]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_fw2.c
xnu-2050.48.11.tar.gz
[apple/xnu.git] / bsd / netinet / ip_fw2.c
1 /*
2 * Copyright (c) 2004-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.18 2003/10/17 11:01:03 scottl Exp $
54 */
55
56 #define DEB(x)
57 #define DDB(x) x
58
59 /*
60 * Implement IP packet firewall (new version)
61 */
62
63 #ifndef INET
64 #error IPFIREWALL requires INET.
65 #endif /* INET */
66
67 #if IPFW2
68 #include <machine/spl.h>
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mcache.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/ucred.h>
82 #include <sys/kern_event.h>
83 #include <sys/kauth.h>
84
85 #include <net/if.h>
86 #include <net/route.h>
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_icmp.h>
94 #include <netinet/ip_fw.h>
95 #include <netinet/ip_divert.h>
96
97 #if DUMMYNET
98 #include <netinet/ip_dummynet.h>
99 #endif /* DUMMYNET */
100
101 #include <netinet/tcp.h>
102 #include <netinet/tcp_timer.h>
103 #include <netinet/tcp_var.h>
104 #include <netinet/tcpip.h>
105 #include <netinet/udp.h>
106 #include <netinet/udp_var.h>
107
108 #ifdef IPSEC
109 #include <netinet6/ipsec.h>
110 #endif
111
112 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
113
114 #include "ip_fw2_compat.h"
115
116 #include <sys/kern_event.h>
117 #include <stdarg.h>
118
119 /*
120 #include <machine/in_cksum.h>
121 */ /* XXX for in_cksum */
122
123 /*
124 * XXX This one should go in sys/mbuf.h. It is used to avoid that
125 * a firewall-generated packet loops forever through the firewall.
126 */
127 #ifndef M_SKIP_FIREWALL
128 #define M_SKIP_FIREWALL 0x4000
129 #endif
130
131 /*
132 * set_disable contains one bit per set value (0..31).
133 * If the bit is set, all rules with the corresponding set
134 * are disabled. Set RESVD_SET(31) is reserved for the default rule
135 * and rules that are not deleted by the flush command,
136 * and CANNOT be disabled.
137 * Rules in set RESVD_SET can only be deleted explicitly.
138 */
139 static u_int32_t set_disable;
140
141 int fw_verbose;
142 static int verbose_limit;
143 extern int fw_bypass;
144
145 #define IPFW_RULE_INACTIVE 1
146
147 /*
148 * list of rules for layer 3
149 */
150 static struct ip_fw *layer3_chain;
151
152 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
153
154 static int fw_debug = 0;
155 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
156
157 static void ipfw_kev_post_msg(u_int32_t );
158
159 static int Get32static_len(void);
160 static int Get64static_len(void);
161
162 #ifdef SYSCTL_NODE
163
164 static int ipfw_sysctl SYSCTL_HANDLER_ARGS;
165
166 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Firewall");
167 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
168 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
169 &fw_enable, 0, ipfw_sysctl, "I", "Enable ipfw");
170 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW | CTLFLAG_LOCKED,
171 &autoinc_step, 0, "Rule number autincrement step");
172 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
173 CTLFLAG_RW | CTLFLAG_LOCKED,
174 &fw_one_pass, 0,
175 "Only do a single pass through ipfw when using dummynet(4)");
176 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug,
177 CTLFLAG_RW | CTLFLAG_LOCKED,
178 &fw_debug, 0, "Enable printing of debug ip_fw statements");
179 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
180 CTLFLAG_RW | CTLFLAG_LOCKED,
181 &fw_verbose, 0, "Log matches to ipfw rules");
182 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW | CTLFLAG_LOCKED,
183 &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
184
185 /*
186 * Description of dynamic rules.
187 *
188 * Dynamic rules are stored in lists accessed through a hash table
189 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
190 * be modified through the sysctl variable dyn_buckets which is
191 * updated when the table becomes empty.
192 *
193 * XXX currently there is only one list, ipfw_dyn.
194 *
195 * When a packet is received, its address fields are first masked
196 * with the mask defined for the rule, then hashed, then matched
197 * against the entries in the corresponding list.
198 * Dynamic rules can be used for different purposes:
199 * + stateful rules;
200 * + enforcing limits on the number of sessions;
201 * + in-kernel NAT (not implemented yet)
202 *
203 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
204 * measured in seconds and depending on the flags.
205 *
206 * The total number of dynamic rules is stored in dyn_count.
207 * The max number of dynamic rules is dyn_max. When we reach
208 * the maximum number of rules we do not create anymore. This is
209 * done to avoid consuming too much memory, but also too much
210 * time when searching on each packet (ideally, we should try instead
211 * to put a limit on the length of the list on each bucket...).
212 *
213 * Each dynamic rule holds a pointer to the parent ipfw rule so
214 * we know what action to perform. Dynamic rules are removed when
215 * the parent rule is deleted. XXX we should make them survive.
216 *
217 * There are some limitations with dynamic rules -- we do not
218 * obey the 'randomized match', and we do not do multiple
219 * passes through the firewall. XXX check the latter!!!
220 */
221 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
222 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
223 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
224
225 /*
226 * Timeouts for various events in handing dynamic rules.
227 */
228 static u_int32_t dyn_ack_lifetime = 300;
229 static u_int32_t dyn_syn_lifetime = 20;
230 static u_int32_t dyn_fin_lifetime = 1;
231 static u_int32_t dyn_rst_lifetime = 1;
232 static u_int32_t dyn_udp_lifetime = 10;
233 static u_int32_t dyn_short_lifetime = 5;
234
235 /*
236 * Keepalives are sent if dyn_keepalive is set. They are sent every
237 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
238 * seconds of lifetime of a rule.
239 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
240 * than dyn_keepalive_period.
241 */
242
243 static u_int32_t dyn_keepalive_interval = 20;
244 static u_int32_t dyn_keepalive_period = 5;
245 static u_int32_t dyn_keepalive = 1; /* do send keepalives */
246
247 static u_int32_t static_count; /* # of static rules */
248 static u_int32_t static_len; /* size in bytes of static rules */
249 static u_int32_t static_len_32; /* size in bytes of static rules for 32 bit client */
250 static u_int32_t static_len_64; /* size in bytes of static rules for 64 bit client */
251 static u_int32_t dyn_count; /* # of dynamic rules */
252 static u_int32_t dyn_max = 4096; /* max # of dynamic rules */
253
254 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW | CTLFLAG_LOCKED,
255 &dyn_buckets, 0, "Number of dyn. buckets");
256 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD | CTLFLAG_LOCKED,
257 &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
258 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD | CTLFLAG_LOCKED,
259 &dyn_count, 0, "Number of dyn. rules");
260 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW | CTLFLAG_LOCKED,
261 &dyn_max, 0, "Max number of dyn. rules");
262 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD | CTLFLAG_LOCKED,
263 &static_count, 0, "Number of static rules");
264 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED,
265 &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
266 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED,
267 &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
268 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED,
269 &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
270 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED,
271 &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
272 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED,
273 &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
274 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED,
275 &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
276 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW | CTLFLAG_LOCKED,
277 &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
278
279
280 static int
281 ipfw_sysctl SYSCTL_HANDLER_ARGS
282 {
283 #pragma unused(arg1, arg2)
284 int error;
285
286 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
287 if (error || !req->newptr)
288 return (error);
289
290 ipfw_kev_post_msg(KEV_IPFW_ENABLE);
291
292 return error;
293 }
294
295 #endif /* SYSCTL_NODE */
296
297
298 static ip_fw_chk_t ipfw_chk;
299
300 /* firewall lock */
301 lck_grp_t *ipfw_mutex_grp;
302 lck_grp_attr_t *ipfw_mutex_grp_attr;
303 lck_attr_t *ipfw_mutex_attr;
304 decl_lck_mtx_data(,ipfw_mutex_data);
305 lck_mtx_t *ipfw_mutex = &ipfw_mutex_data;
306
307 extern void ipfwsyslog( int level, const char *format,...);
308
309 #define KEV_LOG_SUBCLASS 10
310 #define IPFWLOGEVENT 0
311
312 #define ipfwstring "ipfw:"
313 static size_t ipfwstringlen;
314
315 #define dolog( a ) { \
316 if ( fw_verbose == 2 ) /* Apple logging, log to ipfw.log */ \
317 ipfwsyslog a ; \
318 else log a ; \
319 }
320
321 #define RULESIZE64(rule) (sizeof(struct ip_fw_64) + \
322 ((struct ip_fw *)(rule))->cmd_len * 4 - 4)
323
324 #define RULESIZE32(rule) (sizeof(struct ip_fw_32) + \
325 ((struct ip_fw *)(rule))->cmd_len * 4 - 4)
326
327 void ipfwsyslog( int level, const char *format,...)
328 {
329 #define msgsize 100
330
331 struct kev_msg ev_msg;
332 va_list ap;
333 char msgBuf[msgsize];
334 char *dptr = msgBuf;
335 unsigned char pri;
336 int loglen;
337
338 bzero(msgBuf, msgsize);
339 bzero(&ev_msg, sizeof(struct kev_msg));
340 va_start( ap, format );
341 loglen = vsnprintf(msgBuf, msgsize, format, ap);
342 va_end( ap );
343
344 ev_msg.vendor_code = KEV_VENDOR_APPLE;
345 ev_msg.kev_class = KEV_NETWORK_CLASS;
346 ev_msg.kev_subclass = KEV_LOG_SUBCLASS;
347 ev_msg.event_code = IPFWLOGEVENT;
348
349 /* get rid of the trailing \n */
350 if (loglen < msgsize)
351 dptr[loglen-1] = 0;
352 else
353 dptr[msgsize-1] = 0;
354
355 pri = LOG_PRI(level);
356
357 /* remove "ipfw:" prefix if logging to ipfw log */
358 if ( !(strncmp( ipfwstring, msgBuf, ipfwstringlen))){
359 dptr = msgBuf+ipfwstringlen;
360 }
361
362 ev_msg.dv[0].data_ptr = &pri;
363 ev_msg.dv[0].data_length = 1;
364 ev_msg.dv[1].data_ptr = dptr;
365 ev_msg.dv[1].data_length = 100; /* bug in kern_post_msg, it can't handle size > 256-msghdr */
366 ev_msg.dv[2].data_length = 0;
367
368 kev_post_msg(&ev_msg);
369 }
370
371 /*
372 * This macro maps an ip pointer into a layer3 header pointer of type T
373 */
374 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
375
376 static __inline int
377 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
378 {
379 int type = L3HDR(struct icmp,ip)->icmp_type;
380
381 return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
382 }
383
384 #define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
385 (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
386
387 static int
388 is_icmp_query(struct ip *ip)
389 {
390 int type = L3HDR(struct icmp, ip)->icmp_type;
391 return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
392 }
393 #undef TT
394
395 static int
396 Get32static_len()
397 {
398 int diff;
399 int len = static_len_32;
400 struct ip_fw *rule;
401 char *useraction;
402
403 for (rule = layer3_chain; rule ; rule = rule->next) {
404 if (rule->reserved_1 == IPFW_RULE_INACTIVE) {
405 continue;
406 }
407 if ( rule->act_ofs ){
408 useraction = (char*)ACTION_PTR( rule );
409 if ( ((ipfw_insn*)useraction)->opcode == O_QUEUE || ((ipfw_insn*)useraction)->opcode == O_PIPE){
410 diff = sizeof(ipfw_insn_pipe) - sizeof(ipfw_insn_pipe_32);
411 if (diff)
412 len -= diff;
413 }
414 }
415 }
416 return len;
417 }
418
419 static int
420 Get64static_len()
421 {
422 int diff;
423 int len = static_len_64;
424 struct ip_fw *rule;
425 char *useraction;
426
427 for (rule = layer3_chain; rule ; rule = rule->next) {
428 if (rule->reserved_1 == IPFW_RULE_INACTIVE) {
429 continue;
430 }
431 if ( rule->act_ofs ){
432 useraction = (char *)ACTION_PTR( rule );
433 if ( ((ipfw_insn*)useraction)->opcode == O_QUEUE || ((ipfw_insn*)useraction)->opcode == O_PIPE){
434 diff = sizeof(ipfw_insn_pipe_64) - sizeof(ipfw_insn_pipe);
435 if (diff)
436 len += diff;
437 }
438 }
439 }
440 return len;
441 }
442
443 static void
444 copyto32fw_insn( struct ip_fw_32 *fw32 , struct ip_fw *user_ip_fw, int cmdsize)
445 {
446 char *end;
447 char *fw32action;
448 char *useraction;
449 int justcmdsize;
450 int diff=0;
451 int actioncopysize;
452
453 end = ((char*)user_ip_fw->cmd) + cmdsize;
454 useraction = (char*)ACTION_PTR( user_ip_fw );
455 fw32action = (char*)fw32->cmd + (user_ip_fw->act_ofs * sizeof(uint32_t));
456 if ( ( justcmdsize = ( fw32action - (char*)fw32->cmd)))
457 bcopy( user_ip_fw->cmd, fw32->cmd, justcmdsize);
458 while ( useraction < end ){
459 if ( ((ipfw_insn*)useraction)->opcode == O_QUEUE || ((ipfw_insn*)useraction)->opcode == O_PIPE){
460 actioncopysize = sizeof(ipfw_insn_pipe_32);
461 ((ipfw_insn*)fw32action)->opcode = ((ipfw_insn*)useraction)->opcode;
462 ((ipfw_insn*)fw32action)->arg1 = ((ipfw_insn*)useraction)->arg1;
463 ((ipfw_insn*)fw32action)->len = F_INSN_SIZE(ipfw_insn_pipe_32);
464 diff = ((ipfw_insn*)useraction)->len - ((ipfw_insn*)fw32action)->len;
465 if ( diff ){
466 fw32->cmd_len -= diff;
467 }
468 } else{
469 actioncopysize = (F_LEN((ipfw_insn*)useraction) ? (F_LEN((ipfw_insn*)useraction)) : 1 ) * sizeof(uint32_t);
470 bcopy( useraction, fw32action, actioncopysize );
471 }
472 useraction += (F_LEN((ipfw_insn*)useraction) ? (F_LEN((ipfw_insn*)useraction)) : 1 ) * sizeof(uint32_t);
473 fw32action += actioncopysize;
474 }
475 }
476
477 static void
478 copyto64fw_insn( struct ip_fw_64 *fw64 , struct ip_fw *user_ip_fw, int cmdsize)
479 {
480 char *end;
481 char *fw64action;
482 char *useraction;
483 int justcmdsize;
484 int diff;
485 int actioncopysize;
486
487 end = ((char *)user_ip_fw->cmd) + cmdsize;
488 useraction = (char*)ACTION_PTR( user_ip_fw );
489 if ( (justcmdsize = (useraction - (char*)user_ip_fw->cmd)))
490 bcopy( user_ip_fw->cmd, fw64->cmd, justcmdsize);
491 fw64action = (char*)fw64->cmd + justcmdsize;
492 while ( useraction < end ){
493 if ( ((ipfw_insn*)user_ip_fw)->opcode == O_QUEUE || ((ipfw_insn*)user_ip_fw)->opcode == O_PIPE){
494 actioncopysize = sizeof(ipfw_insn_pipe_64);
495 ((ipfw_insn*)fw64action)->opcode = ((ipfw_insn*)useraction)->opcode;
496 ((ipfw_insn*)fw64action)->arg1 = ((ipfw_insn*)useraction)->arg1;
497 ((ipfw_insn*)fw64action)->len = F_INSN_SIZE(ipfw_insn_pipe_64);
498 diff = ((ipfw_insn*)fw64action)->len - ((ipfw_insn*)useraction)->len;
499 if (diff)
500 fw64->cmd_len += diff;
501
502 } else{
503 actioncopysize = (F_LEN((ipfw_insn*)useraction) ? (F_LEN((ipfw_insn*)useraction)) : 1 ) * sizeof(uint32_t);
504 bcopy( useraction, fw64action, actioncopysize );
505 }
506 useraction += (F_LEN((ipfw_insn*)useraction) ? (F_LEN((ipfw_insn*)useraction)) : 1 ) * sizeof(uint32_t);
507 fw64action += actioncopysize;
508 }
509 }
510
511 static void
512 copyto32fw( struct ip_fw *user_ip_fw, struct ip_fw_32 *fw32 , __unused size_t copysize)
513 {
514 size_t rulesize, cmdsize;
515
516 fw32->version = user_ip_fw->version;
517 fw32->context = CAST_DOWN_EXPLICIT( user32_addr_t, user_ip_fw->context);
518 fw32->next = CAST_DOWN_EXPLICIT(user32_addr_t, user_ip_fw->next);
519 fw32->next_rule = CAST_DOWN_EXPLICIT(user32_addr_t, user_ip_fw->next_rule);
520 fw32->act_ofs = user_ip_fw->act_ofs;
521 fw32->cmd_len = user_ip_fw->cmd_len;
522 fw32->rulenum = user_ip_fw->rulenum;
523 fw32->set = user_ip_fw->set;
524 fw32->set_masks[0] = user_ip_fw->set_masks[0];
525 fw32->set_masks[1] = user_ip_fw->set_masks[1];
526 fw32->pcnt = user_ip_fw->pcnt;
527 fw32->bcnt = user_ip_fw->bcnt;
528 fw32->timestamp = user_ip_fw->timestamp;
529 fw32->reserved_1 = user_ip_fw->reserved_1;
530 fw32->reserved_2 = user_ip_fw->reserved_2;
531 rulesize = sizeof(struct ip_fw_32) + (user_ip_fw->cmd_len * sizeof(ipfw_insn) - 4);
532 cmdsize = user_ip_fw->cmd_len * sizeof(u_int32_t);
533 copyto32fw_insn( fw32, user_ip_fw, cmdsize );
534 }
535
536 static void
537 copyto64fw( struct ip_fw *user_ip_fw, struct ip_fw_64 *fw64, size_t copysize)
538 {
539 size_t rulesize, cmdsize;
540
541 fw64->version = user_ip_fw->version;
542 fw64->context = CAST_DOWN_EXPLICIT(__uint64_t, user_ip_fw->context);
543 fw64->next = CAST_DOWN_EXPLICIT(user64_addr_t, user_ip_fw->next);
544 fw64->next_rule = CAST_DOWN_EXPLICIT(user64_addr_t, user_ip_fw->next_rule);
545 fw64->act_ofs = user_ip_fw->act_ofs;
546 fw64->cmd_len = user_ip_fw->cmd_len;
547 fw64->rulenum = user_ip_fw->rulenum;
548 fw64->set = user_ip_fw->set;
549 fw64->set_masks[0] = user_ip_fw->set_masks[0];
550 fw64->set_masks[1] = user_ip_fw->set_masks[1];
551 fw64->pcnt = user_ip_fw->pcnt;
552 fw64->bcnt = user_ip_fw->bcnt;
553 fw64->timestamp = user_ip_fw->timestamp;
554 fw64->reserved_1 = user_ip_fw->reserved_1;
555 fw64->reserved_2 = user_ip_fw->reserved_2;
556 rulesize = sizeof(struct ip_fw_64) + (user_ip_fw->cmd_len * sizeof(ipfw_insn) - 4);
557 if (rulesize > copysize)
558 cmdsize = copysize - sizeof(struct ip_fw_64) + 4;
559 else
560 cmdsize = user_ip_fw->cmd_len * sizeof(u_int32_t);
561 copyto64fw_insn( fw64, user_ip_fw, cmdsize);
562 }
563
564 static int
565 copyfrom32fw_insn( struct ip_fw_32 *fw32 , struct ip_fw *user_ip_fw, int cmdsize)
566 {
567 char *end;
568 char *fw32action;
569 char *useraction;
570 int justcmdsize;
571 int diff;
572 int actioncopysize;
573
574 end = ((char*)fw32->cmd) + cmdsize;
575 fw32action = (char*)ACTION_PTR( fw32 );
576 if ((justcmdsize = (fw32action - (char*)fw32->cmd)))
577 bcopy( fw32->cmd, user_ip_fw->cmd, justcmdsize);
578 useraction = (char*)user_ip_fw->cmd + justcmdsize;
579 while ( fw32action < end ){
580 if ( ((ipfw_insn*)fw32action)->opcode == O_QUEUE || ((ipfw_insn*)fw32action)->opcode == O_PIPE){
581 actioncopysize = sizeof(ipfw_insn_pipe);
582 ((ipfw_insn*)useraction)->opcode = ((ipfw_insn*)fw32action)->opcode;
583 ((ipfw_insn*)useraction)->arg1 = ((ipfw_insn*)fw32action)->arg1;
584 ((ipfw_insn*)useraction)->len = F_INSN_SIZE(ipfw_insn_pipe);
585 diff = ((ipfw_insn*)useraction)->len - ((ipfw_insn*)fw32action)->len;
586 if (diff){
587 /* readjust the cmd_len */
588 user_ip_fw->cmd_len += diff;
589 }
590 } else{
591 actioncopysize = (F_LEN((ipfw_insn*)fw32action) ? (F_LEN((ipfw_insn*)fw32action)) : 1 ) * sizeof(uint32_t);
592 bcopy( fw32action, useraction, actioncopysize );
593 }
594 fw32action += (F_LEN((ipfw_insn*)fw32action) ? (F_LEN((ipfw_insn*)fw32action)) : 1 ) * sizeof(uint32_t);
595 useraction += actioncopysize;
596 }
597
598 return( useraction - (char*)user_ip_fw->cmd );
599 }
600
601 static int
602 copyfrom64fw_insn( struct ip_fw_64 *fw64 , struct ip_fw *user_ip_fw, int cmdsize)
603 {
604 char *end;
605 char *fw64action;
606 char *useraction;
607 int justcmdsize;
608 int diff;
609 int actioncopysize;
610
611 end = ((char *)fw64->cmd) + cmdsize ;
612 fw64action = (char*)ACTION_PTR( fw64 );
613 if ( (justcmdsize = (fw64action - (char*)fw64->cmd)))
614 bcopy( fw64->cmd, user_ip_fw->cmd, justcmdsize);
615 useraction = (char*)user_ip_fw->cmd + justcmdsize;
616 while ( fw64action < end ){
617 if ( ((ipfw_insn*)fw64action)->opcode == O_QUEUE || ((ipfw_insn*)fw64action)->opcode == O_PIPE){
618 actioncopysize = sizeof(ipfw_insn_pipe);
619 ((ipfw_insn*)useraction)->opcode = ((ipfw_insn*)fw64action)->opcode;
620 ((ipfw_insn*)useraction)->arg1 = ((ipfw_insn*)fw64action)->arg1;
621 ((ipfw_insn*)useraction)->len = F_INSN_SIZE(ipfw_insn_pipe);
622 diff = ((ipfw_insn*)fw64action)->len - ((ipfw_insn*)useraction)->len;
623 if (diff) {
624 /* readjust the cmd_len */
625 user_ip_fw->cmd_len -= diff;
626 }
627 } else{
628 actioncopysize = (F_LEN((ipfw_insn*)fw64action) ? (F_LEN((ipfw_insn*)fw64action)) : 1 ) * sizeof(uint32_t);
629 bcopy( fw64action, useraction, actioncopysize );
630 }
631 fw64action += (F_LEN((ipfw_insn*)fw64action) ? (F_LEN((ipfw_insn*)fw64action)) : 1 ) * sizeof(uint32_t);
632 useraction += actioncopysize;
633 }
634 return( useraction - (char*)user_ip_fw->cmd );
635 }
636
637 static size_t
638 copyfrom32fw( struct ip_fw_32 *fw32, struct ip_fw *user_ip_fw, size_t copysize)
639 {
640 size_t rulesize, cmdsize;
641
642 user_ip_fw->version = fw32->version;
643 user_ip_fw->context = CAST_DOWN(void *, fw32->context);
644 user_ip_fw->next = CAST_DOWN(struct ip_fw*, fw32->next);
645 user_ip_fw->next_rule = CAST_DOWN_EXPLICIT(struct ip_fw*, fw32->next_rule);
646 user_ip_fw->act_ofs = fw32->act_ofs;
647 user_ip_fw->cmd_len = fw32->cmd_len;
648 user_ip_fw->rulenum = fw32->rulenum;
649 user_ip_fw->set = fw32->set;
650 user_ip_fw->set_masks[0] = fw32->set_masks[0];
651 user_ip_fw->set_masks[1] = fw32->set_masks[1];
652 user_ip_fw->pcnt = fw32->pcnt;
653 user_ip_fw->bcnt = fw32->bcnt;
654 user_ip_fw->timestamp = fw32->timestamp;
655 user_ip_fw->reserved_1 = fw32->reserved_1;
656 user_ip_fw->reserved_2 = fw32->reserved_2;
657 rulesize = sizeof(struct ip_fw_32) + (fw32->cmd_len * sizeof(ipfw_insn) - 4);
658 if ( rulesize > copysize )
659 cmdsize = copysize - sizeof(struct ip_fw_32)-4;
660 else
661 cmdsize = fw32->cmd_len * sizeof(ipfw_insn);
662 cmdsize = copyfrom32fw_insn( fw32, user_ip_fw, cmdsize);
663 return( sizeof(struct ip_fw) + cmdsize - 4);
664 }
665
666 static size_t
667 copyfrom64fw( struct ip_fw_64 *fw64, struct ip_fw *user_ip_fw, size_t copysize)
668 {
669 size_t rulesize, cmdsize;
670
671 user_ip_fw->version = fw64->version;
672 user_ip_fw->context = CAST_DOWN_EXPLICIT( void *, fw64->context);
673 user_ip_fw->next = CAST_DOWN_EXPLICIT(struct ip_fw*, fw64->next);
674 user_ip_fw->next_rule = CAST_DOWN_EXPLICIT(struct ip_fw*, fw64->next_rule);
675 user_ip_fw->act_ofs = fw64->act_ofs;
676 user_ip_fw->cmd_len = fw64->cmd_len;
677 user_ip_fw->rulenum = fw64->rulenum;
678 user_ip_fw->set = fw64->set;
679 user_ip_fw->set_masks[0] = fw64->set_masks[0];
680 user_ip_fw->set_masks[1] = fw64->set_masks[1];
681 user_ip_fw->pcnt = fw64->pcnt;
682 user_ip_fw->bcnt = fw64->bcnt;
683 user_ip_fw->timestamp = fw64->timestamp;
684 user_ip_fw->reserved_1 = fw64->reserved_1;
685 user_ip_fw->reserved_2 = fw64->reserved_2;
686 //bcopy( fw64->cmd, user_ip_fw->cmd, fw64->cmd_len * sizeof(ipfw_insn));
687 rulesize = sizeof(struct ip_fw_64) + (fw64->cmd_len * sizeof(ipfw_insn) - 4);
688 if ( rulesize > copysize )
689 cmdsize = copysize - sizeof(struct ip_fw_64)-4;
690 else
691 cmdsize = fw64->cmd_len * sizeof(ipfw_insn);
692 cmdsize = copyfrom64fw_insn( fw64, user_ip_fw, cmdsize);
693 return( sizeof(struct ip_fw) + cmdsize - 4);
694 }
695
696 void
697 externalize_flow_id(struct ipfw_flow_id *dst, struct ip_flow_id *src);
698 void
699 externalize_flow_id(struct ipfw_flow_id *dst, struct ip_flow_id *src)
700 {
701 dst->dst_ip = src->dst_ip;
702 dst->src_ip = src->src_ip;
703 dst->dst_port = src->dst_port;
704 dst->src_port = src->src_port;
705 dst->proto = src->proto;
706 dst->flags = src->flags;
707 }
708
709 static
710 void cp_dyn_to_comp_32( struct ipfw_dyn_rule_compat_32 *dyn_rule_vers1, int *len)
711 {
712 struct ipfw_dyn_rule_compat_32 *dyn_last=NULL;
713 ipfw_dyn_rule *p;
714 int i;
715
716 if (ipfw_dyn_v) {
717 for (i = 0; i < curr_dyn_buckets; i++) {
718 for ( p = ipfw_dyn_v[i] ; p != NULL ; p = p->next) {
719 dyn_rule_vers1->chain = (user32_addr_t)(p->rule->rulenum);
720 externalize_flow_id(&dyn_rule_vers1->id, &p->id);
721 externalize_flow_id(&dyn_rule_vers1->mask, &p->id);
722 dyn_rule_vers1->type = p->dyn_type;
723 dyn_rule_vers1->expire = p->expire;
724 dyn_rule_vers1->pcnt = p->pcnt;
725 dyn_rule_vers1->bcnt = p->bcnt;
726 dyn_rule_vers1->bucket = p->bucket;
727 dyn_rule_vers1->state = p->state;
728
729 dyn_rule_vers1->next = CAST_DOWN_EXPLICIT( user32_addr_t, p->next);
730 dyn_last = dyn_rule_vers1;
731
732 *len += sizeof(*dyn_rule_vers1);
733 dyn_rule_vers1++;
734 }
735 }
736
737 if (dyn_last != NULL) {
738 dyn_last->next = ((user32_addr_t)0);
739 }
740 }
741 }
742
743
744 static
745 void cp_dyn_to_comp_64( struct ipfw_dyn_rule_compat_64 *dyn_rule_vers1, int *len)
746 {
747 struct ipfw_dyn_rule_compat_64 *dyn_last=NULL;
748 ipfw_dyn_rule *p;
749 int i;
750
751 if (ipfw_dyn_v) {
752 for (i = 0; i < curr_dyn_buckets; i++) {
753 for ( p = ipfw_dyn_v[i] ; p != NULL ; p = p->next) {
754 dyn_rule_vers1->chain = (user64_addr_t) p->rule->rulenum;
755 externalize_flow_id(&dyn_rule_vers1->id, &p->id);
756 externalize_flow_id(&dyn_rule_vers1->mask, &p->id);
757 dyn_rule_vers1->type = p->dyn_type;
758 dyn_rule_vers1->expire = p->expire;
759 dyn_rule_vers1->pcnt = p->pcnt;
760 dyn_rule_vers1->bcnt = p->bcnt;
761 dyn_rule_vers1->bucket = p->bucket;
762 dyn_rule_vers1->state = p->state;
763
764 dyn_rule_vers1->next = CAST_DOWN(user64_addr_t, p->next);
765 dyn_last = dyn_rule_vers1;
766
767 *len += sizeof(*dyn_rule_vers1);
768 dyn_rule_vers1++;
769 }
770 }
771
772 if (dyn_last != NULL) {
773 dyn_last->next = CAST_DOWN(user64_addr_t, NULL);
774 }
775 }
776 }
777
778 static int
779 sooptcopyin_fw( struct sockopt *sopt, struct ip_fw *user_ip_fw, size_t *size )
780 {
781 size_t valsize, copyinsize = 0;
782 int error = 0;
783
784 valsize = sopt->sopt_valsize;
785 if ( size )
786 copyinsize = *size;
787 if (proc_is64bit(sopt->sopt_p)) {
788 struct ip_fw_64 *fw64=NULL;
789
790 if ( valsize < sizeof(struct ip_fw_64) ) {
791 return(EINVAL);
792 }
793 if ( !copyinsize )
794 copyinsize = sizeof(struct ip_fw_64);
795 if ( valsize > copyinsize )
796 sopt->sopt_valsize = valsize = copyinsize;
797
798 if ( sopt->sopt_p != 0) {
799 fw64 = _MALLOC(copyinsize, M_TEMP, M_WAITOK);
800 if ( fw64 == NULL )
801 return(ENOBUFS);
802 if ((error = copyin(sopt->sopt_val, fw64, valsize)) != 0){
803 _FREE(fw64, M_TEMP);
804 return error;
805 }
806 }
807 else {
808 bcopy(CAST_DOWN(caddr_t, sopt->sopt_val), fw64, valsize);
809 }
810 valsize = copyfrom64fw( fw64, user_ip_fw, valsize );
811 _FREE( fw64, M_TEMP);
812 }else {
813 struct ip_fw_32 *fw32=NULL;
814
815 if ( valsize < sizeof(struct ip_fw_32) ) {
816 return(EINVAL);
817 }
818 if ( !copyinsize)
819 copyinsize = sizeof(struct ip_fw_32);
820 if ( valsize > copyinsize)
821 sopt->sopt_valsize = valsize = copyinsize;
822
823 if ( sopt->sopt_p != 0) {
824 fw32 = _MALLOC(copyinsize, M_TEMP, M_WAITOK);
825 if ( fw32 == NULL )
826 return(ENOBUFS);
827 if ( (error = copyin(sopt->sopt_val, fw32, valsize)) != 0){
828 _FREE( fw32, M_TEMP);
829 return( error );
830 }
831 }
832 else {
833 bcopy(CAST_DOWN(caddr_t, sopt->sopt_val), fw32, valsize);
834 }
835 valsize = copyfrom32fw( fw32, user_ip_fw, valsize);
836 _FREE( fw32, M_TEMP);
837 }
838 if ( size )
839 *size = valsize;
840 return error;
841 }
842
843 /*
844 * The following checks use two arrays of 8 or 16 bits to store the
845 * bits that we want set or clear, respectively. They are in the
846 * low and high half of cmd->arg1 or cmd->d[0].
847 *
848 * We scan options and store the bits we find set. We succeed if
849 *
850 * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
851 *
852 * The code is sometimes optimized not to store additional variables.
853 */
854
855 static int
856 flags_match(ipfw_insn *cmd, u_int8_t bits)
857 {
858 u_char want_clear;
859 bits = ~bits;
860
861 if ( ((cmd->arg1 & 0xff) & bits) != 0)
862 return 0; /* some bits we want set were clear */
863 want_clear = (cmd->arg1 >> 8) & 0xff;
864 if ( (want_clear & bits) != want_clear)
865 return 0; /* some bits we want clear were set */
866 return 1;
867 }
868
869 static int
870 ipopts_match(struct ip *ip, ipfw_insn *cmd)
871 {
872 int optlen, bits = 0;
873 u_char *cp = (u_char *)(ip + 1);
874 int x = (ip->ip_hl << 2) - sizeof (struct ip);
875
876 for (; x > 0; x -= optlen, cp += optlen) {
877 int opt = cp[IPOPT_OPTVAL];
878
879 if (opt == IPOPT_EOL)
880 break;
881 if (opt == IPOPT_NOP)
882 optlen = 1;
883 else {
884 optlen = cp[IPOPT_OLEN];
885 if (optlen <= 0 || optlen > x)
886 return 0; /* invalid or truncated */
887 }
888 switch (opt) {
889
890 default:
891 break;
892
893 case IPOPT_LSRR:
894 bits |= IP_FW_IPOPT_LSRR;
895 break;
896
897 case IPOPT_SSRR:
898 bits |= IP_FW_IPOPT_SSRR;
899 break;
900
901 case IPOPT_RR:
902 bits |= IP_FW_IPOPT_RR;
903 break;
904
905 case IPOPT_TS:
906 bits |= IP_FW_IPOPT_TS;
907 break;
908 }
909 }
910 return (flags_match(cmd, bits));
911 }
912
913 static int
914 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
915 {
916 int optlen, bits = 0;
917 struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
918 u_char *cp = (u_char *)(tcp + 1);
919 int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
920
921 for (; x > 0; x -= optlen, cp += optlen) {
922 int opt = cp[0];
923 if (opt == TCPOPT_EOL)
924 break;
925 if (opt == TCPOPT_NOP)
926 optlen = 1;
927 else {
928 optlen = cp[1];
929 if (optlen <= 0)
930 break;
931 }
932
933 switch (opt) {
934
935 default:
936 break;
937
938 case TCPOPT_MAXSEG:
939 bits |= IP_FW_TCPOPT_MSS;
940 break;
941
942 case TCPOPT_WINDOW:
943 bits |= IP_FW_TCPOPT_WINDOW;
944 break;
945
946 case TCPOPT_SACK_PERMITTED:
947 case TCPOPT_SACK:
948 bits |= IP_FW_TCPOPT_SACK;
949 break;
950
951 case TCPOPT_TIMESTAMP:
952 bits |= IP_FW_TCPOPT_TS;
953 break;
954
955 case TCPOPT_CC:
956 case TCPOPT_CCNEW:
957 case TCPOPT_CCECHO:
958 bits |= IP_FW_TCPOPT_CC;
959 break;
960 }
961 }
962 return (flags_match(cmd, bits));
963 }
964
965 static int
966 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
967 {
968 if (ifp == NULL) /* no iface with this packet, match fails */
969 return 0;
970 /* Check by name or by IP address */
971 if (cmd->name[0] != '\0') { /* match by name */
972 /* Check unit number (-1 is wildcard) */
973 if (cmd->p.unit != -1 && cmd->p.unit != ifp->if_unit)
974 return(0);
975 /* Check name */
976 if (!strncmp(ifp->if_name, cmd->name, IFNAMSIZ))
977 return(1);
978 } else {
979 struct ifaddr *ia;
980
981 ifnet_lock_shared(ifp);
982 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
983 IFA_LOCK(ia);
984 if (ia->ifa_addr->sa_family != AF_INET) {
985 IFA_UNLOCK(ia);
986 continue;
987 }
988 if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
989 (ia->ifa_addr))->sin_addr.s_addr) {
990 IFA_UNLOCK(ia);
991 ifnet_lock_done(ifp);
992 return(1); /* match */
993 }
994 IFA_UNLOCK(ia);
995 }
996 ifnet_lock_done(ifp);
997 }
998 return(0); /* no match, fail ... */
999 }
1000
1001 /*
1002 * The 'verrevpath' option checks that the interface that an IP packet
1003 * arrives on is the same interface that traffic destined for the
1004 * packet's source address would be routed out of. This is a measure
1005 * to block forged packets. This is also commonly known as "anti-spoofing"
1006 * or Unicast Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The
1007 * name of the knob is purposely reminisent of the Cisco IOS command,
1008 *
1009 * ip verify unicast reverse-path
1010 *
1011 * which implements the same functionality. But note that syntax is
1012 * misleading. The check may be performed on all IP packets whether unicast,
1013 * multicast, or broadcast.
1014 */
1015 static int
1016 verify_rev_path(struct in_addr src, struct ifnet *ifp)
1017 {
1018 static struct route ro;
1019 struct sockaddr_in *dst;
1020
1021 dst = (struct sockaddr_in *)&(ro.ro_dst);
1022
1023 /* Check if we've cached the route from the previous call. */
1024 if (src.s_addr != dst->sin_addr.s_addr) {
1025 ro.ro_rt = NULL;
1026
1027 bzero(dst, sizeof(*dst));
1028 dst->sin_family = AF_INET;
1029 dst->sin_len = sizeof(*dst);
1030 dst->sin_addr = src;
1031
1032 rtalloc_ign(&ro, RTF_CLONING|RTF_PRCLONING);
1033 }
1034 if (ro.ro_rt != NULL)
1035 RT_LOCK_SPIN(ro.ro_rt);
1036 else
1037 return 0; /* No route */
1038 if ((ifp == NULL) ||
1039 (ro.ro_rt->rt_ifp->if_index != ifp->if_index)) {
1040 RT_UNLOCK(ro.ro_rt);
1041 return 0;
1042 }
1043 RT_UNLOCK(ro.ro_rt);
1044 return 1;
1045 }
1046
1047
1048 static u_int64_t norule_counter; /* counter for ipfw_log(NULL...) */
1049
1050 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
1051 #define SNP(buf) buf, sizeof(buf)
1052
1053 /*
1054 * We enter here when we have a rule with O_LOG.
1055 * XXX this function alone takes about 2Kbytes of code!
1056 */
1057 static void
1058 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
1059 struct mbuf *m, struct ifnet *oif)
1060 {
1061 const char *action;
1062 int limit_reached = 0;
1063 char ipv4str[MAX_IPv4_STR_LEN];
1064 char action2[40], proto[48], fragment[28];
1065
1066 fragment[0] = '\0';
1067 proto[0] = '\0';
1068
1069 if (f == NULL) { /* bogus pkt */
1070 if (verbose_limit != 0 && norule_counter >= verbose_limit)
1071 return;
1072 norule_counter++;
1073 if (norule_counter == verbose_limit)
1074 limit_reached = verbose_limit;
1075 action = "Refuse";
1076 } else { /* O_LOG is the first action, find the real one */
1077 ipfw_insn *cmd = ACTION_PTR(f);
1078 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
1079
1080 if (l->max_log != 0 && l->log_left == 0)
1081 return;
1082 l->log_left--;
1083 if (l->log_left == 0)
1084 limit_reached = l->max_log;
1085 cmd += F_LEN(cmd); /* point to first action */
1086 if (cmd->opcode == O_PROB)
1087 cmd += F_LEN(cmd);
1088
1089 action = action2;
1090 switch (cmd->opcode) {
1091 case O_DENY:
1092 action = "Deny";
1093 break;
1094
1095 case O_REJECT:
1096 if (cmd->arg1==ICMP_REJECT_RST)
1097 action = "Reset";
1098 else if (cmd->arg1==ICMP_UNREACH_HOST)
1099 action = "Reject";
1100 else
1101 snprintf(SNPARGS(action2, 0), "Unreach %d",
1102 cmd->arg1);
1103 break;
1104
1105 case O_ACCEPT:
1106 action = "Accept";
1107 break;
1108 case O_COUNT:
1109 action = "Count";
1110 break;
1111 case O_DIVERT:
1112 snprintf(SNPARGS(action2, 0), "Divert %d",
1113 cmd->arg1);
1114 break;
1115 case O_TEE:
1116 snprintf(SNPARGS(action2, 0), "Tee %d",
1117 cmd->arg1);
1118 break;
1119 case O_SKIPTO:
1120 snprintf(SNPARGS(action2, 0), "SkipTo %d",
1121 cmd->arg1);
1122 break;
1123 case O_PIPE:
1124 snprintf(SNPARGS(action2, 0), "Pipe %d",
1125 cmd->arg1);
1126 break;
1127 case O_QUEUE:
1128 snprintf(SNPARGS(action2, 0), "Queue %d",
1129 cmd->arg1);
1130 break;
1131 case O_FORWARD_IP: {
1132 ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
1133 int len;
1134
1135 if (f->reserved_1 == IPFW_RULE_INACTIVE) {
1136 break;
1137 }
1138 len = snprintf(SNPARGS(action2, 0), "Forward to %s",
1139 inet_ntop(AF_INET, &sa->sa.sin_addr, ipv4str, sizeof(ipv4str)));
1140 if (sa->sa.sin_port)
1141 snprintf(SNPARGS(action2, len), ":%d",
1142 sa->sa.sin_port);
1143 }
1144 break;
1145 default:
1146 action = "UNKNOWN";
1147 break;
1148 }
1149 }
1150
1151 if (hlen == 0) { /* non-ip */
1152 snprintf(SNPARGS(proto, 0), "MAC");
1153 } else {
1154 struct ip *ip = mtod(m, struct ip *);
1155 /* these three are all aliases to the same thing */
1156 struct icmp *const icmp = L3HDR(struct icmp, ip);
1157 struct tcphdr *const tcp = (struct tcphdr *)icmp;
1158 struct udphdr *const udp = (struct udphdr *)icmp;
1159
1160 int ip_off, offset, ip_len;
1161
1162 int len;
1163
1164 if (eh != NULL) { /* layer 2 packets are as on the wire */
1165 ip_off = ntohs(ip->ip_off);
1166 ip_len = ntohs(ip->ip_len);
1167 } else {
1168 ip_off = ip->ip_off;
1169 ip_len = ip->ip_len;
1170 }
1171 offset = ip_off & IP_OFFMASK;
1172 switch (ip->ip_p) {
1173 case IPPROTO_TCP:
1174 len = snprintf(SNPARGS(proto, 0), "TCP %s",
1175 inet_ntop(AF_INET, &ip->ip_src, ipv4str, sizeof(ipv4str)));
1176 if (offset == 0)
1177 snprintf(SNPARGS(proto, len), ":%d %s:%d",
1178 ntohs(tcp->th_sport),
1179 inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str)),
1180 ntohs(tcp->th_dport));
1181 else
1182 snprintf(SNPARGS(proto, len), " %s",
1183 inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str)));
1184 break;
1185
1186 case IPPROTO_UDP:
1187 len = snprintf(SNPARGS(proto, 0), "UDP %s",
1188 inet_ntop(AF_INET, &ip->ip_src, ipv4str, sizeof(ipv4str)));
1189 if (offset == 0)
1190 snprintf(SNPARGS(proto, len), ":%d %s:%d",
1191 ntohs(udp->uh_sport),
1192 inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str)),
1193 ntohs(udp->uh_dport));
1194 else
1195 snprintf(SNPARGS(proto, len), " %s",
1196 inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str)));
1197 break;
1198
1199 case IPPROTO_ICMP:
1200 if (offset == 0)
1201 len = snprintf(SNPARGS(proto, 0),
1202 "ICMP:%u.%u ",
1203 icmp->icmp_type, icmp->icmp_code);
1204 else
1205 len = snprintf(SNPARGS(proto, 0), "ICMP ");
1206 len += snprintf(SNPARGS(proto, len), "%s",
1207 inet_ntop(AF_INET, &ip->ip_src, ipv4str, sizeof(ipv4str)));
1208 snprintf(SNPARGS(proto, len), " %s",
1209 inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str)));
1210 break;
1211
1212 default:
1213 len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
1214 inet_ntop(AF_INET, &ip->ip_src, ipv4str, sizeof(ipv4str)));
1215 snprintf(SNPARGS(proto, len), " %s",
1216 inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str)));
1217 break;
1218 }
1219
1220 if (ip_off & (IP_MF | IP_OFFMASK))
1221 snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
1222 ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1223 offset << 3,
1224 (ip_off & IP_MF) ? "+" : "");
1225 }
1226 if (oif || m->m_pkthdr.rcvif)
1227 {
1228 dolog((LOG_AUTHPRIV | LOG_INFO,
1229 "ipfw: %d %s %s %s via %s%d%s\n",
1230 f ? f->rulenum : -1,
1231 action, proto, oif ? "out" : "in",
1232 oif ? oif->if_name : m->m_pkthdr.rcvif->if_name,
1233 oif ? oif->if_unit : m->m_pkthdr.rcvif->if_unit,
1234 fragment));
1235 }
1236 else{
1237 dolog((LOG_AUTHPRIV | LOG_INFO,
1238 "ipfw: %d %s %s [no if info]%s\n",
1239 f ? f->rulenum : -1,
1240 action, proto, fragment));
1241 }
1242 if (limit_reached){
1243 dolog((LOG_AUTHPRIV | LOG_NOTICE,
1244 "ipfw: limit %d reached on entry %d\n",
1245 limit_reached, f ? f->rulenum : -1));
1246 }
1247 }
1248
1249 /*
1250 * IMPORTANT: the hash function for dynamic rules must be commutative
1251 * in source and destination (ip,port), because rules are bidirectional
1252 * and we want to find both in the same bucket.
1253 */
1254 static __inline int
1255 hash_packet(struct ip_flow_id *id)
1256 {
1257 u_int32_t i;
1258
1259 i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1260 i &= (curr_dyn_buckets - 1);
1261 return i;
1262 }
1263
1264 /**
1265 * unlink a dynamic rule from a chain. prev is a pointer to
1266 * the previous one, q is a pointer to the rule to delete,
1267 * head is a pointer to the head of the queue.
1268 * Modifies q and potentially also head.
1269 */
1270 #define UNLINK_DYN_RULE(prev, head, q) { \
1271 ipfw_dyn_rule *old_q = q; \
1272 \
1273 /* remove a refcount to the parent */ \
1274 if (q->dyn_type == O_LIMIT) \
1275 q->parent->count--; \
1276 DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1277 (q->id.src_ip), (q->id.src_port), \
1278 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \
1279 if (prev != NULL) \
1280 prev->next = q = q->next; \
1281 else \
1282 head = q = q->next; \
1283 dyn_count--; \
1284 _FREE(old_q, M_IPFW); }
1285
1286 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
1287
1288 /**
1289 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1290 *
1291 * If keep_me == NULL, rules are deleted even if not expired,
1292 * otherwise only expired rules are removed.
1293 *
1294 * The value of the second parameter is also used to point to identify
1295 * a rule we absolutely do not want to remove (e.g. because we are
1296 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1297 * rules). The pointer is only used for comparison, so any non-null
1298 * value will do.
1299 */
1300 static void
1301 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1302 {
1303 static u_int32_t last_remove = 0;
1304
1305 #define FORCE (keep_me == NULL)
1306
1307 ipfw_dyn_rule *prev, *q;
1308 int i, pass = 0, max_pass = 0;
1309 struct timeval timenow;
1310
1311 getmicrotime(&timenow);
1312
1313 if (ipfw_dyn_v == NULL || dyn_count == 0)
1314 return;
1315 /* do not expire more than once per second, it is useless */
1316 if (!FORCE && last_remove == timenow.tv_sec)
1317 return;
1318 last_remove = timenow.tv_sec;
1319
1320 /*
1321 * because O_LIMIT refer to parent rules, during the first pass only
1322 * remove child and mark any pending LIMIT_PARENT, and remove
1323 * them in a second pass.
1324 */
1325 next_pass:
1326 for (i = 0 ; i < curr_dyn_buckets ; i++) {
1327 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1328 /*
1329 * Logic can become complex here, so we split tests.
1330 */
1331 if (q == keep_me)
1332 goto next;
1333 if (rule != NULL && rule != q->rule)
1334 goto next; /* not the one we are looking for */
1335 if (q->dyn_type == O_LIMIT_PARENT) {
1336 /*
1337 * handle parent in the second pass,
1338 * record we need one.
1339 */
1340 max_pass = 1;
1341 if (pass == 0)
1342 goto next;
1343 if (FORCE && q->count != 0 ) {
1344 /* XXX should not happen! */
1345 printf("ipfw: OUCH! cannot remove rule,"
1346 " count %d\n", q->count);
1347 }
1348 } else {
1349 if (!FORCE &&
1350 !TIME_LEQ( q->expire, timenow.tv_sec ))
1351 goto next;
1352 }
1353 if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1354 UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1355 continue;
1356 }
1357 next:
1358 prev=q;
1359 q=q->next;
1360 }
1361 }
1362 if (pass++ < max_pass)
1363 goto next_pass;
1364 }
1365
1366
1367 /**
1368 * lookup a dynamic rule.
1369 */
1370 static ipfw_dyn_rule *
1371 lookup_dyn_rule(struct ip_flow_id *pkt, int *match_direction,
1372 struct tcphdr *tcp)
1373 {
1374 /*
1375 * stateful ipfw extensions.
1376 * Lookup into dynamic session queue
1377 */
1378 #define MATCH_REVERSE 0
1379 #define MATCH_FORWARD 1
1380 #define MATCH_NONE 2
1381 #define MATCH_UNKNOWN 3
1382 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
1383 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
1384
1385 int i, dir = MATCH_NONE;
1386 ipfw_dyn_rule *prev, *q=NULL;
1387 struct timeval timenow;
1388
1389 getmicrotime(&timenow);
1390
1391 if (ipfw_dyn_v == NULL)
1392 goto done; /* not found */
1393 i = hash_packet( pkt );
1394 for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1395 if (q->dyn_type == O_LIMIT_PARENT && q->count)
1396 goto next;
1397 if (TIME_LEQ( q->expire, timenow.tv_sec)) { /* expire entry */
1398 int dounlink = 1;
1399
1400 /* check if entry is TCP */
1401 if ( q->id.proto == IPPROTO_TCP )
1402 {
1403 /* do not delete an established TCP connection which hasn't been closed by both sides */
1404 if ( (q->state & (BOTH_SYN | BOTH_FIN)) != (BOTH_SYN | BOTH_FIN) )
1405 dounlink = 0;
1406 }
1407 if ( dounlink ){
1408 UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1409 continue;
1410 }
1411 }
1412 if (pkt->proto == q->id.proto &&
1413 q->dyn_type != O_LIMIT_PARENT) {
1414 if (pkt->src_ip == q->id.src_ip &&
1415 pkt->dst_ip == q->id.dst_ip &&
1416 pkt->src_port == q->id.src_port &&
1417 pkt->dst_port == q->id.dst_port ) {
1418 dir = MATCH_FORWARD;
1419 break;
1420 }
1421 if (pkt->src_ip == q->id.dst_ip &&
1422 pkt->dst_ip == q->id.src_ip &&
1423 pkt->src_port == q->id.dst_port &&
1424 pkt->dst_port == q->id.src_port ) {
1425 dir = MATCH_REVERSE;
1426 break;
1427 }
1428 }
1429 next:
1430 prev = q;
1431 q = q->next;
1432 }
1433 if (q == NULL)
1434 goto done; /* q = NULL, not found */
1435
1436 if ( prev != NULL) { /* found and not in front */
1437 prev->next = q->next;
1438 q->next = ipfw_dyn_v[i];
1439 ipfw_dyn_v[i] = q;
1440 }
1441 if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1442 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1443
1444 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1445 switch (q->state) {
1446 case TH_SYN: /* opening */
1447 q->expire = timenow.tv_sec + dyn_syn_lifetime;
1448 break;
1449
1450 case BOTH_SYN: /* move to established */
1451 case BOTH_SYN | TH_FIN : /* one side tries to close */
1452 case BOTH_SYN | (TH_FIN << 8) :
1453 if (tcp) {
1454 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1455 u_int32_t ack = ntohl(tcp->th_ack);
1456 if (dir == MATCH_FORWARD) {
1457 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1458 q->ack_fwd = ack;
1459 else { /* ignore out-of-sequence */
1460 break;
1461 }
1462 } else {
1463 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1464 q->ack_rev = ack;
1465 else { /* ignore out-of-sequence */
1466 break;
1467 }
1468 }
1469 }
1470 q->expire = timenow.tv_sec + dyn_ack_lifetime;
1471 break;
1472
1473 case BOTH_SYN | BOTH_FIN: /* both sides closed */
1474 if (dyn_fin_lifetime >= dyn_keepalive_period)
1475 dyn_fin_lifetime = dyn_keepalive_period - 1;
1476 q->expire = timenow.tv_sec + dyn_fin_lifetime;
1477 break;
1478
1479 default:
1480 #if 0
1481 /*
1482 * reset or some invalid combination, but can also
1483 * occur if we use keep-state the wrong way.
1484 */
1485 if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1486 printf("invalid state: 0x%x\n", q->state);
1487 #endif
1488 if (dyn_rst_lifetime >= dyn_keepalive_period)
1489 dyn_rst_lifetime = dyn_keepalive_period - 1;
1490 q->expire = timenow.tv_sec + dyn_rst_lifetime;
1491 break;
1492 }
1493 } else if (pkt->proto == IPPROTO_UDP) {
1494 q->expire = timenow.tv_sec + dyn_udp_lifetime;
1495 } else {
1496 /* other protocols */
1497 q->expire = timenow.tv_sec + dyn_short_lifetime;
1498 }
1499 done:
1500 if (match_direction)
1501 *match_direction = dir;
1502 return q;
1503 }
1504
1505 static void
1506 realloc_dynamic_table(void)
1507 {
1508 /*
1509 * Try reallocation, make sure we have a power of 2 and do
1510 * not allow more than 64k entries. In case of overflow,
1511 * default to 1024.
1512 */
1513
1514 if (dyn_buckets > 65536)
1515 dyn_buckets = 1024;
1516 if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1517 dyn_buckets = curr_dyn_buckets; /* reset */
1518 return;
1519 }
1520 curr_dyn_buckets = dyn_buckets;
1521 if (ipfw_dyn_v != NULL)
1522 _FREE(ipfw_dyn_v, M_IPFW);
1523 for (;;) {
1524 ipfw_dyn_v = _MALLOC(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1525 M_IPFW, M_NOWAIT | M_ZERO);
1526 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1527 break;
1528 curr_dyn_buckets /= 2;
1529 }
1530 }
1531
1532 /**
1533 * Install state of type 'type' for a dynamic session.
1534 * The hash table contains two type of rules:
1535 * - regular rules (O_KEEP_STATE)
1536 * - rules for sessions with limited number of sess per user
1537 * (O_LIMIT). When they are created, the parent is
1538 * increased by 1, and decreased on delete. In this case,
1539 * the third parameter is the parent rule and not the chain.
1540 * - "parent" rules for the above (O_LIMIT_PARENT).
1541 */
1542 static ipfw_dyn_rule *
1543 add_dyn_rule(struct ip_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1544 {
1545 ipfw_dyn_rule *r;
1546 int i;
1547 struct timeval timenow;
1548
1549 getmicrotime(&timenow);
1550
1551 if (ipfw_dyn_v == NULL ||
1552 (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1553 realloc_dynamic_table();
1554 if (ipfw_dyn_v == NULL)
1555 return NULL; /* failed ! */
1556 }
1557 i = hash_packet(id);
1558
1559 r = _MALLOC(sizeof *r, M_IPFW, M_NOWAIT | M_ZERO);
1560 if (r == NULL) {
1561 #if IPFW_DEBUG
1562 printf ("ipfw: sorry cannot allocate state\n");
1563 #endif
1564 return NULL;
1565 }
1566
1567 /* increase refcount on parent, and set pointer */
1568 if (dyn_type == O_LIMIT) {
1569 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1570 if ( parent->dyn_type != O_LIMIT_PARENT)
1571 panic("invalid parent");
1572 parent->count++;
1573 r->parent = parent;
1574 rule = parent->rule;
1575 }
1576
1577 r->id = *id;
1578 r->expire = timenow.tv_sec + dyn_syn_lifetime;
1579 r->rule = rule;
1580 r->dyn_type = dyn_type;
1581 r->pcnt = r->bcnt = 0;
1582 r->count = 0;
1583
1584 r->bucket = i;
1585 r->next = ipfw_dyn_v[i];
1586 ipfw_dyn_v[i] = r;
1587 dyn_count++;
1588 DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1589 dyn_type,
1590 (r->id.src_ip), (r->id.src_port),
1591 (r->id.dst_ip), (r->id.dst_port),
1592 dyn_count ); )
1593 return r;
1594 }
1595
1596 /**
1597 * lookup dynamic parent rule using pkt and rule as search keys.
1598 * If the lookup fails, then install one.
1599 */
1600 static ipfw_dyn_rule *
1601 lookup_dyn_parent(struct ip_flow_id *pkt, struct ip_fw *rule)
1602 {
1603 ipfw_dyn_rule *q;
1604 int i;
1605 struct timeval timenow;
1606
1607 getmicrotime(&timenow);
1608
1609 if (ipfw_dyn_v) {
1610 i = hash_packet( pkt );
1611 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1612 if (q->dyn_type == O_LIMIT_PARENT &&
1613 rule== q->rule &&
1614 pkt->proto == q->id.proto &&
1615 pkt->src_ip == q->id.src_ip &&
1616 pkt->dst_ip == q->id.dst_ip &&
1617 pkt->src_port == q->id.src_port &&
1618 pkt->dst_port == q->id.dst_port) {
1619 q->expire = timenow.tv_sec + dyn_short_lifetime;
1620 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1621 return q;
1622 }
1623 }
1624 return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1625 }
1626
1627 /**
1628 * Install dynamic state for rule type cmd->o.opcode
1629 *
1630 * Returns 1 (failure) if state is not installed because of errors or because
1631 * session limitations are enforced.
1632 */
1633 static int
1634 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1635 struct ip_fw_args *args)
1636 {
1637 static int last_log;
1638 struct timeval timenow;
1639
1640 ipfw_dyn_rule *q;
1641 getmicrotime(&timenow);
1642
1643 DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1644 cmd->o.opcode,
1645 (args->fwa_id.src_ip), (args->fwa_id.src_port),
1646 (args->fwa_id.dst_ip), (args->fwa_id.dst_port) );)
1647
1648 q = lookup_dyn_rule(&args->fwa_id, NULL, NULL);
1649
1650 if (q != NULL) { /* should never occur */
1651 if (last_log != timenow.tv_sec) {
1652 last_log = timenow.tv_sec;
1653 printf("ipfw: install_state: entry already present, done\n");
1654 }
1655 return 0;
1656 }
1657
1658 if (dyn_count >= dyn_max)
1659 /*
1660 * Run out of slots, try to remove any expired rule.
1661 */
1662 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1663
1664 if (dyn_count >= dyn_max) {
1665 if (last_log != timenow.tv_sec) {
1666 last_log = timenow.tv_sec;
1667 printf("ipfw: install_state: Too many dynamic rules\n");
1668 }
1669 return 1; /* cannot install, notify caller */
1670 }
1671
1672 switch (cmd->o.opcode) {
1673 case O_KEEP_STATE: /* bidir rule */
1674 add_dyn_rule(&args->fwa_id, O_KEEP_STATE, rule);
1675 break;
1676
1677 case O_LIMIT: /* limit number of sessions */
1678 {
1679 u_int16_t limit_mask = cmd->limit_mask;
1680 struct ip_flow_id id;
1681 ipfw_dyn_rule *parent;
1682
1683 DEB(printf("ipfw: installing dyn-limit rule %d\n",
1684 cmd->conn_limit);)
1685
1686 id.dst_ip = id.src_ip = 0;
1687 id.dst_port = id.src_port = 0;
1688 id.proto = args->fwa_id.proto;
1689
1690 if (limit_mask & DYN_SRC_ADDR)
1691 id.src_ip = args->fwa_id.src_ip;
1692 if (limit_mask & DYN_DST_ADDR)
1693 id.dst_ip = args->fwa_id.dst_ip;
1694 if (limit_mask & DYN_SRC_PORT)
1695 id.src_port = args->fwa_id.src_port;
1696 if (limit_mask & DYN_DST_PORT)
1697 id.dst_port = args->fwa_id.dst_port;
1698 parent = lookup_dyn_parent(&id, rule);
1699 if (parent == NULL) {
1700 printf("ipfw: add parent failed\n");
1701 return 1;
1702 }
1703 if (parent->count >= cmd->conn_limit) {
1704 /*
1705 * See if we can remove some expired rule.
1706 */
1707 remove_dyn_rule(rule, parent);
1708 if (parent->count >= cmd->conn_limit) {
1709 if (fw_verbose && last_log != timenow.tv_sec) {
1710 last_log = timenow.tv_sec;
1711 dolog((LOG_AUTHPRIV | LOG_DEBUG,
1712 "drop session, too many entries\n"));
1713 }
1714 return 1;
1715 }
1716 }
1717 add_dyn_rule(&args->fwa_id, O_LIMIT, (struct ip_fw *)parent);
1718 }
1719 break;
1720 default:
1721 printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
1722 return 1;
1723 }
1724 lookup_dyn_rule(&args->fwa_id, NULL, NULL); /* XXX just set lifetime */
1725 return 0;
1726 }
1727
1728 /*
1729 * Generate a TCP packet, containing either a RST or a keepalive.
1730 * When flags & TH_RST, we are sending a RST packet, because of a
1731 * "reset" action matched the packet.
1732 * Otherwise we are sending a keepalive, and flags & TH_
1733 */
1734 static struct mbuf *
1735 send_pkt(struct ip_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1736 {
1737 struct mbuf *m;
1738 struct ip *ip;
1739 struct tcphdr *tcp;
1740
1741 MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */
1742 if (m == 0)
1743 return NULL;
1744 m->m_pkthdr.rcvif = (struct ifnet *)0;
1745 m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1746 m->m_data += max_linkhdr;
1747
1748 ip = mtod(m, struct ip *);
1749 bzero(ip, m->m_len);
1750 tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1751 ip->ip_p = IPPROTO_TCP;
1752 tcp->th_off = 5;
1753 /*
1754 * Assume we are sending a RST (or a keepalive in the reverse
1755 * direction), swap src and destination addresses and ports.
1756 */
1757 ip->ip_src.s_addr = htonl(id->dst_ip);
1758 ip->ip_dst.s_addr = htonl(id->src_ip);
1759 tcp->th_sport = htons(id->dst_port);
1760 tcp->th_dport = htons(id->src_port);
1761 if (flags & TH_RST) { /* we are sending a RST */
1762 if (flags & TH_ACK) {
1763 tcp->th_seq = htonl(ack);
1764 tcp->th_ack = htonl(0);
1765 tcp->th_flags = TH_RST;
1766 } else {
1767 if (flags & TH_SYN)
1768 seq++;
1769 tcp->th_seq = htonl(0);
1770 tcp->th_ack = htonl(seq);
1771 tcp->th_flags = TH_RST | TH_ACK;
1772 }
1773 } else {
1774 /*
1775 * We are sending a keepalive. flags & TH_SYN determines
1776 * the direction, forward if set, reverse if clear.
1777 * NOTE: seq and ack are always assumed to be correct
1778 * as set by the caller. This may be confusing...
1779 */
1780 if (flags & TH_SYN) {
1781 /*
1782 * we have to rewrite the correct addresses!
1783 */
1784 ip->ip_dst.s_addr = htonl(id->dst_ip);
1785 ip->ip_src.s_addr = htonl(id->src_ip);
1786 tcp->th_dport = htons(id->dst_port);
1787 tcp->th_sport = htons(id->src_port);
1788 }
1789 tcp->th_seq = htonl(seq);
1790 tcp->th_ack = htonl(ack);
1791 tcp->th_flags = TH_ACK;
1792 }
1793 /*
1794 * set ip_len to the payload size so we can compute
1795 * the tcp checksum on the pseudoheader
1796 * XXX check this, could save a couple of words ?
1797 */
1798 ip->ip_len = htons(sizeof(struct tcphdr));
1799 tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1800 /*
1801 * now fill fields left out earlier
1802 */
1803 ip->ip_ttl = ip_defttl;
1804 ip->ip_len = m->m_pkthdr.len;
1805 m->m_flags |= M_SKIP_FIREWALL;
1806
1807 return m;
1808 }
1809
1810 /*
1811 * sends a reject message, consuming the mbuf passed as an argument.
1812 */
1813 static void
1814 send_reject(struct ip_fw_args *args, int code, int offset, __unused int ip_len)
1815 {
1816
1817 if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1818 /* We need the IP header in host order for icmp_error(). */
1819 if (args->fwa_eh != NULL) {
1820 struct ip *ip = mtod(args->fwa_m, struct ip *);
1821 ip->ip_len = ntohs(ip->ip_len);
1822 ip->ip_off = ntohs(ip->ip_off);
1823 }
1824 args->fwa_m->m_flags |= M_SKIP_FIREWALL;
1825 icmp_error(args->fwa_m, ICMP_UNREACH, code, 0L, 0);
1826 } else if (offset == 0 && args->fwa_id.proto == IPPROTO_TCP) {
1827 struct tcphdr *const tcp =
1828 L3HDR(struct tcphdr, mtod(args->fwa_m, struct ip *));
1829 if ( (tcp->th_flags & TH_RST) == 0) {
1830 struct mbuf *m;
1831
1832 m = send_pkt(&(args->fwa_id), ntohl(tcp->th_seq),
1833 ntohl(tcp->th_ack),
1834 tcp->th_flags | TH_RST);
1835 if (m != NULL) {
1836 struct route sro; /* fake route */
1837
1838 bzero (&sro, sizeof (sro));
1839 ip_output_list(m, 0, NULL, &sro, 0, NULL, NULL);
1840 if (sro.ro_rt)
1841 RTFREE(sro.ro_rt);
1842 }
1843 }
1844 m_freem(args->fwa_m);
1845 } else
1846 m_freem(args->fwa_m);
1847 args->fwa_m = NULL;
1848 }
1849
1850 /**
1851 *
1852 * Given an ip_fw *, lookup_next_rule will return a pointer
1853 * to the next rule, which can be either the jump
1854 * target (for skipto instructions) or the next one in the list (in
1855 * all other cases including a missing jump target).
1856 * The result is also written in the "next_rule" field of the rule.
1857 * Backward jumps are not allowed, so start looking from the next
1858 * rule...
1859 *
1860 * This never returns NULL -- in case we do not have an exact match,
1861 * the next rule is returned. When the ruleset is changed,
1862 * pointers are flushed so we are always correct.
1863 */
1864
1865 static struct ip_fw *
1866 lookup_next_rule(struct ip_fw *me)
1867 {
1868 struct ip_fw *rule = NULL;
1869 ipfw_insn *cmd;
1870
1871 /* look for action, in case it is a skipto */
1872 cmd = ACTION_PTR(me);
1873 if (cmd->opcode == O_LOG)
1874 cmd += F_LEN(cmd);
1875 if ( cmd->opcode == O_SKIPTO )
1876 for (rule = me->next; rule ; rule = rule->next)
1877 if (rule->rulenum >= cmd->arg1)
1878 break;
1879 if (rule == NULL) /* failure or not a skipto */
1880 rule = me->next;
1881 me->next_rule = rule;
1882 return rule;
1883 }
1884
1885 /*
1886 * The main check routine for the firewall.
1887 *
1888 * All arguments are in args so we can modify them and return them
1889 * back to the caller.
1890 *
1891 * Parameters:
1892 *
1893 * args->fwa_m (in/out) The packet; we set to NULL when/if we nuke it.
1894 * Starts with the IP header.
1895 * args->fwa_eh (in) Mac header if present, or NULL for layer3 packet.
1896 * args->fwa_oif Outgoing interface, or NULL if packet is incoming.
1897 * The incoming interface is in the mbuf. (in)
1898 * args->fwa_divert_rule (in/out)
1899 * Skip up to the first rule past this rule number;
1900 * upon return, non-zero port number for divert or tee.
1901 *
1902 * args->fwa_ipfw_rule Pointer to the last matching rule (in/out)
1903 * args->fwa_next_hop Socket we are forwarding to (out).
1904 * args->fwa_id Addresses grabbed from the packet (out)
1905 *
1906 * Return value:
1907 *
1908 * IP_FW_PORT_DENY_FLAG the packet must be dropped.
1909 * 0 The packet is to be accepted and routed normally OR
1910 * the packet was denied/rejected and has been dropped;
1911 * in the latter case, *m is equal to NULL upon return.
1912 * port Divert the packet to port, with these caveats:
1913 *
1914 * - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1915 * of diverting it (ie, 'ipfw tee').
1916 *
1917 * - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1918 * 16 bits as a dummynet pipe number instead of diverting
1919 */
1920
1921 static int
1922 ipfw_chk(struct ip_fw_args *args)
1923 {
1924 /*
1925 * Local variables hold state during the processing of a packet.
1926 *
1927 * IMPORTANT NOTE: to speed up the processing of rules, there
1928 * are some assumption on the values of the variables, which
1929 * are documented here. Should you change them, please check
1930 * the implementation of the various instructions to make sure
1931 * that they still work.
1932 *
1933 * args->fwa_eh The MAC header. It is non-null for a layer2
1934 * packet, it is NULL for a layer-3 packet.
1935 *
1936 * m | args->fwa_m Pointer to the mbuf, as received from the caller.
1937 * It may change if ipfw_chk() does an m_pullup, or if it
1938 * consumes the packet because it calls send_reject().
1939 * XXX This has to change, so that ipfw_chk() never modifies
1940 * or consumes the buffer.
1941 * ip is simply an alias of the value of m, and it is kept
1942 * in sync with it (the packet is supposed to start with
1943 * the ip header).
1944 */
1945 struct mbuf *m = args->fwa_m;
1946 struct ip *ip = mtod(m, struct ip *);
1947
1948 /*
1949 * oif | args->fwa_oif If NULL, ipfw_chk has been called on the
1950 * inbound path (ether_input, bdg_forward, ip_input).
1951 * If non-NULL, ipfw_chk has been called on the outbound path
1952 * (ether_output, ip_output).
1953 */
1954 struct ifnet *oif = args->fwa_oif;
1955
1956 struct ip_fw *f = NULL; /* matching rule */
1957 int retval = 0;
1958
1959 /*
1960 * hlen The length of the IPv4 header.
1961 * hlen >0 means we have an IPv4 packet.
1962 */
1963 u_int hlen = 0; /* hlen >0 means we have an IP pkt */
1964
1965 /*
1966 * offset The offset of a fragment. offset != 0 means that
1967 * we have a fragment at this offset of an IPv4 packet.
1968 * offset == 0 means that (if this is an IPv4 packet)
1969 * this is the first or only fragment.
1970 */
1971 u_short offset = 0;
1972
1973 /*
1974 * Local copies of addresses. They are only valid if we have
1975 * an IP packet.
1976 *
1977 * proto The protocol. Set to 0 for non-ip packets,
1978 * or to the protocol read from the packet otherwise.
1979 * proto != 0 means that we have an IPv4 packet.
1980 *
1981 * src_port, dst_port port numbers, in HOST format. Only
1982 * valid for TCP and UDP packets.
1983 *
1984 * src_ip, dst_ip ip addresses, in NETWORK format.
1985 * Only valid for IPv4 packets.
1986 */
1987 u_int8_t proto;
1988 u_int16_t src_port = 0, dst_port = 0; /* NOTE: host format */
1989 struct in_addr src_ip = { 0 } , dst_ip = { 0 }; /* NOTE: network format */
1990 u_int16_t ip_len=0;
1991 int pktlen;
1992 int dyn_dir = MATCH_UNKNOWN;
1993 ipfw_dyn_rule *q = NULL;
1994 struct timeval timenow;
1995
1996 if (m->m_flags & M_SKIP_FIREWALL || fw_bypass) {
1997 return 0; /* accept */
1998 }
1999
2000 /*
2001 * Clear packet chain if we find one here.
2002 */
2003
2004 if (m->m_nextpkt != NULL) {
2005 m_freem_list(m->m_nextpkt);
2006 m->m_nextpkt = NULL;
2007 }
2008
2009 lck_mtx_lock(ipfw_mutex);
2010
2011 getmicrotime(&timenow);
2012 /*
2013 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2014 * MATCH_NONE when checked and not matched (q = NULL),
2015 * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2016 */
2017
2018 pktlen = m->m_pkthdr.len;
2019 if (args->fwa_eh == NULL || /* layer 3 packet */
2020 ( m->m_pkthdr.len >= sizeof(struct ip) &&
2021 ntohs(args->fwa_eh->ether_type) == ETHERTYPE_IP))
2022 hlen = ip->ip_hl << 2;
2023
2024 /*
2025 * Collect parameters into local variables for faster matching.
2026 */
2027 if (hlen == 0) { /* do not grab addresses for non-ip pkts */
2028 proto = args->fwa_id.proto = 0; /* mark f_id invalid */
2029 goto after_ip_checks;
2030 }
2031
2032 proto = args->fwa_id.proto = ip->ip_p;
2033 src_ip = ip->ip_src;
2034 dst_ip = ip->ip_dst;
2035 if (args->fwa_eh != NULL) { /* layer 2 packets are as on the wire */
2036 offset = ntohs(ip->ip_off) & IP_OFFMASK;
2037 ip_len = ntohs(ip->ip_len);
2038 } else {
2039 offset = ip->ip_off & IP_OFFMASK;
2040 ip_len = ip->ip_len;
2041 }
2042 pktlen = ip_len < pktlen ? ip_len : pktlen;
2043
2044 #define PULLUP_TO(len) \
2045 do { \
2046 if ((m)->m_len < (len)) { \
2047 args->fwa_m = m = m_pullup(m, (len)); \
2048 if (m == 0) \
2049 goto pullup_failed; \
2050 ip = mtod(m, struct ip *); \
2051 } \
2052 } while (0)
2053
2054 if (offset == 0) {
2055 switch (proto) {
2056 case IPPROTO_TCP:
2057 {
2058 struct tcphdr *tcp;
2059
2060 PULLUP_TO(hlen + sizeof(struct tcphdr));
2061 tcp = L3HDR(struct tcphdr, ip);
2062 dst_port = tcp->th_dport;
2063 src_port = tcp->th_sport;
2064 args->fwa_id.flags = tcp->th_flags;
2065 }
2066 break;
2067
2068 case IPPROTO_UDP:
2069 {
2070 struct udphdr *udp;
2071
2072 PULLUP_TO(hlen + sizeof(struct udphdr));
2073 udp = L3HDR(struct udphdr, ip);
2074 dst_port = udp->uh_dport;
2075 src_port = udp->uh_sport;
2076 }
2077 break;
2078
2079 case IPPROTO_ICMP:
2080 PULLUP_TO(hlen + 4); /* type, code and checksum. */
2081 args->fwa_id.flags = L3HDR(struct icmp, ip)->icmp_type;
2082 break;
2083
2084 default:
2085 break;
2086 }
2087 #undef PULLUP_TO
2088 }
2089
2090 args->fwa_id.src_ip = ntohl(src_ip.s_addr);
2091 args->fwa_id.dst_ip = ntohl(dst_ip.s_addr);
2092 args->fwa_id.src_port = src_port = ntohs(src_port);
2093 args->fwa_id.dst_port = dst_port = ntohs(dst_port);
2094
2095 after_ip_checks:
2096 if (args->fwa_ipfw_rule) {
2097 /*
2098 * Packet has already been tagged. Look for the next rule
2099 * to restart processing.
2100 *
2101 * If fw_one_pass != 0 then just accept it.
2102 * XXX should not happen here, but optimized out in
2103 * the caller.
2104 */
2105 if (fw_one_pass) {
2106 lck_mtx_unlock(ipfw_mutex);
2107 return 0;
2108 }
2109
2110 f = args->fwa_ipfw_rule->next_rule;
2111 if (f == NULL)
2112 f = lookup_next_rule(args->fwa_ipfw_rule);
2113 } else {
2114 /*
2115 * Find the starting rule. It can be either the first
2116 * one, or the one after divert_rule if asked so.
2117 */
2118 int skipto = args->fwa_divert_rule;
2119
2120 f = layer3_chain;
2121 if (args->fwa_eh == NULL && skipto != 0) {
2122 if (skipto >= IPFW_DEFAULT_RULE) {
2123 lck_mtx_unlock(ipfw_mutex);
2124 return(IP_FW_PORT_DENY_FLAG); /* invalid */
2125 }
2126 while (f && f->rulenum <= skipto)
2127 f = f->next;
2128 if (f == NULL) { /* drop packet */
2129 lck_mtx_unlock(ipfw_mutex);
2130 return(IP_FW_PORT_DENY_FLAG);
2131 }
2132 }
2133 }
2134 args->fwa_divert_rule = 0; /* reset to avoid confusion later */
2135
2136 /*
2137 * Now scan the rules, and parse microinstructions for each rule.
2138 */
2139 for (; f; f = f->next) {
2140 int l, cmdlen;
2141 ipfw_insn *cmd;
2142 int skip_or; /* skip rest of OR block */
2143
2144 again:
2145 if (f->reserved_1 == IPFW_RULE_INACTIVE) {
2146 continue;
2147 }
2148
2149 if (set_disable & (1 << f->set) )
2150 continue;
2151
2152 skip_or = 0;
2153 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2154 l -= cmdlen, cmd += cmdlen) {
2155 int match;
2156
2157 /*
2158 * check_body is a jump target used when we find a
2159 * CHECK_STATE, and need to jump to the body of
2160 * the target rule.
2161 */
2162
2163 check_body:
2164 cmdlen = F_LEN(cmd);
2165 /*
2166 * An OR block (insn_1 || .. || insn_n) has the
2167 * F_OR bit set in all but the last instruction.
2168 * The first match will set "skip_or", and cause
2169 * the following instructions to be skipped until
2170 * past the one with the F_OR bit clear.
2171 */
2172 if (skip_or) { /* skip this instruction */
2173 if ((cmd->len & F_OR) == 0)
2174 skip_or = 0; /* next one is good */
2175 continue;
2176 }
2177 match = 0; /* set to 1 if we succeed */
2178
2179 switch (cmd->opcode) {
2180 /*
2181 * The first set of opcodes compares the packet's
2182 * fields with some pattern, setting 'match' if a
2183 * match is found. At the end of the loop there is
2184 * logic to deal with F_NOT and F_OR flags associated
2185 * with the opcode.
2186 */
2187 case O_NOP:
2188 match = 1;
2189 break;
2190
2191 case O_FORWARD_MAC:
2192 printf("ipfw: opcode %d unimplemented\n",
2193 cmd->opcode);
2194 break;
2195
2196 #ifndef __APPLE__
2197 case O_GID:
2198 #endif
2199 case O_UID:
2200 /*
2201 * We only check offset == 0 && proto != 0,
2202 * as this ensures that we have an IPv4
2203 * packet with the ports info.
2204 */
2205 if (offset!=0)
2206 break;
2207
2208 {
2209 struct inpcbinfo *pi;
2210 int wildcard;
2211 struct inpcb *pcb;
2212
2213 if (proto == IPPROTO_TCP) {
2214 wildcard = 0;
2215 pi = &tcbinfo;
2216 } else if (proto == IPPROTO_UDP) {
2217 wildcard = 1;
2218 pi = &udbinfo;
2219 } else
2220 break;
2221
2222 pcb = (oif) ?
2223 in_pcblookup_hash(pi,
2224 dst_ip, htons(dst_port),
2225 src_ip, htons(src_port),
2226 wildcard, oif) :
2227 in_pcblookup_hash(pi,
2228 src_ip, htons(src_port),
2229 dst_ip, htons(dst_port),
2230 wildcard, NULL);
2231
2232 if (pcb == NULL || pcb->inp_socket == NULL)
2233 break;
2234 #if __FreeBSD_version < 500034
2235 #define socheckuid(a,b) (kauth_cred_getuid((a)->so_cred) != (b))
2236 #endif
2237 if (cmd->opcode == O_UID) {
2238 match =
2239 #ifdef __APPLE__
2240 (kauth_cred_getuid(pcb->inp_socket->so_cred) == (uid_t)((ipfw_insn_u32 *)cmd)->d[0]);
2241 #else
2242 !socheckuid(pcb->inp_socket,
2243 (uid_t)((ipfw_insn_u32 *)cmd)->d[0]);
2244 #endif
2245 }
2246 #ifndef __APPLE__
2247 else {
2248 match = 0;
2249 kauth_cred_ismember_gid(pcb->inp_socket->so_cred,
2250 (gid_t)((ipfw_insn_u32 *)cmd)->d[0], &match);
2251 }
2252 #endif
2253 /* release reference on pcb */
2254 in_pcb_checkstate(pcb, WNT_RELEASE, 0);
2255 }
2256
2257 break;
2258
2259 case O_RECV:
2260 match = iface_match(m->m_pkthdr.rcvif,
2261 (ipfw_insn_if *)cmd);
2262 break;
2263
2264 case O_XMIT:
2265 match = iface_match(oif, (ipfw_insn_if *)cmd);
2266 break;
2267
2268 case O_VIA:
2269 match = iface_match(oif ? oif :
2270 m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2271 break;
2272
2273 case O_MACADDR2:
2274 if (args->fwa_eh != NULL) { /* have MAC header */
2275 u_int32_t *want = (u_int32_t *)
2276 ((ipfw_insn_mac *)cmd)->addr;
2277 u_int32_t *mask = (u_int32_t *)
2278 ((ipfw_insn_mac *)cmd)->mask;
2279 u_int32_t *hdr = (u_int32_t *)args->fwa_eh;
2280
2281 match =
2282 ( want[0] == (hdr[0] & mask[0]) &&
2283 want[1] == (hdr[1] & mask[1]) &&
2284 want[2] == (hdr[2] & mask[2]) );
2285 }
2286 break;
2287
2288 case O_MAC_TYPE:
2289 if (args->fwa_eh != NULL) {
2290 u_int16_t t =
2291 ntohs(args->fwa_eh->ether_type);
2292 u_int16_t *p =
2293 ((ipfw_insn_u16 *)cmd)->ports;
2294 int i;
2295
2296 for (i = cmdlen - 1; !match && i>0;
2297 i--, p += 2)
2298 match = (t>=p[0] && t<=p[1]);
2299 }
2300 break;
2301
2302 case O_FRAG:
2303 match = (hlen > 0 && offset != 0);
2304 break;
2305
2306 case O_IN: /* "out" is "not in" */
2307 match = (oif == NULL);
2308 break;
2309
2310 case O_LAYER2:
2311 match = (args->fwa_eh != NULL);
2312 break;
2313
2314 case O_PROTO:
2315 /*
2316 * We do not allow an arg of 0 so the
2317 * check of "proto" only suffices.
2318 */
2319 match = (proto == cmd->arg1);
2320 break;
2321
2322 case O_IP_SRC:
2323 match = (hlen > 0 &&
2324 ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2325 src_ip.s_addr);
2326 break;
2327
2328 case O_IP_SRC_MASK:
2329 case O_IP_DST_MASK:
2330 if (hlen > 0) {
2331 uint32_t a =
2332 (cmd->opcode == O_IP_DST_MASK) ?
2333 dst_ip.s_addr : src_ip.s_addr;
2334 uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2335 int i = cmdlen-1;
2336
2337 for (; !match && i>0; i-= 2, p+= 2)
2338 match = (p[0] == (a & p[1]));
2339 }
2340 break;
2341
2342 case O_IP_SRC_ME:
2343 if (hlen > 0) {
2344 struct ifnet *tif;
2345
2346 INADDR_TO_IFP(src_ip, tif);
2347 match = (tif != NULL);
2348 }
2349 break;
2350
2351 case O_IP_DST_SET:
2352 case O_IP_SRC_SET:
2353 if (hlen > 0) {
2354 u_int32_t *d = (u_int32_t *)(cmd+1);
2355 u_int32_t addr =
2356 cmd->opcode == O_IP_DST_SET ?
2357 args->fwa_id.dst_ip :
2358 args->fwa_id.src_ip;
2359
2360 if (addr < d[0])
2361 break;
2362 addr -= d[0]; /* subtract base */
2363 match = (addr < cmd->arg1) &&
2364 ( d[ 1 + (addr>>5)] &
2365 (1<<(addr & 0x1f)) );
2366 }
2367 break;
2368
2369 case O_IP_DST:
2370 match = (hlen > 0 &&
2371 ((ipfw_insn_ip *)cmd)->addr.s_addr ==
2372 dst_ip.s_addr);
2373 break;
2374
2375 case O_IP_DST_ME:
2376 if (hlen > 0) {
2377 struct ifnet *tif;
2378
2379 INADDR_TO_IFP(dst_ip, tif);
2380 match = (tif != NULL);
2381 }
2382 break;
2383
2384 case O_IP_SRCPORT:
2385 case O_IP_DSTPORT:
2386 /*
2387 * offset == 0 && proto != 0 is enough
2388 * to guarantee that we have an IPv4
2389 * packet with port info.
2390 */
2391 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2392 && offset == 0) {
2393 u_int16_t x =
2394 (cmd->opcode == O_IP_SRCPORT) ?
2395 src_port : dst_port ;
2396 u_int16_t *p =
2397 ((ipfw_insn_u16 *)cmd)->ports;
2398 int i;
2399
2400 for (i = cmdlen - 1; !match && i>0;
2401 i--, p += 2)
2402 match = (x>=p[0] && x<=p[1]);
2403 }
2404 break;
2405
2406 case O_ICMPTYPE:
2407 match = (offset == 0 && proto==IPPROTO_ICMP &&
2408 icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
2409 break;
2410
2411 case O_IPOPT:
2412 match = (hlen > 0 && ipopts_match(ip, cmd) );
2413 break;
2414
2415 case O_IPVER:
2416 match = (hlen > 0 && cmd->arg1 == ip->ip_v);
2417 break;
2418
2419 case O_IPID:
2420 case O_IPLEN:
2421 case O_IPTTL:
2422 if (hlen > 0) { /* only for IP packets */
2423 uint16_t x;
2424 uint16_t *p;
2425 int i;
2426
2427 if (cmd->opcode == O_IPLEN)
2428 x = ip_len;
2429 else if (cmd->opcode == O_IPTTL)
2430 x = ip->ip_ttl;
2431 else /* must be IPID */
2432 x = ntohs(ip->ip_id);
2433 if (cmdlen == 1) {
2434 match = (cmd->arg1 == x);
2435 break;
2436 }
2437 /* otherwise we have ranges */
2438 p = ((ipfw_insn_u16 *)cmd)->ports;
2439 i = cmdlen - 1;
2440 for (; !match && i>0; i--, p += 2)
2441 match = (x >= p[0] && x <= p[1]);
2442 }
2443 break;
2444
2445 case O_IPPRECEDENCE:
2446 match = (hlen > 0 &&
2447 (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2448 break;
2449
2450 case O_IPTOS:
2451 match = (hlen > 0 &&
2452 flags_match(cmd, ip->ip_tos));
2453 break;
2454
2455 case O_TCPFLAGS:
2456 match = (proto == IPPROTO_TCP && offset == 0 &&
2457 flags_match(cmd,
2458 L3HDR(struct tcphdr,ip)->th_flags));
2459 break;
2460
2461 case O_TCPOPTS:
2462 match = (proto == IPPROTO_TCP && offset == 0 &&
2463 tcpopts_match(ip, cmd));
2464 break;
2465
2466 case O_TCPSEQ:
2467 match = (proto == IPPROTO_TCP && offset == 0 &&
2468 ((ipfw_insn_u32 *)cmd)->d[0] ==
2469 L3HDR(struct tcphdr,ip)->th_seq);
2470 break;
2471
2472 case O_TCPACK:
2473 match = (proto == IPPROTO_TCP && offset == 0 &&
2474 ((ipfw_insn_u32 *)cmd)->d[0] ==
2475 L3HDR(struct tcphdr,ip)->th_ack);
2476 break;
2477
2478 case O_TCPWIN:
2479 match = (proto == IPPROTO_TCP && offset == 0 &&
2480 cmd->arg1 ==
2481 L3HDR(struct tcphdr,ip)->th_win);
2482 break;
2483
2484 case O_ESTAB:
2485 /* reject packets which have SYN only */
2486 /* XXX should i also check for TH_ACK ? */
2487 match = (proto == IPPROTO_TCP && offset == 0 &&
2488 (L3HDR(struct tcphdr,ip)->th_flags &
2489 (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2490 break;
2491
2492 case O_LOG:
2493 if (fw_verbose)
2494 ipfw_log(f, hlen, args->fwa_eh, m, oif);
2495 match = 1;
2496 break;
2497
2498 case O_PROB:
2499 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2500 break;
2501
2502 case O_VERREVPATH:
2503 /* Outgoing packets automatically pass/match */
2504 match = ((oif != NULL) ||
2505 (m->m_pkthdr.rcvif == NULL) ||
2506 verify_rev_path(src_ip, m->m_pkthdr.rcvif));
2507 break;
2508
2509 case O_IPSEC:
2510 #ifdef FAST_IPSEC
2511 match = (m_tag_find(m,
2512 PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2513 #endif
2514 #ifdef IPSEC
2515 match = (ipsec_gethist(m, NULL) != NULL);
2516 #endif
2517 /* otherwise no match */
2518 break;
2519
2520 /*
2521 * The second set of opcodes represents 'actions',
2522 * i.e. the terminal part of a rule once the packet
2523 * matches all previous patterns.
2524 * Typically there is only one action for each rule,
2525 * and the opcode is stored at the end of the rule
2526 * (but there are exceptions -- see below).
2527 *
2528 * In general, here we set retval and terminate the
2529 * outer loop (would be a 'break 3' in some language,
2530 * but we need to do a 'goto done').
2531 *
2532 * Exceptions:
2533 * O_COUNT and O_SKIPTO actions:
2534 * instead of terminating, we jump to the next rule
2535 * ('goto next_rule', equivalent to a 'break 2'),
2536 * or to the SKIPTO target ('goto again' after
2537 * having set f, cmd and l), respectively.
2538 *
2539 * O_LIMIT and O_KEEP_STATE: these opcodes are
2540 * not real 'actions', and are stored right
2541 * before the 'action' part of the rule.
2542 * These opcodes try to install an entry in the
2543 * state tables; if successful, we continue with
2544 * the next opcode (match=1; break;), otherwise
2545 * the packet * must be dropped
2546 * ('goto done' after setting retval);
2547 *
2548 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2549 * cause a lookup of the state table, and a jump
2550 * to the 'action' part of the parent rule
2551 * ('goto check_body') if an entry is found, or
2552 * (CHECK_STATE only) a jump to the next rule if
2553 * the entry is not found ('goto next_rule').
2554 * The result of the lookup is cached to make
2555 * further instances of these opcodes are
2556 * effectively NOPs.
2557 */
2558 case O_LIMIT:
2559 case O_KEEP_STATE:
2560 if (install_state(f,
2561 (ipfw_insn_limit *)cmd, args)) {
2562 retval = IP_FW_PORT_DENY_FLAG;
2563 goto done; /* error/limit violation */
2564 }
2565 match = 1;
2566 break;
2567
2568 case O_PROBE_STATE:
2569 case O_CHECK_STATE:
2570 /*
2571 * dynamic rules are checked at the first
2572 * keep-state or check-state occurrence,
2573 * with the result being stored in dyn_dir.
2574 * The compiler introduces a PROBE_STATE
2575 * instruction for us when we have a
2576 * KEEP_STATE (because PROBE_STATE needs
2577 * to be run first).
2578 */
2579 if (dyn_dir == MATCH_UNKNOWN &&
2580 (q = lookup_dyn_rule(&args->fwa_id,
2581 &dyn_dir, proto == IPPROTO_TCP ?
2582 L3HDR(struct tcphdr, ip) : NULL))
2583 != NULL) {
2584 /*
2585 * Found dynamic entry, update stats
2586 * and jump to the 'action' part of
2587 * the parent rule.
2588 */
2589 q->pcnt++;
2590 q->bcnt += pktlen;
2591 f = q->rule;
2592 cmd = ACTION_PTR(f);
2593 l = f->cmd_len - f->act_ofs;
2594 goto check_body;
2595 }
2596 /*
2597 * Dynamic entry not found. If CHECK_STATE,
2598 * skip to next rule, if PROBE_STATE just
2599 * ignore and continue with next opcode.
2600 */
2601 if (cmd->opcode == O_CHECK_STATE)
2602 goto next_rule;
2603 match = 1;
2604 break;
2605
2606 case O_ACCEPT:
2607 retval = 0; /* accept */
2608 goto done;
2609
2610 case O_PIPE:
2611 case O_QUEUE:
2612 args->fwa_ipfw_rule = f; /* report matching rule */
2613 retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
2614 goto done;
2615
2616 case O_DIVERT:
2617 case O_TEE:
2618 if (args->fwa_eh) /* not on layer 2 */
2619 break;
2620 args->fwa_divert_rule = f->rulenum;
2621 retval = (cmd->opcode == O_DIVERT) ?
2622 cmd->arg1 :
2623 cmd->arg1 | IP_FW_PORT_TEE_FLAG;
2624 goto done;
2625
2626 case O_COUNT:
2627 case O_SKIPTO:
2628 f->pcnt++; /* update stats */
2629 f->bcnt += pktlen;
2630 f->timestamp = timenow.tv_sec;
2631 if (cmd->opcode == O_COUNT)
2632 goto next_rule;
2633 /* handle skipto */
2634 if (f->next_rule == NULL)
2635 lookup_next_rule(f);
2636 f = f->next_rule;
2637 goto again;
2638
2639 case O_REJECT:
2640 /*
2641 * Drop the packet and send a reject notice
2642 * if the packet is not ICMP (or is an ICMP
2643 * query), and it is not multicast/broadcast.
2644 */
2645 if (hlen > 0 && offset == 0 &&
2646 (proto != IPPROTO_ICMP ||
2647 is_icmp_query(ip)) &&
2648 !(m->m_flags & (M_BCAST|M_MCAST)) &&
2649 !IN_MULTICAST(dst_ip.s_addr)) {
2650 send_reject(args, cmd->arg1,
2651 offset,ip_len);
2652 m = args->fwa_m;
2653 }
2654 /* FALLTHROUGH */
2655 case O_DENY:
2656 retval = IP_FW_PORT_DENY_FLAG;
2657 goto done;
2658
2659 case O_FORWARD_IP:
2660 if (args->fwa_eh) /* not valid on layer2 pkts */
2661 break;
2662 if (!q || dyn_dir == MATCH_FORWARD)
2663 args->fwa_next_hop =
2664 &((ipfw_insn_sa *)cmd)->sa;
2665 retval = 0;
2666 goto done;
2667
2668 default:
2669 panic("-- unknown opcode %d\n", cmd->opcode);
2670 } /* end of switch() on opcodes */
2671
2672 if (cmd->len & F_NOT)
2673 match = !match;
2674
2675 if (match) {
2676 if (cmd->len & F_OR)
2677 skip_or = 1;
2678 } else {
2679 if (!(cmd->len & F_OR)) /* not an OR block, */
2680 break; /* try next rule */
2681 }
2682
2683 } /* end of inner for, scan opcodes */
2684
2685 next_rule:; /* try next rule */
2686
2687 } /* end of outer for, scan rules */
2688 printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2689 lck_mtx_unlock(ipfw_mutex);
2690 return(IP_FW_PORT_DENY_FLAG);
2691
2692 done:
2693 /* Update statistics */
2694 f->pcnt++;
2695 f->bcnt += pktlen;
2696 f->timestamp = timenow.tv_sec;
2697 lck_mtx_unlock(ipfw_mutex);
2698 return retval;
2699
2700 pullup_failed:
2701 if (fw_verbose)
2702 printf("ipfw: pullup failed\n");
2703 lck_mtx_unlock(ipfw_mutex);
2704 return(IP_FW_PORT_DENY_FLAG);
2705 }
2706
2707 /*
2708 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2709 * These will be reconstructed on the fly as packets are matched.
2710 * Must be called at splimp().
2711 */
2712 static void
2713 flush_rule_ptrs(void)
2714 {
2715 struct ip_fw *rule;
2716
2717 for (rule = layer3_chain; rule; rule = rule->next)
2718 rule->next_rule = NULL;
2719 }
2720
2721 /*
2722 * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
2723 * pipe/queue, or to all of them (match == NULL).
2724 * Must be called at splimp().
2725 */
2726 void
2727 flush_pipe_ptrs(struct dn_flow_set *match)
2728 {
2729 struct ip_fw *rule;
2730
2731 for (rule = layer3_chain; rule; rule = rule->next) {
2732 ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
2733
2734 if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
2735 continue;
2736 /*
2737 * XXX Use bcmp/bzero to handle pipe_ptr to overcome
2738 * possible alignment problems on 64-bit architectures.
2739 * This code is seldom used so we do not worry too
2740 * much about efficiency.
2741 */
2742 if (match == NULL ||
2743 !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
2744 bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
2745 }
2746 }
2747
2748 /*
2749 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2750 * possibly create a rule number and add the rule to the list.
2751 * Update the rule_number in the input struct so the caller knows it as well.
2752 */
2753 static int
2754 add_rule(struct ip_fw **head, struct ip_fw *input_rule)
2755 {
2756 struct ip_fw *rule, *f, *prev;
2757 int l = RULESIZE(input_rule);
2758
2759 if (*head == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
2760 return (EINVAL);
2761
2762 rule = _MALLOC(l, M_IPFW, M_WAIT);
2763 if (rule == NULL) {
2764 printf("ipfw2: add_rule MALLOC failed\n");
2765 return (ENOSPC);
2766 }
2767
2768 bzero(rule, l);
2769 bcopy(input_rule, rule, l);
2770
2771 rule->next = NULL;
2772 rule->next_rule = NULL;
2773
2774 rule->pcnt = 0;
2775 rule->bcnt = 0;
2776 rule->timestamp = 0;
2777
2778 if (*head == NULL) { /* default rule */
2779 *head = rule;
2780 goto done;
2781 }
2782
2783 /*
2784 * If rulenum is 0, find highest numbered rule before the
2785 * default rule, and add autoinc_step
2786 */
2787 if (autoinc_step < 1)
2788 autoinc_step = 1;
2789 else if (autoinc_step > 1000)
2790 autoinc_step = 1000;
2791 if (rule->rulenum == 0) {
2792 /*
2793 * locate the highest numbered rule before default
2794 */
2795 for (f = *head; f; f = f->next) {
2796 if (f->rulenum == IPFW_DEFAULT_RULE)
2797 break;
2798 rule->rulenum = f->rulenum;
2799 }
2800 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
2801 rule->rulenum += autoinc_step;
2802 input_rule->rulenum = rule->rulenum;
2803 }
2804
2805 /*
2806 * Now insert the new rule in the right place in the sorted list.
2807 */
2808 for (prev = NULL, f = *head; f; prev = f, f = f->next) {
2809 if (f->rulenum > rule->rulenum) { /* found the location */
2810 if (prev) {
2811 rule->next = f;
2812 prev->next = rule;
2813 } else { /* head insert */
2814 rule->next = *head;
2815 *head = rule;
2816 }
2817 break;
2818 }
2819 }
2820 flush_rule_ptrs();
2821 done:
2822 static_count++;
2823 static_len += l;
2824 static_len_32 += RULESIZE32(input_rule);
2825 static_len_64 += RULESIZE64(input_rule);
2826 DEB(printf("ipfw: installed rule %d, static count now %d\n",
2827 rule->rulenum, static_count);)
2828 return (0);
2829 }
2830
2831 /**
2832 * Free storage associated with a static rule (including derived
2833 * dynamic rules).
2834 * The caller is in charge of clearing rule pointers to avoid
2835 * dangling pointers.
2836 * @return a pointer to the next entry.
2837 * Arguments are not checked, so they better be correct.
2838 * Must be called at splimp().
2839 */
2840 static struct ip_fw *
2841 delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule)
2842 {
2843 struct ip_fw *n;
2844 int l = RULESIZE(rule);
2845
2846 n = rule->next;
2847 remove_dyn_rule(rule, NULL /* force removal */);
2848 if (prev == NULL)
2849 *head = n;
2850 else
2851 prev->next = n;
2852 static_count--;
2853 static_len -= l;
2854 static_len_32 -= RULESIZE32(rule);
2855 static_len_64 -= RULESIZE64(rule);
2856
2857 #if DUMMYNET
2858 if (DUMMYNET_LOADED)
2859 dn_ipfw_rule_delete(rule);
2860 #endif /* DUMMYNET */
2861 _FREE(rule, M_IPFW);
2862 return n;
2863 }
2864
2865 #if DEBUG_INACTIVE_RULES
2866 static void
2867 print_chain(struct ip_fw **chain)
2868 {
2869 struct ip_fw *rule = *chain;
2870
2871 for (; rule; rule = rule->next) {
2872 ipfw_insn *cmd = ACTION_PTR(rule);
2873
2874 printf("ipfw: rule->rulenum = %d\n", rule->rulenum);
2875
2876 if (rule->reserved_1 == IPFW_RULE_INACTIVE) {
2877 printf("ipfw: rule->reserved = IPFW_RULE_INACTIVE\n");
2878 }
2879
2880 switch (cmd->opcode) {
2881 case O_DENY:
2882 printf("ipfw: ACTION: Deny\n");
2883 break;
2884
2885 case O_REJECT:
2886 if (cmd->arg1==ICMP_REJECT_RST)
2887 printf("ipfw: ACTION: Reset\n");
2888 else if (cmd->arg1==ICMP_UNREACH_HOST)
2889 printf("ipfw: ACTION: Reject\n");
2890 break;
2891
2892 case O_ACCEPT:
2893 printf("ipfw: ACTION: Accept\n");
2894 break;
2895 case O_COUNT:
2896 printf("ipfw: ACTION: Count\n");
2897 break;
2898 case O_DIVERT:
2899 printf("ipfw: ACTION: Divert\n");
2900 break;
2901 case O_TEE:
2902 printf("ipfw: ACTION: Tee\n");
2903 break;
2904 case O_SKIPTO:
2905 printf("ipfw: ACTION: SkipTo\n");
2906 break;
2907 case O_PIPE:
2908 printf("ipfw: ACTION: Pipe\n");
2909 break;
2910 case O_QUEUE:
2911 printf("ipfw: ACTION: Queue\n");
2912 break;
2913 case O_FORWARD_IP:
2914 printf("ipfw: ACTION: Forward\n");
2915 break;
2916 default:
2917 printf("ipfw: invalid action! %d\n", cmd->opcode);
2918 }
2919 }
2920 }
2921 #endif /* DEBUG_INACTIVE_RULES */
2922
2923 static void
2924 flush_inactive(void *param)
2925 {
2926 struct ip_fw *inactive_rule = (struct ip_fw *)param;
2927 struct ip_fw *rule, *prev;
2928
2929 lck_mtx_lock(ipfw_mutex);
2930
2931 for (rule = layer3_chain, prev = NULL; rule; ) {
2932 if (rule == inactive_rule && rule->reserved_1 == IPFW_RULE_INACTIVE) {
2933 struct ip_fw *n = rule;
2934
2935 if (prev == NULL) {
2936 layer3_chain = rule->next;
2937 }
2938 else {
2939 prev->next = rule->next;
2940 }
2941 rule = rule->next;
2942 _FREE(n, M_IPFW);
2943 }
2944 else {
2945 prev = rule;
2946 rule = rule->next;
2947 }
2948 }
2949
2950 #if DEBUG_INACTIVE_RULES
2951 print_chain(&layer3_chain);
2952 #endif
2953 lck_mtx_unlock(ipfw_mutex);
2954 }
2955
2956 static void
2957 mark_inactive(struct ip_fw **prev, struct ip_fw **rule)
2958 {
2959 int l = RULESIZE(*rule);
2960
2961 if ((*rule)->reserved_1 != IPFW_RULE_INACTIVE) {
2962 (*rule)->reserved_1 = IPFW_RULE_INACTIVE;
2963 static_count--;
2964 static_len -= l;
2965 static_len_32 -= RULESIZE32(*rule);
2966 static_len_64 -= RULESIZE64(*rule);
2967
2968 timeout(flush_inactive, *rule, 30*hz); /* 30 sec. */
2969 }
2970
2971 *prev = *rule;
2972 *rule = (*rule)->next;
2973 }
2974
2975 /*
2976 * Deletes all rules from a chain (except rules in set RESVD_SET
2977 * unless kill_default = 1).
2978 * Must be called at splimp().
2979 */
2980 static void
2981 free_chain(struct ip_fw **chain, int kill_default)
2982 {
2983 struct ip_fw *prev, *rule;
2984
2985 flush_rule_ptrs(); /* more efficient to do outside the loop */
2986 for (prev = NULL, rule = *chain; rule ; )
2987 if (kill_default || rule->set != RESVD_SET) {
2988 ipfw_insn *cmd = ACTION_PTR(rule);
2989
2990 /* skip over forwarding rules so struct isn't
2991 * deleted while pointer is still in use elsewhere
2992 */
2993 if (cmd->opcode == O_FORWARD_IP) {
2994 mark_inactive(&prev, &rule);
2995 }
2996 else {
2997 rule = delete_rule(chain, prev, rule);
2998 }
2999 }
3000 else {
3001 prev = rule;
3002 rule = rule->next;
3003 }
3004 }
3005
3006 /**
3007 * Remove all rules with given number, and also do set manipulation.
3008 * Assumes chain != NULL && *chain != NULL.
3009 *
3010 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3011 * the next 8 bits are the new set, the top 8 bits are the command:
3012 *
3013 * 0 delete rules with given number
3014 * 1 delete rules with given set number
3015 * 2 move rules with given number to new set
3016 * 3 move rules with given set number to new set
3017 * 4 swap sets with given numbers
3018 */
3019 static int
3020 del_entry(struct ip_fw **chain, u_int32_t arg)
3021 {
3022 struct ip_fw *prev = NULL, *rule = *chain;
3023 u_int16_t rulenum; /* rule or old_set */
3024 u_int8_t cmd, new_set;
3025
3026 rulenum = arg & 0xffff;
3027 cmd = (arg >> 24) & 0xff;
3028 new_set = (arg >> 16) & 0xff;
3029
3030 if (cmd > 4)
3031 return EINVAL;
3032 if (new_set > RESVD_SET)
3033 return EINVAL;
3034 if (cmd == 0 || cmd == 2) {
3035 if (rulenum >= IPFW_DEFAULT_RULE)
3036 return EINVAL;
3037 } else {
3038 if (rulenum > RESVD_SET) /* old_set */
3039 return EINVAL;
3040 }
3041
3042 switch (cmd) {
3043 case 0: /* delete rules with given number */
3044 /*
3045 * locate first rule to delete
3046 */
3047 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3048 ;
3049 if (rule->rulenum != rulenum)
3050 return EINVAL;
3051
3052 /*
3053 * flush pointers outside the loop, then delete all matching
3054 * rules. prev remains the same throughout the cycle.
3055 */
3056 flush_rule_ptrs();
3057 while (rule->rulenum == rulenum) {
3058 ipfw_insn *insn = ACTION_PTR(rule);
3059
3060 /* keep forwarding rules around so struct isn't
3061 * deleted while pointer is still in use elsewhere
3062 */
3063 if (insn->opcode == O_FORWARD_IP) {
3064 mark_inactive(&prev, &rule);
3065 }
3066 else {
3067 rule = delete_rule(chain, prev, rule);
3068 }
3069 }
3070 break;
3071
3072 case 1: /* delete all rules with given set number */
3073 flush_rule_ptrs();
3074 while (rule->rulenum < IPFW_DEFAULT_RULE) {
3075 if (rule->set == rulenum) {
3076 ipfw_insn *insn = ACTION_PTR(rule);
3077
3078 /* keep forwarding rules around so struct isn't
3079 * deleted while pointer is still in use elsewhere
3080 */
3081 if (insn->opcode == O_FORWARD_IP) {
3082 mark_inactive(&prev, &rule);
3083 }
3084 else {
3085 rule = delete_rule(chain, prev, rule);
3086 }
3087 }
3088 else {
3089 prev = rule;
3090 rule = rule->next;
3091 }
3092 }
3093 break;
3094
3095 case 2: /* move rules with given number to new set */
3096 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3097 if (rule->rulenum == rulenum)
3098 rule->set = new_set;
3099 break;
3100
3101 case 3: /* move rules with given set number to new set */
3102 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3103 if (rule->set == rulenum)
3104 rule->set = new_set;
3105 break;
3106
3107 case 4: /* swap two sets */
3108 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3109 if (rule->set == rulenum)
3110 rule->set = new_set;
3111 else if (rule->set == new_set)
3112 rule->set = rulenum;
3113 break;
3114 }
3115 return 0;
3116 }
3117
3118 /*
3119 * Clear counters for a specific rule.
3120 */
3121 static void
3122 clear_counters(struct ip_fw *rule, int log_only)
3123 {
3124 ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3125
3126 if (log_only == 0) {
3127 rule->bcnt = rule->pcnt = 0;
3128 rule->timestamp = 0;
3129 }
3130 if (l->o.opcode == O_LOG)
3131 l->log_left = l->max_log;
3132 }
3133
3134 /**
3135 * Reset some or all counters on firewall rules.
3136 * @arg frwl is null to clear all entries, or contains a specific
3137 * rule number.
3138 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3139 */
3140 static int
3141 zero_entry(int rulenum, int log_only)
3142 {
3143 struct ip_fw *rule;
3144 const char *msg;
3145
3146 if (rulenum == 0) {
3147 norule_counter = 0;
3148 for (rule = layer3_chain; rule; rule = rule->next)
3149 clear_counters(rule, log_only);
3150 msg = log_only ? "ipfw: All logging counts reset.\n" :
3151 "ipfw: Accounting cleared.\n";
3152 } else {
3153 int cleared = 0;
3154 /*
3155 * We can have multiple rules with the same number, so we
3156 * need to clear them all.
3157 */
3158 for (rule = layer3_chain; rule; rule = rule->next)
3159 if (rule->rulenum == rulenum) {
3160 while (rule && rule->rulenum == rulenum) {
3161 clear_counters(rule, log_only);
3162 rule = rule->next;
3163 }
3164 cleared = 1;
3165 break;
3166 }
3167 if (!cleared) /* we did not find any matching rules */
3168 return (EINVAL);
3169 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
3170 "ipfw: Entry %d cleared.\n";
3171 }
3172 if (fw_verbose)
3173 {
3174 dolog((LOG_AUTHPRIV | LOG_NOTICE, msg, rulenum));
3175 }
3176 return (0);
3177 }
3178
3179 /*
3180 * Check validity of the structure before insert.
3181 * Fortunately rules are simple, so this mostly need to check rule sizes.
3182 */
3183 static int
3184 check_ipfw_struct(struct ip_fw *rule, int size)
3185 {
3186 int l, cmdlen = 0;
3187 int have_action=0;
3188 ipfw_insn *cmd;
3189
3190 if (size < sizeof(*rule)) {
3191 printf("ipfw: rule too short\n");
3192 return (EINVAL);
3193 }
3194 /* first, check for valid size */
3195 l = RULESIZE(rule);
3196 if (l != size) {
3197 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
3198 return (EINVAL);
3199 }
3200 /*
3201 * Now go for the individual checks. Very simple ones, basically only
3202 * instruction sizes.
3203 */
3204 for (l = rule->cmd_len, cmd = rule->cmd ;
3205 l > 0 ; l -= cmdlen, cmd += cmdlen) {
3206 cmdlen = F_LEN(cmd);
3207 if (cmdlen > l) {
3208 printf("ipfw: opcode %d size truncated\n",
3209 cmd->opcode);
3210 return EINVAL;
3211 }
3212 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
3213 switch (cmd->opcode) {
3214 case O_PROBE_STATE:
3215 case O_KEEP_STATE:
3216 case O_PROTO:
3217 case O_IP_SRC_ME:
3218 case O_IP_DST_ME:
3219 case O_LAYER2:
3220 case O_IN:
3221 case O_FRAG:
3222 case O_IPOPT:
3223 case O_IPTOS:
3224 case O_IPPRECEDENCE:
3225 case O_IPVER:
3226 case O_TCPWIN:
3227 case O_TCPFLAGS:
3228 case O_TCPOPTS:
3229 case O_ESTAB:
3230 case O_VERREVPATH:
3231 case O_IPSEC:
3232 if (cmdlen != F_INSN_SIZE(ipfw_insn))
3233 goto bad_size;
3234 break;
3235 case O_UID:
3236 #ifndef __APPLE__
3237 case O_GID:
3238 #endif /* __APPLE__ */
3239 case O_IP_SRC:
3240 case O_IP_DST:
3241 case O_TCPSEQ:
3242 case O_TCPACK:
3243 case O_PROB:
3244 case O_ICMPTYPE:
3245 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
3246 goto bad_size;
3247 break;
3248
3249 case O_LIMIT:
3250 if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
3251 goto bad_size;
3252 break;
3253
3254 case O_LOG:
3255 if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
3256 goto bad_size;
3257
3258 /* enforce logging limit */
3259 if (fw_verbose &&
3260 ((ipfw_insn_log *)cmd)->max_log == 0 && verbose_limit != 0) {
3261 ((ipfw_insn_log *)cmd)->max_log = verbose_limit;
3262 }
3263
3264 ((ipfw_insn_log *)cmd)->log_left =
3265 ((ipfw_insn_log *)cmd)->max_log;
3266
3267 break;
3268
3269 case O_IP_SRC_MASK:
3270 case O_IP_DST_MASK:
3271 /* only odd command lengths */
3272 if ( !(cmdlen & 1) || cmdlen > 31)
3273 goto bad_size;
3274 break;
3275
3276 case O_IP_SRC_SET:
3277 case O_IP_DST_SET:
3278 if (cmd->arg1 == 0 || cmd->arg1 > 256) {
3279 printf("ipfw: invalid set size %d\n",
3280 cmd->arg1);
3281 return EINVAL;
3282 }
3283 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
3284 (cmd->arg1+31)/32 )
3285 goto bad_size;
3286 break;
3287
3288 case O_MACADDR2:
3289 if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
3290 goto bad_size;
3291 break;
3292
3293 case O_NOP:
3294 case O_IPID:
3295 case O_IPTTL:
3296 case O_IPLEN:
3297 if (cmdlen < 1 || cmdlen > 31)
3298 goto bad_size;
3299 break;
3300
3301 case O_MAC_TYPE:
3302 case O_IP_SRCPORT:
3303 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
3304 if (cmdlen < 2 || cmdlen > 31)
3305 goto bad_size;
3306 break;
3307
3308 case O_RECV:
3309 case O_XMIT:
3310 case O_VIA:
3311 if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
3312 goto bad_size;
3313 break;
3314
3315 case O_PIPE:
3316 case O_QUEUE:
3317 if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
3318 goto bad_size;
3319 goto check_action;
3320
3321 case O_FORWARD_IP:
3322 if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
3323 goto bad_size;
3324 goto check_action;
3325
3326 case O_FORWARD_MAC: /* XXX not implemented yet */
3327 case O_CHECK_STATE:
3328 case O_COUNT:
3329 case O_ACCEPT:
3330 case O_DENY:
3331 case O_REJECT:
3332 case O_SKIPTO:
3333 case O_DIVERT:
3334 case O_TEE:
3335 if (cmdlen != F_INSN_SIZE(ipfw_insn))
3336 goto bad_size;
3337 check_action:
3338 if (have_action) {
3339 printf("ipfw: opcode %d, multiple actions"
3340 " not allowed\n",
3341 cmd->opcode);
3342 return EINVAL;
3343 }
3344 have_action = 1;
3345 if (l != cmdlen) {
3346 printf("ipfw: opcode %d, action must be"
3347 " last opcode\n",
3348 cmd->opcode);
3349 return EINVAL;
3350 }
3351 break;
3352 default:
3353 printf("ipfw: opcode %d, unknown opcode\n",
3354 cmd->opcode);
3355 return EINVAL;
3356 }
3357 }
3358 if (have_action == 0) {
3359 printf("ipfw: missing action\n");
3360 return EINVAL;
3361 }
3362 return 0;
3363
3364 bad_size:
3365 printf("ipfw: opcode %d size %d wrong\n",
3366 cmd->opcode, cmdlen);
3367 return EINVAL;
3368 }
3369
3370
3371 static void
3372 ipfw_kev_post_msg(u_int32_t event_code)
3373 {
3374 struct kev_msg ev_msg;
3375
3376 bzero(&ev_msg, sizeof(struct kev_msg));
3377
3378 ev_msg.vendor_code = KEV_VENDOR_APPLE;
3379 ev_msg.kev_class = KEV_FIREWALL_CLASS;
3380 ev_msg.kev_subclass = KEV_IPFW_SUBCLASS;
3381 ev_msg.event_code = event_code;
3382
3383 kev_post_msg(&ev_msg);
3384
3385 }
3386
3387 /**
3388 * {set|get}sockopt parser.
3389 */
3390 static int
3391 ipfw_ctl(struct sockopt *sopt)
3392 {
3393 #define RULE_MAXSIZE (256*sizeof(u_int32_t))
3394 u_int32_t api_version;
3395 int command;
3396 int error;
3397 size_t size;
3398 size_t rulesize = RULE_MAXSIZE;
3399 struct ip_fw *bp , *buf, *rule;
3400 int is64user = 0;
3401
3402 /* copy of orig sopt to send to ipfw_get_command_and_version() */
3403 struct sockopt tmp_sopt = *sopt;
3404 struct timeval timenow;
3405
3406 getmicrotime(&timenow);
3407
3408 /*
3409 * Disallow modifications in really-really secure mode, but still allow
3410 * the logging counters to be reset.
3411 */
3412 if (sopt->sopt_name == IP_FW_ADD ||
3413 (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
3414 #if __FreeBSD_version >= 500034
3415 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
3416 if (error)
3417 return (error);
3418 #else /* FreeBSD 4.x */
3419 if (securelevel >= 3)
3420 return (EPERM);
3421 #endif
3422 }
3423
3424 /* first get the command and version, then do conversion as necessary */
3425 error = ipfw_get_command_and_version(&tmp_sopt, &command, &api_version);
3426 if (error) {
3427 /* error getting the version */
3428 return error;
3429 }
3430
3431 if (proc_is64bit(sopt->sopt_p))
3432 is64user = 1;
3433
3434 switch (command) {
3435 case IP_FW_GET:
3436 {
3437 size_t dynrulesize;
3438 /*
3439 * pass up a copy of the current rules. Static rules
3440 * come first (the last of which has number IPFW_DEFAULT_RULE),
3441 * followed by a possibly empty list of dynamic rule.
3442 * The last dynamic rule has NULL in the "next" field.
3443 */
3444 lck_mtx_lock(ipfw_mutex);
3445
3446 if (is64user){
3447 size = Get64static_len();
3448 dynrulesize = sizeof(ipfw_dyn_rule_64);
3449 if (ipfw_dyn_v)
3450 size += (dyn_count * dynrulesize);
3451 }else {
3452 size = Get32static_len();
3453 dynrulesize = sizeof(ipfw_dyn_rule_32);
3454 if (ipfw_dyn_v)
3455 size += (dyn_count * dynrulesize);
3456 }
3457
3458 /*
3459 * XXX todo: if the user passes a short length just to know
3460 * how much room is needed, do not bother filling up the
3461 * buffer, just jump to the sooptcopyout.
3462 */
3463 buf = _MALLOC(size, M_TEMP, M_WAITOK);
3464 if (buf == 0) {
3465 lck_mtx_unlock(ipfw_mutex);
3466 error = ENOBUFS;
3467 break;
3468 }
3469
3470 bzero(buf, size);
3471
3472 bp = buf;
3473 for (rule = layer3_chain; rule ; rule = rule->next) {
3474
3475 if (rule->reserved_1 == IPFW_RULE_INACTIVE) {
3476 continue;
3477 }
3478
3479 if (is64user){
3480 int rulesize_64;
3481
3482 copyto64fw( rule, (struct ip_fw_64 *)bp, size);
3483 bcopy(&set_disable, &(( (struct ip_fw_64*)bp)->next_rule), sizeof(set_disable));
3484 /* do not use macro RULESIZE64 since we want RULESIZE for ip_fw_64 */
3485 rulesize_64 = sizeof(struct ip_fw_64) + ((struct ip_fw_64 *)(bp))->cmd_len * 4 - 4;
3486 bp = (struct ip_fw *)((char *)bp + rulesize_64);
3487 }else{
3488 int rulesize_32;
3489
3490 copyto32fw( rule, (struct ip_fw_32*)bp, size);
3491 bcopy(&set_disable, &(( (struct ip_fw_32*)bp)->next_rule), sizeof(set_disable));
3492 /* do not use macro RULESIZE32 since we want RULESIZE for ip_fw_32 */
3493 rulesize_32 = sizeof(struct ip_fw_32) + ((struct ip_fw_32 *)(bp))->cmd_len * 4 - 4;
3494 bp = (struct ip_fw *)((char *)bp + rulesize_32);
3495 }
3496 }
3497 if (ipfw_dyn_v) {
3498 int i;
3499 ipfw_dyn_rule *p;
3500 char *dst, *last = NULL;
3501
3502 dst = (char *)bp;
3503 for (i = 0 ; i < curr_dyn_buckets ; i++ )
3504 for ( p = ipfw_dyn_v[i] ; p != NULL ;
3505 p = p->next, dst += dynrulesize ) {
3506 if ( is64user ){
3507 ipfw_dyn_rule_64 *ipfw_dyn_dst;
3508
3509 ipfw_dyn_dst = (ipfw_dyn_rule_64 *)dst;
3510 /*
3511 * store a non-null value in "next".
3512 * The userland code will interpret a
3513 * NULL here as a marker
3514 * for the last dynamic rule.
3515 */
3516 ipfw_dyn_dst->next = CAST_DOWN_EXPLICIT(user64_addr_t, dst);
3517 ipfw_dyn_dst->rule = p->rule->rulenum;
3518 ipfw_dyn_dst->parent = CAST_DOWN(user64_addr_t, p->parent);
3519 ipfw_dyn_dst->pcnt = p->pcnt;
3520 ipfw_dyn_dst->bcnt = p->bcnt;
3521 externalize_flow_id(&ipfw_dyn_dst->id, &p->id);
3522 ipfw_dyn_dst->expire =
3523 TIME_LEQ(p->expire, timenow.tv_sec) ?
3524 0 : p->expire - timenow.tv_sec;
3525 ipfw_dyn_dst->bucket = p->bucket;
3526 ipfw_dyn_dst->state = p->state;
3527 ipfw_dyn_dst->ack_fwd = p->ack_fwd;
3528 ipfw_dyn_dst->ack_rev = p->ack_rev;
3529 ipfw_dyn_dst->dyn_type = p->dyn_type;
3530 ipfw_dyn_dst->count = p->count;
3531 last = (char*)&ipfw_dyn_dst->next;
3532 } else {
3533 ipfw_dyn_rule_32 *ipfw_dyn_dst;
3534
3535 ipfw_dyn_dst = (ipfw_dyn_rule_32 *)dst;
3536 /*
3537 * store a non-null value in "next".
3538 * The userland code will interpret a
3539 * NULL here as a marker
3540 * for the last dynamic rule.
3541 */
3542 ipfw_dyn_dst->next = CAST_DOWN_EXPLICIT(user32_addr_t, dst);
3543 ipfw_dyn_dst->rule = p->rule->rulenum;
3544 ipfw_dyn_dst->parent = CAST_DOWN_EXPLICIT(user32_addr_t, p->parent);
3545 ipfw_dyn_dst->pcnt = p->pcnt;
3546 ipfw_dyn_dst->bcnt = p->bcnt;
3547 externalize_flow_id(&ipfw_dyn_dst->id, &p->id);
3548 ipfw_dyn_dst->expire =
3549 TIME_LEQ(p->expire, timenow.tv_sec) ?
3550 0 : p->expire - timenow.tv_sec;
3551 ipfw_dyn_dst->bucket = p->bucket;
3552 ipfw_dyn_dst->state = p->state;
3553 ipfw_dyn_dst->ack_fwd = p->ack_fwd;
3554 ipfw_dyn_dst->ack_rev = p->ack_rev;
3555 ipfw_dyn_dst->dyn_type = p->dyn_type;
3556 ipfw_dyn_dst->count = p->count;
3557 last = (char*)&ipfw_dyn_dst->next;
3558 }
3559 }
3560 if (last != NULL) /* mark last dynamic rule */
3561 bzero(last, sizeof(last));
3562 }
3563 lck_mtx_unlock(ipfw_mutex);
3564
3565 /* convert back if necessary and copyout */
3566 if (api_version == IP_FW_VERSION_0) {
3567 int i, len = 0;
3568 struct ip_old_fw *buf2, *rule_vers0;
3569
3570 lck_mtx_lock(ipfw_mutex);
3571 buf2 = _MALLOC(static_count * sizeof(struct ip_old_fw), M_TEMP, M_WAITOK);
3572 if (buf2 == 0) {
3573 lck_mtx_unlock(ipfw_mutex);
3574 error = ENOBUFS;
3575 }
3576
3577 if (!error) {
3578 bp = buf;
3579 rule_vers0 = buf2;
3580
3581 for (i = 0; i < static_count; i++) {
3582 /* static rules have different sizes */
3583 int j = RULESIZE(bp);
3584 ipfw_convert_from_latest(bp, rule_vers0, api_version, is64user);
3585 bp = (struct ip_fw *)((char *)bp + j);
3586 len += sizeof(*rule_vers0);
3587 rule_vers0++;
3588 }
3589 lck_mtx_unlock(ipfw_mutex);
3590 error = sooptcopyout(sopt, buf2, len);
3591 _FREE(buf2, M_TEMP);
3592 }
3593 } else if (api_version == IP_FW_VERSION_1) {
3594 int i, len = 0, buf_size;
3595 struct ip_fw_compat *buf2;
3596 size_t ipfwcompsize;
3597 size_t ipfwdyncompsize;
3598 char *rule_vers1;
3599
3600 lck_mtx_lock(ipfw_mutex);
3601 if ( is64user ){
3602 ipfwcompsize = sizeof(struct ip_fw_compat_64);
3603 ipfwdyncompsize = sizeof(struct ipfw_dyn_rule_compat_64);
3604 } else {
3605 ipfwcompsize = sizeof(struct ip_fw_compat_32);
3606 ipfwdyncompsize = sizeof(struct ipfw_dyn_rule_compat_32);
3607 }
3608
3609 buf_size = static_count * ipfwcompsize +
3610 dyn_count * ipfwdyncompsize;
3611
3612 buf2 = _MALLOC(buf_size, M_TEMP, M_WAITOK);
3613 if (buf2 == 0) {
3614 lck_mtx_unlock(ipfw_mutex);
3615 error = ENOBUFS;
3616 }
3617 if (!error) {
3618 bp = buf;
3619 rule_vers1 = (char*)buf2;
3620
3621 /* first do static rules */
3622 for (i = 0; i < static_count; i++) {
3623 /* static rules have different sizes */
3624 if ( is64user ){
3625 int rulesize_64;
3626 ipfw_convert_from_latest(bp, (void *)rule_vers1, api_version, is64user);
3627 rulesize_64 = sizeof(struct ip_fw_64) + ((struct ip_fw_64 *)(bp))->cmd_len * 4 - 4;
3628 bp = (struct ip_fw *)((char *)bp + rulesize_64);
3629 }else {
3630 int rulesize_32;
3631 ipfw_convert_from_latest(bp, (void *)rule_vers1, api_version, is64user);
3632 rulesize_32 = sizeof(struct ip_fw_32) + ((struct ip_fw_32 *)(bp))->cmd_len * 4 - 4;
3633 bp = (struct ip_fw *)((char *)bp + rulesize_32);
3634 }
3635 len += ipfwcompsize;
3636 rule_vers1 += ipfwcompsize;
3637 }
3638 /* now do dynamic rules */
3639 if ( is64user )
3640 cp_dyn_to_comp_64( (struct ipfw_dyn_rule_compat_64 *)rule_vers1, &len);
3641 else
3642 cp_dyn_to_comp_32( (struct ipfw_dyn_rule_compat_32 *)rule_vers1, &len);
3643
3644 lck_mtx_unlock(ipfw_mutex);
3645 error = sooptcopyout(sopt, buf2, len);
3646 _FREE(buf2, M_TEMP);
3647 }
3648 } else {
3649 error = sooptcopyout(sopt, buf, size);
3650 }
3651
3652 _FREE(buf, M_TEMP);
3653 break;
3654 }
3655
3656 case IP_FW_FLUSH:
3657 /*
3658 * Normally we cannot release the lock on each iteration.
3659 * We could do it here only because we start from the head all
3660 * the times so there is no risk of missing some entries.
3661 * On the other hand, the risk is that we end up with
3662 * a very inconsistent ruleset, so better keep the lock
3663 * around the whole cycle.
3664 *
3665 * XXX this code can be improved by resetting the head of
3666 * the list to point to the default rule, and then freeing
3667 * the old list without the need for a lock.
3668 */
3669
3670 lck_mtx_lock(ipfw_mutex);
3671 free_chain(&layer3_chain, 0 /* keep default rule */);
3672 fw_bypass = 1;
3673 #if DEBUG_INACTIVE_RULES
3674 print_chain(&layer3_chain);
3675 #endif
3676 lck_mtx_unlock(ipfw_mutex);
3677 break;
3678
3679 case IP_FW_ADD:
3680 {
3681 size_t savedsopt_valsize=0;
3682 rule = _MALLOC(RULE_MAXSIZE, M_TEMP, M_WAITOK);
3683 if (rule == 0) {
3684 error = ENOBUFS;
3685 break;
3686 }
3687
3688 bzero(rule, RULE_MAXSIZE);
3689
3690 if (api_version != IP_FW_CURRENT_API_VERSION) {
3691 error = ipfw_convert_to_latest(sopt, rule, api_version, is64user);
3692 }
3693 else {
3694 savedsopt_valsize = sopt->sopt_valsize; /* it might get modified in sooptcopyin_fw */
3695 error = sooptcopyin_fw( sopt, rule, &rulesize);
3696
3697 }
3698
3699 if (!error) {
3700 if ((api_version == IP_FW_VERSION_0) || (api_version == IP_FW_VERSION_1)) {
3701 /* the rule has already been checked so just
3702 * adjust sopt_valsize to match what would be expected.
3703 */
3704 sopt->sopt_valsize = RULESIZE(rule);
3705 rulesize = RULESIZE(rule);
3706 }
3707 error = check_ipfw_struct(rule, rulesize);
3708 if (!error) {
3709 lck_mtx_lock(ipfw_mutex);
3710 error = add_rule(&layer3_chain, rule);
3711 if (!error && fw_bypass)
3712 fw_bypass = 0;
3713 lck_mtx_unlock(ipfw_mutex);
3714
3715 size = RULESIZE(rule);
3716 if (!error && sopt->sopt_dir == SOPT_GET) {
3717 /* convert back if necessary and copyout */
3718 if (api_version == IP_FW_VERSION_0) {
3719 struct ip_old_fw rule_vers0;
3720
3721 ipfw_convert_from_latest(rule, &rule_vers0, api_version, is64user);
3722 sopt->sopt_valsize = sizeof(struct ip_old_fw);
3723
3724 error = sooptcopyout(sopt, &rule_vers0, sizeof(struct ip_old_fw));
3725 } else if (api_version == IP_FW_VERSION_1) {
3726 struct ip_fw_compat rule_vers1;
3727 ipfw_convert_from_latest(rule, &rule_vers1, api_version, is64user);
3728 sopt->sopt_valsize = sizeof(struct ip_fw_compat);
3729
3730 error = sooptcopyout(sopt, &rule_vers1, sizeof(struct ip_fw_compat));
3731 } else {
3732 char *userrule;
3733 userrule = _MALLOC(savedsopt_valsize, M_TEMP, M_WAITOK);
3734 if ( userrule == NULL )
3735 userrule = (char*)rule;
3736 if (proc_is64bit(sopt->sopt_p)){
3737 copyto64fw( rule, (struct ip_fw_64*)userrule, savedsopt_valsize);
3738 }
3739 else {
3740 copyto32fw( rule, (struct ip_fw_32*)userrule, savedsopt_valsize);
3741 }
3742 error = sooptcopyout(sopt, userrule, savedsopt_valsize);
3743 if ( userrule )
3744 _FREE(userrule, M_TEMP);
3745 }
3746 }
3747 }
3748 }
3749
3750 _FREE(rule, M_TEMP);
3751 break;
3752 }
3753 case IP_FW_DEL:
3754 {
3755 /*
3756 * IP_FW_DEL is used for deleting single rules or sets,
3757 * and (ab)used to atomically manipulate sets.
3758 * rule->rulenum != 0 indicates single rule delete
3759 * rule->set_masks used to manipulate sets
3760 * rule->set_masks[0] contains info on sets to be
3761 * disabled, swapped, or moved
3762 * rule->set_masks[1] contains sets to be enabled.
3763 */
3764
3765 /* there is only a simple rule passed in
3766 * (no cmds), so use a temp struct to copy
3767 */
3768 struct ip_fw temp_rule;
3769 u_int32_t arg;
3770 u_int8_t cmd;
3771
3772 bzero(&temp_rule, sizeof(struct ip_fw));
3773 if (api_version != IP_FW_CURRENT_API_VERSION) {
3774 error = ipfw_convert_to_latest(sopt, &temp_rule, api_version, is64user);
3775 }
3776 else {
3777 error = sooptcopyin_fw(sopt, &temp_rule, 0 );
3778 }
3779
3780 if (!error) {
3781 /* set_masks is used to distinguish between deleting
3782 * single rules or atomically manipulating sets
3783 */
3784 lck_mtx_lock(ipfw_mutex);
3785
3786 arg = temp_rule.set_masks[0];
3787 cmd = (arg >> 24) & 0xff;
3788
3789 if (temp_rule.rulenum) {
3790 /* single rule */
3791 error = del_entry(&layer3_chain, temp_rule.rulenum);
3792 #if DEBUG_INACTIVE_RULES
3793 print_chain(&layer3_chain);
3794 #endif
3795 }
3796 else if (cmd) {
3797 /* set reassignment - see comment above del_entry() for details */
3798 error = del_entry(&layer3_chain, temp_rule.set_masks[0]);
3799 #if DEBUG_INACTIVE_RULES
3800 print_chain(&layer3_chain);
3801 #endif
3802 }
3803 else if (temp_rule.set_masks[0] != 0 ||
3804 temp_rule.set_masks[1] != 0) {
3805 /* set enable/disable */
3806 set_disable =
3807 (set_disable | temp_rule.set_masks[0]) & ~temp_rule.set_masks[1] &
3808 ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
3809 }
3810
3811 if (!layer3_chain->next)
3812 fw_bypass = 1;
3813 lck_mtx_unlock(ipfw_mutex);
3814 }
3815 break;
3816 }
3817 case IP_FW_ZERO:
3818 case IP_FW_RESETLOG: /* using rule->rulenum */
3819 {
3820 /* there is only a simple rule passed in
3821 * (no cmds), so use a temp struct to copy
3822 */
3823 struct ip_fw temp_rule;
3824
3825 bzero(&temp_rule, sizeof(struct ip_fw));
3826
3827 if (api_version != IP_FW_CURRENT_API_VERSION) {
3828 error = ipfw_convert_to_latest(sopt, &temp_rule, api_version, is64user);
3829 }
3830 else {
3831 if (sopt->sopt_val != 0) {
3832 error = sooptcopyin_fw( sopt, &temp_rule, 0);
3833 }
3834 }
3835
3836 if (!error) {
3837 lck_mtx_lock(ipfw_mutex);
3838 error = zero_entry(temp_rule.rulenum, sopt->sopt_name == IP_FW_RESETLOG);
3839 lck_mtx_unlock(ipfw_mutex);
3840 }
3841 break;
3842 }
3843 default:
3844 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
3845 error = EINVAL;
3846 }
3847
3848 if (error != EINVAL) {
3849 switch (command) {
3850 case IP_FW_ADD:
3851 case IP_OLD_FW_ADD:
3852 ipfw_kev_post_msg(KEV_IPFW_ADD);
3853 break;
3854 case IP_OLD_FW_DEL:
3855 case IP_FW_DEL:
3856 ipfw_kev_post_msg(KEV_IPFW_DEL);
3857 break;
3858 case IP_FW_FLUSH:
3859 case IP_OLD_FW_FLUSH:
3860 ipfw_kev_post_msg(KEV_IPFW_FLUSH);
3861 break;
3862
3863 default:
3864 break;
3865 }
3866 }
3867
3868 return (error);
3869 }
3870
3871 /**
3872 * dummynet needs a reference to the default rule, because rules can be
3873 * deleted while packets hold a reference to them. When this happens,
3874 * dummynet changes the reference to the default rule (it could well be a
3875 * NULL pointer, but this way we do not need to check for the special
3876 * case, plus here he have info on the default behaviour).
3877 */
3878 struct ip_fw *ip_fw_default_rule;
3879
3880 /*
3881 * This procedure is only used to handle keepalives. It is invoked
3882 * every dyn_keepalive_period
3883 */
3884 static void
3885 ipfw_tick(__unused void * unused)
3886 {
3887 struct mbuf *m0, *m, *mnext, **mtailp;
3888 int i;
3889 ipfw_dyn_rule *q;
3890 struct timeval timenow;
3891
3892 if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
3893 goto done;
3894
3895 getmicrotime(&timenow);
3896
3897 /*
3898 * We make a chain of packets to go out here -- not deferring
3899 * until after we drop the ipfw lock would result
3900 * in a lock order reversal with the normal packet input -> ipfw
3901 * call stack.
3902 */
3903 m0 = NULL;
3904 mtailp = &m0;
3905
3906 lck_mtx_lock(ipfw_mutex);
3907 for (i = 0 ; i < curr_dyn_buckets ; i++) {
3908 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
3909 if (q->dyn_type == O_LIMIT_PARENT)
3910 continue;
3911 if (q->id.proto != IPPROTO_TCP)
3912 continue;
3913 if ( (q->state & BOTH_SYN) != BOTH_SYN)
3914 continue;
3915 if (TIME_LEQ( timenow.tv_sec+dyn_keepalive_interval,
3916 q->expire))
3917 continue; /* too early */
3918 if (TIME_LEQ(q->expire, timenow.tv_sec))
3919 continue; /* too late, rule expired */
3920
3921 *mtailp = send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
3922 if (*mtailp != NULL)
3923 mtailp = &(*mtailp)->m_nextpkt;
3924
3925 *mtailp = send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
3926 if (*mtailp != NULL)
3927 mtailp = &(*mtailp)->m_nextpkt;
3928 }
3929 }
3930 lck_mtx_unlock(ipfw_mutex);
3931
3932 for (m = mnext = m0; m != NULL; m = mnext) {
3933 struct route sro; /* fake route */
3934
3935 mnext = m->m_nextpkt;
3936 m->m_nextpkt = NULL;
3937 bzero (&sro, sizeof (sro));
3938 ip_output_list(m, 0, NULL, &sro, 0, NULL, NULL);
3939 if (sro.ro_rt)
3940 RTFREE(sro.ro_rt);
3941 }
3942 done:
3943 timeout(ipfw_tick, NULL, dyn_keepalive_period*hz);
3944 }
3945
3946 void
3947 ipfw_init(void)
3948 {
3949 struct ip_fw default_rule;
3950
3951 /* setup locks */
3952 ipfw_mutex_grp_attr = lck_grp_attr_alloc_init();
3953 ipfw_mutex_grp = lck_grp_alloc_init("ipfw", ipfw_mutex_grp_attr);
3954 ipfw_mutex_attr = lck_attr_alloc_init();
3955 lck_mtx_init(ipfw_mutex, ipfw_mutex_grp, ipfw_mutex_attr);
3956
3957 layer3_chain = NULL;
3958
3959 bzero(&default_rule, sizeof default_rule);
3960
3961 default_rule.act_ofs = 0;
3962 default_rule.rulenum = IPFW_DEFAULT_RULE;
3963 default_rule.cmd_len = 1;
3964 default_rule.set = RESVD_SET;
3965
3966 default_rule.cmd[0].len = 1;
3967 default_rule.cmd[0].opcode =
3968 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
3969 1 ? O_ACCEPT :
3970 #endif
3971 O_DENY;
3972
3973 if (add_rule(&layer3_chain, &default_rule)) {
3974 printf("ipfw2: add_rule failed adding default rule\n");
3975 printf("ipfw2 failed initialization!!\n");
3976 fw_enable = 0;
3977 }
3978 else {
3979 ip_fw_default_rule = layer3_chain;
3980
3981 #ifdef IPFIREWALL_VERBOSE
3982 fw_verbose = 1;
3983 #endif
3984 #ifdef IPFIREWALL_VERBOSE_LIMIT
3985 verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3986 #endif
3987 if (fw_verbose) {
3988 if (!verbose_limit)
3989 printf("ipfw2 verbose logging enabled: unlimited logging by default\n");
3990 else
3991 printf("ipfw2 verbose logging enabled: limited to %d packets/entry by default\n",
3992 verbose_limit);
3993 }
3994 }
3995
3996 ip_fw_chk_ptr = ipfw_chk;
3997 ip_fw_ctl_ptr = ipfw_ctl;
3998
3999 ipfwstringlen = strlen( ipfwstring );
4000
4001 timeout(ipfw_tick, NULL, hz);
4002 }
4003
4004 #endif /* IPFW2 */
4005