]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_socket2.c
xnu-1504.9.26.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
1 /*
2 * Copyright (c) 1998-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
62 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $
63 */
64 /*
65 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
66 * support for mandatory and extensible security protections. This notice
67 * is included in support of clause 2.2 (b) of the Apple Public License,
68 * Version 2.0.
69 */
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/domain.h>
74 #include <sys/kernel.h>
75 #include <sys/proc_internal.h>
76 #include <sys/kauth.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/protosw.h>
80 #include <sys/stat.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/ev.h>
86 #include <kern/locks.h>
87 #include <net/route.h>
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <sys/kdebug.h>
91 #include <libkern/OSAtomic.h>
92
93 #if CONFIG_MACF
94 #include <security/mac_framework.h>
95 #endif
96
97 /* TODO: this should be in a header file somewhere */
98 extern void postevent(struct socket *, struct sockbuf *, int);
99
100 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
101 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
102
103 static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *);
104 static struct socket *sonewconn_internal(struct socket *, int);
105 static int sbappendaddr_internal(struct sockbuf *, struct sockaddr *,
106 struct mbuf *, struct mbuf *);
107 static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *,
108 struct mbuf *);
109
110 /*
111 * Primitive routines for operating on sockets and socket buffers
112 */
113 static int soqlimitcompat = 1;
114 static int soqlencomp = 0;
115
116 /* Based on the number of mbuf clusters configured, high_sb_max and sb_max can get
117 * scaled up or down to suit that memory configuration. high_sb_max is a higher
118 * limit on sb_max that is checked when sb_max gets set through sysctl.
119 */
120
121 u_int32_t sb_max = SB_MAX; /* XXX should be static */
122 u_int32_t high_sb_max = SB_MAX;
123
124 static u_int32_t sb_efficiency = 8; /* parameter for sbreserve() */
125 __private_extern__ unsigned int total_mb_cnt = 0;
126 __private_extern__ unsigned int total_cl_cnt = 0;
127 __private_extern__ int sbspace_factor = 8;
128
129 /*
130 * Procedures to manipulate state flags of socket
131 * and do appropriate wakeups. Normal sequence from the
132 * active (originating) side is that soisconnecting() is
133 * called during processing of connect() call,
134 * resulting in an eventual call to soisconnected() if/when the
135 * connection is established. When the connection is torn down
136 * soisdisconnecting() is called during processing of disconnect() call,
137 * and soisdisconnected() is called when the connection to the peer
138 * is totally severed. The semantics of these routines are such that
139 * connectionless protocols can call soisconnected() and soisdisconnected()
140 * only, bypassing the in-progress calls when setting up a ``connection''
141 * takes no time.
142 *
143 * From the passive side, a socket is created with
144 * two queues of sockets: so_incomp for connections in progress
145 * and so_comp for connections already made and awaiting user acceptance.
146 * As a protocol is preparing incoming connections, it creates a socket
147 * structure queued on so_incomp by calling sonewconn(). When the connection
148 * is established, soisconnected() is called, and transfers the
149 * socket structure to so_comp, making it available to accept().
150 *
151 * If a socket is closed with sockets on either
152 * so_incomp or so_comp, these sockets are dropped.
153 *
154 * If higher level protocols are implemented in
155 * the kernel, the wakeups done here will sometimes
156 * cause software-interrupt process scheduling.
157 */
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
163 so->so_state |= SS_ISCONNECTING;
164
165 sflt_notify(so, sock_evt_connecting, NULL);
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head = so->so_head;
172
173 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
174 so->so_state |= SS_ISCONNECTED;
175
176 sflt_notify(so, sock_evt_connected, NULL);
177
178 if (head && (so->so_state & SS_INCOMP)) {
179 so->so_state &= ~SS_INCOMP;
180 so->so_state |= SS_COMP;
181 if (head->so_proto->pr_getlock != NULL) {
182 socket_unlock(so, 0);
183 socket_lock(head, 1);
184 }
185 postevent(head, 0, EV_RCONN);
186 TAILQ_REMOVE(&head->so_incomp, so, so_list);
187 head->so_incqlen--;
188 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
189 sorwakeup(head);
190 wakeup_one((caddr_t)&head->so_timeo);
191 if (head->so_proto->pr_getlock != NULL) {
192 socket_unlock(head, 1);
193 socket_lock(so, 0);
194 }
195 } else {
196 postevent(so, 0, EV_WCONN);
197 wakeup((caddr_t)&so->so_timeo);
198 sorwakeup(so);
199 sowwakeup(so);
200 }
201 }
202
203 void
204 soisdisconnecting(struct socket *so)
205 {
206 so->so_state &= ~SS_ISCONNECTING;
207 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
208 sflt_notify(so, sock_evt_disconnecting, NULL);
209 wakeup((caddr_t)&so->so_timeo);
210 sowwakeup(so);
211 sorwakeup(so);
212 }
213
214 void
215 soisdisconnected(struct socket *so)
216 {
217 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
218 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
219 sflt_notify(so, sock_evt_disconnected, NULL);
220 wakeup((caddr_t)&so->so_timeo);
221 sowwakeup(so);
222 sorwakeup(so);
223 }
224
225 /*
226 * When an attempt at a new connection is noted on a socket
227 * which accepts connections, sonewconn is called. If the
228 * connection is possible (subject to space constraints, etc.)
229 * then we allocate a new structure, propoerly linked into the
230 * data structure of the original socket, and return this.
231 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
232 */
233 static struct socket *
234 sonewconn_internal(struct socket *head, int connstatus)
235 {
236 int so_qlen, error = 0;
237 struct socket *so;
238 lck_mtx_t *mutex_held;
239
240 if (head->so_proto->pr_getlock != NULL)
241 mutex_held = (*head->so_proto->pr_getlock)(head, 0);
242 else
243 mutex_held = head->so_proto->pr_domain->dom_mtx;
244 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
245
246 if (!soqlencomp) {
247 /*
248 * This is the default case; so_qlen represents the
249 * sum of both incomplete and completed queues.
250 */
251 so_qlen = head->so_qlen;
252 } else {
253 /*
254 * When kern.ipc.soqlencomp is set to 1, so_qlen
255 * represents only the completed queue. Since we
256 * cannot let the incomplete queue goes unbounded
257 * (in case of SYN flood), we cap the incomplete
258 * queue length to at most somaxconn, and use that
259 * as so_qlen so that we fail immediately below.
260 */
261 so_qlen = head->so_qlen - head->so_incqlen;
262 if (head->so_incqlen > somaxconn)
263 so_qlen = somaxconn;
264 }
265
266 if (so_qlen >=
267 (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2)))
268 return ((struct socket *)0);
269 so = soalloc(1, head->so_proto->pr_domain->dom_family,
270 head->so_type);
271 if (so == NULL)
272 return ((struct socket *)0);
273 /* check if head was closed during the soalloc */
274 if (head->so_proto == NULL) {
275 sodealloc(so);
276 return ((struct socket *)0);
277 }
278
279 so->so_head = head;
280 so->so_type = head->so_type;
281 so->so_options = head->so_options &~ SO_ACCEPTCONN;
282 so->so_linger = head->so_linger;
283 so->so_state = head->so_state | SS_NOFDREF;
284 so->so_proto = head->so_proto;
285 so->so_timeo = head->so_timeo;
286 so->so_pgid = head->so_pgid;
287 so->so_uid = head->so_uid;
288 /* inherit socket options stored in so_flags */
289 so->so_flags = head->so_flags & (SOF_NOSIGPIPE |
290 SOF_NOADDRAVAIL |
291 SOF_REUSESHAREUID |
292 SOF_NOTIFYCONFLICT |
293 SOF_BINDRANDOMPORT |
294 SOF_NPX_SETOPTSHUT);
295 so->so_usecount = 1;
296 so->next_lock_lr = 0;
297 so->next_unlock_lr = 0;
298
299 #ifdef __APPLE__
300 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
301 so->so_rcv.sb_so = so->so_snd.sb_so = so;
302 TAILQ_INIT(&so->so_evlist);
303 #endif
304
305 #if CONFIG_MACF_SOCKET
306 mac_socket_label_associate_accept(head, so);
307 #endif
308
309 /* inherit traffic management properties of listener */
310 so->so_traffic_mgt_flags = head->so_traffic_mgt_flags &
311 (TRAFFIC_MGT_SO_BACKGROUND | TRAFFIC_MGT_SO_BG_REGULATE);
312 so->so_background_thread = head->so_background_thread;
313
314 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
315 sflt_termsock(so);
316 sodealloc(so);
317 return ((struct socket *)0);
318 }
319
320 /*
321 * Must be done with head unlocked to avoid deadlock
322 * for protocol with per socket mutexes.
323 */
324 if (head->so_proto->pr_unlock)
325 socket_unlock(head, 0);
326 if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) ||
327 error) {
328 sflt_termsock(so);
329 sodealloc(so);
330 if (head->so_proto->pr_unlock)
331 socket_lock(head, 0);
332 return ((struct socket *)0);
333 }
334 if (head->so_proto->pr_unlock)
335 socket_lock(head, 0);
336 #ifdef __APPLE__
337 so->so_proto->pr_domain->dom_refs++;
338 #endif
339
340 if (connstatus) {
341 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
342 so->so_state |= SS_COMP;
343 } else {
344 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
345 so->so_state |= SS_INCOMP;
346 head->so_incqlen++;
347 }
348 head->so_qlen++;
349
350 #ifdef __APPLE__
351 /* Attach socket filters for this protocol */
352 sflt_initsock(so);
353 #endif
354
355 if (connstatus) {
356 so->so_state |= connstatus;
357 sorwakeup(head);
358 wakeup((caddr_t)&head->so_timeo);
359 }
360 return (so);
361 }
362
363
364 struct socket *
365 sonewconn(struct socket *head, int connstatus, const struct sockaddr *from)
366 {
367 int error = 0;
368 struct socket_filter_entry *filter;
369 int filtered = 0;
370
371 for (filter = head->so_filt; filter && (error == 0);
372 filter = filter->sfe_next_onsocket) {
373 if (filter->sfe_filter->sf_filter.sf_connect_in) {
374 if (filtered == 0) {
375 filtered = 1;
376 sflt_use(head);
377 socket_unlock(head, 0);
378 }
379 error = filter->sfe_filter->sf_filter.
380 sf_connect_in(filter->sfe_cookie, head, from);
381 }
382 }
383 if (filtered != 0) {
384 socket_lock(head, 0);
385 sflt_unuse(head);
386 }
387
388 if (error) {
389 return (NULL);
390 }
391
392 return (sonewconn_internal(head, connstatus));
393 }
394
395 /*
396 * Socantsendmore indicates that no more data will be sent on the
397 * socket; it would normally be applied to a socket when the user
398 * informs the system that no more data is to be sent, by the protocol
399 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
400 * will be received, and will normally be applied to the socket by a
401 * protocol when it detects that the peer will send no more data.
402 * Data queued for reading in the socket may yet be read.
403 */
404
405 void
406 socantsendmore(struct socket *so)
407 {
408 so->so_state |= SS_CANTSENDMORE;
409 sflt_notify(so, sock_evt_cantsendmore, NULL);
410 sowwakeup(so);
411 }
412
413 void
414 socantrcvmore(struct socket *so)
415 {
416 so->so_state |= SS_CANTRCVMORE;
417 sflt_notify(so, sock_evt_cantrecvmore, NULL);
418 sorwakeup(so);
419 }
420
421 /*
422 * Wait for data to arrive at/drain from a socket buffer.
423 *
424 * Returns: 0 Success
425 * EBADF
426 * msleep:EINTR
427 */
428 int
429 sbwait(struct sockbuf *sb)
430 {
431 int error = 0;
432 uintptr_t lr_saved;
433 struct socket *so = sb->sb_so;
434 lck_mtx_t *mutex_held;
435 struct timespec ts;
436
437 lr_saved = (uintptr_t) __builtin_return_address(0);
438
439 if (so->so_proto->pr_getlock != NULL)
440 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
441 else
442 mutex_held = so->so_proto->pr_domain->dom_mtx;
443
444 sb->sb_flags |= SB_WAIT;
445
446 if (so->so_usecount < 1)
447 panic("sbwait: so=%p refcount=%d\n", so, so->so_usecount);
448 ts.tv_sec = sb->sb_timeo.tv_sec;
449 ts.tv_nsec = sb->sb_timeo.tv_usec * 1000;
450 error = msleep((caddr_t)&sb->sb_cc, mutex_held,
451 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", &ts);
452
453 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
454
455 if (so->so_usecount < 1)
456 panic("sbwait: so=%p refcount=%d\n", so, so->so_usecount);
457
458 if ((so->so_state & SS_DRAINING)) {
459 error = EBADF;
460 }
461
462 return (error);
463 }
464
465 /*
466 * Lock a sockbuf already known to be locked;
467 * return any error returned from sleep (EINTR).
468 *
469 * Returns: 0 Success
470 * EINTR
471 */
472 int
473 sb_lock(struct sockbuf *sb)
474 {
475 struct socket *so = sb->sb_so;
476 lck_mtx_t *mutex_held;
477 int error = 0;
478
479 if (so == NULL)
480 panic("sb_lock: null so back pointer sb=%p\n", sb);
481
482 while (sb->sb_flags & SB_LOCK) {
483 sb->sb_flags |= SB_WANT;
484 if (so->so_proto->pr_getlock != NULL)
485 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
486 else
487 mutex_held = so->so_proto->pr_domain->dom_mtx;
488 if (so->so_usecount < 1)
489 panic("sb_lock: so=%p refcount=%d\n", so,
490 so->so_usecount);
491
492 error = msleep((caddr_t)&sb->sb_flags, mutex_held,
493 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH,
494 "sb_lock", 0);
495 if (so->so_usecount < 1)
496 panic("sb_lock: 2 so=%p refcount=%d\n", so,
497 so->so_usecount);
498 if (error)
499 return (error);
500 }
501 sb->sb_flags |= SB_LOCK;
502 return (0);
503 }
504
505 /*
506 * Wakeup processes waiting on a socket buffer.
507 * Do asynchronous notification via SIGIO
508 * if the socket has the SS_ASYNC flag set.
509 */
510 void
511 sowakeup(struct socket *so, struct sockbuf *sb)
512 {
513 sb->sb_flags &= ~SB_SEL;
514 selwakeup(&sb->sb_sel);
515 if (sb->sb_flags & SB_WAIT) {
516 sb->sb_flags &= ~SB_WAIT;
517 wakeup((caddr_t)&sb->sb_cc);
518 }
519 if (so->so_state & SS_ASYNC) {
520 if (so->so_pgid < 0)
521 gsignal(-so->so_pgid, SIGIO);
522 else if (so->so_pgid > 0)
523 proc_signal(so->so_pgid, SIGIO);
524 }
525 if (sb->sb_flags & SB_KNOTE) {
526 KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED);
527 }
528 if (sb->sb_flags & SB_UPCALL) {
529 void (*so_upcall)(struct socket *, caddr_t, int);
530 caddr_t so_upcallarg;
531
532 so_upcall = so->so_upcall;
533 so_upcallarg = so->so_upcallarg;
534 /* Let close know that we're about to do an upcall */
535 so->so_flags |= SOF_UPCALLINUSE;
536
537 socket_unlock(so, 0);
538 (*so_upcall)(so, so_upcallarg, M_DONTWAIT);
539 socket_lock(so, 0);
540
541 so->so_flags &= ~SOF_UPCALLINUSE;
542 /* Tell close that it's safe to proceed */
543 if (so->so_flags & SOF_CLOSEWAIT)
544 wakeup((caddr_t)&so->so_upcall);
545 }
546 }
547
548 /*
549 * Socket buffer (struct sockbuf) utility routines.
550 *
551 * Each socket contains two socket buffers: one for sending data and
552 * one for receiving data. Each buffer contains a queue of mbufs,
553 * information about the number of mbufs and amount of data in the
554 * queue, and other fields allowing select() statements and notification
555 * on data availability to be implemented.
556 *
557 * Data stored in a socket buffer is maintained as a list of records.
558 * Each record is a list of mbufs chained together with the m_next
559 * field. Records are chained together with the m_nextpkt field. The upper
560 * level routine soreceive() expects the following conventions to be
561 * observed when placing information in the receive buffer:
562 *
563 * 1. If the protocol requires each message be preceded by the sender's
564 * name, then a record containing that name must be present before
565 * any associated data (mbuf's must be of type MT_SONAME).
566 * 2. If the protocol supports the exchange of ``access rights'' (really
567 * just additional data associated with the message), and there are
568 * ``rights'' to be received, then a record containing this data
569 * should be present (mbuf's must be of type MT_RIGHTS).
570 * 3. If a name or rights record exists, then it must be followed by
571 * a data record, perhaps of zero length.
572 *
573 * Before using a new socket structure it is first necessary to reserve
574 * buffer space to the socket, by calling sbreserve(). This should commit
575 * some of the available buffer space in the system buffer pool for the
576 * socket (currently, it does nothing but enforce limits). The space
577 * should be released by calling sbrelease() when the socket is destroyed.
578 */
579
580 /*
581 * Returns: 0 Success
582 * ENOBUFS
583 */
584 int
585 soreserve(struct socket *so, u_int32_t sndcc, u_int32_t rcvcc)
586 {
587
588 if (sbreserve(&so->so_snd, sndcc) == 0)
589 goto bad;
590 if (sbreserve(&so->so_rcv, rcvcc) == 0)
591 goto bad2;
592 if (so->so_rcv.sb_lowat == 0)
593 so->so_rcv.sb_lowat = 1;
594 if (so->so_snd.sb_lowat == 0)
595 so->so_snd.sb_lowat = MCLBYTES;
596 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
597 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
598 return (0);
599 bad2:
600 #ifdef __APPLE__
601 selthreadclear(&so->so_snd.sb_sel);
602 #endif
603 sbrelease(&so->so_snd);
604 bad:
605 return (ENOBUFS);
606 }
607
608 /*
609 * Allot mbufs to a sockbuf.
610 * Attempt to scale mbmax so that mbcnt doesn't become limiting
611 * if buffering efficiency is near the normal case.
612 */
613 int
614 sbreserve(struct sockbuf *sb, u_int32_t cc)
615 {
616 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
617 return (0);
618 sb->sb_hiwat = cc;
619 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
620 if (sb->sb_lowat > sb->sb_hiwat)
621 sb->sb_lowat = sb->sb_hiwat;
622 return (1);
623 }
624
625 /*
626 * Free mbufs held by a socket, and reserved mbuf space.
627 */
628 /* WARNING needs to do selthreadclear() before calling this */
629 void
630 sbrelease(struct sockbuf *sb)
631 {
632 sbflush(sb);
633 sb->sb_hiwat = 0;
634 sb->sb_mbmax = 0;
635 }
636
637 /*
638 * Routines to add and remove
639 * data from an mbuf queue.
640 *
641 * The routines sbappend() or sbappendrecord() are normally called to
642 * append new mbufs to a socket buffer, after checking that adequate
643 * space is available, comparing the function sbspace() with the amount
644 * of data to be added. sbappendrecord() differs from sbappend() in
645 * that data supplied is treated as the beginning of a new record.
646 * To place a sender's address, optional access rights, and data in a
647 * socket receive buffer, sbappendaddr() should be used. To place
648 * access rights and data in a socket receive buffer, sbappendrights()
649 * should be used. In either case, the new data begins a new record.
650 * Note that unlike sbappend() and sbappendrecord(), these routines check
651 * for the caller that there will be enough space to store the data.
652 * Each fails if there is not enough space, or if it cannot find mbufs
653 * to store additional information in.
654 *
655 * Reliable protocols may use the socket send buffer to hold data
656 * awaiting acknowledgement. Data is normally copied from a socket
657 * send buffer in a protocol with m_copy for output to a peer,
658 * and then removing the data from the socket buffer with sbdrop()
659 * or sbdroprecord() when the data is acknowledged by the peer.
660 */
661
662 /*
663 * Append mbuf chain m to the last record in the
664 * socket buffer sb. The additional space associated
665 * the mbuf chain is recorded in sb. Empty mbufs are
666 * discarded and mbufs are compacted where possible.
667 */
668 int
669 sbappend(struct sockbuf *sb, struct mbuf *m)
670 {
671 struct socket *so = sb->sb_so;
672
673 if (m == NULL || (sb->sb_flags & SB_DROP)) {
674 if (m != NULL)
675 m_freem(m);
676 return (0);
677 }
678
679 SBLASTRECORDCHK(sb, "sbappend 1");
680
681 if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR))
682 return (sbappendrecord(sb, m));
683
684 if (sb->sb_flags & SB_RECV) {
685 int error = sflt_data_in(so, NULL, &m, NULL, 0, NULL);
686 SBLASTRECORDCHK(sb, "sbappend 2");
687 if (error != 0) {
688 if (error != EJUSTRETURN)
689 m_freem(m);
690 return (0);
691 }
692 }
693
694 /* If this is the first record, it's also the last record */
695 if (sb->sb_lastrecord == NULL)
696 sb->sb_lastrecord = m;
697
698 sbcompress(sb, m, sb->sb_mbtail);
699 SBLASTRECORDCHK(sb, "sbappend 3");
700 return (1);
701 }
702
703 /*
704 * Similar to sbappend, except that this is optimized for stream sockets.
705 */
706 int
707 sbappendstream(struct sockbuf *sb, struct mbuf *m)
708 {
709 struct socket *so = sb->sb_so;
710
711 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord))
712 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
713 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
714
715 SBLASTMBUFCHK(sb, __func__);
716
717 if (m == NULL || (sb->sb_flags & SB_DROP)) {
718 if (m != NULL)
719 m_freem(m);
720 return (0);
721 }
722
723 if (sb->sb_flags & SB_RECV) {
724 int error = sflt_data_in(so, NULL, &m, NULL, 0, NULL);
725 SBLASTRECORDCHK(sb, "sbappendstream 1");
726 if (error != 0) {
727 if (error != EJUSTRETURN)
728 m_freem(m);
729 return (0);
730 }
731 }
732
733 sbcompress(sb, m, sb->sb_mbtail);
734 sb->sb_lastrecord = sb->sb_mb;
735 SBLASTRECORDCHK(sb, "sbappendstream 2");
736 return (1);
737 }
738
739 #ifdef SOCKBUF_DEBUG
740 void
741 sbcheck(struct sockbuf *sb)
742 {
743 struct mbuf *m;
744 struct mbuf *n = 0;
745 u_int32_t len = 0, mbcnt = 0;
746 lck_mtx_t *mutex_held;
747
748 if (sb->sb_so->so_proto->pr_getlock != NULL)
749 mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0);
750 else
751 mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx;
752
753 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
754
755 if (sbchecking == 0)
756 return;
757
758 for (m = sb->sb_mb; m; m = n) {
759 n = m->m_nextpkt;
760 for (; m; m = m->m_next) {
761 len += m->m_len;
762 mbcnt += MSIZE;
763 /* XXX pretty sure this is bogus */
764 if (m->m_flags & M_EXT)
765 mbcnt += m->m_ext.ext_size;
766 }
767 }
768 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
769 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
770 mbcnt, sb->sb_mbcnt);
771 }
772 }
773 #endif
774
775 void
776 sblastrecordchk(struct sockbuf *sb, const char *where)
777 {
778 struct mbuf *m = sb->sb_mb;
779
780 while (m && m->m_nextpkt)
781 m = m->m_nextpkt;
782
783 if (m != sb->sb_lastrecord) {
784 printf("sblastrecordchk: mb %p lastrecord %p last %p\n",
785 sb->sb_mb, sb->sb_lastrecord, m);
786 printf("packet chain:\n");
787 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
788 printf("\t%p\n", m);
789 panic("sblastrecordchk from %s", where);
790 }
791 }
792
793 void
794 sblastmbufchk(struct sockbuf *sb, const char *where)
795 {
796 struct mbuf *m = sb->sb_mb;
797 struct mbuf *n;
798
799 while (m && m->m_nextpkt)
800 m = m->m_nextpkt;
801
802 while (m && m->m_next)
803 m = m->m_next;
804
805 if (m != sb->sb_mbtail) {
806 printf("sblastmbufchk: mb %p mbtail %p last %p\n",
807 sb->sb_mb, sb->sb_mbtail, m);
808 printf("packet tree:\n");
809 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
810 printf("\t");
811 for (n = m; n != NULL; n = n->m_next)
812 printf("%p ", n);
813 printf("\n");
814 }
815 panic("sblastmbufchk from %s", where);
816 }
817 }
818
819 /*
820 * Similar to sbappend, except the mbuf chain begins a new record.
821 */
822 int
823 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
824 {
825 struct mbuf *m;
826 int space = 0;
827
828 if (m0 == NULL || (sb->sb_flags & SB_DROP)) {
829 if (m0 != NULL)
830 m_freem(m0);
831 return (0);
832 }
833
834 for (m = m0; m != NULL; m = m->m_next)
835 space += m->m_len;
836
837 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) {
838 m_freem(m0);
839 return (0);
840 }
841
842 if (sb->sb_flags & SB_RECV) {
843 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
844 sock_data_filt_flag_record, NULL);
845 if (error != 0) {
846 SBLASTRECORDCHK(sb, "sbappendrecord 1");
847 if (error != EJUSTRETURN)
848 m_freem(m0);
849 return (0);
850 }
851 }
852
853 /*
854 * Note this permits zero length records.
855 */
856 sballoc(sb, m0);
857 SBLASTRECORDCHK(sb, "sbappendrecord 2");
858 if (sb->sb_lastrecord != NULL) {
859 sb->sb_lastrecord->m_nextpkt = m0;
860 } else {
861 sb->sb_mb = m0;
862 }
863 sb->sb_lastrecord = m0;
864 sb->sb_mbtail = m0;
865
866 m = m0->m_next;
867 m0->m_next = 0;
868 if (m && (m0->m_flags & M_EOR)) {
869 m0->m_flags &= ~M_EOR;
870 m->m_flags |= M_EOR;
871 }
872 sbcompress(sb, m, m0);
873 SBLASTRECORDCHK(sb, "sbappendrecord 3");
874 return (1);
875 }
876
877 /*
878 * As above except that OOB data
879 * is inserted at the beginning of the sockbuf,
880 * but after any other OOB data.
881 */
882 int
883 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
884 {
885 struct mbuf *m;
886 struct mbuf **mp;
887
888 if (m0 == 0)
889 return (0);
890
891 SBLASTRECORDCHK(sb, "sbinsertoob 1");
892
893 if ((sb->sb_flags & SB_RECV) != 0) {
894 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
895 sock_data_filt_flag_oob, NULL);
896
897 SBLASTRECORDCHK(sb, "sbinsertoob 2");
898 if (error) {
899 if (error != EJUSTRETURN) {
900 m_freem(m0);
901 }
902 return (0);
903 }
904 }
905
906 for (mp = &sb->sb_mb; *mp; mp = &((*mp)->m_nextpkt)) {
907 m = *mp;
908 again:
909 switch (m->m_type) {
910
911 case MT_OOBDATA:
912 continue; /* WANT next train */
913
914 case MT_CONTROL:
915 m = m->m_next;
916 if (m)
917 goto again; /* inspect THIS train further */
918 }
919 break;
920 }
921 /*
922 * Put the first mbuf on the queue.
923 * Note this permits zero length records.
924 */
925 sballoc(sb, m0);
926 m0->m_nextpkt = *mp;
927 if (*mp == NULL) {
928 /* m0 is actually the new tail */
929 sb->sb_lastrecord = m0;
930 }
931 *mp = m0;
932 m = m0->m_next;
933 m0->m_next = 0;
934 if (m && (m0->m_flags & M_EOR)) {
935 m0->m_flags &= ~M_EOR;
936 m->m_flags |= M_EOR;
937 }
938 sbcompress(sb, m, m0);
939 SBLASTRECORDCHK(sb, "sbinsertoob 3");
940 return (1);
941 }
942
943 /*
944 * Append address and data, and optionally, control (ancillary) data
945 * to the receive queue of a socket. If present,
946 * m0 must include a packet header with total length.
947 * Returns 0 if no space in sockbuf or insufficient mbufs.
948 *
949 * Returns: 0 No space/out of mbufs
950 * 1 Success
951 */
952 static int
953 sbappendaddr_internal(struct sockbuf *sb, struct sockaddr *asa,
954 struct mbuf *m0, struct mbuf *control)
955 {
956 struct mbuf *m, *n, *nlast;
957 int space = asa->sa_len;
958
959 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
960 panic("sbappendaddr");
961
962 if (m0)
963 space += m0->m_pkthdr.len;
964 for (n = control; n; n = n->m_next) {
965 space += n->m_len;
966 if (n->m_next == 0) /* keep pointer to last control buf */
967 break;
968 }
969 if (space > sbspace(sb))
970 return (0);
971 if (asa->sa_len > MLEN)
972 return (0);
973 MGET(m, M_DONTWAIT, MT_SONAME);
974 if (m == 0)
975 return (0);
976 m->m_len = asa->sa_len;
977 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
978 if (n)
979 n->m_next = m0; /* concatenate data to control */
980 else
981 control = m0;
982 m->m_next = control;
983
984 SBLASTRECORDCHK(sb, "sbappendadddr 1");
985
986 for (n = m; n->m_next != NULL; n = n->m_next)
987 sballoc(sb, n);
988 sballoc(sb, n);
989 nlast = n;
990
991 if (sb->sb_lastrecord != NULL) {
992 sb->sb_lastrecord->m_nextpkt = m;
993 } else {
994 sb->sb_mb = m;
995 }
996 sb->sb_lastrecord = m;
997 sb->sb_mbtail = nlast;
998
999 SBLASTMBUFCHK(sb, __func__);
1000 SBLASTRECORDCHK(sb, "sbappendadddr 2");
1001
1002 postevent(0, sb, EV_RWBYTES);
1003 return (1);
1004 }
1005
1006 /*
1007 * Returns: 0 Error: No space/out of mbufs/etc.
1008 * 1 Success
1009 *
1010 * Imputed: (*error_out) errno for error
1011 * ENOBUFS
1012 * sflt_data_in:??? [whatever a filter author chooses]
1013 */
1014 int
1015 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
1016 struct mbuf *control, int *error_out)
1017 {
1018 int result = 0;
1019 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1020
1021 if (error_out)
1022 *error_out = 0;
1023
1024 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1025 panic("sbappendaddrorfree");
1026
1027 if (sb->sb_flags & SB_DROP) {
1028 if (m0 != NULL)
1029 m_freem(m0);
1030 if (control != NULL && !sb_unix)
1031 m_freem(control);
1032 if (error_out != NULL)
1033 *error_out = EINVAL;
1034 return (0);
1035 }
1036
1037 /* Call socket data in filters */
1038 if ((sb->sb_flags & SB_RECV) != 0) {
1039 int error;
1040 error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0, NULL);
1041 SBLASTRECORDCHK(sb, __func__);
1042 if (error) {
1043 if (error != EJUSTRETURN) {
1044 if (m0)
1045 m_freem(m0);
1046 if (control != NULL && !sb_unix)
1047 m_freem(control);
1048 if (error_out)
1049 *error_out = error;
1050 }
1051 return (0);
1052 }
1053 }
1054
1055 result = sbappendaddr_internal(sb, asa, m0, control);
1056 if (result == 0) {
1057 if (m0)
1058 m_freem(m0);
1059 if (control != NULL && !sb_unix)
1060 m_freem(control);
1061 if (error_out)
1062 *error_out = ENOBUFS;
1063 }
1064
1065 return (result);
1066 }
1067
1068 static int
1069 sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0,
1070 struct mbuf *control)
1071 {
1072 struct mbuf *m, *mlast, *n;
1073 int space = 0;
1074
1075 if (control == 0)
1076 panic("sbappendcontrol");
1077
1078 for (m = control; ; m = m->m_next) {
1079 space += m->m_len;
1080 if (m->m_next == 0)
1081 break;
1082 }
1083 n = m; /* save pointer to last control buffer */
1084 for (m = m0; m; m = m->m_next)
1085 space += m->m_len;
1086 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX))
1087 return (0);
1088 n->m_next = m0; /* concatenate data to control */
1089
1090 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1091
1092 for (m = control; m->m_next != NULL; m = m->m_next)
1093 sballoc(sb, m);
1094 sballoc(sb, m);
1095 mlast = m;
1096
1097 if (sb->sb_lastrecord != NULL) {
1098 sb->sb_lastrecord->m_nextpkt = control;
1099 } else {
1100 sb->sb_mb = control;
1101 }
1102 sb->sb_lastrecord = control;
1103 sb->sb_mbtail = mlast;
1104
1105 SBLASTMBUFCHK(sb, __func__);
1106 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1107
1108 postevent(0, sb, EV_RWBYTES);
1109 return (1);
1110 }
1111
1112 int
1113 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1114 int *error_out)
1115 {
1116 int result = 0;
1117 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1118
1119 if (error_out)
1120 *error_out = 0;
1121
1122 if (sb->sb_flags & SB_DROP) {
1123 if (m0 != NULL)
1124 m_freem(m0);
1125 if (control != NULL && !sb_unix)
1126 m_freem(control);
1127 if (error_out != NULL)
1128 *error_out = EINVAL;
1129 return (0);
1130 }
1131
1132 if (sb->sb_flags & SB_RECV) {
1133 int error;
1134
1135 error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0, NULL);
1136 SBLASTRECORDCHK(sb, __func__);
1137 if (error) {
1138 if (error != EJUSTRETURN) {
1139 if (m0)
1140 m_freem(m0);
1141 if (control != NULL && !sb_unix)
1142 m_freem(control);
1143 if (error_out)
1144 *error_out = error;
1145 }
1146 return (0);
1147 }
1148 }
1149
1150 result = sbappendcontrol_internal(sb, m0, control);
1151 if (result == 0) {
1152 if (m0)
1153 m_freem(m0);
1154 if (control != NULL && !sb_unix)
1155 m_freem(control);
1156 if (error_out)
1157 *error_out = ENOBUFS;
1158 }
1159
1160 return (result);
1161 }
1162
1163 /*
1164 * Compress mbuf chain m into the socket
1165 * buffer sb following mbuf n. If n
1166 * is null, the buffer is presumed empty.
1167 */
1168 static inline void
1169 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1170 {
1171 int eor = 0;
1172 struct mbuf *o;
1173
1174 if (m == NULL) {
1175 /* There is nothing to compress; just update the tail */
1176 for (; n->m_next != NULL; n = n->m_next)
1177 ;
1178 sb->sb_mbtail = n;
1179 goto done;
1180 }
1181
1182 while (m) {
1183 eor |= m->m_flags & M_EOR;
1184 if (m->m_len == 0 && (eor == 0 ||
1185 (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) {
1186 if (sb->sb_lastrecord == m)
1187 sb->sb_lastrecord = m->m_next;
1188 m = m_free(m);
1189 continue;
1190 }
1191 if (n && (n->m_flags & M_EOR) == 0 &&
1192 #ifndef __APPLE__
1193 M_WRITABLE(n) &&
1194 #endif
1195 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1196 m->m_len <= M_TRAILINGSPACE(n) &&
1197 n->m_type == m->m_type) {
1198 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
1199 (unsigned)m->m_len);
1200 n->m_len += m->m_len;
1201 sb->sb_cc += m->m_len;
1202 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1203 m->m_type != MT_OOBDATA)
1204 /* XXX: Probably don't need.*/
1205 sb->sb_ctl += m->m_len;
1206 m = m_free(m);
1207 continue;
1208 }
1209 if (n)
1210 n->m_next = m;
1211 else
1212 sb->sb_mb = m;
1213 sb->sb_mbtail = m;
1214 sballoc(sb, m);
1215 n = m;
1216 m->m_flags &= ~M_EOR;
1217 m = m->m_next;
1218 n->m_next = 0;
1219 }
1220 if (eor) {
1221 if (n)
1222 n->m_flags |= eor;
1223 else
1224 printf("semi-panic: sbcompress\n");
1225 }
1226 done:
1227 SBLASTMBUFCHK(sb, __func__);
1228 postevent(0, sb, EV_RWBYTES);
1229 }
1230
1231 void
1232 sb_empty_assert(struct sockbuf *sb, const char *where)
1233 {
1234 if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 &&
1235 sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) {
1236 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1237 "lastrecord %p\n", where, sb, sb->sb_so, sb->sb_cc,
1238 sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail, sb->sb_lastrecord);
1239 /* NOTREACHED */
1240 }
1241 }
1242
1243 /*
1244 * Free all mbufs in a sockbuf.
1245 * Check that all resources are reclaimed.
1246 */
1247 void
1248 sbflush(struct sockbuf *sb)
1249 {
1250 if (sb->sb_so == NULL)
1251 panic("sbflush sb->sb_so already null sb=%p\n", sb);
1252 (void) sblock(sb, M_WAIT);
1253 while (sb->sb_mbcnt) {
1254 /*
1255 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1256 * we would loop forever. Panic instead.
1257 */
1258 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1259 break;
1260 sbdrop(sb, (int)sb->sb_cc);
1261 }
1262 sb_empty_assert(sb, __func__);
1263 postevent(0, sb, EV_RWBYTES);
1264 sbunlock(sb, 1); /* keep socket locked */
1265
1266 }
1267
1268 /*
1269 * Drop data from (the front of) a sockbuf.
1270 * use m_freem_list to free the mbuf structures
1271 * under a single lock... this is done by pruning
1272 * the top of the tree from the body by keeping track
1273 * of where we get to in the tree and then zeroing the
1274 * two pertinent pointers m_nextpkt and m_next
1275 * the socket buffer is then updated to point at the new
1276 * top of the tree and the pruned area is released via
1277 * m_freem_list.
1278 */
1279 void
1280 sbdrop(struct sockbuf *sb, int len)
1281 {
1282 struct mbuf *m, *free_list, *ml;
1283 struct mbuf *next, *last;
1284
1285 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
1286
1287 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1288 free_list = last = m;
1289 ml = (struct mbuf *)0;
1290
1291 while (len > 0) {
1292 if (m == 0) {
1293 if (next == 0) {
1294 /*
1295 * temporarily replacing this panic with printf
1296 * because it occurs occasionally when closing
1297 * a socket when there is no harm in ignoring
1298 * it. This problem will be investigated
1299 * further.
1300 */
1301 /* panic("sbdrop"); */
1302 printf("sbdrop - count not zero\n");
1303 len = 0;
1304 /*
1305 * zero the counts. if we have no mbufs,
1306 * we have no data (PR-2986815)
1307 */
1308 sb->sb_cc = 0;
1309 sb->sb_mbcnt = 0;
1310 break;
1311 }
1312 m = last = next;
1313 next = m->m_nextpkt;
1314 continue;
1315 }
1316 if (m->m_len > len) {
1317 m->m_len -= len;
1318 m->m_data += len;
1319 sb->sb_cc -= len;
1320 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1321 m->m_type != MT_OOBDATA)
1322 sb->sb_ctl -= len;
1323 break;
1324 }
1325 len -= m->m_len;
1326 sbfree(sb, m);
1327
1328 ml = m;
1329 m = m->m_next;
1330 }
1331 while (m && m->m_len == 0) {
1332 sbfree(sb, m);
1333
1334 ml = m;
1335 m = m->m_next;
1336 }
1337 if (ml) {
1338 ml->m_next = (struct mbuf *)0;
1339 last->m_nextpkt = (struct mbuf *)0;
1340 m_freem_list(free_list);
1341 }
1342 if (m) {
1343 sb->sb_mb = m;
1344 m->m_nextpkt = next;
1345 } else {
1346 sb->sb_mb = next;
1347 }
1348
1349 /*
1350 * First part is an inline SB_EMPTY_FIXUP(). Second part
1351 * makes sure sb_lastrecord is up-to-date if we dropped
1352 * part of the last record.
1353 */
1354 m = sb->sb_mb;
1355 if (m == NULL) {
1356 sb->sb_mbtail = NULL;
1357 sb->sb_lastrecord = NULL;
1358 } else if (m->m_nextpkt == NULL) {
1359 sb->sb_lastrecord = m;
1360 }
1361
1362 postevent(0, sb, EV_RWBYTES);
1363
1364 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1365 }
1366
1367 /*
1368 * Drop a record off the front of a sockbuf
1369 * and move the next record to the front.
1370 */
1371 void
1372 sbdroprecord(struct sockbuf *sb)
1373 {
1374 struct mbuf *m, *mn;
1375
1376 m = sb->sb_mb;
1377 if (m) {
1378 sb->sb_mb = m->m_nextpkt;
1379 do {
1380 sbfree(sb, m);
1381 MFREE(m, mn);
1382 m = mn;
1383 } while (m);
1384 }
1385 SB_EMPTY_FIXUP(sb);
1386 postevent(0, sb, EV_RWBYTES);
1387 }
1388
1389 /*
1390 * Create a "control" mbuf containing the specified data
1391 * with the specified type for presentation on a socket buffer.
1392 */
1393 struct mbuf *
1394 sbcreatecontrol(caddr_t p, int size, int type, int level)
1395 {
1396 struct cmsghdr *cp;
1397 struct mbuf *m;
1398
1399 if (CMSG_SPACE((u_int)size) > MLEN)
1400 return ((struct mbuf *)NULL);
1401 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1402 return ((struct mbuf *)NULL);
1403 cp = mtod(m, struct cmsghdr *);
1404 /* XXX check size? */
1405 (void) memcpy(CMSG_DATA(cp), p, size);
1406 m->m_len = CMSG_SPACE(size);
1407 cp->cmsg_len = CMSG_LEN(size);
1408 cp->cmsg_level = level;
1409 cp->cmsg_type = type;
1410 return (m);
1411 }
1412
1413 /*
1414 * Some routines that return EOPNOTSUPP for entry points that are not
1415 * supported by a protocol. Fill in as needed.
1416 */
1417 int
1418 pru_abort_notsupp(__unused struct socket *so)
1419 {
1420 return (EOPNOTSUPP);
1421 }
1422
1423 int
1424 pru_accept_notsupp(__unused struct socket *so, __unused struct sockaddr **nam)
1425 {
1426 return (EOPNOTSUPP);
1427 }
1428
1429 int
1430 pru_attach_notsupp(__unused struct socket *so, __unused int proto,
1431 __unused struct proc *p)
1432 {
1433 return (EOPNOTSUPP);
1434 }
1435
1436 int
1437 pru_bind_notsupp(__unused struct socket *so, __unused struct sockaddr *nam,
1438 __unused struct proc *p)
1439 {
1440 return (EOPNOTSUPP);
1441 }
1442
1443 int
1444 pru_connect_notsupp(__unused struct socket *so, __unused struct sockaddr *nam,
1445 __unused struct proc *p)
1446 {
1447 return (EOPNOTSUPP);
1448 }
1449
1450 int
1451 pru_connect2_notsupp(__unused struct socket *so1, __unused struct socket *so2)
1452 {
1453 return (EOPNOTSUPP);
1454 }
1455
1456 int
1457 pru_control_notsupp(__unused struct socket *so, __unused u_long cmd,
1458 __unused caddr_t data, __unused struct ifnet *ifp, __unused struct proc *p)
1459 {
1460 return (EOPNOTSUPP);
1461 }
1462
1463 int
1464 pru_detach_notsupp(__unused struct socket *so)
1465 {
1466 return (EOPNOTSUPP);
1467 }
1468
1469 int
1470 pru_disconnect_notsupp(__unused struct socket *so)
1471 {
1472 return (EOPNOTSUPP);
1473 }
1474
1475 int
1476 pru_listen_notsupp(__unused struct socket *so, __unused struct proc *p)
1477 {
1478 return (EOPNOTSUPP);
1479 }
1480
1481 int
1482 pru_peeraddr_notsupp(__unused struct socket *so, __unused struct sockaddr **nam)
1483 {
1484 return (EOPNOTSUPP);
1485 }
1486
1487 int
1488 pru_rcvd_notsupp(__unused struct socket *so, __unused int flags)
1489 {
1490 return (EOPNOTSUPP);
1491 }
1492
1493 int
1494 pru_rcvoob_notsupp(__unused struct socket *so, __unused struct mbuf *m,
1495 __unused int flags)
1496 {
1497 return (EOPNOTSUPP);
1498 }
1499
1500 int
1501 pru_send_notsupp(__unused struct socket *so, __unused int flags,
1502 __unused struct mbuf *m, __unused struct sockaddr *addr,
1503 __unused struct mbuf *control, __unused struct proc *p)
1504
1505 {
1506 return (EOPNOTSUPP);
1507 }
1508
1509
1510 /*
1511 * This isn't really a ``null'' operation, but it's the default one
1512 * and doesn't do anything destructive.
1513 */
1514 int
1515 pru_sense_null(struct socket *so, void *ub, int isstat64)
1516 {
1517 if (isstat64 != 0) {
1518 struct stat64 *sb64;
1519
1520 sb64 = (struct stat64 *)ub;
1521 sb64->st_blksize = so->so_snd.sb_hiwat;
1522 } else {
1523 struct stat *sb;
1524
1525 sb = (struct stat *)ub;
1526 sb->st_blksize = so->so_snd.sb_hiwat;
1527 }
1528
1529 return (0);
1530 }
1531
1532
1533 int
1534 pru_sosend_notsupp(__unused struct socket *so, __unused struct sockaddr *addr,
1535 __unused struct uio *uio, __unused struct mbuf *top,
1536 __unused struct mbuf *control, __unused int flags)
1537
1538 {
1539 return (EOPNOTSUPP);
1540 }
1541
1542 int
1543 pru_soreceive_notsupp(__unused struct socket *so,
1544 __unused struct sockaddr **paddr,
1545 __unused struct uio *uio, __unused struct mbuf **mp0,
1546 __unused struct mbuf **controlp, __unused int *flagsp)
1547 {
1548 return (EOPNOTSUPP);
1549 }
1550
1551 int
1552 pru_shutdown_notsupp(__unused struct socket *so)
1553 {
1554 return (EOPNOTSUPP);
1555 }
1556
1557 int
1558 pru_sockaddr_notsupp(__unused struct socket *so, __unused struct sockaddr **nam)
1559 {
1560 return (EOPNOTSUPP);
1561 }
1562
1563 int
1564 pru_sopoll_notsupp(__unused struct socket *so, __unused int events,
1565 __unused kauth_cred_t cred, __unused void *wql)
1566 {
1567 return (EOPNOTSUPP);
1568 }
1569
1570
1571 #ifdef __APPLE__
1572 /*
1573 * The following are macros on BSD and functions on Darwin
1574 */
1575
1576 /*
1577 * Do we need to notify the other side when I/O is possible?
1578 */
1579
1580 int
1581 sb_notify(struct sockbuf *sb)
1582 {
1583 return ((sb->sb_flags &
1584 (SB_WAIT|SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)) != 0);
1585 }
1586
1587 /*
1588 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1589 * This is problematical if the fields are unsigned, as the space might
1590 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1591 * overflow and return 0.
1592 */
1593 int
1594 sbspace(struct sockbuf *sb)
1595 {
1596 int space =
1597 imin((int)(sb->sb_hiwat - sb->sb_cc),
1598 (int)(sb->sb_mbmax - sb->sb_mbcnt));
1599 if (space < 0)
1600 space = 0;
1601
1602 return space;
1603 }
1604
1605 /* do we have to send all at once on a socket? */
1606 int
1607 sosendallatonce(struct socket *so)
1608 {
1609 return (so->so_proto->pr_flags & PR_ATOMIC);
1610 }
1611
1612 /* can we read something from so? */
1613 int
1614 soreadable(struct socket *so)
1615 {
1616 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
1617 (so->so_state & SS_CANTRCVMORE) ||
1618 so->so_comp.tqh_first || so->so_error);
1619 }
1620
1621 /* can we write something to so? */
1622
1623 int
1624 sowriteable(struct socket *so)
1625 {
1626 return ((sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat &&
1627 ((so->so_state&SS_ISCONNECTED) ||
1628 (so->so_proto->pr_flags&PR_CONNREQUIRED) == 0)) ||
1629 (so->so_state & SS_CANTSENDMORE) ||
1630 so->so_error);
1631 }
1632
1633 /* adjust counters in sb reflecting allocation of m */
1634
1635 void
1636 sballoc(struct sockbuf *sb, struct mbuf *m)
1637 {
1638 int cnt = 1;
1639 sb->sb_cc += m->m_len;
1640 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1641 m->m_type != MT_OOBDATA)
1642 sb->sb_ctl += m->m_len;
1643 sb->sb_mbcnt += MSIZE;
1644
1645 if (m->m_flags & M_EXT) {
1646 sb->sb_mbcnt += m->m_ext.ext_size;
1647 cnt += m->m_ext.ext_size / MSIZE ;
1648 }
1649 OSAddAtomic(cnt, &total_mb_cnt);
1650 }
1651
1652 /* adjust counters in sb reflecting freeing of m */
1653 void
1654 sbfree(struct sockbuf *sb, struct mbuf *m)
1655 {
1656 int cnt = -1;
1657 sb->sb_cc -= m->m_len;
1658 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1659 m->m_type != MT_OOBDATA)
1660 sb->sb_ctl -= m->m_len;
1661 sb->sb_mbcnt -= MSIZE;
1662 if (m->m_flags & M_EXT) {
1663 sb->sb_mbcnt -= m->m_ext.ext_size;
1664 cnt -= m->m_ext.ext_size / MSIZE ;
1665 }
1666 OSAddAtomic(cnt, &total_mb_cnt);
1667 }
1668
1669 /*
1670 * Set lock on sockbuf sb; sleep if lock is already held.
1671 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1672 * Returns error without lock if sleep is interrupted.
1673 *
1674 * Returns: 0 Success
1675 * EWOULDBLOCK
1676 * sb_lock:EINTR
1677 */
1678 int
1679 sblock(struct sockbuf *sb, int wf)
1680 {
1681 int error = 0;
1682
1683 if (sb->sb_flags & SB_LOCK)
1684 error = (wf == M_WAIT) ? sb_lock(sb) : EWOULDBLOCK;
1685 else
1686 sb->sb_flags |= SB_LOCK;
1687
1688 return (error);
1689 }
1690
1691 /* release lock on sockbuf sb */
1692 void
1693 sbunlock(struct sockbuf *sb, int keeplocked)
1694 {
1695 struct socket *so = sb->sb_so;
1696 void *lr_saved;
1697 lck_mtx_t *mutex_held;
1698
1699 lr_saved = __builtin_return_address(0);
1700
1701 sb->sb_flags &= ~SB_LOCK;
1702
1703 if (sb->sb_flags & SB_WANT) {
1704 sb->sb_flags &= ~SB_WANT;
1705 if (so->so_usecount < 0) {
1706 panic("sbunlock: b4 wakeup so=%p ref=%d lr=%p "
1707 "sb_flags=%x lrh= %s\n", sb->sb_so, so->so_usecount,
1708 lr_saved, sb->sb_flags, solockhistory_nr(so));
1709 /* NOTREACHED */
1710 }
1711 wakeup((caddr_t)&(sb)->sb_flags);
1712 }
1713 if (keeplocked == 0) { /* unlock on exit */
1714 if (so->so_proto->pr_getlock != NULL)
1715 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
1716 else
1717 mutex_held = so->so_proto->pr_domain->dom_mtx;
1718
1719 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
1720
1721 so->so_usecount--;
1722 if (so->so_usecount < 0)
1723 panic("sbunlock: unlock on exit so=%p ref=%d lr=%p "
1724 "sb_flags=%x lrh= %s\n", so, so->so_usecount, lr_saved,
1725 sb->sb_flags, solockhistory_nr(so));
1726 so->unlock_lr[so->next_unlock_lr] = lr_saved;
1727 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
1728 lck_mtx_unlock(mutex_held);
1729 }
1730 }
1731
1732 void
1733 sorwakeup(struct socket *so)
1734 {
1735 if (sb_notify(&so->so_rcv))
1736 sowakeup(so, &so->so_rcv);
1737 }
1738
1739 void
1740 sowwakeup(struct socket *so)
1741 {
1742 if (sb_notify(&so->so_snd))
1743 sowakeup(so, &so->so_snd);
1744 }
1745 #endif /* __APPLE__ */
1746
1747 /*
1748 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1749 */
1750 struct sockaddr *
1751 dup_sockaddr(struct sockaddr *sa, int canwait)
1752 {
1753 struct sockaddr *sa2;
1754
1755 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
1756 canwait ? M_WAITOK : M_NOWAIT);
1757 if (sa2)
1758 bcopy(sa, sa2, sa->sa_len);
1759 return (sa2);
1760 }
1761
1762 /*
1763 * Create an external-format (``xsocket'') structure using the information
1764 * in the kernel-format socket structure pointed to by so. This is done
1765 * to reduce the spew of irrelevant information over this interface,
1766 * to isolate user code from changes in the kernel structure, and
1767 * potentially to provide information-hiding if we decide that
1768 * some of this information should be hidden from users.
1769 */
1770 void
1771 sotoxsocket(struct socket *so, struct xsocket *xso)
1772 {
1773 xso->xso_len = sizeof (*xso);
1774 xso->xso_so = (_XSOCKET_PTR(struct socket *))(uintptr_t)so;
1775 xso->so_type = so->so_type;
1776 xso->so_options = so->so_options;
1777 xso->so_linger = so->so_linger;
1778 xso->so_state = so->so_state;
1779 xso->so_pcb = (_XSOCKET_PTR(caddr_t))(uintptr_t)so->so_pcb;
1780 if (so->so_proto) {
1781 xso->xso_protocol = so->so_proto->pr_protocol;
1782 xso->xso_family = so->so_proto->pr_domain->dom_family;
1783 } else {
1784 xso->xso_protocol = xso->xso_family = 0;
1785 }
1786 xso->so_qlen = so->so_qlen;
1787 xso->so_incqlen = so->so_incqlen;
1788 xso->so_qlimit = so->so_qlimit;
1789 xso->so_timeo = so->so_timeo;
1790 xso->so_error = so->so_error;
1791 xso->so_pgid = so->so_pgid;
1792 xso->so_oobmark = so->so_oobmark;
1793 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1794 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1795 xso->so_uid = so->so_uid;
1796 }
1797
1798
1799 #if !CONFIG_EMBEDDED
1800
1801 void
1802 sotoxsocket64(struct socket *so, struct xsocket64 *xso)
1803 {
1804 xso->xso_len = sizeof (*xso);
1805 xso->xso_so = (u_int64_t)(uintptr_t)so;
1806 xso->so_type = so->so_type;
1807 xso->so_options = so->so_options;
1808 xso->so_linger = so->so_linger;
1809 xso->so_state = so->so_state;
1810 xso->so_pcb = (u_int64_t)(uintptr_t)so->so_pcb;
1811 if (so->so_proto) {
1812 xso->xso_protocol = so->so_proto->pr_protocol;
1813 xso->xso_family = so->so_proto->pr_domain->dom_family;
1814 } else {
1815 xso->xso_protocol = xso->xso_family = 0;
1816 }
1817 xso->so_qlen = so->so_qlen;
1818 xso->so_incqlen = so->so_incqlen;
1819 xso->so_qlimit = so->so_qlimit;
1820 xso->so_timeo = so->so_timeo;
1821 xso->so_error = so->so_error;
1822 xso->so_pgid = so->so_pgid;
1823 xso->so_oobmark = so->so_oobmark;
1824 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1825 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1826 xso->so_uid = so->so_uid;
1827 }
1828
1829 #endif /* !CONFIG_EMBEDDED */
1830
1831 /*
1832 * This does the same for sockbufs. Note that the xsockbuf structure,
1833 * since it is always embedded in a socket, does not include a self
1834 * pointer nor a length. We make this entry point public in case
1835 * some other mechanism needs it.
1836 */
1837 void
1838 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1839 {
1840 xsb->sb_cc = sb->sb_cc;
1841 xsb->sb_hiwat = sb->sb_hiwat;
1842 xsb->sb_mbcnt = sb->sb_mbcnt;
1843 xsb->sb_mbmax = sb->sb_mbmax;
1844 xsb->sb_lowat = sb->sb_lowat;
1845 xsb->sb_flags = sb->sb_flags;
1846 xsb->sb_timeo = (short)
1847 (sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick;
1848 if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0)
1849 xsb->sb_timeo = 1;
1850 }
1851
1852 int
1853 soisbackground(struct socket *so)
1854 {
1855 return (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND);
1856 }
1857
1858 /*
1859 * Here is the definition of some of the basic objects in the kern.ipc
1860 * branch of the MIB.
1861 */
1862 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "IPC");
1863
1864 /* Check that the maximum socket buffer size is within a range */
1865
1866 static int
1867 sysctl_sb_max(__unused struct sysctl_oid *oidp, __unused void *arg1,
1868 __unused int arg2, struct sysctl_req *req)
1869 {
1870 u_int32_t new_value;
1871 int changed = 0;
1872 int error = sysctl_io_number(req, sb_max, sizeof(u_int32_t), &new_value,
1873 &changed);
1874 if (!error && changed) {
1875 if (new_value > LOW_SB_MAX &&
1876 new_value <= high_sb_max ) {
1877 sb_max = new_value;
1878 } else {
1879 error = ERANGE;
1880 }
1881 }
1882 return error;
1883 }
1884
1885 SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT | CTLFLAG_RW,
1886 &sb_max, 0, &sysctl_sb_max, "IU", "Maximum socket buffer size");
1887
1888 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1889 &maxsockets, 0, "Maximum number of sockets avaliable");
1890 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1891 &sb_efficiency, 0, "");
1892 SYSCTL_INT(_kern_ipc, OID_AUTO, sbspace_factor, CTLFLAG_RW,
1893 &sbspace_factor, 0, "Ratio of mbuf/cluster use for socket layers");
1894 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD,
1895 &nmbclusters, 0, "");
1896 SYSCTL_INT(_kern_ipc, OID_AUTO, njcl, CTLFLAG_RD, &njcl, 0, "");
1897 SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes, CTLFLAG_RD, &njclbytes, 0, "");
1898 SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat, CTLFLAG_RW,
1899 &soqlimitcompat, 1, "Enable socket queue limit compatibility");
1900 SYSCTL_INT(_kern_ipc, OID_AUTO, soqlencomp, CTLFLAG_RW,
1901 &soqlencomp, 0, "Listen backlog represents only complete queue");