2 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
24 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
25 * All rights reserved.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
49 * @(#)kern_event.c 1.0 (3/31/2000)
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/filedesc.h>
56 #include <sys/kernel.h>
57 #include <sys/proc_internal.h>
58 #include <sys/kauth.h>
59 #include <sys/malloc.h>
60 #include <sys/unistd.h>
61 #include <sys/file_internal.h>
62 #include <sys/fcntl.h>
63 #include <sys/select.h>
64 #include <sys/queue.h>
65 #include <sys/event.h>
66 #include <sys/eventvar.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
73 #include <sys/sysproto.h>
76 #include <sys/proc_info.h>
78 #include <kern/lock.h>
79 #include <kern/clock.h>
80 #include <kern/thread_call.h>
81 #include <kern/sched_prim.h>
82 #include <kern/zalloc.h>
83 #include <kern/assert.h>
85 #include <libkern/libkern.h>
87 extern void unix_syscall_return(int);
89 MALLOC_DEFINE(M_KQUEUE
, "kqueue", "memory for kqueue system");
91 static inline void kqlock(struct kqueue
*kq
);
92 static inline void kqunlock(struct kqueue
*kq
);
94 static int kqlock2knoteuse(struct kqueue
*kq
, struct knote
*kn
);
95 static int kqlock2knoteusewait(struct kqueue
*kq
, struct knote
*kn
);
96 static int kqlock2knotedrop(struct kqueue
*kq
, struct knote
*kn
);
97 static int knoteuse2kqlock(struct kqueue
*kq
, struct knote
*kn
);
99 static void kqueue_wakeup(struct kqueue
*kq
);
100 static int kqueue_read(struct fileproc
*fp
, struct uio
*uio
,
101 kauth_cred_t cred
, int flags
, struct proc
*p
);
102 static int kqueue_write(struct fileproc
*fp
, struct uio
*uio
,
103 kauth_cred_t cred
, int flags
, struct proc
*p
);
104 static int kqueue_ioctl(struct fileproc
*fp
, u_long com
, caddr_t data
,
106 static int kqueue_select(struct fileproc
*fp
, int which
, void *wql
,
108 static int kqueue_close(struct fileglob
*fp
, struct proc
*p
);
109 static int kqueue_kqfilter(struct fileproc
*fp
, struct knote
*kn
, struct proc
*p
);
110 extern int kqueue_stat(struct fileproc
*fp
, struct stat
*st
, struct proc
*p
);
112 static struct fileops kqueueops
= {
122 static int kevent_copyin(user_addr_t
*addrp
, struct kevent
*kevp
, struct proc
*p
);
123 static int kevent_copyout(struct kevent
*kevp
, user_addr_t
*addrp
, struct proc
*p
);
125 static int kevent_callback(struct kqueue
*kq
, struct kevent
*kevp
, void *data
);
126 static void kevent_continue(struct kqueue
*kq
, void *data
, int error
);
127 static void kevent_scan_continue(void *contp
, wait_result_t wait_result
);
128 static int kevent_process(struct kqueue
*kq
, kevent_callback_t callback
,
129 void *data
, int *countp
, struct proc
*p
);
130 static void knote_put(struct knote
*kn
);
131 static int knote_fdpattach(struct knote
*kn
, struct filedesc
*fdp
, struct proc
*p
);
132 static void knote_drop(struct knote
*kn
, struct proc
*p
);
133 static void knote_activate(struct knote
*kn
);
134 static void knote_deactivate(struct knote
*kn
);
135 static void knote_enqueue(struct knote
*kn
);
136 static void knote_dequeue(struct knote
*kn
);
137 static struct knote
*knote_alloc(void);
138 static void knote_free(struct knote
*kn
);
139 extern void knote_init(void);
141 static int filt_fileattach(struct knote
*kn
);
142 static struct filterops file_filtops
=
143 { 1, filt_fileattach
, NULL
, NULL
};
145 static void filt_kqdetach(struct knote
*kn
);
146 static int filt_kqueue(struct knote
*kn
, long hint
);
147 static struct filterops kqread_filtops
=
148 { 1, NULL
, filt_kqdetach
, filt_kqueue
};
151 * placeholder for not-yet-implemented filters
153 static int filt_badattach(struct knote
*kn
);
154 static struct filterops bad_filtops
=
155 { 0, filt_badattach
, 0 , 0 };
157 static int filt_procattach(struct knote
*kn
);
158 static void filt_procdetach(struct knote
*kn
);
159 static int filt_proc(struct knote
*kn
, long hint
);
161 static struct filterops proc_filtops
=
162 { 0, filt_procattach
, filt_procdetach
, filt_proc
};
164 extern struct filterops fs_filtops
;
166 extern struct filterops sig_filtops
;
170 static int filt_timercompute(struct knote
*kn
, uint64_t *abs_time
);
171 static void filt_timerexpire(void *knx
, void *param1
);
172 static int filt_timerattach(struct knote
*kn
);
173 static void filt_timerdetach(struct knote
*kn
);
174 static int filt_timer(struct knote
*kn
, long hint
);
176 static struct filterops timer_filtops
=
177 { 0, filt_timerattach
, filt_timerdetach
, filt_timer
};
179 /* to avoid arming timers that fire quicker than we can handle */
180 static uint64_t filt_timerfloor
= 0;
182 static lck_mtx_t _filt_timerlock
;
183 static void filt_timerlock(void);
184 static void filt_timerunlock(void);
187 * Sentinel marker for a thread scanning through the list of
190 static struct filterops threadmarker_filtops
=
191 { 0, filt_badattach
, 0, 0 };
193 static zone_t knote_zone
;
195 #define KN_HASHSIZE 64 /* XXX should be tunable */
196 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
199 extern struct filterops aio_filtops
;
203 * Table for for all system-defined filters.
205 static struct filterops
*sysfilt_ops
[] = {
206 &file_filtops
, /* EVFILT_READ */
207 &file_filtops
, /* EVFILT_WRITE */
209 &aio_filtops
, /* EVFILT_AIO */
211 &bad_filtops
, /* EVFILT_AIO */
213 &file_filtops
, /* EVFILT_VNODE */
214 &proc_filtops
, /* EVFILT_PROC */
215 &sig_filtops
, /* EVFILT_SIGNAL */
216 &timer_filtops
, /* EVFILT_TIMER */
217 &bad_filtops
, /* EVFILT_MACHPORT */
218 &fs_filtops
/* EVFILT_FS */
222 * kqueue/note lock attributes and implementations
224 * kqueues have locks, while knotes have use counts
225 * Most of the knote state is guarded by the object lock.
226 * the knote "inuse" count and status use the kqueue lock.
228 lck_grp_attr_t
* kq_lck_grp_attr
;
229 lck_grp_t
* kq_lck_grp
;
230 lck_attr_t
* kq_lck_attr
;
233 kqlock(struct kqueue
*kq
)
235 lck_spin_lock(&kq
->kq_lock
);
239 kqunlock(struct kqueue
*kq
)
241 lck_spin_unlock(&kq
->kq_lock
);
245 * Convert a kq lock to a knote use referece.
247 * If the knote is being dropped, we can't get
248 * a use reference, so just return with it
251 * - kq locked at entry
252 * - unlock on exit if we get the use reference
255 kqlock2knoteuse(struct kqueue
*kq
, struct knote
*kn
)
257 if (kn
->kn_status
& KN_DROPPING
)
265 * Convert a kq lock to a knote use referece.
267 * If the knote is being dropped, we can't get
268 * a use reference, so just return with it
271 * - kq locked at entry
272 * - kq always unlocked on exit
275 kqlock2knoteusewait(struct kqueue
*kq
, struct knote
*kn
)
277 if (!kqlock2knoteuse(kq
, kn
)) {
278 kn
->kn_status
|= KN_DROPWAIT
;
279 assert_wait(&kn
->kn_status
, THREAD_UNINT
);
281 thread_block(THREAD_CONTINUE_NULL
);
288 * Convert from a knote use reference back to kq lock.
290 * Drop a use reference and wake any waiters if
291 * this is the last one.
293 * The exit return indicates if the knote is
294 * still alive - but the kqueue lock is taken
298 knoteuse2kqlock(struct kqueue
*kq
, struct knote
*kn
)
301 if ((--kn
->kn_inuse
== 0) &&
302 (kn
->kn_status
& KN_USEWAIT
)) {
303 kn
->kn_status
&= ~KN_USEWAIT
;
304 thread_wakeup(&kn
->kn_inuse
);
306 return ((kn
->kn_status
& KN_DROPPING
) == 0);
310 * Convert a kq lock to a knote drop referece.
312 * If the knote is in use, wait for the use count
313 * to subside. We first mark our intention to drop
314 * it - keeping other users from "piling on."
315 * If we are too late, we have to wait for the
316 * other drop to complete.
318 * - kq locked at entry
319 * - always unlocked on exit.
320 * - caller can't hold any locks that would prevent
321 * the other dropper from completing.
324 kqlock2knotedrop(struct kqueue
*kq
, struct knote
*kn
)
327 if ((kn
->kn_status
& KN_DROPPING
) == 0) {
328 kn
->kn_status
|= KN_DROPPING
;
329 if (kn
->kn_inuse
> 0) {
330 kn
->kn_status
|= KN_USEWAIT
;
331 assert_wait(&kn
->kn_inuse
, THREAD_UNINT
);
333 thread_block(THREAD_CONTINUE_NULL
);
338 kn
->kn_status
|= KN_DROPWAIT
;
339 assert_wait(&kn
->kn_status
, THREAD_UNINT
);
341 thread_block(THREAD_CONTINUE_NULL
);
347 * Release a knote use count reference.
350 knote_put(struct knote
*kn
)
352 struct kqueue
*kq
= kn
->kn_kq
;
355 if ((--kn
->kn_inuse
== 0) &&
356 (kn
->kn_status
& KN_USEWAIT
)) {
357 kn
->kn_status
&= ~KN_USEWAIT
;
358 thread_wakeup(&kn
->kn_inuse
);
366 filt_fileattach(struct knote
*kn
)
369 return (fo_kqfilter(kn
->kn_fp
, kn
, current_proc()));
372 #define f_flag f_fglob->fg_flag
373 #define f_type f_fglob->fg_type
374 #define f_msgcount f_fglob->fg_msgcount
375 #define f_cred f_fglob->fg_cred
376 #define f_ops f_fglob->fg_ops
377 #define f_offset f_fglob->fg_offset
378 #define f_data f_fglob->fg_data
381 filt_kqdetach(struct knote
*kn
)
383 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
386 KNOTE_DETACH(&kq
->kq_sel
.si_note
, kn
);
392 filt_kqueue(struct knote
*kn
, __unused
long hint
)
394 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
396 kn
->kn_data
= kq
->kq_count
;
397 return (kn
->kn_data
> 0);
401 filt_procattach(struct knote
*kn
)
406 funnel_state
= thread_funnel_set(kernel_flock
, TRUE
);
408 p
= pfind(kn
->kn_id
);
410 thread_funnel_set(kernel_flock
, funnel_state
);
414 kn
->kn_flags
|= EV_CLEAR
; /* automatically set */
415 kn
->kn_hookid
= 1; /* mark exit not seen */
418 * internal flag indicating registration done by kernel
420 if (kn
->kn_flags
& EV_FLAG1
) {
421 kn
->kn_data
= (int)kn
->kn_sdata
; /* ppid */
422 kn
->kn_fflags
= NOTE_CHILD
;
423 kn
->kn_flags
&= ~EV_FLAG1
;
426 /* XXX lock the proc here while adding to the list? */
427 KNOTE_ATTACH(&p
->p_klist
, kn
);
429 thread_funnel_set(kernel_flock
, funnel_state
);
435 * The knote may be attached to a different process, which may exit,
436 * leaving nothing for the knote to be attached to. In that case,
437 * we wont be able to find the process from its pid. But the exit
438 * code may still be processing the knote list for the target process.
439 * We may have to wait for that processing to complete before we can
440 * return (and presumably free the knote) without actually removing
441 * it from the dead process' knote list.
444 filt_procdetach(struct knote
*kn
)
449 funnel_state
= thread_funnel_set(kernel_flock
, TRUE
);
450 p
= pfind(kn
->kn_id
);
452 if (p
!= (struct proc
*)NULL
) {
453 KNOTE_DETACH(&p
->p_klist
, kn
);
454 } else if (kn
->kn_hookid
!= 0) { /* if not NOTE_EXIT yet */
455 kn
->kn_hookid
= -1; /* we are detaching but... */
456 assert_wait(&kn
->kn_hook
, THREAD_UNINT
); /* have to wait */
457 thread_block(THREAD_CONTINUE_NULL
);
459 thread_funnel_set(kernel_flock
, funnel_state
);
463 filt_proc(struct knote
*kn
, long hint
)
469 /* must hold the funnel when coming from below */
470 assert(thread_funnel_get() != (funnel_t
)0);
473 * mask off extra data
475 event
= (u_int
)hint
& NOTE_PCTRLMASK
;
478 * if the user is interested in this event, record it.
480 if (kn
->kn_sfflags
& event
)
481 kn
->kn_fflags
|= event
;
484 * process is gone, so flag the event as finished.
486 * If someone was trying to detach, but couldn't
487 * find the proc to complete the detach, wake them
488 * up (nothing will ever need to walk the per-proc
489 * knote list again - so its safe for them to dump
492 if (event
== NOTE_EXIT
) {
493 boolean_t detaching
= (kn
->kn_hookid
== -1);
496 kn
->kn_flags
|= (EV_EOF
| EV_ONESHOT
);
498 thread_wakeup(&kn
->kn_hookid
);
503 * process forked, and user wants to track the new process,
504 * so attach a new knote to it, and immediately report an
505 * event with the parent's pid.
507 if ((event
== NOTE_FORK
) && (kn
->kn_sfflags
& NOTE_TRACK
)) {
512 * register knote with new process.
514 kev
.ident
= hint
& NOTE_PDATAMASK
; /* pid */
515 kev
.filter
= kn
->kn_filter
;
516 kev
.flags
= kn
->kn_flags
| EV_ADD
| EV_ENABLE
| EV_FLAG1
;
517 kev
.fflags
= kn
->kn_sfflags
;
518 kev
.data
= kn
->kn_id
; /* parent */
519 kev
.udata
= kn
->kn_kevent
.udata
; /* preserve udata */
520 error
= kevent_register(kn
->kn_kq
, &kev
, NULL
);
522 kn
->kn_fflags
|= NOTE_TRACKERR
;
526 return (kn
->kn_fflags
!= 0); /* atomic check - no funnel needed from above */
530 * filt_timercompute - compute absolute timeout
532 * The saved-data field in the knote contains the
533 * time value. The saved filter-flags indicates
534 * the unit of measurement.
536 * If the timeout is not absolute, adjust it for
540 filt_timercompute(struct knote
*kn
, uint64_t *abs_time
)
545 switch (kn
->kn_sfflags
& (NOTE_SECONDS
|NOTE_USECONDS
|NOTE_NSECONDS
)) {
547 multiplier
= NSEC_PER_SEC
;
550 multiplier
= NSEC_PER_USEC
;
555 case 0: /* milliseconds (default) */
556 multiplier
= NSEC_PER_SEC
/ 1000;
561 nanoseconds_to_absolutetime((uint64_t)kn
->kn_sdata
* multiplier
, &raw
);
562 if (raw
<= filt_timerfloor
) {
566 if ((kn
->kn_sfflags
& NOTE_ABSOLUTE
) == NOTE_ABSOLUTE
) {
567 uint32_t seconds
, nanoseconds
;
570 clock_get_calendar_nanotime(&seconds
, &nanoseconds
);
571 nanoseconds_to_absolutetime((uint64_t)seconds
* NSEC_PER_SEC
+ nanoseconds
,
573 if (now
>= raw
+ filt_timerfloor
) {
579 clock_absolutetime_interval_to_deadline(raw
, abs_time
);
584 * filt_timerexpire - the timer callout routine
586 * Just propagate the timer event into the knote
587 * filter routine (by going through the knote
588 * synchronization point). Pass a hint to
589 * indicate this is a real event, not just a
593 filt_timerexpire(void *knx
, __unused
void *spare
)
595 struct klist timer_list
;
596 struct knote
*kn
= knx
;
598 /* no "object" for timers, so fake a list */
599 SLIST_INIT(&timer_list
);
600 SLIST_INSERT_HEAD(&timer_list
, kn
, kn_selnext
);
601 KNOTE(&timer_list
, 1);
605 * data contains amount of time to sleep, in milliseconds,
606 * or a pointer to a timespec structure.
609 filt_timerattach(struct knote
*kn
)
611 thread_call_t callout
;
615 error
= filt_timercompute(kn
, &deadline
);
620 callout
= thread_call_allocate(filt_timerexpire
, kn
);
624 /* handle as immediate */
630 kn
->kn_hook
= (caddr_t
)callout
;
632 /* absolute=EV_ONESHOT */
633 if (kn
->kn_sfflags
& NOTE_ABSOLUTE
)
634 kn
->kn_flags
|= EV_ONESHOT
;
637 /* all others - if not faking immediate */
638 kn
->kn_flags
|= EV_CLEAR
;
639 thread_call_enter_delayed(callout
, deadline
);
650 filt_timerdetach(struct knote
*kn
)
652 thread_call_t callout
;
655 callout
= (thread_call_t
)kn
->kn_hook
;
656 if (callout
!= NULL
) {
659 /* cancel the callout if we can */
660 cancelled
= thread_call_cancel(callout
);
662 /* got it, just free it */
665 thread_call_free(callout
);
668 /* we have to wait for the expire routine. */
669 kn
->kn_hookid
= -1; /* we are detaching */
670 assert_wait(&kn
->kn_hook
, THREAD_UNINT
);
672 thread_block(THREAD_CONTINUE_NULL
);
673 assert(kn
->kn_hook
== NULL
);
683 filt_timer(struct knote
*kn
, __unused
long hint
)
689 thread_call_t callout
;
696 detaching
= (kn
->kn_hookid
< 0);
697 callout
= (thread_call_t
)kn
->kn_hook
;
699 if (!detaching
&& (kn
->kn_flags
& EV_ONESHOT
) == 0) {
703 /* user input data may have changed - deal */
704 error
= filt_timercompute(kn
, &deadline
);
706 kn
->kn_flags
|= EV_ERROR
;
708 } else if (deadline
== 0) {
709 /* revert to fake immediate */
710 kn
->kn_flags
&= ~EV_CLEAR
;
714 /* keep the callout and re-arm */
715 thread_call_enter_delayed(callout
, deadline
);
722 thread_call_free(callout
);
724 /* if someone is waiting for timer to pop */
726 thread_wakeup(&kn
->kn_hook
);
734 /* change fake timer to real if needed */
735 while (kn
->kn_hookid
> 0 && kn
->kn_sdata
> 0) {
738 /* update the fake timer (make real) */
742 error
= filt_timerattach(kn
);
745 kn
->kn_flags
|= EV_ERROR
;
752 /* if still fake, pretend it fired */
753 if (kn
->kn_hookid
> 0)
756 result
= (kn
->kn_data
!= 0);
764 lck_mtx_lock(&_filt_timerlock
);
768 filt_timerunlock(void)
770 lck_mtx_unlock(&_filt_timerlock
);
774 * JMM - placeholder for not-yet-implemented filters
777 filt_badattach(__unused
struct knote
*kn
)
784 kqueue_alloc(struct proc
*p
)
786 struct filedesc
*fdp
= p
->p_fd
;
789 MALLOC_ZONE(kq
, struct kqueue
*, sizeof(struct kqueue
), M_KQUEUE
, M_WAITOK
);
791 bzero(kq
, sizeof(struct kqueue
));
792 lck_spin_init(&kq
->kq_lock
, kq_lck_grp
, kq_lck_attr
);
793 TAILQ_INIT(&kq
->kq_head
);
794 TAILQ_INIT(&kq
->kq_inprocess
);
798 if (fdp
->fd_knlistsize
< 0) {
800 if (fdp
->fd_knlistsize
< 0)
801 fdp
->fd_knlistsize
= 0; /* this process has had a kq */
810 * kqueue_dealloc - detach all knotes from a kqueue and free it
812 * We walk each list looking for knotes referencing this
813 * this kqueue. If we find one, we try to drop it. But
814 * if we fail to get a drop reference, that will wait
815 * until it is dropped. So, we can just restart again
816 * safe in the assumption that the list will eventually
817 * not contain any more references to this kqueue (either
818 * we dropped them all, or someone else did).
820 * Assumes no new events are being added to the kqueue.
821 * Nothing locked on entry or exit.
824 kqueue_dealloc(struct kqueue
*kq
, struct proc
*p
)
826 struct filedesc
*fdp
= p
->p_fd
;
831 for (i
= 0; i
< fdp
->fd_knlistsize
; i
++) {
832 kn
= SLIST_FIRST(&fdp
->fd_knlist
[i
]);
834 if (kq
== kn
->kn_kq
) {
837 /* drop it ourselves or wait */
838 if (kqlock2knotedrop(kq
, kn
)) {
839 kn
->kn_fop
->f_detach(kn
);
843 /* start over at beginning of list */
844 kn
= SLIST_FIRST(&fdp
->fd_knlist
[i
]);
847 kn
= SLIST_NEXT(kn
, kn_link
);
850 if (fdp
->fd_knhashmask
!= 0) {
851 for (i
= 0; i
< (int)fdp
->fd_knhashmask
+ 1; i
++) {
852 kn
= SLIST_FIRST(&fdp
->fd_knhash
[i
]);
854 if (kq
== kn
->kn_kq
) {
857 /* drop it ourselves or wait */
858 if (kqlock2knotedrop(kq
, kn
)) {
859 kn
->kn_fop
->f_detach(kn
);
863 /* start over at beginning of list */
864 kn
= SLIST_FIRST(&fdp
->fd_knhash
[i
]);
867 kn
= SLIST_NEXT(kn
, kn_link
);
872 lck_spin_destroy(&kq
->kq_lock
, kq_lck_grp
);
873 FREE_ZONE(kq
, sizeof(struct kqueue
), M_KQUEUE
);
877 kqueue(struct proc
*p
, __unused
struct kqueue_args
*uap
, register_t
*retval
)
883 error
= falloc(p
, &fp
, &fd
);
888 kq
= kqueue_alloc(p
);
894 fp
->f_flag
= FREAD
| FWRITE
;
895 fp
->f_type
= DTYPE_KQUEUE
;
896 fp
->f_ops
= &kqueueops
;
897 fp
->f_data
= (caddr_t
)kq
;
900 *fdflags(p
, fd
) &= ~UF_RESERVED
;
901 fp_drop(p
, fd
, fp
, 1);
909 kqueue_portset_np(__unused
struct proc
*p
,
910 __unused
struct kqueue_portset_np_args
*uap
,
911 __unused register_t
*retval
)
913 /* JMM - Placeholder for now */
918 kqueue_from_portset_np(__unused
struct proc
*p
,
919 __unused
struct kqueue_from_portset_np_args
*uap
,
920 __unused register_t
*retval
)
922 /* JMM - Placeholder for now */
927 kevent_copyin(user_addr_t
*addrp
, struct kevent
*kevp
, struct proc
*p
)
932 if (IS_64BIT_PROCESS(p
)) {
933 struct user_kevent kev64
;
935 advance
= sizeof(kev64
);
936 error
= copyin(*addrp
, (caddr_t
)&kev64
, advance
);
939 kevp
->ident
= CAST_DOWN(uintptr_t, kev64
.ident
);
940 kevp
->filter
= kev64
.filter
;
941 kevp
->flags
= kev64
.flags
;
942 kevp
->fflags
= kev64
.fflags
;
943 kevp
->data
= CAST_DOWN(intptr_t, kev64
.data
);
944 kevp
->udata
= kev64
.udata
;
947 * compensate for legacy in-kernel kevent layout
948 * where the udata field is alredy 64-bit.
950 advance
= sizeof(*kevp
) + sizeof(void *) - sizeof(user_addr_t
);
951 error
= copyin(*addrp
, (caddr_t
)kevp
, advance
);
959 kevent_copyout(struct kevent
*kevp
, user_addr_t
*addrp
, struct proc
*p
)
964 if (IS_64BIT_PROCESS(p
)) {
965 struct user_kevent kev64
;
967 kev64
.ident
= (uint64_t) kevp
->ident
;
968 kev64
.filter
= kevp
->filter
;
969 kev64
.flags
= kevp
->flags
;
970 kev64
.fflags
= kevp
->fflags
;
971 kev64
.data
= (int64_t) kevp
->data
;
972 kev64
.udata
= kevp
->udata
;
973 advance
= sizeof(kev64
);
974 error
= copyout((caddr_t
)&kev64
, *addrp
, advance
);
977 * compensate for legacy in-kernel kevent layout
978 * where the udata field is alredy 64-bit.
980 advance
= sizeof(*kevp
) + sizeof(void *) - sizeof(user_addr_t
);
981 error
= copyout((caddr_t
)kevp
, *addrp
, advance
);
989 * kevent_continue - continue a kevent syscall after blocking
991 * assume we inherit a use count on the kq fileglob.
995 kevent_continue(__unused
struct kqueue
*kq
, void *data
, int error
)
997 struct _kevent
*cont_args
;
1002 struct proc
*p
= current_proc();
1004 cont_args
= (struct _kevent
*)data
;
1005 noutputs
= cont_args
->eventout
;
1006 retval
= cont_args
->retval
;
1010 fp_drop(p
, fd
, fp
, 0);
1012 /* don't restart after signals... */
1013 if (error
== ERESTART
)
1015 else if (error
== EWOULDBLOCK
)
1019 unix_syscall_return(error
);
1023 * kevent - [syscall] register and wait for kernel events
1028 kevent(struct proc
*p
, struct kevent_args
*uap
, register_t
*retval
)
1030 user_addr_t changelist
= uap
->changelist
;
1031 user_addr_t ueventlist
= uap
->eventlist
;
1032 int nchanges
= uap
->nchanges
;
1033 int nevents
= uap
->nevents
;
1036 struct _kevent
*cont_args
;
1039 struct fileproc
*fp
;
1041 int error
, noutputs
;
1044 /* convert timeout to absolute - if we have one */
1045 if (uap
->timeout
!= USER_ADDR_NULL
) {
1047 if ( IS_64BIT_PROCESS(p
) ) {
1048 struct user_timespec ts
;
1049 error
= copyin( uap
->timeout
, &ts
, sizeof(ts
) );
1050 if ((ts
.tv_sec
& 0xFFFFFFFF00000000ull
) != 0)
1053 TIMESPEC_TO_TIMEVAL(&rtv
, &ts
);
1056 error
= copyin( uap
->timeout
, &ts
, sizeof(ts
) );
1057 TIMESPEC_TO_TIMEVAL(&rtv
, &ts
);
1061 if (itimerfix(&rtv
))
1063 getmicrouptime(&atv
);
1064 timevaladd(&atv
, &rtv
);
1070 /* get a usecount for the kq itself */
1071 if ((error
= fp_getfkq(p
, fd
, &fp
, &kq
)) != 0)
1074 /* register all the change requests the user provided... */
1076 while (nchanges
> 0 && error
== 0) {
1077 error
= kevent_copyin(&changelist
, &kev
, p
);
1081 kev
.flags
&= ~EV_SYSFLAGS
;
1082 error
= kevent_register(kq
, &kev
, p
);
1083 if (error
&& nevents
> 0) {
1084 kev
.flags
= EV_ERROR
;
1086 error
= kevent_copyout(&kev
, &ueventlist
, p
);
1095 /* store the continuation/completion data in the uthread */
1096 ut
= (uthread_t
)get_bsdthread_info(current_thread());
1097 cont_args
= (struct _kevent
*)&ut
->uu_state
.ss_kevent
;
1100 cont_args
->retval
= retval
;
1101 cont_args
->eventlist
= ueventlist
;
1102 cont_args
->eventcount
= nevents
;
1103 cont_args
->eventout
= noutputs
;
1105 if (nevents
> 0 && noutputs
== 0 && error
== 0)
1106 error
= kevent_scan(kq
, kevent_callback
,
1107 kevent_continue
, cont_args
,
1109 kevent_continue(kq
, cont_args
, error
);
1116 * kevent_callback - callback for each individual event
1118 * called with nothing locked
1119 * caller holds a reference on the kqueue
1123 kevent_callback(__unused
struct kqueue
*kq
, struct kevent
*kevp
, void *data
)
1125 struct _kevent
*cont_args
;
1128 cont_args
= (struct _kevent
*)data
;
1129 assert(cont_args
->eventout
< cont_arg
->eventcount
);
1132 * Copy out the appropriate amount of event data for this user.
1134 error
= kevent_copyout(kevp
, &cont_args
->eventlist
, current_proc());
1137 * If there isn't space for additional events, return
1138 * a harmless error to stop the processing here
1140 if (error
== 0 && ++cont_args
->eventout
== cont_args
->eventcount
)
1141 error
= EWOULDBLOCK
;
1146 * kevent_register - add a new event to a kqueue
1148 * Creates a mapping between the event source and
1149 * the kqueue via a knote data structure.
1151 * Because many/most the event sources are file
1152 * descriptor related, the knote is linked off
1153 * the filedescriptor table for quick access.
1155 * called with nothing locked
1156 * caller holds a reference on the kqueue
1160 kevent_register(struct kqueue
*kq
, struct kevent
*kev
, struct proc
*p
)
1162 struct filedesc
*fdp
= kq
->kq_fdp
;
1163 struct filterops
*fops
;
1164 struct fileproc
*fp
= NULL
;
1165 struct knote
*kn
= NULL
;
1168 if (kev
->filter
< 0) {
1169 if (kev
->filter
+ EVFILT_SYSCOUNT
< 0)
1171 fops
= sysfilt_ops
[~kev
->filter
]; /* to 0-base index */
1175 * filter attach routine is responsible for insuring that
1176 * the identifier can be attached to it.
1178 printf("unknown filter: %d\n", kev
->filter
);
1182 /* this iocount needs to be dropped if it is not registered */
1183 if (fops
->f_isfd
&& (error
= fp_lookup(p
, kev
->ident
, &fp
, 0)) != 0)
1189 /* fd-based knotes are linked off the fd table */
1190 if (kev
->ident
< (u_int
)fdp
->fd_knlistsize
) {
1191 SLIST_FOREACH(kn
, &fdp
->fd_knlist
[kev
->ident
], kn_link
)
1192 if (kq
== kn
->kn_kq
&&
1193 kev
->filter
== kn
->kn_filter
)
1197 /* hash non-fd knotes here too */
1198 if (fdp
->fd_knhashmask
!= 0) {
1201 list
= &fdp
->fd_knhash
[
1202 KN_HASH((u_long
)kev
->ident
, fdp
->fd_knhashmask
)];
1203 SLIST_FOREACH(kn
, list
, kn_link
)
1204 if (kev
->ident
== kn
->kn_id
&&
1206 kev
->filter
== kn
->kn_filter
)
1212 * kn now contains the matching knote, or NULL if no match
1215 if ((kev
->flags
& (EV_ADD
|EV_DELETE
)) == EV_ADD
) {
1224 kn
->kn_tq
= &kq
->kq_head
;
1226 kn
->kn_sfflags
= kev
->fflags
;
1227 kn
->kn_sdata
= kev
->data
;
1230 kn
->kn_kevent
= *kev
;
1231 kn
->kn_inuse
= 1; /* for f_attach() */
1234 /* before anyone can find it */
1235 if (kev
->flags
& EV_DISABLE
)
1236 kn
->kn_status
|= KN_DISABLED
;
1238 error
= knote_fdpattach(kn
, fdp
, p
);
1247 * apply reference count to knote structure, and
1248 * do not release it at the end of this routine.
1253 * If the attach fails here, we can drop it knowing
1254 * that nobody else has a reference to the knote.
1256 if ((error
= fops
->f_attach(kn
)) != 0) {
1266 /* existing knote - get kqueue lock */
1270 if (kev
->flags
& EV_DELETE
) {
1272 kn
->kn_status
|= KN_DISABLED
;
1273 if (kqlock2knotedrop(kq
, kn
)) {
1274 kn
->kn_fop
->f_detach(kn
);
1280 /* update status flags for existing knote */
1281 if (kev
->flags
& EV_DISABLE
) {
1283 kn
->kn_status
|= KN_DISABLED
;
1284 } else if (kev
->flags
& EV_ENABLE
) {
1285 kn
->kn_status
&= ~KN_DISABLED
;
1286 if (kn
->kn_status
& KN_ACTIVE
)
1291 * If somebody is in the middle of dropping this
1292 * knote - go find/insert a new one. But we have
1293 * wait for this one to go away first.
1295 if (!kqlock2knoteusewait(kq
, kn
))
1296 /* kqueue unlocked */
1300 * The user may change some filter values after the
1301 * initial EV_ADD, but doing so will not reset any
1302 * filter which have already been triggered.
1304 kn
->kn_sfflags
= kev
->fflags
;
1305 kn
->kn_sdata
= kev
->data
;
1306 kn
->kn_kevent
.udata
= kev
->udata
;
1309 /* still have use ref on knote */
1310 if (kn
->kn_fop
->f_event(kn
, 0)) {
1311 if (knoteuse2kqlock(kq
, kn
))
1320 fp_drop(p
, kev
->ident
, fp
, 0);
1325 * kevent_process - process the triggered events in a kqueue
1327 * Walk the queued knotes and validate that they are
1328 * really still triggered events by calling the filter
1329 * routines (if necessary). Hold a use reference on
1330 * the knote to avoid it being detached. For each event
1331 * that is still considered triggered, invoke the
1332 * callback routine provided.
1334 * caller holds a reference on the kqueue.
1335 * kqueue locked on entry and exit - but may be dropped
1339 kevent_process(struct kqueue
*kq
,
1340 kevent_callback_t callback
,
1351 if (kq
->kq_count
== 0) {
1356 /* if someone else is processing the queue, wait */
1357 if (!TAILQ_EMPTY(&kq
->kq_inprocess
)) {
1358 assert_wait(&kq
->kq_inprocess
, THREAD_UNINT
);
1359 kq
->kq_state
|= KQ_PROCWAIT
;
1361 thread_block(THREAD_CONTINUE_NULL
);
1368 while (error
== 0 &&
1369 (kn
= TAILQ_FIRST(&kq
->kq_head
)) != NULL
) {
1372 * move knote to the processed queue.
1373 * this is also protected by the kq lock.
1375 assert(kn
->kn_tq
== &kq
->kq_head
);
1376 TAILQ_REMOVE(&kq
->kq_head
, kn
, kn_tqe
);
1377 kn
->kn_tq
= &kq
->kq_inprocess
;
1378 TAILQ_INSERT_TAIL(&kq
->kq_inprocess
, kn
, kn_tqe
);
1381 * Non-EV_ONESHOT events must be re-validated.
1383 * Convert our lock to a use-count and call the event's
1384 * filter routine to update.
1386 * If the event is dropping (or no longer valid), we
1387 * already have it off the active queue, so just
1388 * finish the job of deactivating it.
1390 if ((kn
->kn_flags
& EV_ONESHOT
) == 0) {
1393 if (kqlock2knoteuse(kq
, kn
)) {
1395 /* call the filter with just a ref */
1396 result
= kn
->kn_fop
->f_event(kn
, 0);
1398 if (!knoteuse2kqlock(kq
, kn
) || result
== 0) {
1399 knote_deactivate(kn
);
1403 knote_deactivate(kn
);
1409 * Got a valid triggered knote with the kqueue
1410 * still locked. Snapshot the data, and determine
1411 * how to dispatch the knote for future events.
1413 kev
= kn
->kn_kevent
;
1415 /* now what happens to it? */
1416 if (kn
->kn_flags
& EV_ONESHOT
) {
1417 knote_deactivate(kn
);
1418 if (kqlock2knotedrop(kq
, kn
)) {
1419 kn
->kn_fop
->f_detach(kn
);
1422 } else if (kn
->kn_flags
& EV_CLEAR
) {
1423 knote_deactivate(kn
);
1429 * leave on in-process queue. We'll
1430 * move all the remaining ones back
1431 * the kq queue and wakeup any
1432 * waiters when we are done.
1437 /* callback to handle each event as we find it */
1438 error
= (callback
)(kq
, &kev
, data
);
1445 * With the kqueue still locked, move any knotes
1446 * remaining on the in-process queue back to the
1447 * kq's queue and wake up any waiters.
1449 while ((kn
= TAILQ_FIRST(&kq
->kq_inprocess
)) != NULL
) {
1450 assert(kn
->kn_tq
== &kq
->kq_inprocess
);
1451 TAILQ_REMOVE(&kq
->kq_inprocess
, kn
, kn_tqe
);
1452 kn
->kn_tq
= &kq
->kq_head
;
1453 TAILQ_INSERT_TAIL(&kq
->kq_head
, kn
, kn_tqe
);
1455 if (kq
->kq_state
& KQ_PROCWAIT
) {
1456 kq
->kq_state
&= ~KQ_PROCWAIT
;
1457 thread_wakeup(&kq
->kq_inprocess
);
1466 kevent_scan_continue(void *data
, wait_result_t wait_result
)
1468 uthread_t ut
= (uthread_t
)get_bsdthread_info(current_thread());
1469 struct _kevent_scan
* cont_args
= &ut
->uu_state
.ss_kevent_scan
;
1470 struct kqueue
*kq
= (struct kqueue
*)data
;
1474 /* convert the (previous) wait_result to a proper error */
1475 switch (wait_result
) {
1476 case THREAD_AWAKENED
:
1478 error
= kevent_process(kq
, cont_args
->call
, cont_args
, &count
, current_proc());
1479 if (error
== 0 && count
== 0) {
1480 assert_wait_deadline(kq
, THREAD_ABORTSAFE
, cont_args
->deadline
);
1481 kq
->kq_state
|= KQ_SLEEP
;
1483 thread_block_parameter(kevent_scan_continue
, kq
);
1488 case THREAD_TIMED_OUT
:
1489 error
= EWOULDBLOCK
;
1491 case THREAD_INTERRUPTED
:
1495 panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result
);
1499 /* call the continuation with the results */
1500 assert(cont_args
->cont
!= NULL
);
1501 (cont_args
->cont
)(kq
, cont_args
->data
, error
);
1506 * kevent_scan - scan and wait for events in a kqueue
1508 * Process the triggered events in a kqueue.
1510 * If there are no events triggered arrange to
1511 * wait for them. If the caller provided a
1512 * continuation routine, then kevent_scan will
1515 * The callback routine must be valid.
1516 * The caller must hold a use-count reference on the kq.
1520 kevent_scan(struct kqueue
*kq
,
1521 kevent_callback_t callback
,
1522 kevent_continue_t continuation
,
1524 struct timeval
*atvp
,
1527 thread_continue_t cont
= THREAD_CONTINUE_NULL
;
1532 assert(callback
!= NULL
);
1536 wait_result_t wait_result
;
1540 * Make a pass through the kq to find events already
1544 error
= kevent_process(kq
, callback
, data
, &count
, p
);
1546 break; /* lock still held */
1548 /* looks like we have to consider blocking */
1551 /* convert the timeout to a deadline once */
1552 if (atvp
->tv_sec
|| atvp
->tv_usec
) {
1553 uint32_t seconds
, nanoseconds
;
1556 clock_get_uptime(&now
);
1557 nanoseconds_to_absolutetime((uint64_t)atvp
->tv_sec
* NSEC_PER_SEC
+
1558 atvp
->tv_usec
* NSEC_PER_USEC
,
1560 if (now
>= deadline
) {
1561 /* non-blocking call */
1562 error
= EWOULDBLOCK
;
1563 break; /* lock still held */
1566 clock_absolutetime_interval_to_deadline(deadline
, &deadline
);
1568 deadline
= 0; /* block forever */
1572 uthread_t ut
= (uthread_t
)get_bsdthread_info(current_thread());
1573 struct _kevent_scan
*cont_args
= &ut
->uu_state
.ss_kevent_scan
;
1575 cont_args
->call
= callback
;
1576 cont_args
->cont
= continuation
;
1577 cont_args
->deadline
= deadline
;
1578 cont_args
->data
= data
;
1579 cont
= kevent_scan_continue
;
1583 /* go ahead and wait */
1584 assert_wait_deadline(kq
, THREAD_ABORTSAFE
, deadline
);
1585 kq
->kq_state
|= KQ_SLEEP
;
1587 wait_result
= thread_block_parameter(cont
, kq
);
1588 /* NOTREACHED if (continuation != NULL) */
1590 switch (wait_result
) {
1591 case THREAD_AWAKENED
:
1593 case THREAD_TIMED_OUT
:
1595 case THREAD_INTERRUPTED
:
1598 panic("kevent_scan - bad wait_result (%d)",
1610 * This could be expanded to call kqueue_scan, if desired.
1614 kqueue_read(__unused
struct fileproc
*fp
,
1615 __unused
struct uio
*uio
,
1616 __unused kauth_cred_t cred
,
1618 __unused
struct proc
*p
)
1625 kqueue_write(__unused
struct fileproc
*fp
,
1626 __unused
struct uio
*uio
,
1627 __unused kauth_cred_t cred
,
1629 __unused
struct proc
*p
)
1636 kqueue_ioctl(__unused
struct fileproc
*fp
,
1637 __unused u_long com
,
1638 __unused caddr_t data
,
1639 __unused
struct proc
*p
)
1646 kqueue_select(struct fileproc
*fp
, int which
, void *wql
, struct proc
*p
)
1648 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
1651 if (which
== FREAD
) {
1656 selrecord(p
, &kq
->kq_sel
, wql
);
1657 kq
->kq_state
|= KQ_SEL
;
1669 kqueue_close(struct fileglob
*fg
, struct proc
*p
)
1671 struct kqueue
*kq
= (struct kqueue
*)fg
->fg_data
;
1673 kqueue_dealloc(kq
, p
);
1680 * The callers has taken a use-count reference on this kqueue and will donate it
1681 * to the kqueue we are being added to. This keeps the kqueue from closing until
1682 * that relationship is torn down.
1685 kqueue_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused
struct proc
*p
)
1687 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
1689 if (kn
->kn_filter
!= EVFILT_READ
)
1692 kn
->kn_fop
= &kqread_filtops
;
1694 KNOTE_ATTACH(&kq
->kq_sel
.si_note
, kn
);
1701 kqueue_stat(struct fileproc
*fp
, struct stat
*st
, __unused
struct proc
*p
)
1703 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
1705 bzero((void *)st
, sizeof(*st
));
1706 st
->st_size
= kq
->kq_count
;
1707 st
->st_blksize
= sizeof(struct kevent
);
1708 st
->st_mode
= S_IFIFO
;
1713 * Called with the kqueue locked
1716 kqueue_wakeup(struct kqueue
*kq
)
1719 if (kq
->kq_state
& KQ_SLEEP
) {
1720 kq
->kq_state
&= ~KQ_SLEEP
;
1723 if (kq
->kq_state
& KQ_SEL
) {
1724 kq
->kq_state
&= ~KQ_SEL
;
1725 selwakeup(&kq
->kq_sel
);
1727 KNOTE(&kq
->kq_sel
.si_note
, 0);
1731 klist_init(struct klist
*list
)
1738 * Query/Post each knote in the object's list
1740 * The object lock protects the list. It is assumed
1741 * that the filter/event routine for the object can
1742 * determine that the object is already locked (via
1743 * the hind) and not deadlock itself.
1745 * The object lock should also hold off pending
1746 * detach/drop operations. But we'll prevent it here
1747 * too - just in case.
1750 knote(struct klist
*list
, long hint
)
1754 SLIST_FOREACH(kn
, list
, kn_selnext
) {
1755 struct kqueue
*kq
= kn
->kn_kq
;
1758 if (kqlock2knoteuse(kq
, kn
)) {
1761 /* call the event with only a use count */
1762 result
= kn
->kn_fop
->f_event(kn
, hint
);
1764 /* if its not going away and triggered */
1765 if (knoteuse2kqlock(kq
, kn
) && result
)
1767 /* lock held again */
1774 * attach a knote to the specified list. Return true if this is the first entry.
1775 * The list is protected by whatever lock the object it is associated with uses.
1778 knote_attach(struct klist
*list
, struct knote
*kn
)
1780 int ret
= SLIST_EMPTY(list
);
1781 SLIST_INSERT_HEAD(list
, kn
, kn_selnext
);
1786 * detach a knote from the specified list. Return true if that was the last entry.
1787 * The list is protected by whatever lock the object it is associated with uses.
1790 knote_detach(struct klist
*list
, struct knote
*kn
)
1792 SLIST_REMOVE(list
, kn
, knote
, kn_selnext
);
1793 return SLIST_EMPTY(list
);
1797 * remove all knotes referencing a specified fd
1799 * Essentially an inlined knote_remove & knote_drop
1800 * when we know for sure that the thing is a file
1802 * Entered with the proc_fd lock already held.
1803 * It returns the same way, but may drop it temporarily.
1806 knote_fdclose(struct proc
*p
, int fd
)
1808 struct filedesc
*fdp
= p
->p_fd
;
1812 list
= &fdp
->fd_knlist
[fd
];
1813 while ((kn
= SLIST_FIRST(list
)) != NULL
) {
1814 struct kqueue
*kq
= kn
->kn_kq
;
1820 * Convert the lock to a drop ref.
1821 * If we get it, go ahead and drop it.
1822 * Otherwise, we waited for it to
1823 * be dropped by the other guy, so
1824 * it is safe to move on in the list.
1826 if (kqlock2knotedrop(kq
, kn
)) {
1827 kn
->kn_fop
->f_detach(kn
);
1833 /* the fd tables may have changed - start over */
1834 list
= &fdp
->fd_knlist
[fd
];
1838 /* proc_fdlock held on entry (and exit) */
1840 knote_fdpattach(struct knote
*kn
, struct filedesc
*fdp
, __unused
struct proc
*p
)
1842 struct klist
*list
= NULL
;
1844 if (! kn
->kn_fop
->f_isfd
) {
1845 if (fdp
->fd_knhashmask
== 0)
1846 fdp
->fd_knhash
= hashinit(KN_HASHSIZE
, M_KQUEUE
,
1847 &fdp
->fd_knhashmask
);
1848 list
= &fdp
->fd_knhash
[KN_HASH(kn
->kn_id
, fdp
->fd_knhashmask
)];
1850 if ((u_int
)fdp
->fd_knlistsize
<= kn
->kn_id
) {
1853 /* have to grow the fd_knlist */
1854 size
= fdp
->fd_knlistsize
;
1855 while (size
<= kn
->kn_id
)
1857 MALLOC(list
, struct klist
*,
1858 size
* sizeof(struct klist
*), M_KQUEUE
, M_WAITOK
);
1862 bcopy((caddr_t
)fdp
->fd_knlist
, (caddr_t
)list
,
1863 fdp
->fd_knlistsize
* sizeof(struct klist
*));
1864 bzero((caddr_t
)list
+
1865 fdp
->fd_knlistsize
* sizeof(struct klist
*),
1866 (size
- fdp
->fd_knlistsize
) * sizeof(struct klist
*));
1867 FREE(fdp
->fd_knlist
, M_KQUEUE
);
1868 fdp
->fd_knlist
= list
;
1869 fdp
->fd_knlistsize
= size
;
1871 list
= &fdp
->fd_knlist
[kn
->kn_id
];
1873 SLIST_INSERT_HEAD(list
, kn
, kn_link
);
1880 * should be called at spl == 0, since we don't want to hold spl
1881 * while calling fdrop and free.
1884 knote_drop(struct knote
*kn
, struct proc
*p
)
1886 struct filedesc
*fdp
= p
->p_fd
;
1887 struct kqueue
*kq
= kn
->kn_kq
;
1891 if (kn
->kn_fop
->f_isfd
)
1892 list
= &fdp
->fd_knlist
[kn
->kn_id
];
1894 list
= &fdp
->fd_knhash
[KN_HASH(kn
->kn_id
, fdp
->fd_knhashmask
)];
1896 SLIST_REMOVE(list
, kn
, knote
, kn_link
);
1899 if (kn
->kn_status
& KN_DROPWAIT
)
1900 thread_wakeup(&kn
->kn_status
);
1904 if (kn
->kn_fop
->f_isfd
)
1905 fp_drop(p
, kn
->kn_id
, kn
->kn_fp
, 0);
1910 /* called with kqueue lock held */
1912 knote_activate(struct knote
*kn
)
1914 struct kqueue
*kq
= kn
->kn_kq
;
1916 kn
->kn_status
|= KN_ACTIVE
;
1921 /* called with kqueue lock held */
1923 knote_deactivate(struct knote
*kn
)
1925 kn
->kn_status
&= ~KN_ACTIVE
;
1929 /* called with kqueue lock held */
1931 knote_enqueue(struct knote
*kn
)
1933 struct kqueue
*kq
= kn
->kn_kq
;
1935 if ((kn
->kn_status
& (KN_QUEUED
| KN_DISABLED
)) == 0) {
1936 struct kqtailq
*tq
= kn
->kn_tq
;
1938 TAILQ_INSERT_TAIL(tq
, kn
, kn_tqe
);
1939 kn
->kn_status
|= KN_QUEUED
;
1944 /* called with kqueue lock held */
1946 knote_dequeue(struct knote
*kn
)
1948 struct kqueue
*kq
= kn
->kn_kq
;
1950 assert((kn
->kn_status
& KN_DISABLED
) == 0);
1951 if ((kn
->kn_status
& KN_QUEUED
) == KN_QUEUED
) {
1952 struct kqtailq
*tq
= kn
->kn_tq
;
1954 TAILQ_REMOVE(tq
, kn
, kn_tqe
);
1955 kn
->kn_tq
= &kq
->kq_head
;
1956 kn
->kn_status
&= ~KN_QUEUED
;
1964 knote_zone
= zinit(sizeof(struct knote
), 8192*sizeof(struct knote
), 8192, "knote zone");
1966 /* allocate kq lock group attribute and group */
1967 kq_lck_grp_attr
= lck_grp_attr_alloc_init();
1969 kq_lck_grp
= lck_grp_alloc_init("kqueue", kq_lck_grp_attr
);
1971 /* Allocate kq lock attribute */
1972 kq_lck_attr
= lck_attr_alloc_init();
1974 /* Initialize the timer filter lock */
1975 lck_mtx_init(&_filt_timerlock
, kq_lck_grp
, kq_lck_attr
);
1977 SYSINIT(knote
, SI_SUB_PSEUDO
, SI_ORDER_ANY
, knote_init
, NULL
)
1979 static struct knote
*
1982 return ((struct knote
*)zalloc(knote_zone
));
1986 knote_free(struct knote
*kn
)
1988 zfree(knote_zone
, kn
);
1991 #include <sys/param.h>
1992 #include <sys/socket.h>
1993 #include <sys/protosw.h>
1994 #include <sys/domain.h>
1995 #include <sys/mbuf.h>
1996 #include <sys/kern_event.h>
1997 #include <sys/malloc.h>
1998 #include <sys/sys_domain.h>
1999 #include <sys/syslog.h>
2002 static int kev_attach(struct socket
*so
, int proto
, struct proc
*p
);
2003 static int kev_detach(struct socket
*so
);
2004 static int kev_control(struct socket
*so
, u_long cmd
, caddr_t data
, struct ifnet
*ifp
, struct proc
*p
);
2006 struct pr_usrreqs event_usrreqs
= {
2007 pru_abort_notsupp
, pru_accept_notsupp
, kev_attach
, pru_bind_notsupp
, pru_connect_notsupp
,
2008 pru_connect2_notsupp
, kev_control
, kev_detach
, pru_disconnect_notsupp
,
2009 pru_listen_notsupp
, pru_peeraddr_notsupp
, pru_rcvd_notsupp
, pru_rcvoob_notsupp
,
2010 pru_send_notsupp
, pru_sense_null
, pru_shutdown_notsupp
, pru_sockaddr_notsupp
,
2011 pru_sosend_notsupp
, soreceive
, pru_sopoll_notsupp
2014 struct protosw eventsw
[] = {
2016 SOCK_RAW
, &systemdomain
, SYSPROTO_EVENT
, PR_ATOMIC
,
2032 struct kern_event_head kern_event_head
;
2034 static u_long static_event_id
= 0;
2035 struct domain
*sysdom
= &systemdomain
;
2037 static lck_grp_t
*evt_mtx_grp
;
2038 static lck_attr_t
*evt_mtx_attr
;
2039 static lck_grp_attr_t
*evt_mtx_grp_attr
;
2040 lck_mtx_t
*evt_mutex
;
2042 * Install the protosw's for the NKE manager. Invoked at
2043 * extension load time
2046 kern_event_init(void)
2050 if ((retval
= net_add_proto(eventsw
, &systemdomain
)) != 0) {
2051 log(LOG_WARNING
, "Can't install kernel events protocol (%d)\n", retval
);
2056 * allocate lock group attribute and group for kern event
2058 evt_mtx_grp_attr
= lck_grp_attr_alloc_init();
2060 evt_mtx_grp
= lck_grp_alloc_init("eventlist", evt_mtx_grp_attr
);
2063 * allocate the lock attribute for mutexes
2065 evt_mtx_attr
= lck_attr_alloc_init();
2066 evt_mutex
= lck_mtx_alloc_init(evt_mtx_grp
, evt_mtx_attr
);
2067 if (evt_mutex
== NULL
)
2070 return(KERN_SUCCESS
);
2074 kev_attach(struct socket
*so
, __unused
int proto
, __unused
struct proc
*p
)
2077 struct kern_event_pcb
*ev_pcb
;
2079 error
= soreserve(so
, KEV_SNDSPACE
, KEV_RECVSPACE
);
2083 MALLOC(ev_pcb
, struct kern_event_pcb
*, sizeof(struct kern_event_pcb
), M_PCB
, M_WAITOK
);
2087 ev_pcb
->ev_socket
= so
;
2088 ev_pcb
->vendor_code_filter
= 0xffffffff;
2090 so
->so_pcb
= (caddr_t
) ev_pcb
;
2091 lck_mtx_lock(evt_mutex
);
2092 LIST_INSERT_HEAD(&kern_event_head
, ev_pcb
, ev_link
);
2093 lck_mtx_unlock(evt_mutex
);
2100 kev_detach(struct socket
*so
)
2102 struct kern_event_pcb
*ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2105 lck_mtx_lock(evt_mutex
);
2106 LIST_REMOVE(ev_pcb
, ev_link
);
2107 lck_mtx_unlock(evt_mutex
);
2108 FREE(ev_pcb
, M_PCB
);
2110 so
->so_flags
|= SOF_PCBCLEARING
;
2117 * For now, kev_vender_code and mbuf_tags use the same
2120 extern errno_t
mbuf_tag_id_find_internal(const char *string
, u_long
*out_id
,
2123 errno_t
kev_vendor_code_find(
2125 u_long
*out_vender_code
)
2127 if (strlen(string
) >= KEV_VENDOR_CODE_MAX_STR_LEN
) {
2130 return mbuf_tag_id_find_internal(string
, out_vender_code
, 1);
2133 extern void mbuf_tag_id_first_last(u_long
*first
, u_long
*last
);
2135 errno_t
kev_msg_post(struct kev_msg
*event_msg
)
2137 u_long min_vendor
, max_vendor
;
2139 mbuf_tag_id_first_last(&min_vendor
, &max_vendor
);
2141 if (event_msg
== NULL
)
2144 /* Limit third parties to posting events for registered vendor codes only */
2145 if (event_msg
->vendor_code
< min_vendor
||
2146 event_msg
->vendor_code
> max_vendor
)
2151 return kev_post_msg(event_msg
);
2155 int kev_post_msg(struct kev_msg
*event_msg
)
2157 struct mbuf
*m
, *m2
;
2158 struct kern_event_pcb
*ev_pcb
;
2159 struct kern_event_msg
*ev
;
2161 unsigned long total_size
;
2164 /* Verify the message is small enough to fit in one mbuf w/o cluster */
2165 total_size
= KEV_MSG_HEADER_SIZE
;
2167 for (i
= 0; i
< 5; i
++) {
2168 if (event_msg
->dv
[i
].data_length
== 0)
2170 total_size
+= event_msg
->dv
[i
].data_length
;
2173 if (total_size
> MLEN
) {
2177 m
= m_get(M_DONTWAIT
, MT_DATA
);
2181 ev
= mtod(m
, struct kern_event_msg
*);
2182 total_size
= KEV_MSG_HEADER_SIZE
;
2184 tmp
= (char *) &ev
->event_data
[0];
2185 for (i
= 0; i
< 5; i
++) {
2186 if (event_msg
->dv
[i
].data_length
== 0)
2189 total_size
+= event_msg
->dv
[i
].data_length
;
2190 bcopy(event_msg
->dv
[i
].data_ptr
, tmp
,
2191 event_msg
->dv
[i
].data_length
);
2192 tmp
+= event_msg
->dv
[i
].data_length
;
2195 ev
->id
= ++static_event_id
;
2196 ev
->total_size
= total_size
;
2197 ev
->vendor_code
= event_msg
->vendor_code
;
2198 ev
->kev_class
= event_msg
->kev_class
;
2199 ev
->kev_subclass
= event_msg
->kev_subclass
;
2200 ev
->event_code
= event_msg
->event_code
;
2202 m
->m_len
= total_size
;
2203 lck_mtx_lock(evt_mutex
);
2204 for (ev_pcb
= LIST_FIRST(&kern_event_head
);
2206 ev_pcb
= LIST_NEXT(ev_pcb
, ev_link
)) {
2208 if (ev_pcb
->vendor_code_filter
!= KEV_ANY_VENDOR
) {
2209 if (ev_pcb
->vendor_code_filter
!= ev
->vendor_code
)
2212 if (ev_pcb
->class_filter
!= KEV_ANY_CLASS
) {
2213 if (ev_pcb
->class_filter
!= ev
->kev_class
)
2216 if ((ev_pcb
->subclass_filter
!= KEV_ANY_SUBCLASS
) &&
2217 (ev_pcb
->subclass_filter
!= ev
->kev_subclass
))
2222 m2
= m_copym(m
, 0, m
->m_len
, M_NOWAIT
);
2225 lck_mtx_unlock(evt_mutex
);
2228 socket_lock(ev_pcb
->ev_socket
, 1);
2229 if (sbappendrecord(&ev_pcb
->ev_socket
->so_rcv
, m2
))
2230 sorwakeup(ev_pcb
->ev_socket
);
2231 socket_unlock(ev_pcb
->ev_socket
, 1);
2235 lck_mtx_unlock(evt_mutex
);
2240 kev_control(struct socket
*so
,
2243 __unused
struct ifnet
*ifp
,
2244 __unused
struct proc
*p
)
2246 struct kev_request
*kev_req
= (struct kev_request
*) data
;
2247 struct kern_event_pcb
*ev_pcb
;
2248 struct kev_vendor_code
*kev_vendor
;
2249 u_long
*id_value
= (u_long
*) data
;
2255 *id_value
= static_event_id
;
2259 ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2260 ev_pcb
->vendor_code_filter
= kev_req
->vendor_code
;
2261 ev_pcb
->class_filter
= kev_req
->kev_class
;
2262 ev_pcb
->subclass_filter
= kev_req
->kev_subclass
;
2266 ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2267 kev_req
->vendor_code
= ev_pcb
->vendor_code_filter
;
2268 kev_req
->kev_class
= ev_pcb
->class_filter
;
2269 kev_req
->kev_subclass
= ev_pcb
->subclass_filter
;
2272 case SIOCGKEVVENDOR
:
2273 kev_vendor
= (struct kev_vendor_code
*)data
;
2275 /* Make sure string is NULL terminated */
2276 kev_vendor
->vendor_string
[KEV_VENDOR_CODE_MAX_STR_LEN
-1] = 0;
2278 return mbuf_tag_id_find_internal(kev_vendor
->vendor_string
,
2279 &kev_vendor
->vendor_code
, 0);
2291 fill_kqueueinfo(struct kqueue
*kq
, struct kqueue_info
* kinfo
)
2295 /* No need for the funnel as fd is kept alive */
2297 st
= &kinfo
->kq_stat
;
2299 st
->st_size
= kq
->kq_count
;
2300 st
->st_blksize
= sizeof(struct kevent
);
2301 st
->st_mode
= S_IFIFO
;
2302 if (kq
->kq_state
& KQ_SEL
)
2303 kinfo
->kq_state
|= PROC_KQUEUE_SELECT
;
2304 if (kq
->kq_state
& KQ_SLEEP
)
2305 kinfo
->kq_state
|= PROC_KQUEUE_SLEEP
;