]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/radix.c
xnu-792.10.96.tar.gz
[apple/xnu.git] / bsd / net / radix.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright (c) 1988, 1989, 1993
24 * The Regents of the University of California. All rights reserved.
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
28 * are met:
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * @(#)radix.c 8.4 (Berkeley) 11/2/94
55 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
56 */
57
58 /*
59 * Routines to build and maintain radix trees for routing lookups.
60 */
61 #ifndef _RADIX_H_
62 #include <sys/param.h>
63 #ifdef KERNEL
64 #include <sys/systm.h>
65 #include <sys/malloc.h>
66 #define M_DONTWAIT M_NOWAIT
67 #include <sys/domain.h>
68 #else
69 #include <stdlib.h>
70 #endif
71 #include <sys/syslog.h>
72 #include <net/radix.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <kern/locks.h>
76 #endif
77
78 static int rn_walktree_from(struct radix_node_head *h, void *a,
79 void *m, walktree_f_t *f, void *w);
80 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
81 static struct radix_node
82 *rn_insert(void *, struct radix_node_head *, int *,
83 struct radix_node [2]),
84 *rn_newpair(void *, int, struct radix_node[2]),
85 *rn_search(void *, struct radix_node *),
86 *rn_search_m(void *, struct radix_node *, void *);
87
88 static int max_keylen;
89 static struct radix_mask *rn_mkfreelist;
90 static struct radix_node_head *mask_rnhead;
91 static char *addmask_key;
92 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
93 static char *rn_zeros, *rn_ones;
94
95
96 extern lck_grp_t *domain_proto_mtx_grp;
97 extern lck_attr_t *domain_proto_mtx_attr;
98 lck_mtx_t *rn_mutex;
99
100 #define rn_masktop (mask_rnhead->rnh_treetop)
101 #undef Bcmp
102 #define Bcmp(a, b, l) \
103 (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
104
105 static int rn_lexobetter(void *m_arg, void *n_arg);
106 static struct radix_mask *
107 rn_new_radix_mask(struct radix_node *tt,
108 struct radix_mask *next);
109 static int rn_satsifies_leaf(char *trial, struct radix_node *leaf,
110 int skip);
111
112 /*
113 * The data structure for the keys is a radix tree with one way
114 * branching removed. The index rn_bit at an internal node n represents a bit
115 * position to be tested. The tree is arranged so that all descendants
116 * of a node n have keys whose bits all agree up to position rn_bit - 1.
117 * (We say the index of n is rn_bit.)
118 *
119 * There is at least one descendant which has a one bit at position rn_bit,
120 * and at least one with a zero there.
121 *
122 * A route is determined by a pair of key and mask. We require that the
123 * bit-wise logical and of the key and mask to be the key.
124 * We define the index of a route to associated with the mask to be
125 * the first bit number in the mask where 0 occurs (with bit number 0
126 * representing the highest order bit).
127 *
128 * We say a mask is normal if every bit is 0, past the index of the mask.
129 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
130 * and m is a normal mask, then the route applies to every descendant of n.
131 * If the index(m) < rn_bit, this implies the trailing last few bits of k
132 * before bit b are all 0, (and hence consequently true of every descendant
133 * of n), so the route applies to all descendants of the node as well.
134 *
135 * Similar logic shows that a non-normal mask m such that
136 * index(m) <= index(n) could potentially apply to many children of n.
137 * Thus, for each non-host route, we attach its mask to a list at an internal
138 * node as high in the tree as we can go.
139 *
140 * The present version of the code makes use of normal routes in short-
141 * circuiting an explict mask and compare operation when testing whether
142 * a key satisfies a normal route, and also in remembering the unique leaf
143 * that governs a subtree.
144 */
145
146 static struct radix_node *
147 rn_search(v_arg, head)
148 void *v_arg;
149 struct radix_node *head;
150 {
151 register struct radix_node *x;
152 register caddr_t v;
153
154 for (x = head, v = v_arg; x->rn_bit >= 0;) {
155 if (x->rn_bmask & v[x->rn_offset])
156 x = x->rn_right;
157 else
158 x = x->rn_left;
159 }
160 return (x);
161 }
162
163 static struct radix_node *
164 rn_search_m(v_arg, head, m_arg)
165 struct radix_node *head;
166 void *v_arg, *m_arg;
167 {
168 register struct radix_node *x;
169 register caddr_t v = v_arg, m = m_arg;
170
171 for (x = head; x->rn_bit >= 0;) {
172 if ((x->rn_bmask & m[x->rn_offset]) &&
173 (x->rn_bmask & v[x->rn_offset]))
174 x = x->rn_right;
175 else
176 x = x->rn_left;
177 }
178 return x;
179 }
180
181 int
182 rn_refines(m_arg, n_arg)
183 void *m_arg, *n_arg;
184 {
185 register caddr_t m = m_arg, n = n_arg;
186 register caddr_t lim, lim2 = lim = n + *(u_char *)n;
187 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
188 int masks_are_equal = 1;
189
190 if (longer > 0)
191 lim -= longer;
192 while (n < lim) {
193 if (*n & ~(*m))
194 return 0;
195 if (*n++ != *m++)
196 masks_are_equal = 0;
197 }
198 while (n < lim2)
199 if (*n++)
200 return 0;
201 if (masks_are_equal && (longer < 0))
202 for (lim2 = m - longer; m < lim2; )
203 if (*m++)
204 return 1;
205 return (!masks_are_equal);
206 }
207
208 struct radix_node *
209 rn_lookup(v_arg, m_arg, head)
210 void *v_arg, *m_arg;
211 struct radix_node_head *head;
212 {
213 register struct radix_node *x;
214 caddr_t netmask = 0;
215
216 if (m_arg) {
217 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
218 if (x == 0)
219 return (0);
220 netmask = x->rn_key;
221 }
222 x = rn_match(v_arg, head);
223 if (x && netmask) {
224 while (x && x->rn_mask != netmask)
225 x = x->rn_dupedkey;
226 }
227 return x;
228 }
229
230 static int
231 rn_satsifies_leaf(trial, leaf, skip)
232 char *trial;
233 register struct radix_node *leaf;
234 int skip;
235 {
236 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
237 char *cplim;
238 int length = min(*(u_char *)cp, *(u_char *)cp2);
239
240 if (cp3 == 0)
241 cp3 = rn_ones;
242 else
243 length = min(length, *(u_char *)cp3);
244 cplim = cp + length; cp3 += skip; cp2 += skip;
245 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
246 if ((*cp ^ *cp2) & *cp3)
247 return 0;
248 return 1;
249 }
250
251 struct radix_node *
252 rn_match(v_arg, head)
253 void *v_arg;
254 struct radix_node_head *head;
255 {
256 caddr_t v = v_arg;
257 register struct radix_node *t = head->rnh_treetop, *x;
258 register caddr_t cp = v, cp2;
259 caddr_t cplim;
260 struct radix_node *saved_t, *top = t;
261 int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
262 register int test, b, rn_bit;
263
264 /*
265 * Open code rn_search(v, top) to avoid overhead of extra
266 * subroutine call.
267 */
268 for (; t->rn_bit >= 0; ) {
269 if (t->rn_bmask & cp[t->rn_offset])
270 t = t->rn_right;
271 else
272 t = t->rn_left;
273 }
274 /*
275 * See if we match exactly as a host destination
276 * or at least learn how many bits match, for normal mask finesse.
277 *
278 * It doesn't hurt us to limit how many bytes to check
279 * to the length of the mask, since if it matches we had a genuine
280 * match and the leaf we have is the most specific one anyway;
281 * if it didn't match with a shorter length it would fail
282 * with a long one. This wins big for class B&C netmasks which
283 * are probably the most common case...
284 */
285 if (t->rn_mask)
286 vlen = *(u_char *)t->rn_mask;
287 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
288 for (; cp < cplim; cp++, cp2++)
289 if (*cp != *cp2)
290 goto on1;
291 /*
292 * This extra grot is in case we are explicitly asked
293 * to look up the default. Ugh!
294 *
295 * Never return the root node itself, it seems to cause a
296 * lot of confusion.
297 */
298 if (t->rn_flags & RNF_ROOT)
299 t = t->rn_dupedkey;
300 return t;
301 on1:
302 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
303 for (b = 7; (test >>= 1) > 0;)
304 b--;
305 matched_off = cp - v;
306 b += matched_off << 3;
307 rn_bit = -1 - b;
308 /*
309 * If there is a host route in a duped-key chain, it will be first.
310 */
311 if ((saved_t = t)->rn_mask == 0)
312 t = t->rn_dupedkey;
313 for (; t; t = t->rn_dupedkey)
314 /*
315 * Even if we don't match exactly as a host,
316 * we may match if the leaf we wound up at is
317 * a route to a net.
318 */
319 if (t->rn_flags & RNF_NORMAL) {
320 if (rn_bit <= t->rn_bit)
321 return t;
322 } else if (rn_satsifies_leaf(v, t, matched_off))
323 return t;
324 t = saved_t;
325 /* start searching up the tree */
326 do {
327 register struct radix_mask *m;
328 t = t->rn_parent;
329 m = t->rn_mklist;
330 /*
331 * If non-contiguous masks ever become important
332 * we can restore the masking and open coding of
333 * the search and satisfaction test and put the
334 * calculation of "off" back before the "do".
335 */
336 while (m) {
337 if (m->rm_flags & RNF_NORMAL) {
338 if (rn_bit <= m->rm_bit)
339 return (m->rm_leaf);
340 } else {
341 off = min(t->rn_offset, matched_off);
342 x = rn_search_m(v, t, m->rm_mask);
343 while (x && x->rn_mask != m->rm_mask)
344 x = x->rn_dupedkey;
345 if (x && rn_satsifies_leaf(v, x, off))
346 return x;
347 }
348 m = m->rm_mklist;
349 }
350 } while (t != top);
351 return 0;
352 }
353
354 #ifdef RN_DEBUG
355 int rn_nodenum;
356 struct radix_node *rn_clist;
357 int rn_saveinfo;
358 int rn_debug = 1;
359 #endif
360
361 static struct radix_node *
362 rn_newpair(v, b, nodes)
363 void *v;
364 int b;
365 struct radix_node nodes[2];
366 {
367 register struct radix_node *tt = nodes, *t = tt + 1;
368 t->rn_bit = b;
369 t->rn_bmask = 0x80 >> (b & 7);
370 t->rn_left = tt;
371 t->rn_offset = b >> 3;
372 tt->rn_bit = -1;
373 tt->rn_key = (caddr_t)v;
374 tt->rn_parent = t;
375 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
376 tt->rn_mklist = t->rn_mklist = 0;
377 #ifdef RN_DEBUG
378 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
379 tt->rn_twin = t;
380 tt->rn_ybro = rn_clist;
381 rn_clist = tt;
382 #endif
383 return t;
384 }
385
386 static struct radix_node *
387 rn_insert(v_arg, head, dupentry, nodes)
388 void *v_arg;
389 struct radix_node_head *head;
390 int *dupentry;
391 struct radix_node nodes[2];
392 {
393 caddr_t v = v_arg;
394 struct radix_node *top = head->rnh_treetop;
395 int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
396 register struct radix_node *t = rn_search(v_arg, top);
397 register caddr_t cp = v + head_off;
398 register int b;
399 struct radix_node *tt;
400 /*
401 * Find first bit at which v and t->rn_key differ
402 */
403 {
404 register caddr_t cp2 = t->rn_key + head_off;
405 register int cmp_res;
406 caddr_t cplim = v + vlen;
407
408 while (cp < cplim)
409 if (*cp2++ != *cp++)
410 goto on1;
411 *dupentry = 1;
412 return t;
413 on1:
414 *dupentry = 0;
415 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
416 for (b = (cp - v) << 3; cmp_res; b--)
417 cmp_res >>= 1;
418 }
419 {
420 register struct radix_node *p, *x = top;
421 cp = v;
422 do {
423 p = x;
424 if (cp[x->rn_offset] & x->rn_bmask)
425 x = x->rn_right;
426 else
427 x = x->rn_left;
428 } while (b > (unsigned) x->rn_bit);
429 /* x->rn_bit < b && x->rn_bit >= 0 */
430 #ifdef RN_DEBUG
431 if (rn_debug)
432 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
433 #endif
434 t = rn_newpair(v_arg, b, nodes);
435 tt = t->rn_left;
436 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
437 p->rn_left = t;
438 else
439 p->rn_right = t;
440 x->rn_parent = t;
441 t->rn_parent = p; /* frees x, p as temp vars below */
442 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
443 t->rn_right = x;
444 } else {
445 t->rn_right = tt;
446 t->rn_left = x;
447 }
448 #ifdef RN_DEBUG
449 if (rn_debug)
450 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
451 #endif
452 }
453 return (tt);
454 }
455
456 struct radix_node *
457 rn_addmask(n_arg, search, skip)
458 int search, skip;
459 void *n_arg;
460 {
461 caddr_t netmask = (caddr_t)n_arg;
462 register struct radix_node *x;
463 register caddr_t cp, cplim;
464 register int b = 0, mlen, j;
465 int maskduplicated, m0, isnormal;
466 struct radix_node *saved_x;
467 static int last_zeroed = 0;
468
469 if ((mlen = *(u_char *)netmask) > max_keylen)
470 mlen = max_keylen;
471 if (skip == 0)
472 skip = 1;
473 if (mlen <= skip)
474 return (mask_rnhead->rnh_nodes);
475 if (skip > 1)
476 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
477 if ((m0 = mlen) > skip)
478 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
479 /*
480 * Trim trailing zeroes.
481 */
482 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
483 cp--;
484 mlen = cp - addmask_key;
485 if (mlen <= skip) {
486 if (m0 >= last_zeroed)
487 last_zeroed = mlen;
488 return (mask_rnhead->rnh_nodes);
489 }
490 if (m0 < last_zeroed)
491 Bzero(addmask_key + m0, last_zeroed - m0);
492 *addmask_key = last_zeroed = mlen;
493 x = rn_search(addmask_key, rn_masktop);
494 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
495 x = 0;
496 if (x || search)
497 return (x);
498 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
499 if ((saved_x = x) == 0)
500 return (0);
501 Bzero(x, max_keylen + 2 * sizeof (*x));
502 netmask = cp = (caddr_t)(x + 2);
503 Bcopy(addmask_key, cp, mlen);
504 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
505 if (maskduplicated) {
506 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
507 R_Free(saved_x);
508 return (x);
509 }
510 /*
511 * Calculate index of mask, and check for normalcy.
512 */
513 cplim = netmask + mlen; isnormal = 1;
514 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
515 cp++;
516 if (cp != cplim) {
517 for (j = 0x80; (j & *cp) != 0; j >>= 1)
518 b++;
519 if (*cp != normal_chars[b] || cp != (cplim - 1))
520 isnormal = 0;
521 }
522 b += (cp - netmask) << 3;
523 x->rn_bit = -1 - b;
524 if (isnormal)
525 x->rn_flags |= RNF_NORMAL;
526 return (x);
527 }
528
529 static int /* XXX: arbitrary ordering for non-contiguous masks */
530 rn_lexobetter(m_arg, n_arg)
531 void *m_arg, *n_arg;
532 {
533 register u_char *mp = m_arg, *np = n_arg, *lim;
534
535 if (*mp > *np)
536 return 1; /* not really, but need to check longer one first */
537 if (*mp == *np)
538 for (lim = mp + *mp; mp < lim;)
539 if (*mp++ > *np++)
540 return 1;
541 return 0;
542 }
543
544 static struct radix_mask *
545 rn_new_radix_mask(tt, next)
546 register struct radix_node *tt;
547 register struct radix_mask *next;
548 {
549 register struct radix_mask *m;
550
551 MKGet(m);
552 if (m == 0) {
553 log(LOG_ERR, "Mask for route not entered\n");
554 return (0);
555 }
556 Bzero(m, sizeof *m);
557 m->rm_bit = tt->rn_bit;
558 m->rm_flags = tt->rn_flags;
559 if (tt->rn_flags & RNF_NORMAL)
560 m->rm_leaf = tt;
561 else
562 m->rm_mask = tt->rn_mask;
563 m->rm_mklist = next;
564 tt->rn_mklist = m;
565 return m;
566 }
567
568 struct radix_node *
569 rn_addroute(v_arg, n_arg, head, treenodes)
570 void *v_arg, *n_arg;
571 struct radix_node_head *head;
572 struct radix_node treenodes[2];
573 {
574 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
575 register struct radix_node *t, *x = 0, *tt;
576 struct radix_node *saved_tt, *top = head->rnh_treetop;
577 short b = 0, b_leaf = 0;
578 int keyduplicated;
579 caddr_t mmask;
580 struct radix_mask *m, **mp;
581
582 /*
583 * In dealing with non-contiguous masks, there may be
584 * many different routes which have the same mask.
585 * We will find it useful to have a unique pointer to
586 * the mask to speed avoiding duplicate references at
587 * nodes and possibly save time in calculating indices.
588 */
589 if (netmask) {
590 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
591 return (0);
592 b_leaf = x->rn_bit;
593 b = -1 - x->rn_bit;
594 netmask = x->rn_key;
595 }
596 /*
597 * Deal with duplicated keys: attach node to previous instance
598 */
599 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
600 if (keyduplicated) {
601 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
602 if (tt->rn_mask == netmask)
603 return (0);
604 if (netmask == 0 ||
605 (tt->rn_mask &&
606 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
607 || rn_refines(netmask, tt->rn_mask)
608 || rn_lexobetter(netmask, tt->rn_mask))))
609 break;
610 }
611 /*
612 * If the mask is not duplicated, we wouldn't
613 * find it among possible duplicate key entries
614 * anyway, so the above test doesn't hurt.
615 *
616 * We sort the masks for a duplicated key the same way as
617 * in a masklist -- most specific to least specific.
618 * This may require the unfortunate nuisance of relocating
619 * the head of the list.
620 */
621 if (tt == saved_tt) {
622 struct radix_node *xx = x;
623 /* link in at head of list */
624 (tt = treenodes)->rn_dupedkey = t;
625 tt->rn_flags = t->rn_flags;
626 tt->rn_parent = x = t->rn_parent;
627 t->rn_parent = tt; /* parent */
628 if (x->rn_left == t)
629 x->rn_left = tt;
630 else
631 x->rn_right = tt;
632 saved_tt = tt; x = xx;
633 } else {
634 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
635 t->rn_dupedkey = tt;
636 tt->rn_parent = t; /* parent */
637 if (tt->rn_dupedkey) /* parent */
638 tt->rn_dupedkey->rn_parent = tt; /* parent */
639 }
640 #ifdef RN_DEBUG
641 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
642 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
643 #endif
644 tt->rn_key = (caddr_t) v;
645 tt->rn_bit = -1;
646 tt->rn_flags = RNF_ACTIVE;
647 }
648 /*
649 * Put mask in tree.
650 */
651 if (netmask) {
652 tt->rn_mask = netmask;
653 tt->rn_bit = x->rn_bit;
654 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
655 }
656 t = saved_tt->rn_parent;
657 if (keyduplicated)
658 goto on2;
659 b_leaf = -1 - t->rn_bit;
660 if (t->rn_right == saved_tt)
661 x = t->rn_left;
662 else
663 x = t->rn_right;
664 /* Promote general routes from below */
665 if (x->rn_bit < 0) {
666 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
667 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
668 *mp = m = rn_new_radix_mask(x, 0);
669 if (m)
670 mp = &m->rm_mklist;
671 }
672 } else if (x->rn_mklist) {
673 /*
674 * Skip over masks whose index is > that of new node
675 */
676 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
677 if (m->rm_bit >= b_leaf)
678 break;
679 t->rn_mklist = m; *mp = 0;
680 }
681 on2:
682 /* Add new route to highest possible ancestor's list */
683 if ((netmask == 0) || (b > t->rn_bit ))
684 return tt; /* can't lift at all */
685 b_leaf = tt->rn_bit;
686 do {
687 x = t;
688 t = t->rn_parent;
689 } while (b <= t->rn_bit && x != top);
690 /*
691 * Search through routes associated with node to
692 * insert new route according to index.
693 * Need same criteria as when sorting dupedkeys to avoid
694 * double loop on deletion.
695 */
696 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
697 if (m->rm_bit < b_leaf)
698 continue;
699 if (m->rm_bit > b_leaf)
700 break;
701 if (m->rm_flags & RNF_NORMAL) {
702 mmask = m->rm_leaf->rn_mask;
703 if (tt->rn_flags & RNF_NORMAL) {
704 log(LOG_ERR,
705 "Non-unique normal route, mask not entered");
706 return tt;
707 }
708 } else
709 mmask = m->rm_mask;
710 if (mmask == netmask) {
711 m->rm_refs++;
712 tt->rn_mklist = m;
713 return tt;
714 }
715 if (rn_refines(netmask, mmask)
716 || rn_lexobetter(netmask, mmask))
717 break;
718 }
719 *mp = rn_new_radix_mask(tt, *mp);
720 return tt;
721 }
722
723 struct radix_node *
724 rn_delete(v_arg, netmask_arg, head)
725 void *v_arg, *netmask_arg;
726 struct radix_node_head *head;
727 {
728 register struct radix_node *t, *p, *x, *tt;
729 struct radix_mask *m, *saved_m, **mp;
730 struct radix_node *dupedkey, *saved_tt, *top;
731 caddr_t v, netmask;
732 int b, head_off, vlen;
733
734 v = v_arg;
735 netmask = netmask_arg;
736 x = head->rnh_treetop;
737 tt = rn_search(v, x);
738 head_off = x->rn_offset;
739 vlen = *(u_char *)v;
740 saved_tt = tt;
741 top = x;
742 if (tt == 0 ||
743 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
744 return (0);
745 /*
746 * Delete our route from mask lists.
747 */
748 if (netmask) {
749 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
750 return (0);
751 netmask = x->rn_key;
752 while (tt->rn_mask != netmask)
753 if ((tt = tt->rn_dupedkey) == 0)
754 return (0);
755 }
756 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
757 goto on1;
758 if (tt->rn_flags & RNF_NORMAL) {
759 if (m->rm_leaf != tt || m->rm_refs > 0) {
760 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
761 return 0; /* dangling ref could cause disaster */
762 }
763 } else {
764 if (m->rm_mask != tt->rn_mask) {
765 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
766 goto on1;
767 }
768 if (--m->rm_refs >= 0)
769 goto on1;
770 }
771 b = -1 - tt->rn_bit;
772 t = saved_tt->rn_parent;
773 if (b > t->rn_bit)
774 goto on1; /* Wasn't lifted at all */
775 do {
776 x = t;
777 t = t->rn_parent;
778 } while (b <= t->rn_bit && x != top);
779 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
780 if (m == saved_m) {
781 *mp = m->rm_mklist;
782 MKFree(m);
783 break;
784 }
785 if (m == 0) {
786 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
787 if (tt->rn_flags & RNF_NORMAL)
788 return (0); /* Dangling ref to us */
789 }
790 on1:
791 /*
792 * Eliminate us from tree
793 */
794 if (tt->rn_flags & RNF_ROOT)
795 return (0);
796 #ifdef RN_DEBUG
797 /* Get us out of the creation list */
798 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
799 if (t) t->rn_ybro = tt->rn_ybro;
800 #endif
801 t = tt->rn_parent;
802 dupedkey = saved_tt->rn_dupedkey;
803 if (dupedkey) {
804 /*
805 * at this point, tt is the deletion target and saved_tt
806 * is the head of the dupekey chain
807 */
808 if (tt == saved_tt) {
809 /* remove from head of chain */
810 x = dupedkey; x->rn_parent = t;
811 if (t->rn_left == tt)
812 t->rn_left = x;
813 else
814 t->rn_right = x;
815 } else {
816 /* find node in front of tt on the chain */
817 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
818 p = p->rn_dupedkey;
819 if (p) {
820 p->rn_dupedkey = tt->rn_dupedkey;
821 if (tt->rn_dupedkey) /* parent */
822 tt->rn_dupedkey->rn_parent = p;
823 /* parent */
824 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
825 }
826 t = tt + 1;
827 if (t->rn_flags & RNF_ACTIVE) {
828 #ifndef RN_DEBUG
829 *++x = *t;
830 p = t->rn_parent;
831 #else
832 b = t->rn_info;
833 *++x = *t;
834 t->rn_info = b;
835 p = t->rn_parent;
836 #endif
837 if (p->rn_left == t)
838 p->rn_left = x;
839 else
840 p->rn_right = x;
841 x->rn_left->rn_parent = x;
842 x->rn_right->rn_parent = x;
843 }
844 goto out;
845 }
846 if (t->rn_left == tt)
847 x = t->rn_right;
848 else
849 x = t->rn_left;
850 p = t->rn_parent;
851 if (p->rn_right == t)
852 p->rn_right = x;
853 else
854 p->rn_left = x;
855 x->rn_parent = p;
856 /*
857 * Demote routes attached to us.
858 */
859 if (t->rn_mklist) {
860 if (x->rn_bit >= 0) {
861 for (mp = &x->rn_mklist; (m = *mp);)
862 mp = &m->rm_mklist;
863 *mp = t->rn_mklist;
864 } else {
865 /* If there are any key,mask pairs in a sibling
866 duped-key chain, some subset will appear sorted
867 in the same order attached to our mklist */
868 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
869 if (m == x->rn_mklist) {
870 struct radix_mask *mm = m->rm_mklist;
871 x->rn_mklist = 0;
872 if (--(m->rm_refs) < 0)
873 MKFree(m);
874 m = mm;
875 }
876 if (m)
877 log(LOG_ERR,
878 "rn_delete: Orphaned Mask %p at %p\n",
879 (void *)m, (void *)x);
880 }
881 }
882 /*
883 * We may be holding an active internal node in the tree.
884 */
885 x = tt + 1;
886 if (t != x) {
887 #ifndef RN_DEBUG
888 *t = *x;
889 #else
890 b = t->rn_info;
891 *t = *x;
892 t->rn_info = b;
893 #endif
894 t->rn_left->rn_parent = t;
895 t->rn_right->rn_parent = t;
896 p = x->rn_parent;
897 if (p->rn_left == x)
898 p->rn_left = t;
899 else
900 p->rn_right = t;
901 }
902 out:
903 tt->rn_flags &= ~RNF_ACTIVE;
904 tt[1].rn_flags &= ~RNF_ACTIVE;
905 return (tt);
906 }
907
908 /*
909 * This is the same as rn_walktree() except for the parameters and the
910 * exit.
911 */
912 static int
913 rn_walktree_from(h, a, m, f, w)
914 struct radix_node_head *h;
915 void *a, *m;
916 walktree_f_t *f;
917 void *w;
918 {
919 int error;
920 struct radix_node *base, *next;
921 u_char *xa = (u_char *)a;
922 u_char *xm = (u_char *)m;
923 register struct radix_node *rn, *last = 0 /* shut up gcc */;
924 int stopping = 0;
925 int lastb;
926
927 /*
928 * rn_search_m is sort-of-open-coded here.
929 */
930 /* printf("about to search\n"); */
931 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
932 last = rn;
933 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
934 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
935 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
936 break;
937 }
938 if (rn->rn_bmask & xa[rn->rn_offset]) {
939 rn = rn->rn_right;
940 } else {
941 rn = rn->rn_left;
942 }
943 }
944 /* printf("done searching\n"); */
945
946 /*
947 * Two cases: either we stepped off the end of our mask,
948 * in which case last == rn, or we reached a leaf, in which
949 * case we want to start from the last node we looked at.
950 * Either way, last is the node we want to start from.
951 */
952 rn = last;
953 lastb = rn->rn_bit;
954
955 /* printf("rn %p, lastb %d\n", rn, lastb);*/
956
957 /*
958 * This gets complicated because we may delete the node
959 * while applying the function f to it, so we need to calculate
960 * the successor node in advance.
961 */
962 while (rn->rn_bit >= 0)
963 rn = rn->rn_left;
964
965 while (!stopping) {
966 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
967 base = rn;
968 /* If at right child go back up, otherwise, go right */
969 while (rn->rn_parent->rn_right == rn
970 && !(rn->rn_flags & RNF_ROOT)) {
971 rn = rn->rn_parent;
972
973 /* if went up beyond last, stop */
974 if (rn->rn_bit < lastb) {
975 stopping = 1;
976 /* printf("up too far\n"); */
977 }
978 }
979
980 /* Find the next *leaf* since next node might vanish, too */
981 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
982 rn = rn->rn_left;
983 next = rn;
984 /* Process leaves */
985 while ((rn = base) != 0) {
986 base = rn->rn_dupedkey;
987 /* printf("leaf %p\n", rn); */
988 if (!(rn->rn_flags & RNF_ROOT)
989 && (error = (*f)(rn, w)))
990 return (error);
991 }
992 rn = next;
993
994 if (rn->rn_flags & RNF_ROOT) {
995 /* printf("root, stopping"); */
996 stopping = 1;
997 }
998
999 }
1000 return 0;
1001 }
1002
1003 static int
1004 rn_walktree(h, f, w)
1005 struct radix_node_head *h;
1006 walktree_f_t *f;
1007 void *w;
1008 {
1009 int error;
1010 struct radix_node *base, *next;
1011 register struct radix_node *rn = h->rnh_treetop;
1012 /*
1013 * This gets complicated because we may delete the node
1014 * while applying the function f to it, so we need to calculate
1015 * the successor node in advance.
1016 */
1017 /* First time through node, go left */
1018 while (rn->rn_bit >= 0)
1019 if (rn)
1020 rn = rn->rn_left;
1021 else return(0);
1022 for (;;) {
1023 base = rn;
1024 /* If at right child go back up, otherwise, go right */
1025 while (rn != NULL && rn->rn_parent != NULL && rn->rn_parent->rn_right == rn
1026 && (rn->rn_flags & RNF_ROOT) == 0)
1027 rn = rn->rn_parent;
1028 /* Find the next *leaf* since next node might vanish, too */
1029 if (rn == NULL || rn->rn_parent == NULL || rn->rn_parent->rn_right == NULL)
1030 return (0);
1031 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
1032 if (rn == NULL || rn->rn_parent == NULL || rn->rn_parent->rn_right == NULL || rn->rn_left == NULL)
1033 return(0);
1034 rn = rn->rn_left;
1035 }
1036 next = rn;
1037 /* Process leaves */
1038 while ((rn = base)) {
1039 if (rn == NULL)
1040 return(0);
1041 base = rn->rn_dupedkey;
1042 if (!(rn->rn_flags & RNF_ROOT)
1043 && (error = (*f)(rn, w)))
1044 return (error);
1045 }
1046 rn = next;
1047 if (rn == NULL)
1048 return (0);
1049 if (rn->rn_flags & RNF_ROOT)
1050 return (0);
1051 }
1052 /* NOTREACHED */
1053 }
1054
1055 int
1056 rn_inithead(head, off)
1057 void **head;
1058 int off;
1059 {
1060 register struct radix_node_head *rnh;
1061 register struct radix_node *t, *tt, *ttt;
1062 if (*head)
1063 return (1);
1064 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1065 if (rnh == 0)
1066 return (0);
1067 Bzero(rnh, sizeof (*rnh));
1068 *head = rnh;
1069 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1070 ttt = rnh->rnh_nodes + 2;
1071 t->rn_right = ttt;
1072 t->rn_parent = t;
1073 tt = t->rn_left;
1074 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1075 tt->rn_bit = -1 - off;
1076 *ttt = *tt;
1077 ttt->rn_key = rn_ones;
1078 rnh->rnh_addaddr = rn_addroute;
1079 rnh->rnh_deladdr = rn_delete;
1080 rnh->rnh_matchaddr = rn_match;
1081 rnh->rnh_lookup = rn_lookup;
1082 rnh->rnh_walktree = rn_walktree;
1083 rnh->rnh_walktree_from = rn_walktree_from;
1084 rnh->rnh_treetop = t;
1085 return (1);
1086 }
1087
1088 void
1089 rn_init()
1090 {
1091 char *cp, *cplim;
1092 #ifdef KERNEL
1093 struct domain *dom;
1094
1095 /* lock already held when rn_init is called */
1096 for (dom = domains; dom; dom = dom->dom_next)
1097 if (dom->dom_maxrtkey > max_keylen)
1098 max_keylen = dom->dom_maxrtkey;
1099 #endif
1100 if (max_keylen == 0) {
1101 log(LOG_ERR,
1102 "rn_init: radix functions require max_keylen be set\n");
1103 return;
1104 }
1105 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1106 if (rn_zeros == NULL)
1107 panic("rn_init");
1108 Bzero(rn_zeros, 3 * max_keylen);
1109 rn_ones = cp = rn_zeros + max_keylen;
1110 addmask_key = cplim = rn_ones + max_keylen;
1111 while (cp < cplim)
1112 *cp++ = -1;
1113 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1114 panic("rn_init 2");
1115
1116 rn_mutex = lck_mtx_alloc_init(domain_proto_mtx_grp, domain_proto_mtx_attr);
1117 }
1118 int
1119 rn_lock(so, refcount, lr)
1120 struct socket *so;
1121 int refcount;
1122 int lr;
1123 {
1124 // printf("rn_lock: (global) so=%x ref=%d lr=%x\n", so, so->so_usecount, lr);
1125 lck_mtx_assert(rn_mutex, LCK_MTX_ASSERT_NOTOWNED);
1126 lck_mtx_lock(rn_mutex);
1127 if (refcount)
1128 so->so_usecount++;
1129 return (0);
1130 }
1131
1132 int
1133 rn_unlock(so, refcount, lr)
1134 struct socket *so;
1135 int refcount;
1136 int lr;
1137 {
1138 // printf("rn_unlock: (global) so=%x ref=%d lr=%x\n", so, so->so_usecount, lr);
1139 if (refcount)
1140 so->so_usecount--;
1141 lck_mtx_assert(rn_mutex, LCK_MTX_ASSERT_OWNED);
1142 lck_mtx_unlock(rn_mutex);
1143 return (0);
1144 }
1145 lck_mtx_t *
1146 rn_getlock(so, locktype)
1147 struct socket *so;
1148 int locktype;
1149 {
1150 // printf("rn_getlock: (global) so=%x\n", so);
1151 return (rn_mutex);
1152 }