]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kpi_socket.c
xnu-2782.40.9.tar.gz
[apple/xnu.git] / bsd / kern / kpi_socket.c
1 /*
2 * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #define __KPI__
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/types.h>
33 #include <sys/socket.h>
34 #include <sys/socketvar.h>
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/errno.h>
38 #include <sys/malloc.h>
39 #include <sys/protosw.h>
40 #include <sys/domain.h>
41 #include <sys/mbuf.h>
42 #include <sys/fcntl.h>
43 #include <sys/filio.h>
44 #include <sys/uio_internal.h>
45 #include <kern/locks.h>
46 #include <netinet/in.h>
47 #include <libkern/OSAtomic.h>
48
49 static errno_t sock_send_internal(socket_t, const struct msghdr *,
50 mbuf_t, int, size_t *);
51 static void sock_setupcalls_common(socket_t, sock_upcall, void *,
52 sock_upcall, void *);
53
54 errno_t
55 sock_accept(socket_t sock, struct sockaddr *from, int fromlen, int flags,
56 sock_upcall callback, void *cookie, socket_t *new_sock)
57 {
58 struct sockaddr *sa;
59 struct socket *new_so;
60 lck_mtx_t *mutex_held;
61 int dosocklock;
62 errno_t error = 0;
63
64 if (sock == NULL || new_sock == NULL)
65 return (EINVAL);
66
67 socket_lock(sock, 1);
68 if ((sock->so_options & SO_ACCEPTCONN) == 0) {
69 socket_unlock(sock, 1);
70 return (EINVAL);
71 }
72 if ((flags & ~(MSG_DONTWAIT)) != 0) {
73 socket_unlock(sock, 1);
74 return (ENOTSUP);
75 }
76 if (((flags & MSG_DONTWAIT) != 0 || (sock->so_state & SS_NBIO) != 0) &&
77 sock->so_comp.tqh_first == NULL) {
78 socket_unlock(sock, 1);
79 return (EWOULDBLOCK);
80 }
81
82 if (sock->so_proto->pr_getlock != NULL) {
83 mutex_held = (*sock->so_proto->pr_getlock)(sock, 0);
84 dosocklock = 1;
85 } else {
86 mutex_held = sock->so_proto->pr_domain->dom_mtx;
87 dosocklock = 0;
88 }
89
90 while (TAILQ_EMPTY(&sock->so_comp) && sock->so_error == 0) {
91 if (sock->so_state & SS_CANTRCVMORE) {
92 sock->so_error = ECONNABORTED;
93 break;
94 }
95 error = msleep((caddr_t)&sock->so_timeo, mutex_held,
96 PSOCK | PCATCH, "sock_accept", NULL);
97 if (error != 0) {
98 socket_unlock(sock, 1);
99 return (error);
100 }
101 }
102 if (sock->so_error != 0) {
103 error = sock->so_error;
104 sock->so_error = 0;
105 socket_unlock(sock, 1);
106 return (error);
107 }
108
109 new_so = TAILQ_FIRST(&sock->so_comp);
110 TAILQ_REMOVE(&sock->so_comp, new_so, so_list);
111 sock->so_qlen--;
112
113 /*
114 * Pass the pre-accepted socket to any interested socket filter(s).
115 * Upon failure, the socket would have been closed by the callee.
116 */
117 if (new_so->so_filt != NULL) {
118 /*
119 * Temporarily drop the listening socket's lock before we
120 * hand off control over to the socket filter(s), but keep
121 * a reference so that it won't go away. We'll grab it
122 * again once we're done with the filter(s).
123 */
124 socket_unlock(sock, 0);
125 if ((error = soacceptfilter(new_so)) != 0) {
126 /* Drop reference on listening socket */
127 sodereference(sock);
128 return (error);
129 }
130 socket_lock(sock, 0);
131 }
132
133 if (dosocklock) {
134 lck_mtx_assert(new_so->so_proto->pr_getlock(new_so, 0),
135 LCK_MTX_ASSERT_NOTOWNED);
136 socket_lock(new_so, 1);
137 }
138
139 new_so->so_state &= ~SS_COMP;
140 new_so->so_head = NULL;
141 (void) soacceptlock(new_so, &sa, 0);
142
143 socket_unlock(sock, 1); /* release the head */
144
145 /* see comments in sock_setupcall() */
146 if (callback != NULL) {
147 sock_setupcalls_common(new_so, callback, cookie, NULL, NULL);
148 }
149
150 if (sa != NULL && from != NULL) {
151 if (fromlen > sa->sa_len)
152 fromlen = sa->sa_len;
153 memcpy(from, sa, fromlen);
154 }
155 if (sa != NULL)
156 FREE(sa, M_SONAME);
157
158 /*
159 * If the socket has been marked as inactive by sosetdefunct(),
160 * disallow further operations on it.
161 */
162 if (new_so->so_flags & SOF_DEFUNCT) {
163 (void) sodefunct(current_proc(), new_so,
164 SHUTDOWN_SOCKET_LEVEL_DISCONNECT_INTERNAL);
165 }
166 *new_sock = new_so;
167 if (dosocklock)
168 socket_unlock(new_so, 1);
169 return (error);
170 }
171
172 errno_t
173 sock_bind(socket_t sock, const struct sockaddr *to)
174 {
175 int error = 0;
176 struct sockaddr *sa = NULL;
177 struct sockaddr_storage ss;
178 boolean_t want_free = TRUE;
179
180 if (sock == NULL || to == NULL)
181 return (EINVAL);
182
183 if (to->sa_len > sizeof (ss)) {
184 MALLOC(sa, struct sockaddr *, to->sa_len, M_SONAME, M_WAITOK);
185 if (sa == NULL)
186 return (ENOBUFS);
187 } else {
188 sa = (struct sockaddr *)&ss;
189 want_free = FALSE;
190 }
191 memcpy(sa, to, to->sa_len);
192
193 error = sobindlock(sock, sa, 1); /* will lock socket */
194
195 if (sa != NULL && want_free == TRUE)
196 FREE(sa, M_SONAME);
197
198 return (error);
199 }
200
201 errno_t
202 sock_connect(socket_t sock, const struct sockaddr *to, int flags)
203 {
204 int error = 0;
205 lck_mtx_t *mutex_held;
206 struct sockaddr *sa = NULL;
207 struct sockaddr_storage ss;
208 boolean_t want_free = TRUE;
209
210 if (sock == NULL || to == NULL)
211 return (EINVAL);
212
213 if (to->sa_len > sizeof (ss)) {
214 MALLOC(sa, struct sockaddr *, to->sa_len, M_SONAME,
215 (flags & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK);
216 if (sa == NULL)
217 return (ENOBUFS);
218 } else {
219 sa = (struct sockaddr *)&ss;
220 want_free = FALSE;
221 }
222 memcpy(sa, to, to->sa_len);
223
224 socket_lock(sock, 1);
225
226 if ((sock->so_state & SS_ISCONNECTING) &&
227 ((sock->so_state & SS_NBIO) != 0 || (flags & MSG_DONTWAIT) != 0)) {
228 error = EALREADY;
229 goto out;
230 }
231 error = soconnectlock(sock, sa, 0);
232 if (!error) {
233 if ((sock->so_state & SS_ISCONNECTING) &&
234 ((sock->so_state & SS_NBIO) != 0 ||
235 (flags & MSG_DONTWAIT) != 0)) {
236 error = EINPROGRESS;
237 goto out;
238 }
239
240 if (sock->so_proto->pr_getlock != NULL)
241 mutex_held = (*sock->so_proto->pr_getlock)(sock, 0);
242 else
243 mutex_held = sock->so_proto->pr_domain->dom_mtx;
244
245 while ((sock->so_state & SS_ISCONNECTING) &&
246 sock->so_error == 0) {
247 error = msleep((caddr_t)&sock->so_timeo,
248 mutex_held, PSOCK | PCATCH, "sock_connect", NULL);
249 if (error != 0)
250 break;
251 }
252
253 if (error == 0) {
254 error = sock->so_error;
255 sock->so_error = 0;
256 }
257 } else {
258 sock->so_state &= ~SS_ISCONNECTING;
259 }
260 out:
261 socket_unlock(sock, 1);
262
263 if (sa != NULL && want_free == TRUE)
264 FREE(sa, M_SONAME);
265
266 return (error);
267 }
268
269 errno_t
270 sock_connectwait(socket_t sock, const struct timeval *tv)
271 {
272 lck_mtx_t *mutex_held;
273 errno_t retval = 0;
274 struct timespec ts;
275
276 socket_lock(sock, 1);
277
278 /* Check if we're already connected or if we've already errored out */
279 if ((sock->so_state & SS_ISCONNECTING) == 0 || sock->so_error != 0) {
280 if (sock->so_error != 0) {
281 retval = sock->so_error;
282 sock->so_error = 0;
283 } else {
284 if ((sock->so_state & SS_ISCONNECTED) != 0)
285 retval = 0;
286 else
287 retval = EINVAL;
288 }
289 goto done;
290 }
291
292 /* copied translation from timeval to hertz from SO_RCVTIMEO handling */
293 if (tv->tv_sec < 0 || tv->tv_sec > SHRT_MAX / hz ||
294 tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
295 retval = EDOM;
296 goto done;
297 }
298
299 ts.tv_sec = tv->tv_sec;
300 ts.tv_nsec = (tv->tv_usec * (integer_t)NSEC_PER_USEC);
301 if ((ts.tv_sec + (ts.tv_nsec/(long)NSEC_PER_SEC))/100 > SHRT_MAX) {
302 retval = EDOM;
303 goto done;
304 }
305
306 if (sock->so_proto->pr_getlock != NULL)
307 mutex_held = (*sock->so_proto->pr_getlock)(sock, 0);
308 else
309 mutex_held = sock->so_proto->pr_domain->dom_mtx;
310
311 msleep((caddr_t)&sock->so_timeo, mutex_held,
312 PSOCK, "sock_connectwait", &ts);
313
314 /* Check if we're still waiting to connect */
315 if ((sock->so_state & SS_ISCONNECTING) && sock->so_error == 0) {
316 retval = EINPROGRESS;
317 goto done;
318 }
319
320 if (sock->so_error != 0) {
321 retval = sock->so_error;
322 sock->so_error = 0;
323 }
324
325 done:
326 socket_unlock(sock, 1);
327 return (retval);
328 }
329
330 errno_t
331 sock_nointerrupt(socket_t sock, int on)
332 {
333 socket_lock(sock, 1);
334
335 if (on) {
336 sock->so_rcv.sb_flags |= SB_NOINTR; /* This isn't safe */
337 sock->so_snd.sb_flags |= SB_NOINTR; /* This isn't safe */
338 } else {
339 sock->so_rcv.sb_flags &= ~SB_NOINTR; /* This isn't safe */
340 sock->so_snd.sb_flags &= ~SB_NOINTR; /* This isn't safe */
341 }
342
343 socket_unlock(sock, 1);
344
345 return (0);
346 }
347
348 errno_t
349 sock_getpeername(socket_t sock, struct sockaddr *peername, int peernamelen)
350 {
351 int error;
352 struct sockaddr *sa = NULL;
353
354 if (sock == NULL || peername == NULL || peernamelen < 0)
355 return (EINVAL);
356
357 socket_lock(sock, 1);
358 if (!(sock->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING))) {
359 socket_unlock(sock, 1);
360 return (ENOTCONN);
361 }
362 error = sogetaddr_locked(sock, &sa, 1);
363 socket_unlock(sock, 1);
364 if (error == 0) {
365 if (peernamelen > sa->sa_len)
366 peernamelen = sa->sa_len;
367 memcpy(peername, sa, peernamelen);
368 FREE(sa, M_SONAME);
369 }
370 return (error);
371 }
372
373 errno_t
374 sock_getsockname(socket_t sock, struct sockaddr *sockname, int socknamelen)
375 {
376 int error;
377 struct sockaddr *sa = NULL;
378
379 if (sock == NULL || sockname == NULL || socknamelen < 0)
380 return (EINVAL);
381
382 socket_lock(sock, 1);
383 error = sogetaddr_locked(sock, &sa, 0);
384 socket_unlock(sock, 1);
385 if (error == 0) {
386 if (socknamelen > sa->sa_len)
387 socknamelen = sa->sa_len;
388 memcpy(sockname, sa, socknamelen);
389 FREE(sa, M_SONAME);
390 }
391 return (error);
392 }
393
394 __private_extern__ int
395 sogetaddr_locked(struct socket *so, struct sockaddr **psa, int peer)
396 {
397 int error;
398
399 if (so == NULL || psa == NULL)
400 return (EINVAL);
401
402 *psa = NULL;
403 error = peer ? so->so_proto->pr_usrreqs->pru_peeraddr(so, psa) :
404 so->so_proto->pr_usrreqs->pru_sockaddr(so, psa);
405
406 if (error == 0 && *psa == NULL) {
407 error = ENOMEM;
408 } else if (error != 0 && *psa != NULL) {
409 FREE(*psa, M_SONAME);
410 *psa = NULL;
411 }
412 return (error);
413 }
414
415 errno_t
416 sock_getaddr(socket_t sock, struct sockaddr **psa, int peer)
417 {
418 int error;
419
420 if (sock == NULL || psa == NULL)
421 return (EINVAL);
422
423 socket_lock(sock, 1);
424 error = sogetaddr_locked(sock, psa, peer);
425 socket_unlock(sock, 1);
426
427 return (error);
428 }
429
430 void
431 sock_freeaddr(struct sockaddr *sa)
432 {
433 if (sa != NULL)
434 FREE(sa, M_SONAME);
435 }
436
437 errno_t
438 sock_getsockopt(socket_t sock, int level, int optname, void *optval,
439 int *optlen)
440 {
441 int error = 0;
442 struct sockopt sopt;
443
444 if (sock == NULL || optval == NULL || optlen == NULL)
445 return (EINVAL);
446
447 sopt.sopt_dir = SOPT_GET;
448 sopt.sopt_level = level;
449 sopt.sopt_name = optname;
450 sopt.sopt_val = CAST_USER_ADDR_T(optval);
451 sopt.sopt_valsize = *optlen;
452 sopt.sopt_p = kernproc;
453 error = sogetoptlock(sock, &sopt, 1); /* will lock socket */
454 if (error == 0)
455 *optlen = sopt.sopt_valsize;
456 return (error);
457 }
458
459 errno_t
460 sock_ioctl(socket_t sock, unsigned long request, void *argp)
461 {
462 return (soioctl(sock, request, argp, kernproc)); /* will lock socket */
463 }
464
465 errno_t
466 sock_setsockopt(socket_t sock, int level, int optname, const void *optval,
467 int optlen)
468 {
469 struct sockopt sopt;
470
471 if (sock == NULL || optval == NULL)
472 return (EINVAL);
473
474 sopt.sopt_dir = SOPT_SET;
475 sopt.sopt_level = level;
476 sopt.sopt_name = optname;
477 sopt.sopt_val = CAST_USER_ADDR_T(optval);
478 sopt.sopt_valsize = optlen;
479 sopt.sopt_p = kernproc;
480 return (sosetoptlock(sock, &sopt, 1)); /* will lock socket */
481 }
482
483 /*
484 * This follows the recommended mappings between DSCP code points
485 * and WMM access classes.
486 */
487 static u_int32_t so_tc_from_dscp(u_int8_t dscp);
488 static u_int32_t
489 so_tc_from_dscp(u_int8_t dscp)
490 {
491 u_int32_t tc;
492
493 if (dscp >= 0x30 && dscp <= 0x3f)
494 tc = SO_TC_VO;
495 else if (dscp >= 0x20 && dscp <= 0x2f)
496 tc = SO_TC_VI;
497 else if (dscp >= 0x08 && dscp <= 0x17)
498 tc = SO_TC_BK;
499 else
500 tc = SO_TC_BE;
501
502 return (tc);
503 }
504
505 errno_t
506 sock_settclassopt(socket_t sock, const void *optval, size_t optlen)
507 {
508 errno_t error = 0;
509 struct sockopt sopt;
510 int sotc;
511
512 if (sock == NULL || optval == NULL || optlen != sizeof (int))
513 return (EINVAL);
514
515 socket_lock(sock, 1);
516 if (!(sock->so_state & SS_ISCONNECTED)) {
517 /*
518 * If the socket is not connected then we don't know
519 * if the destination is on LAN or not. Skip
520 * setting traffic class in this case
521 */
522 error = ENOTCONN;
523 goto out;
524 }
525
526 if (sock->so_proto == NULL || sock->so_proto->pr_domain == NULL ||
527 sock->so_pcb == NULL) {
528 error = EINVAL;
529 goto out;
530 }
531
532 /*
533 * Set the socket traffic class based on the passed DSCP code point
534 * regardless of the scope of the destination
535 */
536 sotc = so_tc_from_dscp((*(const int *)optval) >> 2);
537
538 sopt.sopt_dir = SOPT_SET;
539 sopt.sopt_val = CAST_USER_ADDR_T(&sotc);
540 sopt.sopt_valsize = sizeof (sotc);
541 sopt.sopt_p = kernproc;
542 sopt.sopt_level = SOL_SOCKET;
543 sopt.sopt_name = SO_TRAFFIC_CLASS;
544
545 error = sosetoptlock(sock, &sopt, 0); /* already locked */
546
547 if (error != 0) {
548 printf("%s: sosetopt SO_TRAFFIC_CLASS failed %d\n",
549 __func__, error);
550 goto out;
551 }
552
553 /*
554 * Check if the destination address is LAN or link local address.
555 * We do not want to set traffic class bits if the destination
556 * is not local.
557 */
558 if (!so_isdstlocal(sock))
559 goto out;
560
561 sopt.sopt_dir = SOPT_SET;
562 sopt.sopt_val = CAST_USER_ADDR_T(optval);
563 sopt.sopt_valsize = optlen;
564 sopt.sopt_p = kernproc;
565
566 switch (SOCK_DOM(sock)) {
567 case PF_INET:
568 sopt.sopt_level = IPPROTO_IP;
569 sopt.sopt_name = IP_TOS;
570 break;
571 case PF_INET6:
572 sopt.sopt_level = IPPROTO_IPV6;
573 sopt.sopt_name = IPV6_TCLASS;
574 break;
575 default:
576 error = EINVAL;
577 goto out;
578 }
579
580 error = sosetoptlock(sock, &sopt, 0); /* already locked */
581 socket_unlock(sock, 1);
582 return (error);
583 out:
584 socket_unlock(sock, 1);
585 return (error);
586 }
587
588 errno_t
589 sock_gettclassopt(socket_t sock, void *optval, size_t *optlen)
590 {
591 errno_t error = 0;
592 struct sockopt sopt;
593
594 if (sock == NULL || optval == NULL || optlen == NULL)
595 return (EINVAL);
596
597 sopt.sopt_dir = SOPT_GET;
598 sopt.sopt_val = CAST_USER_ADDR_T(optval);
599 sopt.sopt_valsize = *optlen;
600 sopt.sopt_p = kernproc;
601
602 socket_lock(sock, 1);
603 if (sock->so_proto == NULL || sock->so_proto->pr_domain == NULL) {
604 socket_unlock(sock, 1);
605 return (EINVAL);
606 }
607
608 switch (SOCK_DOM(sock)) {
609 case PF_INET:
610 sopt.sopt_level = IPPROTO_IP;
611 sopt.sopt_name = IP_TOS;
612 break;
613 case PF_INET6:
614 sopt.sopt_level = IPPROTO_IPV6;
615 sopt.sopt_name = IPV6_TCLASS;
616 break;
617 default:
618 socket_unlock(sock, 1);
619 return (EINVAL);
620
621 }
622 error = sogetoptlock(sock, &sopt, 0); /* already locked */
623 socket_unlock(sock, 1);
624 if (error == 0)
625 *optlen = sopt.sopt_valsize;
626 return (error);
627 }
628
629 errno_t
630 sock_listen(socket_t sock, int backlog)
631 {
632 if (sock == NULL)
633 return (EINVAL);
634
635 return (solisten(sock, backlog)); /* will lock socket */
636 }
637
638 errno_t
639 sock_receive_internal(socket_t sock, struct msghdr *msg, mbuf_t *data,
640 int flags, size_t *recvdlen)
641 {
642 uio_t auio;
643 struct mbuf *control = NULL;
644 int error = 0;
645 int length = 0;
646 struct sockaddr *fromsa = NULL;
647 char uio_buf[ UIO_SIZEOF((msg != NULL) ? msg->msg_iovlen : 0) ];
648
649 if (sock == NULL)
650 return (EINVAL);
651
652 auio = uio_createwithbuffer(((msg != NULL) ? msg->msg_iovlen : 0),
653 0, UIO_SYSSPACE, UIO_READ, &uio_buf[0], sizeof (uio_buf));
654 if (msg != NULL && data == NULL) {
655 int i;
656 struct iovec *tempp = msg->msg_iov;
657
658 for (i = 0; i < msg->msg_iovlen; i++) {
659 uio_addiov(auio,
660 CAST_USER_ADDR_T((tempp + i)->iov_base),
661 (tempp + i)->iov_len);
662 }
663 if (uio_resid(auio) < 0)
664 return (EINVAL);
665 } else if (recvdlen != NULL) {
666 uio_setresid(auio, (uio_resid(auio) + *recvdlen));
667 }
668 length = uio_resid(auio);
669
670 if (recvdlen != NULL)
671 *recvdlen = 0;
672
673 /* let pru_soreceive handle the socket locking */
674 error = sock->so_proto->pr_usrreqs->pru_soreceive(sock, &fromsa, auio,
675 data, (msg && msg->msg_control) ? &control : NULL, &flags);
676 if (error != 0)
677 goto cleanup;
678
679 if (recvdlen != NULL)
680 *recvdlen = length - uio_resid(auio);
681 if (msg != NULL) {
682 msg->msg_flags = flags;
683
684 if (msg->msg_name != NULL) {
685 int salen;
686 salen = msg->msg_namelen;
687 if (msg->msg_namelen > 0 && fromsa != NULL) {
688 salen = MIN(salen, fromsa->sa_len);
689 memcpy(msg->msg_name, fromsa,
690 msg->msg_namelen > fromsa->sa_len ?
691 fromsa->sa_len : msg->msg_namelen);
692 }
693 }
694
695 if (msg->msg_control != NULL) {
696 struct mbuf *m = control;
697 u_char *ctlbuf = msg->msg_control;
698 int clen = msg->msg_controllen;
699
700 msg->msg_controllen = 0;
701
702 while (m != NULL && clen > 0) {
703 unsigned int tocopy;
704
705 if (clen >= m->m_len) {
706 tocopy = m->m_len;
707 } else {
708 msg->msg_flags |= MSG_CTRUNC;
709 tocopy = clen;
710 }
711 memcpy(ctlbuf, mtod(m, caddr_t), tocopy);
712 ctlbuf += tocopy;
713 clen -= tocopy;
714 m = m->m_next;
715 }
716 msg->msg_controllen =
717 (uintptr_t)ctlbuf - (uintptr_t)msg->msg_control;
718 }
719 }
720
721 cleanup:
722 if (control != NULL)
723 m_freem(control);
724 if (fromsa != NULL)
725 FREE(fromsa, M_SONAME);
726 return (error);
727 }
728
729 errno_t
730 sock_receive(socket_t sock, struct msghdr *msg, int flags, size_t *recvdlen)
731 {
732 if ((msg == NULL) || (msg->msg_iovlen < 1) ||
733 (msg->msg_iov[0].iov_len == 0) ||
734 (msg->msg_iov[0].iov_base == NULL))
735 return (EINVAL);
736
737 return (sock_receive_internal(sock, msg, NULL, flags, recvdlen));
738 }
739
740 errno_t
741 sock_receivembuf(socket_t sock, struct msghdr *msg, mbuf_t *data, int flags,
742 size_t *recvlen)
743 {
744 if (data == NULL || recvlen == 0 || *recvlen <= 0 || (msg != NULL &&
745 (msg->msg_iov != NULL || msg->msg_iovlen != 0)))
746 return (EINVAL);
747
748 return (sock_receive_internal(sock, msg, data, flags, recvlen));
749 }
750
751 errno_t
752 sock_send_internal(socket_t sock, const struct msghdr *msg, mbuf_t data,
753 int flags, size_t *sentlen)
754 {
755 uio_t auio = NULL;
756 struct mbuf *control = NULL;
757 int error = 0;
758 int datalen = 0;
759 char uio_buf[ UIO_SIZEOF((msg != NULL ? msg->msg_iovlen : 1)) ];
760
761 if (sock == NULL) {
762 error = EINVAL;
763 goto errorout;
764 }
765
766 if (data == NULL && msg != NULL) {
767 struct iovec *tempp = msg->msg_iov;
768
769 auio = uio_createwithbuffer(msg->msg_iovlen, 0,
770 UIO_SYSSPACE, UIO_WRITE, &uio_buf[0], sizeof (uio_buf));
771 if (tempp != NULL) {
772 int i;
773
774 for (i = 0; i < msg->msg_iovlen; i++) {
775 uio_addiov(auio,
776 CAST_USER_ADDR_T((tempp + i)->iov_base),
777 (tempp + i)->iov_len);
778 }
779
780 if (uio_resid(auio) < 0) {
781 error = EINVAL;
782 goto errorout;
783 }
784 }
785 }
786
787 if (sentlen != NULL)
788 *sentlen = 0;
789
790 if (auio != NULL)
791 datalen = uio_resid(auio);
792 else
793 datalen = data->m_pkthdr.len;
794
795 if (msg != NULL && msg->msg_control) {
796 if ((size_t)msg->msg_controllen < sizeof (struct cmsghdr)) {
797 error = EINVAL;
798 goto errorout;
799 }
800
801 if ((size_t)msg->msg_controllen > MLEN) {
802 error = EINVAL;
803 goto errorout;
804 }
805
806 control = m_get(M_NOWAIT, MT_CONTROL);
807 if (control == NULL) {
808 error = ENOMEM;
809 goto errorout;
810 }
811 memcpy(mtod(control, caddr_t), msg->msg_control,
812 msg->msg_controllen);
813 control->m_len = msg->msg_controllen;
814 }
815
816 error = sock->so_proto->pr_usrreqs->pru_sosend(sock, msg != NULL ?
817 (struct sockaddr *)msg->msg_name : NULL, auio, data,
818 control, flags);
819
820 /*
821 * Residual data is possible in the case of IO vectors but not
822 * in the mbuf case since the latter is treated as atomic send.
823 * If pru_sosend() consumed a portion of the iovecs data and
824 * the error returned is transient, treat it as success; this
825 * is consistent with sendit() behavior.
826 */
827 if (auio != NULL && uio_resid(auio) != datalen &&
828 (error == ERESTART || error == EINTR || error == EWOULDBLOCK))
829 error = 0;
830
831 if (error == 0 && sentlen != NULL) {
832 if (auio != NULL)
833 *sentlen = datalen - uio_resid(auio);
834 else
835 *sentlen = datalen;
836 }
837
838 return (error);
839
840 /*
841 * In cases where we detect an error before returning, we need to
842 * free the mbuf chain if there is one. sosend (and pru_sosend) will
843 * free the mbuf chain if they encounter an error.
844 */
845 errorout:
846 if (control)
847 m_freem(control);
848 if (data)
849 m_freem(data);
850 if (sentlen)
851 *sentlen = 0;
852 return (error);
853 }
854
855 errno_t
856 sock_send(socket_t sock, const struct msghdr *msg, int flags, size_t *sentlen)
857 {
858 if (msg == NULL || msg->msg_iov == NULL || msg->msg_iovlen < 1)
859 return (EINVAL);
860
861 return (sock_send_internal(sock, msg, NULL, flags, sentlen));
862 }
863
864 errno_t
865 sock_sendmbuf(socket_t sock, const struct msghdr *msg, mbuf_t data,
866 int flags, size_t *sentlen)
867 {
868 if (data == NULL || (msg != NULL && (msg->msg_iov != NULL ||
869 msg->msg_iovlen != 0))) {
870 if (data != NULL)
871 m_freem(data);
872 return (EINVAL);
873 }
874 return (sock_send_internal(sock, msg, data, flags, sentlen));
875 }
876
877 errno_t
878 sock_shutdown(socket_t sock, int how)
879 {
880 if (sock == NULL)
881 return (EINVAL);
882
883 return (soshutdown(sock, how));
884 }
885
886
887 errno_t
888 sock_socket(int domain, int type, int protocol, sock_upcall callback,
889 void *context, socket_t *new_so)
890 {
891 int error = 0;
892
893 if (new_so == NULL)
894 return (EINVAL);
895
896 /* socreate will create an initial so_count */
897 error = socreate(domain, new_so, type, protocol);
898 if (error == 0) {
899 /* see comments in sock_setupcall() */
900 if (callback != NULL) {
901 sock_setupcalls_common(*new_so, callback, context,
902 NULL, NULL);
903 }
904 /*
905 * last_pid and last_upid should be zero for sockets
906 * created using sock_socket
907 */
908 (*new_so)->last_pid = 0;
909 (*new_so)->last_upid = 0;
910 }
911 return (error);
912 }
913
914 void
915 sock_close(socket_t sock)
916 {
917 if (sock == NULL)
918 return;
919
920 soclose(sock);
921 }
922
923 /* Do we want this to be APPLE_PRIVATE API?: YES (LD 12/23/04) */
924 void
925 sock_retain(socket_t sock)
926 {
927 if (sock == NULL)
928 return;
929
930 socket_lock(sock, 1);
931 sock->so_retaincnt++;
932 sock->so_usecount++; /* add extra reference for holding the socket */
933 socket_unlock(sock, 1);
934 }
935
936 /* Do we want this to be APPLE_PRIVATE API? */
937 void
938 sock_release(socket_t sock)
939 {
940 if (sock == NULL)
941 return;
942
943 socket_lock(sock, 1);
944 if (sock->so_upcallusecount > 0)
945 soclose_wait_locked(sock);
946
947 sock->so_retaincnt--;
948 if (sock->so_retaincnt < 0) {
949 panic("%s: negative retain count (%d) for sock=%p\n",
950 __func__, sock->so_retaincnt, sock);
951 /* NOTREACHED */
952 }
953 if ((sock->so_retaincnt == 0) && (sock->so_usecount == 2)) {
954 /* close socket only if the FD is not holding it */
955 soclose_locked(sock);
956 } else {
957 /* remove extra reference holding the socket */
958 sock->so_usecount--;
959 }
960 socket_unlock(sock, 1);
961 }
962
963 errno_t
964 sock_setpriv(socket_t sock, int on)
965 {
966 if (sock == NULL)
967 return (EINVAL);
968
969 socket_lock(sock, 1);
970 if (on)
971 sock->so_state |= SS_PRIV;
972 else
973 sock->so_state &= ~SS_PRIV;
974 socket_unlock(sock, 1);
975 return (0);
976 }
977
978 int
979 sock_isconnected(socket_t sock)
980 {
981 int retval;
982
983 socket_lock(sock, 1);
984 retval = ((sock->so_state & SS_ISCONNECTED) ? 1 : 0);
985 socket_unlock(sock, 1);
986 return (retval);
987 }
988
989 int
990 sock_isnonblocking(socket_t sock)
991 {
992 int retval;
993
994 socket_lock(sock, 1);
995 retval = ((sock->so_state & SS_NBIO) ? 1 : 0);
996 socket_unlock(sock, 1);
997 return (retval);
998 }
999
1000 errno_t
1001 sock_gettype(socket_t sock, int *outDomain, int *outType, int *outProtocol)
1002 {
1003 socket_lock(sock, 1);
1004 if (outDomain != NULL)
1005 *outDomain = SOCK_DOM(sock);
1006 if (outType != NULL)
1007 *outType = sock->so_type;
1008 if (outProtocol != NULL)
1009 *outProtocol = SOCK_PROTO(sock);
1010 socket_unlock(sock, 1);
1011 return (0);
1012 }
1013
1014 /*
1015 * Return the listening socket of a pre-accepted socket. It returns the
1016 * listener (so_head) value of a given socket. This is intended to be
1017 * called by a socket filter during a filter attach (sf_attach) callback.
1018 * The value returned by this routine is safe to be used only in the
1019 * context of that callback, because we hold the listener's lock across
1020 * the sflt_initsock() call.
1021 */
1022 socket_t
1023 sock_getlistener(socket_t sock)
1024 {
1025 return (sock->so_head);
1026 }
1027
1028 static inline void
1029 sock_set_tcp_stream_priority(socket_t sock)
1030 {
1031 if ((SOCK_DOM(sock) == PF_INET || SOCK_DOM(sock) == PF_INET6) &&
1032 SOCK_TYPE(sock) == SOCK_STREAM) {
1033 set_tcp_stream_priority(sock);
1034 }
1035 }
1036
1037 /*
1038 * Caller must have ensured socket is valid and won't be going away.
1039 */
1040 void
1041 socket_set_traffic_mgt_flags_locked(socket_t sock, u_int32_t flags)
1042 {
1043 (void) OSBitOrAtomic(flags, &sock->so_traffic_mgt_flags);
1044 sock_set_tcp_stream_priority(sock);
1045 }
1046
1047 void
1048 socket_set_traffic_mgt_flags(socket_t sock, u_int32_t flags)
1049 {
1050 socket_lock(sock, 1);
1051 socket_set_traffic_mgt_flags_locked(sock, flags);
1052 socket_unlock(sock, 1);
1053 }
1054
1055 /*
1056 * Caller must have ensured socket is valid and won't be going away.
1057 */
1058 void
1059 socket_clear_traffic_mgt_flags_locked(socket_t sock, u_int32_t flags)
1060 {
1061 (void) OSBitAndAtomic(~flags, &sock->so_traffic_mgt_flags);
1062 sock_set_tcp_stream_priority(sock);
1063 }
1064
1065 void
1066 socket_clear_traffic_mgt_flags(socket_t sock, u_int32_t flags)
1067 {
1068 socket_lock(sock, 1);
1069 socket_clear_traffic_mgt_flags_locked(sock, flags);
1070 socket_unlock(sock, 1);
1071 }
1072
1073
1074 /*
1075 * Caller must have ensured socket is valid and won't be going away.
1076 */
1077 errno_t
1078 socket_defunct(struct proc *p, socket_t so, int level)
1079 {
1080 errno_t retval;
1081
1082 if (level != SHUTDOWN_SOCKET_LEVEL_DISCONNECT_SVC &&
1083 level != SHUTDOWN_SOCKET_LEVEL_DISCONNECT_ALL)
1084 return (EINVAL);
1085
1086 socket_lock(so, 1);
1087 /*
1088 * SHUTDOWN_SOCKET_LEVEL_DISCONNECT_SVC level is meant to tear down
1089 * all of mDNSResponder IPC sockets, currently those of AF_UNIX; note
1090 * that this is an implementation artifact of mDNSResponder. We do
1091 * a quick test against the socket buffers for SB_UNIX, since that
1092 * would have been set by unp_attach() at socket creation time.
1093 */
1094 if (level == SHUTDOWN_SOCKET_LEVEL_DISCONNECT_SVC &&
1095 (so->so_rcv.sb_flags & so->so_snd.sb_flags & SB_UNIX) != SB_UNIX) {
1096 socket_unlock(so, 1);
1097 return (EOPNOTSUPP);
1098 }
1099 retval = sosetdefunct(p, so, level, TRUE);
1100 if (retval == 0)
1101 retval = sodefunct(p, so, level);
1102 socket_unlock(so, 1);
1103 return (retval);
1104 }
1105
1106 static void
1107 sock_setupcalls_common(socket_t sock, sock_upcall rcallback, void *rcontext,
1108 sock_upcall wcallback, void *wcontext)
1109 {
1110 if (rcallback != NULL) {
1111 sock->so_rcv.sb_flags |= SB_UPCALL;
1112 sock->so_rcv.sb_upcall = rcallback;
1113 sock->so_rcv.sb_upcallarg = rcontext;
1114 } else {
1115 sock->so_rcv.sb_flags &= ~SB_UPCALL;
1116 sock->so_rcv.sb_upcall = NULL;
1117 sock->so_rcv.sb_upcallarg = NULL;
1118 }
1119
1120 if (wcallback != NULL) {
1121 sock->so_snd.sb_flags |= SB_UPCALL;
1122 sock->so_snd.sb_upcall = wcallback;
1123 sock->so_snd.sb_upcallarg = wcontext;
1124 } else {
1125 sock->so_snd.sb_flags &= ~SB_UPCALL;
1126 sock->so_snd.sb_upcall = NULL;
1127 sock->so_snd.sb_upcallarg = NULL;
1128 }
1129 }
1130
1131 errno_t
1132 sock_setupcall(socket_t sock, sock_upcall callback, void *context)
1133 {
1134 if (sock == NULL)
1135 return (EINVAL);
1136
1137 /*
1138 * Note that we don't wait for any in progress upcall to complete.
1139 * On embedded, sock_setupcall() causes both read and write
1140 * callbacks to be set; on desktop, only read callback is set
1141 * to maintain legacy KPI behavior.
1142 *
1143 * The newer sock_setupcalls() KPI should be used instead to set
1144 * the read and write callbacks and their respective parameters.
1145 */
1146 socket_lock(sock, 1);
1147 sock_setupcalls_common(sock, callback, context, NULL, NULL);
1148 socket_unlock(sock, 1);
1149
1150 return (0);
1151 }
1152
1153 errno_t
1154 sock_setupcalls(socket_t sock, sock_upcall rcallback, void *rcontext,
1155 sock_upcall wcallback, void *wcontext)
1156 {
1157 if (sock == NULL)
1158 return (EINVAL);
1159
1160 /*
1161 * Note that we don't wait for any in progress upcall to complete.
1162 */
1163 socket_lock(sock, 1);
1164 sock_setupcalls_common(sock, rcallback, rcontext, wcallback, wcontext);
1165 socket_unlock(sock, 1);
1166
1167 return (0);
1168 }
1169
1170 errno_t
1171 sock_catchevents(socket_t sock, sock_evupcall ecallback, void *econtext,
1172 u_int32_t emask)
1173 {
1174 if (sock == NULL)
1175 return (EINVAL);
1176
1177 /*
1178 * Note that we don't wait for any in progress upcall to complete.
1179 */
1180 socket_lock(sock, 1);
1181 if (ecallback != NULL) {
1182 sock->so_event = ecallback;
1183 sock->so_eventarg = econtext;
1184 sock->so_eventmask = emask;
1185 } else {
1186 sock->so_event = sonullevent;
1187 sock->so_eventarg = NULL;
1188 sock->so_eventmask = 0;
1189 }
1190 socket_unlock(sock, 1);
1191
1192 return (0);
1193 }
1194
1195 /*
1196 * Returns true whether or not a socket belongs to the kernel.
1197 */
1198 int
1199 sock_iskernel(socket_t so)
1200 {
1201 return (so && so->last_pid == 0);
1202 }