]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/host.c
xnu-2782.40.9.tar.gz
[apple/xnu.git] / osfmk / kern / host.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * host.c
61 *
62 * Non-ipc host functions.
63 */
64
65 #include <mach/mach_types.h>
66 #include <mach/boolean.h>
67 #include <mach/host_info.h>
68 #include <mach/host_special_ports.h>
69 #include <mach/kern_return.h>
70 #include <mach/machine.h>
71 #include <mach/port.h>
72 #include <mach/processor_info.h>
73 #include <mach/vm_param.h>
74 #include <mach/processor.h>
75 #include <mach/mach_host_server.h>
76 #include <mach/host_priv_server.h>
77 #include <mach/vm_map.h>
78 #include <mach/task_info.h>
79
80 #include <kern/kern_types.h>
81 #include <kern/assert.h>
82 #include <kern/kalloc.h>
83 #include <kern/host.h>
84 #include <kern/host_statistics.h>
85 #include <kern/ipc_host.h>
86 #include <kern/misc_protos.h>
87 #include <kern/sched.h>
88 #include <kern/processor.h>
89
90 #include <vm/vm_map.h>
91 #include <vm/vm_purgeable_internal.h>
92 #include <vm/vm_pageout.h>
93
94 host_data_t realhost;
95
96 vm_extmod_statistics_data_t host_extmod_statistics;
97
98 kern_return_t
99 host_processors(
100 host_priv_t host_priv,
101 processor_array_t *out_array,
102 mach_msg_type_number_t *countp)
103 {
104 register processor_t processor, *tp;
105 void *addr;
106 unsigned int count, i;
107
108 if (host_priv == HOST_PRIV_NULL)
109 return (KERN_INVALID_ARGUMENT);
110
111 assert(host_priv == &realhost);
112
113 count = processor_count;
114 assert(count != 0);
115
116 addr = kalloc((vm_size_t) (count * sizeof(mach_port_t)));
117 if (addr == 0)
118 return (KERN_RESOURCE_SHORTAGE);
119
120 tp = (processor_t *) addr;
121 *tp++ = processor = processor_list;
122
123 if (count > 1) {
124 simple_lock(&processor_list_lock);
125
126 for (i = 1; i < count; i++)
127 *tp++ = processor = processor->processor_list;
128
129 simple_unlock(&processor_list_lock);
130 }
131
132 *countp = count;
133 *out_array = (processor_array_t)addr;
134
135 /* do the conversion that Mig should handle */
136
137 tp = (processor_t *) addr;
138 for (i = 0; i < count; i++)
139 ((mach_port_t *) tp)[i] =
140 (mach_port_t)convert_processor_to_port(tp[i]);
141
142 return (KERN_SUCCESS);
143 }
144
145 kern_return_t
146 host_info(
147 host_t host,
148 host_flavor_t flavor,
149 host_info_t info,
150 mach_msg_type_number_t *count)
151 {
152
153 if (host == HOST_NULL)
154 return (KERN_INVALID_ARGUMENT);
155
156 switch (flavor) {
157
158 case HOST_BASIC_INFO:
159 {
160 register host_basic_info_t basic_info;
161 register int master_id;
162
163 /*
164 * Basic information about this host.
165 */
166 if (*count < HOST_BASIC_INFO_OLD_COUNT)
167 return (KERN_FAILURE);
168
169 basic_info = (host_basic_info_t) info;
170
171 basic_info->memory_size = machine_info.memory_size;
172 basic_info->max_cpus = machine_info.max_cpus;
173 basic_info->avail_cpus = processor_avail_count;
174 master_id = master_processor->cpu_id;
175 basic_info->cpu_type = slot_type(master_id);
176 basic_info->cpu_subtype = slot_subtype(master_id);
177
178 if (*count >= HOST_BASIC_INFO_COUNT) {
179 basic_info->cpu_threadtype = slot_threadtype(master_id);
180 basic_info->physical_cpu = machine_info.physical_cpu;
181 basic_info->physical_cpu_max = machine_info.physical_cpu_max;
182 basic_info->logical_cpu = machine_info.logical_cpu;
183 basic_info->logical_cpu_max = machine_info.logical_cpu_max;
184 basic_info->max_mem = machine_info.max_mem;
185
186 *count = HOST_BASIC_INFO_COUNT;
187 } else {
188 *count = HOST_BASIC_INFO_OLD_COUNT;
189 }
190
191 return (KERN_SUCCESS);
192 }
193
194 case HOST_SCHED_INFO:
195 {
196 register host_sched_info_t sched_info;
197 uint32_t quantum_time;
198 uint64_t quantum_ns;
199
200 /*
201 * Return scheduler information.
202 */
203 if (*count < HOST_SCHED_INFO_COUNT)
204 return (KERN_FAILURE);
205
206 sched_info = (host_sched_info_t) info;
207
208 quantum_time = SCHED(initial_quantum_size)(THREAD_NULL);
209 absolutetime_to_nanoseconds(quantum_time, &quantum_ns);
210
211 sched_info->min_timeout =
212 sched_info->min_quantum = (uint32_t)(quantum_ns / 1000 / 1000);
213
214 *count = HOST_SCHED_INFO_COUNT;
215
216 return (KERN_SUCCESS);
217 }
218
219 case HOST_RESOURCE_SIZES:
220 {
221 /*
222 * Return sizes of kernel data structures
223 */
224 if (*count < HOST_RESOURCE_SIZES_COUNT)
225 return (KERN_FAILURE);
226
227 /* XXX Fail until ledgers are implemented */
228 return (KERN_INVALID_ARGUMENT);
229 }
230
231 case HOST_PRIORITY_INFO:
232 {
233 register host_priority_info_t priority_info;
234
235 if (*count < HOST_PRIORITY_INFO_COUNT)
236 return (KERN_FAILURE);
237
238 priority_info = (host_priority_info_t) info;
239
240 priority_info->kernel_priority = MINPRI_KERNEL;
241 priority_info->system_priority = MINPRI_KERNEL;
242 priority_info->server_priority = MINPRI_RESERVED;
243 priority_info->user_priority = BASEPRI_DEFAULT;
244 priority_info->depress_priority = DEPRESSPRI;
245 priority_info->idle_priority = IDLEPRI;
246 priority_info->minimum_priority = MINPRI_USER;
247 priority_info->maximum_priority = MAXPRI_RESERVED;
248
249 *count = HOST_PRIORITY_INFO_COUNT;
250
251 return (KERN_SUCCESS);
252 }
253
254 /*
255 * Gestalt for various trap facilities.
256 */
257 case HOST_MACH_MSG_TRAP:
258 case HOST_SEMAPHORE_TRAPS:
259 {
260 *count = 0;
261 return (KERN_SUCCESS);
262 }
263
264 case HOST_VM_PURGABLE:
265 {
266 if (*count < HOST_VM_PURGABLE_COUNT)
267 return (KERN_FAILURE);
268
269 vm_purgeable_stats((vm_purgeable_info_t) info, NULL);
270
271 *count = HOST_VM_PURGABLE_COUNT;
272 return (KERN_SUCCESS);
273 }
274
275 default:
276 return (KERN_INVALID_ARGUMENT);
277 }
278 }
279
280 kern_return_t
281 host_statistics(
282 host_t host,
283 host_flavor_t flavor,
284 host_info_t info,
285 mach_msg_type_number_t *count)
286 {
287 uint32_t i;
288
289 if (host == HOST_NULL)
290 return (KERN_INVALID_HOST);
291
292 switch(flavor) {
293
294 case HOST_LOAD_INFO:
295 {
296 host_load_info_t load_info;
297
298 if (*count < HOST_LOAD_INFO_COUNT)
299 return (KERN_FAILURE);
300
301 load_info = (host_load_info_t) info;
302
303 bcopy((char *) avenrun,
304 (char *) load_info->avenrun, sizeof avenrun);
305 bcopy((char *) mach_factor,
306 (char *) load_info->mach_factor, sizeof mach_factor);
307
308 *count = HOST_LOAD_INFO_COUNT;
309 return (KERN_SUCCESS);
310 }
311
312 case HOST_VM_INFO:
313 {
314 register processor_t processor;
315 register vm_statistics64_t stat;
316 vm_statistics64_data_t host_vm_stat;
317 vm_statistics_t stat32;
318 mach_msg_type_number_t original_count;
319
320 if (*count < HOST_VM_INFO_REV0_COUNT)
321 return (KERN_FAILURE);
322
323 processor = processor_list;
324 stat = &PROCESSOR_DATA(processor, vm_stat);
325 host_vm_stat = *stat;
326
327 if (processor_count > 1) {
328 simple_lock(&processor_list_lock);
329
330 while ((processor = processor->processor_list) != NULL) {
331 stat = &PROCESSOR_DATA(processor, vm_stat);
332
333 host_vm_stat.zero_fill_count += stat->zero_fill_count;
334 host_vm_stat.reactivations += stat->reactivations;
335 host_vm_stat.pageins += stat->pageins;
336 host_vm_stat.pageouts += stat->pageouts;
337 host_vm_stat.faults += stat->faults;
338 host_vm_stat.cow_faults += stat->cow_faults;
339 host_vm_stat.lookups += stat->lookups;
340 host_vm_stat.hits += stat->hits;
341 }
342
343 simple_unlock(&processor_list_lock);
344 }
345
346 stat32 = (vm_statistics_t) info;
347
348 stat32->free_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_free_count + vm_page_speculative_count);
349 stat32->active_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_active_count);
350
351 if (vm_page_local_q) {
352 for (i = 0; i < vm_page_local_q_count; i++) {
353 struct vpl *lq;
354
355 lq = &vm_page_local_q[i].vpl_un.vpl;
356
357 stat32->active_count += VM_STATISTICS_TRUNCATE_TO_32_BIT(lq->vpl_count);
358 }
359 }
360 stat32->inactive_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_inactive_count);
361 stat32->wire_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count + vm_page_throttled_count + vm_lopage_free_count);
362 stat32->zero_fill_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.zero_fill_count);
363 stat32->reactivations = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.reactivations);
364 stat32->pageins = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.pageins);
365 stat32->pageouts = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.pageouts);
366 stat32->faults = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.faults);
367 stat32->cow_faults = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.cow_faults);
368 stat32->lookups = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.lookups);
369 stat32->hits = VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat.hits);
370
371 /*
372 * Fill in extra info added in later revisions of the
373 * vm_statistics data structure. Fill in only what can fit
374 * in the data structure the caller gave us !
375 */
376 original_count = *count;
377 *count = HOST_VM_INFO_REV0_COUNT; /* rev0 already filled in */
378 if (original_count >= HOST_VM_INFO_REV1_COUNT) {
379 /* rev1 added "purgeable" info */
380 stat32->purgeable_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purgeable_count);
381 stat32->purges = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purged_count);
382 *count = HOST_VM_INFO_REV1_COUNT;
383 }
384
385 if (original_count >= HOST_VM_INFO_REV2_COUNT) {
386 /* rev2 added "speculative" info */
387 stat32->speculative_count = VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_speculative_count);
388 *count = HOST_VM_INFO_REV2_COUNT;
389 }
390
391 /* rev3 changed some of the fields to be 64-bit*/
392
393 return (KERN_SUCCESS);
394 }
395
396 case HOST_CPU_LOAD_INFO:
397 {
398 register processor_t processor;
399 host_cpu_load_info_t cpu_load_info;
400
401 if (*count < HOST_CPU_LOAD_INFO_COUNT)
402 return (KERN_FAILURE);
403
404 #define GET_TICKS_VALUE(state, ticks) \
405 MACRO_BEGIN \
406 cpu_load_info->cpu_ticks[(state)] += \
407 (uint32_t)(ticks / hz_tick_interval); \
408 MACRO_END
409 #define GET_TICKS_VALUE_FROM_TIMER(processor, state, timer) \
410 MACRO_BEGIN \
411 GET_TICKS_VALUE(state, timer_grab(&PROCESSOR_DATA(processor, timer))); \
412 MACRO_END
413
414 cpu_load_info = (host_cpu_load_info_t)info;
415 cpu_load_info->cpu_ticks[CPU_STATE_USER] = 0;
416 cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
417 cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = 0;
418 cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
419
420 simple_lock(&processor_list_lock);
421
422 for (processor = processor_list; processor != NULL; processor = processor->processor_list) {
423 timer_t idle_state;
424 uint64_t idle_time_snapshot1, idle_time_snapshot2;
425 uint64_t idle_time_tstamp1, idle_time_tstamp2;
426
427 /* See discussion in processor_info(PROCESSOR_CPU_LOAD_INFO) */
428
429 GET_TICKS_VALUE_FROM_TIMER(processor, CPU_STATE_USER, user_state);
430 if (precise_user_kernel_time) {
431 GET_TICKS_VALUE_FROM_TIMER(processor, CPU_STATE_SYSTEM, system_state);
432 } else {
433 /* system_state may represent either sys or user */
434 GET_TICKS_VALUE_FROM_TIMER(processor, CPU_STATE_USER, system_state);
435 }
436
437 idle_state = &PROCESSOR_DATA(processor, idle_state);
438 idle_time_snapshot1 = timer_grab(idle_state);
439 idle_time_tstamp1 = idle_state->tstamp;
440
441 if (PROCESSOR_DATA(processor, current_state) != idle_state) {
442 /* Processor is non-idle, so idle timer should be accurate */
443 GET_TICKS_VALUE_FROM_TIMER(processor, CPU_STATE_IDLE, idle_state);
444 } else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
445 (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){
446 /* Idle timer is being updated concurrently, second stamp is good enough */
447 GET_TICKS_VALUE(CPU_STATE_IDLE, idle_time_snapshot2);
448 } else {
449 /*
450 * Idle timer may be very stale. Fortunately we have established
451 * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
452 */
453 idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
454
455 GET_TICKS_VALUE(CPU_STATE_IDLE, idle_time_snapshot1);
456 }
457 }
458 simple_unlock(&processor_list_lock);
459
460 *count = HOST_CPU_LOAD_INFO_COUNT;
461
462 return (KERN_SUCCESS);
463 }
464
465 case HOST_EXPIRED_TASK_INFO:
466 {
467 if (*count < TASK_POWER_INFO_COUNT) {
468 return (KERN_FAILURE);
469 }
470
471 task_power_info_t tinfo = (task_power_info_t)info;
472
473 tinfo->task_interrupt_wakeups = dead_task_statistics.task_interrupt_wakeups;
474 tinfo->task_platform_idle_wakeups = dead_task_statistics.task_platform_idle_wakeups;
475
476 tinfo->task_timer_wakeups_bin_1 = dead_task_statistics.task_timer_wakeups_bin_1;
477
478 tinfo->task_timer_wakeups_bin_2 = dead_task_statistics.task_timer_wakeups_bin_2;
479
480 tinfo->total_user = dead_task_statistics.total_user_time;
481 tinfo->total_system = dead_task_statistics.total_system_time;
482
483 return (KERN_SUCCESS);
484
485 }
486 default:
487 return (KERN_INVALID_ARGUMENT);
488 }
489 }
490
491 extern uint32_t c_segment_pages_compressed;
492
493 kern_return_t
494 host_statistics64(
495 host_t host,
496 host_flavor_t flavor,
497 host_info64_t info,
498 mach_msg_type_number_t *count)
499 {
500 uint32_t i;
501
502 if (host == HOST_NULL)
503 return (KERN_INVALID_HOST);
504
505 switch(flavor) {
506
507 case HOST_VM_INFO64: /* We were asked to get vm_statistics64 */
508 {
509 register processor_t processor;
510 register vm_statistics64_t stat;
511 vm_statistics64_data_t host_vm_stat;
512 mach_msg_type_number_t original_count;
513 unsigned int local_q_internal_count;
514 unsigned int local_q_external_count;
515
516 if (*count < HOST_VM_INFO64_REV0_COUNT)
517 return (KERN_FAILURE);
518
519 processor = processor_list;
520 stat = &PROCESSOR_DATA(processor, vm_stat);
521 host_vm_stat = *stat;
522
523 if (processor_count > 1) {
524 simple_lock(&processor_list_lock);
525
526 while ((processor = processor->processor_list) != NULL) {
527 stat = &PROCESSOR_DATA(processor, vm_stat);
528
529 host_vm_stat.zero_fill_count += stat->zero_fill_count;
530 host_vm_stat.reactivations += stat->reactivations;
531 host_vm_stat.pageins += stat->pageins;
532 host_vm_stat.pageouts += stat->pageouts;
533 host_vm_stat.faults += stat->faults;
534 host_vm_stat.cow_faults += stat->cow_faults;
535 host_vm_stat.lookups += stat->lookups;
536 host_vm_stat.hits += stat->hits;
537 host_vm_stat.compressions += stat->compressions;
538 host_vm_stat.decompressions += stat->decompressions;
539 host_vm_stat.swapins += stat->swapins;
540 host_vm_stat.swapouts += stat->swapouts;
541 }
542
543 simple_unlock(&processor_list_lock);
544 }
545
546 stat = (vm_statistics64_t) info;
547
548 stat->free_count = vm_page_free_count + vm_page_speculative_count;
549 stat->active_count = vm_page_active_count;
550
551 local_q_internal_count = 0;
552 local_q_external_count = 0;
553 if (vm_page_local_q) {
554 for (i = 0; i < vm_page_local_q_count; i++) {
555 struct vpl *lq;
556
557 lq = &vm_page_local_q[i].vpl_un.vpl;
558
559 stat->active_count += lq->vpl_count;
560 local_q_internal_count +=
561 lq->vpl_internal_count;
562 local_q_external_count +=
563 lq->vpl_external_count;
564 }
565 }
566 stat->inactive_count = vm_page_inactive_count;
567 stat->wire_count = vm_page_wire_count + vm_page_throttled_count + vm_lopage_free_count;
568 stat->zero_fill_count = host_vm_stat.zero_fill_count;
569 stat->reactivations = host_vm_stat.reactivations;
570 stat->pageins = host_vm_stat.pageins;
571 stat->pageouts = host_vm_stat.pageouts;
572 stat->faults = host_vm_stat.faults;
573 stat->cow_faults = host_vm_stat.cow_faults;
574 stat->lookups = host_vm_stat.lookups;
575 stat->hits = host_vm_stat.hits;
576
577 stat->purgeable_count = vm_page_purgeable_count;
578 stat->purges = vm_page_purged_count;
579
580 stat->speculative_count = vm_page_speculative_count;
581
582 /*
583 * Fill in extra info added in later revisions of the
584 * vm_statistics data structure. Fill in only what can fit
585 * in the data structure the caller gave us !
586 */
587 original_count = *count;
588 *count = HOST_VM_INFO64_REV0_COUNT; /* rev0 already filled in */
589 if (original_count >= HOST_VM_INFO64_REV1_COUNT) {
590 /* rev1 added "throttled count" */
591 stat->throttled_count = vm_page_throttled_count;
592 /* rev1 added "compression" info */
593 stat->compressor_page_count = VM_PAGE_COMPRESSOR_COUNT;
594 stat->compressions = host_vm_stat.compressions;
595 stat->decompressions = host_vm_stat.decompressions;
596 stat->swapins = host_vm_stat.swapins;
597 stat->swapouts = host_vm_stat.swapouts;
598 /* rev1 added:
599 * "external page count"
600 * "anonymous page count"
601 * "total # of pages (uncompressed) held in the compressor"
602 */
603 stat->external_page_count =
604 (vm_page_pageable_external_count +
605 local_q_external_count);
606 stat->internal_page_count =
607 (vm_page_pageable_internal_count +
608 local_q_internal_count);
609 stat->total_uncompressed_pages_in_compressor = c_segment_pages_compressed;
610 *count = HOST_VM_INFO64_REV1_COUNT;
611 }
612
613 return(KERN_SUCCESS);
614 }
615
616 case HOST_EXTMOD_INFO64: /* We were asked to get vm_statistics64 */
617 {
618 vm_extmod_statistics_t out_extmod_statistics;
619
620 if (*count < HOST_EXTMOD_INFO64_COUNT)
621 return (KERN_FAILURE);
622
623 out_extmod_statistics = (vm_extmod_statistics_t) info;
624 *out_extmod_statistics = host_extmod_statistics;
625
626 *count = HOST_EXTMOD_INFO64_COUNT;
627
628 return(KERN_SUCCESS);
629 }
630
631 default: /* If we didn't recognize the flavor, send to host_statistics */
632 return(host_statistics(host, flavor, (host_info_t) info, count));
633 }
634 }
635
636
637 /*
638 * Get host statistics that require privilege.
639 * None for now, just call the un-privileged version.
640 */
641 kern_return_t
642 host_priv_statistics(
643 host_priv_t host_priv,
644 host_flavor_t flavor,
645 host_info_t info,
646 mach_msg_type_number_t *count)
647 {
648 return(host_statistics((host_t)host_priv, flavor, info, count));
649 }
650
651 kern_return_t
652 set_sched_stats_active(
653 boolean_t active)
654 {
655 sched_stats_active = active;
656 return KERN_SUCCESS;
657 }
658
659
660 kern_return_t
661 get_sched_statistics(
662 struct _processor_statistics_np *out,
663 uint32_t *count)
664 {
665 processor_t processor;
666
667 if (!sched_stats_active) {
668 return KERN_FAILURE;
669 }
670
671 simple_lock(&processor_list_lock);
672
673 if (*count < (processor_count + 2) * sizeof(struct _processor_statistics_np)) { /* One for RT, one for FS */
674 simple_unlock(&processor_list_lock);
675 return KERN_FAILURE;
676 }
677
678 processor = processor_list;
679 while (processor) {
680 struct processor_sched_statistics *stats = &processor->processor_data.sched_stats;
681
682 out->ps_cpuid = processor->cpu_id;
683 out->ps_csw_count = stats->csw_count;
684 out->ps_preempt_count = stats->preempt_count;
685 out->ps_preempted_rt_count = stats->preempted_rt_count;
686 out->ps_preempted_by_rt_count = stats->preempted_by_rt_count;
687 out->ps_rt_sched_count = stats->rt_sched_count;
688 out->ps_interrupt_count = stats->interrupt_count;
689 out->ps_ipi_count = stats->ipi_count;
690 out->ps_timer_pop_count = stats->timer_pop_count;
691 out->ps_runq_count_sum = SCHED(processor_runq_stats_count_sum)(processor);
692 out->ps_idle_transitions = stats->idle_transitions;
693 out->ps_quantum_timer_expirations = stats->quantum_timer_expirations;
694
695 out++;
696 processor = processor->processor_list;
697 }
698
699 *count = (uint32_t) (processor_count * sizeof(struct _processor_statistics_np));
700
701 simple_unlock(&processor_list_lock);
702
703 /* And include RT Queue information */
704 bzero(out, sizeof(*out));
705 out->ps_cpuid = (-1);
706 out->ps_runq_count_sum = rt_runq.runq_stats.count_sum;
707 out++;
708 *count += (uint32_t)sizeof(struct _processor_statistics_np);
709
710 /* And include Fair Share Queue information at the end */
711 bzero(out, sizeof(*out));
712 out->ps_cpuid = (-2);
713 out->ps_runq_count_sum = SCHED(fairshare_runq_stats_count_sum)();
714 *count += (uint32_t)sizeof(struct _processor_statistics_np);
715
716 return KERN_SUCCESS;
717 }
718
719 kern_return_t
720 host_page_size(
721 host_t host,
722 vm_size_t *out_page_size)
723 {
724 if (host == HOST_NULL)
725 return(KERN_INVALID_ARGUMENT);
726
727 vm_map_t map = get_task_map(current_task());
728 *out_page_size = vm_map_page_size(map);
729
730 return(KERN_SUCCESS);
731 }
732
733 /*
734 * Return kernel version string (more than you ever
735 * wanted to know about what version of the kernel this is).
736 */
737 extern char version[];
738
739 kern_return_t
740 host_kernel_version(
741 host_t host,
742 kernel_version_t out_version)
743 {
744
745 if (host == HOST_NULL)
746 return(KERN_INVALID_ARGUMENT);
747
748 (void) strncpy(out_version, version, sizeof(kernel_version_t));
749
750 return(KERN_SUCCESS);
751 }
752
753 /*
754 * host_processor_sets:
755 *
756 * List all processor sets on the host.
757 */
758 kern_return_t
759 host_processor_sets(
760 host_priv_t host_priv,
761 processor_set_name_array_t *pset_list,
762 mach_msg_type_number_t *count)
763 {
764 void *addr;
765
766 if (host_priv == HOST_PRIV_NULL)
767 return (KERN_INVALID_ARGUMENT);
768
769 /*
770 * Allocate memory. Can be pageable because it won't be
771 * touched while holding a lock.
772 */
773
774 addr = kalloc((vm_size_t) sizeof(mach_port_t));
775 if (addr == 0)
776 return (KERN_RESOURCE_SHORTAGE);
777
778 /* do the conversion that Mig should handle */
779 *((ipc_port_t *) addr) = convert_pset_name_to_port(&pset0);
780
781 *pset_list = (processor_set_array_t)addr;
782 *count = 1;
783
784 return (KERN_SUCCESS);
785 }
786
787 /*
788 * host_processor_set_priv:
789 *
790 * Return control port for given processor set.
791 */
792 kern_return_t
793 host_processor_set_priv(
794 host_priv_t host_priv,
795 processor_set_t pset_name,
796 processor_set_t *pset)
797 {
798 if (host_priv == HOST_PRIV_NULL || pset_name == PROCESSOR_SET_NULL) {
799 *pset = PROCESSOR_SET_NULL;
800
801 return (KERN_INVALID_ARGUMENT);
802 }
803
804 *pset = pset_name;
805
806 return (KERN_SUCCESS);
807 }
808
809 /*
810 * host_processor_info
811 *
812 * Return info about the processors on this host. It will return
813 * the number of processors, and the specific type of info requested
814 * in an OOL array.
815 */
816 kern_return_t
817 host_processor_info(
818 host_t host,
819 processor_flavor_t flavor,
820 natural_t *out_pcount,
821 processor_info_array_t *out_array,
822 mach_msg_type_number_t *out_array_count)
823 {
824 kern_return_t result;
825 processor_t processor;
826 host_t thost;
827 processor_info_t info;
828 unsigned int icount, tcount;
829 unsigned int pcount, i;
830 vm_offset_t addr;
831 vm_size_t size, needed;
832 vm_map_copy_t copy;
833
834 if (host == HOST_NULL)
835 return (KERN_INVALID_ARGUMENT);
836
837 result = processor_info_count(flavor, &icount);
838 if (result != KERN_SUCCESS)
839 return (result);
840
841 pcount = processor_count;
842 assert(pcount != 0);
843
844 needed = pcount * icount * sizeof(natural_t);
845 size = vm_map_round_page(needed,
846 VM_MAP_PAGE_MASK(ipc_kernel_map));
847 result = kmem_alloc(ipc_kernel_map, &addr, size);
848 if (result != KERN_SUCCESS)
849 return (KERN_RESOURCE_SHORTAGE);
850
851 info = (processor_info_t) addr;
852 processor = processor_list;
853 tcount = icount;
854
855 result = processor_info(processor, flavor, &thost, info, &tcount);
856 if (result != KERN_SUCCESS) {
857 kmem_free(ipc_kernel_map, addr, size);
858 return (result);
859 }
860
861 if (pcount > 1) {
862 for (i = 1; i < pcount; i++) {
863 simple_lock(&processor_list_lock);
864 processor = processor->processor_list;
865 simple_unlock(&processor_list_lock);
866
867 info += icount;
868 tcount = icount;
869 result = processor_info(processor, flavor, &thost, info, &tcount);
870 if (result != KERN_SUCCESS) {
871 kmem_free(ipc_kernel_map, addr, size);
872 return (result);
873 }
874 }
875 }
876
877 if (size != needed)
878 bzero((char *) addr + needed, size - needed);
879
880 result = vm_map_unwire(
881 ipc_kernel_map,
882 vm_map_trunc_page(addr,
883 VM_MAP_PAGE_MASK(ipc_kernel_map)),
884 vm_map_round_page(addr + size,
885 VM_MAP_PAGE_MASK(ipc_kernel_map)),
886 FALSE);
887 assert(result == KERN_SUCCESS);
888 result = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr,
889 (vm_map_size_t)size, TRUE, &copy);
890 assert(result == KERN_SUCCESS);
891
892 *out_pcount = pcount;
893 *out_array = (processor_info_array_t) copy;
894 *out_array_count = pcount * icount;
895
896 return (KERN_SUCCESS);
897 }
898
899 /*
900 * Kernel interface for setting a special port.
901 */
902 kern_return_t
903 kernel_set_special_port(
904 host_priv_t host_priv,
905 int id,
906 ipc_port_t port)
907 {
908 ipc_port_t old_port;
909
910 host_lock(host_priv);
911 old_port = host_priv->special[id];
912 host_priv->special[id] = port;
913 host_unlock(host_priv);
914 if (IP_VALID(old_port))
915 ipc_port_release_send(old_port);
916 return KERN_SUCCESS;
917 }
918
919 /*
920 * User interface for setting a special port.
921 *
922 * Only permits the user to set a user-owned special port
923 * ID, rejecting a kernel-owned special port ID.
924 *
925 * A special kernel port cannot be set up using this
926 * routine; use kernel_set_special_port() instead.
927 */
928 kern_return_t
929 host_set_special_port(
930 host_priv_t host_priv,
931 int id,
932 ipc_port_t port)
933 {
934 if (host_priv == HOST_PRIV_NULL ||
935 id <= HOST_MAX_SPECIAL_KERNEL_PORT || id > HOST_MAX_SPECIAL_PORT ) {
936 return KERN_INVALID_ARGUMENT;
937 }
938
939 return kernel_set_special_port(host_priv, id, port);
940 }
941
942
943 /*
944 * User interface for retrieving a special port.
945 *
946 * Note that there is nothing to prevent a user special
947 * port from disappearing after it has been discovered by
948 * the caller; thus, using a special port can always result
949 * in a "port not valid" error.
950 */
951
952 kern_return_t
953 host_get_special_port(
954 host_priv_t host_priv,
955 __unused int node,
956 int id,
957 ipc_port_t *portp)
958 {
959 ipc_port_t port;
960
961 if (host_priv == HOST_PRIV_NULL ||
962 id == HOST_SECURITY_PORT || id > HOST_MAX_SPECIAL_PORT || id < 0)
963 return KERN_INVALID_ARGUMENT;
964
965 host_lock(host_priv);
966 port = realhost.special[id];
967 *portp = ipc_port_copy_send(port);
968 host_unlock(host_priv);
969
970 return KERN_SUCCESS;
971 }
972
973
974 /*
975 * host_get_io_master
976 *
977 * Return the IO master access port for this host.
978 */
979 kern_return_t
980 host_get_io_master(
981 host_t host,
982 io_master_t *io_masterp)
983 {
984 if (host == HOST_NULL)
985 return KERN_INVALID_ARGUMENT;
986
987 return (host_get_io_master_port(host_priv_self(), io_masterp));
988 }
989
990 host_t
991 host_self(void)
992 {
993 return &realhost;
994 }
995
996 host_priv_t
997 host_priv_self(void)
998 {
999 return &realhost;
1000 }
1001
1002 host_security_t
1003 host_security_self(void)
1004 {
1005 return &realhost;
1006 }
1007