]> git.saurik.com Git - apple/xnu.git/blob - osfmk/ppc/Emulate64.s
xnu-792.10.96.tar.gz
[apple/xnu.git] / osfmk / ppc / Emulate64.s
1 /*
2 * Copyright (c) 2002 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22
23 /* Emulate64.s
24 *
25 * Software emulation of instructions not handled in hw, on 64-bit machines.
26 */
27
28 #include <sys/appleapiopts.h>
29 #include <ppc/asm.h>
30 #include <ppc/proc_reg.h>
31 #include <ppc/exception.h>
32 #include <mach/machine/vm_param.h>
33 #include <ppc/cpu_capabilities.h>
34 #include <assym.s>
35
36 // CR bit set if the instruction is an "update" form (LFDU, STWU, etc):
37 #define kUpdate 25
38
39 // CR bit set if interrupt occured in trace mode (ie, MSR_SE_BIT):
40 #define kTrace 8
41
42 // CR bit set if notification on alignment interrupts is requested (notifyUnalignbit in spcFlags):
43 #define kNotify 9
44
45 // CR bit distinguishes between alignment and program exceptions:
46 #define kAlignment 10
47
48
49
50 // *************************************
51 // * P R O G R A M I N T E R R U P T *
52 // *************************************
53 //
54 // These are floating pt exceptions, illegal instructions, privileged mode violations,
55 // and traps. All we're interested in at this low level is illegal instructions.
56 // The ones we "emulate" are:
57 // DCBA, which is not implemented in the IBM 970. The emulation is to ignore it,
58 // as it is just a hint.
59 // MCRXR, which is not implemented on the IBM 970, but is in the PPC ISA.
60 //
61 // Additionally, to facilitate debugging the alignment handler, we recognize a special
62 // diagnostic mode that is used to simulate alignment exceptions. When in this mode,
63 // if the instruction has opcode==0 and the extended opcode is one of the X-form
64 // instructions that can take an alignment interrupt, then we change the opcode to
65 // 31 and pretend it got an alignment interrupt. This exercises paths that
66 // are hard to drive or perhaps never driven on this particular CPU.
67
68 .text
69 .globl EXT(Emulate64)
70 .align 5
71 LEXT(Emulate64)
72 crclr kAlignment // not an alignment exception
73 b a64AlignAssistJoin // join alignment handler
74
75
76 // Return from alignment handler with all the regs loaded for opcode emulation.
77
78 a64HandleProgramInt:
79 rlwinm. r0,r29,0,SRR1_PRG_ILL_INS_BIT,SRR1_PRG_ILL_INS_BIT // illegal opcode?
80 beq a64PassAlong // No, must have been trap or priv violation etc
81 rlwinm r3,r20,6,26,31 // right justify opcode field (bits 0-5)
82 rlwinm r4,r20,31,22,31 // right justify extended opcode field (bits 21-30)
83 cmpwi cr0,r3,31 // X-form?
84 cmpwi cr1,r4,758 // DCBA?
85 cmpwi cr4,r4,512 // MCRXR?
86 crand cr1_eq,cr0_eq,cr1_eq // merge the two tests for DCBA
87 crand cr4_eq,cr0_eq,cr4_eq // and for MCRXR
88 beq++ cr1_eq,a64ExitEm // was DCBA, so ignore
89 bne-- cr4_eq,a64NotEmulated // skip if not MCRXR
90
91 // Was MCRXR, so emulate.
92
93 ld r3,savexer(r13) // get the XER
94 lwz r4,savecr(r13) // and the CR
95 rlwinm r5,r20,11,27,29 // get (CR# * 4) from instruction
96 rlwinm r6,r3,0,4,31 // zero XER[32-35] (also XER[0-31])
97 sld r4,r4,r5 // move target CR field to bits 32-35
98 rlwimi r4,r3,0,0,3 // move XER[32-35] into CR field
99 stw r6,savexer+4(r13) // update XER
100 srd r4,r4,r5 // re-position CR
101 stw r4,savecr(r13) // update CR
102 b a64ExitEm // done
103
104 // Not an opcode we normally emulate. If in special diagnostic mode and opcode=0,
105 // emulate as an alignment exception. This special case is for test software.
106
107 a64NotEmulated:
108 lwz r30,dgFlags(0) // Get the flags
109 rlwinm. r0,r30,0,enaDiagEMb,enaDiagEMb // Do we want to try to emulate something?
110 beq++ a64PassAlong // No emulation allowed
111 cmpwi r3,0 // opcode==0 ?
112 bne a64PassAlong // not the special case
113 oris r20,r20,0x7C00 // change opcode to 31
114 crset kAlignment // say we took alignment exception
115 rlwinm r5,r4,0,26+1,26-1 // mask Update bit (32) out of extended opcode
116 rlwinm r5,r5,0,0,31 // Clean out leftover junk from rlwinm
117
118 cmpwi r4,1014 // dcbz/dcbz128 ?
119 crmove cr1_eq,cr0_eq
120 cmpwi r5,21 // ldx/ldux ?
121 cror cr1_eq,cr0_eq,cr1_eq
122 cmpwi r5,599 // lfdx/lfdux ?
123 cror cr1_eq,cr0_eq,cr1_eq
124 cmpwi r5,535 // lfsx/lfsux ?
125 cror cr1_eq,cr0_eq,cr1_eq
126 cmpwi r5,343 // lhax/lhaux ?
127 cror cr1_eq,cr0_eq,cr1_eq
128 cmpwi r4,790 // lhbrx ?
129 cror cr1_eq,cr0_eq,cr1_eq
130 cmpwi r5,279 // lhzx/lhzux ?
131 cror cr1_eq,cr0_eq,cr1_eq
132 cmpwi r4,597 // lswi ?
133 cror cr1_eq,cr0_eq,cr1_eq
134 cmpwi r4,533 // lswx ?
135 cror cr1_eq,cr0_eq,cr1_eq
136 cmpwi r5,341 // lwax/lwaux ?
137 cror cr1_eq,cr0_eq,cr1_eq
138 cmpwi r4,534 // lwbrx ?
139 cror cr1_eq,cr0_eq,cr1_eq
140 cmpwi r5,23 // lwz/lwzx ?
141 cror cr1_eq,cr0_eq,cr1_eq
142 cmpwi r5,149 // stdx/stdux ?
143 cror cr1_eq,cr0_eq,cr1_eq
144 cmpwi r5,727 // stfdx/stfdux ?
145 cror cr1_eq,cr0_eq,cr1_eq
146 cmpwi r4,983 // stfiwx ?
147 cror cr1_eq,cr0_eq,cr1_eq
148 cmpwi r5,663 // stfsx/stfsux ?
149 cror cr1_eq,cr0_eq,cr1_eq
150 cmpwi r4,918 // sthbrx ?
151 cror cr1_eq,cr0_eq,cr1_eq
152 cmpwi r5,407 // sthx/sthux ?
153 cror cr1_eq,cr0_eq,cr1_eq
154 cmpwi r4,725 // stswi ?
155 cror cr1_eq,cr0_eq,cr1_eq
156 cmpwi r4,661 // stswx ?
157 cror cr1_eq,cr0_eq,cr1_eq
158 cmpwi r4,662 // stwbrx ?
159 cror cr1_eq,cr0_eq,cr1_eq
160 cmpwi r5,151 // stwx/stwux ?
161 cror cr1_eq,cr0_eq,cr1_eq
162
163 beq++ cr1,a64GotInstruction // it was one of the X-forms we handle
164 crclr kAlignment // revert to program interrupt
165 b a64PassAlong // not recognized extended opcode
166
167
168 // *****************************************
169 // * A L I G N M E N T I N T E R R U P T *
170 // *****************************************
171 //
172 // We get here in exception context, ie with interrupts disabled, translation off, and
173 // in 64-bit mode, with:
174 // r13 = save-area pointer, with general context already saved in it
175 // cr6 = feature flags
176 // We preserve r13 and cr6. Other GPRs and CRs, the LR and CTR are used.
177 //
178 // Current 64-bit processors (GPUL) handle almost all misaligned operations in hardware,
179 // so this routine usually isn't called very often. Only floating pt ops that cross a page
180 // boundary and are not word aligned, and LMW/STMW can take exceptions to cacheable memory.
181 // However, in contrast to G3 and G4, any misaligned load/store will get an alignment
182 // interrupt on uncached memory.
183 //
184 // We always emulate scalar ops with a series of byte load/stores. Doing so is no slower
185 // than LWZ/STW in cases where a scalar op gets an alignment exception.
186 //
187 // This routine supports all legal permutations of alignment interrupts occuring in user or
188 // supervisor mode, 32 or 64-bit addressing, and translation on or off. We do not emulate
189 // instructions that go past the end of an address space, such as "LHZ -1(0)"; we just pass
190 // along the alignment exception rather than wrap around to byte 0.
191 //
192 // First, check for a few special cases such as virtual machines, etc.
193
194 .globl EXT(AlignAssist64)
195 .align 5
196 LEXT(AlignAssist64)
197 crset kAlignment // mark as alignment interrupt
198
199 a64AlignAssistJoin: // join here from program interrupt handler
200 li r0,0 // Get a 0
201 mfsprg r31,0 // get the per_proc data ptr
202 mcrf cr3,cr6 // save feature flags here...
203 lwz r21,spcFlags(r31) // grab the special flags
204 ld r29,savesrr1(r13) // get the MSR etc at the fault
205 ld r28,savesrr0(r13) // get the EA of faulting instruction
206 stw r0,savemisc3(r13) // Assume we will handle this ok
207 mfmsr r26 // save MSR at entry
208 rlwinm. r0,r21,0,runningVMbit,runningVMbit // Are we running a VM?
209 lwz r19,dgFlags(0) // Get the diagnostics flags
210 bne-- a64PassAlong // yes, let the virtual machine monitor handle
211
212
213 // Set up the MSR shadow regs. We turn on FP in this routine, and usually set DR and RI
214 // when accessing user space (the SLB is still set up with all the user space translations.)
215 // However, if the interrupt occured in the kernel with DR off, we keep it off while
216 // accessing the "target" address space. If we set DR to access the target space, we also
217 // set RI. The RI bit tells the exception handlers to clear cr0 beq and return if we get an
218 // exception accessing the user address space. We are careful to test cr0 beq after every such
219 // access. We keep the following "shadows" of the MSR in global regs across this code:
220 // r25 = MSR at entry, plus FP and probably DR and RI (used to access target space)
221 // r26 = MSR at entry
222 // r27 = free
223 // r29 = SRR1 (ie, MSR at interrupt)
224 // Note that EE and IR are always off, and SF is always on in this code.
225
226 rlwinm r3,r29,0,MSR_DR_BIT,MSR_DR_BIT // was translation on at fault?
227 rlwimi r3,r3,32-MSR_RI_BIT+MSR_DR_BIT,MSR_RI_BIT,MSR_RI_BIT // if DR was set, set RI too
228 or r25,r26,r3 // assemble MSR to use accessing target space
229
230
231 // Because the DSISR and DAR are either not set or are not to be trusted on some 64-bit
232 // processors on an alignment interrupt, we must fetch the faulting instruction ourselves,
233 // then decode/hash the opcode and reconstruct the EA manually.
234
235 mtmsr r25 // turn on FP and (if it was on at fault) DR and RI
236 isync // wait for it to happen
237 cmpw r0,r0 // turn on beq so we can check for DSIs
238 lwz r20,0(r28) // fetch faulting instruction, probably with DR on
239 bne-- a64RedriveAsISI // got a DSI trying to fetch it, pretend it was an ISI
240 mtmsr r26 // turn DR back off
241 isync // wait for it to happen
242
243
244 // Set a few flags while we wait for the faulting instruction to arrive from cache.
245
246 rlwinm. r0,r29,0,MSR_SE_BIT,MSR_SE_BIT // Were we single stepping?
247 stw r20,savemisc2(r13) // Save the instruction image in case we notify
248 crnot kTrace,cr0_eq
249 rlwinm. r0,r19,0,enaNotifyEMb,enaNotifyEMb // Should we notify?
250 crnot kNotify,cr0_eq
251
252
253 // Hash the intruction into a 5-bit value "AAAAB" used to index the branch table, and a
254 // 1-bit kUpdate flag, as follows:
255 // ¥ for X-form instructions (with primary opcode 31):
256 // the "AAAA" bits are bits 21-24 of the instruction
257 // the "B" bit is the XOR of bits 29 and 30
258 // the update bit is instruction bit 25
259 // ¥ for D and DS-form instructions (actually, any primary opcode except 31):
260 // the "AAAA" bits are bits 1-4 of the instruction
261 // the "B" bit is 0
262 // the update bit is instruction bit 5
263 //
264 // Just for fun (and perhaps a little speed on deep-pipe machines), we compute the hash,
265 // update flag, and EA without branches and with ipc >= 2.
266 //
267 // When we "bctr" to the opcode-specific reoutine, the following are all set up:
268 // MSR = EE and IR off, SF and FP on
269 // r12 = full 64-bit EA (r17 is clamped EA)
270 // r13 = save-area pointer (physical)
271 // r14 = ptr to saver0 in save-area (ie, to base of GPRs)
272 // r15 = 0x00000000FFFFFFFF if 32-bit mode fault, 0xFFFFFFFFFFFFFFFF if 64
273 // r16 = RA * 8 (ie, reg# not reg value)
274 // r17 = EA, clamped to 32 bits if 32-bit mode fault (see also r12)
275 // r18 = (RA|0) (reg value)
276 // r19 = -1 if X-form, 0 if D-form
277 // r20 = faulting instruction
278 // r21 = RT * 8 (ie, reg# not reg value)
279 // r22 = addr(aaFPopTable)+(RT*32), ie ptr to floating pt table for target register
280 // r25 = MSR at entrance, probably with DR and RI set (for access to target space)
281 // r26 = MSR at entrance
282 // r27 = free
283 // r28 = SRR0 (ie, EA of faulting instruction)
284 // r29 = SRR1 (ie, MSR at fault)
285 // r30 = scratch, usually user data
286 // r31 = per-proc pointer
287 // cr2 = kTrace, kNotify, and kAlignment flags
288 // cr3 = saved copy of feature flags used in lowmem vector code
289 // cr6 = bits 24-27 of CR are bits 24-27 of opcode if X-form, or bits 4-5 and 00 if D-form
290 // bit 25 is the kUpdate flag, set for update form instructions
291 // cr7 = bits 28-31 of CR are bits 28-31 of opcode if X-form, or 0 if D-form
292
293 a64GotInstruction: // here from program interrupt with instruction in r20
294 rlwinm r21,r20,6+6,20,25 // move the primary opcode (bits 0-6) to bits 20-25
295 la r14,saver0(r13) // r14 <- base address of GPR registers
296 xori r19,r21,0x07C0 // iff primary opcode is 31, set r19 to 0
297 rlwinm r16,r20,16+3,24,28 // r16 <- RA*8
298 subi r19,r19,1 // set bit 0 iff X-form (ie, if primary opcode is 31)
299 rlwinm r17,r20,21+3,24,28 // r17 <- RB*8 (if X-form)
300 sradi r19,r19,63 // r19 <- -1 if X-form, 0 if D-form
301 extsh r22,r20 // r22 <- displacement (if D-form)
302
303 ldx r23,r14,r17 // get (RB), if any
304 and r15,r20,r19 // instruction if X, 0 if D
305 andc r17,r21,r19 // primary opcode in bits 20-25 if D, 0 if X
306 ldx r18,r14,r16 // get (RA)
307 subi r24,r16,1 // set bit 0 iff RA==0
308 or r21,r15,r17 // r21 <- instruction if X, or bits 0-5 in bits 20-25 if D
309 sradi r24,r24,63 // r24 <- -1 if RA==0, 0 otherwise
310 rlwinm r17,r21,32-4,25,28 // shift opcode bits 21-24 to 25-28 (hash "AAAA" bits)
311 lis r10,ha16(a64BranchTable) // start to build up branch table address
312 rlwimi r17,r21,0,29,29 // move opcode bit 29 into hash as start of "B" bit
313 rlwinm r30,r21,1,29,29 // position opcode bit 30 in position 29
314 and r12,r23,r19 // RB if X-form, 0 if D-form
315 andc r11,r22,r19 // 0 if X-form, sign extended displacement if D-form
316 xor r17,r17,r30 // bit 29 ("B") of hash is xor(bit29,bit30)
317 addi r10,r10,lo16(a64BranchTable)
318 or r12,r12,r11 // r12 <- (RB) or displacement, as appropriate
319 lwzx r30,r10,r17 // get address from branch table
320 mtcrf 0x01,r21 // move opcode bits 28-31 to CR7
321 sradi r15,r29,32 // propogate SF bit from SRR1 (MSR_SF, which is bit 0)
322 andc r18,r18,r24 // r18 <- (RA|0)
323 mtcrf 0x02,r21 // move opcode bits 24-27 to CR6 (kUpdate is bit 25)
324 add r12,r18,r12 // r12 <- 64-bit EA
325 mtctr r30 // set up branch address
326
327 oris r15,r15,0xFFFF // start to fill low word of r15 with 1s
328 rlwinm r21,r20,11+3,24,28 // r21 <- RT * 8
329 lis r22,ha16(EXT(aaFPopTable)) // start to compute address of floating pt table
330 ori r15,r15,0xFFFF // now bits 32-63 of r15 are 1s
331 addi r22,r22,lo16(EXT(aaFPopTable))
332 and r17,r12,r15 // clamp EA to 32 bits if fault occured in 32-bit mode
333 rlwimi r22,r21,2,22,26 // move RT into aaFPopTable address (which is 1KB aligned)
334
335 bf-- kAlignment,a64HandleProgramInt // return to Program Interrupt handler
336 bctr // if alignment interrupt, jump to opcode-specific routine
337
338
339 // Floating-pt load single (lfs[u], lfsx[u])
340
341 a64LfsLfsx:
342 bl a64Load4Bytes // get data in r30
343 mtctr r22 // set up address of "lfs fRT,emfp0(r31)"
344 stw r30,emfp0(r31) // put word here for aaFPopTable routine
345 bctrl // do the lfs
346 b a64UpdateCheck // update RA if necessary and exit
347
348
349 // Floating-pt store single (stfs[u], stfsx[u])
350
351 a64StfsStfsx:
352 ori r22,r22,8 // set dir==1 (ie, single store) in aaFPopTable
353 mtctr r22 // set up address of "stfs fRT,emfp0(r31)"
354 bctrl // execute the store into emfp0
355 lwz r30,emfp0(r31) // get the word
356 bl a64Store4Bytes // store r30 into user space
357 b a64UpdateCheck // update RA if necessary and exit
358
359
360 // Floating-pt store as integer word (stfiwx)
361
362 a64Stfiwx:
363 ori r22,r22,16+8 // set size=1, dir==1 (ie, double store) in aaFPopTable
364 mtctr r22 // set up FP register table address
365 bctrl // double precision store into emfp0
366 lwz r30,emfp0+4(r31) // get the low-order word
367 bl a64Store4Bytes // store r30 into user space
368 b a64Exit // successfully emulated
369
370
371 // Floating-pt load double (lfd[u], lfdx[u])
372
373 a64LfdLfdx:
374 ori r22,r22,16 // set Double bit in aaFPopTable address
375 bl a64Load8Bytes // get data in r30
376 mtctr r22 // set up address of "lfd fRT,emfp0(r31)"
377 std r30,emfp0(r31) // put doubleword here for aaFPopTable routine
378 bctrl // execute the load
379 b a64UpdateCheck // update RA if necessary and exit
380
381
382 // Floating-pt store double (stfd[u], stfdx[u])
383
384 a64StfdStfdx:
385 ori r22,r22,16+8 // set size=1, dir==1 (ie, double store) in aaFPopTable address
386 mtctr r22 // address of routine to stfd RT
387 bctrl // store into emfp0
388 ld r30,emfp0(r31) // get the doubleword
389 bl a64Store8Bytes // store r30 into user space
390 b a64UpdateCheck // update RA if necessary and exit
391
392
393 // Load halfword w 0-fill (lhz[u], lhzx[u])
394
395 a64LhzLhzx:
396 bl a64Load2Bytes // load into r30 from user space (w 0-fill)
397 stdx r30,r14,r21 // store into RT slot in register file
398 b a64UpdateCheck // update RA if necessary and exit
399
400
401 // Load halfword w sign fill (lha[u], lhax[u])
402
403 a64LhaLhax:
404 bl a64Load2Bytes // load into r30 from user space (w 0-fill)
405 extsh r30,r30 // sign-extend
406 stdx r30,r14,r21 // store into RT slot in register file
407 b a64UpdateCheck // update RA if necessary and exit
408
409
410 // Load halfword byte reversed (lhbrx)
411
412 a64Lhbrx:
413 bl a64Load2Bytes // load into r30 from user space (w 0-fill)
414 rlwinm r3,r30,8,16,23 // reverse bytes into r3
415 rlwimi r3,r30,24,24,31
416 stdx r3,r14,r21 // store into RT slot in register file
417 b a64Exit // successfully emulated
418
419
420 // Store halfword (sth[u], sthx[u])
421
422 a64SthSthx:
423 ldx r30,r14,r21 // get RT
424 bl a64Store2Bytes // store r30 into user space
425 b a64UpdateCheck // update RA if necessary and exit
426
427
428 // Store halfword byte reversed (sthbrx)
429
430 a64Sthbrx:
431 addi r21,r21,6 // point to low two bytes of RT
432 lhbrx r30,r14,r21 // load and reverse
433 bl a64Store2Bytes // store r30 into user space
434 b a64Exit // successfully emulated
435
436
437 // Load word w 0-fill (lwz[u], lwzx[u]), also lwarx.
438
439 a64LwzLwzxLwarx:
440 andc r3,r19,r20 // light bit 30 of r3 iff lwarx
441 andi. r0,r3,2 // is it lwarx?
442 bne-- a64PassAlong // yes, never try to emulate a lwarx
443 bl a64Load4Bytes // load 4 bytes from user space into r30 (0-filled)
444 stdx r30,r14,r21 // update register file
445 b a64UpdateCheck // update RA if necessary and exit
446
447
448 // Load word w sign fill (lwa, lwax[u])
449
450 a64Lwa:
451 crclr kUpdate // no update form of lwa (its a reserved encoding)
452 a64Lwax:
453 bl a64Load4Bytes // load 4 bytes from user space into r30 (0-filled)
454 extsw r30,r30 // sign extend
455 stdx r30,r14,r21 // update register file
456 b a64UpdateCheck // update RA if necessary and exit
457
458
459 // Load word byte reversed (lwbrx)
460
461 a64Lwbrx:
462 bl a64Load4Bytes // load 4 bytes from user space into r30 (0-filled)
463 rlwinm r3,r30,24,0,31 // flip bytes 1234 to 4123
464 rlwimi r3,r30,8,8,15 // r3 is now 4323
465 rlwimi r3,r30,8,24,31 // r3 is now 4321
466 stdx r3,r14,r21 // update register file
467 b a64Exit // successfully emulated
468
469
470 // Store word (stw[u], stwx[u])
471
472 a64StwStwx:
473 ldx r30,r14,r21 // get RT
474 bl a64Store4Bytes // store r30 into user space
475 b a64UpdateCheck // update RA if necessary and exit
476
477
478 // Store word byte reversed (stwbrx)
479
480 a64Stwbrx:
481 addi r21,r21,4 // point to low word of RT
482 lwbrx r30,r14,r21 // load and reverse
483 bl a64Store4Bytes // store r30 into user space
484 b a64Exit // successfully emulated
485
486
487 // Load doubleword (ld[u], ldx[u]), also lwa.
488
489 a64LdLwa: // these are DS form: ld=0, ldu=1, and lwa=2
490 mtcrf 0x01,r20 // move DS field to cr7
491 rlwinm r3,r20,0,30,31 // must adjust EA by subtracting DS field
492 sub r12,r12,r3 // subtract from full 64-bit EA
493 and r17,r12,r15 // then re-clamp to 32 bits if necessary
494 bt 30,a64Lwa // handle lwa
495 crmove kUpdate,31 // if opcode bit 31 is set, it is ldu so set update flag
496 a64Ldx:
497 bl a64Load8Bytes // load 8 bytes from user space into r30
498 stdx r30,r14,r21 // update register file
499 b a64UpdateCheck // update RA if necessary and exit
500
501
502 // Store doubleword (stdx[u], std[u], stwcx)
503
504 a64StdxStwcx:
505 bf-- 30,a64PassAlong // stwcx, so pass along alignment exception
506 b a64Stdx // was stdx
507 a64StdStfiwx: // if DS form: 0=std, 1=stdu, 2-3=undefined
508 bt 30,a64Stfiwx // handle stfiwx
509 rlwinm r3,r20,0,30,31 // must adjust EA by subtracting DS field
510 mtcrf 0x01,r20 // move DS field to cr7
511 sub r12,r12,r3 // subtract from full 64-bit EA
512 and r17,r12,r15 // then re-clamp to 32 bits if necessary
513 crmove kUpdate,31 // if DS==1, then it is update form
514 a64Stdx:
515 ldx r30,r14,r21 // get RT
516 bl a64Store8Bytes // store RT into user space
517 b a64UpdateCheck // update RA if necessary and exit
518
519
520 // Dcbz and Dcbz128 (bit 10 distinguishes the two forms)
521
522 a64DcbzDcbz128:
523 andis. r0,r20,0x0020 // bit 10 set?
524 li r3,0 // get a 0 to store
525 li r0,4 // assume 32-bit version, store 8 bytes 4x
526 rldicr r17,r17,0,63-5 // 32-byte align EA
527 li r4,_COMM_PAGE_BASE_ADDRESS
528 beq a64DcbzSetup // it was the 32-byte version
529 rldicr r17,r17,0,63-7 // zero low 7 bits of EA
530 li r0,16 // store 8 bytes 16x
531 a64DcbzSetup:
532 sub r4,r28,r4 // get instruction offset from start of commpage
533 and r4,r4,r15 // mask off high-order bits if 32-bit mode
534 cmpldi r4,_COMM_PAGE_AREA_USED // did fault occur in commpage area?
535 bge a64NotCommpage // not in commpage
536 rlwinm. r4,r29,0,MSR_PR_BIT,MSR_PR_BIT // did fault occur in user mode?
537 beq-- a64NotCommpage // do not zero cr7 if kernel got alignment exception
538 lwz r4,savecr(r13) // if we take a dcbz{128} in the commpage...
539 rlwinm r4,r4,0,0,27 // ...clear user's cr7...
540 stw r4,savecr(r13) // ...as a flag for commpage code
541 a64NotCommpage:
542 mtctr r0
543 cmpw r0,r0 // turn cr0 beq on so we can check for DSIs
544 mtmsr r25 // turn on DR and RI so we can address user space
545 isync // wait for it to happen
546 a64DcbzLoop:
547 std r3,0(r17) // store into user space
548 bne-- a64RedriveAsDSI
549 addi r17,r17,8
550 bdnz a64DcbzLoop
551
552 mtmsr r26 // restore MSR
553 isync // wait for it to happen
554 b a64Exit
555
556
557 // Load and store multiple (lmw, stmw), distinguished by bit 25
558
559 a64LmwStmw:
560 subfic r22,r21,32*8 // how many regs to load or store?
561 srwi r22,r22,1 // get bytes to load/store
562 bf 25,a64LoadMultiple // handle lmw
563 b a64StoreMultiple // it was stmw
564
565
566 // Load string word immediate (lswi)
567
568 a64Lswi:
569 rlwinm r22,r20,21,27,31 // get #bytes in r22
570 and r17,r18,r15 // recompute EA as (RA|0), and clamp
571 subi r3,r22,1 // r22==0?
572 rlwimi r22,r3,6,26,26 // map count of 0 to 32
573 b a64LoadMultiple
574
575
576 // Store string word immediate (stswi)
577
578 a64Stswi:
579 rlwinm r22,r20,21,27,31 // get #bytes in r22
580 and r17,r18,r15 // recompute EA as (RA|0), and clamp
581 subi r3,r22,1 // r22==0?
582 rlwimi r22,r3,6,26,26 // map count of 0 to 32
583 b a64StoreMultiple
584
585
586 // Load string word indexed (lswx), also lwbrx
587
588 a64LswxLwbrx:
589 bf 30,a64Lwbrx // was lwbrx
590 ld r22,savexer(r13) // get the xer
591 rlwinm r22,r22,0,25,31 // isolate the byte count
592 b a64LoadMultiple // join common code
593
594
595 // Store string word indexed (stswx), also stwbrx
596
597 a64StswxStwbrx:
598 bf 30,a64Stwbrx // was stwbrx
599 ld r22,savexer(r13) // get the xer
600 rlwinm r22,r22,0,25,31 // isolate the byte count
601 b a64StoreMultiple // join common code
602
603
604 // Load multiple words. This handles lmw, lswi, and lswx.
605
606 a64LoadMultiple: // r22 = byte count, may be 0
607 subic. r3,r22,1 // get (#bytes-1)
608 blt a64Exit // done if 0
609 add r4,r17,r3 // get EA of last operand byte
610 and r4,r4,r15 // clamp
611 cmpld r4,r17 // address space wrap?
612 blt-- a64PassAlong // pass along exception if so
613 srwi. r4,r22,2 // get # full words to load
614 rlwinm r22,r22,0,30,31 // r22 <- leftover byte count
615 cmpwi cr1,r22,0 // leftover bytes?
616 beq a64Lm3 // no words
617 mtctr r4 // set up word count
618 cmpw r0,r0 // set beq for DSI test
619 a64Lm2:
620 mtmsr r25 // turn on DR and RI
621 isync // wait for it to happen
622 lbz r3,0(r17)
623 bne-- a64RedriveAsDSI // got a DSI
624 lbz r4,1(r17)
625 bne-- a64RedriveAsDSI // got a DSI
626 lbz r5,2(r17)
627 bne-- a64RedriveAsDSI // got a DSI
628 lbz r6,3(r17)
629 bne-- a64RedriveAsDSI // got a DSI
630 rlwinm r30,r3,24,0,7 // pack bytes into r30
631 rldimi r30,r4,16,40
632 rldimi r30,r5,8,48
633 rldimi r30,r6,0,56
634 mtmsr r26 // turn DR back off so we can store into register file
635 isync
636 addi r17,r17,4 // bump EA
637 stdx r30,r14,r21 // pack into register file
638 addi r21,r21,8 // bump register file offset
639 rlwinm r21,r21,0,24,28 // wrap around to 0
640 bdnz a64Lm2
641 a64Lm3: // cr1/r22 = leftover bytes (0-3), cr0 beq set
642 beq cr1,a64Exit // no leftover bytes
643 mtctr r22
644 mtmsr r25 // turn on DR so we can access user space
645 isync
646 lbz r3,0(r17) // get 1st leftover byte
647 bne-- a64RedriveAsDSI // got a DSI
648 rlwinm r30,r3,24,0,7 // position in byte 4 of r30 (and clear rest of r30)
649 bdz a64Lm4 // only 1 byte leftover
650 lbz r3,1(r17) // get 2nd byte
651 bne-- a64RedriveAsDSI // got a DSI
652 rldimi r30,r3,16,40 // insert into byte 5 of r30
653 bdz a64Lm4 // only 2 bytes leftover
654 lbz r3,2(r17) // get 3rd byte
655 bne-- a64RedriveAsDSI // got a DSI
656 rldimi r30,r3,8,48 // insert into byte 6
657 a64Lm4:
658 mtmsr r26 // turn DR back off so we can store into register file
659 isync
660 stdx r30,r14,r21 // pack partially-filled word into register file
661 b a64Exit
662
663
664 // Store multiple words. This handles stmw, stswi, and stswx.
665
666 a64StoreMultiple: // r22 = byte count, may be 0
667 subic. r3,r22,1 // get (#bytes-1)
668 blt a64Exit // done if 0
669 add r4,r17,r3 // get EA of last operand byte
670 and r4,r4,r15 // clamp
671 cmpld r4,r17 // address space wrap?
672 blt-- a64PassAlong // pass along exception if so
673 srwi. r4,r22,2 // get # full words to load
674 rlwinm r22,r22,0,30,31 // r22 <- leftover byte count
675 cmpwi cr1,r22,0 // leftover bytes?
676 beq a64Sm3 // no words
677 mtctr r4 // set up word count
678 cmpw r0,r0 // turn on beq so we can check for DSIs
679 a64Sm2:
680 ldx r30,r14,r21 // get next register
681 addi r21,r21,8 // bump register file offset
682 rlwinm r21,r21,0,24,28 // wrap around to 0
683 srwi r3,r30,24 // shift the four bytes into position
684 srwi r4,r30,16
685 srwi r5,r30,8
686 mtmsr r25 // turn on DR so we can access user space
687 isync // wait for it to happen
688 stb r3,0(r17)
689 bne-- a64RedriveAsDSI // got a DSI
690 stb r4,1(r17)
691 bne-- a64RedriveAsDSI // got a DSI
692 stb r5,2(r17)
693 bne-- a64RedriveAsDSI // got a DSI
694 stb r30,3(r17)
695 bne-- a64RedriveAsDSI // got a DSI
696 mtmsr r26 // turn DR back off
697 isync
698 addi r17,r17,4 // bump EA
699 bdnz a64Sm2
700 a64Sm3: // r22 = 0-3, cr1 set on r22, cr0 beq set
701 beq cr1,a64Exit // no leftover bytes
702 ldx r30,r14,r21 // get last register
703 mtctr r22
704 mtmsr r25 // turn on DR so we can access user space
705 isync // wait for it to happen
706 a64Sm4:
707 rlwinm r30,r30,8,0,31 // position next byte
708 stb r30,0(r17) // pack into user space
709 addi r17,r17,1 // bump user space ptr
710 bne-- a64RedriveAsDSI // got a DSI
711 bdnz a64Sm4
712 mtmsr r26 // turn DR back off
713 isync
714 b a64Exit
715
716
717 // Subroutines to load bytes from user space.
718
719 a64Load2Bytes: // load 2 bytes right-justified into r30
720 addi r7,r17,1 // get EA of last byte
721 and r7,r7,r15 // clamp
722 cmpld r7,r17 // address wrap?
723 blt-- a64PassAlong // yes
724 mtmsr r25 // turn on DR so we can access user space
725 isync // wait for it to happen
726 sub. r30,r30,r30 // 0-fill dest and set beq
727 b a64Load2 // jump into routine
728 a64Load4Bytes: // load 4 bytes right-justified into r30 (ie, low order word)
729 addi r7,r17,3 // get EA of last byte
730 and r7,r7,r15 // clamp
731 cmpld r7,r17 // address wrap?
732 blt-- a64PassAlong // yes
733 mtmsr r25 // turn on DR so we can access user space
734 isync // wait for it to happen
735 sub. r30,r30,r30 // 0-fill dest and set beq
736 b a64Load4 // jump into routine
737 a64Load8Bytes: // load 8 bytes into r30
738 addi r7,r17,7 // get EA of last byte
739 and r7,r7,r15 // clamp
740 cmpld r7,r17 // address wrap?
741 blt-- a64PassAlong // yes
742 mtmsr r25 // turn on DR so we can access user space
743 isync // wait for it to happen
744 sub. r30,r30,r30 // 0-fill dest and set beq
745 lbz r3,-7(r7) // get byte 0
746 bne-- a64RedriveAsDSI // got a DSI
747 lbz r4,-6(r7) // and byte 1, etc
748 bne-- a64RedriveAsDSI // got a DSI
749 lbz r5,-5(r7)
750 bne-- a64RedriveAsDSI // got a DSI
751 lbz r6,-4(r7)
752 bne-- a64RedriveAsDSI // got a DSI
753 rldimi r30,r3,56,0 // position bytes in upper word
754 rldimi r30,r4,48,8
755 rldimi r30,r5,40,16
756 rldimi r30,r6,32,24
757 a64Load4:
758 lbz r3,-3(r7)
759 bne-- a64RedriveAsDSI // got a DSI
760 lbz r4,-2(r7)
761 bne-- a64RedriveAsDSI // got a DSI
762 rldimi r30,r3,24,32 // insert bytes 4 and 5 into r30
763 rldimi r30,r4,16,40
764 a64Load2:
765 lbz r3,-1(r7)
766 bne-- a64RedriveAsDSI // got a DSI
767 lbz r4,0(r7)
768 bne-- a64RedriveAsDSI // got a DSI
769 mtmsr r26 // turn DR back off
770 isync
771 rldimi r30,r3,8,48 // insert bytes 6 and 7 into r30
772 rldimi r30,r4,0,56
773 blr
774
775
776 // Subroutines to store bytes into user space.
777
778 a64Store2Bytes: // store bytes 6 and 7 of r30
779 addi r7,r17,1 // get EA of last byte
780 and r7,r7,r15 // clamp
781 cmpld r7,r17 // address wrap?
782 blt-- a64PassAlong // yes
783 mtmsr r25 // turn on DR so we can access user space
784 isync // wait for it to happen
785 cmpw r0,r0 // set beq so we can check for DSI
786 b a64Store2 // jump into routine
787 a64Store4Bytes: // store bytes 4-7 of r30 (ie, low order word)
788 addi r7,r17,3 // get EA of last byte
789 and r7,r7,r15 // clamp
790 cmpld r7,r17 // address wrap?
791 blt-- a64PassAlong // yes
792 mtmsr r25 // turn on DR so we can access user space
793 isync // wait for it to happen
794 cmpw r0,r0 // set beq so we can check for DSI
795 b a64Store4 // jump into routine
796 a64Store8Bytes: // r30 = bytes
797 addi r7,r17,7 // get EA of last byte
798 and r7,r7,r15 // clamp
799 cmpld r7,r17 // address wrap?
800 blt-- a64PassAlong // yes
801 mtmsr r25 // turn on DR so we can access user space
802 isync // wait for it to happen
803 cmpw r0,r0 // set beq so we can check for DSI
804 rotldi r3,r30,8 // shift byte 0 into position
805 rotldi r4,r30,16 // and byte 1
806 rotldi r5,r30,24 // and byte 2
807 rotldi r6,r30,32 // and byte 3
808 stb r3,-7(r7) // store byte 0
809 bne-- a64RedriveAsDSI // got a DSI
810 stb r4,-6(r7) // and byte 1 etc...
811 bne-- a64RedriveAsDSI // got a DSI
812 stb r5,-5(r7)
813 bne-- a64RedriveAsDSI // got a DSI
814 stb r6,-4(r7)
815 bne-- a64RedriveAsDSI // got a DSI
816 a64Store4:
817 rotldi r3,r30,40 // shift byte 4 into position
818 rotldi r4,r30,48 // and byte 5
819 stb r3,-3(r7)
820 bne-- a64RedriveAsDSI // got a DSI
821 stb r4,-2(r7)
822 bne-- a64RedriveAsDSI // got a DSI
823 a64Store2:
824 rotldi r3,r30,56 // shift byte 6 into position
825 stb r3,-1(r7) // store byte 6
826 bne-- a64RedriveAsDSI // got a DSI
827 stb r30,0(r7) // store byte 7, which is already positioned
828 bne-- a64RedriveAsDSI // got a DSI
829 mtmsr r26 // turn off DR
830 isync
831 blr
832
833
834 // Exit routines.
835
836 a64ExitEm:
837 li r30,T_EMULATE // Change exception code to emulate
838 stw r30,saveexception(r13) // Save it
839 b a64Exit // Join standard exit routine...
840
841 a64PassAlong: // unhandled exception, just pass it along
842 li r0,1 // Set that the alignment/program exception was not emulated
843 crset kNotify // return T_ALIGNMENT or T_PROGRAM
844 stw r0,savemisc3(r13) // Set that emulation was not done
845 crclr kTrace // not a trace interrupt
846 b a64Exit1
847 a64UpdateCheck: // successfully emulated, may be update form
848 bf kUpdate,a64Exit // update?
849 stdx r12,r14,r16 // yes, store 64-bit EA into RA
850 a64Exit: // instruction successfully emulated
851 addi r28,r28,4 // bump SRR0 past the emulated instruction
852 li r30,T_IN_VAIN // eat the interrupt since we emulated it
853 and r28,r28,r15 // clamp to address space size (32 vs 64)
854 std r28,savesrr0(r13) // save, so we return to next instruction
855 a64Exit1:
856 bt-- kTrace,a64Trace // were we in single-step at fault?
857 bt-- kNotify,a64Notify // should we say T_ALIGNMENT anyway?
858 a64Exit2:
859 mcrf cr6,cr3 // restore feature flags
860 mr r11,r30 // pass back exception code (T_IN_VAIN etc) in r11
861 b EXT(EmulExit) // return to exception processing
862
863
864 // Notification requested: pass exception upstairs even though it might have been emulated.
865
866 a64Notify:
867 li r30,T_ALIGNMENT // somebody wants to know about it (but don't redrive)
868 bt kAlignment,a64Exit2 // was an alignment exception
869 li r30,T_PROGRAM // was an emulated instruction
870 b a64Exit2
871
872
873 // Emulate a trace interrupt after handling alignment interrupt.
874
875 a64Trace:
876 lwz r9,SAVflags(r13) // get the save-area flags
877 li r30,T_TRACE
878 oris r9,r9,hi16(SAVredrive) // Set the redrive bit
879 stw r30,saveexception(r13) // Set the exception code
880 stw r9,SAVflags(r13) // Set the flags
881 b a64Exit2 // Exit and do trace interrupt...
882
883
884 // Got a DSI accessing user space. Redrive. One way this can happen is if another
885 // processor removes a mapping while we are emulating.
886
887 a64RedriveAsISI: // this DSI happened fetching the opcode (r1==DSISR r4==DAR)
888 mtmsr r26 // turn DR back off
889 isync // wait for it to happen
890 li r30,T_INSTRUCTION_ACCESS
891 rlwimi r29,r1,0,0,4 // insert the fault type from DSI's DSISR
892 std r29,savesrr1(r13) // update SRR1 to look like an ISI
893 b a64Redrive
894
895 a64RedriveAsDSI: // r0==DAR r1==DSISR
896 mtmsr r26 // turn DR back off
897 isync // wait for it to happen
898 stw r1,savedsisr(r13) // Set the DSISR of failed access
899 std r0,savedar(r13) // Set the address of the failed access
900 li r30,T_DATA_ACCESS // Set failing data access code
901 a64Redrive:
902 lwz r9,SAVflags(r13) // Pick up the flags
903 stw r30,saveexception(r13) // Set the replacement code
904 oris r9,r9,hi16(SAVredrive) // Set the redrive bit
905 stw r9,SAVflags(r13) // Set redrive request
906 crclr kTrace // don't take a trace interrupt
907 crclr kNotify // don't pass alignment exception
908 b a64Exit2 // done
909
910
911 // This is the branch table, indexed by the "AAAAB" opcode hash.
912
913 a64BranchTable:
914 .long a64LwzLwzxLwarx // 00000 lwz[u], lwzx[u], lwarx
915 .long a64Ldx // 00001 ldx[u]
916 .long a64PassAlong // 00010 ldarx (never emulate these)
917 .long a64PassAlong // 00011
918 .long a64StwStwx // 00100 stw[u], stwx[u]
919 .long a64StdxStwcx // 00101 stdx[u], stwcx
920 .long a64PassAlong // 00110
921 .long a64PassAlong // 00111 stdcx (never emulate these)
922 .long a64LhzLhzx // 01000 lhz[u], lhzx[u]
923 .long a64PassAlong // 01001
924 .long a64LhaLhax // 01010 lha[u], lhax[u]
925 .long a64Lwax // 01011 lwax[u]
926 .long a64SthSthx // 01100 sth[u], sthx[u]
927 .long a64PassAlong // 01101
928 .long a64LmwStmw // 01110 lmw, stmw
929 .long a64PassAlong // 01111
930 .long a64LfsLfsx // 10000 lfs[u], lfsx[u]
931 .long a64LswxLwbrx // 10001 lswx, lwbrx
932 .long a64LfdLfdx // 10010 lfd[u], lfdx[u]
933 .long a64Lswi // 10011 lswi
934 .long a64StfsStfsx // 10100 stfs[u], stfsx[u]
935 .long a64StswxStwbrx // 10101 stswx, stwbrx
936 .long a64StfdStfdx // 10110 stfd[u], stfdx[u]
937 .long a64Stswi // 10111 stswi
938 .long a64PassAlong // 11000
939 .long a64Lhbrx // 11001 lhbrx
940 .long a64LdLwa // 11010 ld[u], lwa
941 .long a64PassAlong // 11011
942 .long a64PassAlong // 11100
943 .long a64Sthbrx // 11101 sthbrx
944 .long a64StdStfiwx // 11110 std[u], stfiwx
945 .long a64DcbzDcbz128 // 11111 dcbz, dcbz128
946
947