]> git.saurik.com Git - apple/xnu.git/blob - osfmk/default_pager/dp_backing_store.c
xnu-2050.48.11.tar.gz
[apple/xnu.git] / osfmk / default_pager / dp_backing_store.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 * Default Pager.
59 * Paging File Management.
60 */
61
62 #include <mach/host_priv.h>
63 #include <mach/memory_object_control.h>
64 #include <mach/memory_object_server.h>
65 #include <mach/upl.h>
66 #include <default_pager/default_pager_internal.h>
67 #include <default_pager/default_pager_alerts.h>
68 #include <default_pager/default_pager_object_server.h>
69
70 #include <ipc/ipc_types.h>
71 #include <ipc/ipc_port.h>
72 #include <ipc/ipc_space.h>
73
74 #include <kern/kern_types.h>
75 #include <kern/host.h>
76 #include <kern/queue.h>
77 #include <kern/counters.h>
78 #include <kern/sched_prim.h>
79
80 #include <vm/vm_kern.h>
81 #include <vm/vm_pageout.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_protos.h>
85
86
87 /* todo - need large internal object support */
88
89 /*
90 * ALLOC_STRIDE... the maximum number of bytes allocated from
91 * a swap file before moving on to the next swap file... if
92 * all swap files reside on a single disk, this value should
93 * be very large (this is the default assumption)... if the
94 * swap files are spread across multiple disks, than this value
95 * should be small (128 * 1024)...
96 *
97 * This should be determined dynamically in the future
98 */
99
100 #define ALLOC_STRIDE (1024 * 1024 * 1024)
101 int physical_transfer_cluster_count = 0;
102
103 #define VM_SUPER_CLUSTER 0x40000
104 #define VM_SUPER_PAGES (VM_SUPER_CLUSTER / PAGE_SIZE)
105
106 /*
107 * 0 means no shift to pages, so == 1 page/cluster. 1 would mean
108 * 2 pages/cluster, 2 means 4 pages/cluster, and so on.
109 */
110 #define VSTRUCT_MIN_CLSHIFT 0
111
112 #define VSTRUCT_DEF_CLSHIFT 2
113 int default_pager_clsize = 0;
114
115 int vstruct_def_clshift = VSTRUCT_DEF_CLSHIFT;
116
117 /* statistics */
118 unsigned int clustered_writes[VM_SUPER_PAGES+1];
119 unsigned int clustered_reads[VM_SUPER_PAGES+1];
120
121 /*
122 * Globals used for asynchronous paging operations:
123 * vs_async_list: head of list of to-be-completed I/O ops
124 * async_num_queued: number of pages completed, but not yet
125 * processed by async thread.
126 * async_requests_out: number of pages of requests not completed.
127 */
128
129 #if 0
130 struct vs_async *vs_async_list;
131 int async_num_queued;
132 int async_requests_out;
133 #endif
134
135
136 #define VS_ASYNC_REUSE 1
137 struct vs_async *vs_async_free_list;
138
139 lck_mtx_t default_pager_async_lock; /* Protects globals above */
140
141
142 int vs_alloc_async_failed = 0; /* statistics */
143 int vs_alloc_async_count = 0; /* statistics */
144 struct vs_async *vs_alloc_async(void); /* forward */
145 void vs_free_async(struct vs_async *vsa); /* forward */
146
147
148 #define VS_ALLOC_ASYNC() vs_alloc_async()
149 #define VS_FREE_ASYNC(vsa) vs_free_async(vsa)
150
151 #define VS_ASYNC_LOCK() lck_mtx_lock(&default_pager_async_lock)
152 #define VS_ASYNC_UNLOCK() lck_mtx_unlock(&default_pager_async_lock)
153 #define VS_ASYNC_LOCK_INIT() lck_mtx_init(&default_pager_async_lock, &default_pager_lck_grp, &default_pager_lck_attr)
154 #define VS_ASYNC_LOCK_DESTROY() lck_mtx_destroy(&default_pager_async_lock, &default_pager_lck_grp)
155 #define VS_ASYNC_LOCK_ADDR() (&default_pager_async_lock)
156 /*
157 * Paging Space Hysteresis triggers and the target notification port
158 *
159 */
160 unsigned int dp_pages_free_drift_count = 0;
161 unsigned int dp_pages_free_drifted_max = 0;
162 unsigned int minimum_pages_remaining = 0;
163 unsigned int maximum_pages_free = 0;
164 ipc_port_t min_pages_trigger_port = NULL;
165 ipc_port_t max_pages_trigger_port = NULL;
166
167 #if CONFIG_FREEZE
168 boolean_t use_emergency_swap_file_first = TRUE;
169 #else
170 boolean_t use_emergency_swap_file_first = FALSE;
171 #endif
172 boolean_t bs_low = FALSE;
173 int backing_store_release_trigger_disable = 0;
174 boolean_t backing_store_stop_compaction = FALSE;
175 boolean_t backing_store_abort_compaction = FALSE;
176
177 /* Have we decided if swap needs to be encrypted yet ? */
178 boolean_t dp_encryption_inited = FALSE;
179 /* Should we encrypt swap ? */
180 boolean_t dp_encryption = FALSE;
181
182 boolean_t dp_isssd = FALSE;
183
184 /*
185 * Object sizes are rounded up to the next power of 2,
186 * unless they are bigger than a given maximum size.
187 */
188 vm_size_t max_doubled_size = 4 * 1024 * 1024; /* 4 meg */
189
190 /*
191 * List of all backing store and segments.
192 */
193 MACH_PORT_FACE emergency_segment_backing_store;
194 struct backing_store_list_head backing_store_list;
195 paging_segment_t paging_segments[MAX_NUM_PAGING_SEGMENTS];
196 lck_mtx_t paging_segments_lock;
197 int paging_segment_max = 0;
198 int paging_segment_count = 0;
199 int ps_select_array[BS_MAXPRI+1] = { -1,-1,-1,-1,-1 };
200
201
202 /*
203 * Total pages free in system
204 * This differs from clusters committed/avail which is a measure of the
205 * over commitment of paging segments to backing store. An idea which is
206 * likely to be deprecated.
207 */
208 unsigned int dp_pages_free = 0;
209 unsigned int dp_pages_reserve = 0;
210 unsigned int cluster_transfer_minimum = 100;
211
212 /*
213 * Trim state
214 */
215 struct ps_vnode_trim_data {
216 struct vnode *vp;
217 dp_offset_t offset;
218 dp_size_t length;
219 };
220
221 /* forward declarations */
222 kern_return_t ps_write_file(paging_segment_t, upl_t, upl_offset_t, dp_offset_t, unsigned int, int); /* forward */
223 kern_return_t ps_read_file (paging_segment_t, upl_t, upl_offset_t, dp_offset_t, unsigned int, unsigned int *, int); /* forward */
224 default_pager_thread_t *get_read_buffer( void );
225 kern_return_t ps_vstruct_transfer_from_segment(
226 vstruct_t vs,
227 paging_segment_t segment,
228 upl_t upl);
229 kern_return_t ps_read_device(paging_segment_t, dp_offset_t, vm_offset_t *, unsigned int, unsigned int *, int); /* forward */
230 kern_return_t ps_write_device(paging_segment_t, dp_offset_t, vm_offset_t, unsigned int, struct vs_async *); /* forward */
231 kern_return_t vs_cluster_transfer(
232 vstruct_t vs,
233 dp_offset_t offset,
234 dp_size_t cnt,
235 upl_t upl);
236 vs_map_t vs_get_map_entry(
237 vstruct_t vs,
238 dp_offset_t offset);
239
240 kern_return_t
241 default_pager_backing_store_delete_internal( MACH_PORT_FACE );
242
243 static inline void ps_vnode_trim_init(struct ps_vnode_trim_data *data);
244 static inline void ps_vnode_trim_now(struct ps_vnode_trim_data *data);
245 static inline void ps_vnode_trim_more(struct ps_vnode_trim_data *data, struct vs_map *map, unsigned int shift, dp_size_t length);
246
247 default_pager_thread_t *
248 get_read_buffer( void )
249 {
250 int i;
251
252 DPT_LOCK(dpt_lock);
253 while(TRUE) {
254 for (i=0; i<default_pager_internal_count; i++) {
255 if(dpt_array[i]->checked_out == FALSE) {
256 dpt_array[i]->checked_out = TRUE;
257 DPT_UNLOCK(dpt_lock);
258 return dpt_array[i];
259 }
260 }
261 DPT_SLEEP(dpt_lock, &dpt_array, THREAD_UNINT);
262 }
263 }
264
265 void
266 bs_initialize(void)
267 {
268 int i;
269
270 /*
271 * List of all backing store.
272 */
273 BSL_LOCK_INIT();
274 queue_init(&backing_store_list.bsl_queue);
275 PSL_LOCK_INIT();
276
277 VS_ASYNC_LOCK_INIT();
278 #if VS_ASYNC_REUSE
279 vs_async_free_list = NULL;
280 #endif /* VS_ASYNC_REUSE */
281
282 for (i = 0; i < VM_SUPER_PAGES + 1; i++) {
283 clustered_writes[i] = 0;
284 clustered_reads[i] = 0;
285 }
286
287 }
288
289 /*
290 * When things do not quite workout...
291 */
292 void bs_no_paging_space(boolean_t); /* forward */
293
294 void
295 bs_no_paging_space(
296 boolean_t out_of_memory)
297 {
298
299 if (out_of_memory)
300 dprintf(("*** OUT OF MEMORY ***\n"));
301 panic("bs_no_paging_space: NOT ENOUGH PAGING SPACE");
302 }
303
304 void bs_more_space(int); /* forward */
305 void bs_commit(int); /* forward */
306
307 boolean_t user_warned = FALSE;
308 unsigned int clusters_committed = 0;
309 unsigned int clusters_available = 0;
310 unsigned int clusters_committed_peak = 0;
311
312 void
313 bs_more_space(
314 int nclusters)
315 {
316 BSL_LOCK();
317 /*
318 * Account for new paging space.
319 */
320 clusters_available += nclusters;
321
322 if (clusters_available >= clusters_committed) {
323 if (verbose && user_warned) {
324 printf("%s%s - %d excess clusters now.\n",
325 my_name,
326 "paging space is OK now",
327 clusters_available - clusters_committed);
328 user_warned = FALSE;
329 clusters_committed_peak = 0;
330 }
331 } else {
332 if (verbose && user_warned) {
333 printf("%s%s - still short of %d clusters.\n",
334 my_name,
335 "WARNING: paging space over-committed",
336 clusters_committed - clusters_available);
337 clusters_committed_peak -= nclusters;
338 }
339 }
340 BSL_UNLOCK();
341
342 return;
343 }
344
345 void
346 bs_commit(
347 int nclusters)
348 {
349 BSL_LOCK();
350 clusters_committed += nclusters;
351 if (clusters_committed > clusters_available) {
352 if (verbose && !user_warned) {
353 user_warned = TRUE;
354 printf("%s%s - short of %d clusters.\n",
355 my_name,
356 "WARNING: paging space over-committed",
357 clusters_committed - clusters_available);
358 }
359 if (clusters_committed > clusters_committed_peak) {
360 clusters_committed_peak = clusters_committed;
361 }
362 } else {
363 if (verbose && user_warned) {
364 printf("%s%s - was short of up to %d clusters.\n",
365 my_name,
366 "paging space is OK now",
367 clusters_committed_peak - clusters_available);
368 user_warned = FALSE;
369 clusters_committed_peak = 0;
370 }
371 }
372 BSL_UNLOCK();
373
374 return;
375 }
376
377 int default_pager_info_verbose = 1;
378
379 void
380 bs_global_info(
381 uint64_t *totalp,
382 uint64_t *freep)
383 {
384 uint64_t pages_total, pages_free;
385 paging_segment_t ps;
386 int i;
387
388 PSL_LOCK();
389 pages_total = pages_free = 0;
390 for (i = 0; i <= paging_segment_max; i++) {
391 ps = paging_segments[i];
392 if (ps == PAGING_SEGMENT_NULL)
393 continue;
394
395 /*
396 * no need to lock: by the time this data
397 * gets back to any remote requestor it
398 * will be obsolete anyways
399 */
400 pages_total += ps->ps_pgnum;
401 pages_free += ps->ps_clcount << ps->ps_clshift;
402 DP_DEBUG(DEBUG_BS_INTERNAL,
403 ("segment #%d: %d total, %d free\n",
404 i, ps->ps_pgnum, ps->ps_clcount << ps->ps_clshift));
405 }
406 *totalp = pages_total;
407 *freep = pages_free;
408 if (verbose && user_warned && default_pager_info_verbose) {
409 if (clusters_available < clusters_committed) {
410 printf("%s %d clusters committed, %d available.\n",
411 my_name,
412 clusters_committed,
413 clusters_available);
414 }
415 }
416 PSL_UNLOCK();
417 }
418
419 backing_store_t backing_store_alloc(void); /* forward */
420
421 backing_store_t
422 backing_store_alloc(void)
423 {
424 backing_store_t bs;
425
426 bs = (backing_store_t) kalloc(sizeof (struct backing_store));
427 if (bs == BACKING_STORE_NULL)
428 panic("backing_store_alloc: no memory");
429
430 BS_LOCK_INIT(bs);
431 bs->bs_port = MACH_PORT_NULL;
432 bs->bs_priority = 0;
433 bs->bs_clsize = 0;
434 bs->bs_pages_total = 0;
435 bs->bs_pages_in = 0;
436 bs->bs_pages_in_fail = 0;
437 bs->bs_pages_out = 0;
438 bs->bs_pages_out_fail = 0;
439
440 return bs;
441 }
442
443 backing_store_t backing_store_lookup(MACH_PORT_FACE); /* forward */
444
445 /* Even in both the component space and external versions of this pager, */
446 /* backing_store_lookup will be called from tasks in the application space */
447 backing_store_t
448 backing_store_lookup(
449 MACH_PORT_FACE port)
450 {
451 backing_store_t bs;
452
453 /*
454 port is currently backed with a vs structure in the alias field
455 we could create an ISBS alias and a port_is_bs call but frankly
456 I see no reason for the test, the bs->port == port check below
457 will work properly on junk entries.
458
459 if ((port == MACH_PORT_NULL) || port_is_vs(port))
460 */
461 if (port == MACH_PORT_NULL)
462 return BACKING_STORE_NULL;
463
464 BSL_LOCK();
465 queue_iterate(&backing_store_list.bsl_queue, bs, backing_store_t,
466 bs_links) {
467 BS_LOCK(bs);
468 if (bs->bs_port == port) {
469 BSL_UNLOCK();
470 /* Success, return it locked. */
471 return bs;
472 }
473 BS_UNLOCK(bs);
474 }
475 BSL_UNLOCK();
476 return BACKING_STORE_NULL;
477 }
478
479 void backing_store_add(backing_store_t); /* forward */
480
481 void
482 backing_store_add(
483 __unused backing_store_t bs)
484 {
485 // MACH_PORT_FACE port = bs->bs_port;
486 // MACH_PORT_FACE pset = default_pager_default_set;
487 kern_return_t kr = KERN_SUCCESS;
488
489 if (kr != KERN_SUCCESS)
490 panic("backing_store_add: add to set");
491
492 }
493
494 /*
495 * Set up default page shift, but only if not already
496 * set and argument is within range.
497 */
498 boolean_t
499 bs_set_default_clsize(unsigned int npages)
500 {
501 switch(npages){
502 case 1:
503 case 2:
504 case 4:
505 case 8:
506 if (default_pager_clsize == 0) /* if not yet set */
507 vstruct_def_clshift = local_log2(npages);
508 return(TRUE);
509 }
510 return(FALSE);
511 }
512
513 int bs_get_global_clsize(int clsize); /* forward */
514
515 int
516 bs_get_global_clsize(
517 int clsize)
518 {
519 int i;
520 memory_object_default_t dmm;
521 kern_return_t kr;
522
523 /*
524 * Only allow setting of cluster size once. If called
525 * with no cluster size (default), we use the compiled-in default
526 * for the duration. The same cluster size is used for all
527 * paging segments.
528 */
529 if (default_pager_clsize == 0) {
530 /*
531 * Keep cluster size in bit shift because it's quicker
532 * arithmetic, and easier to keep at a power of 2.
533 */
534 if (clsize != NO_CLSIZE) {
535 for (i = 0; (1 << i) < clsize; i++);
536 if (i > MAX_CLUSTER_SHIFT)
537 i = MAX_CLUSTER_SHIFT;
538 vstruct_def_clshift = i;
539 }
540 default_pager_clsize = (1 << vstruct_def_clshift);
541
542 /*
543 * Let the user know the new (and definitive) cluster size.
544 */
545 if (verbose)
546 printf("%scluster size = %d page%s\n",
547 my_name, default_pager_clsize,
548 (default_pager_clsize == 1) ? "" : "s");
549
550 /*
551 * Let the kernel know too, in case it hasn't used the
552 * default value provided in main() yet.
553 */
554 dmm = default_pager_object;
555 clsize = default_pager_clsize * vm_page_size; /* in bytes */
556 kr = host_default_memory_manager(host_priv_self(),
557 &dmm,
558 clsize);
559 memory_object_default_deallocate(dmm);
560
561 if (kr != KERN_SUCCESS) {
562 panic("bs_get_global_cl_size:host_default_memory_manager");
563 }
564 if (dmm != default_pager_object) {
565 panic("bs_get_global_cl_size:there is another default pager");
566 }
567 }
568 ASSERT(default_pager_clsize > 0 &&
569 (default_pager_clsize & (default_pager_clsize - 1)) == 0);
570
571 return default_pager_clsize;
572 }
573
574 kern_return_t
575 default_pager_backing_store_create(
576 memory_object_default_t pager,
577 int priority,
578 int clsize, /* in bytes */
579 MACH_PORT_FACE *backing_store)
580 {
581 backing_store_t bs;
582 MACH_PORT_FACE port;
583 // kern_return_t kr;
584 struct vstruct_alias *alias_struct;
585
586 if (pager != default_pager_object)
587 return KERN_INVALID_ARGUMENT;
588
589 bs = backing_store_alloc();
590 port = ipc_port_alloc_kernel();
591 ipc_port_make_send(port);
592 assert (port != IP_NULL);
593
594 DP_DEBUG(DEBUG_BS_EXTERNAL,
595 ("priority=%d clsize=%d bs_port=0x%x\n",
596 priority, clsize, (int) backing_store));
597
598 alias_struct = (struct vstruct_alias *)
599 kalloc(sizeof (struct vstruct_alias));
600 if(alias_struct != NULL) {
601 alias_struct->vs = (struct vstruct *)bs;
602 alias_struct->name = &default_pager_ops;
603 port->alias = (uintptr_t) alias_struct;
604 }
605 else {
606 ipc_port_dealloc_kernel((MACH_PORT_FACE)(port));
607
608 BS_LOCK_DESTROY(bs);
609 kfree(bs, sizeof (struct backing_store));
610
611 return KERN_RESOURCE_SHORTAGE;
612 }
613
614 bs->bs_port = port;
615 if (priority == DEFAULT_PAGER_BACKING_STORE_MAXPRI)
616 priority = BS_MAXPRI;
617 else if (priority == BS_NOPRI)
618 priority = BS_MAXPRI;
619 else
620 priority = BS_MINPRI;
621 bs->bs_priority = priority;
622
623 bs->bs_clsize = bs_get_global_clsize(atop_32(clsize));
624
625 BSL_LOCK();
626 queue_enter(&backing_store_list.bsl_queue, bs, backing_store_t,
627 bs_links);
628 BSL_UNLOCK();
629
630 backing_store_add(bs);
631
632 *backing_store = port;
633 return KERN_SUCCESS;
634 }
635
636 kern_return_t
637 default_pager_backing_store_info(
638 MACH_PORT_FACE backing_store,
639 backing_store_flavor_t flavour,
640 backing_store_info_t info,
641 mach_msg_type_number_t *size)
642 {
643 backing_store_t bs;
644 backing_store_basic_info_t basic;
645 int i;
646 paging_segment_t ps;
647
648 if (flavour != BACKING_STORE_BASIC_INFO ||
649 *size < BACKING_STORE_BASIC_INFO_COUNT)
650 return KERN_INVALID_ARGUMENT;
651
652 basic = (backing_store_basic_info_t)info;
653 *size = BACKING_STORE_BASIC_INFO_COUNT;
654
655 VSTATS_LOCK(&global_stats.gs_lock);
656 basic->pageout_calls = global_stats.gs_pageout_calls;
657 basic->pagein_calls = global_stats.gs_pagein_calls;
658 basic->pages_in = global_stats.gs_pages_in;
659 basic->pages_out = global_stats.gs_pages_out;
660 basic->pages_unavail = global_stats.gs_pages_unavail;
661 basic->pages_init = global_stats.gs_pages_init;
662 basic->pages_init_writes= global_stats.gs_pages_init_writes;
663 VSTATS_UNLOCK(&global_stats.gs_lock);
664
665 if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL)
666 return KERN_INVALID_ARGUMENT;
667
668 basic->bs_pages_total = bs->bs_pages_total;
669 PSL_LOCK();
670 bs->bs_pages_free = 0;
671 for (i = 0; i <= paging_segment_max; i++) {
672 ps = paging_segments[i];
673 if (ps != PAGING_SEGMENT_NULL && ps->ps_bs == bs) {
674 PS_LOCK(ps);
675 bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift;
676 PS_UNLOCK(ps);
677 }
678 }
679 PSL_UNLOCK();
680 basic->bs_pages_free = bs->bs_pages_free;
681 basic->bs_pages_in = bs->bs_pages_in;
682 basic->bs_pages_in_fail = bs->bs_pages_in_fail;
683 basic->bs_pages_out = bs->bs_pages_out;
684 basic->bs_pages_out_fail= bs->bs_pages_out_fail;
685
686 basic->bs_priority = bs->bs_priority;
687 basic->bs_clsize = ptoa_32(bs->bs_clsize); /* in bytes */
688
689 BS_UNLOCK(bs);
690
691 return KERN_SUCCESS;
692 }
693
694 int ps_delete(paging_segment_t); /* forward */
695 boolean_t current_thread_aborted(void);
696
697 int
698 ps_delete(
699 paging_segment_t ps)
700 {
701 vstruct_t vs;
702 kern_return_t error = KERN_SUCCESS;
703 int vs_count;
704
705 VSL_LOCK(); /* get the lock on the list of vs's */
706
707 /* The lock relationship and sequence is farily complicated */
708 /* this code looks at a live list, locking and unlocking the list */
709 /* as it traverses it. It depends on the locking behavior of */
710 /* default_pager_no_senders. no_senders always locks the vstruct */
711 /* targeted for removal before locking the vstruct list. However */
712 /* it will remove that member of the list without locking its */
713 /* neighbors. We can be sure when we hold a lock on a vstruct */
714 /* it cannot be removed from the list but we must hold the list */
715 /* lock to be sure that its pointers to its neighbors are valid. */
716 /* Also, we can hold off destruction of a vstruct when the list */
717 /* lock and the vs locks are not being held by bumping the */
718 /* vs_async_pending count. */
719
720
721 while(backing_store_release_trigger_disable != 0) {
722 VSL_SLEEP(&backing_store_release_trigger_disable, THREAD_UNINT);
723 }
724
725 /* we will choose instead to hold a send right */
726 vs_count = vstruct_list.vsl_count;
727 vs = (vstruct_t) queue_first((queue_entry_t)&(vstruct_list.vsl_queue));
728 if(vs == (vstruct_t)&vstruct_list) {
729 VSL_UNLOCK();
730 return KERN_SUCCESS;
731 }
732 VS_LOCK(vs);
733 vs_async_wait(vs); /* wait for any pending async writes */
734 if ((vs_count != 0) && (vs != NULL))
735 vs->vs_async_pending += 1; /* hold parties calling */
736 /* vs_async_wait */
737
738 if (bs_low == FALSE)
739 backing_store_abort_compaction = FALSE;
740
741 VS_UNLOCK(vs);
742 VSL_UNLOCK();
743 while((vs_count != 0) && (vs != NULL)) {
744 /* We take the count of AMO's before beginning the */
745 /* transfer of of the target segment. */
746 /* We are guaranteed that the target segment cannot get */
747 /* more users. We also know that queue entries are */
748 /* made at the back of the list. If some of the entries */
749 /* we would check disappear while we are traversing the */
750 /* list then we will either check new entries which */
751 /* do not have any backing store in the target segment */
752 /* or re-check old entries. This might not be optimal */
753 /* but it will always be correct. The alternative is to */
754 /* take a snapshot of the list. */
755 vstruct_t next_vs;
756
757 if(dp_pages_free < cluster_transfer_minimum)
758 error = KERN_FAILURE;
759 else {
760 vm_object_t transfer_object;
761 unsigned int count;
762 upl_t upl;
763 int upl_flags;
764
765 transfer_object = vm_object_allocate((vm_object_size_t)VM_SUPER_CLUSTER);
766 count = 0;
767 upl_flags = (UPL_NO_SYNC | UPL_CLEAN_IN_PLACE |
768 UPL_SET_LITE | UPL_SET_INTERNAL);
769 if (dp_encryption) {
770 /* mark the pages as "encrypted" when they come in */
771 upl_flags |= UPL_ENCRYPT;
772 }
773 error = vm_object_upl_request(transfer_object,
774 (vm_object_offset_t)0, VM_SUPER_CLUSTER,
775 &upl, NULL, &count, upl_flags);
776
777 if(error == KERN_SUCCESS) {
778 error = ps_vstruct_transfer_from_segment(
779 vs, ps, upl);
780 upl_commit(upl, NULL, 0);
781 upl_deallocate(upl);
782 } else {
783 error = KERN_FAILURE;
784 }
785 vm_object_deallocate(transfer_object);
786 }
787 if(error || current_thread_aborted()) {
788 VS_LOCK(vs);
789 vs->vs_async_pending -= 1; /* release vs_async_wait */
790 if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
791 vs->vs_waiting_async = FALSE;
792 VS_UNLOCK(vs);
793 thread_wakeup(&vs->vs_async_pending);
794 } else {
795 VS_UNLOCK(vs);
796 }
797 return KERN_FAILURE;
798 }
799
800 VSL_LOCK();
801
802 while(backing_store_release_trigger_disable != 0) {
803 VSL_SLEEP(&backing_store_release_trigger_disable,
804 THREAD_UNINT);
805 }
806
807 next_vs = (vstruct_t) queue_next(&(vs->vs_links));
808 if((next_vs != (vstruct_t)&vstruct_list) &&
809 (vs != next_vs) && (vs_count != 1)) {
810 VS_LOCK(next_vs);
811 vs_async_wait(next_vs); /* wait for any */
812 /* pending async writes */
813 next_vs->vs_async_pending += 1; /* hold parties */
814 /* calling vs_async_wait */
815 VS_UNLOCK(next_vs);
816 }
817 VSL_UNLOCK();
818 VS_LOCK(vs);
819 vs->vs_async_pending -= 1;
820 if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
821 vs->vs_waiting_async = FALSE;
822 VS_UNLOCK(vs);
823 thread_wakeup(&vs->vs_async_pending);
824 } else {
825 VS_UNLOCK(vs);
826 }
827 if((vs == next_vs) || (next_vs == (vstruct_t)&vstruct_list))
828 vs = NULL;
829 else
830 vs = next_vs;
831 vs_count--;
832 }
833 return KERN_SUCCESS;
834 }
835
836
837 kern_return_t
838 default_pager_backing_store_delete_internal(
839 MACH_PORT_FACE backing_store)
840 {
841 backing_store_t bs;
842 int i;
843 paging_segment_t ps;
844 int error;
845 int interim_pages_removed = 0;
846 boolean_t dealing_with_emergency_segment = ( backing_store == emergency_segment_backing_store );
847
848 if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL)
849 return KERN_INVALID_ARGUMENT;
850
851 restart:
852 PSL_LOCK();
853 error = KERN_SUCCESS;
854 for (i = 0; i <= paging_segment_max; i++) {
855 ps = paging_segments[i];
856 if (ps != PAGING_SEGMENT_NULL &&
857 ps->ps_bs == bs &&
858 ! IS_PS_GOING_AWAY(ps)) {
859 PS_LOCK(ps);
860
861 if( IS_PS_GOING_AWAY(ps) || !IS_PS_OK_TO_USE(ps)) {
862 /*
863 * Someone is already busy reclamining this paging segment.
864 * If it's the emergency segment we are looking at then check
865 * that someone has not already recovered it and set the right
866 * state i.e. online but not activated.
867 */
868 PS_UNLOCK(ps);
869 continue;
870 }
871
872 /* disable access to this segment */
873 ps->ps_state &= ~PS_CAN_USE;
874 ps->ps_state |= PS_GOING_AWAY;
875 PS_UNLOCK(ps);
876 /*
877 * The "ps" segment is "off-line" now,
878 * we can try and delete it...
879 */
880 if(dp_pages_free < (cluster_transfer_minimum
881 + ps->ps_pgcount)) {
882 error = KERN_FAILURE;
883 PSL_UNLOCK();
884 }
885 else {
886 /* remove all pages associated with the */
887 /* segment from the list of free pages */
888 /* when transfer is through, all target */
889 /* segment pages will appear to be free */
890
891 dp_pages_free -= ps->ps_pgcount;
892 interim_pages_removed += ps->ps_pgcount;
893 PSL_UNLOCK();
894 error = ps_delete(ps);
895 }
896 if (error != KERN_SUCCESS) {
897 /*
898 * We couldn't delete the segment,
899 * probably because there's not enough
900 * virtual memory left.
901 * Re-enable all the segments.
902 */
903 PSL_LOCK();
904 break;
905 }
906 goto restart;
907 }
908 }
909
910 if (error != KERN_SUCCESS) {
911 for (i = 0; i <= paging_segment_max; i++) {
912 ps = paging_segments[i];
913 if (ps != PAGING_SEGMENT_NULL &&
914 ps->ps_bs == bs &&
915 IS_PS_GOING_AWAY(ps)) {
916 PS_LOCK(ps);
917
918 if( !IS_PS_GOING_AWAY(ps)) {
919 PS_UNLOCK(ps);
920 continue;
921 }
922 /* Handle the special clusters that came in while we let go the lock*/
923 if( ps->ps_special_clusters) {
924 dp_pages_free += ps->ps_special_clusters << ps->ps_clshift;
925 ps->ps_pgcount += ps->ps_special_clusters << ps->ps_clshift;
926 ps->ps_clcount += ps->ps_special_clusters;
927 if ( ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI) {
928 ps_select_array[ps->ps_bs->bs_priority] = 0;
929 }
930 ps->ps_special_clusters = 0;
931 }
932 /* re-enable access to this segment */
933 ps->ps_state &= ~PS_GOING_AWAY;
934 ps->ps_state |= PS_CAN_USE;
935 PS_UNLOCK(ps);
936 }
937 }
938 dp_pages_free += interim_pages_removed;
939 PSL_UNLOCK();
940 BS_UNLOCK(bs);
941 return error;
942 }
943
944 for (i = 0; i <= paging_segment_max; i++) {
945 ps = paging_segments[i];
946 if (ps != PAGING_SEGMENT_NULL &&
947 ps->ps_bs == bs) {
948 if(IS_PS_GOING_AWAY(ps)) {
949 if(IS_PS_EMERGENCY_SEGMENT(ps)) {
950 PS_LOCK(ps);
951 ps->ps_state &= ~PS_GOING_AWAY;
952 ps->ps_special_clusters = 0;
953 ps->ps_pgcount = ps->ps_pgnum;
954 ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift;
955 dp_pages_reserve += ps->ps_pgcount;
956 PS_UNLOCK(ps);
957 } else {
958 paging_segments[i] = PAGING_SEGMENT_NULL;
959 paging_segment_count--;
960 PS_LOCK(ps);
961 kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls));
962 kfree(ps, sizeof *ps);
963 }
964 }
965 }
966 }
967
968 /* Scan the entire ps array separately to make certain we find the */
969 /* proper paging_segment_max */
970 for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) {
971 if(paging_segments[i] != PAGING_SEGMENT_NULL)
972 paging_segment_max = i;
973 }
974
975 PSL_UNLOCK();
976
977 if( dealing_with_emergency_segment ) {
978 BS_UNLOCK(bs);
979 return KERN_SUCCESS;
980 }
981
982 /*
983 * All the segments have been deleted.
984 * We can remove the backing store.
985 */
986
987 /*
988 * Disable lookups of this backing store.
989 */
990 if((void *)bs->bs_port->alias != NULL)
991 kfree((void *) bs->bs_port->alias,
992 sizeof (struct vstruct_alias));
993 ipc_port_dealloc_kernel((ipc_port_t) (bs->bs_port));
994 bs->bs_port = MACH_PORT_NULL;
995 BS_UNLOCK(bs);
996
997 /*
998 * Remove backing store from backing_store list.
999 */
1000 BSL_LOCK();
1001 queue_remove(&backing_store_list.bsl_queue, bs, backing_store_t,
1002 bs_links);
1003 BSL_UNLOCK();
1004
1005 /*
1006 * Free the backing store structure.
1007 */
1008 BS_LOCK_DESTROY(bs);
1009 kfree(bs, sizeof *bs);
1010
1011 return KERN_SUCCESS;
1012 }
1013
1014 kern_return_t
1015 default_pager_backing_store_delete(
1016 MACH_PORT_FACE backing_store)
1017 {
1018 if( backing_store != emergency_segment_backing_store ) {
1019 default_pager_backing_store_delete_internal(emergency_segment_backing_store);
1020 }
1021 return(default_pager_backing_store_delete_internal(backing_store));
1022 }
1023
1024 int ps_enter(paging_segment_t); /* forward */
1025
1026 int
1027 ps_enter(
1028 paging_segment_t ps)
1029 {
1030 int i;
1031
1032 PSL_LOCK();
1033
1034 for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) {
1035 if (paging_segments[i] == PAGING_SEGMENT_NULL)
1036 break;
1037 }
1038
1039 if (i < MAX_NUM_PAGING_SEGMENTS) {
1040 paging_segments[i] = ps;
1041 if (i > paging_segment_max)
1042 paging_segment_max = i;
1043 paging_segment_count++;
1044 if ((ps_select_array[ps->ps_bs->bs_priority] == BS_NOPRI) ||
1045 (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI))
1046 ps_select_array[ps->ps_bs->bs_priority] = 0;
1047 i = 0;
1048 } else {
1049 PSL_UNLOCK();
1050 return KERN_RESOURCE_SHORTAGE;
1051 }
1052
1053 PSL_UNLOCK();
1054 return i;
1055 }
1056
1057 #ifdef DEVICE_PAGING
1058 kern_return_t
1059 default_pager_add_segment(
1060 MACH_PORT_FACE backing_store,
1061 MACH_PORT_FACE device,
1062 recnum_t offset,
1063 recnum_t count,
1064 int record_size)
1065 {
1066 backing_store_t bs;
1067 paging_segment_t ps;
1068 int i;
1069 int error;
1070
1071 if ((bs = backing_store_lookup(backing_store))
1072 == BACKING_STORE_NULL)
1073 return KERN_INVALID_ARGUMENT;
1074
1075 PSL_LOCK();
1076 for (i = 0; i <= paging_segment_max; i++) {
1077 ps = paging_segments[i];
1078 if (ps == PAGING_SEGMENT_NULL)
1079 continue;
1080
1081 /*
1082 * Check for overlap on same device.
1083 */
1084 if (!(ps->ps_device != device
1085 || offset >= ps->ps_offset + ps->ps_recnum
1086 || offset + count <= ps->ps_offset)) {
1087 PSL_UNLOCK();
1088 BS_UNLOCK(bs);
1089 return KERN_INVALID_ARGUMENT;
1090 }
1091 }
1092 PSL_UNLOCK();
1093
1094 /*
1095 * Set up the paging segment
1096 */
1097 ps = (paging_segment_t) kalloc(sizeof (struct paging_segment));
1098 if (ps == PAGING_SEGMENT_NULL) {
1099 BS_UNLOCK(bs);
1100 return KERN_RESOURCE_SHORTAGE;
1101 }
1102
1103 ps->ps_segtype = PS_PARTITION;
1104 ps->ps_device = device;
1105 ps->ps_offset = offset;
1106 ps->ps_record_shift = local_log2(vm_page_size / record_size);
1107 ps->ps_recnum = count;
1108 ps->ps_pgnum = count >> ps->ps_record_shift;
1109
1110 ps->ps_pgcount = ps->ps_pgnum;
1111 ps->ps_clshift = local_log2(bs->bs_clsize);
1112 ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift;
1113 ps->ps_hint = 0;
1114
1115 PS_LOCK_INIT(ps);
1116 ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls));
1117 if (!ps->ps_bmap) {
1118 PS_LOCK_DESTROY(ps);
1119 kfree(ps, sizeof *ps);
1120 BS_UNLOCK(bs);
1121 return KERN_RESOURCE_SHORTAGE;
1122 }
1123 for (i = 0; i < ps->ps_ncls; i++) {
1124 clrbit(ps->ps_bmap, i);
1125 }
1126
1127 if(paging_segment_count == 0) {
1128 ps->ps_state = PS_EMERGENCY_SEGMENT;
1129 if(use_emergency_swap_file_first) {
1130 ps->ps_state |= PS_CAN_USE;
1131 }
1132 } else {
1133 ps->ps_state = PS_CAN_USE;
1134 }
1135
1136 ps->ps_bs = bs;
1137
1138 if ((error = ps_enter(ps)) != 0) {
1139 kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls));
1140
1141 PS_LOCK_DESTROY(ps);
1142 kfree(ps, sizeof *ps);
1143 BS_UNLOCK(bs);
1144 return KERN_RESOURCE_SHORTAGE;
1145 }
1146
1147 bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift;
1148 bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift;
1149 BS_UNLOCK(bs);
1150
1151 PSL_LOCK();
1152 if(IS_PS_OK_TO_USE(ps)) {
1153 dp_pages_free += ps->ps_pgcount;
1154 } else {
1155 dp_pages_reserve += ps->ps_pgcount;
1156 }
1157 PSL_UNLOCK();
1158
1159 bs_more_space(ps->ps_clcount);
1160
1161 DP_DEBUG(DEBUG_BS_INTERNAL,
1162 ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n",
1163 device, offset, count, record_size,
1164 ps->ps_record_shift, ps->ps_pgnum));
1165
1166 return KERN_SUCCESS;
1167 }
1168
1169 boolean_t
1170 bs_add_device(
1171 char *dev_name,
1172 MACH_PORT_FACE master)
1173 {
1174 security_token_t null_security_token = {
1175 { 0, 0 }
1176 };
1177 MACH_PORT_FACE device;
1178 int info[DEV_GET_SIZE_COUNT];
1179 mach_msg_type_number_t info_count;
1180 MACH_PORT_FACE bs = MACH_PORT_NULL;
1181 unsigned int rec_size;
1182 recnum_t count;
1183 int clsize;
1184 MACH_PORT_FACE reply_port;
1185
1186 if (ds_device_open_sync(master, MACH_PORT_NULL, D_READ | D_WRITE,
1187 null_security_token, dev_name, &device))
1188 return FALSE;
1189
1190 info_count = DEV_GET_SIZE_COUNT;
1191 if (!ds_device_get_status(device, DEV_GET_SIZE, info, &info_count)) {
1192 rec_size = info[DEV_GET_SIZE_RECORD_SIZE];
1193 count = info[DEV_GET_SIZE_DEVICE_SIZE] / rec_size;
1194 clsize = bs_get_global_clsize(0);
1195 if (!default_pager_backing_store_create(
1196 default_pager_object,
1197 DEFAULT_PAGER_BACKING_STORE_MAXPRI,
1198 (clsize * vm_page_size),
1199 &bs)) {
1200 if (!default_pager_add_segment(bs, device,
1201 0, count, rec_size)) {
1202 return TRUE;
1203 }
1204 ipc_port_release_receive(bs);
1205 }
1206 }
1207
1208 ipc_port_release_send(device);
1209 return FALSE;
1210 }
1211 #endif /* DEVICE_PAGING */
1212
1213 #if VS_ASYNC_REUSE
1214
1215 struct vs_async *
1216 vs_alloc_async(void)
1217 {
1218 struct vs_async *vsa;
1219 MACH_PORT_FACE reply_port;
1220 // kern_return_t kr;
1221
1222 VS_ASYNC_LOCK();
1223 if (vs_async_free_list == NULL) {
1224 VS_ASYNC_UNLOCK();
1225 vsa = (struct vs_async *) kalloc(sizeof (struct vs_async));
1226 if (vsa != NULL) {
1227 /*
1228 * Try allocating a reply port named after the
1229 * address of the vs_async structure.
1230 */
1231 struct vstruct_alias *alias_struct;
1232
1233 reply_port = ipc_port_alloc_kernel();
1234 alias_struct = (struct vstruct_alias *)
1235 kalloc(sizeof (struct vstruct_alias));
1236 if(alias_struct != NULL) {
1237 alias_struct->vs = (struct vstruct *)vsa;
1238 alias_struct->name = &default_pager_ops;
1239 reply_port->alias = (uintptr_t) alias_struct;
1240 vsa->reply_port = reply_port;
1241 vs_alloc_async_count++;
1242 }
1243 else {
1244 vs_alloc_async_failed++;
1245 ipc_port_dealloc_kernel((MACH_PORT_FACE)
1246 (reply_port));
1247 kfree(vsa, sizeof (struct vs_async));
1248 vsa = NULL;
1249 }
1250 }
1251 } else {
1252 vsa = vs_async_free_list;
1253 vs_async_free_list = vs_async_free_list->vsa_next;
1254 VS_ASYNC_UNLOCK();
1255 }
1256
1257 return vsa;
1258 }
1259
1260 void
1261 vs_free_async(
1262 struct vs_async *vsa)
1263 {
1264 VS_ASYNC_LOCK();
1265 vsa->vsa_next = vs_async_free_list;
1266 vs_async_free_list = vsa;
1267 VS_ASYNC_UNLOCK();
1268 }
1269
1270 #else /* VS_ASYNC_REUSE */
1271
1272 struct vs_async *
1273 vs_alloc_async(void)
1274 {
1275 struct vs_async *vsa;
1276 MACH_PORT_FACE reply_port;
1277 kern_return_t kr;
1278
1279 vsa = (struct vs_async *) kalloc(sizeof (struct vs_async));
1280 if (vsa != NULL) {
1281 /*
1282 * Try allocating a reply port named after the
1283 * address of the vs_async structure.
1284 */
1285 reply_port = ipc_port_alloc_kernel();
1286 alias_struct = (vstruct_alias *)
1287 kalloc(sizeof (struct vstruct_alias));
1288 if(alias_struct != NULL) {
1289 alias_struct->vs = reply_port;
1290 alias_struct->name = &default_pager_ops;
1291 reply_port->alias = (int) vsa;
1292 vsa->reply_port = reply_port;
1293 vs_alloc_async_count++;
1294 }
1295 else {
1296 vs_alloc_async_failed++;
1297 ipc_port_dealloc_kernel((MACH_PORT_FACE)
1298 (reply_port));
1299 kfree(vsa, sizeof (struct vs_async));
1300 vsa = NULL;
1301 }
1302 }
1303
1304 return vsa;
1305 }
1306
1307 void
1308 vs_free_async(
1309 struct vs_async *vsa)
1310 {
1311 MACH_PORT_FACE reply_port;
1312 kern_return_t kr;
1313
1314 reply_port = vsa->reply_port;
1315 kfree(reply_port->alias, sizeof (struct vstuct_alias));
1316 kfree(vsa, sizeof (struct vs_async));
1317 ipc_port_dealloc_kernel((MACH_PORT_FACE) (reply_port));
1318 #if 0
1319 VS_ASYNC_LOCK();
1320 vs_alloc_async_count--;
1321 VS_ASYNC_UNLOCK();
1322 #endif
1323 }
1324
1325 #endif /* VS_ASYNC_REUSE */
1326
1327 zone_t vstruct_zone;
1328
1329 vstruct_t
1330 ps_vstruct_create(
1331 dp_size_t size)
1332 {
1333 vstruct_t vs;
1334 unsigned int i;
1335
1336 vs = (vstruct_t) zalloc(vstruct_zone);
1337 if (vs == VSTRUCT_NULL) {
1338 return VSTRUCT_NULL;
1339 }
1340
1341 VS_LOCK_INIT(vs);
1342
1343 /*
1344 * The following fields will be provided later.
1345 */
1346 vs->vs_pager_ops = NULL;
1347 vs->vs_control = MEMORY_OBJECT_CONTROL_NULL;
1348 vs->vs_references = 1;
1349 vs->vs_seqno = 0;
1350
1351 vs->vs_waiting_seqno = FALSE;
1352 vs->vs_waiting_read = FALSE;
1353 vs->vs_waiting_write = FALSE;
1354 vs->vs_waiting_async = FALSE;
1355
1356 vs->vs_readers = 0;
1357 vs->vs_writers = 0;
1358
1359 vs->vs_errors = 0;
1360
1361 vs->vs_clshift = local_log2(bs_get_global_clsize(0));
1362 vs->vs_size = ((atop_32(round_page_32(size)) - 1) >> vs->vs_clshift) + 1;
1363 vs->vs_async_pending = 0;
1364
1365 /*
1366 * Allocate the pmap, either CLMAP_SIZE or INDIRECT_CLMAP_SIZE
1367 * depending on the size of the memory object.
1368 */
1369 if (INDIRECT_CLMAP(vs->vs_size)) {
1370 vs->vs_imap = (struct vs_map **)
1371 kalloc(INDIRECT_CLMAP_SIZE(vs->vs_size));
1372 vs->vs_indirect = TRUE;
1373 } else {
1374 vs->vs_dmap = (struct vs_map *)
1375 kalloc(CLMAP_SIZE(vs->vs_size));
1376 vs->vs_indirect = FALSE;
1377 }
1378 vs->vs_xfer_pending = FALSE;
1379 DP_DEBUG(DEBUG_VS_INTERNAL,
1380 ("map=0x%x, indirect=%d\n", (int) vs->vs_dmap, vs->vs_indirect));
1381
1382 /*
1383 * Check to see that we got the space.
1384 */
1385 if (!vs->vs_dmap) {
1386 kfree(vs, sizeof *vs);
1387 return VSTRUCT_NULL;
1388 }
1389
1390 /*
1391 * Zero the indirect pointers, or clear the direct pointers.
1392 */
1393 if (vs->vs_indirect)
1394 memset(vs->vs_imap, 0,
1395 INDIRECT_CLMAP_SIZE(vs->vs_size));
1396 else
1397 for (i = 0; i < vs->vs_size; i++)
1398 VSM_CLR(vs->vs_dmap[i]);
1399
1400 VS_MAP_LOCK_INIT(vs);
1401
1402 bs_commit(vs->vs_size);
1403
1404 return vs;
1405 }
1406
1407 paging_segment_t ps_select_segment(unsigned int, int *); /* forward */
1408
1409 paging_segment_t
1410 ps_select_segment(
1411 unsigned int shift,
1412 int *psindex)
1413 {
1414 paging_segment_t ps;
1415 int i;
1416 int j;
1417
1418 /*
1419 * Optimize case where there's only one segment.
1420 * paging_segment_max will index the one and only segment.
1421 */
1422
1423 PSL_LOCK();
1424 if (paging_segment_count == 1) {
1425 paging_segment_t lps = PAGING_SEGMENT_NULL; /* used to avoid extra PS_UNLOCK */
1426 ipc_port_t trigger = IP_NULL;
1427
1428 ps = paging_segments[paging_segment_max];
1429 *psindex = paging_segment_max;
1430 PS_LOCK(ps);
1431 if( !IS_PS_EMERGENCY_SEGMENT(ps) ) {
1432 panic("Emergency paging segment missing\n");
1433 }
1434 ASSERT(ps->ps_clshift >= shift);
1435 if(IS_PS_OK_TO_USE(ps)) {
1436 if (ps->ps_clcount) {
1437 ps->ps_clcount--;
1438 dp_pages_free -= 1 << ps->ps_clshift;
1439 ps->ps_pgcount -= 1 << ps->ps_clshift;
1440 if(min_pages_trigger_port &&
1441 (dp_pages_free < minimum_pages_remaining)) {
1442 trigger = min_pages_trigger_port;
1443 min_pages_trigger_port = NULL;
1444 bs_low = TRUE;
1445 backing_store_abort_compaction = TRUE;
1446 }
1447 lps = ps;
1448 }
1449 }
1450 PS_UNLOCK(ps);
1451
1452 if( lps == PAGING_SEGMENT_NULL ) {
1453 if(dp_pages_free) {
1454 dp_pages_free_drift_count++;
1455 if(dp_pages_free > dp_pages_free_drifted_max) {
1456 dp_pages_free_drifted_max = dp_pages_free;
1457 }
1458 dprintf(("Emergency swap segment:dp_pages_free before zeroing out: %d\n",dp_pages_free));
1459 }
1460 dp_pages_free = 0;
1461 }
1462
1463 PSL_UNLOCK();
1464
1465 if (trigger != IP_NULL) {
1466 dprintf(("ps_select_segment - send HI_WAT_ALERT\n"));
1467
1468 default_pager_space_alert(trigger, HI_WAT_ALERT);
1469 ipc_port_release_send(trigger);
1470 }
1471 return lps;
1472 }
1473
1474 if (paging_segment_count == 0) {
1475 if(dp_pages_free) {
1476 dp_pages_free_drift_count++;
1477 if(dp_pages_free > dp_pages_free_drifted_max) {
1478 dp_pages_free_drifted_max = dp_pages_free;
1479 }
1480 dprintf(("No paging segments:dp_pages_free before zeroing out: %d\n",dp_pages_free));
1481 }
1482 dp_pages_free = 0;
1483 PSL_UNLOCK();
1484 return PAGING_SEGMENT_NULL;
1485 }
1486
1487 for (i = BS_MAXPRI;
1488 i >= BS_MINPRI; i--) {
1489 int start_index;
1490
1491 if ((ps_select_array[i] == BS_NOPRI) ||
1492 (ps_select_array[i] == BS_FULLPRI))
1493 continue;
1494 start_index = ps_select_array[i];
1495
1496 if(!(paging_segments[start_index])) {
1497 j = start_index+1;
1498 physical_transfer_cluster_count = 0;
1499 }
1500 else if ((physical_transfer_cluster_count+1) == (ALLOC_STRIDE >>
1501 (((paging_segments[start_index])->ps_clshift)
1502 + vm_page_shift))) {
1503 physical_transfer_cluster_count = 0;
1504 j = start_index + 1;
1505 } else {
1506 physical_transfer_cluster_count+=1;
1507 j = start_index;
1508 if(start_index == 0)
1509 start_index = paging_segment_max;
1510 else
1511 start_index = start_index - 1;
1512 }
1513
1514 while (1) {
1515 if (j > paging_segment_max)
1516 j = 0;
1517 if ((ps = paging_segments[j]) &&
1518 (ps->ps_bs->bs_priority == i)) {
1519 /*
1520 * Force the ps cluster size to be
1521 * >= that of the vstruct.
1522 */
1523 PS_LOCK(ps);
1524 if (IS_PS_OK_TO_USE(ps)) {
1525 if ((ps->ps_clcount) &&
1526 (ps->ps_clshift >= shift)) {
1527 ipc_port_t trigger = IP_NULL;
1528
1529 ps->ps_clcount--;
1530 dp_pages_free -= 1 << ps->ps_clshift;
1531 ps->ps_pgcount -= 1 << ps->ps_clshift;
1532 if(min_pages_trigger_port &&
1533 (dp_pages_free <
1534 minimum_pages_remaining)) {
1535 trigger = min_pages_trigger_port;
1536 min_pages_trigger_port = NULL;
1537 bs_low = TRUE;
1538 backing_store_abort_compaction = TRUE;
1539 }
1540 PS_UNLOCK(ps);
1541 /*
1542 * found one, quit looking.
1543 */
1544 ps_select_array[i] = j;
1545 PSL_UNLOCK();
1546
1547 if (trigger != IP_NULL) {
1548 dprintf(("ps_select_segment - send HI_WAT_ALERT\n"));
1549
1550 default_pager_space_alert(
1551 trigger,
1552 HI_WAT_ALERT);
1553 ipc_port_release_send(trigger);
1554 }
1555 *psindex = j;
1556 return ps;
1557 }
1558 }
1559 PS_UNLOCK(ps);
1560 }
1561 if (j == start_index) {
1562 /*
1563 * none at this priority -- mark it full
1564 */
1565 ps_select_array[i] = BS_FULLPRI;
1566 break;
1567 }
1568 j++;
1569 }
1570 }
1571
1572 if(dp_pages_free) {
1573 dp_pages_free_drift_count++;
1574 if(dp_pages_free > dp_pages_free_drifted_max) {
1575 dp_pages_free_drifted_max = dp_pages_free;
1576 }
1577 dprintf(("%d Paging Segments: dp_pages_free before zeroing out: %d\n",paging_segment_count,dp_pages_free));
1578 }
1579 dp_pages_free = 0;
1580 PSL_UNLOCK();
1581 return PAGING_SEGMENT_NULL;
1582 }
1583
1584 dp_offset_t ps_allocate_cluster(vstruct_t, int *, paging_segment_t); /*forward*/
1585
1586 dp_offset_t
1587 ps_allocate_cluster(
1588 vstruct_t vs,
1589 int *psindex,
1590 paging_segment_t use_ps)
1591 {
1592 unsigned int byte_num;
1593 int bit_num = 0;
1594 paging_segment_t ps;
1595 dp_offset_t cluster;
1596 ipc_port_t trigger = IP_NULL;
1597
1598 /*
1599 * Find best paging segment.
1600 * ps_select_segment will decrement cluster count on ps.
1601 * Must pass cluster shift to find the most appropriate segment.
1602 */
1603 /* NOTE: The addition of paging segment delete capability threatened
1604 * to seriously complicate the treatment of paging segments in this
1605 * module and the ones that call it (notably ps_clmap), because of the
1606 * difficulty in assuring that the paging segment would continue to
1607 * exist between being unlocked and locked. This was
1608 * avoided because all calls to this module are based in either
1609 * dp_memory_object calls which rely on the vs lock, or by
1610 * the transfer function which is part of the segment delete path.
1611 * The transfer function which is part of paging segment delete is
1612 * protected from multiple callers by the backing store lock.
1613 * The paging segment delete function treats mappings to a paging
1614 * segment on a vstruct by vstruct basis, locking the vstruct targeted
1615 * while data is transferred to the remaining segments. This is in
1616 * line with the view that incomplete or in-transition mappings between
1617 * data, a vstruct, and backing store are protected by the vs lock.
1618 * This and the ordering of the paging segment "going_away" bit setting
1619 * protects us.
1620 */
1621 retry:
1622 if (use_ps != PAGING_SEGMENT_NULL) {
1623 ps = use_ps;
1624 PSL_LOCK();
1625 PS_LOCK(ps);
1626
1627 ASSERT(ps->ps_clcount != 0);
1628
1629 ps->ps_clcount--;
1630 dp_pages_free -= 1 << ps->ps_clshift;
1631 ps->ps_pgcount -= 1 << ps->ps_clshift;
1632 if(min_pages_trigger_port &&
1633 (dp_pages_free < minimum_pages_remaining)) {
1634 trigger = min_pages_trigger_port;
1635 min_pages_trigger_port = NULL;
1636 bs_low = TRUE;
1637 backing_store_abort_compaction = TRUE;
1638 }
1639 PSL_UNLOCK();
1640 PS_UNLOCK(ps);
1641 if (trigger != IP_NULL) {
1642 dprintf(("ps_allocate_cluster - send HI_WAT_ALERT\n"));
1643
1644 default_pager_space_alert(trigger, HI_WAT_ALERT);
1645 ipc_port_release_send(trigger);
1646 }
1647
1648 } else if ((ps = ps_select_segment(vs->vs_clshift, psindex)) ==
1649 PAGING_SEGMENT_NULL) {
1650 static clock_sec_t lastnotify = 0;
1651 clock_sec_t now;
1652 clock_nsec_t nanoseconds_dummy;
1653
1654 /*
1655 * Don't immediately jump to the emergency segment. Give the
1656 * dynamic pager a chance to create it's first normal swap file.
1657 * Unless, of course the very first normal swap file can't be
1658 * created due to some problem and we didn't expect that problem
1659 * i.e. use_emergency_swap_file_first was never set to true initially.
1660 * It then gets set in the swap file creation error handling.
1661 */
1662 if(paging_segment_count > 1 || use_emergency_swap_file_first == TRUE) {
1663
1664 ps = paging_segments[EMERGENCY_PSEG_INDEX];
1665 if(IS_PS_EMERGENCY_SEGMENT(ps) && !IS_PS_GOING_AWAY(ps)) {
1666 PSL_LOCK();
1667 PS_LOCK(ps);
1668
1669 if(IS_PS_GOING_AWAY(ps)) {
1670 /* Someone de-activated the emergency paging segment*/
1671 PS_UNLOCK(ps);
1672 PSL_UNLOCK();
1673
1674 } else if(dp_pages_free) {
1675 /*
1676 * Someone has already activated the emergency paging segment
1677 * OR
1678 * Between us having rec'd a NULL segment from ps_select_segment
1679 * and reaching here a new normal segment could have been added.
1680 * E.g. we get NULL segment and another thread just added the
1681 * new swap file. Hence check to see if we have more dp_pages_free
1682 * before activating the emergency segment.
1683 */
1684 PS_UNLOCK(ps);
1685 PSL_UNLOCK();
1686 goto retry;
1687
1688 } else if(!IS_PS_OK_TO_USE(ps) && ps->ps_clcount) {
1689 /*
1690 * PS_CAN_USE is only reset from the emergency segment when it's
1691 * been successfully recovered. So it's legal to have an emergency
1692 * segment that has PS_CAN_USE but no clusters because it's recovery
1693 * failed.
1694 */
1695 backing_store_t bs = ps->ps_bs;
1696 ps->ps_state |= PS_CAN_USE;
1697 if(ps_select_array[bs->bs_priority] == BS_FULLPRI ||
1698 ps_select_array[bs->bs_priority] == BS_NOPRI) {
1699 ps_select_array[bs->bs_priority] = 0;
1700 }
1701 dp_pages_free += ps->ps_pgcount;
1702 dp_pages_reserve -= ps->ps_pgcount;
1703 PS_UNLOCK(ps);
1704 PSL_UNLOCK();
1705 dprintf(("Switching ON Emergency paging segment\n"));
1706 goto retry;
1707 }
1708
1709 PS_UNLOCK(ps);
1710 PSL_UNLOCK();
1711 }
1712 }
1713
1714 /*
1715 * Emit a notification of the low-paging resource condition
1716 * but don't issue it more than once every five seconds. This
1717 * prevents us from overflowing logs with thousands of
1718 * repetitions of the message.
1719 */
1720 clock_get_system_nanotime(&now, &nanoseconds_dummy);
1721 if (paging_segment_count > 1 && (now > lastnotify + 5)) {
1722 /* With an activated emergency paging segment we still
1723 * didn't get any clusters. This could mean that the
1724 * emergency paging segment is exhausted.
1725 */
1726 dprintf(("System is out of paging space.\n"));
1727 lastnotify = now;
1728 }
1729
1730 PSL_LOCK();
1731
1732 if(min_pages_trigger_port) {
1733 trigger = min_pages_trigger_port;
1734 min_pages_trigger_port = NULL;
1735 bs_low = TRUE;
1736 backing_store_abort_compaction = TRUE;
1737 }
1738 PSL_UNLOCK();
1739 if (trigger != IP_NULL) {
1740 dprintf(("ps_allocate_cluster - send HI_WAT_ALERT\n"));
1741
1742 default_pager_space_alert(trigger, HI_WAT_ALERT);
1743 ipc_port_release_send(trigger);
1744 }
1745 return (dp_offset_t) -1;
1746 }
1747
1748 /*
1749 * Look for an available cluster. At the end of the loop,
1750 * byte_num is the byte offset and bit_num is the bit offset of the
1751 * first zero bit in the paging segment bitmap.
1752 */
1753 PS_LOCK(ps);
1754 byte_num = ps->ps_hint;
1755 for (; byte_num < howmany(ps->ps_ncls, NBBY); byte_num++) {
1756 if (*(ps->ps_bmap + byte_num) != BYTEMASK) {
1757 for (bit_num = 0; bit_num < NBBY; bit_num++) {
1758 if (isclr((ps->ps_bmap + byte_num), bit_num))
1759 break;
1760 }
1761 ASSERT(bit_num != NBBY);
1762 break;
1763 }
1764 }
1765 ps->ps_hint = byte_num;
1766 cluster = (byte_num*NBBY) + bit_num;
1767
1768 /* Space was reserved, so this must be true */
1769 ASSERT(cluster < ps->ps_ncls);
1770
1771 setbit(ps->ps_bmap, cluster);
1772 PS_UNLOCK(ps);
1773
1774 return cluster;
1775 }
1776
1777 void ps_deallocate_cluster(paging_segment_t, dp_offset_t); /* forward */
1778
1779 void
1780 ps_deallocate_cluster(
1781 paging_segment_t ps,
1782 dp_offset_t cluster)
1783 {
1784
1785 if (cluster >= ps->ps_ncls)
1786 panic("ps_deallocate_cluster: Invalid cluster number");
1787
1788 /*
1789 * Lock the paging segment, clear the cluster's bitmap and increment the
1790 * number of free cluster.
1791 */
1792 PSL_LOCK();
1793 PS_LOCK(ps);
1794 clrbit(ps->ps_bmap, cluster);
1795 if( IS_PS_OK_TO_USE(ps)) {
1796 ++ps->ps_clcount;
1797 ps->ps_pgcount += 1 << ps->ps_clshift;
1798 dp_pages_free += 1 << ps->ps_clshift;
1799 } else {
1800 ps->ps_special_clusters += 1;
1801 }
1802
1803 /*
1804 * Move the hint down to the freed cluster if it is
1805 * less than the current hint.
1806 */
1807 if ((cluster/NBBY) < ps->ps_hint) {
1808 ps->ps_hint = (cluster/NBBY);
1809 }
1810
1811
1812 /*
1813 * If we're freeing space on a full priority, reset the array.
1814 */
1815 if ( IS_PS_OK_TO_USE(ps) && ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI)
1816 ps_select_array[ps->ps_bs->bs_priority] = 0;
1817 PS_UNLOCK(ps);
1818 PSL_UNLOCK();
1819
1820 return;
1821 }
1822
1823 void ps_dealloc_vsmap(struct vs_map *, dp_size_t); /* forward */
1824
1825 void
1826 ps_dealloc_vsmap(
1827 struct vs_map *vsmap,
1828 dp_size_t size)
1829 {
1830 unsigned int i;
1831 struct ps_vnode_trim_data trim_data;
1832
1833 ps_vnode_trim_init(&trim_data);
1834
1835 for (i = 0; i < size; i++) {
1836 if (!VSM_ISCLR(vsmap[i]) && !VSM_ISERR(vsmap[i])) {
1837 ps_vnode_trim_more(&trim_data,
1838 &vsmap[i],
1839 VSM_PS(vsmap[i])->ps_clshift,
1840 vm_page_size << VSM_PS(vsmap[i])->ps_clshift);
1841 ps_deallocate_cluster(VSM_PS(vsmap[i]),
1842 VSM_CLOFF(vsmap[i]));
1843 } else {
1844 ps_vnode_trim_now(&trim_data);
1845 }
1846 }
1847 ps_vnode_trim_now(&trim_data);
1848 }
1849
1850 void
1851 ps_vstruct_dealloc(
1852 vstruct_t vs)
1853 {
1854 unsigned int i;
1855 // spl_t s;
1856
1857 VS_MAP_LOCK(vs);
1858
1859 /*
1860 * If this is an indirect structure, then we walk through the valid
1861 * (non-zero) indirect pointers and deallocate the clusters
1862 * associated with each used map entry (via ps_dealloc_vsmap).
1863 * When all of the clusters in an indirect block have been
1864 * freed, we deallocate the block. When all of the indirect
1865 * blocks have been deallocated we deallocate the memory
1866 * holding the indirect pointers.
1867 */
1868 if (vs->vs_indirect) {
1869 for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) {
1870 if (vs->vs_imap[i] != NULL) {
1871 ps_dealloc_vsmap(vs->vs_imap[i], CLMAP_ENTRIES);
1872 kfree(vs->vs_imap[i], CLMAP_THRESHOLD);
1873 }
1874 }
1875 kfree(vs->vs_imap, INDIRECT_CLMAP_SIZE(vs->vs_size));
1876 } else {
1877 /*
1878 * Direct map. Free used clusters, then memory.
1879 */
1880 ps_dealloc_vsmap(vs->vs_dmap, vs->vs_size);
1881 kfree(vs->vs_dmap, CLMAP_SIZE(vs->vs_size));
1882 }
1883 VS_MAP_UNLOCK(vs);
1884
1885 bs_commit(- vs->vs_size);
1886
1887 VS_MAP_LOCK_DESTROY(vs);
1888
1889 zfree(vstruct_zone, vs);
1890 }
1891
1892 void
1893 ps_vstruct_reclaim(
1894 vstruct_t vs,
1895 boolean_t return_to_vm,
1896 boolean_t reclaim_backing_store)
1897 {
1898 unsigned int i, j;
1899 struct vs_map *vsmap;
1900 boolean_t vsmap_all_clear, vsimap_all_clear;
1901 struct vm_object_fault_info fault_info;
1902 int clmap_off;
1903 unsigned int vsmap_size;
1904 kern_return_t kr;
1905
1906 VS_MAP_LOCK(vs);
1907
1908 fault_info.cluster_size = VM_SUPER_CLUSTER;
1909 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
1910 fault_info.user_tag = 0;
1911 fault_info.lo_offset = 0;
1912 fault_info.hi_offset = ptoa_32(vs->vs_size << vs->vs_clshift);
1913 fault_info.io_sync = reclaim_backing_store;
1914 fault_info.batch_pmap_op = FALSE;
1915
1916 /*
1917 * If this is an indirect structure, then we walk through the valid
1918 * (non-zero) indirect pointers and deallocate the clusters
1919 * associated with each used map entry (via ps_dealloc_vsmap).
1920 * When all of the clusters in an indirect block have been
1921 * freed, we deallocate the block. When all of the indirect
1922 * blocks have been deallocated we deallocate the memory
1923 * holding the indirect pointers.
1924 */
1925 if (vs->vs_indirect) {
1926 vsimap_all_clear = TRUE;
1927 for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) {
1928 vsmap = vs->vs_imap[i];
1929 if (vsmap == NULL)
1930 continue;
1931 /* loop on clusters in this indirect map */
1932 clmap_off = (vm_page_size * CLMAP_ENTRIES *
1933 VSCLSIZE(vs) * i);
1934 if (i+1 == INDIRECT_CLMAP_ENTRIES(vs->vs_size))
1935 vsmap_size = vs->vs_size - (CLMAP_ENTRIES * i);
1936 else
1937 vsmap_size = CLMAP_ENTRIES;
1938 vsmap_all_clear = TRUE;
1939 if (return_to_vm) {
1940 for (j = 0; j < vsmap_size;) {
1941 if (VSM_ISCLR(vsmap[j]) ||
1942 VSM_ISERR(vsmap[j])) {
1943 j++;
1944 clmap_off += vm_page_size * VSCLSIZE(vs);
1945 continue;
1946 }
1947 VS_MAP_UNLOCK(vs);
1948 kr = pvs_cluster_read(
1949 vs,
1950 clmap_off,
1951 (dp_size_t) -1, /* read whole cluster */
1952 &fault_info);
1953 VS_MAP_LOCK(vs); /* XXX what if it changed ? */
1954 if (kr != KERN_SUCCESS) {
1955 vsmap_all_clear = FALSE;
1956 vsimap_all_clear = FALSE;
1957 }
1958 }
1959 }
1960 if (vsmap_all_clear) {
1961 ps_dealloc_vsmap(vsmap, CLMAP_ENTRIES);
1962 kfree(vsmap, CLMAP_THRESHOLD);
1963 vs->vs_imap[i] = NULL;
1964 }
1965 }
1966 if (vsimap_all_clear) {
1967 // kfree(vs->vs_imap, INDIRECT_CLMAP_SIZE(vs->vs_size));
1968 }
1969 } else {
1970 /*
1971 * Direct map. Free used clusters, then memory.
1972 */
1973 vsmap = vs->vs_dmap;
1974 if (vsmap == NULL) {
1975 goto out;
1976 }
1977 vsmap_all_clear = TRUE;
1978 /* loop on clusters in the direct map */
1979 if (return_to_vm) {
1980 for (j = 0; j < vs->vs_size;) {
1981 if (VSM_ISCLR(vsmap[j]) ||
1982 VSM_ISERR(vsmap[j])) {
1983 j++;
1984 continue;
1985 }
1986 clmap_off = vm_page_size * (j << vs->vs_clshift);
1987 VS_MAP_UNLOCK(vs);
1988 kr = pvs_cluster_read(
1989 vs,
1990 clmap_off,
1991 (dp_size_t) -1, /* read whole cluster */
1992 &fault_info);
1993 VS_MAP_LOCK(vs); /* XXX what if it changed ? */
1994 if (kr != KERN_SUCCESS) {
1995 vsmap_all_clear = FALSE;
1996 } else {
1997 // VSM_CLR(vsmap[j]);
1998 }
1999 }
2000 }
2001 if (vsmap_all_clear) {
2002 ps_dealloc_vsmap(vs->vs_dmap, vs->vs_size);
2003 // kfree(vs->vs_dmap, CLMAP_SIZE(vs->vs_size));
2004 }
2005 }
2006 out:
2007 VS_MAP_UNLOCK(vs);
2008 }
2009
2010 int ps_map_extend(vstruct_t, unsigned int); /* forward */
2011
2012 int ps_map_extend(
2013 vstruct_t vs,
2014 unsigned int new_size)
2015 {
2016 struct vs_map **new_imap;
2017 struct vs_map *new_dmap = NULL;
2018 int newdsize;
2019 int i;
2020 void *old_map = NULL;
2021 int old_map_size = 0;
2022
2023 if (vs->vs_size >= new_size) {
2024 /*
2025 * Someone has already done the work.
2026 */
2027 return 0;
2028 }
2029
2030 /*
2031 * If the new size extends into the indirect range, then we have one
2032 * of two cases: we are going from indirect to indirect, or we are
2033 * going from direct to indirect. If we are going from indirect to
2034 * indirect, then it is possible that the new size will fit in the old
2035 * indirect map. If this is the case, then just reset the size of the
2036 * vstruct map and we are done. If the new size will not
2037 * fit into the old indirect map, then we have to allocate a new
2038 * indirect map and copy the old map pointers into this new map.
2039 *
2040 * If we are going from direct to indirect, then we have to allocate a
2041 * new indirect map and copy the old direct pages into the first
2042 * indirect page of the new map.
2043 * NOTE: allocating memory here is dangerous, as we're in the
2044 * pageout path.
2045 */
2046 if (INDIRECT_CLMAP(new_size)) {
2047 int new_map_size = INDIRECT_CLMAP_SIZE(new_size);
2048
2049 /*
2050 * Get a new indirect map and zero it.
2051 */
2052 old_map_size = INDIRECT_CLMAP_SIZE(vs->vs_size);
2053 if (vs->vs_indirect &&
2054 (new_map_size == old_map_size)) {
2055 bs_commit(new_size - vs->vs_size);
2056 vs->vs_size = new_size;
2057 return 0;
2058 }
2059
2060 new_imap = (struct vs_map **)kalloc(new_map_size);
2061 if (new_imap == NULL) {
2062 return -1;
2063 }
2064 memset(new_imap, 0, new_map_size);
2065
2066 if (vs->vs_indirect) {
2067 /* Copy old entries into new map */
2068 memcpy(new_imap, vs->vs_imap, old_map_size);
2069 /* Arrange to free the old map */
2070 old_map = (void *) vs->vs_imap;
2071 newdsize = 0;
2072 } else { /* Old map was a direct map */
2073 /* Allocate an indirect page */
2074 if ((new_imap[0] = (struct vs_map *)
2075 kalloc(CLMAP_THRESHOLD)) == NULL) {
2076 kfree(new_imap, new_map_size);
2077 return -1;
2078 }
2079 new_dmap = new_imap[0];
2080 newdsize = CLMAP_ENTRIES;
2081 }
2082 } else {
2083 new_imap = NULL;
2084 newdsize = new_size;
2085 /*
2086 * If the new map is a direct map, then the old map must
2087 * also have been a direct map. All we have to do is
2088 * to allocate a new direct map, copy the old entries
2089 * into it and free the old map.
2090 */
2091 if ((new_dmap = (struct vs_map *)
2092 kalloc(CLMAP_SIZE(new_size))) == NULL) {
2093 return -1;
2094 }
2095 }
2096 if (newdsize) {
2097
2098 /* Free the old map */
2099 old_map = (void *) vs->vs_dmap;
2100 old_map_size = CLMAP_SIZE(vs->vs_size);
2101
2102 /* Copy info from the old map into the new map */
2103 memcpy(new_dmap, vs->vs_dmap, old_map_size);
2104
2105 /* Initialize the rest of the new map */
2106 for (i = vs->vs_size; i < newdsize; i++)
2107 VSM_CLR(new_dmap[i]);
2108 }
2109 if (new_imap) {
2110 vs->vs_imap = new_imap;
2111 vs->vs_indirect = TRUE;
2112 } else
2113 vs->vs_dmap = new_dmap;
2114 bs_commit(new_size - vs->vs_size);
2115 vs->vs_size = new_size;
2116 if (old_map)
2117 kfree(old_map, old_map_size);
2118 return 0;
2119 }
2120
2121 dp_offset_t
2122 ps_clmap(
2123 vstruct_t vs,
2124 dp_offset_t offset,
2125 struct clmap *clmap,
2126 int flag,
2127 dp_size_t size,
2128 int error)
2129 {
2130 dp_offset_t cluster; /* The cluster of offset. */
2131 dp_offset_t newcl; /* The new cluster allocated. */
2132 dp_offset_t newoff;
2133 unsigned int i;
2134 struct vs_map *vsmap;
2135
2136 VS_MAP_LOCK(vs);
2137
2138 ASSERT(vs->vs_dmap);
2139 cluster = atop_32(offset) >> vs->vs_clshift;
2140
2141 /*
2142 * Initialize cluster error value
2143 */
2144 clmap->cl_error = 0;
2145
2146 /*
2147 * If the object has grown, extend the page map.
2148 */
2149 if (cluster >= vs->vs_size) {
2150 if (flag == CL_FIND) {
2151 /* Do not allocate if just doing a lookup */
2152 VS_MAP_UNLOCK(vs);
2153 return (dp_offset_t) -1;
2154 }
2155 if (ps_map_extend(vs, cluster + 1)) {
2156 VS_MAP_UNLOCK(vs);
2157 return (dp_offset_t) -1;
2158 }
2159 }
2160
2161 /*
2162 * Look for the desired cluster. If the map is indirect, then we
2163 * have a two level lookup. First find the indirect block, then
2164 * find the actual cluster. If the indirect block has not yet
2165 * been allocated, then do so. If the cluster has not yet been
2166 * allocated, then do so.
2167 *
2168 * If any of the allocations fail, then return an error.
2169 * Don't allocate if just doing a lookup.
2170 */
2171 if (vs->vs_indirect) {
2172 long ind_block = cluster/CLMAP_ENTRIES;
2173
2174 /* Is the indirect block allocated? */
2175 vsmap = vs->vs_imap[ind_block];
2176 if (vsmap == NULL) {
2177 if (flag == CL_FIND) {
2178 VS_MAP_UNLOCK(vs);
2179 return (dp_offset_t) -1;
2180 }
2181
2182 /* Allocate the indirect block */
2183 vsmap = (struct vs_map *) kalloc(CLMAP_THRESHOLD);
2184 if (vsmap == NULL) {
2185 VS_MAP_UNLOCK(vs);
2186 return (dp_offset_t) -1;
2187 }
2188 /* Initialize the cluster offsets */
2189 for (i = 0; i < CLMAP_ENTRIES; i++)
2190 VSM_CLR(vsmap[i]);
2191 vs->vs_imap[ind_block] = vsmap;
2192 }
2193 } else
2194 vsmap = vs->vs_dmap;
2195
2196 ASSERT(vsmap);
2197 vsmap += cluster%CLMAP_ENTRIES;
2198
2199 /*
2200 * At this point, vsmap points to the struct vs_map desired.
2201 *
2202 * Look in the map for the cluster, if there was an error on a
2203 * previous write, flag it and return. If it is not yet
2204 * allocated, then allocate it, if we're writing; if we're
2205 * doing a lookup and the cluster's not allocated, return error.
2206 */
2207 if (VSM_ISERR(*vsmap)) {
2208 clmap->cl_error = VSM_GETERR(*vsmap);
2209 VS_MAP_UNLOCK(vs);
2210 return (dp_offset_t) -1;
2211 } else if (VSM_ISCLR(*vsmap)) {
2212 int psindex;
2213
2214 if (flag == CL_FIND) {
2215 /*
2216 * If there's an error and the entry is clear, then
2217 * we've run out of swap space. Record the error
2218 * here and return.
2219 */
2220 if (error) {
2221 VSM_SETERR(*vsmap, error);
2222 }
2223 VS_MAP_UNLOCK(vs);
2224 return (dp_offset_t) -1;
2225 } else {
2226 /*
2227 * Attempt to allocate a cluster from the paging segment
2228 */
2229 newcl = ps_allocate_cluster(vs, &psindex,
2230 PAGING_SEGMENT_NULL);
2231 if (newcl == (dp_offset_t) -1) {
2232 VS_MAP_UNLOCK(vs);
2233 return (dp_offset_t) -1;
2234 }
2235 VSM_CLR(*vsmap);
2236 VSM_SETCLOFF(*vsmap, newcl);
2237 VSM_SETPS(*vsmap, psindex);
2238 }
2239 } else
2240 newcl = VSM_CLOFF(*vsmap);
2241
2242 /*
2243 * Fill in pertinent fields of the clmap
2244 */
2245 clmap->cl_ps = VSM_PS(*vsmap);
2246 clmap->cl_numpages = VSCLSIZE(vs);
2247 clmap->cl_bmap.clb_map = (unsigned int) VSM_BMAP(*vsmap);
2248
2249 /*
2250 * Byte offset in paging segment is byte offset to cluster plus
2251 * byte offset within cluster. It looks ugly, but should be
2252 * relatively quick.
2253 */
2254 ASSERT(trunc_page(offset) == offset);
2255 newcl = ptoa_32(newcl) << vs->vs_clshift;
2256 newoff = offset & ((1<<(vm_page_shift + vs->vs_clshift)) - 1);
2257 if (flag == CL_ALLOC) {
2258 /*
2259 * set bits in the allocation bitmap according to which
2260 * pages were requested. size is in bytes.
2261 */
2262 i = atop_32(newoff);
2263 while ((size > 0) && (i < VSCLSIZE(vs))) {
2264 VSM_SETALLOC(*vsmap, i);
2265 i++;
2266 size -= vm_page_size;
2267 }
2268 }
2269 clmap->cl_alloc.clb_map = (unsigned int) VSM_ALLOC(*vsmap);
2270 if (newoff) {
2271 /*
2272 * Offset is not cluster aligned, so number of pages
2273 * and bitmaps must be adjusted
2274 */
2275 clmap->cl_numpages -= atop_32(newoff);
2276 CLMAP_SHIFT(clmap, vs);
2277 CLMAP_SHIFTALLOC(clmap, vs);
2278 }
2279
2280 /*
2281 *
2282 * The setting of valid bits and handling of write errors
2283 * must be done here, while we hold the lock on the map.
2284 * It logically should be done in ps_vs_write_complete().
2285 * The size and error information has been passed from
2286 * ps_vs_write_complete(). If the size parameter is non-zero,
2287 * then there is work to be done. If error is also non-zero,
2288 * then the error number is recorded in the cluster and the
2289 * entire cluster is in error.
2290 */
2291 if (size && flag == CL_FIND) {
2292 dp_offset_t off = (dp_offset_t) 0;
2293
2294 if (!error) {
2295 for (i = VSCLSIZE(vs) - clmap->cl_numpages; size > 0;
2296 i++) {
2297 VSM_SETPG(*vsmap, i);
2298 size -= vm_page_size;
2299 }
2300 ASSERT(i <= VSCLSIZE(vs));
2301 } else {
2302 BS_STAT(clmap->cl_ps->ps_bs,
2303 clmap->cl_ps->ps_bs->bs_pages_out_fail +=
2304 atop_32(size));
2305 off = VSM_CLOFF(*vsmap);
2306 VSM_SETERR(*vsmap, error);
2307 }
2308 /*
2309 * Deallocate cluster if error, and no valid pages
2310 * already present.
2311 */
2312 if (off != (dp_offset_t) 0)
2313 ps_deallocate_cluster(clmap->cl_ps, off);
2314 VS_MAP_UNLOCK(vs);
2315 return (dp_offset_t) 0;
2316 } else
2317 VS_MAP_UNLOCK(vs);
2318
2319 DP_DEBUG(DEBUG_VS_INTERNAL,
2320 ("returning 0x%X,vs=0x%X,vsmap=0x%X,flag=%d\n",
2321 newcl+newoff, (int) vs, (int) vsmap, flag));
2322 DP_DEBUG(DEBUG_VS_INTERNAL,
2323 (" clmap->cl_ps=0x%X,cl_numpages=%d,clbmap=0x%x,cl_alloc=%x\n",
2324 (int) clmap->cl_ps, clmap->cl_numpages,
2325 (int) clmap->cl_bmap.clb_map, (int) clmap->cl_alloc.clb_map));
2326
2327 return (newcl + newoff);
2328 }
2329
2330 void ps_clunmap(vstruct_t, dp_offset_t, dp_size_t); /* forward */
2331
2332 void
2333 ps_clunmap(
2334 vstruct_t vs,
2335 dp_offset_t offset,
2336 dp_size_t length)
2337 {
2338 dp_offset_t cluster; /* The cluster number of offset */
2339 struct vs_map *vsmap;
2340 struct ps_vnode_trim_data trim_data;
2341
2342 ps_vnode_trim_init(&trim_data);
2343
2344 VS_MAP_LOCK(vs);
2345
2346 /*
2347 * Loop through all clusters in this range, freeing paging segment
2348 * clusters and map entries as encountered.
2349 */
2350 while (length > 0) {
2351 dp_offset_t newoff;
2352 unsigned int i;
2353
2354 cluster = atop_32(offset) >> vs->vs_clshift;
2355 if (vs->vs_indirect) /* indirect map */
2356 vsmap = vs->vs_imap[cluster/CLMAP_ENTRIES];
2357 else
2358 vsmap = vs->vs_dmap;
2359 if (vsmap == NULL) {
2360 ps_vnode_trim_now(&trim_data);
2361 VS_MAP_UNLOCK(vs);
2362 return;
2363 }
2364 vsmap += cluster%CLMAP_ENTRIES;
2365 if (VSM_ISCLR(*vsmap)) {
2366 ps_vnode_trim_now(&trim_data);
2367 length -= vm_page_size;
2368 offset += vm_page_size;
2369 continue;
2370 }
2371 /*
2372 * We've got a valid mapping. Clear it and deallocate
2373 * paging segment cluster pages.
2374 * Optimize for entire cluster cleraing.
2375 */
2376 if ( (newoff = (offset&((1<<(vm_page_shift+vs->vs_clshift))-1))) ) {
2377 /*
2378 * Not cluster aligned.
2379 */
2380 ASSERT(trunc_page(newoff) == newoff);
2381 i = atop_32(newoff);
2382 } else
2383 i = 0;
2384 while ((i < VSCLSIZE(vs)) && (length > 0)) {
2385 VSM_CLRPG(*vsmap, i);
2386 VSM_CLRALLOC(*vsmap, i);
2387 length -= vm_page_size;
2388 offset += vm_page_size;
2389 i++;
2390 }
2391
2392 /*
2393 * If map entry is empty, clear and deallocate cluster.
2394 */
2395 if (!VSM_BMAP(*vsmap)) {
2396 ps_vnode_trim_more(&trim_data,
2397 vsmap,
2398 vs->vs_clshift,
2399 VSCLSIZE(vs) * vm_page_size);
2400 ps_deallocate_cluster(VSM_PS(*vsmap),
2401 VSM_CLOFF(*vsmap));
2402 VSM_CLR(*vsmap);
2403 } else {
2404 ps_vnode_trim_now(&trim_data);
2405 }
2406 }
2407 ps_vnode_trim_now(&trim_data);
2408
2409 VS_MAP_UNLOCK(vs);
2410 }
2411
2412 void ps_vs_write_complete(vstruct_t, dp_offset_t, dp_size_t, int); /* forward */
2413
2414 void
2415 ps_vs_write_complete(
2416 vstruct_t vs,
2417 dp_offset_t offset,
2418 dp_size_t size,
2419 int error)
2420 {
2421 struct clmap clmap;
2422
2423 /*
2424 * Get the struct vsmap for this cluster.
2425 * Use READ, even though it was written, because the
2426 * cluster MUST be present, unless there was an error
2427 * in the original ps_clmap (e.g. no space), in which
2428 * case, nothing happens.
2429 *
2430 * Must pass enough information to ps_clmap to allow it
2431 * to set the vs_map structure bitmap under lock.
2432 */
2433 (void) ps_clmap(vs, offset, &clmap, CL_FIND, size, error);
2434 }
2435
2436 void vs_cl_write_complete(vstruct_t, paging_segment_t, dp_offset_t, vm_offset_t, dp_size_t, boolean_t, int); /* forward */
2437
2438 void
2439 vs_cl_write_complete(
2440 vstruct_t vs,
2441 __unused paging_segment_t ps,
2442 dp_offset_t offset,
2443 __unused vm_offset_t addr,
2444 dp_size_t size,
2445 boolean_t async,
2446 int error)
2447 {
2448 // kern_return_t kr;
2449
2450 if (error) {
2451 /*
2452 * For internal objects, the error is recorded on a
2453 * per-cluster basis by ps_clmap() which is called
2454 * by ps_vs_write_complete() below.
2455 */
2456 dprintf(("write failed error = 0x%x\n", error));
2457 /* add upl_abort code here */
2458 } else
2459 GSTAT(global_stats.gs_pages_out += atop_32(size));
2460 /*
2461 * Notify the vstruct mapping code, so it can do its accounting.
2462 */
2463 ps_vs_write_complete(vs, offset, size, error);
2464
2465 if (async) {
2466 VS_LOCK(vs);
2467 ASSERT(vs->vs_async_pending > 0);
2468 vs->vs_async_pending -= size;
2469 if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
2470 vs->vs_waiting_async = FALSE;
2471 VS_UNLOCK(vs);
2472 thread_wakeup(&vs->vs_async_pending);
2473 } else {
2474 VS_UNLOCK(vs);
2475 }
2476 }
2477 }
2478
2479 #ifdef DEVICE_PAGING
2480 kern_return_t device_write_reply(MACH_PORT_FACE, kern_return_t, io_buf_len_t);
2481
2482 kern_return_t
2483 device_write_reply(
2484 MACH_PORT_FACE reply_port,
2485 kern_return_t device_code,
2486 io_buf_len_t bytes_written)
2487 {
2488 struct vs_async *vsa;
2489
2490 vsa = (struct vs_async *)
2491 ((struct vstruct_alias *)(reply_port->alias))->vs;
2492
2493 if (device_code == KERN_SUCCESS && bytes_written != vsa->vsa_size) {
2494 device_code = KERN_FAILURE;
2495 }
2496
2497 vsa->vsa_error = device_code;
2498
2499
2500 ASSERT(vsa->vsa_vs != VSTRUCT_NULL);
2501 if(vsa->vsa_flags & VSA_TRANSFER) {
2502 /* revisit when async disk segments redone */
2503 if(vsa->vsa_error) {
2504 /* need to consider error condition. re-write data or */
2505 /* throw it away here. */
2506 vm_map_copy_discard((vm_map_copy_t)vsa->vsa_addr);
2507 }
2508 ps_vs_write_complete(vsa->vsa_vs, vsa->vsa_offset,
2509 vsa->vsa_size, vsa->vsa_error);
2510 } else {
2511 vs_cl_write_complete(vsa->vsa_vs, vsa->vsa_ps, vsa->vsa_offset,
2512 vsa->vsa_addr, vsa->vsa_size, TRUE,
2513 vsa->vsa_error);
2514 }
2515 VS_FREE_ASYNC(vsa);
2516
2517 return KERN_SUCCESS;
2518 }
2519
2520 kern_return_t device_write_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_len_t);
2521 kern_return_t
2522 device_write_reply_inband(
2523 MACH_PORT_FACE reply_port,
2524 kern_return_t return_code,
2525 io_buf_len_t bytes_written)
2526 {
2527 panic("device_write_reply_inband: illegal");
2528 return KERN_SUCCESS;
2529 }
2530
2531 kern_return_t device_read_reply(MACH_PORT_FACE, kern_return_t, io_buf_ptr_t, mach_msg_type_number_t);
2532 kern_return_t
2533 device_read_reply(
2534 MACH_PORT_FACE reply_port,
2535 kern_return_t return_code,
2536 io_buf_ptr_t data,
2537 mach_msg_type_number_t dataCnt)
2538 {
2539 struct vs_async *vsa;
2540 vsa = (struct vs_async *)
2541 ((struct vstruct_alias *)(reply_port->alias))->vs;
2542 vsa->vsa_addr = (vm_offset_t)data;
2543 vsa->vsa_size = (vm_size_t)dataCnt;
2544 vsa->vsa_error = return_code;
2545 thread_wakeup(&vsa);
2546 return KERN_SUCCESS;
2547 }
2548
2549 kern_return_t device_read_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_ptr_inband_t, mach_msg_type_number_t);
2550 kern_return_t
2551 device_read_reply_inband(
2552 MACH_PORT_FACE reply_port,
2553 kern_return_t return_code,
2554 io_buf_ptr_inband_t data,
2555 mach_msg_type_number_t dataCnt)
2556 {
2557 panic("device_read_reply_inband: illegal");
2558 return KERN_SUCCESS;
2559 }
2560
2561 kern_return_t device_read_reply_overwrite(MACH_PORT_FACE, kern_return_t, io_buf_len_t);
2562 kern_return_t
2563 device_read_reply_overwrite(
2564 MACH_PORT_FACE reply_port,
2565 kern_return_t return_code,
2566 io_buf_len_t bytes_read)
2567 {
2568 panic("device_read_reply_overwrite: illegal\n");
2569 return KERN_SUCCESS;
2570 }
2571
2572 kern_return_t device_open_reply(MACH_PORT_FACE, kern_return_t, MACH_PORT_FACE);
2573 kern_return_t
2574 device_open_reply(
2575 MACH_PORT_FACE reply_port,
2576 kern_return_t return_code,
2577 MACH_PORT_FACE device_port)
2578 {
2579 panic("device_open_reply: illegal\n");
2580 return KERN_SUCCESS;
2581 }
2582
2583 kern_return_t
2584 ps_read_device(
2585 paging_segment_t ps,
2586 dp_offset_t offset,
2587 vm_offset_t *bufferp,
2588 unsigned int size,
2589 unsigned int *residualp,
2590 int flags)
2591 {
2592 kern_return_t kr;
2593 recnum_t dev_offset;
2594 unsigned int bytes_wanted;
2595 unsigned int bytes_read;
2596 unsigned int total_read;
2597 vm_offset_t dev_buffer;
2598 vm_offset_t buf_ptr;
2599 unsigned int records_read;
2600 struct vs_async *vsa;
2601
2602 device_t device;
2603 vm_map_copy_t device_data = NULL;
2604 default_pager_thread_t *dpt = NULL;
2605
2606 device = dev_port_lookup(ps->ps_device);
2607 clustered_reads[atop_32(size)]++;
2608
2609 dev_offset = (ps->ps_offset +
2610 (offset >> (vm_page_shift - ps->ps_record_shift)));
2611 bytes_wanted = size;
2612 total_read = 0;
2613 *bufferp = (vm_offset_t)NULL;
2614
2615 do {
2616 vsa = VS_ALLOC_ASYNC();
2617 if (vsa) {
2618 vsa->vsa_vs = NULL;
2619 vsa->vsa_addr = 0;
2620 vsa->vsa_offset = 0;
2621 vsa->vsa_size = 0;
2622 vsa->vsa_ps = NULL;
2623 }
2624 ip_lock(vsa->reply_port);
2625 vsa->reply_port->ip_sorights++;
2626 ip_reference(vsa->reply_port);
2627 ip_unlock(vsa->reply_port);
2628 kr = ds_device_read_common(device,
2629 vsa->reply_port,
2630 (mach_msg_type_name_t)
2631 MACH_MSG_TYPE_MOVE_SEND_ONCE,
2632 (dev_mode_t) 0,
2633 dev_offset,
2634 bytes_wanted,
2635 (IO_READ | IO_CALL),
2636 (io_buf_ptr_t *) &dev_buffer,
2637 (mach_msg_type_number_t *) &bytes_read);
2638 if(kr == MIG_NO_REPLY) {
2639 assert_wait(&vsa, THREAD_UNINT);
2640 thread_block(THREAD_CONTINUE_NULL);
2641
2642 dev_buffer = vsa->vsa_addr;
2643 bytes_read = (unsigned int)vsa->vsa_size;
2644 kr = vsa->vsa_error;
2645 }
2646 VS_FREE_ASYNC(vsa);
2647 if (kr != KERN_SUCCESS || bytes_read == 0) {
2648 break;
2649 }
2650 total_read += bytes_read;
2651
2652 /*
2653 * If we got the entire range, use the returned dev_buffer.
2654 */
2655 if (bytes_read == size) {
2656 *bufferp = (vm_offset_t)dev_buffer;
2657 break;
2658 }
2659
2660 #if 1
2661 dprintf(("read only %d bytes out of %d\n",
2662 bytes_read, bytes_wanted));
2663 #endif
2664 if(dpt == NULL) {
2665 dpt = get_read_buffer();
2666 buf_ptr = dpt->dpt_buffer;
2667 *bufferp = (vm_offset_t)buf_ptr;
2668 }
2669 /*
2670 * Otherwise, copy the data into the provided buffer (*bufferp)
2671 * and append the rest of the range as it comes in.
2672 */
2673 memcpy((void *) buf_ptr, (void *) dev_buffer, bytes_read);
2674 buf_ptr += bytes_read;
2675 bytes_wanted -= bytes_read;
2676 records_read = (bytes_read >>
2677 (vm_page_shift - ps->ps_record_shift));
2678 dev_offset += records_read;
2679 DP_DEBUG(DEBUG_VS_INTERNAL,
2680 ("calling vm_deallocate(addr=0x%X,size=0x%X)\n",
2681 dev_buffer, bytes_read));
2682 if (vm_deallocate(kernel_map, dev_buffer, bytes_read)
2683 != KERN_SUCCESS)
2684 Panic("dealloc buf");
2685 } while (bytes_wanted);
2686
2687 *residualp = size - total_read;
2688 if((dev_buffer != *bufferp) && (total_read != 0)) {
2689 vm_offset_t temp_buffer;
2690 vm_allocate(kernel_map, &temp_buffer, total_read, VM_FLAGS_ANYWHERE);
2691 memcpy((void *) temp_buffer, (void *) *bufferp, total_read);
2692 if(vm_map_copyin_page_list(kernel_map, temp_buffer, total_read,
2693 VM_MAP_COPYIN_OPT_SRC_DESTROY |
2694 VM_MAP_COPYIN_OPT_STEAL_PAGES |
2695 VM_MAP_COPYIN_OPT_PMAP_ENTER,
2696 (vm_map_copy_t *)&device_data, FALSE))
2697 panic("ps_read_device: cannot copyin locally provided buffer\n");
2698 }
2699 else if((kr == KERN_SUCCESS) && (total_read != 0) && (dev_buffer != 0)){
2700 if(vm_map_copyin_page_list(kernel_map, dev_buffer, bytes_read,
2701 VM_MAP_COPYIN_OPT_SRC_DESTROY |
2702 VM_MAP_COPYIN_OPT_STEAL_PAGES |
2703 VM_MAP_COPYIN_OPT_PMAP_ENTER,
2704 (vm_map_copy_t *)&device_data, FALSE))
2705 panic("ps_read_device: cannot copyin backing store provided buffer\n");
2706 }
2707 else {
2708 device_data = NULL;
2709 }
2710 *bufferp = (vm_offset_t)device_data;
2711
2712 if(dpt != NULL) {
2713 /* Free the receive buffer */
2714 dpt->checked_out = 0;
2715 thread_wakeup(&dpt_array);
2716 }
2717 return KERN_SUCCESS;
2718 }
2719
2720 kern_return_t
2721 ps_write_device(
2722 paging_segment_t ps,
2723 dp_offset_t offset,
2724 vm_offset_t addr,
2725 unsigned int size,
2726 struct vs_async *vsa)
2727 {
2728 recnum_t dev_offset;
2729 io_buf_len_t bytes_to_write, bytes_written;
2730 recnum_t records_written;
2731 kern_return_t kr;
2732 MACH_PORT_FACE reply_port;
2733
2734
2735
2736 clustered_writes[atop_32(size)]++;
2737
2738 dev_offset = (ps->ps_offset +
2739 (offset >> (vm_page_shift - ps->ps_record_shift)));
2740 bytes_to_write = size;
2741
2742 if (vsa) {
2743 /*
2744 * Asynchronous write.
2745 */
2746 reply_port = vsa->reply_port;
2747 ip_lock(reply_port);
2748 reply_port->ip_sorights++;
2749 ip_reference(reply_port);
2750 ip_unlock(reply_port);
2751 {
2752 device_t device;
2753 device = dev_port_lookup(ps->ps_device);
2754
2755 vsa->vsa_addr = addr;
2756 kr=ds_device_write_common(device,
2757 reply_port,
2758 (mach_msg_type_name_t) MACH_MSG_TYPE_MOVE_SEND_ONCE,
2759 (dev_mode_t) 0,
2760 dev_offset,
2761 (io_buf_ptr_t) addr,
2762 size,
2763 (IO_WRITE | IO_CALL),
2764 &bytes_written);
2765 }
2766 if ((kr != KERN_SUCCESS) && (kr != MIG_NO_REPLY)) {
2767 if (verbose)
2768 dprintf(("%s0x%x, addr=0x%x,"
2769 "size=0x%x,offset=0x%x\n",
2770 "device_write_request returned ",
2771 kr, addr, size, offset));
2772 BS_STAT(ps->ps_bs,
2773 ps->ps_bs->bs_pages_out_fail += atop_32(size));
2774 /* do the completion notification to free resources */
2775 device_write_reply(reply_port, kr, 0);
2776 return PAGER_ERROR;
2777 }
2778 } else do {
2779 /*
2780 * Synchronous write.
2781 */
2782 {
2783 device_t device;
2784 device = dev_port_lookup(ps->ps_device);
2785 kr=ds_device_write_common(device,
2786 IP_NULL, 0,
2787 (dev_mode_t) 0,
2788 dev_offset,
2789 (io_buf_ptr_t) addr,
2790 size,
2791 (IO_WRITE | IO_SYNC | IO_KERNEL_BUF),
2792 &bytes_written);
2793 }
2794 if (kr != KERN_SUCCESS) {
2795 dprintf(("%s0x%x, addr=0x%x,size=0x%x,offset=0x%x\n",
2796 "device_write returned ",
2797 kr, addr, size, offset));
2798 BS_STAT(ps->ps_bs,
2799 ps->ps_bs->bs_pages_out_fail += atop_32(size));
2800 return PAGER_ERROR;
2801 }
2802 if (bytes_written & ((vm_page_size >> ps->ps_record_shift) - 1))
2803 Panic("fragmented write");
2804 records_written = (bytes_written >>
2805 (vm_page_shift - ps->ps_record_shift));
2806 dev_offset += records_written;
2807 #if 1
2808 if (bytes_written != bytes_to_write) {
2809 dprintf(("wrote only %d bytes out of %d\n",
2810 bytes_written, bytes_to_write));
2811 }
2812 #endif
2813 bytes_to_write -= bytes_written;
2814 addr += bytes_written;
2815 } while (bytes_to_write > 0);
2816
2817 return PAGER_SUCCESS;
2818 }
2819
2820
2821 #else /* !DEVICE_PAGING */
2822
2823 kern_return_t
2824 ps_read_device(
2825 __unused paging_segment_t ps,
2826 __unused dp_offset_t offset,
2827 __unused vm_offset_t *bufferp,
2828 __unused unsigned int size,
2829 __unused unsigned int *residualp,
2830 __unused int flags)
2831 {
2832 panic("ps_read_device not supported");
2833 return KERN_FAILURE;
2834 }
2835
2836 kern_return_t
2837 ps_write_device(
2838 __unused paging_segment_t ps,
2839 __unused dp_offset_t offset,
2840 __unused vm_offset_t addr,
2841 __unused unsigned int size,
2842 __unused struct vs_async *vsa)
2843 {
2844 panic("ps_write_device not supported");
2845 return KERN_FAILURE;
2846 }
2847
2848 #endif /* DEVICE_PAGING */
2849 void pvs_object_data_provided(vstruct_t, upl_t, upl_offset_t, upl_size_t); /* forward */
2850
2851 void
2852 pvs_object_data_provided(
2853 __unused vstruct_t vs,
2854 __unused upl_t upl,
2855 __unused upl_offset_t offset,
2856 upl_size_t size)
2857 {
2858
2859 DP_DEBUG(DEBUG_VS_INTERNAL,
2860 ("buffer=0x%x,offset=0x%x,size=0x%x\n",
2861 upl, offset, size));
2862
2863 ASSERT(size > 0);
2864 GSTAT(global_stats.gs_pages_in += atop_32(size));
2865
2866 /* check upl iosync flag instead of using RECLAIM_SWAP*/
2867 #if RECLAIM_SWAP
2868 if (size != upl->size) {
2869 upl_abort(upl, UPL_ABORT_ERROR);
2870 upl_deallocate(upl);
2871 } else {
2872 ps_clunmap(vs, offset, size);
2873 upl_commit(upl, NULL, 0);
2874 upl_deallocate(upl);
2875 }
2876 #endif /* RECLAIM_SWAP */
2877
2878 }
2879
2880 static memory_object_offset_t last_start;
2881 static vm_size_t last_length;
2882
2883 /*
2884 * A "cnt" of 0 means that the caller just wants to check if the page at
2885 * offset "vs_offset" exists in the backing store. That page hasn't been
2886 * prepared, so no need to release it.
2887 *
2888 * A "cnt" of -1 means that the caller wants to bring back from the backing
2889 * store all existing pages in the cluster containing "vs_offset".
2890 */
2891 kern_return_t
2892 pvs_cluster_read(
2893 vstruct_t vs,
2894 dp_offset_t vs_offset,
2895 dp_size_t cnt,
2896 void *fault_info)
2897 {
2898 kern_return_t error = KERN_SUCCESS;
2899 unsigned int size;
2900 unsigned int residual;
2901 unsigned int request_flags;
2902 int io_flags = 0;
2903 int seg_index;
2904 int pages_in_cl;
2905 int cl_size;
2906 int cl_mask;
2907 int cl_index;
2908 unsigned int xfer_size;
2909 dp_offset_t orig_vs_offset;
2910 dp_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_MIN_CLSHIFT];
2911 paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_MIN_CLSHIFT];
2912 struct clmap clmap;
2913 upl_t upl;
2914 unsigned int page_list_count;
2915 memory_object_offset_t cluster_start;
2916 vm_size_t cluster_length;
2917 uint32_t io_streaming;
2918 int i;
2919 boolean_t io_sync = FALSE;
2920
2921 pages_in_cl = 1 << vs->vs_clshift;
2922 cl_size = pages_in_cl * vm_page_size;
2923 cl_mask = cl_size - 1;
2924
2925 request_flags = UPL_NO_SYNC | UPL_RET_ONLY_ABSENT | UPL_SET_LITE;
2926
2927 if (cnt == (dp_size_t) -1) {
2928 /*
2929 * We've been called from ps_vstruct_reclaim() to move all
2930 * the object's swapped pages back to VM pages.
2931 * This can put memory pressure on the system, so we do want
2932 * to wait for free pages, to avoid getting in the way of the
2933 * vm_pageout_scan() thread.
2934 * Let's not use UPL_NOBLOCK in this case.
2935 */
2936 vs_offset &= ~cl_mask;
2937 i = pages_in_cl;
2938 } else {
2939 i = 1;
2940
2941 /*
2942 * if the I/O cluster size == PAGE_SIZE, we don't want to set
2943 * the UPL_NOBLOCK since we may be trying to recover from a
2944 * previous partial pagein I/O that occurred because we were low
2945 * on memory and bailed early in order to honor the UPL_NOBLOCK...
2946 * since we're only asking for a single page, we can block w/o fear
2947 * of tying up pages while waiting for more to become available
2948 */
2949 if (fault_info == NULL || ((vm_object_fault_info_t)fault_info)->cluster_size > PAGE_SIZE)
2950 request_flags |= UPL_NOBLOCK;
2951 }
2952
2953 again:
2954 cl_index = (vs_offset & cl_mask) / vm_page_size;
2955
2956 if ((ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0) == (dp_offset_t)-1) ||
2957 !CLMAP_ISSET(clmap, cl_index)) {
2958 /*
2959 * the needed page doesn't exist in the backing store...
2960 * we don't want to try to do any I/O, just abort the
2961 * page and let the fault handler provide a zero-fill
2962 */
2963 if (cnt == 0) {
2964 /*
2965 * The caller was just poking at us to see if
2966 * the page has been paged out. No need to
2967 * mess with the page at all.
2968 * Just let the caller know we don't have that page.
2969 */
2970 return KERN_FAILURE;
2971 }
2972 if (cnt == (dp_size_t) -1) {
2973 i--;
2974 if (i == 0) {
2975 /* no more pages in this cluster */
2976 return KERN_FAILURE;
2977 }
2978 /* try the next page in this cluster */
2979 vs_offset += vm_page_size;
2980 goto again;
2981 }
2982
2983 page_list_count = 0;
2984
2985 memory_object_super_upl_request(vs->vs_control, (memory_object_offset_t)vs_offset,
2986 PAGE_SIZE, PAGE_SIZE,
2987 &upl, NULL, &page_list_count,
2988 request_flags | UPL_SET_INTERNAL);
2989 upl_range_needed(upl, 0, 1);
2990
2991 if (clmap.cl_error)
2992 upl_abort(upl, UPL_ABORT_ERROR);
2993 else
2994 upl_abort(upl, UPL_ABORT_UNAVAILABLE);
2995 upl_deallocate(upl);
2996
2997 return KERN_SUCCESS;
2998 }
2999
3000 if (cnt == 0) {
3001 /*
3002 * The caller was just poking at us to see if
3003 * the page has been paged out. No need to
3004 * mess with the page at all.
3005 * Just let the caller know we do have that page.
3006 */
3007 return KERN_SUCCESS;
3008 }
3009
3010 if(((vm_object_fault_info_t)fault_info)->io_sync == TRUE ) {
3011 io_sync = TRUE;
3012 } else {
3013 #if RECLAIM_SWAP
3014 io_sync = TRUE;
3015 #endif /* RECLAIM_SWAP */
3016 }
3017
3018 if( io_sync == TRUE ) {
3019
3020 io_flags |= UPL_IOSYNC | UPL_NOCOMMIT;
3021 #if USE_PRECIOUS
3022 request_flags |= UPL_PRECIOUS | UPL_CLEAN_IN_PLACE;
3023 #else /* USE_PRECIOUS */
3024 request_flags |= UPL_REQUEST_SET_DIRTY;
3025 #endif /* USE_PRECIOUS */
3026 }
3027
3028 assert(dp_encryption_inited);
3029 if (dp_encryption) {
3030 /*
3031 * ENCRYPTED SWAP:
3032 * request that the UPL be prepared for
3033 * decryption.
3034 */
3035 request_flags |= UPL_ENCRYPT;
3036 io_flags |= UPL_PAGING_ENCRYPTED;
3037 }
3038 orig_vs_offset = vs_offset;
3039
3040 assert(cnt != 0);
3041 cnt = VM_SUPER_CLUSTER;
3042 cluster_start = (memory_object_offset_t) vs_offset;
3043 cluster_length = (vm_size_t) cnt;
3044 io_streaming = 0;
3045
3046 /*
3047 * determine how big a speculative I/O we should try for...
3048 */
3049 if (memory_object_cluster_size(vs->vs_control, &cluster_start, &cluster_length, &io_streaming, (memory_object_fault_info_t)fault_info) == KERN_SUCCESS) {
3050 assert(vs_offset >= (dp_offset_t) cluster_start &&
3051 vs_offset < (dp_offset_t) (cluster_start + cluster_length));
3052 vs_offset = (dp_offset_t) cluster_start;
3053 cnt = (dp_size_t) cluster_length;
3054 } else {
3055 cluster_length = PAGE_SIZE;
3056 cnt = PAGE_SIZE;
3057 }
3058
3059 if (io_streaming)
3060 io_flags |= UPL_IOSTREAMING;
3061
3062 last_start = cluster_start;
3063 last_length = cluster_length;
3064
3065 /*
3066 * This loop will be executed multiple times until the entire
3067 * range has been looked at or we issue an I/O... if the request spans cluster
3068 * boundaries, the clusters will be checked for logical continunity,
3069 * if contiguous the I/O request will span multiple clusters...
3070 * at most only 1 I/O will be issued... it will encompass the original offset
3071 */
3072 while (cnt && error == KERN_SUCCESS) {
3073 int ps_info_valid;
3074
3075 if ((vs_offset & cl_mask) && (cnt > (VM_SUPER_CLUSTER - (vs_offset & cl_mask)))) {
3076 size = VM_SUPER_CLUSTER;
3077 size -= vs_offset & cl_mask;
3078 } else if (cnt > VM_SUPER_CLUSTER)
3079 size = VM_SUPER_CLUSTER;
3080 else
3081 size = cnt;
3082
3083 cnt -= size;
3084
3085 ps_info_valid = 0;
3086 seg_index = 0;
3087
3088 while (size > 0 && error == KERN_SUCCESS) {
3089 unsigned int abort_size;
3090 int failed_size;
3091 int beg_pseg;
3092 int beg_indx;
3093 dp_offset_t cur_offset;
3094
3095 if ( !ps_info_valid) {
3096 ps_offset[seg_index] = ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0);
3097 psp[seg_index] = CLMAP_PS(clmap);
3098 ps_info_valid = 1;
3099 }
3100 /*
3101 * skip over unallocated physical segments
3102 */
3103 if (ps_offset[seg_index] == (dp_offset_t) -1) {
3104 abort_size = cl_size - (vs_offset & cl_mask);
3105 abort_size = MIN(abort_size, size);
3106
3107 size -= abort_size;
3108 vs_offset += abort_size;
3109
3110 seg_index++;
3111 ps_info_valid = 0;
3112
3113 continue;
3114 }
3115 cl_index = (vs_offset & cl_mask) / vm_page_size;
3116
3117 for (abort_size = 0; cl_index < pages_in_cl && abort_size < size; cl_index++) {
3118 /*
3119 * skip over unallocated pages
3120 */
3121 if (CLMAP_ISSET(clmap, cl_index))
3122 break;
3123 abort_size += vm_page_size;
3124 }
3125 if (abort_size) {
3126 size -= abort_size;
3127 vs_offset += abort_size;
3128
3129 if (cl_index == pages_in_cl) {
3130 /*
3131 * if we're at the end of this physical cluster
3132 * then bump to the next one and continue looking
3133 */
3134 seg_index++;
3135 ps_info_valid = 0;
3136
3137 continue;
3138 }
3139 if (size == 0)
3140 break;
3141 }
3142 /*
3143 * remember the starting point of the first allocated page
3144 * for the I/O we're about to issue
3145 */
3146 beg_pseg = seg_index;
3147 beg_indx = cl_index;
3148 cur_offset = vs_offset;
3149
3150 /*
3151 * calculate the size of the I/O that we can do...
3152 * this may span multiple physical segments if
3153 * they are contiguous
3154 */
3155 for (xfer_size = 0; xfer_size < size; ) {
3156
3157 while (cl_index < pages_in_cl && xfer_size < size) {
3158 /*
3159 * accumulate allocated pages within
3160 * a physical segment
3161 */
3162 if (CLMAP_ISSET(clmap, cl_index)) {
3163 xfer_size += vm_page_size;
3164 cur_offset += vm_page_size;
3165 cl_index++;
3166
3167 BS_STAT(psp[seg_index]->ps_bs,
3168 psp[seg_index]->ps_bs->bs_pages_in++);
3169 } else
3170 break;
3171 }
3172 if (cl_index < pages_in_cl || xfer_size >= size) {
3173 /*
3174 * we've hit an unallocated page or
3175 * the end of this request... see if
3176 * it's time to fire the I/O
3177 */
3178 break;
3179 }
3180 /*
3181 * we've hit the end of the current physical
3182 * segment and there's more to do, so try
3183 * moving to the next one
3184 */
3185 seg_index++;
3186
3187 ps_offset[seg_index] = ps_clmap(vs, cur_offset & ~cl_mask, &clmap, CL_FIND, 0, 0);
3188 psp[seg_index] = CLMAP_PS(clmap);
3189 ps_info_valid = 1;
3190
3191 if ((ps_offset[seg_index - 1] != (ps_offset[seg_index] - cl_size)) || (psp[seg_index - 1] != psp[seg_index])) {
3192 /*
3193 * if the physical segment we're about
3194 * to step into is not contiguous to
3195 * the one we're currently in, or it's
3196 * in a different paging file, or
3197 * it hasn't been allocated....
3198 * we stop this run and go check
3199 * to see if it's time to fire the I/O
3200 */
3201 break;
3202 }
3203 /*
3204 * start with first page of the next physical
3205 * segment
3206 */
3207 cl_index = 0;
3208 }
3209 if (xfer_size == 0) {
3210 /*
3211 * no I/O to generate for this segment
3212 */
3213 continue;
3214 }
3215 if (cur_offset <= orig_vs_offset) {
3216 /*
3217 * we've hit a hole in our speculative cluster
3218 * before the offset that we're really after...
3219 * don't issue the I/O since it doesn't encompass
3220 * the original offset and we're looking to only
3221 * pull in the speculative pages if they can be
3222 * made part of a single I/O
3223 */
3224 size -= xfer_size;
3225 vs_offset += xfer_size;
3226
3227 continue;
3228 }
3229 /*
3230 * we have a contiguous range of allocated pages
3231 * to read from that encompasses the original offset
3232 */
3233 page_list_count = 0;
3234 memory_object_super_upl_request(vs->vs_control, (memory_object_offset_t)vs_offset,
3235 xfer_size, xfer_size,
3236 &upl, NULL, &page_list_count,
3237 request_flags | UPL_SET_INTERNAL);
3238
3239 error = ps_read_file(psp[beg_pseg],
3240 upl, (upl_offset_t) 0,
3241 ps_offset[beg_pseg] + (beg_indx * vm_page_size),
3242 xfer_size, &residual, io_flags);
3243
3244 failed_size = 0;
3245
3246 /*
3247 * Adjust counts and send response to VM. Optimize
3248 * for the common case, i.e. no error and/or partial
3249 * data. If there was an error, then we need to error
3250 * the entire range, even if some data was successfully
3251 * read. If there was a partial read we may supply some
3252 * data and may error some as well. In all cases the
3253 * VM must receive some notification for every page
3254 * in the range.
3255 */
3256 if ((error == KERN_SUCCESS) && (residual == 0)) {
3257 /*
3258 * Got everything we asked for, supply the data
3259 * to the VM. Note that as a side effect of
3260 * supplying the data, the buffer holding the
3261 * supplied data is deallocated from the pager's
3262 * address space.
3263 */
3264 pvs_object_data_provided(vs, upl, vs_offset, xfer_size);
3265 } else {
3266 failed_size = xfer_size;
3267
3268 if (error == KERN_SUCCESS) {
3269 if (residual == xfer_size) {
3270 /*
3271 * If a read operation returns no error
3272 * and no data moved, we turn it into
3273 * an error, assuming we're reading at
3274 * or beyong EOF.
3275 * Fall through and error the entire range.
3276 */
3277 error = KERN_FAILURE;
3278 } else {
3279 /*
3280 * Otherwise, we have partial read. If
3281 * the part read is a integral number
3282 * of pages supply it. Otherwise round
3283 * it up to a page boundary, zero fill
3284 * the unread part, and supply it.
3285 * Fall through and error the remainder
3286 * of the range, if any.
3287 */
3288 int fill;
3289 unsigned int lsize;
3290
3291 fill = residual & ~vm_page_size;
3292 lsize = (xfer_size - residual) + fill;
3293
3294 pvs_object_data_provided(vs, upl, vs_offset, lsize);
3295
3296 if (lsize < xfer_size) {
3297 failed_size = xfer_size - lsize;
3298 error = KERN_FAILURE;
3299 }
3300 }
3301 }
3302 }
3303 if (error != KERN_SUCCESS) {
3304 /*
3305 * There was an error in some part of the range, tell
3306 * the VM. Note that error is explicitly checked again
3307 * since it can be modified above.
3308 */
3309 BS_STAT(psp[beg_pseg]->ps_bs,
3310 psp[beg_pseg]->ps_bs->bs_pages_in_fail += atop_32(failed_size));
3311 }
3312 /*
3313 * we've issued a single I/O that encompassed the original offset
3314 * at this point we either met our speculative request length or
3315 * we ran into a 'hole' (i.e. page not present in the cluster, cluster
3316 * not present or not physically contiguous to the previous one), so
3317 * we're done issuing I/O at this point
3318 */
3319 return (error);
3320 }
3321 }
3322 return error;
3323 }
3324
3325 int vs_do_async_write = 1;
3326
3327 kern_return_t
3328 vs_cluster_write(
3329 vstruct_t vs,
3330 upl_t internal_upl,
3331 upl_offset_t offset,
3332 upl_size_t cnt,
3333 boolean_t dp_internal,
3334 int flags)
3335 {
3336 upl_size_t transfer_size;
3337 int error = 0;
3338 struct clmap clmap;
3339
3340 dp_offset_t actual_offset; /* Offset within paging segment */
3341 paging_segment_t ps;
3342 dp_offset_t mobj_base_addr;
3343 dp_offset_t mobj_target_addr;
3344
3345 upl_t upl;
3346 upl_page_info_t *pl;
3347 int page_index;
3348 unsigned int page_max_index;
3349 int list_size;
3350 int pages_in_cl;
3351 unsigned int cl_size;
3352 int base_index;
3353 unsigned int seg_size;
3354 unsigned int upl_offset_in_object;
3355 boolean_t minimal_clustering = FALSE;
3356 boolean_t found_dirty;
3357
3358 if (!dp_encryption_inited) {
3359 /*
3360 * ENCRYPTED SWAP:
3361 * Once we've started using swap, we
3362 * can't change our mind on whether
3363 * it needs to be encrypted or
3364 * not.
3365 */
3366 dp_encryption_inited = TRUE;
3367 }
3368 if (dp_encryption) {
3369 /*
3370 * ENCRYPTED SWAP:
3371 * the UPL will need to be encrypted...
3372 */
3373 flags |= UPL_PAGING_ENCRYPTED;
3374 }
3375
3376 pages_in_cl = 1 << vs->vs_clshift;
3377 cl_size = pages_in_cl * vm_page_size;
3378
3379 #if CONFIG_FREEZE
3380 minimal_clustering = TRUE;
3381 #else
3382 if (dp_isssd == TRUE)
3383 minimal_clustering = TRUE;
3384 #endif
3385 if (!dp_internal) {
3386 unsigned int page_list_count;
3387 int request_flags;
3388 unsigned int super_size;
3389 int first_dirty;
3390 int num_dirty;
3391 int num_of_pages;
3392 int seg_index;
3393 upl_offset_t upl_offset;
3394 upl_offset_t upl_offset_aligned;
3395 dp_offset_t seg_offset;
3396 dp_offset_t ps_offset[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_MIN_CLSHIFT) + 1];
3397 paging_segment_t psp[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_MIN_CLSHIFT) + 1];
3398
3399
3400 if (bs_low)
3401 super_size = cl_size;
3402 else
3403 super_size = VM_SUPER_CLUSTER;
3404
3405 request_flags = UPL_NOBLOCK | UPL_CLEAN_IN_PLACE |
3406 UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM |
3407 UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE;
3408
3409 if (dp_encryption) {
3410 /*
3411 * ENCRYPTED SWAP:
3412 * request that the UPL be prepared for
3413 * encryption.
3414 */
3415 request_flags |= UPL_ENCRYPT;
3416 flags |= UPL_PAGING_ENCRYPTED;
3417 }
3418
3419 page_list_count = 0;
3420 memory_object_super_upl_request(vs->vs_control,
3421 (memory_object_offset_t)offset,
3422 cnt, super_size,
3423 &upl, NULL, &page_list_count,
3424 request_flags | UPL_FOR_PAGEOUT);
3425
3426 /*
3427 * The default pager does not handle objects larger than
3428 * 4GB, so it does not deal with offset that don't fit in
3429 * 32-bit. Cast down upl->offset now and make sure we
3430 * did not lose any valuable bits.
3431 */
3432 upl_offset_in_object = (unsigned int) upl->offset;
3433 assert(upl->offset == upl_offset_in_object);
3434
3435 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
3436
3437 seg_size = cl_size - (upl_offset_in_object % cl_size);
3438 upl_offset_aligned = upl_offset_in_object & ~(cl_size - 1);
3439 page_index = 0;
3440 page_max_index = upl->size / PAGE_SIZE;
3441 found_dirty = TRUE;
3442
3443 for (seg_index = 0, transfer_size = upl->size; transfer_size > 0; ) {
3444
3445 unsigned int seg_pgcnt;
3446
3447 seg_pgcnt = seg_size / PAGE_SIZE;
3448
3449 if (minimal_clustering == TRUE) {
3450 unsigned int non_dirty;
3451
3452 non_dirty = 0;
3453 found_dirty = FALSE;
3454
3455 for (; non_dirty < seg_pgcnt; non_dirty++) {
3456 if ((page_index + non_dirty) >= page_max_index)
3457 break;
3458
3459 if (UPL_DIRTY_PAGE(pl, page_index + non_dirty) ||
3460 UPL_PRECIOUS_PAGE(pl, page_index + non_dirty)) {
3461 found_dirty = TRUE;
3462 break;
3463 }
3464 }
3465 }
3466 if (found_dirty == TRUE) {
3467 ps_offset[seg_index] =
3468 ps_clmap(vs,
3469 upl_offset_aligned,
3470 &clmap, CL_ALLOC,
3471 cl_size, 0);
3472
3473 if (ps_offset[seg_index] == (dp_offset_t) -1) {
3474 upl_abort(upl, 0);
3475 upl_deallocate(upl);
3476
3477 return KERN_FAILURE;
3478 }
3479 psp[seg_index] = CLMAP_PS(clmap);
3480 }
3481 if (transfer_size > seg_size) {
3482 page_index += seg_pgcnt;
3483 transfer_size -= seg_size;
3484 upl_offset_aligned += cl_size;
3485 seg_size = cl_size;
3486 seg_index++;
3487 } else
3488 transfer_size = 0;
3489 }
3490 /*
3491 * Ignore any non-present pages at the end of the
3492 * UPL.
3493 */
3494 for (page_index = upl->size / vm_page_size; page_index > 0;) {
3495 if (UPL_PAGE_PRESENT(pl, --page_index)) {
3496 page_index++;
3497 break;
3498 }
3499 }
3500 if (page_index == 0) {
3501 /*
3502 * no pages in the UPL
3503 * abort and return
3504 */
3505 upl_abort(upl, 0);
3506 upl_deallocate(upl);
3507
3508 return KERN_SUCCESS;
3509 }
3510 num_of_pages = page_index;
3511
3512 base_index = (upl_offset_in_object % cl_size) / PAGE_SIZE;
3513
3514 for (page_index = 0; page_index < num_of_pages; ) {
3515 /*
3516 * skip over non-dirty pages
3517 */
3518 for ( ; page_index < num_of_pages; page_index++) {
3519 if (UPL_DIRTY_PAGE(pl, page_index)
3520 || UPL_PRECIOUS_PAGE(pl, page_index))
3521 /*
3522 * this is a page we need to write
3523 * go see if we can buddy it up with
3524 * others that are contiguous to it
3525 */
3526 break;
3527 /*
3528 * if the page is not-dirty, but present we
3529 * need to commit it... This is an unusual
3530 * case since we only asked for dirty pages
3531 */
3532 if (UPL_PAGE_PRESENT(pl, page_index)) {
3533 boolean_t empty = FALSE;
3534 upl_commit_range(upl,
3535 page_index * vm_page_size,
3536 vm_page_size,
3537 UPL_COMMIT_NOTIFY_EMPTY,
3538 pl,
3539 page_list_count,
3540 &empty);
3541 if (empty) {
3542 assert(page_index ==
3543 num_of_pages - 1);
3544 upl_deallocate(upl);
3545 }
3546 }
3547 }
3548 if (page_index == num_of_pages)
3549 /*
3550 * no more pages to look at, we're out of here
3551 */
3552 break;
3553
3554 /*
3555 * gather up contiguous dirty pages... we have at
3556 * least 1 * otherwise we would have bailed above
3557 * make sure that each physical segment that we step
3558 * into is contiguous to the one we're currently in
3559 * if it's not, we have to stop and write what we have
3560 */
3561 for (first_dirty = page_index;
3562 page_index < num_of_pages; ) {
3563 if ( !UPL_DIRTY_PAGE(pl, page_index)
3564 && !UPL_PRECIOUS_PAGE(pl, page_index))
3565 break;
3566 page_index++;
3567 /*
3568 * if we just looked at the last page in the UPL
3569 * we don't need to check for physical segment
3570 * continuity
3571 */
3572 if (page_index < num_of_pages) {
3573 int cur_seg;
3574 int nxt_seg;
3575
3576 cur_seg = (base_index + (page_index - 1))/pages_in_cl;
3577 nxt_seg = (base_index + page_index)/pages_in_cl;
3578
3579 if (cur_seg != nxt_seg) {
3580 if ((ps_offset[cur_seg] != (ps_offset[nxt_seg] - cl_size)) || (psp[cur_seg] != psp[nxt_seg]))
3581 /*
3582 * if the segment we're about
3583 * to step into is not
3584 * contiguous to the one we're
3585 * currently in, or it's in a
3586 * different paging file....
3587 * we stop here and generate
3588 * the I/O
3589 */
3590 break;
3591 }
3592 }
3593 }
3594 num_dirty = page_index - first_dirty;
3595
3596 if (num_dirty) {
3597 upl_offset = first_dirty * vm_page_size;
3598 transfer_size = num_dirty * vm_page_size;
3599
3600 while (transfer_size) {
3601
3602 if ((seg_size = cl_size -
3603 ((upl_offset_in_object +
3604 upl_offset) % cl_size))
3605 > transfer_size)
3606 seg_size = transfer_size;
3607
3608 ps_vs_write_complete(
3609 vs,
3610 (upl_offset_in_object +
3611 upl_offset),
3612 seg_size, error);
3613
3614 transfer_size -= seg_size;
3615 upl_offset += seg_size;
3616 }
3617 upl_offset = first_dirty * vm_page_size;
3618 transfer_size = num_dirty * vm_page_size;
3619
3620 seg_index = (base_index + first_dirty) / pages_in_cl;
3621 seg_offset = (upl_offset_in_object + upl_offset) % cl_size;
3622
3623 error = ps_write_file(psp[seg_index],
3624 upl, upl_offset,
3625 ps_offset[seg_index]
3626 + seg_offset,
3627 transfer_size, flags);
3628 }
3629 }
3630
3631 } else {
3632 assert(cnt <= (unsigned) (vm_page_size << vs->vs_clshift));
3633 list_size = cnt;
3634
3635 page_index = 0;
3636 /* The caller provides a mapped_data which is derived */
3637 /* from a temporary object. The targeted pages are */
3638 /* guaranteed to be set at offset 0 in the mapped_data */
3639 /* The actual offset however must still be derived */
3640 /* from the offset in the vs in question */
3641 mobj_base_addr = offset;
3642 mobj_target_addr = mobj_base_addr;
3643
3644 for (transfer_size = list_size; transfer_size != 0;) {
3645 actual_offset = ps_clmap(vs, mobj_target_addr,
3646 &clmap, CL_ALLOC,
3647 transfer_size < cl_size ?
3648 transfer_size : cl_size, 0);
3649 if(actual_offset == (dp_offset_t) -1) {
3650 error = 1;
3651 break;
3652 }
3653 cnt = MIN(transfer_size,
3654 (unsigned) CLMAP_NPGS(clmap) * vm_page_size);
3655 ps = CLMAP_PS(clmap);
3656 /* Assume that the caller has given us contiguous */
3657 /* pages */
3658 if(cnt) {
3659 ps_vs_write_complete(vs, mobj_target_addr,
3660 cnt, error);
3661 error = ps_write_file(ps, internal_upl,
3662 0, actual_offset,
3663 cnt, flags);
3664 if (error)
3665 break;
3666 }
3667 if (error)
3668 break;
3669 actual_offset += cnt;
3670 mobj_target_addr += cnt;
3671 transfer_size -= cnt;
3672 cnt = 0;
3673
3674 if (error)
3675 break;
3676 }
3677 }
3678 if(error)
3679 return KERN_FAILURE;
3680 else
3681 return KERN_SUCCESS;
3682 }
3683
3684 vm_size_t
3685 ps_vstruct_allocated_size(
3686 vstruct_t vs)
3687 {
3688 int num_pages;
3689 struct vs_map *vsmap;
3690 unsigned int i, j, k;
3691
3692 num_pages = 0;
3693 if (vs->vs_indirect) {
3694 /* loop on indirect maps */
3695 for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) {
3696 vsmap = vs->vs_imap[i];
3697 if (vsmap == NULL)
3698 continue;
3699 /* loop on clusters in this indirect map */
3700 for (j = 0; j < CLMAP_ENTRIES; j++) {
3701 if (VSM_ISCLR(vsmap[j]) ||
3702 VSM_ISERR(vsmap[j]))
3703 continue;
3704 /* loop on pages in this cluster */
3705 for (k = 0; k < VSCLSIZE(vs); k++) {
3706 if ((VSM_BMAP(vsmap[j])) & (1 << k))
3707 num_pages++;
3708 }
3709 }
3710 }
3711 } else {
3712 vsmap = vs->vs_dmap;
3713 if (vsmap == NULL)
3714 return 0;
3715 /* loop on clusters in the direct map */
3716 for (j = 0; j < CLMAP_ENTRIES; j++) {
3717 if (VSM_ISCLR(vsmap[j]) ||
3718 VSM_ISERR(vsmap[j]))
3719 continue;
3720 /* loop on pages in this cluster */
3721 for (k = 0; k < VSCLSIZE(vs); k++) {
3722 if ((VSM_BMAP(vsmap[j])) & (1 << k))
3723 num_pages++;
3724 }
3725 }
3726 }
3727
3728 return ptoa_32(num_pages);
3729 }
3730
3731 unsigned int
3732 ps_vstruct_allocated_pages(
3733 vstruct_t vs,
3734 default_pager_page_t *pages,
3735 unsigned int pages_size)
3736 {
3737 unsigned int num_pages;
3738 struct vs_map *vsmap;
3739 dp_offset_t offset;
3740 unsigned int i, j, k;
3741
3742 num_pages = 0;
3743 offset = 0;
3744 if (vs->vs_indirect) {
3745 /* loop on indirect maps */
3746 for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) {
3747 vsmap = vs->vs_imap[i];
3748 if (vsmap == NULL) {
3749 offset += (vm_page_size * CLMAP_ENTRIES *
3750 VSCLSIZE(vs));
3751 continue;
3752 }
3753 /* loop on clusters in this indirect map */
3754 for (j = 0; j < CLMAP_ENTRIES; j++) {
3755 if (VSM_ISCLR(vsmap[j]) ||
3756 VSM_ISERR(vsmap[j])) {
3757 offset += vm_page_size * VSCLSIZE(vs);
3758 continue;
3759 }
3760 /* loop on pages in this cluster */
3761 for (k = 0; k < VSCLSIZE(vs); k++) {
3762 if ((VSM_BMAP(vsmap[j])) & (1 << k)) {
3763 num_pages++;
3764 if (num_pages < pages_size)
3765 pages++->dpp_offset =
3766 offset;
3767 }
3768 offset += vm_page_size;
3769 }
3770 }
3771 }
3772 } else {
3773 vsmap = vs->vs_dmap;
3774 if (vsmap == NULL)
3775 return 0;
3776 /* loop on clusters in the direct map */
3777 for (j = 0; j < CLMAP_ENTRIES; j++) {
3778 if (VSM_ISCLR(vsmap[j]) ||
3779 VSM_ISERR(vsmap[j])) {
3780 offset += vm_page_size * VSCLSIZE(vs);
3781 continue;
3782 }
3783 /* loop on pages in this cluster */
3784 for (k = 0; k < VSCLSIZE(vs); k++) {
3785 if ((VSM_BMAP(vsmap[j])) & (1 << k)) {
3786 num_pages++;
3787 if (num_pages < pages_size)
3788 pages++->dpp_offset = offset;
3789 }
3790 offset += vm_page_size;
3791 }
3792 }
3793 }
3794
3795 return num_pages;
3796 }
3797
3798
3799 kern_return_t
3800 ps_vstruct_transfer_from_segment(
3801 vstruct_t vs,
3802 paging_segment_t segment,
3803 upl_t upl)
3804 {
3805 struct vs_map *vsmap;
3806 // struct vs_map old_vsmap;
3807 // struct vs_map new_vsmap;
3808 unsigned int i, j;
3809
3810 VS_LOCK(vs); /* block all work on this vstruct */
3811 /* can't allow the normal multiple write */
3812 /* semantic because writes may conflict */
3813 vs->vs_xfer_pending = TRUE;
3814 vs_wait_for_sync_writers(vs);
3815 vs_start_write(vs);
3816 vs_wait_for_readers(vs);
3817 /* we will unlock the vs to allow other writes while transferring */
3818 /* and will be guaranteed of the persistance of the vs struct */
3819 /* because the caller of ps_vstruct_transfer_from_segment bumped */
3820 /* vs_async_pending */
3821 /* OK we now have guaranteed no other parties are accessing this */
3822 /* vs. Now that we are also supporting simple lock versions of */
3823 /* vs_lock we cannot hold onto VS_LOCK as we may block below. */
3824 /* our purpose in holding it before was the multiple write case */
3825 /* we now use the boolean xfer_pending to do that. We can use */
3826 /* a boolean instead of a count because we have guaranteed single */
3827 /* file access to this code in its caller */
3828 VS_UNLOCK(vs);
3829 vs_changed:
3830 if (vs->vs_indirect) {
3831 unsigned int vsmap_size;
3832 int clmap_off;
3833 /* loop on indirect maps */
3834 for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) {
3835 vsmap = vs->vs_imap[i];
3836 if (vsmap == NULL)
3837 continue;
3838 /* loop on clusters in this indirect map */
3839 clmap_off = (vm_page_size * CLMAP_ENTRIES *
3840 VSCLSIZE(vs) * i);
3841 if(i+1 == INDIRECT_CLMAP_ENTRIES(vs->vs_size))
3842 vsmap_size = vs->vs_size - (CLMAP_ENTRIES * i);
3843 else
3844 vsmap_size = CLMAP_ENTRIES;
3845 for (j = 0; j < vsmap_size; j++) {
3846 if (VSM_ISCLR(vsmap[j]) ||
3847 VSM_ISERR(vsmap[j]) ||
3848 (VSM_PS(vsmap[j]) != segment))
3849 continue;
3850 if(vs_cluster_transfer(vs,
3851 (vm_page_size * (j << vs->vs_clshift))
3852 + clmap_off,
3853 vm_page_size << vs->vs_clshift,
3854 upl)
3855 != KERN_SUCCESS) {
3856 VS_LOCK(vs);
3857 vs->vs_xfer_pending = FALSE;
3858 VS_UNLOCK(vs);
3859 vs_finish_write(vs);
3860 return KERN_FAILURE;
3861 }
3862 /* allow other readers/writers during transfer*/
3863 VS_LOCK(vs);
3864 vs->vs_xfer_pending = FALSE;
3865 VS_UNLOCK(vs);
3866 vs_finish_write(vs);
3867
3868 if (backing_store_abort_compaction || backing_store_stop_compaction) {
3869 backing_store_abort_compaction = FALSE;
3870 dprintf(("ps_vstruct_transfer_from_segment - ABORTED\n"));
3871 return KERN_FAILURE;
3872 }
3873 vnode_pager_throttle();
3874
3875 VS_LOCK(vs);
3876 vs->vs_xfer_pending = TRUE;
3877 vs_wait_for_sync_writers(vs);
3878 vs_start_write(vs);
3879 vs_wait_for_readers(vs);
3880 VS_UNLOCK(vs);
3881 if (!(vs->vs_indirect)) {
3882 goto vs_changed;
3883 }
3884 }
3885 }
3886 } else {
3887 vsmap = vs->vs_dmap;
3888 if (vsmap == NULL) {
3889 VS_LOCK(vs);
3890 vs->vs_xfer_pending = FALSE;
3891 VS_UNLOCK(vs);
3892 vs_finish_write(vs);
3893 return KERN_SUCCESS;
3894 }
3895 /* loop on clusters in the direct map */
3896 for (j = 0; j < vs->vs_size; j++) {
3897 if (VSM_ISCLR(vsmap[j]) ||
3898 VSM_ISERR(vsmap[j]) ||
3899 (VSM_PS(vsmap[j]) != segment))
3900 continue;
3901 if(vs_cluster_transfer(vs,
3902 vm_page_size * (j << vs->vs_clshift),
3903 vm_page_size << vs->vs_clshift,
3904 upl) != KERN_SUCCESS) {
3905 VS_LOCK(vs);
3906 vs->vs_xfer_pending = FALSE;
3907 VS_UNLOCK(vs);
3908 vs_finish_write(vs);
3909 return KERN_FAILURE;
3910 }
3911 /* allow other readers/writers during transfer*/
3912 VS_LOCK(vs);
3913 vs->vs_xfer_pending = FALSE;
3914 VS_UNLOCK(vs);
3915 vs_finish_write(vs);
3916 VS_LOCK(vs);
3917 vs->vs_xfer_pending = TRUE;
3918 vs_wait_for_sync_writers(vs);
3919 vs_start_write(vs);
3920 vs_wait_for_readers(vs);
3921 VS_UNLOCK(vs);
3922 if (vs->vs_indirect) {
3923 goto vs_changed;
3924 }
3925 }
3926 }
3927
3928 VS_LOCK(vs);
3929 vs->vs_xfer_pending = FALSE;
3930 VS_UNLOCK(vs);
3931 vs_finish_write(vs);
3932 return KERN_SUCCESS;
3933 }
3934
3935
3936
3937 vs_map_t
3938 vs_get_map_entry(
3939 vstruct_t vs,
3940 dp_offset_t offset)
3941 {
3942 struct vs_map *vsmap;
3943 dp_offset_t cluster;
3944
3945 cluster = atop_32(offset) >> vs->vs_clshift;
3946 if (vs->vs_indirect) {
3947 long ind_block = cluster/CLMAP_ENTRIES;
3948
3949 /* Is the indirect block allocated? */
3950 vsmap = vs->vs_imap[ind_block];
3951 if(vsmap == (vs_map_t) NULL)
3952 return vsmap;
3953 } else
3954 vsmap = vs->vs_dmap;
3955 vsmap += cluster%CLMAP_ENTRIES;
3956 return vsmap;
3957 }
3958
3959 kern_return_t
3960 vs_cluster_transfer(
3961 vstruct_t vs,
3962 dp_offset_t offset,
3963 dp_size_t cnt,
3964 upl_t upl)
3965 {
3966 dp_offset_t actual_offset;
3967 paging_segment_t ps;
3968 struct clmap clmap;
3969 kern_return_t error = KERN_SUCCESS;
3970 unsigned int size, size_wanted;
3971 int i;
3972 unsigned int residual = 0;
3973 unsigned int unavail_size;
3974 // default_pager_thread_t *dpt;
3975 // boolean_t dealloc;
3976 struct vs_map *vsmap_ptr = NULL;
3977 struct vs_map read_vsmap;
3978 struct vs_map original_read_vsmap;
3979 struct vs_map write_vsmap;
3980 // upl_t sync_upl;
3981 // vm_offset_t ioaddr;
3982
3983 /* vs_cluster_transfer reads in the pages of a cluster and
3984 * then writes these pages back to new backing store. The
3985 * segment the pages are being read from is assumed to have
3986 * been taken off-line and is no longer considered for new
3987 * space requests.
3988 */
3989
3990 /*
3991 * This loop will be executed once per cluster referenced.
3992 * Typically this means once, since it's unlikely that the
3993 * VM system will ask for anything spanning cluster boundaries.
3994 *
3995 * If there are holes in a cluster (in a paging segment), we stop
3996 * reading at the hole, then loop again, hoping to
3997 * find valid pages later in the cluster. This continues until
3998 * the entire range has been examined, and read, if present. The
3999 * pages are written as they are read. If a failure occurs after
4000 * some pages are written the unmap call at the bottom of the loop
4001 * recovers the backing store and the old backing store remains
4002 * in effect.
4003 */
4004
4005 VSM_CLR(write_vsmap);
4006 VSM_CLR(original_read_vsmap);
4007 /* grab the actual object's pages to sync with I/O */
4008 while (cnt && (error == KERN_SUCCESS)) {
4009 vsmap_ptr = vs_get_map_entry(vs, offset);
4010 actual_offset = ps_clmap(vs, offset, &clmap, CL_FIND, 0, 0);
4011
4012 if (actual_offset == (dp_offset_t) -1) {
4013
4014 /*
4015 * Nothing left to write in this cluster at least
4016 * set write cluster information for any previous
4017 * write, clear for next cluster, if there is one
4018 */
4019 unsigned int local_size, clmask, clsize;
4020
4021 clsize = vm_page_size << vs->vs_clshift;
4022 clmask = clsize - 1;
4023 local_size = clsize - (offset & clmask);
4024 ASSERT(local_size);
4025 local_size = MIN(local_size, cnt);
4026
4027 /* This cluster has no data in it beyond what may */
4028 /* have been found on a previous iteration through */
4029 /* the loop "write_vsmap" */
4030 *vsmap_ptr = write_vsmap;
4031 VSM_CLR(write_vsmap);
4032 VSM_CLR(original_read_vsmap);
4033
4034 cnt -= local_size;
4035 offset += local_size;
4036 continue;
4037 }
4038
4039 /*
4040 * Count up contiguous available or unavailable
4041 * pages.
4042 */
4043 ps = CLMAP_PS(clmap);
4044 ASSERT(ps);
4045 size = 0;
4046 unavail_size = 0;
4047 for (i = 0;
4048 (size < cnt) && (unavail_size < cnt) &&
4049 (i < CLMAP_NPGS(clmap)); i++) {
4050 if (CLMAP_ISSET(clmap, i)) {
4051 if (unavail_size != 0)
4052 break;
4053 size += vm_page_size;
4054 BS_STAT(ps->ps_bs,
4055 ps->ps_bs->bs_pages_in++);
4056 } else {
4057 if (size != 0)
4058 break;
4059 unavail_size += vm_page_size;
4060 }
4061 }
4062
4063 if (size == 0) {
4064 ASSERT(unavail_size);
4065 ps_clunmap(vs, offset, unavail_size);
4066 cnt -= unavail_size;
4067 offset += unavail_size;
4068 if((offset & ((vm_page_size << vs->vs_clshift) - 1))
4069 == 0) {
4070 /* There is no more to transfer in this
4071 cluster
4072 */
4073 *vsmap_ptr = write_vsmap;
4074 VSM_CLR(write_vsmap);
4075 VSM_CLR(original_read_vsmap);
4076 }
4077 continue;
4078 }
4079
4080 if(VSM_ISCLR(original_read_vsmap))
4081 original_read_vsmap = *vsmap_ptr;
4082
4083 if(ps->ps_segtype == PS_PARTITION) {
4084 panic("swap partition not supported\n");
4085 /*NOTREACHED*/
4086 error = KERN_FAILURE;
4087 residual = size;
4088 /*
4089 NEED TO ISSUE WITH SYNC & NO COMMIT
4090 error = ps_read_device(ps, actual_offset, &buffer,
4091 size, &residual, flags);
4092 */
4093 } else {
4094 /* NEED TO ISSUE WITH SYNC & NO COMMIT */
4095 error = ps_read_file(ps, upl, (upl_offset_t) 0, actual_offset,
4096 size, &residual,
4097 (UPL_IOSYNC | UPL_NOCOMMIT | (dp_encryption ? UPL_PAGING_ENCRYPTED : 0)));
4098 }
4099
4100 read_vsmap = *vsmap_ptr;
4101
4102
4103 /*
4104 * Adjust counts and put data in new BS. Optimize for the
4105 * common case, i.e. no error and/or partial data.
4106 * If there was an error, then we need to error the entire
4107 * range, even if some data was successfully read.
4108 *
4109 */
4110 if ((error == KERN_SUCCESS) && (residual == 0)) {
4111
4112 /*
4113 * Got everything we asked for, supply the data to
4114 * the new BS. Note that as a side effect of supplying
4115 * the data, the buffer holding the supplied data is
4116 * deallocated from the pager's address space unless
4117 * the write is unsuccessful.
4118 */
4119
4120 /* note buffer will be cleaned up in all cases by */
4121 /* internal_cluster_write or if an error on write */
4122 /* the vm_map_copy_page_discard call */
4123 *vsmap_ptr = write_vsmap;
4124
4125 if(vs_cluster_write(vs, upl, offset,
4126 size, TRUE, UPL_IOSYNC | UPL_NOCOMMIT ) != KERN_SUCCESS) {
4127 error = KERN_FAILURE;
4128 if(!(VSM_ISCLR(*vsmap_ptr))) {
4129 /* unmap the new backing store object */
4130 ps_clunmap(vs, offset, size);
4131 }
4132 /* original vsmap */
4133 *vsmap_ptr = original_read_vsmap;
4134 VSM_CLR(write_vsmap);
4135 } else {
4136 if((offset + size) &
4137 ((vm_page_size << vs->vs_clshift)
4138 - 1)) {
4139 /* There is more to transfer in this
4140 cluster
4141 */
4142 write_vsmap = *vsmap_ptr;
4143 *vsmap_ptr = read_vsmap;
4144 ps_clunmap(vs, offset, size);
4145 } else {
4146 /* discard the old backing object */
4147 write_vsmap = *vsmap_ptr;
4148 *vsmap_ptr = read_vsmap;
4149 ps_clunmap(vs, offset, size);
4150 *vsmap_ptr = write_vsmap;
4151 VSM_CLR(write_vsmap);
4152 VSM_CLR(original_read_vsmap);
4153 }
4154 }
4155 } else {
4156 size_wanted = size;
4157 if (error == KERN_SUCCESS) {
4158 if (residual == size) {
4159 /*
4160 * If a read operation returns no error
4161 * and no data moved, we turn it into
4162 * an error, assuming we're reading at
4163 * or beyond EOF.
4164 * Fall through and error the entire
4165 * range.
4166 */
4167 error = KERN_FAILURE;
4168 *vsmap_ptr = write_vsmap;
4169 if(!(VSM_ISCLR(*vsmap_ptr))) {
4170 /* unmap the new backing store object */
4171 ps_clunmap(vs, offset, size);
4172 }
4173 *vsmap_ptr = original_read_vsmap;
4174 VSM_CLR(write_vsmap);
4175 continue;
4176 } else {
4177 /*
4178 * Otherwise, we have partial read.
4179 * This is also considered an error
4180 * for the purposes of cluster transfer
4181 */
4182 error = KERN_FAILURE;
4183 *vsmap_ptr = write_vsmap;
4184 if(!(VSM_ISCLR(*vsmap_ptr))) {
4185 /* unmap the new backing store object */
4186 ps_clunmap(vs, offset, size);
4187 }
4188 *vsmap_ptr = original_read_vsmap;
4189 VSM_CLR(write_vsmap);
4190 continue;
4191 }
4192 }
4193
4194 }
4195 cnt -= size;
4196 offset += size;
4197
4198 } /* END while (cnt && (error == 0)) */
4199 if(!VSM_ISCLR(write_vsmap))
4200 *vsmap_ptr = write_vsmap;
4201
4202 return error;
4203 }
4204
4205 kern_return_t
4206 default_pager_add_file(
4207 MACH_PORT_FACE backing_store,
4208 vnode_ptr_t vp,
4209 int record_size,
4210 vm_size_t size)
4211 {
4212 backing_store_t bs;
4213 paging_segment_t ps;
4214 int i;
4215 unsigned int j;
4216 int error;
4217
4218 if ((bs = backing_store_lookup(backing_store))
4219 == BACKING_STORE_NULL)
4220 return KERN_INVALID_ARGUMENT;
4221
4222 PSL_LOCK();
4223 for (i = 0; i <= paging_segment_max; i++) {
4224 ps = paging_segments[i];
4225 if (ps == PAGING_SEGMENT_NULL)
4226 continue;
4227 if (ps->ps_segtype != PS_FILE)
4228 continue;
4229
4230 /*
4231 * Check for overlap on same device.
4232 */
4233 if (ps->ps_vnode == (struct vnode *)vp) {
4234 PSL_UNLOCK();
4235 BS_UNLOCK(bs);
4236 return KERN_INVALID_ARGUMENT;
4237 }
4238 }
4239 PSL_UNLOCK();
4240
4241 /*
4242 * Set up the paging segment
4243 */
4244 ps = (paging_segment_t) kalloc(sizeof (struct paging_segment));
4245 if (ps == PAGING_SEGMENT_NULL) {
4246 BS_UNLOCK(bs);
4247 return KERN_RESOURCE_SHORTAGE;
4248 }
4249
4250 ps->ps_segtype = PS_FILE;
4251 ps->ps_vnode = (struct vnode *)vp;
4252 ps->ps_offset = 0;
4253 ps->ps_record_shift = local_log2(vm_page_size / record_size);
4254 assert((dp_size_t) size == size);
4255 ps->ps_recnum = (dp_size_t) size;
4256 ps->ps_pgnum = ((dp_size_t) size) >> ps->ps_record_shift;
4257
4258 ps->ps_pgcount = ps->ps_pgnum;
4259 ps->ps_clshift = local_log2(bs->bs_clsize);
4260 ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift;
4261 ps->ps_special_clusters = 0;
4262 ps->ps_hint = 0;
4263
4264 PS_LOCK_INIT(ps);
4265 ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls));
4266 if (!ps->ps_bmap) {
4267 PS_LOCK_DESTROY(ps);
4268 kfree(ps, sizeof *ps);
4269 BS_UNLOCK(bs);
4270 return KERN_RESOURCE_SHORTAGE;
4271 }
4272 for (j = 0; j < ps->ps_ncls; j++) {
4273 clrbit(ps->ps_bmap, j);
4274 }
4275
4276 if(paging_segment_count == 0) {
4277 ps->ps_state = PS_EMERGENCY_SEGMENT;
4278 if(use_emergency_swap_file_first) {
4279 ps->ps_state |= PS_CAN_USE;
4280 }
4281 emergency_segment_backing_store = backing_store;
4282 } else {
4283 ps->ps_state = PS_CAN_USE;
4284 }
4285
4286 ps->ps_bs = bs;
4287
4288 if ((error = ps_enter(ps)) != 0) {
4289 kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls));
4290 PS_LOCK_DESTROY(ps);
4291 kfree(ps, sizeof *ps);
4292 BS_UNLOCK(bs);
4293 return KERN_RESOURCE_SHORTAGE;
4294 }
4295
4296 bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift;
4297 bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift;
4298 PSL_LOCK();
4299 if(IS_PS_OK_TO_USE(ps)) {
4300 dp_pages_free += ps->ps_pgcount;
4301 } else {
4302 dp_pages_reserve += ps->ps_pgcount;
4303 }
4304 PSL_UNLOCK();
4305
4306 BS_UNLOCK(bs);
4307
4308 bs_more_space(ps->ps_clcount);
4309
4310 /*
4311 * If the paging segment being activated is not the emergency
4312 * segment and we notice that the emergency segment is being
4313 * used then we help recover it. If all goes well, the
4314 * emergency segment will be back to its original state of
4315 * online but not activated (till it's needed the next time).
4316 */
4317 #if CONFIG_FREEZE
4318 if (!memorystatus_freeze_enabled)
4319 #endif
4320 {
4321 ps = paging_segments[EMERGENCY_PSEG_INDEX];
4322 if(IS_PS_EMERGENCY_SEGMENT(ps) && IS_PS_OK_TO_USE(ps)) {
4323 if(default_pager_backing_store_delete(emergency_segment_backing_store)) {
4324 dprintf(("Failed to recover emergency paging segment\n"));
4325 } else {
4326 dprintf(("Recovered emergency paging segment\n"));
4327 }
4328 }
4329 }
4330
4331 DP_DEBUG(DEBUG_BS_INTERNAL,
4332 ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n",
4333 device, offset, (dp_size_t) size, record_size,
4334 ps->ps_record_shift, ps->ps_pgnum));
4335
4336 return KERN_SUCCESS;
4337 }
4338
4339
4340
4341 kern_return_t
4342 ps_read_file(
4343 paging_segment_t ps,
4344 upl_t upl,
4345 upl_offset_t upl_offset,
4346 dp_offset_t offset,
4347 upl_size_t size,
4348 unsigned int *residualp,
4349 int flags)
4350 {
4351 vm_object_offset_t f_offset;
4352 int error = 0;
4353 int result;
4354
4355 assert(dp_encryption_inited);
4356
4357 clustered_reads[atop_32(size)]++;
4358
4359 f_offset = (vm_object_offset_t)(ps->ps_offset + offset);
4360
4361 /*
4362 * for transfer case we need to pass uploffset and flags
4363 */
4364 assert((upl_size_t) size == size);
4365 error = vnode_pagein(ps->ps_vnode, upl, upl_offset, f_offset, (upl_size_t)size, flags, NULL);
4366
4367 /* The vnode_pagein semantic is somewhat at odds with the existing */
4368 /* device_read semantic. Partial reads are not experienced at this */
4369 /* level. It is up to the bit map code and cluster read code to */
4370 /* check that requested data locations are actually backed, and the */
4371 /* pagein code to either read all of the requested data or return an */
4372 /* error. */
4373
4374 if (error)
4375 result = KERN_FAILURE;
4376 else {
4377 *residualp = 0;
4378 result = KERN_SUCCESS;
4379 }
4380 return result;
4381 }
4382
4383 kern_return_t
4384 ps_write_file(
4385 paging_segment_t ps,
4386 upl_t upl,
4387 upl_offset_t upl_offset,
4388 dp_offset_t offset,
4389 unsigned int size,
4390 int flags)
4391 {
4392 vm_object_offset_t f_offset;
4393 kern_return_t result;
4394
4395 assert(dp_encryption_inited);
4396
4397 clustered_writes[atop_32(size)]++;
4398 f_offset = (vm_object_offset_t)(ps->ps_offset + offset);
4399
4400 if (flags & UPL_PAGING_ENCRYPTED) {
4401 /*
4402 * ENCRYPTED SWAP:
4403 * encrypt all the pages that we're going
4404 * to pageout.
4405 */
4406 upl_encrypt(upl, upl_offset, size);
4407 }
4408 assert((upl_size_t) size == size);
4409 if (vnode_pageout(ps->ps_vnode, upl, upl_offset, f_offset, (upl_size_t)size, flags, NULL))
4410 result = KERN_FAILURE;
4411 else
4412 result = KERN_SUCCESS;
4413
4414 return result;
4415 }
4416
4417 static inline void ps_vnode_trim_init(struct ps_vnode_trim_data *data)
4418 {
4419 #if CONFIG_EMBEDDED
4420 data->vp = NULL;
4421 data->offset = 0;
4422 data->length = 0;
4423 #else
4424 #pragma unused(data)
4425 #endif
4426 }
4427
4428 static inline void ps_vnode_trim_now(struct ps_vnode_trim_data *data)
4429 {
4430 #if CONFIG_EMBEDDED
4431 if ((data->vp) != NULL) {
4432 vnode_trim(data->vp,
4433 data->offset,
4434 data->length);
4435 ps_vnode_trim_init(data);
4436 }
4437 #else
4438 #pragma unused(data)
4439 #endif
4440 }
4441
4442 static inline void ps_vnode_trim_more(struct ps_vnode_trim_data *data, struct vs_map *map, unsigned int shift, dp_size_t length)
4443 {
4444 #if CONFIG_EMBEDDED
4445 struct vnode *vp = VSM_PS(*map)->ps_vnode;
4446 dp_offset_t offset = ptoa_32(VSM_CLOFF(*map)) << shift;
4447
4448 if ((vp != data->vp) || (offset) != (data->offset + data->length)) {
4449 ps_vnode_trim_now(data);
4450 data->vp = vp;
4451 data->offset = offset;
4452 data->length = 0;
4453 }
4454 data->length += (length);
4455 #else
4456 #pragma unused(data, map, shift, length)
4457 #endif
4458 }
4459
4460 kern_return_t
4461 default_pager_triggers( __unused MACH_PORT_FACE default_pager,
4462 int hi_wat,
4463 int lo_wat,
4464 int flags,
4465 MACH_PORT_FACE trigger_port)
4466 {
4467 MACH_PORT_FACE release = IPC_PORT_NULL;
4468 kern_return_t kr;
4469 clock_sec_t now;
4470 clock_nsec_t nanoseconds_dummy;
4471 static clock_sec_t error_notify = 0;
4472
4473 PSL_LOCK();
4474 if (flags == SWAP_ENCRYPT_ON) {
4475 /* ENCRYPTED SWAP: turn encryption on */
4476 release = trigger_port;
4477 if (!dp_encryption_inited) {
4478 dp_encryption_inited = TRUE;
4479 dp_encryption = TRUE;
4480 kr = KERN_SUCCESS;
4481 } else {
4482 kr = KERN_FAILURE;
4483 }
4484 } else if (flags == SWAP_ENCRYPT_OFF) {
4485 /* ENCRYPTED SWAP: turn encryption off */
4486 release = trigger_port;
4487 if (!dp_encryption_inited) {
4488 dp_encryption_inited = TRUE;
4489 dp_encryption = FALSE;
4490 kr = KERN_SUCCESS;
4491 } else {
4492 kr = KERN_FAILURE;
4493 }
4494 } else if (flags == HI_WAT_ALERT) {
4495 release = min_pages_trigger_port;
4496 #if CONFIG_FREEZE
4497 /* High and low water signals aren't applicable when freeze is */
4498 /* enabled, so release the trigger ports here and return */
4499 /* KERN_FAILURE. */
4500 if (memorystatus_freeze_enabled) {
4501 if (IP_VALID( trigger_port )){
4502 ipc_port_release_send( trigger_port );
4503 }
4504 min_pages_trigger_port = IPC_PORT_NULL;
4505 kr = KERN_FAILURE;
4506 }
4507 else
4508 #endif
4509 {
4510 min_pages_trigger_port = trigger_port;
4511 minimum_pages_remaining = hi_wat/vm_page_size;
4512 bs_low = FALSE;
4513 kr = KERN_SUCCESS;
4514 }
4515 } else if (flags == LO_WAT_ALERT) {
4516 release = max_pages_trigger_port;
4517 #if CONFIG_FREEZE
4518 if (memorystatus_freeze_enabled) {
4519 if (IP_VALID( trigger_port )){
4520 ipc_port_release_send( trigger_port );
4521 }
4522 max_pages_trigger_port = IPC_PORT_NULL;
4523 kr = KERN_FAILURE;
4524 }
4525 else
4526 #endif
4527 {
4528 max_pages_trigger_port = trigger_port;
4529 maximum_pages_free = lo_wat/vm_page_size;
4530 kr = KERN_SUCCESS;
4531 }
4532 } else if (flags == USE_EMERGENCY_SWAP_FILE_FIRST) {
4533 use_emergency_swap_file_first = TRUE;
4534 release = trigger_port;
4535 kr = KERN_SUCCESS;
4536 } else if (flags == SWAP_FILE_CREATION_ERROR) {
4537 release = trigger_port;
4538 kr = KERN_SUCCESS;
4539 if( paging_segment_count == 1) {
4540 use_emergency_swap_file_first = TRUE;
4541 }
4542 no_paging_space_action();
4543 clock_get_system_nanotime(&now, &nanoseconds_dummy);
4544 if (now > error_notify + 5) {
4545 dprintf(("Swap File Error.\n"));
4546 error_notify = now;
4547 }
4548 } else {
4549 release = trigger_port;
4550 kr = KERN_INVALID_ARGUMENT;
4551 }
4552 PSL_UNLOCK();
4553
4554 if (IP_VALID(release))
4555 ipc_port_release_send(release);
4556
4557 return kr;
4558 }
4559
4560 /*
4561 * Monitor the amount of available backing store vs. the amount of
4562 * required backing store, notify a listener (if present) when
4563 * backing store may safely be removed.
4564 *
4565 * We attempt to avoid the situation where backing store is
4566 * discarded en masse, as this can lead to thrashing as the
4567 * backing store is compacted.
4568 */
4569
4570 #define PF_INTERVAL 3 /* time between free level checks */
4571 #define PF_LATENCY 10 /* number of intervals before release */
4572
4573 static int dp_pages_free_low_count = 0;
4574 thread_call_t default_pager_backing_store_monitor_callout;
4575
4576 void
4577 default_pager_backing_store_monitor(__unused thread_call_param_t p1,
4578 __unused thread_call_param_t p2)
4579 {
4580 // unsigned long long average;
4581 ipc_port_t trigger;
4582 uint64_t deadline;
4583
4584 /*
4585 * We determine whether it will be safe to release some
4586 * backing store by watching the free page level. If
4587 * it remains below the maximum_pages_free threshold for
4588 * at least PF_LATENCY checks (taken at PF_INTERVAL seconds)
4589 * then we deem it safe.
4590 *
4591 * Note that this establishes a maximum rate at which backing
4592 * store will be released, as each notification (currently)
4593 * only results in a single backing store object being
4594 * released.
4595 */
4596 if (dp_pages_free > maximum_pages_free) {
4597 dp_pages_free_low_count++;
4598 } else {
4599 dp_pages_free_low_count = 0;
4600 }
4601
4602 /* decide whether to send notification */
4603 trigger = IP_NULL;
4604 if (max_pages_trigger_port &&
4605 (backing_store_release_trigger_disable == 0) &&
4606 (dp_pages_free_low_count > PF_LATENCY)) {
4607 trigger = max_pages_trigger_port;
4608 max_pages_trigger_port = NULL;
4609 }
4610
4611 /* send notification */
4612 if (trigger != IP_NULL) {
4613 VSL_LOCK();
4614 if(backing_store_release_trigger_disable != 0) {
4615 assert_wait((event_t)
4616 &backing_store_release_trigger_disable,
4617 THREAD_UNINT);
4618 VSL_UNLOCK();
4619 thread_block(THREAD_CONTINUE_NULL);
4620 } else {
4621 VSL_UNLOCK();
4622 }
4623 dprintf(("default_pager_backing_store_monitor - send LO_WAT_ALERT\n"));
4624
4625 default_pager_space_alert(trigger, LO_WAT_ALERT);
4626 ipc_port_release_send(trigger);
4627 dp_pages_free_low_count = 0;
4628 }
4629
4630 clock_interval_to_deadline(PF_INTERVAL, NSEC_PER_SEC, &deadline);
4631 thread_call_enter_delayed(default_pager_backing_store_monitor_callout, deadline);
4632 }
4633
4634 #if CONFIG_FREEZE
4635 unsigned int default_pager_swap_pages_free() {
4636 return dp_pages_free;
4637 }
4638 #endif