
1022 /*
1023 * If the delay line was empty call transmit_event(p) now.
1024 * Otherwise, the scheduler will take care of it.
1025 */
1026 if (p_was_empty)
1027 transmit_event(p, head, tail);
1028
1029 }
1030
1031 /*
1032 * This is called every 1ms. It is used to
1033 * increment the current tick counter and schedule expired events.
1034 */
1035 static void
1036 dummynet(__unused void * unused)
1037 {
1038 void *p ; /* generic parameter to handler */
1039 struct dn_heap *h ;
1040 struct dn_heap *heaps[3];
1041 struct mbuf *head = NULL, *tail = NULL;
1042 int i;
1043 struct dn_pipe *pe ;
1044 struct timespec ts;
1045 struct timeval tv;
1046
1047 heaps[0] = &ready_heap ; /* fixed-rate queues */
1048 heaps[1] = &wfq_ready_heap ; /* wfq queues */
1049 heaps[2] = &extract_heap ; /* delay line */
1050
1051 lck_mtx_lock(dn_mutex);
1052
1053 /* make all time measurements in milliseconds (ms) -
1054 * here we convert secs and usecs to msecs (just divide the
1055 * usecs and take the closest whole number).
1056 */
1057 microuptime(&tv);
1058 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1059
1060 for (i=0; i < 3 ; i++) {
1061 h = heaps[i];
1062 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
1063 if (h->p[0].key > curr_time)
1064 printf("dummynet: warning, heap %d is %d ticks late\n",
1065 i, (int)(curr_time - h->p[0].key));
1066 p = h->p[0].object ; /* store a copy before heap_extract */
1067 heap_extract(h, NULL); /* need to extract before processing */
1068 if (i == 0)
1069 ready_event(p, &head, &tail) ;
1070 else if (i == 1) {
1071 struct dn_pipe *pipe = p;
1072 if (pipe->if_name[0] != '\0')
1073 printf("dummynet: bad ready_event_wfq for pipe %s\n",
1074 pipe->if_name);
1075 else
1076 ready_event_wfq(p, &head, &tail) ;
1077 } else {
1078 transmit_event(p, &head, &tail);
1079 }
1080 }
1081 }
1082 /* sweep pipes trying to expire idle flow_queues */
1083 for (i = 0; i < HASHSIZE; i++)
1084 SLIST_FOREACH(pe, &pipehash[i], next)
1085 if (pe->idle_heap.elements > 0 &&
1086 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
1087 struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
1088
1089 heap_extract(&(pe->idle_heap), NULL);
1090 q->S = q->F + 1 ; /* mark timestamp as invalid */
1091 pe->sum -= q->fs->weight ;
1092 }
1093
1094 /* check the heaps to see if there's still stuff in there, and
1095 * only set the timer if there are packets to process
1096 */
1097 timer_enabled = 0;
1098 for (i=0; i < 3 ; i++) {
1099 h = heaps[i];
1100 if (h->elements > 0) { // set the timer
1101 ts.tv_sec = 0;
1102 ts.tv_nsec = 1 * 1000000; // 1ms
1103 timer_enabled = 1;
1104 bsd_timeout(dummynet, NULL, &ts);
1105 break;
1106 }
1107 }
1108
1109 /*
1110 * If a packet chain has been dequeued, set serialize=1 so that new
1111 * packets don't get dispatched out of turn
1112 */
1113 if (head != NULL)
1114 serialize = 1;
1115
1116 lck_mtx_unlock(dn_mutex);
1117
1118 /* Send out the de-queued list of ready-to-send packets */
1119 if (head != NULL) {
1120 dummynet_send(head);
1121 lck_mtx_lock(dn_mutex);
1122 serialize = 0;
1123 lck_mtx_unlock(dn_mutex);
1124 }
1125 }
1126
1127
1128 static void
1129 dummynet_send(struct mbuf *m)
1130 {
1131 struct dn_pkt_tag *pkt;
1132 struct mbuf *n;
1133
1134 for (; m != NULL; m = n) {
1135 n = m->m_nextpkt;
1136 m->m_nextpkt = NULL;
1137 pkt = dn_tag_get(m);
1138
1139 switch (pkt->dn_dir) {
1140 case DN_TO_IP_OUT: {
1141 struct route tmp_rt = pkt->ro;
1142 (void)ip_output(m, NULL, &tmp_rt, pkt->flags, NULL, NULL);
1143 if (tmp_rt.ro_rt) {
1144 rtfree(tmp_rt.ro_rt);
1145 tmp_rt.ro_rt = NULL;
1146 }
1147 break ;
1148 }
1149 case DN_TO_IP_IN :
1150 proto_inject(PF_INET, m);
1151 break ;
1152
1153 default:
1154 printf("dummynet: bad switch %d!\n", pkt->dn_dir);
1155 m_freem(m);
1156 break ;
1157 }
1158 }
1159 }
1160
1161
1162
1163 /*
1164 * called by an interface when tx_rdy occurs.
1165 */
1166 int
1167 if_tx_rdy(struct ifnet *ifp)
1168 {
1169 struct dn_pipe *p;
1170 struct mbuf *head = NULL, *tail = NULL;
1171 int i;
1172
1173 lck_mtx_lock(dn_mutex);
1174
1175 for (i = 0; i < HASHSIZE; i++)
1176 SLIST_FOREACH(p, &pipehash[i], next)
1177 if (p->ifp == ifp)
1178 break ;
1179 if (p == NULL) {
1180 char buf[32];
1181 snprintf(buf, sizeof(buf), "%s%d",ifp->if_name, ifp->if_unit);
1182 for (i = 0; i < HASHSIZE; i++)
1183 SLIST_FOREACH(p, &pipehash[i], next)
1184 if (!strcmp(p->if_name, buf) ) {
1185 p->ifp = ifp ;
1186 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
1187 break ;
1188 }
1189 }
1190 if (p != NULL) {
1191 DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
1192 ifp->if_unit, ifp->if_snd.ifq_len));
1193 p->numbytes = 0 ; /* mark ready for I/O */
1194 ready_event_wfq(p, &head, &tail);
1195 }
1196 lck_mtx_unlock(dn_mutex);
1197
1198
1199 /* Send out the de-queued list of ready-to-send packets */
1200 if (head != NULL)
1201 dummynet_send(head);
1202
1203 return 0;
1204 }
1205
1206 /*
1207 * Unconditionally expire empty queues in case of shortage.
1208 * Returns the number of queues freed.
1209 */
1210 static int
1211 expire_queues(struct dn_flow_set *fs)
1212 {
1213 struct dn_flow_queue *q, *prev ;
1214 int i, initial_elements = fs->rq_elements ;
1215 struct timeval timenow;
1216
1217 getmicrotime(&timenow);
1218
1219 if (fs->last_expired == timenow.tv_sec)
1220 return 0 ;
1221 fs->last_expired = timenow.tv_sec ;
1222 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
1223 for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
1224 if (q->head != NULL || q->S != q->F+1) {
1225 prev = q ;
1226 q = q->next ;
1227 } else { /* entry is idle, expire it */
1228 struct dn_flow_queue *old_q = q ;
1229
1230 if (prev != NULL)
1231 prev->next = q = q->next ;
1232 else
1233 fs->rq[i] = q = q->next ;
1234 fs->rq_elements-- ;
1235 FREE(old_q, M_DUMMYNET);
1236 }
1237 return initial_elements - fs->rq_elements ;
1238 }
1239
1240 /*
1241 * If room, create a new queue and put at head of slot i;
1242 * otherwise, create or use the default queue.
1243 */
1244 static struct dn_flow_queue *
1245 create_queue(struct dn_flow_set *fs, int i)
1246 {
1247 struct dn_flow_queue *q ;
1248
1249 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
1250 expire_queues(fs) == 0) {
1251 /*
1252 * No way to get room, use or create overflow queue.
1253 */
1254 i = fs->rq_size ;
1255 if ( fs->rq[i] != NULL )
1256 return fs->rq[i] ;
1257 }
1258 q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
1259 if (q == NULL) {
1260 printf("dummynet: sorry, cannot allocate queue for new flow\n");
1261 return NULL ;
1262 }
1263 q->fs = fs ;
1264 q->hash_slot = i ;
1265 q->next = fs->rq[i] ;
1266 q->S = q->F + 1; /* hack - mark timestamp as invalid */
1267 fs->rq[i] = q ;
1268 fs->rq_elements++ ;
1269 return q ;
1270 }
1271
1272 /*
1273 * Given a flow_set and a pkt in last_pkt, find a matching queue
1274 * after appropriate masking. The queue is moved to front
1275 * so that further searches take less time.
1276 */
1277 static struct dn_flow_queue *
1278 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
1279 {
1280 int i = 0 ; /* we need i and q for new allocations */
1281 struct dn_flow_queue *q, *prev;
1282
1283 if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
1284 q = fs->rq[0] ;
1285 else {
1286 /* first, do the masking */
1287 id->dst_ip &= fs->flow_mask.dst_ip ;
1288 id->src_ip &= fs->flow_mask.src_ip ;
1289 id->dst_port &= fs->flow_mask.dst_port ;
1290 id->src_port &= fs->flow_mask.src_port ;
1291 id->proto &= fs->flow_mask.proto ;
1292 id->flags = 0 ; /* we don't care about this one */
1293 /* then, hash function */
1294 i = ( (id->dst_ip) & 0xffff ) ^
1295 ( (id->dst_ip >> 15) & 0xffff ) ^
1296 ( (id->src_ip << 1) & 0xffff ) ^
1297 ( (id->src_ip >> 16 ) & 0xffff ) ^
1298 (id->dst_port << 1) ^ (id->src_port) ^
1299 (id->proto );
1300 i = i % fs->rq_size ;
1301 /* finally, scan the current list for a match */
1302 searches++ ;
1303 for (prev=NULL, q = fs->rq[i] ; q ; ) {
1304 search_steps++;
1305 if (id->dst_ip == q->id.dst_ip &&
1306 id->src_ip == q->id.src_ip &&
1307 id->dst_port == q->id.dst_port &&
1308 id->src_port == q->id.src_port &&
1309 id->proto == q->id.proto &&
1310 id->flags == q->id.flags)
1311 break ; /* found */
1312 else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
1313 /* entry is idle and not in any heap, expire it */
1314 struct dn_flow_queue *old_q = q ;
1315
1316 if (prev != NULL)
1317 prev->next = q = q->next ;
1318 else
1319 fs->rq[i] = q = q->next ;
1320 fs->rq_elements-- ;
1321 FREE(old_q, M_DUMMYNET);
1322 continue ;
1323 }
1324 prev = q ;
1325 q = q->next ;
1326 }
1327 if (q && prev != NULL) { /* found and not in front */
1328 prev->next = q->next ;
1329 q->next = fs->rq[i] ;
1330 fs->rq[i] = q ;
1331 }
1332 }
1333 if (q == NULL) { /* no match, need to allocate a new entry */
1334 q = create_queue(fs, i);
1335 if (q != NULL)
1336 q->id = *id ;
1337 }
1338 return q ;
1339 }
1340
1341 static int
1342 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
1343 {
1344 /*
1345 * RED algorithm
1346 *
1347 * RED calculates the average queue size (avg) using a low-pass filter
1348 * with an exponential weighted (w_q) moving average:
1349 * avg <- (1-w_q) * avg + w_q * q_size
1350 * where q_size is the queue length (measured in bytes or * packets).
1351 *
1352 * If q_size == 0, we compute the idle time for the link, and set
1353 * avg = (1 - w_q)^(idle/s)
1354 * where s is the time needed for transmitting a medium-sized packet.
1355 *
1356 * Now, if avg < min_th the packet is enqueued.
1357 * If avg > max_th the packet is dropped. Otherwise, the packet is
1358 * dropped with probability P function of avg.
1359 *
1360 */
1361
1362 int64_t p_b = 0;
1363 /* queue in bytes or packets ? */
1364 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
1365
1366 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
1367
1368 /* average queue size estimation */
1369 if (q_size != 0) {
1370 /*
1371 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1372 */
1373 int diff = SCALE(q_size) - q->avg;
1374 int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
1375
1376 q->avg += (int) v;
1377 } else {
1378 /*
1379 * queue is empty, find for how long the queue has been
1380 * empty and use a lookup table for computing
1381 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1382 * (small) packet.
1383 * XXX check wraps...
1384 */
1385 if (q->avg) {
1386 u_int t = (curr_time - q->q_time) / fs->lookup_step;
1387
1388 q->avg = (t < fs->lookup_depth) ?
1389 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
1390 }
1391 }
1392 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
1393
1394 /* should i drop ? */
1395
1396 if (q->avg < fs->min_th) {
1397 q->count = -1;
1398 return 0; /* accept packet ; */
1399 }
1400 if (q->avg >= fs->max_th) { /* average queue >= max threshold */
1401 if (fs->flags_fs & DN_IS_GENTLE_RED) {
1402 /*
1403 * According to Gentle-RED, if avg is greater than max_th the
1404 * packet is dropped with a probability
1405 * p_b = c_3 * avg - c_4
1406 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1407 */
1408 p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
1409 } else {
1410 q->count = -1;
1411 DPRINTF(("dummynet: - drop"));
1412 return 1 ;
1413 }
1414 } else if (q->avg > fs->min_th) {
1415 /*
1416 * we compute p_b using the linear dropping function p_b = c_1 *
1417 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1418 * max_p * min_th / (max_th - min_th)
1419 */
1420 p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
1421 }
1422 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
1423 p_b = (p_b * len) / fs->max_pkt_size;
1424 if (++q->count == 0)
1425 q->random = MY_RANDOM & 0xffff;
1426 else {
1427 /*
1428 * q->count counts packets arrived since last drop, so a greater
1429 * value of q->count means a greater packet drop probability.
1430 */
1431 if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1432 q->count = 0;
1433 DPRINTF(("dummynet: - red drop"));
1434 /* after a drop we calculate a new random value */
1435 q->random = MY_RANDOM & 0xffff;
1436 return 1; /* drop */
1437 }
1438 }
1439 /* end of RED algorithm */
1440 return 0 ; /* accept */
1441 }
1442
1443 static __inline
1444 struct dn_flow_set *
1445 locate_flowset(int fs_nr)
1446 {
1447 struct dn_flow_set *fs;
1448 SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
1449 if (fs->fs_nr == fs_nr)
1450 return fs ;
1451
1452 return (NULL);
1453 }
1454
1455 static __inline struct dn_pipe *
1456 locate_pipe(int pipe_nr)
1457 {
1458 struct dn_pipe *pipe;
1459
1460 SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
1461 if (pipe->pipe_nr == pipe_nr)
1462 return (pipe);
1463
1464 return (NULL);
1465 }
1466
1467
1468
1469 /*
1470 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1471 * depending on whether WF2Q or fixed bw is used.
1472 *
1473 * pipe_nr pipe or queue the packet is destined for.
1474 * dir where shall we send the packet after dummynet.
1475 * m the mbuf with the packet
1476 * ifp the 'ifp' parameter from the caller.
1477 * NULL in ip_input, destination interface in ip_output,
1478 * real_dst in bdg_forward
1479 * ro route parameter (only used in ip_output, NULL otherwise)
1480 * dst destination address, only used by ip_output
1481 * rule matching rule, in case of multiple passes
1482 * flags flags from the caller, only used in ip_output
1483 *
1484 */
1485 static int
1486 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
1487 {
1488 struct mbuf *head = NULL, *tail = NULL;
1489 struct dn_pkt_tag *pkt;
1490 struct m_tag *mtag;
1491 struct dn_flow_set *fs = NULL;
1492 struct dn_pipe *pipe ;
1493 u_int64_t len = m->m_pkthdr.len ;
1494 struct dn_flow_queue *q = NULL ;
1495 int is_pipe;
1496 struct timespec ts;
1497 struct timeval tv;
1498
1499 #if IPFW2
1500 ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
1501
1502 if (cmd->opcode == O_LOG)
1503 cmd += F_LEN(cmd);
1504 is_pipe = (cmd->opcode == O_PIPE);
1505 #else
1506 is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1507 #endif
1508
1509 pipe_nr &= 0xffff ;
1510
1511 lck_mtx_lock(dn_mutex);
1512
1513 /* make all time measurements in milliseconds (ms) -
1514 * here we convert secs and usecs to msecs (just divide the
1515 * usecs and take the closest whole number).
1516 */
1517 microuptime(&tv);
1518 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1519
1520 /*
1521 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1522 */
1523 if (is_pipe) {
1524 pipe = locate_pipe(pipe_nr);
1525 if (pipe != NULL)
1526 fs = &(pipe->fs);
1527 } else
1528 fs = locate_flowset(pipe_nr);
1529
1530
1531 if (fs == NULL){
1532 goto dropit ; /* this queue/pipe does not exist! */
1533 }
1534 pipe = fs->pipe ;
1535 if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1536 pipe = locate_pipe(fs->parent_nr);
1537
1538 if (pipe != NULL)
1539 fs->pipe = pipe ;
1540 else {
1541 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1542 fs->parent_nr, fs->fs_nr);
1543 goto dropit ;
1544 }
1545 }
1546 q = find_queue(fs, &(fwa->f_id));
1547 if ( q == NULL )
1548 goto dropit ; /* cannot allocate queue */
1549 /*
1550 * update statistics, then check reasons to drop pkt
1551 */
1552 q->tot_bytes += len ;
1553 q->tot_pkts++ ;
1554 if ( fs->plr && (MY_RANDOM < fs->plr) )
1555 goto dropit ; /* random pkt drop */
1556 if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1557 if (q->len_bytes > fs->qsize)
1558 goto dropit ; /* queue size overflow */
1559 } else {
1560 if (q->len >= fs->qsize)
1561 goto dropit ; /* queue count overflow */
1562 }
1563 if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1564 goto dropit ;
1565
1566 /* XXX expensive to zero, see if we can remove it*/
1567 mtag = m_tag_alloc(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
1568 sizeof(struct dn_pkt_tag), M_NOWAIT);
1569 if ( mtag == NULL )
1570 goto dropit ; /* cannot allocate packet header */
1571 m_tag_prepend(m, mtag); /* attach to mbuf chain */
1572
1573 pkt = (struct dn_pkt_tag *)(mtag+1);
1574 bzero(pkt, sizeof(struct dn_pkt_tag));
1575 /* ok, i can handle the pkt now... */
1576 /* build and enqueue packet + parameters */
1577 pkt->rule = fwa->rule ;
1578 pkt->dn_dir = dir ;
1579
1580 pkt->ifp = fwa->oif;
1581 if (dir == DN_TO_IP_OUT) {
1582 /*
1583 * We need to copy *ro because for ICMP pkts (and maybe others)
1584 * the caller passed a pointer into the stack; dst might also be
1585 * a pointer into *ro so it needs to be updated.
1586 */
1587 pkt->ro = *(fwa->ro);
1588 if (fwa->ro->ro_rt)
1589 RT_ADDREF(fwa->ro->ro_rt);
1590
1591 if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
1592 fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
1593
1594 pkt->dn_dst = fwa->dst;
1595 pkt->flags = fwa->flags;
1596 if (fwa->ipoa != NULL)
1597 pkt->ipoa = *(fwa->ipoa);
1598 }
1599 if (q->head == NULL)
1600 q->head = m;
1601 else
1602 q->tail->m_nextpkt = m;
1603 q->tail = m;
1604 q->len++;
1605 q->len_bytes += len ;
1606
1607 if ( q->head != m ) /* flow was not idle, we are done */
1608 goto done;
1609 /*
1610 * If we reach this point the flow was previously idle, so we need
1611 * to schedule it. This involves different actions for fixed-rate or
1612 * WF2Q queues.
1613 */
1614 if (is_pipe) {
1615 /*
1616 * Fixed-rate queue: just insert into the ready_heap.
1617 */
1618 dn_key t = 0 ;
1619 if (pipe->bandwidth)
1620 t = SET_TICKS(m, q, pipe);
1621 q->sched_time = curr_time ;
1622 if (t == 0) /* must process it now */
1623 ready_event( q , &head, &tail );
1624 else
1625 heap_insert(&ready_heap, curr_time + t , q );
1626 } else {
1627 /*
1628 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1629 * set S to the virtual time V for the controlling pipe, and update
1630 * the sum of weights for the pipe; otherwise, remove flow from
1631 * idle_heap and set S to max(F,V).
1632 * Second, compute finish time F = S + len/weight.
1633 * Third, if pipe was idle, update V=max(S, V).
1634 * Fourth, count one more backlogged flow.
1635 */
1636 if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1637 q->S = pipe->V ;
1638 pipe->sum += fs->weight ; /* add weight of new queue */
1639 } else {
1640 heap_extract(&(pipe->idle_heap), q);
1641 q->S = MAX64(q->F, pipe->V ) ;
1642 }
1643 q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1644
1645 if (pipe->not_eligible_heap.elements == 0 &&
1646 pipe->scheduler_heap.elements == 0)
1647 pipe->V = MAX64 ( q->S, pipe->V );
1648 fs->backlogged++ ;
1649 /*
1650 * Look at eligibility. A flow is not eligibile if S>V (when
1651 * this happens, it means that there is some other flow already
1652 * scheduled for the same pipe, so the scheduler_heap cannot be
1653 * empty). If the flow is not eligible we just store it in the
1654 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1655 * and possibly invoke ready_event_wfq() right now if there is
1656 * leftover credit.
1657 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1658 * and for all flows in not_eligible_heap (NEH), S_i > V .
1659 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1660 * we only need to look into NEH.
1661 */
1662 if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1663 if (pipe->scheduler_heap.elements == 0)
1664 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1665 heap_insert(&(pipe->not_eligible_heap), q->S, q);
1666 } else {
1667 heap_insert(&(pipe->scheduler_heap), q->F, q);
1668 if (pipe->numbytes >= 0) { /* pipe is idle */
1669 if (pipe->scheduler_heap.elements != 1)
1670 printf("dummynet: OUCH! pipe should have been idle!\n");
1671 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1672 pipe->pipe_nr, (int)(q->F >> MY_M)));
1673 pipe->sched_time = curr_time ;
1674 ready_event_wfq(pipe, &head, &tail);
1675 }
1676 }
1677 }
1678 done:
1679 /* start the timer and set global if not already set */
1680 if (!timer_enabled) {
1681 ts.tv_sec = 0;
1682 ts.tv_nsec = 1 * 1000000; // 1ms
1683 timer_enabled = 1;
1684 bsd_timeout(dummynet, NULL, &ts);
1685 }
1686
1687 lck_mtx_unlock(dn_mutex);
1688 if (head != NULL)
1689 dummynet_send(head);
1690
1691 return 0;
1692
1693 dropit:
1694 if (q)
1695 q->drops++ ;
1696 lck_mtx_unlock(dn_mutex);
1697 m_freem(m);
1698 return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1699 }
1700
1701 /*
1702 * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1703 * Doing this would probably save us the initial bzero of dn_pkt
1704 */
1705 #define DN_FREE_PKT(_m) do { \
1706 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1707 if (tag) { \
1708 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1709 if (n->ro.ro_rt != NULL) { \
1710 rtfree(n->ro.ro_rt); \
1711 n->ro.ro_rt = NULL; \
1712 } \
1713 } \
1714 m_tag_delete(_m, tag); \
1715 m_freem(_m); \
1716 } while (0)
1717
1718 /*
1719 * Dispose all packets and flow_queues on a flow_set.
1720 * If all=1, also remove red lookup table and other storage,
1721 * including the descriptor itself.
1722 * For the one in dn_pipe MUST also cleanup ready_heap...
1723 */
1724 static void
1725 purge_flow_set(struct dn_flow_set *fs, int all)
1726 {
1727 struct dn_flow_queue *q, *qn ;
1728 int i ;
1729
1730 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1731
1732 for (i = 0 ; i <= fs->rq_size ; i++ ) {
1733 for (q = fs->rq[i] ; q ; q = qn ) {
1734 struct mbuf *m, *mnext;
1735
1736 mnext = q->head;
1737 while ((m = mnext) != NULL) {
1738 mnext = m->m_nextpkt;
1739 DN_FREE_PKT(m);
1740 }
1741 qn = q->next ;
1742 FREE(q, M_DUMMYNET);
1743 }
1744 fs->rq[i] = NULL ;
1745 }
1746 fs->rq_elements = 0 ;
1747 if (all) {
1748 /* RED - free lookup table */
1749 if (fs->w_q_lookup)
1750 FREE(fs->w_q_lookup, M_DUMMYNET);
1751 if (fs->rq)
1752 FREE(fs->rq, M_DUMMYNET);
1753 /* if this fs is not part of a pipe, free it */
1754 if (fs->pipe && fs != &(fs->pipe->fs) )
1755 FREE(fs, M_DUMMYNET);
1756 }
1757 }
1758
1759 /*
1760 * Dispose all packets queued on a pipe (not a flow_set).
1761 * Also free all resources associated to a pipe, which is about
1762 * to be deleted.
1763 */
1764 static void
1765 purge_pipe(struct dn_pipe *pipe)
1766 {
1767 struct mbuf *m, *mnext;
1768
1769 purge_flow_set( &(pipe->fs), 1 );
1770
1771 mnext = pipe->head;
1772 while ((m = mnext) != NULL) {
1773 mnext = m->m_nextpkt;
1774 DN_FREE_PKT(m);
1775 }
1776
1777 heap_free( &(pipe->scheduler_heap) );
1778 heap_free( &(pipe->not_eligible_heap) );
1779 heap_free( &(pipe->idle_heap) );
1780 }
1781
1782 /*
1783 * Delete all pipes and heaps returning memory. Must also
1784 * remove references from all ipfw rules to all pipes.
1785 */
1786 static void
1787 dummynet_flush(void)
1788 {
1789 struct dn_pipe *pipe, *pipe1;
1790 struct dn_flow_set *fs, *fs1;
1791 int i;
1792
1793 lck_mtx_lock(dn_mutex);
1794
1795 /* remove all references to pipes ...*/
1796 flush_pipe_ptrs(NULL);
1797
1798 /* Free heaps so we don't have unwanted events. */
1799 heap_free(&ready_heap);
1800 heap_free(&wfq_ready_heap);
1801 heap_free(&extract_heap);
1802
1803 /*
1804 * Now purge all queued pkts and delete all pipes.
1805 *
1806 * XXXGL: can we merge the for(;;) cycles into one or not?
1807 */
1808 for (i = 0; i < HASHSIZE; i++)
1809 SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
1810 SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
1811 purge_flow_set(fs, 1);
1812 }
1813 for (i = 0; i < HASHSIZE; i++)
1814 SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
1815 SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
1816 purge_pipe(pipe);
1817 FREE(pipe, M_DUMMYNET);
1818 }
1819 lck_mtx_unlock(dn_mutex);
1820 }
1821
1822
1823 extern struct ip_fw *ip_fw_default_rule ;
1824 static void
1825 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
1826 {
1827 int i ;
1828 struct dn_flow_queue *q ;
1829 struct mbuf *m ;
1830
1831 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1832 for (q = fs->rq[i] ; q ; q = q->next )
1833 for (m = q->head ; m ; m = m->m_nextpkt ) {
1834 struct dn_pkt_tag *pkt = dn_tag_get(m) ;
1835 if (pkt->rule == r)
1836 pkt->rule = ip_fw_default_rule ;
1837 }
1838 }
1839 /*
1840 * when a firewall rule is deleted, scan all queues and remove the flow-id
1841 * from packets matching this rule.
1842 */
1843 void
1844 dn_rule_delete(void *r)
1845 {
1846 struct dn_pipe *p ;
1847 struct dn_flow_set *fs ;
1848 struct dn_pkt_tag *pkt ;
1849 struct mbuf *m ;
1850 int i;
1851
1852 lck_mtx_lock(dn_mutex);
1853
1854 /*
1855 * If the rule references a queue (dn_flow_set), then scan
1856 * the flow set, otherwise scan pipes. Should do either, but doing
1857 * both does not harm.
1858 */
1859 for (i = 0; i < HASHSIZE; i++)
1860 SLIST_FOREACH(fs, &flowsethash[i], next)
1861 dn_rule_delete_fs(fs, r);
1862
1863 for (i = 0; i < HASHSIZE; i++)
1864 SLIST_FOREACH(p, &pipehash[i], next) {
1865 fs = &(p->fs);
1866 dn_rule_delete_fs(fs, r);
1867 for (m = p->head ; m ; m = m->m_nextpkt ) {
1868 pkt = dn_tag_get(m);
1869 if (pkt->rule == r)
1870 pkt->rule = ip_fw_default_rule;
1871 }
1872 }
1873 lck_mtx_unlock(dn_mutex);
1874 }
1875
1876 /*
1877 * setup RED parameters
1878 */
1879 static int
1880 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1881 {
1882 int i;
1883
1884 x->w_q = p->w_q;
1885 x->min_th = SCALE(p->min_th);
1886 x->max_th = SCALE(p->max_th);
1887 x->max_p = p->max_p;
1888
1889 x->c_1 = p->max_p / (p->max_th - p->min_th);
1890 x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1891 if (x->flags_fs & DN_IS_GENTLE_RED) {
1892 x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1893 x->c_4 = (SCALE(1) - 2 * p->max_p);
1894 }
1895
1896 /* if the lookup table already exist, free and create it again */
1897 if (x->w_q_lookup) {
1898 FREE(x->w_q_lookup, M_DUMMYNET);
1899 x->w_q_lookup = NULL ;
1900 }
1901 if (red_lookup_depth == 0) {
1902 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1903 FREE(x, M_DUMMYNET);
1904 return EINVAL;
1905 }
1906 x->lookup_depth = red_lookup_depth;
1907 x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
1908 M_DUMMYNET, M_DONTWAIT);
1909 if (x->w_q_lookup == NULL) {
1910 printf("dummynet: sorry, cannot allocate red lookup table\n");
1911 FREE(x, M_DUMMYNET);
1912 return ENOSPC;
1913 }
1914
1915 /* fill the lookup table with (1 - w_q)^x */
1916 x->lookup_step = p->lookup_step ;
1917 x->lookup_weight = p->lookup_weight ;
1918 x->w_q_lookup[0] = SCALE(1) - x->w_q;
1919 for (i = 1; i < x->lookup_depth; i++)
1920 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1921 if (red_avg_pkt_size < 1)
1922 red_avg_pkt_size = 512 ;
1923 x->avg_pkt_size = red_avg_pkt_size ;
1924 if (red_max_pkt_size < 1)
1925 red_max_pkt_size = 1500 ;
1926 x->max_pkt_size = red_max_pkt_size ;
1927 return 0 ;
1928 }
1929
1930 static int
1931 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
1932 {
1933 if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
1934 int l = pfs->rq_size;
1935
1936 if (l == 0)
1937 l = dn_hash_size;
1938 if (l < 4)
1939 l = 4;
1940 else if (l > DN_MAX_HASH_SIZE)
1941 l = DN_MAX_HASH_SIZE;
1942 x->rq_size = l;
1943 } else /* one is enough for null mask */
1944 x->rq_size = 1;
1945 x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
1946 M_DUMMYNET, M_DONTWAIT | M_ZERO);
1947 if (x->rq == NULL) {
1948 printf("dummynet: sorry, cannot allocate queue\n");
1949 return ENOSPC;
1950 }
1951 x->rq_elements = 0;
1952 return 0 ;
1953 }
1954
1955 static void
1956 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
1957 {
1958 x->flags_fs = src->flags_fs;
1959 x->qsize = src->qsize;
1960 x->plr = src->plr;
1961 x->flow_mask = src->flow_mask;
1962 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1963 if (x->qsize > 1024*1024)
1964 x->qsize = 1024*1024 ;
1965 } else {
1966 if (x->qsize == 0)
1967 x->qsize = 50 ;
1968 if (x->qsize > 100)
1969 x->qsize = 50 ;
1970 }
1971 /* configuring RED */
1972 if ( x->flags_fs & DN_IS_RED )
1973 config_red(src, x) ; /* XXX should check errors */
1974 }
1975
1976 /*
1977 * setup pipe or queue parameters.
1978 */
1979
1980 static int
1981 config_pipe(struct dn_pipe *p)
1982 {
1983 int i, r;
1984 struct dn_flow_set *pfs = &(p->fs);
1985 struct dn_flow_queue *q;
1986
1987 /*
1988 * The config program passes parameters as follows:
1989 * bw = bits/second (0 means no limits),
1990 * delay = ms, must be translated into ticks.
1991 * qsize = slots/bytes
1992 */
1993 p->delay = ( p->delay * (hz*10) ) / 1000 ;
1994 /* We need either a pipe number or a flow_set number */
1995 if (p->pipe_nr == 0 && pfs->fs_nr == 0)
1996 return EINVAL ;
1997 if (p->pipe_nr != 0 && pfs->fs_nr != 0)
1998 return EINVAL ;
1999 if (p->pipe_nr != 0) { /* this is a pipe */
2000 struct dn_pipe *x, *b;
2001
2002 lck_mtx_lock(dn_mutex);
2003
2004 /* locate pipe */
2005 b = locate_pipe(p->pipe_nr);
2006
2007 if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
2008 x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
2009 if (x == NULL) {
2010 lck_mtx_unlock(dn_mutex);
2011 printf("dummynet: no memory for new pipe\n");
2012 return ENOSPC;
2013 }
2014 x->pipe_nr = p->pipe_nr;
2015 x->fs.pipe = x ;
2016 /* idle_heap is the only one from which we extract from the middle.
2017 */
2018 x->idle_heap.size = x->idle_heap.elements = 0 ;
2019 x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
2020 } else {
2021 x = b;
2022 /* Flush accumulated credit for all queues */
2023 for (i = 0; i <= x->fs.rq_size; i++)
2024 for (q = x->fs.rq[i]; q; q = q->next)
2025 q->numbytes = 0;
2026 }
2027
2028 x->bandwidth = p->bandwidth ;
2029 x->numbytes = 0; /* just in case... */
2030 bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
2031 x->ifp = NULL ; /* reset interface ptr */
2032 x->delay = p->delay ;
2033 set_fs_parms(&(x->fs), pfs);
2034
2035
2036 if ( x->fs.rq == NULL ) { /* a new pipe */
2037 r = alloc_hash(&(x->fs), pfs) ;
2038 if (r) {
2039 lck_mtx_unlock(dn_mutex);
2040 FREE(x, M_DUMMYNET);
2041 return r ;
2042 }
2043 SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
2044 x, next);
2045 }
2046 lck_mtx_unlock(dn_mutex);
2047 } else { /* config queue */
2048 struct dn_flow_set *x, *b ;
2049
2050 lck_mtx_lock(dn_mutex);
2051 /* locate flow_set */
2052 b = locate_flowset(pfs->fs_nr);
2053
2054 if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
2055 if (pfs->parent_nr == 0) { /* need link to a pipe */
2056 lck_mtx_unlock(dn_mutex);
2057 return EINVAL ;
2058 }
2059 x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
2060 if (x == NULL) {
2061 lck_mtx_unlock(dn_mutex);
2062 printf("dummynet: no memory for new flow_set\n");
2063 return ENOSPC;
2064 }
2065 x->fs_nr = pfs->fs_nr;
2066 x->parent_nr = pfs->parent_nr;
2067 x->weight = pfs->weight ;
2068 if (x->weight == 0)
2069 x->weight = 1 ;
2070 else if (x->weight > 100)
2071 x->weight = 100 ;
2072 } else {
2073 /* Change parent pipe not allowed; must delete and recreate */
2074 if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
2075 lck_mtx_unlock(dn_mutex);
2076 return EINVAL ;
2077 }
2078 x = b;
2079 }
2080 set_fs_parms(x, pfs);
2081
2082 if ( x->rq == NULL ) { /* a new flow_set */
2083 r = alloc_hash(x, pfs) ;
2084 if (r) {
2085 lck_mtx_unlock(dn_mutex);
2086 FREE(x, M_DUMMYNET);
2087 return r ;
2088 }
2089 SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
2090 x, next);
2091 }
2092 lck_mtx_unlock(dn_mutex);
2093 }
2094 return 0 ;
2095 }
2096
2097 /*
2098 * Helper function to remove from a heap queues which are linked to
2099 * a flow_set about to be deleted.
2100 */
2101 static void
2102 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
2103 {
2104 int i = 0, found = 0 ;
2105 for (; i < h->elements ;)
2106 if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
2107 h->elements-- ;
2108 h->p[i] = h->p[h->elements] ;
2109 found++ ;
2110 } else
2111 i++ ;
2112 if (found)
2113 heapify(h);
2114 }
2115
2116 /*
2117 * helper function to remove a pipe from a heap (can be there at most once)
2118 */
2119 static void
2120 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
2121 {
2122 if (h->elements > 0) {
2123 int i = 0 ;
2124 for (i=0; i < h->elements ; i++ ) {
2125 if (h->p[i].object == p) { /* found it */
2126 h->elements-- ;
2127 h->p[i] = h->p[h->elements] ;
2128 heapify(h);
2129 break ;
2130 }
2131 }
2132 }
2133 }
2134
2135 /*
2136 * drain all queues. Called in case of severe mbuf shortage.
2137 */
2138 void
2139 dummynet_drain(void)
2140 {
2141 struct dn_flow_set *fs;
2142 struct dn_pipe *p;
2143 struct mbuf *m, *mnext;
2144 int i;
2145
2146 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2147
2148 heap_free(&ready_heap);
2149 heap_free(&wfq_ready_heap);
2150 heap_free(&extract_heap);
2151 /* remove all references to this pipe from flow_sets */
2152 for (i = 0; i < HASHSIZE; i++)
2153 SLIST_FOREACH(fs, &flowsethash[i], next)
2154 purge_flow_set(fs, 0);
2155
2156 for (i = 0; i < HASHSIZE; i++)
2157 SLIST_FOREACH(p, &pipehash[i], next) {
2158 purge_flow_set(&(p->fs), 0);
2159
2160 mnext = p->head;
2161 while ((m = mnext) != NULL) {
2162 mnext = m->m_nextpkt;
2163 DN_FREE_PKT(m);
2164 }
2165 p->head = p->tail = NULL ;
2166 }
2167 }
2168
2169 /*
2170 * Fully delete a pipe or a queue, cleaning up associated info.
2171 */
2172 static int
2173 delete_pipe(struct dn_pipe *p)
2174 {
2175 if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
2176 return EINVAL ;
2177 if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
2178 return EINVAL ;
2179 if (p->pipe_nr != 0) { /* this is an old-style pipe */
2180 struct dn_pipe *b;
2181 struct dn_flow_set *fs;
2182 int i;
2183
2184 lck_mtx_lock(dn_mutex);
2185 /* locate pipe */
2186 b = locate_pipe(p->pipe_nr);
2187 if(b == NULL){
2188 lck_mtx_unlock(dn_mutex);
2189 return EINVAL ; /* not found */
2190 }
2191
2192 /* Unlink from list of pipes. */
2193 SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
2194
2195 /* remove references to this pipe from the ip_fw rules. */
2196 flush_pipe_ptrs(&(b->fs));
2197
2198 /* Remove all references to this pipe from flow_sets. */
2199 for (i = 0; i < HASHSIZE; i++)
2200 SLIST_FOREACH(fs, &flowsethash[i], next)
2201 if (fs->pipe == b) {
2202 printf("dummynet: ++ ref to pipe %d from fs %d\n",
2203 p->pipe_nr, fs->fs_nr);
2204 fs->pipe = NULL ;
2205 purge_flow_set(fs, 0);
2206 }
2207 fs_remove_from_heap(&ready_heap, &(b->fs));
2208
2209 purge_pipe(b); /* remove all data associated to this pipe */
2210 /* remove reference to here from extract_heap and wfq_ready_heap */
2211 pipe_remove_from_heap(&extract_heap, b);
2212 pipe_remove_from_heap(&wfq_ready_heap, b);
2213 lck_mtx_unlock(dn_mutex);
2214
2215 FREE(b, M_DUMMYNET);
2216 } else { /* this is a WF2Q queue (dn_flow_set) */
2217 struct dn_flow_set *b;
2218
2219 lck_mtx_lock(dn_mutex);
2220 /* locate set */
2221 b = locate_flowset(p->fs.fs_nr);
2222 if (b == NULL) {
2223 lck_mtx_unlock(dn_mutex);
2224 return EINVAL ; /* not found */
2225 }
2226
2227 /* remove references to this flow_set from the ip_fw rules. */
2228 flush_pipe_ptrs(b);
2229
2230 /* Unlink from list of flowsets. */
2231 SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
2232
2233 if (b->pipe != NULL) {
2234 /* Update total weight on parent pipe and cleanup parent heaps */
2235 b->pipe->sum -= b->weight * b->backlogged ;
2236 fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
2237 fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
2238 #if 1 /* XXX should i remove from idle_heap as well ? */
2239 fs_remove_from_heap(&(b->pipe->idle_heap), b);
2240 #endif
2241 }
2242 purge_flow_set(b, 1);
2243 lck_mtx_unlock(dn_mutex);
2244 }
2245 return 0 ;
2246 }
2247
2248 /*
2249 * helper function used to copy data from kernel in DUMMYNET_GET
2250 */
2251 static
2252 char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
2253 {
2254 int i, copied = 0 ;
2255 struct dn_flow_queue *q;
2256 struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
2257
2258 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2259
2260 for (i = 0 ; i <= set->rq_size ; i++)
2261 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2262 if (q->hash_slot != i)
2263 printf("dummynet: ++ at %d: wrong slot (have %d, "
2264 "should be %d)\n", copied, q->hash_slot, i);
2265 if (q->fs != set)
2266 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
2267 i, q->fs, set);
2268 copied++ ;
2269 cp_queue_to_32_user( q, qp );
2270 /* cleanup pointers */
2271 qp->next = (user32_addr_t)0 ;
2272 qp->head = qp->tail = (user32_addr_t)0 ;
2273 qp->fs = (user32_addr_t)0 ;
2274 }
2275 if (copied != set->rq_elements)
2276 printf("dummynet: ++ wrong count, have %d should be %d\n",
2277 copied, set->rq_elements);
2278 return (char *)qp ;
2279 }
2280
2281 static
2282 char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
2283 {
2284 int i, copied = 0 ;
2285 struct dn_flow_queue *q;
2286 struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
2287
2288 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2289
2290 for (i = 0 ; i <= set->rq_size ; i++)
2291 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2292 if (q->hash_slot != i)
2293 printf("dummynet: ++ at %d: wrong slot (have %d, "
2294 "should be %d)\n", copied, q->hash_slot, i);
2295 if (q->fs != set)
2296 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
2297 i, q->fs, set);
2298 copied++ ;
2299 //bcopy(q, qp, sizeof(*q));
2300 cp_queue_to_64_user( q, qp );
2301 /* cleanup pointers */
2302 qp->next = USER_ADDR_NULL ;
2303 qp->head = qp->tail = USER_ADDR_NULL ;
2304 qp->fs = USER_ADDR_NULL ;
2305 }
2306 if (copied != set->rq_elements)
2307 printf("dummynet: ++ wrong count, have %d should be %d\n",
2308 copied, set->rq_elements);
2309 return (char *)qp ;
2310 }
2311
2312 static size_t
2313 dn_calc_size(int is64user)
2314 {
2315 struct dn_flow_set *set ;
2316 struct dn_pipe *p ;
2317 size_t size = 0 ;
2318 size_t pipesize;
2319 size_t queuesize;
2320 size_t setsize;
2321 int i;
2322
2323 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2324 if ( is64user ){
2325 pipesize = sizeof(struct dn_pipe_64);
2326 queuesize = sizeof(struct dn_flow_queue_64);
2327 setsize = sizeof(struct dn_flow_set_64);
2328 }
2329 else {
2330 pipesize = sizeof(struct dn_pipe_32);
2331 queuesize = sizeof( struct dn_flow_queue_32 );
2332 setsize = sizeof(struct dn_flow_set_32);
2333 }
2334 /*
2335 * compute size of data structures: list of pipes and flow_sets.
2336 */
2337 for (i = 0; i < HASHSIZE; i++) {
2338 SLIST_FOREACH(p, &pipehash[i], next)
2339 size += sizeof(*p) +
2340 p->fs.rq_elements * sizeof(struct dn_flow_queue);
2341 SLIST_FOREACH(set, &flowsethash[i], next)
2342 size += sizeof (*set) +
2343 set->rq_elements * sizeof(struct dn_flow_queue);
2344 }
2345 return size;
2346 }
2347
2348 static int
2349 dummynet_get(struct sockopt *sopt)
2350 {
2351 char *buf, *bp=NULL; /* bp is the "copy-pointer" */
2352 size_t size ;
2353 struct dn_flow_set *set ;
2354 struct dn_pipe *p ;
2355 int error=0, i ;
2356 int is64user = 0;
2357
2358 /* XXX lock held too long */
2359 lck_mtx_lock(dn_mutex);
2360 /*
2361 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
2362 * cannot use this flag while holding a mutex.
2363 */
2364 if (proc_is64bit(sopt->sopt_p))
2365 is64user = 1;
2366 for (i = 0; i < 10; i++) {
2367 size = dn_calc_size(is64user);
2368 lck_mtx_unlock(dn_mutex);
2369 buf = _MALLOC(size, M_TEMP, M_WAITOK);
2370 if (buf == NULL)
2371 return ENOBUFS;
2372 lck_mtx_lock(dn_mutex);
2373 if (size == dn_calc_size(is64user))
2374 break;
2375 FREE(buf, M_TEMP);
2376 buf = NULL;
2377 }
2378 if (buf == NULL) {
2379 lck_mtx_unlock(dn_mutex);
2380 return ENOBUFS ;
2381 }
2382
2383
2384 bp = buf;
2385 for (i = 0; i < HASHSIZE; i++)
2386 SLIST_FOREACH(p, &pipehash[i], next) {
2387 /*
2388 * copy pipe descriptor into *bp, convert delay back to ms,
2389 * then copy the flow_set descriptor(s) one at a time.
2390 * After each flow_set, copy the queue descriptor it owns.
2391 */
2392 if ( is64user ){
2393 bp = cp_pipe_to_64_user(p, (struct dn_pipe_64 *)bp);
2394 }
2395 else{
2396 bp = cp_pipe_to_32_user(p, (struct dn_pipe_32 *)bp);
2397 }
2398 }
2399 for (i = 0; i < HASHSIZE; i++)
2400 SLIST_FOREACH(set, &flowsethash[i], next) {
2401 struct dn_flow_set_64 *fs_bp = (struct dn_flow_set_64 *)bp ;
2402 cp_flow_set_to_64_user(set, fs_bp);
2403 /* XXX same hack as above */
2404 fs_bp->next = CAST_DOWN(user64_addr_t, DN_IS_QUEUE);
2405 fs_bp->pipe = USER_ADDR_NULL;
2406 fs_bp->rq = USER_ADDR_NULL ;
2407 bp += sizeof(struct dn_flow_set_64);
2408 bp = dn_copy_set_64( set, bp );
2409 }
2410 lck_mtx_unlock(dn_mutex);
2411
2412 error = sooptcopyout(sopt, buf, size);
2413 FREE(buf, M_TEMP);
2414 return error ;
2415 }
2416
2417 /*
2418 * Handler for the various dummynet socket options (get, flush, config, del)
2419 */
2420 static int
2421 ip_dn_ctl(struct sockopt *sopt)
2422 {
2423 int error = 0 ;
2424 struct dn_pipe *p, tmp_pipe;
2425
2426 /* Disallow sets in really-really secure mode. */
2427 if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
2428 return (EPERM);
2429
2430 switch (sopt->sopt_name) {
2431 default :
2432 printf("dummynet: -- unknown option %d", sopt->sopt_name);
2433 return EINVAL ;
2434
2435 case IP_DUMMYNET_GET :
2436 error = dummynet_get(sopt);
2437 break ;
2438
2439 case IP_DUMMYNET_FLUSH :
2440 dummynet_flush() ;
2441 break ;
2442
2443 case IP_DUMMYNET_CONFIGURE :
2444 p = &tmp_pipe ;
2445 if (proc_is64bit(sopt->sopt_p))
2446 error = cp_pipe_from_user_64( sopt, p );
2447 else
2448 error = cp_pipe_from_user_32( sopt, p );
2449
2450 if (error)
2451 break ;
2452 error = config_pipe(p);
2453 break ;
2454
2455 case IP_DUMMYNET_DEL : /* remove a pipe or queue */
2456 p = &tmp_pipe ;
2457 if (proc_is64bit(sopt->sopt_p))
2458 error = cp_pipe_from_user_64( sopt, p );
2459 else
2460 error = cp_pipe_from_user_32( sopt, p );
2461 if (error)
2462 break ;
2463
2464 error = delete_pipe(p);
2465 break ;
2466 }
2467 return error ;
2468 }
2469
2470 void
2471 ip_dn_init(void)
2472 {
2473 /* setup locks */
2474 dn_mutex_grp_attr = lck_grp_attr_alloc_init();
2475 dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
2476 dn_mutex_attr = lck_attr_alloc_init();
2477
2478 if ((dn_mutex = lck_mtx_alloc_init(dn_mutex_grp, dn_mutex_attr)) == NULL) {
2479 printf("ip_dn_init: can't alloc dn_mutex\n");
2480 return;
2481 }
2482
2483 ready_heap.size = ready_heap.elements = 0 ;
2484 ready_heap.offset = 0 ;
2485
2486 wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
2487 wfq_ready_heap.offset = 0 ;
2488
2489 extract_heap.size = extract_heap.elements = 0 ;
2490 extract_heap.offset = 0 ;
2491 ip_dn_ctl_ptr = ip_dn_ctl;
2492 ip_dn_io_ptr = dummynet_io;
2493 ip_dn_ruledel_ptr = dn_rule_delete;
2494 }