]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_subr.c
xnu-792.10.96.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_subr.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
24 * The Regents of the University of California. All rights reserved.
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
28 * are met:
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
55 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
56 */
57
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/callout.h>
62 #include <sys/kernel.h>
63 #include <sys/sysctl.h>
64 #include <sys/malloc.h>
65 #include <sys/mbuf.h>
66 #if INET6
67 #include <sys/domain.h>
68 #endif
69 #include <sys/proc.h>
70 #include <sys/kauth.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/protosw.h>
74 #include <sys/random.h>
75 #include <sys/syslog.h>
76 #include <kern/locks.h>
77
78
79
80 #include <net/route.h>
81 #include <net/if.h>
82
83 #define _IP_VHL
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #if INET6
88 #include <netinet/ip6.h>
89 #endif
90 #include <netinet/in_pcb.h>
91 #if INET6
92 #include <netinet6/in6_pcb.h>
93 #endif
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
96 #if INET6
97 #include <netinet6/ip6_var.h>
98 #endif
99 #include <netinet/tcp.h>
100 #include <netinet/tcp_fsm.h>
101 #include <netinet/tcp_seq.h>
102 #include <netinet/tcp_timer.h>
103 #include <netinet/tcp_var.h>
104 #if INET6
105 #include <netinet6/tcp6_var.h>
106 #endif
107 #include <netinet/tcpip.h>
108 #if TCPDEBUG
109 #include <netinet/tcp_debug.h>
110 #endif
111 #include <netinet6/ip6protosw.h>
112
113 #if IPSEC
114 #include <netinet6/ipsec.h>
115 #if INET6
116 #include <netinet6/ipsec6.h>
117 #endif
118 #endif /*IPSEC*/
119
120 #include <sys/md5.h>
121 #include <sys/kdebug.h>
122
123 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
124
125 extern int tcp_lq_overflow;
126
127 /* temporary: for testing */
128 #if IPSEC
129 extern int ipsec_bypass;
130 extern lck_mtx_t *sadb_mutex;
131 #endif
132
133 int tcp_mssdflt = TCP_MSS;
134 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
135 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
136
137 #if INET6
138 int tcp_v6mssdflt = TCP6_MSS;
139 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
140 CTLFLAG_RW, &tcp_v6mssdflt , 0,
141 "Default TCP Maximum Segment Size for IPv6");
142 #endif
143
144 /*
145 * Minimum MSS we accept and use. This prevents DoS attacks where
146 * we are forced to a ridiculous low MSS like 20 and send hundreds
147 * of packets instead of one. The effect scales with the available
148 * bandwidth and quickly saturates the CPU and network interface
149 * with packet generation and sending. Set to zero to disable MINMSS
150 * checking. This setting prevents us from sending too small packets.
151 */
152 int tcp_minmss = TCP_MINMSS;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
154 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
155
156 /*
157 * Number of TCP segments per second we accept from remote host
158 * before we start to calculate average segment size. If average
159 * segment size drops below the minimum TCP MSS we assume a DoS
160 * attack and reset+drop the connection. Care has to be taken not to
161 * set this value too small to not kill interactive type connections
162 * (telnet, SSH) which send many small packets.
163 */
164 #ifdef FIX_WORKAROUND_FOR_3894301
165 __private_extern__ int tcp_minmssoverload = TCP_MINMSSOVERLOAD;
166 #else
167 __private_extern__ int tcp_minmssoverload = 0;
168 #endif
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
170 &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
171 "be under the MINMSS Size");
172
173 static int tcp_do_rfc1323 = 1;
174 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
175 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
176
177 static int tcp_do_rfc1644 = 0;
178 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
179 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
180
181 static int tcp_tcbhashsize = 0;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
183 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
184
185 static int do_tcpdrain = 0;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
187 "Enable tcp_drain routine for extra help when low on mbufs");
188
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
190 &tcbinfo.ipi_count, 0, "Number of active PCBs");
191
192 static int icmp_may_rst = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
194 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
195
196 static int tcp_strict_rfc1948 = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW,
198 &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
199
200 static int tcp_isn_reseed_interval = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
202 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
203
204 static void tcp_cleartaocache(void);
205 static void tcp_notify(struct inpcb *, int);
206
207 /*
208 * Target size of TCP PCB hash tables. Must be a power of two.
209 *
210 * Note that this can be overridden by the kernel environment
211 * variable net.inet.tcp.tcbhashsize
212 */
213 #ifndef TCBHASHSIZE
214 #define TCBHASHSIZE 4096
215 #endif
216
217 /*
218 * This is the actual shape of what we allocate using the zone
219 * allocator. Doing it this way allows us to protect both structures
220 * using the same generation count, and also eliminates the overhead
221 * of allocating tcpcbs separately. By hiding the structure here,
222 * we avoid changing most of the rest of the code (although it needs
223 * to be changed, eventually, for greater efficiency).
224 */
225 #define ALIGNMENT 32
226 #define ALIGNM1 (ALIGNMENT - 1)
227 struct inp_tp {
228 union {
229 struct inpcb inp;
230 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
231 } inp_tp_u;
232 struct tcpcb tcb;
233 #ifndef __APPLE__
234 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
235 struct callout inp_tp_delack;
236 #endif
237 };
238 #undef ALIGNMENT
239 #undef ALIGNM1
240
241 static struct tcpcb dummy_tcb;
242
243
244 extern struct inpcbhead time_wait_slots[];
245 extern int cur_tw_slot;
246 extern u_long *delack_bitmask;
247 extern u_long route_generation;
248
249
250 int get_inpcb_str_size()
251 {
252 return sizeof(struct inpcb);
253 }
254
255
256 int get_tcp_str_size()
257 {
258 return sizeof(struct tcpcb);
259 }
260
261 int tcp_freeq(struct tcpcb *tp);
262
263
264 /*
265 * Tcp initialization
266 */
267 void
268 tcp_init()
269 {
270 int hashsize = TCBHASHSIZE;
271 vm_size_t str_size;
272 int i;
273 struct inpcbinfo *pcbinfo;
274
275 tcp_ccgen = 1;
276 tcp_cleartaocache();
277
278 tcp_delacktime = TCPTV_DELACK;
279 tcp_keepinit = TCPTV_KEEP_INIT;
280 tcp_keepidle = TCPTV_KEEP_IDLE;
281 tcp_keepintvl = TCPTV_KEEPINTVL;
282 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
283 tcp_msl = TCPTV_MSL;
284 read_random(&tcp_now, sizeof(tcp_now));
285 tcp_now = tcp_now & 0x7fffffff; /* Starts tcp internal 500ms clock at a random value */
286
287
288 LIST_INIT(&tcb);
289 tcbinfo.listhead = &tcb;
290 pcbinfo = &tcbinfo;
291 #ifndef __APPLE__
292 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
293 #endif
294 if (!powerof2(hashsize)) {
295 printf("WARNING: TCB hash size not a power of 2\n");
296 hashsize = 512; /* safe default */
297 }
298 tcp_tcbhashsize = hashsize;
299 tcbinfo.hashsize = hashsize;
300 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
301 tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
302 &tcbinfo.porthashmask);
303 #ifdef __APPLE__
304 str_size = (vm_size_t) sizeof(struct inp_tp);
305 tcbinfo.ipi_zone = (void *) zinit(str_size, 120000*str_size, 8192, "tcpcb");
306 #else
307 tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
308 ZONE_INTERRUPT, 0);
309 #endif
310
311 tcp_reass_maxseg = nmbclusters / 16;
312 #ifndef __APPLE__
313 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
314 &tcp_reass_maxseg);
315 #endif
316
317 #if INET6
318 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
319 #else /* INET6 */
320 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
321 #endif /* INET6 */
322 if (max_protohdr < TCP_MINPROTOHDR)
323 max_protohdr = TCP_MINPROTOHDR;
324 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
325 panic("tcp_init");
326 #undef TCP_MINPROTOHDR
327 dummy_tcb.t_state = TCP_NSTATES;
328 dummy_tcb.t_flags = 0;
329 tcbinfo.dummy_cb = (caddr_t) &dummy_tcb;
330
331 /*
332 * allocate lock group attribute and group for tcp pcb mutexes
333 */
334 pcbinfo->mtx_grp_attr = lck_grp_attr_alloc_init();
335 pcbinfo->mtx_grp = lck_grp_alloc_init("tcppcb", pcbinfo->mtx_grp_attr);
336
337 /*
338 * allocate the lock attribute for tcp pcb mutexes
339 */
340 pcbinfo->mtx_attr = lck_attr_alloc_init();
341
342 if ((pcbinfo->mtx = lck_rw_alloc_init(pcbinfo->mtx_grp, pcbinfo->mtx_attr)) == NULL) {
343 printf("tcp_init: mutex not alloced!\n");
344 return; /* pretty much dead if this fails... */
345 }
346
347
348 in_pcb_nat_init(&tcbinfo, AF_INET, IPPROTO_TCP, SOCK_STREAM);
349
350 delack_bitmask = _MALLOC((4 * hashsize)/32, M_PCB, M_WAITOK);
351 if (delack_bitmask == 0)
352 panic("Delack Memory");
353
354 for (i=0; i < (tcbinfo.hashsize / 32); i++)
355 delack_bitmask[i] = 0;
356
357 for (i=0; i < N_TIME_WAIT_SLOTS; i++) {
358 LIST_INIT(&time_wait_slots[i]);
359 }
360 }
361
362 /*
363 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
364 * tcp_template used to store this data in mbufs, but we now recopy it out
365 * of the tcpcb each time to conserve mbufs.
366 */
367 void
368 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
369 struct tcpcb *tp;
370 void *ip_ptr;
371 void *tcp_ptr;
372 {
373 struct inpcb *inp = tp->t_inpcb;
374 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
375
376 #if INET6
377 if ((inp->inp_vflag & INP_IPV6) != 0) {
378 struct ip6_hdr *ip6;
379
380 ip6 = (struct ip6_hdr *)ip_ptr;
381 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
382 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
383 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
384 (IPV6_VERSION & IPV6_VERSION_MASK);
385 ip6->ip6_nxt = IPPROTO_TCP;
386 ip6->ip6_plen = sizeof(struct tcphdr);
387 ip6->ip6_src = inp->in6p_laddr;
388 ip6->ip6_dst = inp->in6p_faddr;
389 tcp_hdr->th_sum = 0;
390 } else
391 #endif
392 {
393 struct ip *ip = (struct ip *) ip_ptr;
394
395 ip->ip_vhl = IP_VHL_BORING;
396 ip->ip_tos = 0;
397 ip->ip_len = 0;
398 ip->ip_id = 0;
399 ip->ip_off = 0;
400 ip->ip_ttl = 0;
401 ip->ip_sum = 0;
402 ip->ip_p = IPPROTO_TCP;
403 ip->ip_src = inp->inp_laddr;
404 ip->ip_dst = inp->inp_faddr;
405 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
406 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
407 }
408
409 tcp_hdr->th_sport = inp->inp_lport;
410 tcp_hdr->th_dport = inp->inp_fport;
411 tcp_hdr->th_seq = 0;
412 tcp_hdr->th_ack = 0;
413 tcp_hdr->th_x2 = 0;
414 tcp_hdr->th_off = 5;
415 tcp_hdr->th_flags = 0;
416 tcp_hdr->th_win = 0;
417 tcp_hdr->th_urp = 0;
418 }
419
420 /*
421 * Create template to be used to send tcp packets on a connection.
422 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
423 * use for this function is in keepalives, which use tcp_respond.
424 */
425 struct tcptemp *
426 tcp_maketemplate(tp)
427 struct tcpcb *tp;
428 {
429 struct mbuf *m;
430 struct tcptemp *n;
431
432 m = m_get(M_DONTWAIT, MT_HEADER);
433 if (m == NULL)
434 return (0);
435 m->m_len = sizeof(struct tcptemp);
436 n = mtod(m, struct tcptemp *);
437
438 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
439 return (n);
440 }
441
442 /*
443 * Send a single message to the TCP at address specified by
444 * the given TCP/IP header. If m == 0, then we make a copy
445 * of the tcpiphdr at ti and send directly to the addressed host.
446 * This is used to force keep alive messages out using the TCP
447 * template for a connection. If flags are given then we send
448 * a message back to the TCP which originated the * segment ti,
449 * and discard the mbuf containing it and any other attached mbufs.
450 *
451 * In any case the ack and sequence number of the transmitted
452 * segment are as specified by the parameters.
453 *
454 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
455 */
456 void
457 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
458 struct tcpcb *tp;
459 void *ipgen;
460 register struct tcphdr *th;
461 register struct mbuf *m;
462 tcp_seq ack, seq;
463 int flags;
464 {
465 register int tlen;
466 int win = 0;
467 struct route *ro = 0;
468 struct route sro;
469 struct ip *ip;
470 struct tcphdr *nth;
471 #if INET6
472 struct route_in6 *ro6 = 0;
473 struct route_in6 sro6;
474 struct ip6_hdr *ip6;
475 int isipv6;
476 #endif /* INET6 */
477 int ipflags = 0;
478
479 #if INET6
480 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
481 ip6 = ipgen;
482 #endif /* INET6 */
483 ip = ipgen;
484
485 if (tp) {
486 if (!(flags & TH_RST)) {
487 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
488 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
489 win = (long)TCP_MAXWIN << tp->rcv_scale;
490 }
491 #if INET6
492 if (isipv6)
493 ro6 = &tp->t_inpcb->in6p_route;
494 else
495 #endif /* INET6 */
496 ro = &tp->t_inpcb->inp_route;
497 } else {
498 #if INET6
499 if (isipv6) {
500 ro6 = &sro6;
501 bzero(ro6, sizeof *ro6);
502 } else
503 #endif /* INET6 */
504 {
505 ro = &sro;
506 bzero(ro, sizeof *ro);
507 }
508 }
509 if (m == 0) {
510 m = m_gethdr(M_DONTWAIT, MT_HEADER);
511 if (m == NULL)
512 return;
513 tlen = 0;
514 m->m_data += max_linkhdr;
515 #if INET6
516 if (isipv6) {
517 bcopy((caddr_t)ip6, mtod(m, caddr_t),
518 sizeof(struct ip6_hdr));
519 ip6 = mtod(m, struct ip6_hdr *);
520 nth = (struct tcphdr *)(ip6 + 1);
521 } else
522 #endif /* INET6 */
523 {
524 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
525 ip = mtod(m, struct ip *);
526 nth = (struct tcphdr *)(ip + 1);
527 }
528 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
529 flags = TH_ACK;
530 } else {
531 m_freem(m->m_next);
532 m->m_next = 0;
533 m->m_data = (caddr_t)ipgen;
534 /* m_len is set later */
535 tlen = 0;
536 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
537 #if INET6
538 if (isipv6) {
539 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
540 nth = (struct tcphdr *)(ip6 + 1);
541 } else
542 #endif /* INET6 */
543 {
544 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
545 nth = (struct tcphdr *)(ip + 1);
546 }
547 if (th != nth) {
548 /*
549 * this is usually a case when an extension header
550 * exists between the IPv6 header and the
551 * TCP header.
552 */
553 nth->th_sport = th->th_sport;
554 nth->th_dport = th->th_dport;
555 }
556 xchg(nth->th_dport, nth->th_sport, n_short);
557 #undef xchg
558 }
559 #if INET6
560 if (isipv6) {
561 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
562 tlen));
563 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
564 } else
565 #endif
566 {
567 tlen += sizeof (struct tcpiphdr);
568 ip->ip_len = tlen;
569 ip->ip_ttl = ip_defttl;
570 }
571 m->m_len = tlen;
572 m->m_pkthdr.len = tlen;
573 m->m_pkthdr.rcvif = 0;
574 nth->th_seq = htonl(seq);
575 nth->th_ack = htonl(ack);
576 nth->th_x2 = 0;
577 nth->th_off = sizeof (struct tcphdr) >> 2;
578 nth->th_flags = flags;
579 if (tp)
580 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
581 else
582 nth->th_win = htons((u_short)win);
583 nth->th_urp = 0;
584 #if INET6
585 if (isipv6) {
586 nth->th_sum = 0;
587 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
588 sizeof(struct ip6_hdr),
589 tlen - sizeof(struct ip6_hdr));
590 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
591 ro6 && ro6->ro_rt ?
592 ro6->ro_rt->rt_ifp :
593 NULL);
594 } else
595 #endif /* INET6 */
596 {
597 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
598 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
599 m->m_pkthdr.csum_flags = CSUM_TCP;
600 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
601 }
602 #if TCPDEBUG
603 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
604 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
605 #endif
606 #if IPSEC
607 if (ipsec_bypass == 0 && ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
608 m_freem(m);
609 return;
610 }
611 #endif
612 #if INET6
613 if (isipv6) {
614 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL, 0);
615 if (ro6 == &sro6 && ro6->ro_rt) {
616 rtfree(ro6->ro_rt);
617 ro6->ro_rt = NULL;
618 }
619 } else
620 #endif /* INET6 */
621 {
622 (void) ip_output_list(m, 0, NULL, ro, ipflags, NULL);
623 if (ro == &sro && ro->ro_rt) {
624 rtfree(ro->ro_rt);
625 ro->ro_rt = NULL;
626 }
627 }
628 }
629
630 /*
631 * Create a new TCP control block, making an
632 * empty reassembly queue and hooking it to the argument
633 * protocol control block. The `inp' parameter must have
634 * come from the zone allocator set up in tcp_init().
635 */
636 struct tcpcb *
637 tcp_newtcpcb(inp)
638 struct inpcb *inp;
639 {
640 struct inp_tp *it;
641 register struct tcpcb *tp;
642 register struct socket *so = inp->inp_socket;
643 #if INET6
644 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
645 #endif /* INET6 */
646
647 if (so->cached_in_sock_layer == 0) {
648 it = (struct inp_tp *)inp;
649 tp = &it->tcb;
650 }
651 else
652 tp = (struct tcpcb *) inp->inp_saved_ppcb;
653
654 bzero((char *) tp, sizeof(struct tcpcb));
655 LIST_INIT(&tp->t_segq);
656 tp->t_maxseg = tp->t_maxopd =
657 #if INET6
658 isipv6 ? tcp_v6mssdflt :
659 #endif /* INET6 */
660 tcp_mssdflt;
661
662 #ifndef __APPLE__
663 /* Set up our timeouts. */
664 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
665 callout_init(tp->tt_persist = &it->inp_tp_persist);
666 callout_init(tp->tt_keep = &it->inp_tp_keep);
667 callout_init(tp->tt_2msl = &it->inp_tp_2msl);
668 callout_init(tp->tt_delack = &it->inp_tp_delack);
669 #endif
670
671 if (tcp_do_rfc1323)
672 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
673 if (tcp_do_rfc1644)
674 tp->t_flags |= TF_REQ_CC;
675 tp->t_inpcb = inp; /* XXX */
676 /*
677 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
678 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
679 * reasonable initial retransmit time.
680 */
681 tp->t_srtt = TCPTV_SRTTBASE;
682 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
683 tp->t_rttmin = TCPTV_MIN;
684 tp->t_rxtcur = TCPTV_RTOBASE;
685 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
686 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
687 /*
688 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
689 * because the socket may be bound to an IPv6 wildcard address,
690 * which may match an IPv4-mapped IPv6 address.
691 */
692 inp->inp_ip_ttl = ip_defttl;
693 inp->inp_ppcb = (caddr_t)tp;
694 return (tp); /* XXX */
695 }
696
697 /*
698 * Drop a TCP connection, reporting
699 * the specified error. If connection is synchronized,
700 * then send a RST to peer.
701 */
702 struct tcpcb *
703 tcp_drop(tp, errno)
704 register struct tcpcb *tp;
705 int errno;
706 {
707 struct socket *so = tp->t_inpcb->inp_socket;
708
709 #ifdef __APPLE__
710 switch (tp->t_state)
711 {
712 case TCPS_ESTABLISHED:
713 case TCPS_FIN_WAIT_1:
714 case TCPS_CLOSING:
715 case TCPS_CLOSE_WAIT:
716 case TCPS_LAST_ACK:
717 break;
718 }
719 #endif
720
721 if (TCPS_HAVERCVDSYN(tp->t_state)) {
722 tp->t_state = TCPS_CLOSED;
723 (void) tcp_output(tp);
724 tcpstat.tcps_drops++;
725 } else
726 tcpstat.tcps_conndrops++;
727 if (errno == ETIMEDOUT && tp->t_softerror)
728 errno = tp->t_softerror;
729 so->so_error = errno;
730 return (tcp_close(tp));
731 }
732
733 /*
734 * Close a TCP control block:
735 * discard all space held by the tcp
736 * discard internet protocol block
737 * wake up any sleepers
738 */
739 struct tcpcb *
740 tcp_close(tp)
741 register struct tcpcb *tp;
742 {
743 register struct tseg_qent *q;
744 struct inpcb *inp = tp->t_inpcb;
745 struct socket *so = inp->inp_socket;
746 #if INET6
747 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
748 #endif /* INET6 */
749 register struct rtentry *rt;
750 int dosavessthresh;
751
752 if ( inp->inp_ppcb == NULL) /* tcp_close was called previously, bail */
753 return;
754
755 #ifndef __APPLE__
756 /*
757 * Make sure that all of our timers are stopped before we
758 * delete the PCB.
759 */
760 callout_stop(tp->tt_rexmt);
761 callout_stop(tp->tt_persist);
762 callout_stop(tp->tt_keep);
763 callout_stop(tp->tt_2msl);
764 callout_stop(tp->tt_delack);
765 #else
766 /* Clear the timers before we delete the PCB. */
767 {
768 int i;
769 for (i = 0; i < TCPT_NTIMERS; i++) {
770 tp->t_timer[i] = 0;
771 }
772 }
773 #endif
774
775 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp,0,0,0,0);
776 switch (tp->t_state)
777 {
778 case TCPS_ESTABLISHED:
779 case TCPS_FIN_WAIT_1:
780 case TCPS_CLOSING:
781 case TCPS_CLOSE_WAIT:
782 case TCPS_LAST_ACK:
783 break;
784 }
785
786
787 /*
788 * If we got enough samples through the srtt filter,
789 * save the rtt and rttvar in the routing entry.
790 * 'Enough' is arbitrarily defined as the 16 samples.
791 * 16 samples is enough for the srtt filter to converge
792 * to within 5% of the correct value; fewer samples and
793 * we could save a very bogus rtt.
794 *
795 * Don't update the default route's characteristics and don't
796 * update anything that the user "locked".
797 */
798 if (tp->t_rttupdated >= 16) {
799 register u_long i = 0;
800 #if INET6
801 if (isipv6) {
802 struct sockaddr_in6 *sin6;
803
804 if ((rt = inp->in6p_route.ro_rt) == NULL)
805 goto no_valid_rt;
806 sin6 = (struct sockaddr_in6 *)rt_key(rt);
807 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
808 goto no_valid_rt;
809 }
810 else
811 #endif /* INET6 */
812 rt = inp->inp_route.ro_rt;
813 if (rt == NULL ||
814 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
815 == INADDR_ANY || rt->generation_id != route_generation) {
816 if (tp->t_state >= TCPS_CLOSE_WAIT)
817 tp->t_state = TCPS_CLOSING;
818
819 goto no_valid_rt;
820 }
821
822 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
823 i = tp->t_srtt *
824 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
825 if (rt->rt_rmx.rmx_rtt && i)
826 /*
827 * filter this update to half the old & half
828 * the new values, converting scale.
829 * See route.h and tcp_var.h for a
830 * description of the scaling constants.
831 */
832 rt->rt_rmx.rmx_rtt =
833 (rt->rt_rmx.rmx_rtt + i) / 2;
834 else
835 rt->rt_rmx.rmx_rtt = i;
836 tcpstat.tcps_cachedrtt++;
837 }
838 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
839 i = tp->t_rttvar *
840 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
841 if (rt->rt_rmx.rmx_rttvar && i)
842 rt->rt_rmx.rmx_rttvar =
843 (rt->rt_rmx.rmx_rttvar + i) / 2;
844 else
845 rt->rt_rmx.rmx_rttvar = i;
846 tcpstat.tcps_cachedrttvar++;
847 }
848 /*
849 * The old comment here said:
850 * update the pipelimit (ssthresh) if it has been updated
851 * already or if a pipesize was specified & the threshhold
852 * got below half the pipesize. I.e., wait for bad news
853 * before we start updating, then update on both good
854 * and bad news.
855 *
856 * But we want to save the ssthresh even if no pipesize is
857 * specified explicitly in the route, because such
858 * connections still have an implicit pipesize specified
859 * by the global tcp_sendspace. In the absence of a reliable
860 * way to calculate the pipesize, it will have to do.
861 */
862 i = tp->snd_ssthresh;
863 if (rt->rt_rmx.rmx_sendpipe != 0)
864 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
865 else
866 dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
867 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
868 i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
869 || dosavessthresh) {
870 /*
871 * convert the limit from user data bytes to
872 * packets then to packet data bytes.
873 */
874 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
875 if (i < 2)
876 i = 2;
877 i *= (u_long)(tp->t_maxseg +
878 #if INET6
879 (isipv6 ? sizeof (struct ip6_hdr) +
880 sizeof (struct tcphdr) :
881 #endif
882 sizeof (struct tcpiphdr)
883 #if INET6
884 )
885 #endif
886 );
887 if (rt->rt_rmx.rmx_ssthresh)
888 rt->rt_rmx.rmx_ssthresh =
889 (rt->rt_rmx.rmx_ssthresh + i) / 2;
890 else
891 rt->rt_rmx.rmx_ssthresh = i;
892 tcpstat.tcps_cachedssthresh++;
893 }
894 }
895 rt = inp->inp_route.ro_rt;
896 if (rt) {
897 /*
898 * mark route for deletion if no information is
899 * cached.
900 */
901 if ((tp->t_flags & TF_LQ_OVERFLOW) && tcp_lq_overflow &&
902 ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
903 if (rt->rt_rmx.rmx_rtt == 0)
904 rt->rt_flags |= RTF_DELCLONE;
905 }
906 }
907 no_valid_rt:
908 /* free the reassembly queue, if any */
909 (void) tcp_freeq(tp);
910
911 #ifdef __APPLE__
912 if (so->cached_in_sock_layer)
913 inp->inp_saved_ppcb = (caddr_t) tp;
914 #endif
915
916 soisdisconnected(so);
917 #if INET6
918 if (INP_CHECK_SOCKAF(so, AF_INET6))
919 in6_pcbdetach(inp);
920 else
921 #endif /* INET6 */
922 in_pcbdetach(inp);
923 tcpstat.tcps_closed++;
924 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END, tcpstat.tcps_closed,0,0,0,0);
925 return ((struct tcpcb *)0);
926 }
927
928 int
929 tcp_freeq(tp)
930 struct tcpcb *tp;
931 {
932
933 register struct tseg_qent *q;
934 int rv = 0;
935
936 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
937 LIST_REMOVE(q, tqe_q);
938 m_freem(q->tqe_m);
939 FREE(q, M_TSEGQ);
940 tcp_reass_qsize--;
941 rv = 1;
942 }
943 return (rv);
944 }
945
946 void
947 tcp_drain()
948 {
949 /*
950 * ###LD 05/19/04 locking issue, tcpdrain is disabled, deadlock situation with tcbinfo.mtx
951 */
952 if (do_tcpdrain)
953 {
954 struct inpcb *inpb;
955 struct tcpcb *tcpb;
956 struct tseg_qent *te;
957
958 /*
959 * Walk the tcpbs, if existing, and flush the reassembly queue,
960 * if there is one...
961 * XXX: The "Net/3" implementation doesn't imply that the TCP
962 * reassembly queue should be flushed, but in a situation
963 * where we're really low on mbufs, this is potentially
964 * usefull.
965 */
966 lck_rw_lock_exclusive(tcbinfo.mtx);
967 for (inpb = LIST_FIRST(tcbinfo.listhead); inpb;
968 inpb = LIST_NEXT(inpb, inp_list)) {
969 if ((tcpb = intotcpcb(inpb))) {
970 while ((te = LIST_FIRST(&tcpb->t_segq))
971 != NULL) {
972 LIST_REMOVE(te, tqe_q);
973 m_freem(te->tqe_m);
974 FREE(te, M_TSEGQ);
975 tcp_reass_qsize--;
976 }
977 }
978 }
979 lck_rw_done(tcbinfo.mtx);
980
981 }
982 }
983
984 /*
985 * Notify a tcp user of an asynchronous error;
986 * store error as soft error, but wake up user
987 * (for now, won't do anything until can select for soft error).
988 *
989 * Do not wake up user since there currently is no mechanism for
990 * reporting soft errors (yet - a kqueue filter may be added).
991 */
992 static void
993 tcp_notify(inp, error)
994 struct inpcb *inp;
995 int error;
996 {
997 struct tcpcb *tp;
998
999 if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD))
1000 return; /* pcb is gone already */
1001
1002 tp = (struct tcpcb *)inp->inp_ppcb;
1003
1004 /*
1005 * Ignore some errors if we are hooked up.
1006 * If connection hasn't completed, has retransmitted several times,
1007 * and receives a second error, give up now. This is better
1008 * than waiting a long time to establish a connection that
1009 * can never complete.
1010 */
1011 if (tp->t_state == TCPS_ESTABLISHED &&
1012 (error == EHOSTUNREACH || error == ENETUNREACH ||
1013 error == EHOSTDOWN)) {
1014 return;
1015 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1016 tp->t_softerror)
1017 tcp_drop(tp, error);
1018 else
1019 tp->t_softerror = error;
1020 #if 0
1021 wakeup((caddr_t) &so->so_timeo);
1022 sorwakeup(so);
1023 sowwakeup(so);
1024 #endif
1025 }
1026
1027 static int
1028 tcp_pcblist SYSCTL_HANDLER_ARGS
1029 {
1030 int error, i, n, s;
1031 struct inpcb *inp, **inp_list;
1032 inp_gen_t gencnt;
1033 struct xinpgen xig;
1034
1035 /*
1036 * The process of preparing the TCB list is too time-consuming and
1037 * resource-intensive to repeat twice on every request.
1038 */
1039 lck_rw_lock_shared(tcbinfo.mtx);
1040 if (req->oldptr == USER_ADDR_NULL) {
1041 n = tcbinfo.ipi_count;
1042 req->oldidx = 2 * (sizeof xig)
1043 + (n + n/8) * sizeof(struct xtcpcb);
1044 lck_rw_done(tcbinfo.mtx);
1045 return 0;
1046 }
1047
1048 if (req->newptr != USER_ADDR_NULL) {
1049 lck_rw_done(tcbinfo.mtx);
1050 return EPERM;
1051 }
1052
1053 /*
1054 * OK, now we're committed to doing something.
1055 */
1056 gencnt = tcbinfo.ipi_gencnt;
1057 n = tcbinfo.ipi_count;
1058
1059 bzero(&xig, sizeof(xig));
1060 xig.xig_len = sizeof xig;
1061 xig.xig_count = n;
1062 xig.xig_gen = gencnt;
1063 xig.xig_sogen = so_gencnt;
1064 error = SYSCTL_OUT(req, &xig, sizeof xig);
1065 if (error) {
1066 lck_rw_done(tcbinfo.mtx);
1067 return error;
1068 }
1069 /*
1070 * We are done if there is no pcb
1071 */
1072 if (n == 0) {
1073 lck_rw_done(tcbinfo.mtx);
1074 return 0;
1075 }
1076
1077 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1078 if (inp_list == 0) {
1079 lck_rw_done(tcbinfo.mtx);
1080 return ENOMEM;
1081 }
1082
1083 for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
1084 inp = LIST_NEXT(inp, inp_list)) {
1085 #ifdef __APPLE__
1086 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD)
1087 #else
1088 if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
1089 #endif
1090 inp_list[i++] = inp;
1091 }
1092 n = i;
1093
1094 error = 0;
1095 for (i = 0; i < n; i++) {
1096 inp = inp_list[i];
1097 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1098 struct xtcpcb xt;
1099 caddr_t inp_ppcb;
1100
1101 bzero(&xt, sizeof(xt));
1102 xt.xt_len = sizeof xt;
1103 /* XXX should avoid extra copy */
1104 inpcb_to_compat(inp, &xt.xt_inp);
1105 inp_ppcb = inp->inp_ppcb;
1106 if (inp_ppcb != NULL) {
1107 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1108 }
1109 else
1110 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1111 if (inp->inp_socket)
1112 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1113 error = SYSCTL_OUT(req, &xt, sizeof xt);
1114 }
1115 }
1116 if (!error) {
1117 /*
1118 * Give the user an updated idea of our state.
1119 * If the generation differs from what we told
1120 * her before, she knows that something happened
1121 * while we were processing this request, and it
1122 * might be necessary to retry.
1123 */
1124 bzero(&xig, sizeof(xig));
1125 xig.xig_len = sizeof xig;
1126 xig.xig_gen = tcbinfo.ipi_gencnt;
1127 xig.xig_sogen = so_gencnt;
1128 xig.xig_count = tcbinfo.ipi_count;
1129 error = SYSCTL_OUT(req, &xig, sizeof xig);
1130 }
1131 FREE(inp_list, M_TEMP);
1132 lck_rw_done(tcbinfo.mtx);
1133 return error;
1134 }
1135
1136 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1137 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1138
1139 #ifndef __APPLE__
1140 static int
1141 tcp_getcred(SYSCTL_HANDLER_ARGS)
1142 {
1143 struct sockaddr_in addrs[2];
1144 struct inpcb *inp;
1145 int error, s;
1146
1147 error = suser(req->p);
1148 if (error)
1149 return (error);
1150 error = SYSCTL_IN(req, addrs, sizeof(addrs));
1151 if (error)
1152 return (error);
1153 s = splnet();
1154 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1155 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1156 if (inp == NULL || inp->inp_socket == NULL) {
1157 error = ENOENT;
1158 goto out;
1159 }
1160 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(*(kauth_cred_t)0);
1161 out:
1162 splx(s);
1163 return (error);
1164 }
1165
1166 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1167 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1168
1169 #if INET6
1170 static int
1171 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1172 {
1173 struct sockaddr_in6 addrs[2];
1174 struct inpcb *inp;
1175 int error, s, mapped = 0;
1176
1177 error = suser(req->p);
1178 if (error)
1179 return (error);
1180 error = SYSCTL_IN(req, addrs, sizeof(addrs));
1181 if (error)
1182 return (error);
1183 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1184 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1185 mapped = 1;
1186 else
1187 return (EINVAL);
1188 }
1189 s = splnet();
1190 if (mapped == 1)
1191 inp = in_pcblookup_hash(&tcbinfo,
1192 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1193 addrs[1].sin6_port,
1194 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1195 addrs[0].sin6_port,
1196 0, NULL);
1197 else
1198 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1199 addrs[1].sin6_port,
1200 &addrs[0].sin6_addr, addrs[0].sin6_port,
1201 0, NULL);
1202 if (inp == NULL || inp->inp_socket == NULL) {
1203 error = ENOENT;
1204 goto out;
1205 }
1206 error = SYSCTL_OUT(req, inp->inp_socket->so_cred,
1207 sizeof(*(kauth_cred_t)0);
1208 out:
1209 splx(s);
1210 return (error);
1211 }
1212
1213 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1214 0, 0,
1215 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1216 #endif
1217 #endif /* __APPLE__*/
1218
1219 void
1220 tcp_ctlinput(cmd, sa, vip)
1221 int cmd;
1222 struct sockaddr *sa;
1223 void *vip;
1224 {
1225 struct ip *ip = vip;
1226 struct tcphdr *th;
1227 struct in_addr faddr;
1228 struct inpcb *inp;
1229 struct tcpcb *tp;
1230 void (*notify)(struct inpcb *, int) = tcp_notify;
1231 tcp_seq icmp_seq;
1232 int s;
1233
1234 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1235 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1236 return;
1237
1238 if (cmd == PRC_QUENCH)
1239 notify = tcp_quench;
1240 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1241 cmd == PRC_UNREACH_PORT) && ip)
1242 notify = tcp_drop_syn_sent;
1243 else if (cmd == PRC_MSGSIZE)
1244 notify = tcp_mtudisc;
1245 else if (PRC_IS_REDIRECT(cmd)) {
1246 ip = 0;
1247 notify = in_rtchange;
1248 } else if (cmd == PRC_HOSTDEAD)
1249 ip = 0;
1250 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1251 return;
1252 if (ip) {
1253 th = (struct tcphdr *)((caddr_t)ip
1254 + (IP_VHL_HL(ip->ip_vhl) << 2));
1255 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1256 ip->ip_src, th->th_sport, 0, NULL);
1257 if (inp != NULL && inp->inp_socket != NULL) {
1258 tcp_lock(inp->inp_socket, 1, 0);
1259 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
1260 tcp_unlock(inp->inp_socket, 1, 0);
1261 return;
1262 }
1263 icmp_seq = htonl(th->th_seq);
1264 tp = intotcpcb(inp);
1265 if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1266 SEQ_LT(icmp_seq, tp->snd_max))
1267 (*notify)(inp, inetctlerrmap[cmd]);
1268 tcp_unlock(inp->inp_socket, 1, 0);
1269 }
1270 } else
1271 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1272 }
1273
1274 #if INET6
1275 void
1276 tcp6_ctlinput(cmd, sa, d)
1277 int cmd;
1278 struct sockaddr *sa;
1279 void *d;
1280 {
1281 struct tcphdr th;
1282 void (*notify)(struct inpcb *, int) = tcp_notify;
1283 struct ip6_hdr *ip6;
1284 struct mbuf *m;
1285 struct ip6ctlparam *ip6cp = NULL;
1286 const struct sockaddr_in6 *sa6_src = NULL;
1287 int off;
1288 struct tcp_portonly {
1289 u_int16_t th_sport;
1290 u_int16_t th_dport;
1291 } *thp;
1292
1293 if (sa->sa_family != AF_INET6 ||
1294 sa->sa_len != sizeof(struct sockaddr_in6))
1295 return;
1296
1297 if (cmd == PRC_QUENCH)
1298 notify = tcp_quench;
1299 else if (cmd == PRC_MSGSIZE)
1300 notify = tcp_mtudisc;
1301 else if (!PRC_IS_REDIRECT(cmd) &&
1302 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1303 return;
1304
1305 /* if the parameter is from icmp6, decode it. */
1306 if (d != NULL) {
1307 ip6cp = (struct ip6ctlparam *)d;
1308 m = ip6cp->ip6c_m;
1309 ip6 = ip6cp->ip6c_ip6;
1310 off = ip6cp->ip6c_off;
1311 sa6_src = ip6cp->ip6c_src;
1312 } else {
1313 m = NULL;
1314 ip6 = NULL;
1315 off = 0; /* fool gcc */
1316 sa6_src = &sa6_any;
1317 }
1318
1319 if (ip6) {
1320 /*
1321 * XXX: We assume that when IPV6 is non NULL,
1322 * M and OFF are valid.
1323 */
1324
1325 /* check if we can safely examine src and dst ports */
1326 if (m->m_pkthdr.len < off + sizeof(*thp))
1327 return;
1328
1329 bzero(&th, sizeof(th));
1330 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1331
1332 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1333 (struct sockaddr *)ip6cp->ip6c_src,
1334 th.th_sport, cmd, notify);
1335 } else
1336 in6_pcbnotify(&tcbinfo, sa, 0, (struct sockaddr *)sa6_src,
1337 0, cmd, notify);
1338 }
1339 #endif /* INET6 */
1340
1341
1342 /*
1343 * Following is where TCP initial sequence number generation occurs.
1344 *
1345 * There are two places where we must use initial sequence numbers:
1346 * 1. In SYN-ACK packets.
1347 * 2. In SYN packets.
1348 *
1349 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1350 * and should be as unpredictable as possible to avoid the possibility
1351 * of spoofing and/or connection hijacking. To satisfy this
1352 * requirement, SYN-ACK ISNs are generated via the arc4random()
1353 * function. If exact RFC 1948 compliance is requested via sysctl,
1354 * these ISNs will be generated just like those in SYN packets.
1355 *
1356 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1357 * depends on this property. In addition, these ISNs should be
1358 * unguessable so as to prevent connection hijacking. To satisfy
1359 * the requirements of this situation, the algorithm outlined in
1360 * RFC 1948 is used to generate sequence numbers.
1361 *
1362 * For more information on the theory of operation, please see
1363 * RFC 1948.
1364 *
1365 * Implementation details:
1366 *
1367 * Time is based off the system timer, and is corrected so that it
1368 * increases by one megabyte per second. This allows for proper
1369 * recycling on high speed LANs while still leaving over an hour
1370 * before rollover.
1371 *
1372 * Two sysctls control the generation of ISNs:
1373 *
1374 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1375 * between seeding of isn_secret. This is normally set to zero,
1376 * as reseeding should not be necessary.
1377 *
1378 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1379 * strictly. When strict compliance is requested, reseeding is
1380 * disabled and SYN-ACKs will be generated in the same manner as
1381 * SYNs. Strict mode is disabled by default.
1382 *
1383 */
1384
1385 #define ISN_BYTES_PER_SECOND 1048576
1386
1387 u_char isn_secret[32];
1388 int isn_last_reseed;
1389 MD5_CTX isn_ctx;
1390
1391 tcp_seq
1392 tcp_new_isn(tp)
1393 struct tcpcb *tp;
1394 {
1395 u_int32_t md5_buffer[4];
1396 tcp_seq new_isn;
1397 struct timeval time;
1398
1399 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1400 if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1401 && tcp_strict_rfc1948 == 0)
1402 #ifdef __APPLE__
1403 return random();
1404 #else
1405 return arc4random();
1406 #endif
1407
1408 /* Seed if this is the first use, reseed if requested. */
1409 if ((isn_last_reseed == 0) ||
1410 ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1411 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1412 < (u_int)time.tv_sec))) {
1413 #ifdef __APPLE__
1414 read_random(&isn_secret, sizeof(isn_secret));
1415 #else
1416 read_random_unlimited(&isn_secret, sizeof(isn_secret));
1417 #endif
1418 isn_last_reseed = time.tv_sec;
1419 }
1420
1421 /* Compute the md5 hash and return the ISN. */
1422 MD5Init(&isn_ctx);
1423 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1424 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1425 #if INET6
1426 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1427 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1428 sizeof(struct in6_addr));
1429 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1430 sizeof(struct in6_addr));
1431 } else
1432 #endif
1433 {
1434 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1435 sizeof(struct in_addr));
1436 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1437 sizeof(struct in_addr));
1438 }
1439 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1440 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1441 new_isn = (tcp_seq) md5_buffer[0];
1442 new_isn += time.tv_sec * (ISN_BYTES_PER_SECOND / hz);
1443 return new_isn;
1444 }
1445
1446 /*
1447 * When a source quench is received, close congestion window
1448 * to one segment. We will gradually open it again as we proceed.
1449 */
1450 void
1451 tcp_quench(inp, errno)
1452 struct inpcb *inp;
1453 int errno;
1454 {
1455 struct tcpcb *tp = intotcpcb(inp);
1456
1457 if (tp)
1458 tp->snd_cwnd = tp->t_maxseg;
1459 }
1460
1461 /*
1462 * When a specific ICMP unreachable message is received and the
1463 * connection state is SYN-SENT, drop the connection. This behavior
1464 * is controlled by the icmp_may_rst sysctl.
1465 */
1466 void
1467 tcp_drop_syn_sent(inp, errno)
1468 struct inpcb *inp;
1469 int errno;
1470 {
1471 struct tcpcb *tp = intotcpcb(inp);
1472
1473 if (tp && tp->t_state == TCPS_SYN_SENT)
1474 tcp_drop(tp, errno);
1475 }
1476
1477 /*
1478 * When `need fragmentation' ICMP is received, update our idea of the MSS
1479 * based on the new value in the route. Also nudge TCP to send something,
1480 * since we know the packet we just sent was dropped.
1481 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1482 */
1483 void
1484 tcp_mtudisc(inp, errno)
1485 struct inpcb *inp;
1486 int errno;
1487 {
1488 struct tcpcb *tp = intotcpcb(inp);
1489 struct rtentry *rt;
1490 struct rmxp_tao *taop;
1491 struct socket *so = inp->inp_socket;
1492 int offered;
1493 int mss;
1494 #if INET6
1495 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1496 #endif /* INET6 */
1497
1498 if (tp) {
1499 #if INET6
1500 if (isipv6)
1501 rt = tcp_rtlookup6(inp);
1502 else
1503 #endif /* INET6 */
1504 rt = tcp_rtlookup(inp);
1505 if (!rt || !rt->rt_rmx.rmx_mtu) {
1506 tp->t_maxopd = tp->t_maxseg =
1507 #if INET6
1508 isipv6 ? tcp_v6mssdflt :
1509 #endif /* INET6 */
1510 tcp_mssdflt;
1511 return;
1512 }
1513 taop = rmx_taop(rt->rt_rmx);
1514 offered = taop->tao_mssopt;
1515 mss = rt->rt_rmx.rmx_mtu -
1516 #if INET6
1517 (isipv6 ?
1518 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1519 #endif /* INET6 */
1520 sizeof(struct tcpiphdr)
1521 #if INET6
1522 )
1523 #endif /* INET6 */
1524 ;
1525
1526 if (offered)
1527 mss = min(mss, offered);
1528 /*
1529 * XXX - The above conditional probably violates the TCP
1530 * spec. The problem is that, since we don't know the
1531 * other end's MSS, we are supposed to use a conservative
1532 * default. But, if we do that, then MTU discovery will
1533 * never actually take place, because the conservative
1534 * default is much less than the MTUs typically seen
1535 * on the Internet today. For the moment, we'll sweep
1536 * this under the carpet.
1537 *
1538 * The conservative default might not actually be a problem
1539 * if the only case this occurs is when sending an initial
1540 * SYN with options and data to a host we've never talked
1541 * to before. Then, they will reply with an MSS value which
1542 * will get recorded and the new parameters should get
1543 * recomputed. For Further Study.
1544 */
1545 if (tp->t_maxopd <= mss)
1546 return;
1547 tp->t_maxopd = mss;
1548
1549 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1550 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1551 mss -= TCPOLEN_TSTAMP_APPA;
1552 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1553 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1554 mss -= TCPOLEN_CC_APPA;
1555
1556 if (so->so_snd.sb_hiwat < mss)
1557 mss = so->so_snd.sb_hiwat;
1558
1559 tp->t_maxseg = mss;
1560
1561 tcpstat.tcps_mturesent++;
1562 tp->t_rtttime = 0;
1563 tp->snd_nxt = tp->snd_una;
1564 tcp_output(tp);
1565 }
1566 }
1567
1568 /*
1569 * Look-up the routing entry to the peer of this inpcb. If no route
1570 * is found and it cannot be allocated the return NULL. This routine
1571 * is called by TCP routines that access the rmx structure and by tcp_mss
1572 * to get the interface MTU.
1573 */
1574 struct rtentry *
1575 tcp_rtlookup(inp)
1576 struct inpcb *inp;
1577 {
1578 struct route *ro;
1579 struct rtentry *rt;
1580
1581 ro = &inp->inp_route;
1582 if (ro == NULL)
1583 return (NULL);
1584 rt = ro->ro_rt;
1585 if (rt == NULL || !(rt->rt_flags & RTF_UP) || rt->generation_id != route_generation) {
1586 /* No route yet, so try to acquire one */
1587 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1588 ro->ro_dst.sa_family = AF_INET;
1589 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1590 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1591 inp->inp_faddr;
1592 rtalloc(ro);
1593 rt = ro->ro_rt;
1594 }
1595 }
1596 return rt;
1597 }
1598
1599 #if INET6
1600 struct rtentry *
1601 tcp_rtlookup6(inp)
1602 struct inpcb *inp;
1603 {
1604 struct route_in6 *ro6;
1605 struct rtentry *rt;
1606
1607 ro6 = &inp->in6p_route;
1608 rt = ro6->ro_rt;
1609 if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1610 /* No route yet, so try to acquire one */
1611 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1612 struct sockaddr_in6 *dst6;
1613
1614 dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
1615 dst6->sin6_family = AF_INET6;
1616 dst6->sin6_len = sizeof(*dst6);
1617 dst6->sin6_addr = inp->in6p_faddr;
1618 rtalloc((struct route *)ro6);
1619 rt = ro6->ro_rt;
1620 }
1621 }
1622 return rt;
1623 }
1624 #endif /* INET6 */
1625
1626 #if IPSEC
1627 /* compute ESP/AH header size for TCP, including outer IP header. */
1628 size_t
1629 ipsec_hdrsiz_tcp(tp)
1630 struct tcpcb *tp;
1631 {
1632 struct inpcb *inp;
1633 struct mbuf *m;
1634 size_t hdrsiz;
1635 struct ip *ip;
1636 #if INET6
1637 struct ip6_hdr *ip6 = NULL;
1638 #endif /* INET6 */
1639 struct tcphdr *th;
1640
1641 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1642 return 0;
1643 MGETHDR(m, M_DONTWAIT, MT_DATA);
1644 if (!m)
1645 return 0;
1646
1647 lck_mtx_lock(sadb_mutex);
1648 #if INET6
1649 if ((inp->inp_vflag & INP_IPV6) != 0) {
1650 ip6 = mtod(m, struct ip6_hdr *);
1651 th = (struct tcphdr *)(ip6 + 1);
1652 m->m_pkthdr.len = m->m_len =
1653 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1654 tcp_fillheaders(tp, ip6, th);
1655 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1656 } else
1657 #endif /* INET6 */
1658 {
1659 ip = mtod(m, struct ip *);
1660 th = (struct tcphdr *)(ip + 1);
1661 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1662 tcp_fillheaders(tp, ip, th);
1663 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1664 }
1665 lck_mtx_unlock(sadb_mutex);
1666 m_free(m);
1667 return hdrsiz;
1668 }
1669 #endif /*IPSEC*/
1670
1671 /*
1672 * Return a pointer to the cached information about the remote host.
1673 * The cached information is stored in the protocol specific part of
1674 * the route metrics.
1675 */
1676 struct rmxp_tao *
1677 tcp_gettaocache(inp)
1678 struct inpcb *inp;
1679 {
1680 struct rtentry *rt;
1681
1682 #if INET6
1683 if ((inp->inp_vflag & INP_IPV6) != 0)
1684 rt = tcp_rtlookup6(inp);
1685 else
1686 #endif /* INET6 */
1687 rt = tcp_rtlookup(inp);
1688
1689 /* Make sure this is a host route and is up. */
1690 if (rt == NULL ||
1691 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1692 return NULL;
1693
1694 return rmx_taop(rt->rt_rmx);
1695 }
1696
1697 /*
1698 * Clear all the TAO cache entries, called from tcp_init.
1699 *
1700 * XXX
1701 * This routine is just an empty one, because we assume that the routing
1702 * routing tables are initialized at the same time when TCP, so there is
1703 * nothing in the cache left over.
1704 */
1705 static void
1706 tcp_cleartaocache()
1707 {
1708 }
1709
1710 int
1711 tcp_lock(so, refcount, lr)
1712 struct socket *so;
1713 int refcount;
1714 int lr;
1715 {
1716 int lr_saved;
1717 if (lr == 0)
1718 lr_saved = (unsigned int) __builtin_return_address(0);
1719 else lr_saved = lr;
1720
1721 if (so->so_pcb) {
1722 lck_mtx_lock(((struct inpcb *)so->so_pcb)->inpcb_mtx);
1723 }
1724 else {
1725 panic("tcp_lock: so=%x NO PCB! lr=%x\n", so, lr_saved);
1726 lck_mtx_lock(so->so_proto->pr_domain->dom_mtx);
1727 }
1728
1729 if (so->so_usecount < 0)
1730 panic("tcp_lock: so=%x so_pcb=%x lr=%x ref=%x\n",
1731 so, so->so_pcb, lr_saved, so->so_usecount);
1732
1733 if (refcount)
1734 so->so_usecount++;
1735 so->lock_lr[so->next_lock_lr] = (u_int32_t *)lr_saved;
1736 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
1737 return (0);
1738 }
1739
1740 int
1741 tcp_unlock(so, refcount, lr)
1742 struct socket *so;
1743 int refcount;
1744 int lr;
1745 {
1746 int lr_saved;
1747 if (lr == 0)
1748 lr_saved = (unsigned int) __builtin_return_address(0);
1749 else lr_saved = lr;
1750
1751 #ifdef MORE_TCPLOCK_DEBUG
1752 printf("tcp_unlock: so=%x sopcb=%x lock=%x ref=%x lr=%x\n",
1753 so, so->so_pcb, ((struct inpcb *)so->so_pcb)->inpcb_mtx, so->so_usecount, lr_saved);
1754 #endif
1755 if (refcount)
1756 so->so_usecount--;
1757
1758 if (so->so_usecount < 0)
1759 panic("tcp_unlock: so=%x usecount=%x\n", so, so->so_usecount);
1760 if (so->so_pcb == NULL)
1761 panic("tcp_unlock: so=%x NO PCB usecount=%x lr=%x\n", so, so->so_usecount, lr_saved);
1762 else {
1763 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1764 so->unlock_lr[so->next_unlock_lr] = (u_int *)lr_saved;
1765 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
1766 lck_mtx_unlock(((struct inpcb *)so->so_pcb)->inpcb_mtx);
1767 }
1768 return (0);
1769 }
1770
1771 lck_mtx_t *
1772 tcp_getlock(so, locktype)
1773 struct socket *so;
1774 int locktype;
1775 {
1776 struct inpcb *inp = sotoinpcb(so);
1777
1778 if (so->so_pcb) {
1779 if (so->so_usecount < 0)
1780 panic("tcp_getlock: so=%x usecount=%x\n", so, so->so_usecount);
1781 return(inp->inpcb_mtx);
1782 }
1783 else {
1784 panic("tcp_getlock: so=%x NULL so_pcb\n", so);
1785 return (so->so_proto->pr_domain->dom_mtx);
1786 }
1787 }