]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/in6_src.c
xnu-2782.40.9.tar.gz
[apple/xnu.git] / bsd / netinet6 / in6_src.c
1 /*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Copyright (c) 1982, 1986, 1991, 1993
60 * The Regents of the University of California. All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
91 */
92
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/malloc.h>
97 #include <sys/mbuf.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/proc.h>
104 #include <sys/sysctl.h>
105 #include <sys/kauth.h>
106 #include <sys/priv.h>
107 #include <kern/locks.h>
108
109 #include <net/if.h>
110 #include <net/if_types.h>
111 #include <net/route.h>
112
113 #include <netinet/in.h>
114 #include <netinet/in_var.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/ip.h>
117 #include <netinet/in_pcb.h>
118 #include <netinet6/in6_var.h>
119 #include <netinet/ip6.h>
120 #include <netinet6/in6_pcb.h>
121 #include <netinet6/ip6_var.h>
122 #include <netinet6/scope6_var.h>
123 #include <netinet6/nd6.h>
124
125 #include <net/net_osdep.h>
126
127 #include "loop.h"
128
129 SYSCTL_DECL(_net_inet6_ip6);
130
131 static int ip6_select_srcif_debug = 0;
132 SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcif_debug,
133 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcif_debug, 0,
134 "log source interface selection debug info");
135
136 #define ADDR_LABEL_NOTAPP (-1)
137 struct in6_addrpolicy defaultaddrpolicy;
138
139 int ip6_prefer_tempaddr = 1;
140 #ifdef ENABLE_ADDRSEL
141 extern lck_mtx_t *addrsel_mutex;
142 #define ADDRSEL_LOCK() lck_mtx_lock(addrsel_mutex)
143 #define ADDRSEL_UNLOCK() lck_mtx_unlock(addrsel_mutex)
144 #else
145 #define ADDRSEL_LOCK()
146 #define ADDRSEL_UNLOCK()
147 #endif
148
149 static int selectroute(struct sockaddr_in6 *, struct sockaddr_in6 *,
150 struct ip6_pktopts *, struct ip6_moptions *, struct in6_ifaddr **,
151 struct route_in6 *, struct ifnet **, struct rtentry **, int, int,
152 struct ip6_out_args *ip6oa);
153 static int in6_selectif(struct sockaddr_in6 *, struct ip6_pktopts *,
154 struct ip6_moptions *, struct route_in6 *ro,
155 struct ip6_out_args *, struct ifnet **);
156 static void init_policy_queue(void);
157 static int add_addrsel_policyent(const struct in6_addrpolicy *);
158 #ifdef ENABLE_ADDRSEL
159 static int delete_addrsel_policyent(const struct in6_addrpolicy *);
160 #endif
161 static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy *, void *),
162 void *);
163 static int dump_addrsel_policyent(const struct in6_addrpolicy *, void *);
164 static struct in6_addrpolicy *match_addrsel_policy(struct sockaddr_in6 *);
165 void addrsel_policy_init(void);
166
167 /*
168 * Return an IPv6 address, which is the most appropriate for a given
169 * destination and user specified options.
170 * If necessary, this function lookups the routing table and returns
171 * an entry to the caller for later use.
172 */
173 #define REPLACE(r) do {\
174 if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \
175 sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
176 ip6stat.ip6s_sources_rule[(r)]++; \
177 goto replace; \
178 } while (0)
179 #define NEXTSRC(r) do {\
180 if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \
181 sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
182 ip6stat.ip6s_sources_rule[(r)]++; \
183 goto next; /* XXX: we can't use 'continue' here */ \
184 } while (0)
185 #define BREAK(r) do { \
186 if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \
187 sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \
188 ip6stat.ip6s_sources_rule[(r)]++; \
189 goto out; /* XXX: we can't use 'break' here */ \
190 } while (0)
191
192 /*
193 * Regardless of error, it will return an ifp with a reference held if the
194 * caller provides a non-NULL ifpp. The caller is responsible for checking
195 * if the returned ifp is valid and release its reference at all times.
196 */
197 struct in6_addr *
198 in6_selectsrc(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts,
199 struct inpcb *inp, struct route_in6 *ro,
200 struct ifnet **ifpp, struct in6_addr *src_storage, unsigned int ifscope,
201 int *errorp)
202 {
203 struct in6_addr dst;
204 struct ifnet *ifp = NULL;
205 struct in6_ifaddr *ia = NULL, *ia_best = NULL;
206 struct in6_pktinfo *pi = NULL;
207 int dst_scope = -1, best_scope = -1, best_matchlen = -1;
208 struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL;
209 u_int32_t odstzone;
210 int prefer_tempaddr;
211 struct ip6_moptions *mopts;
212 struct ip6_out_args ip6oa = { ifscope, { 0 }, IP6OAF_SELECT_SRCIF, 0 };
213 boolean_t islocal = FALSE;
214 uint64_t secs = net_uptime();
215
216 dst = dstsock->sin6_addr; /* make a copy for local operation */
217 *errorp = 0;
218 if (ifpp != NULL)
219 *ifpp = NULL;
220
221 if (inp != NULL) {
222 mopts = inp->in6p_moptions;
223 if (INP_NO_CELLULAR(inp))
224 ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
225 if (INP_NO_EXPENSIVE(inp))
226 ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE;
227 if (INP_AWDL_UNRESTRICTED(inp))
228 ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED;
229
230 } else {
231 mopts = NULL;
232 }
233
234 if (ip6oa.ip6oa_boundif != IFSCOPE_NONE)
235 ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
236
237 /*
238 * If the source address is explicitly specified by the caller,
239 * check if the requested source address is indeed a unicast address
240 * assigned to the node, and can be used as the packet's source
241 * address. If everything is okay, use the address as source.
242 */
243 if (opts && (pi = opts->ip6po_pktinfo) &&
244 !IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) {
245 struct sockaddr_in6 srcsock;
246 struct in6_ifaddr *ia6;
247
248 /* get the outgoing interface */
249 if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa,
250 &ifp)) != 0) {
251 src_storage = NULL;
252 goto done;
253 }
254
255 /*
256 * determine the appropriate zone id of the source based on
257 * the zone of the destination and the outgoing interface.
258 * If the specified address is ambiguous wrt the scope zone,
259 * the interface must be specified; otherwise, ifa_ifwithaddr()
260 * will fail matching the address.
261 */
262 bzero(&srcsock, sizeof (srcsock));
263 srcsock.sin6_family = AF_INET6;
264 srcsock.sin6_len = sizeof (srcsock);
265 srcsock.sin6_addr = pi->ipi6_addr;
266 if (ifp != NULL) {
267 *errorp = in6_setscope(&srcsock.sin6_addr, ifp, NULL);
268 if (*errorp != 0) {
269 src_storage = NULL;
270 goto done;
271 }
272 }
273 ia6 = (struct in6_ifaddr *)ifa_ifwithaddr((struct sockaddr *)
274 (&srcsock));
275 if (ia6 == NULL) {
276 *errorp = EADDRNOTAVAIL;
277 src_storage = NULL;
278 goto done;
279 }
280 IFA_LOCK_SPIN(&ia6->ia_ifa);
281 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY)) ||
282 (inp && inp_restricted_send(inp, ia6->ia_ifa.ifa_ifp))) {
283 IFA_UNLOCK(&ia6->ia_ifa);
284 IFA_REMREF(&ia6->ia_ifa);
285 *errorp = EHOSTUNREACH;
286 src_storage = NULL;
287 goto done;
288 }
289
290 *src_storage = satosin6(&ia6->ia_addr)->sin6_addr;
291 IFA_UNLOCK(&ia6->ia_ifa);
292 IFA_REMREF(&ia6->ia_ifa);
293 goto done;
294 }
295
296 /*
297 * Otherwise, if the socket has already bound the source, just use it.
298 */
299 if (inp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
300 src_storage = &inp->in6p_laddr;
301 goto done;
302 }
303
304 /*
305 * If the address is not specified, choose the best one based on
306 * the outgoing interface and the destination address.
307 */
308
309 /* get the outgoing interface */
310 if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa,
311 &ifp)) != 0) {
312 src_storage = NULL;
313 goto done;
314 }
315
316 *errorp = in6_setscope(&dst, ifp, &odstzone);
317 if (*errorp != 0) {
318 src_storage = NULL;
319 goto done;
320 }
321 lck_rw_lock_shared(&in6_ifaddr_rwlock);
322
323 for (ia = in6_ifaddrs; ia; ia = ia->ia_next) {
324 int new_scope = -1, new_matchlen = -1;
325 struct in6_addrpolicy *new_policy = NULL;
326 u_int32_t srczone, osrczone, dstzone;
327 struct in6_addr src;
328 struct ifnet *ifp1 = ia->ia_ifp;
329
330 IFA_LOCK(&ia->ia_ifa);
331 /*
332 * We'll never take an address that breaks the scope zone
333 * of the destination. We also skip an address if its zone
334 * does not contain the outgoing interface.
335 * XXX: we should probably use sin6_scope_id here.
336 */
337 if (in6_setscope(&dst, ifp1, &dstzone) ||
338 odstzone != dstzone)
339 goto next;
340
341 src = ia->ia_addr.sin6_addr;
342 if (in6_setscope(&src, ifp, &osrczone) ||
343 in6_setscope(&src, ifp1, &srczone) ||
344 osrczone != srczone)
345 goto next;
346
347 /* avoid unusable addresses */
348 if ((ia->ia6_flags &
349 (IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED)))
350 goto next;
351
352 if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia, secs))
353 goto next;
354
355 if (!nd6_optimistic_dad &&
356 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0)
357 goto next;
358
359 /* Rule 1: Prefer same address */
360 if (IN6_ARE_ADDR_EQUAL(&dst, &ia->ia_addr.sin6_addr))
361 BREAK(IP6S_SRCRULE_1); /* there should be no better candidate */
362
363 if (ia_best == NULL)
364 REPLACE(IP6S_SRCRULE_0);
365
366 /* Rule 2: Prefer appropriate scope */
367 if (dst_scope < 0)
368 dst_scope = in6_addrscope(&dst);
369 new_scope = in6_addrscope(&ia->ia_addr.sin6_addr);
370 if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) {
371 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0)
372 REPLACE(IP6S_SRCRULE_2);
373 NEXTSRC(IP6S_SRCRULE_2);
374 } else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) {
375 if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0)
376 NEXTSRC(IP6S_SRCRULE_2);
377 REPLACE(IP6S_SRCRULE_2);
378 }
379
380 /*
381 * Rule 3: Avoid deprecated addresses. Note that the case of
382 * !ip6_use_deprecated is already rejected above.
383 */
384 if (!IFA6_IS_DEPRECATED(ia_best, secs) &&
385 IFA6_IS_DEPRECATED(ia, secs))
386 NEXTSRC(IP6S_SRCRULE_3);
387 if (IFA6_IS_DEPRECATED(ia_best, secs) &&
388 !IFA6_IS_DEPRECATED(ia, secs))
389 REPLACE(IP6S_SRCRULE_3);
390
391 /*
392 * RFC 4429 says that optimistic addresses are equivalent to
393 * deprecated addresses, so avoid them here.
394 */
395 if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) == 0 &&
396 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0)
397 NEXTSRC(IP6S_SRCRULE_3);
398 if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) != 0 &&
399 (ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0)
400 REPLACE(IP6S_SRCRULE_3);
401
402 /* Rule 4: Prefer home addresses */
403 /*
404 * XXX: This is a TODO. We should probably merge the MIP6
405 * case above.
406 */
407
408 /* Rule 5: Prefer outgoing interface */
409 if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp)
410 NEXTSRC(IP6S_SRCRULE_5);
411 if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp)
412 REPLACE(IP6S_SRCRULE_5);
413
414 /* Rule 5.5: Prefer addresses in a prefix advertised by the next hop. */
415 if (ro != NULL && ro->ro_rt != NULL && ia_best->ia6_ndpr != NULL &&
416 ia->ia6_ndpr != NULL) {
417 struct rtentry *rta, *rtb;
418 int op;
419
420 NDPR_LOCK(ia_best->ia6_ndpr);
421 rta = ia_best->ia6_ndpr->ndpr_rt;
422 if (rta != NULL)
423 RT_ADDREF(rta);
424 NDPR_UNLOCK(ia_best->ia6_ndpr);
425
426 NDPR_LOCK(ia->ia6_ndpr);
427 rtb = ia->ia6_ndpr->ndpr_rt;
428 if (rtb != NULL)
429 RT_ADDREF(rtb);
430 NDPR_UNLOCK(ia->ia6_ndpr);
431
432 if (rta == NULL || rtb == NULL)
433 op = 0;
434 else if (rta == ro->ro_rt && rtb != ro->ro_rt)
435 op = 1;
436 else if (rta != ro->ro_rt && rtb == ro->ro_rt)
437 op = 2;
438 else
439 op = 0;
440
441 if (rta != NULL)
442 RT_REMREF(rta);
443 if (rtb != NULL)
444 RT_REMREF(rtb);
445
446 switch (op) {
447 case 1:
448 NEXTSRC(IP6S_SRCRULE_5_5);
449 break;
450 case 2:
451 REPLACE(IP6S_SRCRULE_5_5);
452 break;
453 default:
454 break;
455 }
456 }
457
458 /*
459 * Rule 6: Prefer matching label
460 * Note that best_policy should be non-NULL here.
461 */
462 if (dst_policy == NULL)
463 dst_policy = in6_addrsel_lookup_policy(dstsock);
464 if (dst_policy->label != ADDR_LABEL_NOTAPP) {
465 new_policy = in6_addrsel_lookup_policy(&ia->ia_addr);
466 if (dst_policy->label == best_policy->label &&
467 dst_policy->label != new_policy->label)
468 NEXTSRC(IP6S_SRCRULE_6);
469 if (dst_policy->label != best_policy->label &&
470 dst_policy->label == new_policy->label)
471 REPLACE(IP6S_SRCRULE_6);
472 }
473
474 /*
475 * Rule 7: Prefer temporary addresses.
476 * We allow users to reverse the logic by configuring
477 * a sysctl variable, so that transparency conscious users can
478 * always prefer stable addresses.
479 * Don't use temporary addresses for local destinations or
480 * for multicast addresses unless we were passed in an option.
481 */
482 if (IN6_IS_ADDR_MULTICAST(&dst) ||
483 in6_matchlen(&ia_best->ia_addr.sin6_addr, &dst) >=
484 ia_best->ia_plen)
485 islocal = TRUE;
486 if (opts == NULL ||
487 opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) {
488 prefer_tempaddr = islocal ? 0 : ip6_prefer_tempaddr;
489 } else if (opts->ip6po_prefer_tempaddr ==
490 IP6PO_TEMPADDR_NOTPREFER) {
491 prefer_tempaddr = 0;
492 } else
493 prefer_tempaddr = 1;
494 if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
495 (ia->ia6_flags & IN6_IFF_TEMPORARY)) {
496 if (prefer_tempaddr)
497 REPLACE(IP6S_SRCRULE_7);
498 else
499 NEXTSRC(IP6S_SRCRULE_7);
500 }
501 if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) &&
502 !(ia->ia6_flags & IN6_IFF_TEMPORARY)) {
503 if (prefer_tempaddr)
504 NEXTSRC(IP6S_SRCRULE_7);
505 else
506 REPLACE(IP6S_SRCRULE_7);
507 }
508
509 /*
510 * Rule 7x: prefer addresses on alive interfaces.
511 * This is a KAME specific rule.
512 */
513 if ((ia_best->ia_ifp->if_flags & IFF_UP) &&
514 !(ia->ia_ifp->if_flags & IFF_UP))
515 NEXTSRC(IP6S_SRCRULE_7x);
516 if (!(ia_best->ia_ifp->if_flags & IFF_UP) &&
517 (ia->ia_ifp->if_flags & IFF_UP))
518 REPLACE(IP6S_SRCRULE_7x);
519
520 /*
521 * Rule 8: Use longest matching prefix.
522 */
523 new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst);
524 if (best_matchlen < new_matchlen)
525 REPLACE(IP6S_SRCRULE_8);
526 if (new_matchlen < best_matchlen)
527 NEXTSRC(IP6S_SRCRULE_8);
528
529 /*
530 * Last resort: just keep the current candidate.
531 * Or, do we need more rules?
532 */
533 IFA_UNLOCK(&ia->ia_ifa);
534 continue;
535
536 replace:
537 best_scope = (new_scope >= 0 ? new_scope :
538 in6_addrscope(&ia->ia_addr.sin6_addr));
539 best_policy = (new_policy ? new_policy :
540 in6_addrsel_lookup_policy(&ia->ia_addr));
541 best_matchlen = (new_matchlen >= 0 ? new_matchlen :
542 in6_matchlen(&ia->ia_addr.sin6_addr, &dst));
543 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for ia_best */
544 IFA_UNLOCK(&ia->ia_ifa);
545 if (ia_best != NULL)
546 IFA_REMREF(&ia_best->ia_ifa);
547 ia_best = ia;
548 continue;
549
550 next:
551 IFA_UNLOCK(&ia->ia_ifa);
552 continue;
553
554 out:
555 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for ia_best */
556 IFA_UNLOCK(&ia->ia_ifa);
557 if (ia_best != NULL)
558 IFA_REMREF(&ia_best->ia_ifa);
559 ia_best = ia;
560 break;
561 }
562
563 lck_rw_done(&in6_ifaddr_rwlock);
564
565 if (ia_best != NULL && inp &&
566 inp_restricted_send(inp, ia_best->ia_ifa.ifa_ifp)) {
567 IFA_REMREF(&ia_best->ia_ifa);
568 ia_best = NULL;
569 *errorp = EHOSTUNREACH;
570 }
571
572 if ((ia = ia_best) == NULL) {
573 if (*errorp == 0)
574 *errorp = EADDRNOTAVAIL;
575 src_storage = NULL;
576 goto done;
577 }
578
579 IFA_LOCK_SPIN(&ia->ia_ifa);
580 *src_storage = satosin6(&ia->ia_addr)->sin6_addr;
581 IFA_UNLOCK(&ia->ia_ifa);
582 IFA_REMREF(&ia->ia_ifa);
583 done:
584 if (ifpp != NULL) {
585 /* if ifp is non-NULL, refcnt held in in6_selectif() */
586 *ifpp = ifp;
587 } else if (ifp != NULL) {
588 ifnet_release(ifp);
589 }
590 return (src_storage);
591 }
592
593 /*
594 * Given a source IPv6 address (and route, if available), determine the best
595 * interface to send the packet from. Checking for (and updating) the
596 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
597 * without any locks, based on the assumption that in the event this is
598 * called from ip6_output(), the output operation is single-threaded per-pcb,
599 * i.e. for any given pcb there can only be one thread performing output at
600 * the IPv6 layer.
601 *
602 * This routine is analogous to in_selectsrcif() for IPv4. Regardless of
603 * error, it will return an ifp with a reference held if the caller provides
604 * a non-NULL retifp. The caller is responsible for checking if the
605 * returned ifp is valid and release its reference at all times.
606 *
607 * clone - meaningful only for bsdi and freebsd
608 */
609 static int
610 selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock,
611 struct ip6_pktopts *opts, struct ip6_moptions *mopts,
612 struct in6_ifaddr **retsrcia, struct route_in6 *ro,
613 struct ifnet **retifp, struct rtentry **retrt, int clone,
614 int norouteok, struct ip6_out_args *ip6oa)
615 {
616 int error = 0;
617 struct ifnet *ifp = NULL, *ifp0 = NULL;
618 struct route_in6 *route = NULL;
619 struct sockaddr_in6 *sin6_next;
620 struct in6_pktinfo *pi = NULL;
621 struct in6_addr *dst = &dstsock->sin6_addr;
622 struct ifaddr *ifa = NULL;
623 char s_src[MAX_IPv6_STR_LEN], s_dst[MAX_IPv6_STR_LEN];
624 boolean_t select_srcif, proxied_ifa = FALSE, local_dst = FALSE;
625 unsigned int ifscope = ((ip6oa != NULL) ?
626 ip6oa->ip6oa_boundif : IFSCOPE_NONE);
627
628 #if 0
629 char ip6buf[INET6_ADDRSTRLEN];
630
631 if (dstsock->sin6_addr.s6_addr32[0] == 0 &&
632 dstsock->sin6_addr.s6_addr32[1] == 0 &&
633 !IN6_IS_ADDR_LOOPBACK(&dstsock->sin6_addr)) {
634 printf("in6_selectroute: strange destination %s\n",
635 ip6_sprintf(ip6buf, &dstsock->sin6_addr));
636 } else {
637 printf("in6_selectroute: destination = %s%%%d\n",
638 ip6_sprintf(ip6buf, &dstsock->sin6_addr),
639 dstsock->sin6_scope_id); /* for debug */
640 }
641 #endif
642
643 if (retifp != NULL)
644 *retifp = NULL;
645
646 if (retrt != NULL)
647 *retrt = NULL;
648
649 if (ip6_select_srcif_debug) {
650 struct in6_addr src;
651 src = (srcsock != NULL) ? srcsock->sin6_addr : in6addr_any;
652 (void) inet_ntop(AF_INET6, &src, s_src, sizeof (s_src));
653 (void) inet_ntop(AF_INET6, dst, s_dst, sizeof (s_dst));
654 }
655
656 /*
657 * If the destination address is UNSPECIFIED addr, bail out.
658 */
659 if (IN6_IS_ADDR_UNSPECIFIED(dst)) {
660 error = EHOSTUNREACH;
661 goto done;
662 }
663
664 /*
665 * Perform source interface selection only if Scoped Routing
666 * is enabled and a source address that isn't unspecified.
667 */
668 select_srcif = (ip6_doscopedroute && srcsock != NULL &&
669 !IN6_IS_ADDR_UNSPECIFIED(&srcsock->sin6_addr));
670
671 /*
672 * If Scoped Routing is disabled, ignore the given ifscope.
673 * Otherwise even if source selection won't be performed,
674 * we still obey IPV6_BOUND_IF.
675 */
676 if (!ip6_doscopedroute && ifscope != IFSCOPE_NONE)
677 ifscope = IFSCOPE_NONE;
678
679 /* If the caller specified the outgoing interface explicitly, use it */
680 if (opts != NULL && (pi = opts->ip6po_pktinfo) != NULL &&
681 pi->ipi6_ifindex != 0) {
682 /*
683 * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF.
684 */
685 ifscope = pi->ipi6_ifindex;
686 ifnet_head_lock_shared();
687 /* ifp may be NULL if detached or out of range */
688 ifp = ifp0 =
689 ((ifscope <= if_index) ? ifindex2ifnet[ifscope] : NULL);
690 ifnet_head_done();
691 if (norouteok || retrt == NULL || IN6_IS_ADDR_MULTICAST(dst)) {
692 /*
693 * We do not have to check or get the route for
694 * multicast. If the caller didn't ask/care for
695 * the route and we have no interface to use,
696 * it's an error.
697 */
698 if (ifp == NULL)
699 error = EHOSTUNREACH;
700 goto done;
701 } else {
702 goto getsrcif;
703 }
704 }
705
706 /*
707 * If the destination address is a multicast address and the outgoing
708 * interface for the address is specified by the caller, use it.
709 */
710 if (IN6_IS_ADDR_MULTICAST(dst) && mopts != NULL) {
711 IM6O_LOCK(mopts);
712 if ((ifp = ifp0 = mopts->im6o_multicast_ifp) != NULL) {
713 IM6O_UNLOCK(mopts);
714 goto done; /* we do not need a route for multicast. */
715 }
716 IM6O_UNLOCK(mopts);
717 }
718
719 getsrcif:
720 /*
721 * If the outgoing interface was not set via IPV6_BOUND_IF or
722 * IPV6_PKTINFO, use the scope ID in the destination address.
723 */
724 if (ip6_doscopedroute && ifscope == IFSCOPE_NONE)
725 ifscope = dstsock->sin6_scope_id;
726
727 /*
728 * Perform source interface selection; the source IPv6 address
729 * must belong to one of the addresses of the interface used
730 * by the route. For performance reasons, do this only if
731 * there is no route, or if the routing table has changed,
732 * or if we haven't done source interface selection on this
733 * route (for this PCB instance) before.
734 */
735 if (!select_srcif) {
736 goto getroute;
737 } else if (!ROUTE_UNUSABLE(ro) && ro->ro_srcia != NULL &&
738 (ro->ro_flags & ROF_SRCIF_SELECTED)) {
739 if (ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)
740 local_dst = TRUE;
741 ifa = ro->ro_srcia;
742 IFA_ADDREF(ifa); /* for caller */
743 goto getroute;
744 }
745
746 /*
747 * Given the source IPv6 address, find a suitable source interface
748 * to use for transmission; if a scope ID has been specified,
749 * optimize the search by looking at the addresses only for that
750 * interface. This is still suboptimal, however, as we need to
751 * traverse the per-interface list.
752 */
753 if (ifscope != IFSCOPE_NONE || (ro != NULL && ro->ro_rt != NULL)) {
754 unsigned int scope = ifscope;
755 struct ifnet *rt_ifp;
756
757 rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL;
758
759 /*
760 * If no scope is specified and the route is stale (pointing
761 * to a defunct interface) use the current primary interface;
762 * this happens when switching between interfaces configured
763 * with the same IPv6 address. Otherwise pick up the scope
764 * information from the route; the ULP may have looked up a
765 * correct route and we just need to verify it here and mark
766 * it with the ROF_SRCIF_SELECTED flag below.
767 */
768 if (scope == IFSCOPE_NONE) {
769 scope = rt_ifp->if_index;
770 if (scope != get_primary_ifscope(AF_INET6) &&
771 ROUTE_UNUSABLE(ro))
772 scope = get_primary_ifscope(AF_INET6);
773 }
774
775 ifa = (struct ifaddr *)
776 ifa_foraddr6_scoped(&srcsock->sin6_addr, scope);
777
778 /*
779 * If we are forwarding and proxying prefix(es), see if the
780 * source address is one of ours and is a proxied address;
781 * if so, use it.
782 */
783 if (ifa == NULL && ip6_forwarding && nd6_prproxy) {
784 ifa = (struct ifaddr *)
785 ifa_foraddr6(&srcsock->sin6_addr);
786 if (ifa != NULL && !(proxied_ifa =
787 nd6_prproxy_ifaddr((struct in6_ifaddr *)ifa))) {
788 IFA_REMREF(ifa);
789 ifa = NULL;
790 }
791 }
792
793 if (ip6_select_srcif_debug && ifa != NULL) {
794 if (ro->ro_rt != NULL) {
795 printf("%s->%s ifscope %d->%d ifa_if %s "
796 "ro_if %s\n", s_src, s_dst, ifscope,
797 scope, if_name(ifa->ifa_ifp),
798 if_name(rt_ifp));
799 } else {
800 printf("%s->%s ifscope %d->%d ifa_if %s\n",
801 s_src, s_dst, ifscope, scope,
802 if_name(ifa->ifa_ifp));
803 }
804 }
805 }
806
807 /*
808 * Slow path; search for an interface having the corresponding source
809 * IPv6 address if the scope was not specified by the caller, and:
810 *
811 * 1) There currently isn't any route, or,
812 * 2) The interface used by the route does not own that source
813 * IPv6 address; in this case, the route will get blown away
814 * and we'll do a more specific scoped search using the newly
815 * found interface.
816 */
817 if (ifa == NULL && ifscope == IFSCOPE_NONE) {
818 struct ifaddr *ifadst;
819
820 /* Check if the destination address is one of ours */
821 ifadst = (struct ifaddr *)ifa_foraddr6(&dstsock->sin6_addr);
822 if (ifadst != NULL) {
823 local_dst = TRUE;
824 IFA_REMREF(ifadst);
825 }
826
827 ifa = (struct ifaddr *)ifa_foraddr6(&srcsock->sin6_addr);
828
829 if (ip6_select_srcif_debug && ifa != NULL) {
830 printf("%s->%s ifscope %d ifa_if %s\n",
831 s_src, s_dst, ifscope, if_name(ifa->ifa_ifp));
832 }
833
834 }
835
836 getroute:
837 if (ifa != NULL && !proxied_ifa && !local_dst)
838 ifscope = ifa->ifa_ifp->if_index;
839
840 /*
841 * If the next hop address for the packet is specified by the caller,
842 * use it as the gateway.
843 */
844 if (opts != NULL && opts->ip6po_nexthop != NULL) {
845 struct route_in6 *ron;
846
847 sin6_next = satosin6(opts->ip6po_nexthop);
848
849 /* at this moment, we only support AF_INET6 next hops */
850 if (sin6_next->sin6_family != AF_INET6) {
851 error = EAFNOSUPPORT; /* or should we proceed? */
852 goto done;
853 }
854
855 /*
856 * If the next hop is an IPv6 address, then the node identified
857 * by that address must be a neighbor of the sending host.
858 */
859 ron = &opts->ip6po_nextroute;
860 if (ron->ro_rt != NULL)
861 RT_LOCK(ron->ro_rt);
862 if (ROUTE_UNUSABLE(ron) || (ron->ro_rt != NULL &&
863 (!(ron->ro_rt->rt_flags & RTF_LLINFO) ||
864 (select_srcif && (ifa == NULL ||
865 (ifa->ifa_ifp != ron->ro_rt->rt_ifp && !proxied_ifa))))) ||
866 !IN6_ARE_ADDR_EQUAL(&satosin6(&ron->ro_dst)->sin6_addr,
867 &sin6_next->sin6_addr)) {
868 if (ron->ro_rt != NULL)
869 RT_UNLOCK(ron->ro_rt);
870
871 ROUTE_RELEASE(ron);
872 *satosin6(&ron->ro_dst) = *sin6_next;
873 }
874 if (ron->ro_rt == NULL) {
875 rtalloc_scoped((struct route *)ron, ifscope);
876 if (ron->ro_rt != NULL)
877 RT_LOCK(ron->ro_rt);
878 if (ROUTE_UNUSABLE(ron) ||
879 !(ron->ro_rt->rt_flags & RTF_LLINFO) ||
880 !IN6_ARE_ADDR_EQUAL(&satosin6(rt_key(ron->ro_rt))->
881 sin6_addr, &sin6_next->sin6_addr)) {
882 if (ron->ro_rt != NULL)
883 RT_UNLOCK(ron->ro_rt);
884
885 ROUTE_RELEASE(ron);
886 error = EHOSTUNREACH;
887 goto done;
888 }
889 }
890 route = ron;
891 ifp = ifp0 = ron->ro_rt->rt_ifp;
892
893 /*
894 * When cloning is required, try to allocate a route to the
895 * destination so that the caller can store path MTU
896 * information.
897 */
898 if (!clone) {
899 if (select_srcif) {
900 /* Keep the route locked */
901 goto validateroute;
902 }
903 RT_UNLOCK(ron->ro_rt);
904 goto done;
905 }
906 RT_UNLOCK(ron->ro_rt);
907 }
908
909 /*
910 * Use a cached route if it exists and is valid, else try to allocate
911 * a new one. Note that we should check the address family of the
912 * cached destination, in case of sharing the cache with IPv4.
913 */
914 if (ro == NULL)
915 goto done;
916 if (ro->ro_rt != NULL)
917 RT_LOCK_SPIN(ro->ro_rt);
918 if (ROUTE_UNUSABLE(ro) || (ro->ro_rt != NULL &&
919 (satosin6(&ro->ro_dst)->sin6_family != AF_INET6 ||
920 !IN6_ARE_ADDR_EQUAL(&satosin6(&ro->ro_dst)->sin6_addr, dst) ||
921 (select_srcif && (ifa == NULL ||
922 (ifa->ifa_ifp != ro->ro_rt->rt_ifp && !proxied_ifa)))))) {
923 if (ro->ro_rt != NULL)
924 RT_UNLOCK(ro->ro_rt);
925
926 ROUTE_RELEASE(ro);
927 }
928 if (ro->ro_rt == NULL) {
929 struct sockaddr_in6 *sa6;
930
931 if (ro->ro_rt != NULL)
932 RT_UNLOCK(ro->ro_rt);
933 /* No route yet, so try to acquire one */
934 bzero(&ro->ro_dst, sizeof (struct sockaddr_in6));
935 sa6 = (struct sockaddr_in6 *)&ro->ro_dst;
936 sa6->sin6_family = AF_INET6;
937 sa6->sin6_len = sizeof (struct sockaddr_in6);
938 sa6->sin6_addr = *dst;
939 if (IN6_IS_ADDR_MULTICAST(dst)) {
940 ro->ro_rt = rtalloc1_scoped(
941 &((struct route *)ro)->ro_dst, 0, 0, ifscope);
942 } else {
943 rtalloc_scoped((struct route *)ro, ifscope);
944 }
945 if (ro->ro_rt != NULL)
946 RT_LOCK_SPIN(ro->ro_rt);
947 }
948
949 /*
950 * Do not care about the result if we have the nexthop
951 * explicitly specified (in case we're asked to clone.)
952 */
953 if (opts != NULL && opts->ip6po_nexthop != NULL) {
954 if (ro->ro_rt != NULL)
955 RT_UNLOCK(ro->ro_rt);
956 goto done;
957 }
958
959 if (ro->ro_rt != NULL) {
960 RT_LOCK_ASSERT_HELD(ro->ro_rt);
961 ifp = ifp0 = ro->ro_rt->rt_ifp;
962 } else {
963 error = EHOSTUNREACH;
964 }
965 route = ro;
966
967 validateroute:
968 if (select_srcif) {
969 boolean_t has_route = (route != NULL && route->ro_rt != NULL);
970 boolean_t srcif_selected = FALSE;
971
972 if (has_route)
973 RT_LOCK_ASSERT_HELD(route->ro_rt);
974 /*
975 * If there is a non-loopback route with the wrong interface,
976 * or if there is no interface configured with such an address,
977 * blow it away. Except for local/loopback, we look for one
978 * with a matching interface scope/index.
979 */
980 if (has_route && (ifa == NULL ||
981 (ifa->ifa_ifp != ifp && ifp != lo_ifp) ||
982 !(route->ro_rt->rt_flags & RTF_UP))) {
983 /*
984 * If the destination address belongs to a proxied
985 * prefix, relax the requirement and allow the packet
986 * to come out of the proxy interface with the source
987 * address of the real interface.
988 */
989 if (ifa != NULL && proxied_ifa &&
990 (route->ro_rt->rt_flags & (RTF_UP|RTF_PROXY)) ==
991 (RTF_UP|RTF_PROXY)) {
992 srcif_selected = TRUE;
993 } else {
994 if (ip6_select_srcif_debug) {
995 if (ifa != NULL) {
996 printf("%s->%s ifscope %d "
997 "ro_if %s != ifa_if %s "
998 "(cached route cleared)\n",
999 s_src, s_dst,
1000 ifscope, if_name(ifp),
1001 if_name(ifa->ifa_ifp));
1002 } else {
1003 printf("%s->%s ifscope %d "
1004 "ro_if %s (no ifa_if "
1005 "found)\n", s_src, s_dst,
1006 ifscope, if_name(ifp));
1007 }
1008 }
1009 RT_UNLOCK(route->ro_rt);
1010 ROUTE_RELEASE(route);
1011 error = EHOSTUNREACH;
1012 /* Undo the settings done above */
1013 route = NULL;
1014 ifp = NULL; /* ditch ifp; keep ifp0 */
1015 has_route = FALSE;
1016 }
1017 } else if (has_route) {
1018 srcif_selected = TRUE;
1019 }
1020
1021 if (srcif_selected) {
1022 VERIFY(has_route);
1023 if (ifa != route->ro_srcia ||
1024 !(route->ro_flags & ROF_SRCIF_SELECTED)) {
1025 RT_CONVERT_LOCK(route->ro_rt);
1026 if (ifa != NULL)
1027 IFA_ADDREF(ifa); /* for route_in6 */
1028 if (route->ro_srcia != NULL)
1029 IFA_REMREF(route->ro_srcia);
1030 route->ro_srcia = ifa;
1031 route->ro_flags |= ROF_SRCIF_SELECTED;
1032 RT_GENID_SYNC(route->ro_rt);
1033 }
1034 RT_UNLOCK(route->ro_rt);
1035 }
1036 } else {
1037 if (ro->ro_rt != NULL)
1038 RT_UNLOCK(ro->ro_rt);
1039 if (ifp != NULL && opts != NULL &&
1040 opts->ip6po_pktinfo != NULL &&
1041 opts->ip6po_pktinfo->ipi6_ifindex != 0) {
1042 /*
1043 * Check if the outgoing interface conflicts with the
1044 * interface specified by ipi6_ifindex (if specified).
1045 * Note that loopback interface is always okay.
1046 * (this may happen when we are sending a packet to
1047 * one of our own addresses.)
1048 */
1049 if (!(ifp->if_flags & IFF_LOOPBACK) && ifp->if_index !=
1050 opts->ip6po_pktinfo->ipi6_ifindex) {
1051 error = EHOSTUNREACH;
1052 goto done;
1053 }
1054 }
1055 }
1056
1057 done:
1058 /*
1059 * Check for interface restrictions.
1060 */
1061 #define CHECK_RESTRICTIONS(_ip6oa, _ifp) \
1062 ((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \
1063 IFNET_IS_CELLULAR(_ifp)) || \
1064 (((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \
1065 IFNET_IS_EXPENSIVE(_ifp)) || \
1066 (!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \
1067 IFNET_IS_AWDL_RESTRICTED(_ifp)))
1068
1069 if (error == 0 && ip6oa != NULL &&
1070 ((ifp && CHECK_RESTRICTIONS(ip6oa, ifp)) ||
1071 (route && route->ro_rt &&
1072 CHECK_RESTRICTIONS(ip6oa, route->ro_rt->rt_ifp)))) {
1073 if (route != NULL && route->ro_rt != NULL) {
1074 ROUTE_RELEASE(route);
1075 route = NULL;
1076 }
1077 ifp = NULL; /* ditch ifp; keep ifp0 */
1078 error = EHOSTUNREACH;
1079 ip6oa->ip6oa_retflags |= IP6OARF_IFDENIED;
1080 }
1081 #undef CHECK_RESTRICTIONS
1082
1083 /*
1084 * If the interface is disabled for IPv6, then ENETDOWN error.
1085 */
1086 if (error == 0 &&
1087 ifp != NULL && (ifp->if_eflags & IFEF_IPV6_DISABLED)) {
1088 error = ENETDOWN;
1089 }
1090
1091 if (ifp == NULL && (route == NULL || route->ro_rt == NULL)) {
1092 /*
1093 * This can happen if the caller did not pass a cached route
1094 * nor any other hints. We treat this case an error.
1095 */
1096 error = EHOSTUNREACH;
1097 }
1098 if (error == EHOSTUNREACH || error == ENETDOWN)
1099 ip6stat.ip6s_noroute++;
1100
1101 /*
1102 * We'll return ifp regardless of error, so pick it up from ifp0
1103 * in case it was nullified above. Caller is responsible for
1104 * releasing the ifp if it is non-NULL.
1105 */
1106 ifp = ifp0;
1107 if (retifp != NULL) {
1108 if (ifp != NULL)
1109 ifnet_reference(ifp); /* for caller */
1110 *retifp = ifp;
1111 }
1112
1113 if (retsrcia != NULL) {
1114 if (ifa != NULL)
1115 IFA_ADDREF(ifa); /* for caller */
1116 *retsrcia = (struct in6_ifaddr *)ifa;
1117 }
1118
1119 if (error == 0) {
1120 if (retrt != NULL && route != NULL)
1121 *retrt = route->ro_rt; /* ro_rt may be NULL */
1122 } else if (select_srcif && ip6_select_srcif_debug) {
1123 printf("%s->%s ifscope %d ifa_if %s ro_if %s (error=%d)\n",
1124 s_src, s_dst, ifscope,
1125 (ifa != NULL) ? if_name(ifa->ifa_ifp) : "NONE",
1126 (ifp != NULL) ? if_name(ifp) : "NONE", error);
1127 }
1128
1129 if (ifa != NULL)
1130 IFA_REMREF(ifa);
1131
1132 return (error);
1133 }
1134
1135 /*
1136 * Regardless of error, it will return an ifp with a reference held if the
1137 * caller provides a non-NULL retifp. The caller is responsible for checking
1138 * if the returned ifp is valid and release its reference at all times.
1139 */
1140 static int
1141 in6_selectif(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts,
1142 struct ip6_moptions *mopts, struct route_in6 *ro,
1143 struct ip6_out_args *ip6oa, struct ifnet **retifp)
1144 {
1145 int err = 0;
1146 struct route_in6 sro;
1147 struct rtentry *rt = NULL;
1148
1149 if (ro == NULL) {
1150 bzero(&sro, sizeof (sro));
1151 ro = &sro;
1152 }
1153
1154 if ((err = selectroute(NULL, dstsock, opts, mopts, NULL, ro, retifp,
1155 &rt, 0, 1, ip6oa)) != 0)
1156 goto done;
1157
1158 /*
1159 * do not use a rejected or black hole route.
1160 * XXX: this check should be done in the L2 output routine.
1161 * However, if we skipped this check here, we'd see the following
1162 * scenario:
1163 * - install a rejected route for a scoped address prefix
1164 * (like fe80::/10)
1165 * - send a packet to a destination that matches the scoped prefix,
1166 * with ambiguity about the scope zone.
1167 * - pick the outgoing interface from the route, and disambiguate the
1168 * scope zone with the interface.
1169 * - ip6_output() would try to get another route with the "new"
1170 * destination, which may be valid.
1171 * - we'd see no error on output.
1172 * Although this may not be very harmful, it should still be confusing.
1173 * We thus reject the case here.
1174 */
1175 if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE))) {
1176 err = ((rt->rt_flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH);
1177 goto done;
1178 }
1179
1180 /*
1181 * Adjust the "outgoing" interface. If we're going to loop the packet
1182 * back to ourselves, the ifp would be the loopback interface.
1183 * However, we'd rather know the interface associated to the
1184 * destination address (which should probably be one of our own
1185 * addresses.)
1186 */
1187 if (rt != NULL && rt->rt_ifa != NULL && rt->rt_ifa->ifa_ifp != NULL &&
1188 retifp != NULL) {
1189 ifnet_reference(rt->rt_ifa->ifa_ifp);
1190 if (*retifp != NULL)
1191 ifnet_release(*retifp);
1192 *retifp = rt->rt_ifa->ifa_ifp;
1193 }
1194
1195 done:
1196 if (ro == &sro) {
1197 VERIFY(rt == NULL || rt == ro->ro_rt);
1198 ROUTE_RELEASE(ro);
1199 }
1200
1201 /*
1202 * retifp might point to a valid ifp with a reference held;
1203 * caller is responsible for releasing it if non-NULL.
1204 */
1205 return (err);
1206 }
1207
1208 /*
1209 * Regardless of error, it will return an ifp with a reference held if the
1210 * caller provides a non-NULL retifp. The caller is responsible for checking
1211 * if the returned ifp is valid and release its reference at all times.
1212 *
1213 * clone - meaningful only for bsdi and freebsd
1214 */
1215 int
1216 in6_selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock,
1217 struct ip6_pktopts *opts, struct ip6_moptions *mopts,
1218 struct in6_ifaddr **retsrcia, struct route_in6 *ro, struct ifnet **retifp,
1219 struct rtentry **retrt, int clone, struct ip6_out_args *ip6oa)
1220 {
1221
1222 return (selectroute(srcsock, dstsock, opts, mopts, retsrcia, ro, retifp,
1223 retrt, clone, 0, ip6oa));
1224 }
1225
1226 /*
1227 * Default hop limit selection. The precedence is as follows:
1228 * 1. Hoplimit value specified via ioctl.
1229 * 2. (If the outgoing interface is detected) the current
1230 * hop limit of the interface specified by router advertisement.
1231 * 3. The system default hoplimit.
1232 */
1233 int
1234 in6_selecthlim(struct in6pcb *in6p, struct ifnet *ifp)
1235 {
1236 if (in6p && in6p->in6p_hops >= 0) {
1237 return (in6p->in6p_hops);
1238 } else {
1239 lck_rw_lock_shared(nd_if_rwlock);
1240 if (ifp && ifp->if_index < nd_ifinfo_indexlim) {
1241 u_int8_t chlim;
1242 struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index];
1243
1244 if (ndi->initialized) {
1245 /* access chlim without lock, for performance */
1246 chlim = ndi->chlim;
1247 } else {
1248 chlim = ip6_defhlim;
1249 }
1250 lck_rw_done(nd_if_rwlock);
1251 return (chlim);
1252 } else {
1253 lck_rw_done(nd_if_rwlock);
1254 return (ip6_defhlim);
1255 }
1256 }
1257 }
1258
1259 /*
1260 * XXX: this is borrowed from in6_pcbbind(). If possible, we should
1261 * share this function by all *bsd*...
1262 */
1263 int
1264 in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct proc *p,
1265 int locked)
1266 {
1267 #pragma unused(laddr)
1268 struct socket *so = inp->inp_socket;
1269 u_int16_t lport = 0, first, last, *lastport;
1270 int count, error = 0, wild = 0;
1271 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1272 kauth_cred_t cred;
1273 if (!locked) { /* Make sure we don't run into a deadlock: 4052373 */
1274 if (!lck_rw_try_lock_exclusive(pcbinfo->ipi_lock)) {
1275 socket_unlock(inp->inp_socket, 0);
1276 lck_rw_lock_exclusive(pcbinfo->ipi_lock);
1277 socket_lock(inp->inp_socket, 0);
1278 }
1279
1280 /*
1281 * Check if a local port was assigned to the inp while
1282 * this thread was waiting for the pcbinfo lock
1283 */
1284 if (inp->inp_lport != 0) {
1285 VERIFY(inp->inp_flags2 & INP2_INHASHLIST);
1286 lck_rw_done(pcbinfo->ipi_lock);
1287
1288 /*
1289 * It is not an error if another thread allocated
1290 * a port
1291 */
1292 return (0);
1293 }
1294 }
1295
1296 /* XXX: this is redundant when called from in6_pcbbind */
1297 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
1298 wild = INPLOOKUP_WILDCARD;
1299
1300 if (inp->inp_flags & INP_HIGHPORT) {
1301 first = ipport_hifirstauto; /* sysctl */
1302 last = ipport_hilastauto;
1303 lastport = &pcbinfo->ipi_lasthi;
1304 } else if (inp->inp_flags & INP_LOWPORT) {
1305 cred = kauth_cred_proc_ref(p);
1306 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
1307 kauth_cred_unref(&cred);
1308 if (error != 0) {
1309 if (!locked)
1310 lck_rw_done(pcbinfo->ipi_lock);
1311 return (error);
1312 }
1313 first = ipport_lowfirstauto; /* 1023 */
1314 last = ipport_lowlastauto; /* 600 */
1315 lastport = &pcbinfo->ipi_lastlow;
1316 } else {
1317 first = ipport_firstauto; /* sysctl */
1318 last = ipport_lastauto;
1319 lastport = &pcbinfo->ipi_lastport;
1320 }
1321 /*
1322 * Simple check to ensure all ports are not used up causing
1323 * a deadlock here.
1324 *
1325 * We split the two cases (up and down) so that the direction
1326 * is not being tested on each round of the loop.
1327 */
1328 if (first > last) {
1329 /*
1330 * counting down
1331 */
1332 count = first - last;
1333
1334 do {
1335 if (count-- < 0) { /* completely used? */
1336 /*
1337 * Undo any address bind that may have
1338 * occurred above.
1339 */
1340 inp->in6p_laddr = in6addr_any;
1341 inp->in6p_last_outifp = NULL;
1342 if (!locked)
1343 lck_rw_done(pcbinfo->ipi_lock);
1344 return (EAGAIN);
1345 }
1346 --*lastport;
1347 if (*lastport > first || *lastport < last)
1348 *lastport = first;
1349 lport = htons(*lastport);
1350 } while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport,
1351 wild));
1352 } else {
1353 /* counting up */
1354 count = last - first;
1355
1356 do {
1357 if (count-- < 0) { /* completely used? */
1358 /*
1359 * Undo any address bind that may have
1360 * occurred above.
1361 */
1362 inp->in6p_laddr = in6addr_any;
1363 inp->in6p_last_outifp = NULL;
1364 if (!locked)
1365 lck_rw_done(pcbinfo->ipi_lock);
1366 return (EAGAIN);
1367 }
1368 ++*lastport;
1369 if (*lastport < first || *lastport > last)
1370 *lastport = first;
1371 lport = htons(*lastport);
1372 } while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport,
1373 wild));
1374 }
1375
1376 inp->inp_lport = lport;
1377 inp->inp_flags |= INP_ANONPORT;
1378
1379 if (in_pcbinshash(inp, 1) != 0) {
1380 inp->in6p_laddr = in6addr_any;
1381 inp->in6p_last_outifp = NULL;
1382
1383 inp->inp_lport = 0;
1384 inp->inp_flags &= ~INP_ANONPORT;
1385 if (!locked)
1386 lck_rw_done(pcbinfo->ipi_lock);
1387 return (EAGAIN);
1388 }
1389
1390 if (!locked)
1391 lck_rw_done(pcbinfo->ipi_lock);
1392 return (0);
1393 }
1394
1395 /*
1396 * The followings are implementation of the policy table using a
1397 * simple tail queue.
1398 * XXX such details should be hidden.
1399 * XXX implementation using binary tree should be more efficient.
1400 */
1401 struct addrsel_policyent {
1402 TAILQ_ENTRY(addrsel_policyent) ape_entry;
1403 struct in6_addrpolicy ape_policy;
1404 };
1405
1406 TAILQ_HEAD(addrsel_policyhead, addrsel_policyent);
1407
1408 struct addrsel_policyhead addrsel_policytab;
1409
1410 static void
1411 init_policy_queue(void)
1412 {
1413 TAILQ_INIT(&addrsel_policytab);
1414 }
1415
1416 void
1417 addrsel_policy_init(void)
1418 {
1419 /*
1420 * Default address selection policy based on RFC 6724.
1421 */
1422 static const struct in6_addrpolicy defaddrsel[] = {
1423 /* Loopback -- prefix=::1/128, precedence=50, label=0 */
1424 {
1425 .addr = {
1426 .sin6_family = AF_INET6,
1427 .sin6_addr = IN6ADDR_LOOPBACK_INIT,
1428 .sin6_len = sizeof (struct sockaddr_in6)
1429 },
1430 .addrmask = {
1431 .sin6_family = AF_INET6,
1432 .sin6_addr = IN6MASK128,
1433 .sin6_len = sizeof (struct sockaddr_in6)
1434 },
1435 .preced = 50,
1436 .label = 0
1437 },
1438
1439 /* Unspecified -- prefix=::/0, precedence=40, label=1 */
1440 {
1441 .addr = {
1442 .sin6_family = AF_INET6,
1443 .sin6_addr = IN6ADDR_ANY_INIT,
1444 .sin6_len = sizeof (struct sockaddr_in6)
1445 },
1446 .addrmask = {
1447 .sin6_family = AF_INET6,
1448 .sin6_addr = IN6MASK0,
1449 .sin6_len = sizeof (struct sockaddr_in6)
1450 },
1451 .preced = 40,
1452 .label = 1
1453 },
1454
1455 /* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */
1456 {
1457 .addr = {
1458 .sin6_family = AF_INET6,
1459 .sin6_addr = IN6ADDR_V4MAPPED_INIT,
1460 .sin6_len = sizeof (struct sockaddr_in6)
1461 },
1462 .addrmask = {
1463 .sin6_family = AF_INET6,
1464 .sin6_addr = IN6MASK96,
1465 .sin6_len = sizeof (struct sockaddr_in6)
1466 },
1467 .preced = 35,
1468 .label = 4
1469 },
1470
1471 /* 6to4 -- prefix=2002::/16, precedence=30, label=2 */
1472 {
1473 .addr = {
1474 .sin6_family = AF_INET6,
1475 .sin6_addr = {{{ 0x20, 0x02 }}},
1476 .sin6_len = sizeof (struct sockaddr_in6)
1477 },
1478 .addrmask = {
1479 .sin6_family = AF_INET6,
1480 .sin6_addr = IN6MASK16,
1481 .sin6_len = sizeof (struct sockaddr_in6)
1482 },
1483 .preced = 30,
1484 .label = 2
1485 },
1486
1487 /* Teredo -- prefix=2001::/32, precedence=5, label=5 */
1488 {
1489 .addr = {
1490 .sin6_family = AF_INET6,
1491 .sin6_addr = {{{ 0x20, 0x01 }}},
1492 .sin6_len = sizeof (struct sockaddr_in6)
1493 },
1494 .addrmask = {
1495 .sin6_family = AF_INET6,
1496 .sin6_addr = IN6MASK32,
1497 .sin6_len = sizeof (struct sockaddr_in6)
1498 },
1499 .preced = 5,
1500 .label = 5
1501 },
1502
1503 /* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */
1504 {
1505 .addr = {
1506 .sin6_family = AF_INET6,
1507 .sin6_addr = {{{ 0xfc }}},
1508 .sin6_len = sizeof (struct sockaddr_in6)
1509 },
1510 .addrmask = {
1511 .sin6_family = AF_INET6,
1512 .sin6_addr = IN6MASK7,
1513 .sin6_len = sizeof (struct sockaddr_in6)
1514 },
1515 .preced = 3,
1516 .label = 13
1517 },
1518
1519 /* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */
1520 {
1521 .addr = {
1522 .sin6_family = AF_INET6,
1523 .sin6_addr = IN6ADDR_ANY_INIT,
1524 .sin6_len = sizeof (struct sockaddr_in6)
1525 },
1526 .addrmask = {
1527 .sin6_family = AF_INET6,
1528 .sin6_addr = IN6MASK96,
1529 .sin6_len = sizeof (struct sockaddr_in6)
1530 },
1531 .preced = 1,
1532 .label = 3
1533 },
1534
1535 /* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */
1536 {
1537 .addr = {
1538 .sin6_family = AF_INET6,
1539 .sin6_addr = {{{ 0xfe, 0xc0 }}},
1540 .sin6_len = sizeof (struct sockaddr_in6)
1541 },
1542 .addrmask = {
1543 .sin6_family = AF_INET6,
1544 .sin6_addr = IN6MASK16,
1545 .sin6_len = sizeof (struct sockaddr_in6)
1546 },
1547 .preced = 1,
1548 .label = 11
1549 },
1550
1551 /* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */
1552 {
1553 .addr = {
1554 .sin6_family = AF_INET6,
1555 .sin6_addr = {{{ 0x3f, 0xfe }}},
1556 .sin6_len = sizeof (struct sockaddr_in6)
1557 },
1558 .addrmask = {
1559 .sin6_family = AF_INET6,
1560 .sin6_addr = IN6MASK16,
1561 .sin6_len = sizeof (struct sockaddr_in6)
1562 },
1563 .preced = 1,
1564 .label = 12
1565 },
1566 };
1567 int i;
1568
1569 init_policy_queue();
1570
1571 /* initialize the "last resort" policy */
1572 bzero(&defaultaddrpolicy, sizeof (defaultaddrpolicy));
1573 defaultaddrpolicy.label = ADDR_LABEL_NOTAPP;
1574
1575 for (i = 0; i < sizeof (defaddrsel) / sizeof (defaddrsel[0]); i++)
1576 add_addrsel_policyent(&defaddrsel[i]);
1577
1578 }
1579
1580 struct in6_addrpolicy *
1581 in6_addrsel_lookup_policy(struct sockaddr_in6 *key)
1582 {
1583 struct in6_addrpolicy *match = NULL;
1584
1585 ADDRSEL_LOCK();
1586 match = match_addrsel_policy(key);
1587
1588 if (match == NULL)
1589 match = &defaultaddrpolicy;
1590 else
1591 match->use++;
1592 ADDRSEL_UNLOCK();
1593
1594 return (match);
1595 }
1596
1597 static struct in6_addrpolicy *
1598 match_addrsel_policy(struct sockaddr_in6 *key)
1599 {
1600 struct addrsel_policyent *pent;
1601 struct in6_addrpolicy *bestpol = NULL, *pol;
1602 int matchlen, bestmatchlen = -1;
1603 u_char *mp, *ep, *k, *p, m;
1604
1605 TAILQ_FOREACH(pent, &addrsel_policytab, ape_entry) {
1606 matchlen = 0;
1607
1608 pol = &pent->ape_policy;
1609 mp = (u_char *)&pol->addrmask.sin6_addr;
1610 ep = mp + 16; /* XXX: scope field? */
1611 k = (u_char *)&key->sin6_addr;
1612 p = (u_char *)&pol->addr.sin6_addr;
1613 for (; mp < ep && *mp; mp++, k++, p++) {
1614 m = *mp;
1615 if ((*k & m) != *p)
1616 goto next; /* not match */
1617 if (m == 0xff) /* short cut for a typical case */
1618 matchlen += 8;
1619 else {
1620 while (m >= 0x80) {
1621 matchlen++;
1622 m <<= 1;
1623 }
1624 }
1625 }
1626
1627 /* matched. check if this is better than the current best. */
1628 if (bestpol == NULL ||
1629 matchlen > bestmatchlen) {
1630 bestpol = pol;
1631 bestmatchlen = matchlen;
1632 }
1633
1634 next:
1635 continue;
1636 }
1637
1638 return (bestpol);
1639 }
1640
1641 static int
1642 add_addrsel_policyent(const struct in6_addrpolicy *newpolicy)
1643 {
1644 struct addrsel_policyent *new, *pol;
1645
1646 MALLOC(new, struct addrsel_policyent *, sizeof (*new), M_IFADDR,
1647 M_WAITOK);
1648
1649 ADDRSEL_LOCK();
1650
1651 /* duplication check */
1652 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1653 if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr,
1654 &pol->ape_policy.addr.sin6_addr) &&
1655 IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr,
1656 &pol->ape_policy.addrmask.sin6_addr)) {
1657 ADDRSEL_UNLOCK();
1658 FREE(new, M_IFADDR);
1659 return (EEXIST); /* or override it? */
1660 }
1661 }
1662
1663 bzero(new, sizeof (*new));
1664
1665 /* XXX: should validate entry */
1666 new->ape_policy = *newpolicy;
1667
1668 TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry);
1669 ADDRSEL_UNLOCK();
1670
1671 return (0);
1672 }
1673 #ifdef ENABLE_ADDRSEL
1674 static int
1675 delete_addrsel_policyent(const struct in6_addrpolicy *key)
1676 {
1677 struct addrsel_policyent *pol;
1678
1679
1680 ADDRSEL_LOCK();
1681
1682 /* search for the entry in the table */
1683 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1684 if (IN6_ARE_ADDR_EQUAL(&key->addr.sin6_addr,
1685 &pol->ape_policy.addr.sin6_addr) &&
1686 IN6_ARE_ADDR_EQUAL(&key->addrmask.sin6_addr,
1687 &pol->ape_policy.addrmask.sin6_addr)) {
1688 break;
1689 }
1690 }
1691 if (pol == NULL) {
1692 ADDRSEL_UNLOCK();
1693 return (ESRCH);
1694 }
1695
1696 TAILQ_REMOVE(&addrsel_policytab, pol, ape_entry);
1697 FREE(pol, M_IFADDR);
1698 pol = NULL;
1699 ADDRSEL_UNLOCK();
1700
1701 return (0);
1702 }
1703 #endif /* ENABLE_ADDRSEL */
1704
1705 int
1706 walk_addrsel_policy(int (*callback)(const struct in6_addrpolicy *, void *),
1707 void *w)
1708 {
1709 struct addrsel_policyent *pol;
1710 int error = 0;
1711
1712 ADDRSEL_LOCK();
1713 TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) {
1714 if ((error = (*callback)(&pol->ape_policy, w)) != 0) {
1715 ADDRSEL_UNLOCK();
1716 return (error);
1717 }
1718 }
1719 ADDRSEL_UNLOCK();
1720 return (error);
1721 }
1722 /*
1723 * Subroutines to manage the address selection policy table via sysctl.
1724 */
1725 struct walkarg {
1726 struct sysctl_req *w_req;
1727 };
1728
1729
1730 static int
1731 dump_addrsel_policyent(const struct in6_addrpolicy *pol, void *arg)
1732 {
1733 int error = 0;
1734 struct walkarg *w = arg;
1735
1736 error = SYSCTL_OUT(w->w_req, pol, sizeof (*pol));
1737
1738 return (error);
1739 }
1740
1741 static int
1742 in6_src_sysctl SYSCTL_HANDLER_ARGS
1743 {
1744 #pragma unused(oidp, arg1, arg2)
1745 struct walkarg w;
1746
1747 if (req->newptr)
1748 return (EPERM);
1749 bzero(&w, sizeof (w));
1750 w.w_req = req;
1751
1752 return (walk_addrsel_policy(dump_addrsel_policyent, &w));
1753 }
1754
1755
1756 SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy,
1757 CTLFLAG_RD | CTLFLAG_LOCKED, in6_src_sysctl, "");
1758 int
1759 in6_src_ioctl(u_long cmd, caddr_t data)
1760 {
1761 int i;
1762 struct in6_addrpolicy ent0;
1763
1764 if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY)
1765 return (EOPNOTSUPP); /* check for safety */
1766
1767 bcopy(data, &ent0, sizeof (ent0));
1768
1769 if (ent0.label == ADDR_LABEL_NOTAPP)
1770 return (EINVAL);
1771 /* check if the prefix mask is consecutive. */
1772 if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0)
1773 return (EINVAL);
1774 /* clear trailing garbages (if any) of the prefix address. */
1775 for (i = 0; i < 4; i++) {
1776 ent0.addr.sin6_addr.s6_addr32[i] &=
1777 ent0.addrmask.sin6_addr.s6_addr32[i];
1778 }
1779 ent0.use = 0;
1780
1781 switch (cmd) {
1782 case SIOCAADDRCTL_POLICY:
1783 #ifdef ENABLE_ADDRSEL
1784 return (add_addrsel_policyent(&ent0));
1785 #else
1786 return (ENOTSUP);
1787 #endif
1788 case SIOCDADDRCTL_POLICY:
1789 #ifdef ENABLE_ADDRSEL
1790 return (delete_addrsel_policyent(&ent0));
1791 #else
1792 return (ENOTSUP);
1793 #endif
1794 }
1795
1796 return (0); /* XXX: compromise compilers */
1797 }
1798
1799 /*
1800 * generate kernel-internal form (scopeid embedded into s6_addr16[1]).
1801 * If the address scope of is link-local, embed the interface index in the
1802 * address. The routine determines our precedence
1803 * between advanced API scope/interface specification and basic API
1804 * specification.
1805 *
1806 * this function should be nuked in the future, when we get rid of
1807 * embedded scopeid thing.
1808 *
1809 * XXX actually, it is over-specification to return ifp against sin6_scope_id.
1810 * there can be multiple interfaces that belong to a particular scope zone
1811 * (in specification, we have 1:N mapping between a scope zone and interfaces).
1812 * we may want to change the function to return something other than ifp.
1813 */
1814 int
1815 in6_embedscope(struct in6_addr *in6, const struct sockaddr_in6 *sin6,
1816 struct in6pcb *in6p, struct ifnet **ifpp, struct ip6_pktopts *opt)
1817 {
1818 struct ifnet *ifp = NULL;
1819 u_int32_t scopeid;
1820 struct ip6_pktopts *optp = NULL;
1821
1822 *in6 = sin6->sin6_addr;
1823 scopeid = sin6->sin6_scope_id;
1824 if (ifpp != NULL)
1825 *ifpp = NULL;
1826
1827 /*
1828 * don't try to read sin6->sin6_addr beyond here, since the caller may
1829 * ask us to overwrite existing sockaddr_in6
1830 */
1831
1832 #ifdef ENABLE_DEFAULT_SCOPE
1833 if (scopeid == 0)
1834 scopeid = scope6_addr2default(in6);
1835 #endif
1836
1837 if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) {
1838 struct in6_pktinfo *pi;
1839 struct ifnet *im6o_multicast_ifp = NULL;
1840
1841 if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) &&
1842 in6p->in6p_moptions != NULL) {
1843 IM6O_LOCK(in6p->in6p_moptions);
1844 im6o_multicast_ifp =
1845 in6p->in6p_moptions->im6o_multicast_ifp;
1846 IM6O_UNLOCK(in6p->in6p_moptions);
1847 }
1848
1849 if (opt != NULL)
1850 optp = opt;
1851 else if (in6p != NULL)
1852 optp = in6p->in6p_outputopts;
1853 /*
1854 * KAME assumption: link id == interface id
1855 */
1856 if (in6p != NULL && optp != NULL &&
1857 (pi = optp->ip6po_pktinfo) != NULL &&
1858 pi->ipi6_ifindex != 0) {
1859 /* ifp is needed here if only we're returning it */
1860 if (ifpp != NULL) {
1861 ifnet_head_lock_shared();
1862 ifp = ifindex2ifnet[pi->ipi6_ifindex];
1863 ifnet_head_done();
1864 }
1865 in6->s6_addr16[1] = htons(pi->ipi6_ifindex);
1866 } else if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) &&
1867 in6p->in6p_moptions != NULL && im6o_multicast_ifp != NULL) {
1868 ifp = im6o_multicast_ifp;
1869 in6->s6_addr16[1] = htons(ifp->if_index);
1870 } else if (scopeid != 0) {
1871 /*
1872 * Since scopeid is unsigned, we only have to check it
1873 * against if_index (ifnet_head_lock not needed since
1874 * if_index is an ever-increasing integer.)
1875 */
1876 if (if_index < scopeid)
1877 return (ENXIO); /* XXX EINVAL? */
1878
1879 /* ifp is needed here only if we're returning it */
1880 if (ifpp != NULL) {
1881 ifnet_head_lock_shared();
1882 ifp = ifindex2ifnet[scopeid];
1883 ifnet_head_done();
1884 }
1885 /* XXX assignment to 16bit from 32bit variable */
1886 in6->s6_addr16[1] = htons(scopeid & 0xffff);
1887 }
1888
1889 if (ifpp != NULL) {
1890 if (ifp != NULL)
1891 ifnet_reference(ifp); /* for caller */
1892 *ifpp = ifp;
1893 }
1894 }
1895
1896 return (0);
1897 }
1898
1899 /*
1900 * generate standard sockaddr_in6 from embedded form.
1901 * touches sin6_addr and sin6_scope_id only.
1902 *
1903 * this function should be nuked in the future, when we get rid of
1904 * embedded scopeid thing.
1905 */
1906 int
1907 in6_recoverscope(
1908 struct sockaddr_in6 *sin6,
1909 const struct in6_addr *in6,
1910 struct ifnet *ifp)
1911 {
1912 u_int32_t scopeid;
1913
1914 sin6->sin6_addr = *in6;
1915
1916 /*
1917 * don't try to read *in6 beyond here, since the caller may
1918 * ask us to overwrite existing sockaddr_in6
1919 */
1920
1921 sin6->sin6_scope_id = 0;
1922 if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) {
1923 /*
1924 * KAME assumption: link id == interface id
1925 */
1926 scopeid = ntohs(sin6->sin6_addr.s6_addr16[1]);
1927 if (scopeid) {
1928 /*
1929 * sanity check
1930 *
1931 * Since scopeid is unsigned, we only have to check it
1932 * against if_index
1933 */
1934 if (if_index < scopeid)
1935 return (ENXIO);
1936 if (ifp && ifp->if_index != scopeid)
1937 return (ENXIO);
1938 sin6->sin6_addr.s6_addr16[1] = 0;
1939 sin6->sin6_scope_id = scopeid;
1940 }
1941 }
1942
1943 return (0);
1944 }