2 * Copyright (c) 2004-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.18 2003/10/17 11:01:03 scottl Exp $
60 * Implement IP packet firewall (new version)
64 #error IPFIREWALL requires INET.
68 #include <machine/spl.h>
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
74 #include <sys/mcache.h>
75 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/ucred.h>
82 #include <sys/kern_event.h>
83 #include <sys/kauth.h>
86 #include <net/route.h>
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_icmp.h>
94 #include <netinet/ip_fw.h>
95 #include <netinet/ip_divert.h>
98 #include <netinet/ip_dummynet.h>
101 #include <netinet/tcp.h>
102 #include <netinet/tcp_timer.h>
103 #include <netinet/tcp_var.h>
104 #include <netinet/tcpip.h>
105 #include <netinet/udp.h>
106 #include <netinet/udp_var.h>
109 #include <netinet6/ipsec.h>
112 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
114 #include "ip_fw2_compat.h"
116 #include <sys/kern_event.h>
120 #include <machine/in_cksum.h>
121 */ /* XXX for in_cksum */
124 * XXX This one should go in sys/mbuf.h. It is used to avoid that
125 * a firewall-generated packet loops forever through the firewall.
127 #ifndef M_SKIP_FIREWALL
128 #define M_SKIP_FIREWALL 0x4000
132 * set_disable contains one bit per set value (0..31).
133 * If the bit is set, all rules with the corresponding set
134 * are disabled. Set RESVD_SET(31) is reserved for the default rule
135 * and rules that are not deleted by the flush command,
136 * and CANNOT be disabled.
137 * Rules in set RESVD_SET can only be deleted explicitly.
139 static u_int32_t set_disable
;
142 static int verbose_limit
;
143 extern int fw_bypass
;
145 #define IPFW_RULE_INACTIVE 1
148 * list of rules for layer 3
150 static struct ip_fw
*layer3_chain
;
152 MALLOC_DEFINE(M_IPFW
, "IpFw/IpAcct", "IpFw/IpAcct chain's");
154 static int fw_debug
= 0;
155 static int autoinc_step
= 100; /* bounded to 1..1000 in add_rule() */
157 static void ipfw_kev_post_msg(u_int32_t
);
159 static int Get32static_len(void);
160 static int Get64static_len(void);
164 static int ipfw_sysctl SYSCTL_HANDLER_ARGS
;
166 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, fw
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "Firewall");
167 SYSCTL_PROC(_net_inet_ip_fw
, OID_AUTO
, enable
,
168 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
169 &fw_enable
, 0, ipfw_sysctl
, "I", "Enable ipfw");
170 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, autoinc_step
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
171 &autoinc_step
, 0, "Rule number autincrement step");
172 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, one_pass
,
173 CTLFLAG_RW
| CTLFLAG_LOCKED
,
175 "Only do a single pass through ipfw when using dummynet(4)");
176 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, debug
,
177 CTLFLAG_RW
| CTLFLAG_LOCKED
,
178 &fw_debug
, 0, "Enable printing of debug ip_fw statements");
179 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, verbose
,
180 CTLFLAG_RW
| CTLFLAG_LOCKED
,
181 &fw_verbose
, 0, "Log matches to ipfw rules");
182 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, verbose_limit
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
183 &verbose_limit
, 0, "Set upper limit of matches of ipfw rules logged");
186 * Description of dynamic rules.
188 * Dynamic rules are stored in lists accessed through a hash table
189 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
190 * be modified through the sysctl variable dyn_buckets which is
191 * updated when the table becomes empty.
193 * XXX currently there is only one list, ipfw_dyn.
195 * When a packet is received, its address fields are first masked
196 * with the mask defined for the rule, then hashed, then matched
197 * against the entries in the corresponding list.
198 * Dynamic rules can be used for different purposes:
200 * + enforcing limits on the number of sessions;
201 * + in-kernel NAT (not implemented yet)
203 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
204 * measured in seconds and depending on the flags.
206 * The total number of dynamic rules is stored in dyn_count.
207 * The max number of dynamic rules is dyn_max. When we reach
208 * the maximum number of rules we do not create anymore. This is
209 * done to avoid consuming too much memory, but also too much
210 * time when searching on each packet (ideally, we should try instead
211 * to put a limit on the length of the list on each bucket...).
213 * Each dynamic rule holds a pointer to the parent ipfw rule so
214 * we know what action to perform. Dynamic rules are removed when
215 * the parent rule is deleted. XXX we should make them survive.
217 * There are some limitations with dynamic rules -- we do not
218 * obey the 'randomized match', and we do not do multiple
219 * passes through the firewall. XXX check the latter!!!
221 static ipfw_dyn_rule
**ipfw_dyn_v
= NULL
;
222 static u_int32_t dyn_buckets
= 256; /* must be power of 2 */
223 static u_int32_t curr_dyn_buckets
= 256; /* must be power of 2 */
226 * Timeouts for various events in handing dynamic rules.
228 static u_int32_t dyn_ack_lifetime
= 300;
229 static u_int32_t dyn_syn_lifetime
= 20;
230 static u_int32_t dyn_fin_lifetime
= 1;
231 static u_int32_t dyn_rst_lifetime
= 1;
232 static u_int32_t dyn_udp_lifetime
= 10;
233 static u_int32_t dyn_short_lifetime
= 5;
236 * Keepalives are sent if dyn_keepalive is set. They are sent every
237 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
238 * seconds of lifetime of a rule.
239 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
240 * than dyn_keepalive_period.
243 static u_int32_t dyn_keepalive_interval
= 20;
244 static u_int32_t dyn_keepalive_period
= 5;
245 static u_int32_t dyn_keepalive
= 1; /* do send keepalives */
247 static u_int32_t static_count
; /* # of static rules */
248 static u_int32_t static_len
; /* size in bytes of static rules */
249 static u_int32_t static_len_32
; /* size in bytes of static rules for 32 bit client */
250 static u_int32_t static_len_64
; /* size in bytes of static rules for 64 bit client */
251 static u_int32_t dyn_count
; /* # of dynamic rules */
252 static u_int32_t dyn_max
= 4096; /* max # of dynamic rules */
254 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_buckets
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
255 &dyn_buckets
, 0, "Number of dyn. buckets");
256 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, curr_dyn_buckets
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
257 &curr_dyn_buckets
, 0, "Current Number of dyn. buckets");
258 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_count
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
259 &dyn_count
, 0, "Number of dyn. rules");
260 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_max
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
261 &dyn_max
, 0, "Max number of dyn. rules");
262 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, static_count
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
263 &static_count
, 0, "Number of static rules");
264 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_ack_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
265 &dyn_ack_lifetime
, 0, "Lifetime of dyn. rules for acks");
266 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_syn_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
267 &dyn_syn_lifetime
, 0, "Lifetime of dyn. rules for syn");
268 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_fin_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
269 &dyn_fin_lifetime
, 0, "Lifetime of dyn. rules for fin");
270 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_rst_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
271 &dyn_rst_lifetime
, 0, "Lifetime of dyn. rules for rst");
272 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_udp_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
273 &dyn_udp_lifetime
, 0, "Lifetime of dyn. rules for UDP");
274 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_short_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
275 &dyn_short_lifetime
, 0, "Lifetime of dyn. rules for other situations");
276 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_keepalive
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
277 &dyn_keepalive
, 0, "Enable keepalives for dyn. rules");
281 ipfw_sysctl SYSCTL_HANDLER_ARGS
283 #pragma unused(arg1, arg2)
286 error
= sysctl_handle_int(oidp
, oidp
->oid_arg1
, oidp
->oid_arg2
, req
);
287 if (error
|| !req
->newptr
)
290 ipfw_kev_post_msg(KEV_IPFW_ENABLE
);
295 #endif /* SYSCTL_NODE */
298 static ip_fw_chk_t ipfw_chk
;
301 lck_grp_t
*ipfw_mutex_grp
;
302 lck_grp_attr_t
*ipfw_mutex_grp_attr
;
303 lck_attr_t
*ipfw_mutex_attr
;
304 decl_lck_mtx_data(,ipfw_mutex_data
);
305 lck_mtx_t
*ipfw_mutex
= &ipfw_mutex_data
;
307 extern void ipfwsyslog( int level
, const char *format
,...);
309 #define KEV_LOG_SUBCLASS 10
310 #define IPFWLOGEVENT 0
312 #define ipfwstring "ipfw:"
313 static size_t ipfwstringlen
;
315 #define dolog( a ) { \
316 if ( fw_verbose == 2 ) /* Apple logging, log to ipfw.log */ \
321 #define RULESIZE64(rule) (sizeof(struct ip_fw_64) + \
322 ((struct ip_fw *)(rule))->cmd_len * 4 - 4)
324 #define RULESIZE32(rule) (sizeof(struct ip_fw_32) + \
325 ((struct ip_fw *)(rule))->cmd_len * 4 - 4)
327 void ipfwsyslog( int level
, const char *format
,...)
331 struct kev_msg ev_msg
;
333 char msgBuf
[msgsize
];
338 bzero(msgBuf
, msgsize
);
339 bzero(&ev_msg
, sizeof(struct kev_msg
));
340 va_start( ap
, format
);
341 loglen
= vsnprintf(msgBuf
, msgsize
, format
, ap
);
344 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
345 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
346 ev_msg
.kev_subclass
= KEV_LOG_SUBCLASS
;
347 ev_msg
.event_code
= IPFWLOGEVENT
;
349 /* get rid of the trailing \n */
350 if (loglen
< msgsize
)
355 pri
= LOG_PRI(level
);
357 /* remove "ipfw:" prefix if logging to ipfw log */
358 if ( !(strncmp( ipfwstring
, msgBuf
, ipfwstringlen
))){
359 dptr
= msgBuf
+ipfwstringlen
;
362 ev_msg
.dv
[0].data_ptr
= &pri
;
363 ev_msg
.dv
[0].data_length
= 1;
364 ev_msg
.dv
[1].data_ptr
= dptr
;
365 ev_msg
.dv
[1].data_length
= 100; /* bug in kern_post_msg, it can't handle size > 256-msghdr */
366 ev_msg
.dv
[2].data_length
= 0;
368 kev_post_msg(&ev_msg
);
372 * This macro maps an ip pointer into a layer3 header pointer of type T
374 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
377 icmptype_match(struct ip
*ip
, ipfw_insn_u32
*cmd
)
379 int type
= L3HDR(struct icmp
,ip
)->icmp_type
;
381 return (type
<= ICMP_MAXTYPE
&& (cmd
->d
[0] & (1<<type
)) );
384 #define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
385 (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
388 is_icmp_query(struct ip
*ip
)
390 int type
= L3HDR(struct icmp
, ip
)->icmp_type
;
391 return (type
<= ICMP_MAXTYPE
&& (TT
& (1<<type
)) );
399 int len
= static_len_32
;
403 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
404 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
407 if ( rule
->act_ofs
){
408 useraction
= (char*)ACTION_PTR( rule
);
409 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
410 diff
= sizeof(ipfw_insn_pipe
) - sizeof(ipfw_insn_pipe_32
);
423 int len
= static_len_64
;
427 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
428 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
431 if ( rule
->act_ofs
){
432 useraction
= (char *)ACTION_PTR( rule
);
433 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
434 diff
= sizeof(ipfw_insn_pipe_64
) - sizeof(ipfw_insn_pipe
);
444 copyto32fw_insn( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, int cmdsize
)
453 end
= ((char*)user_ip_fw
->cmd
) + cmdsize
;
454 useraction
= (char*)ACTION_PTR( user_ip_fw
);
455 fw32action
= (char*)fw32
->cmd
+ (user_ip_fw
->act_ofs
* sizeof(uint32_t));
456 if ( ( justcmdsize
= ( fw32action
- (char*)fw32
->cmd
)))
457 bcopy( user_ip_fw
->cmd
, fw32
->cmd
, justcmdsize
);
458 while ( useraction
< end
){
459 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
460 actioncopysize
= sizeof(ipfw_insn_pipe_32
);
461 ((ipfw_insn
*)fw32action
)->opcode
= ((ipfw_insn
*)useraction
)->opcode
;
462 ((ipfw_insn
*)fw32action
)->arg1
= ((ipfw_insn
*)useraction
)->arg1
;
463 ((ipfw_insn
*)fw32action
)->len
= F_INSN_SIZE(ipfw_insn_pipe_32
);
464 diff
= ((ipfw_insn
*)useraction
)->len
- ((ipfw_insn
*)fw32action
)->len
;
466 fw32
->cmd_len
-= diff
;
469 actioncopysize
= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
470 bcopy( useraction
, fw32action
, actioncopysize
);
472 useraction
+= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
473 fw32action
+= actioncopysize
;
478 copyto64fw_insn( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, int cmdsize
)
487 end
= ((char *)user_ip_fw
->cmd
) + cmdsize
;
488 useraction
= (char*)ACTION_PTR( user_ip_fw
);
489 if ( (justcmdsize
= (useraction
- (char*)user_ip_fw
->cmd
)))
490 bcopy( user_ip_fw
->cmd
, fw64
->cmd
, justcmdsize
);
491 fw64action
= (char*)fw64
->cmd
+ justcmdsize
;
492 while ( useraction
< end
){
493 if ( ((ipfw_insn
*)user_ip_fw
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)user_ip_fw
)->opcode
== O_PIPE
){
494 actioncopysize
= sizeof(ipfw_insn_pipe_64
);
495 ((ipfw_insn
*)fw64action
)->opcode
= ((ipfw_insn
*)useraction
)->opcode
;
496 ((ipfw_insn
*)fw64action
)->arg1
= ((ipfw_insn
*)useraction
)->arg1
;
497 ((ipfw_insn
*)fw64action
)->len
= F_INSN_SIZE(ipfw_insn_pipe_64
);
498 diff
= ((ipfw_insn
*)fw64action
)->len
- ((ipfw_insn
*)useraction
)->len
;
500 fw64
->cmd_len
+= diff
;
503 actioncopysize
= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
504 bcopy( useraction
, fw64action
, actioncopysize
);
506 useraction
+= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
507 fw64action
+= actioncopysize
;
512 copyto32fw( struct ip_fw
*user_ip_fw
, struct ip_fw_32
*fw32
, __unused
size_t copysize
)
514 size_t rulesize
, cmdsize
;
516 fw32
->version
= user_ip_fw
->version
;
517 fw32
->context
= CAST_DOWN_EXPLICIT( user32_addr_t
, user_ip_fw
->context
);
518 fw32
->next
= CAST_DOWN_EXPLICIT(user32_addr_t
, user_ip_fw
->next
);
519 fw32
->next_rule
= CAST_DOWN_EXPLICIT(user32_addr_t
, user_ip_fw
->next_rule
);
520 fw32
->act_ofs
= user_ip_fw
->act_ofs
;
521 fw32
->cmd_len
= user_ip_fw
->cmd_len
;
522 fw32
->rulenum
= user_ip_fw
->rulenum
;
523 fw32
->set
= user_ip_fw
->set
;
524 fw32
->set_masks
[0] = user_ip_fw
->set_masks
[0];
525 fw32
->set_masks
[1] = user_ip_fw
->set_masks
[1];
526 fw32
->pcnt
= user_ip_fw
->pcnt
;
527 fw32
->bcnt
= user_ip_fw
->bcnt
;
528 fw32
->timestamp
= user_ip_fw
->timestamp
;
529 fw32
->reserved_1
= user_ip_fw
->reserved_1
;
530 fw32
->reserved_2
= user_ip_fw
->reserved_2
;
531 rulesize
= sizeof(struct ip_fw_32
) + (user_ip_fw
->cmd_len
* sizeof(ipfw_insn
) - 4);
532 cmdsize
= user_ip_fw
->cmd_len
* sizeof(u_int32_t
);
533 copyto32fw_insn( fw32
, user_ip_fw
, cmdsize
);
537 copyto64fw( struct ip_fw
*user_ip_fw
, struct ip_fw_64
*fw64
, size_t copysize
)
539 size_t rulesize
, cmdsize
;
541 fw64
->version
= user_ip_fw
->version
;
542 fw64
->context
= CAST_DOWN_EXPLICIT(__uint64_t
, user_ip_fw
->context
);
543 fw64
->next
= CAST_DOWN_EXPLICIT(user64_addr_t
, user_ip_fw
->next
);
544 fw64
->next_rule
= CAST_DOWN_EXPLICIT(user64_addr_t
, user_ip_fw
->next_rule
);
545 fw64
->act_ofs
= user_ip_fw
->act_ofs
;
546 fw64
->cmd_len
= user_ip_fw
->cmd_len
;
547 fw64
->rulenum
= user_ip_fw
->rulenum
;
548 fw64
->set
= user_ip_fw
->set
;
549 fw64
->set_masks
[0] = user_ip_fw
->set_masks
[0];
550 fw64
->set_masks
[1] = user_ip_fw
->set_masks
[1];
551 fw64
->pcnt
= user_ip_fw
->pcnt
;
552 fw64
->bcnt
= user_ip_fw
->bcnt
;
553 fw64
->timestamp
= user_ip_fw
->timestamp
;
554 fw64
->reserved_1
= user_ip_fw
->reserved_1
;
555 fw64
->reserved_2
= user_ip_fw
->reserved_2
;
556 rulesize
= sizeof(struct ip_fw_64
) + (user_ip_fw
->cmd_len
* sizeof(ipfw_insn
) - 4);
557 if (rulesize
> copysize
)
558 cmdsize
= copysize
- sizeof(struct ip_fw_64
) + 4;
560 cmdsize
= user_ip_fw
->cmd_len
* sizeof(u_int32_t
);
561 copyto64fw_insn( fw64
, user_ip_fw
, cmdsize
);
565 copyfrom32fw_insn( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, int cmdsize
)
574 end
= ((char*)fw32
->cmd
) + cmdsize
;
575 fw32action
= (char*)ACTION_PTR( fw32
);
576 if ((justcmdsize
= (fw32action
- (char*)fw32
->cmd
)))
577 bcopy( fw32
->cmd
, user_ip_fw
->cmd
, justcmdsize
);
578 useraction
= (char*)user_ip_fw
->cmd
+ justcmdsize
;
579 while ( fw32action
< end
){
580 if ( ((ipfw_insn
*)fw32action
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)fw32action
)->opcode
== O_PIPE
){
581 actioncopysize
= sizeof(ipfw_insn_pipe
);
582 ((ipfw_insn
*)useraction
)->opcode
= ((ipfw_insn
*)fw32action
)->opcode
;
583 ((ipfw_insn
*)useraction
)->arg1
= ((ipfw_insn
*)fw32action
)->arg1
;
584 ((ipfw_insn
*)useraction
)->len
= F_INSN_SIZE(ipfw_insn_pipe
);
585 diff
= ((ipfw_insn
*)useraction
)->len
- ((ipfw_insn
*)fw32action
)->len
;
587 /* readjust the cmd_len */
588 user_ip_fw
->cmd_len
+= diff
;
591 actioncopysize
= (F_LEN((ipfw_insn
*)fw32action
) ? (F_LEN((ipfw_insn
*)fw32action
)) : 1 ) * sizeof(uint32_t);
592 bcopy( fw32action
, useraction
, actioncopysize
);
594 fw32action
+= (F_LEN((ipfw_insn
*)fw32action
) ? (F_LEN((ipfw_insn
*)fw32action
)) : 1 ) * sizeof(uint32_t);
595 useraction
+= actioncopysize
;
598 return( useraction
- (char*)user_ip_fw
->cmd
);
602 copyfrom64fw_insn( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, int cmdsize
)
611 end
= ((char *)fw64
->cmd
) + cmdsize
;
612 fw64action
= (char*)ACTION_PTR( fw64
);
613 if ( (justcmdsize
= (fw64action
- (char*)fw64
->cmd
)))
614 bcopy( fw64
->cmd
, user_ip_fw
->cmd
, justcmdsize
);
615 useraction
= (char*)user_ip_fw
->cmd
+ justcmdsize
;
616 while ( fw64action
< end
){
617 if ( ((ipfw_insn
*)fw64action
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)fw64action
)->opcode
== O_PIPE
){
618 actioncopysize
= sizeof(ipfw_insn_pipe
);
619 ((ipfw_insn
*)useraction
)->opcode
= ((ipfw_insn
*)fw64action
)->opcode
;
620 ((ipfw_insn
*)useraction
)->arg1
= ((ipfw_insn
*)fw64action
)->arg1
;
621 ((ipfw_insn
*)useraction
)->len
= F_INSN_SIZE(ipfw_insn_pipe
);
622 diff
= ((ipfw_insn
*)fw64action
)->len
- ((ipfw_insn
*)useraction
)->len
;
624 /* readjust the cmd_len */
625 user_ip_fw
->cmd_len
-= diff
;
628 actioncopysize
= (F_LEN((ipfw_insn
*)fw64action
) ? (F_LEN((ipfw_insn
*)fw64action
)) : 1 ) * sizeof(uint32_t);
629 bcopy( fw64action
, useraction
, actioncopysize
);
631 fw64action
+= (F_LEN((ipfw_insn
*)fw64action
) ? (F_LEN((ipfw_insn
*)fw64action
)) : 1 ) * sizeof(uint32_t);
632 useraction
+= actioncopysize
;
634 return( useraction
- (char*)user_ip_fw
->cmd
);
638 copyfrom32fw( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, size_t copysize
)
640 size_t rulesize
, cmdsize
;
642 user_ip_fw
->version
= fw32
->version
;
643 user_ip_fw
->context
= CAST_DOWN(void *, fw32
->context
);
644 user_ip_fw
->next
= CAST_DOWN(struct ip_fw
*, fw32
->next
);
645 user_ip_fw
->next_rule
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw32
->next_rule
);
646 user_ip_fw
->act_ofs
= fw32
->act_ofs
;
647 user_ip_fw
->cmd_len
= fw32
->cmd_len
;
648 user_ip_fw
->rulenum
= fw32
->rulenum
;
649 user_ip_fw
->set
= fw32
->set
;
650 user_ip_fw
->set_masks
[0] = fw32
->set_masks
[0];
651 user_ip_fw
->set_masks
[1] = fw32
->set_masks
[1];
652 user_ip_fw
->pcnt
= fw32
->pcnt
;
653 user_ip_fw
->bcnt
= fw32
->bcnt
;
654 user_ip_fw
->timestamp
= fw32
->timestamp
;
655 user_ip_fw
->reserved_1
= fw32
->reserved_1
;
656 user_ip_fw
->reserved_2
= fw32
->reserved_2
;
657 rulesize
= sizeof(struct ip_fw_32
) + (fw32
->cmd_len
* sizeof(ipfw_insn
) - 4);
658 if ( rulesize
> copysize
)
659 cmdsize
= copysize
- sizeof(struct ip_fw_32
)-4;
661 cmdsize
= fw32
->cmd_len
* sizeof(ipfw_insn
);
662 cmdsize
= copyfrom32fw_insn( fw32
, user_ip_fw
, cmdsize
);
663 return( sizeof(struct ip_fw
) + cmdsize
- 4);
667 copyfrom64fw( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, size_t copysize
)
669 size_t rulesize
, cmdsize
;
671 user_ip_fw
->version
= fw64
->version
;
672 user_ip_fw
->context
= CAST_DOWN_EXPLICIT( void *, fw64
->context
);
673 user_ip_fw
->next
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw64
->next
);
674 user_ip_fw
->next_rule
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw64
->next_rule
);
675 user_ip_fw
->act_ofs
= fw64
->act_ofs
;
676 user_ip_fw
->cmd_len
= fw64
->cmd_len
;
677 user_ip_fw
->rulenum
= fw64
->rulenum
;
678 user_ip_fw
->set
= fw64
->set
;
679 user_ip_fw
->set_masks
[0] = fw64
->set_masks
[0];
680 user_ip_fw
->set_masks
[1] = fw64
->set_masks
[1];
681 user_ip_fw
->pcnt
= fw64
->pcnt
;
682 user_ip_fw
->bcnt
= fw64
->bcnt
;
683 user_ip_fw
->timestamp
= fw64
->timestamp
;
684 user_ip_fw
->reserved_1
= fw64
->reserved_1
;
685 user_ip_fw
->reserved_2
= fw64
->reserved_2
;
686 //bcopy( fw64->cmd, user_ip_fw->cmd, fw64->cmd_len * sizeof(ipfw_insn));
687 rulesize
= sizeof(struct ip_fw_64
) + (fw64
->cmd_len
* sizeof(ipfw_insn
) - 4);
688 if ( rulesize
> copysize
)
689 cmdsize
= copysize
- sizeof(struct ip_fw_64
)-4;
691 cmdsize
= fw64
->cmd_len
* sizeof(ipfw_insn
);
692 cmdsize
= copyfrom64fw_insn( fw64
, user_ip_fw
, cmdsize
);
693 return( sizeof(struct ip_fw
) + cmdsize
- 4);
697 externalize_flow_id(struct ipfw_flow_id
*dst
, struct ip_flow_id
*src
);
699 externalize_flow_id(struct ipfw_flow_id
*dst
, struct ip_flow_id
*src
)
701 dst
->dst_ip
= src
->dst_ip
;
702 dst
->src_ip
= src
->src_ip
;
703 dst
->dst_port
= src
->dst_port
;
704 dst
->src_port
= src
->src_port
;
705 dst
->proto
= src
->proto
;
706 dst
->flags
= src
->flags
;
710 void cp_dyn_to_comp_32( struct ipfw_dyn_rule_compat_32
*dyn_rule_vers1
, int *len
)
712 struct ipfw_dyn_rule_compat_32
*dyn_last
=NULL
;
717 for (i
= 0; i
< curr_dyn_buckets
; i
++) {
718 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
; p
= p
->next
) {
719 dyn_rule_vers1
->chain
= (user32_addr_t
)(p
->rule
->rulenum
);
720 externalize_flow_id(&dyn_rule_vers1
->id
, &p
->id
);
721 externalize_flow_id(&dyn_rule_vers1
->mask
, &p
->id
);
722 dyn_rule_vers1
->type
= p
->dyn_type
;
723 dyn_rule_vers1
->expire
= p
->expire
;
724 dyn_rule_vers1
->pcnt
= p
->pcnt
;
725 dyn_rule_vers1
->bcnt
= p
->bcnt
;
726 dyn_rule_vers1
->bucket
= p
->bucket
;
727 dyn_rule_vers1
->state
= p
->state
;
729 dyn_rule_vers1
->next
= CAST_DOWN_EXPLICIT( user32_addr_t
, p
->next
);
730 dyn_last
= dyn_rule_vers1
;
732 *len
+= sizeof(*dyn_rule_vers1
);
737 if (dyn_last
!= NULL
) {
738 dyn_last
->next
= ((user32_addr_t
)0);
745 void cp_dyn_to_comp_64( struct ipfw_dyn_rule_compat_64
*dyn_rule_vers1
, int *len
)
747 struct ipfw_dyn_rule_compat_64
*dyn_last
=NULL
;
752 for (i
= 0; i
< curr_dyn_buckets
; i
++) {
753 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
; p
= p
->next
) {
754 dyn_rule_vers1
->chain
= (user64_addr_t
) p
->rule
->rulenum
;
755 externalize_flow_id(&dyn_rule_vers1
->id
, &p
->id
);
756 externalize_flow_id(&dyn_rule_vers1
->mask
, &p
->id
);
757 dyn_rule_vers1
->type
= p
->dyn_type
;
758 dyn_rule_vers1
->expire
= p
->expire
;
759 dyn_rule_vers1
->pcnt
= p
->pcnt
;
760 dyn_rule_vers1
->bcnt
= p
->bcnt
;
761 dyn_rule_vers1
->bucket
= p
->bucket
;
762 dyn_rule_vers1
->state
= p
->state
;
764 dyn_rule_vers1
->next
= CAST_DOWN(user64_addr_t
, p
->next
);
765 dyn_last
= dyn_rule_vers1
;
767 *len
+= sizeof(*dyn_rule_vers1
);
772 if (dyn_last
!= NULL
) {
773 dyn_last
->next
= CAST_DOWN(user64_addr_t
, NULL
);
779 sooptcopyin_fw( struct sockopt
*sopt
, struct ip_fw
*user_ip_fw
, size_t *size
)
781 size_t valsize
, copyinsize
= 0;
784 valsize
= sopt
->sopt_valsize
;
787 if (proc_is64bit(sopt
->sopt_p
)) {
788 struct ip_fw_64
*fw64
=NULL
;
790 if ( valsize
< sizeof(struct ip_fw_64
) ) {
794 copyinsize
= sizeof(struct ip_fw_64
);
795 if ( valsize
> copyinsize
)
796 sopt
->sopt_valsize
= valsize
= copyinsize
;
798 if ( sopt
->sopt_p
!= 0) {
799 fw64
= _MALLOC(copyinsize
, M_TEMP
, M_WAITOK
);
802 if ((error
= copyin(sopt
->sopt_val
, fw64
, valsize
)) != 0){
808 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), fw64
, valsize
);
810 valsize
= copyfrom64fw( fw64
, user_ip_fw
, valsize
);
811 _FREE( fw64
, M_TEMP
);
813 struct ip_fw_32
*fw32
=NULL
;
815 if ( valsize
< sizeof(struct ip_fw_32
) ) {
819 copyinsize
= sizeof(struct ip_fw_32
);
820 if ( valsize
> copyinsize
)
821 sopt
->sopt_valsize
= valsize
= copyinsize
;
823 if ( sopt
->sopt_p
!= 0) {
824 fw32
= _MALLOC(copyinsize
, M_TEMP
, M_WAITOK
);
827 if ( (error
= copyin(sopt
->sopt_val
, fw32
, valsize
)) != 0){
828 _FREE( fw32
, M_TEMP
);
833 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), fw32
, valsize
);
835 valsize
= copyfrom32fw( fw32
, user_ip_fw
, valsize
);
836 _FREE( fw32
, M_TEMP
);
844 * The following checks use two arrays of 8 or 16 bits to store the
845 * bits that we want set or clear, respectively. They are in the
846 * low and high half of cmd->arg1 or cmd->d[0].
848 * We scan options and store the bits we find set. We succeed if
850 * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
852 * The code is sometimes optimized not to store additional variables.
856 flags_match(ipfw_insn
*cmd
, u_int8_t bits
)
861 if ( ((cmd
->arg1
& 0xff) & bits
) != 0)
862 return 0; /* some bits we want set were clear */
863 want_clear
= (cmd
->arg1
>> 8) & 0xff;
864 if ( (want_clear
& bits
) != want_clear
)
865 return 0; /* some bits we want clear were set */
870 ipopts_match(struct ip
*ip
, ipfw_insn
*cmd
)
872 int optlen
, bits
= 0;
873 u_char
*cp
= (u_char
*)(ip
+ 1);
874 int x
= (ip
->ip_hl
<< 2) - sizeof (struct ip
);
876 for (; x
> 0; x
-= optlen
, cp
+= optlen
) {
877 int opt
= cp
[IPOPT_OPTVAL
];
879 if (opt
== IPOPT_EOL
)
881 if (opt
== IPOPT_NOP
)
884 optlen
= cp
[IPOPT_OLEN
];
885 if (optlen
<= 0 || optlen
> x
)
886 return 0; /* invalid or truncated */
894 bits
|= IP_FW_IPOPT_LSRR
;
898 bits
|= IP_FW_IPOPT_SSRR
;
902 bits
|= IP_FW_IPOPT_RR
;
906 bits
|= IP_FW_IPOPT_TS
;
910 return (flags_match(cmd
, bits
));
914 tcpopts_match(struct ip
*ip
, ipfw_insn
*cmd
)
916 int optlen
, bits
= 0;
917 struct tcphdr
*tcp
= L3HDR(struct tcphdr
,ip
);
918 u_char
*cp
= (u_char
*)(tcp
+ 1);
919 int x
= (tcp
->th_off
<< 2) - sizeof(struct tcphdr
);
921 for (; x
> 0; x
-= optlen
, cp
+= optlen
) {
923 if (opt
== TCPOPT_EOL
)
925 if (opt
== TCPOPT_NOP
)
939 bits
|= IP_FW_TCPOPT_MSS
;
943 bits
|= IP_FW_TCPOPT_WINDOW
;
946 case TCPOPT_SACK_PERMITTED
:
948 bits
|= IP_FW_TCPOPT_SACK
;
951 case TCPOPT_TIMESTAMP
:
952 bits
|= IP_FW_TCPOPT_TS
;
958 bits
|= IP_FW_TCPOPT_CC
;
962 return (flags_match(cmd
, bits
));
966 iface_match(struct ifnet
*ifp
, ipfw_insn_if
*cmd
)
968 if (ifp
== NULL
) /* no iface with this packet, match fails */
970 /* Check by name or by IP address */
971 if (cmd
->name
[0] != '\0') { /* match by name */
972 /* Check unit number (-1 is wildcard) */
973 if (cmd
->p
.unit
!= -1 && cmd
->p
.unit
!= ifp
->if_unit
)
976 if (!strncmp(ifp
->if_name
, cmd
->name
, IFNAMSIZ
))
981 ifnet_lock_shared(ifp
);
982 TAILQ_FOREACH(ia
, &ifp
->if_addrhead
, ifa_link
) {
984 if (ia
->ifa_addr
->sa_family
!= AF_INET
) {
988 if (cmd
->p
.ip
.s_addr
== ((struct sockaddr_in
*)
989 (ia
->ifa_addr
))->sin_addr
.s_addr
) {
991 ifnet_lock_done(ifp
);
992 return(1); /* match */
996 ifnet_lock_done(ifp
);
998 return(0); /* no match, fail ... */
1002 * The 'verrevpath' option checks that the interface that an IP packet
1003 * arrives on is the same interface that traffic destined for the
1004 * packet's source address would be routed out of. This is a measure
1005 * to block forged packets. This is also commonly known as "anti-spoofing"
1006 * or Unicast Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The
1007 * name of the knob is purposely reminisent of the Cisco IOS command,
1009 * ip verify unicast reverse-path
1011 * which implements the same functionality. But note that syntax is
1012 * misleading. The check may be performed on all IP packets whether unicast,
1013 * multicast, or broadcast.
1016 verify_rev_path(struct in_addr src
, struct ifnet
*ifp
)
1018 static struct route ro
;
1019 struct sockaddr_in
*dst
;
1021 dst
= (struct sockaddr_in
*)&(ro
.ro_dst
);
1023 /* Check if we've cached the route from the previous call. */
1024 if (src
.s_addr
!= dst
->sin_addr
.s_addr
) {
1027 bzero(dst
, sizeof(*dst
));
1028 dst
->sin_family
= AF_INET
;
1029 dst
->sin_len
= sizeof(*dst
);
1030 dst
->sin_addr
= src
;
1032 rtalloc_ign(&ro
, RTF_CLONING
|RTF_PRCLONING
);
1034 if (ro
.ro_rt
!= NULL
)
1035 RT_LOCK_SPIN(ro
.ro_rt
);
1037 return 0; /* No route */
1038 if ((ifp
== NULL
) ||
1039 (ro
.ro_rt
->rt_ifp
->if_index
!= ifp
->if_index
)) {
1040 RT_UNLOCK(ro
.ro_rt
);
1043 RT_UNLOCK(ro
.ro_rt
);
1048 static u_int64_t norule_counter
; /* counter for ipfw_log(NULL...) */
1050 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
1051 #define SNP(buf) buf, sizeof(buf)
1054 * We enter here when we have a rule with O_LOG.
1055 * XXX this function alone takes about 2Kbytes of code!
1058 ipfw_log(struct ip_fw
*f
, u_int hlen
, struct ether_header
*eh
,
1059 struct mbuf
*m
, struct ifnet
*oif
)
1062 int limit_reached
= 0;
1063 char ipv4str
[MAX_IPv4_STR_LEN
];
1064 char action2
[40], proto
[48], fragment
[28];
1069 if (f
== NULL
) { /* bogus pkt */
1070 if (verbose_limit
!= 0 && norule_counter
>= verbose_limit
)
1073 if (norule_counter
== verbose_limit
)
1074 limit_reached
= verbose_limit
;
1076 } else { /* O_LOG is the first action, find the real one */
1077 ipfw_insn
*cmd
= ACTION_PTR(f
);
1078 ipfw_insn_log
*l
= (ipfw_insn_log
*)cmd
;
1080 if (l
->max_log
!= 0 && l
->log_left
== 0)
1083 if (l
->log_left
== 0)
1084 limit_reached
= l
->max_log
;
1085 cmd
+= F_LEN(cmd
); /* point to first action */
1086 if (cmd
->opcode
== O_PROB
)
1090 switch (cmd
->opcode
) {
1096 if (cmd
->arg1
==ICMP_REJECT_RST
)
1098 else if (cmd
->arg1
==ICMP_UNREACH_HOST
)
1101 snprintf(SNPARGS(action2
, 0), "Unreach %d",
1112 snprintf(SNPARGS(action2
, 0), "Divert %d",
1116 snprintf(SNPARGS(action2
, 0), "Tee %d",
1120 snprintf(SNPARGS(action2
, 0), "SkipTo %d",
1124 snprintf(SNPARGS(action2
, 0), "Pipe %d",
1128 snprintf(SNPARGS(action2
, 0), "Queue %d",
1131 case O_FORWARD_IP
: {
1132 ipfw_insn_sa
*sa
= (ipfw_insn_sa
*)cmd
;
1135 if (f
->reserved_1
== IPFW_RULE_INACTIVE
) {
1138 len
= snprintf(SNPARGS(action2
, 0), "Forward to %s",
1139 inet_ntop(AF_INET
, &sa
->sa
.sin_addr
, ipv4str
, sizeof(ipv4str
)));
1140 if (sa
->sa
.sin_port
)
1141 snprintf(SNPARGS(action2
, len
), ":%d",
1151 if (hlen
== 0) { /* non-ip */
1152 snprintf(SNPARGS(proto
, 0), "MAC");
1154 struct ip
*ip
= mtod(m
, struct ip
*);
1155 /* these three are all aliases to the same thing */
1156 struct icmp
*const icmp
= L3HDR(struct icmp
, ip
);
1157 struct tcphdr
*const tcp
= (struct tcphdr
*)icmp
;
1158 struct udphdr
*const udp
= (struct udphdr
*)icmp
;
1160 int ip_off
, offset
, ip_len
;
1164 if (eh
!= NULL
) { /* layer 2 packets are as on the wire */
1165 ip_off
= ntohs(ip
->ip_off
);
1166 ip_len
= ntohs(ip
->ip_len
);
1168 ip_off
= ip
->ip_off
;
1169 ip_len
= ip
->ip_len
;
1171 offset
= ip_off
& IP_OFFMASK
;
1174 len
= snprintf(SNPARGS(proto
, 0), "TCP %s",
1175 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1177 snprintf(SNPARGS(proto
, len
), ":%d %s:%d",
1178 ntohs(tcp
->th_sport
),
1179 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)),
1180 ntohs(tcp
->th_dport
));
1182 snprintf(SNPARGS(proto
, len
), " %s",
1183 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1187 len
= snprintf(SNPARGS(proto
, 0), "UDP %s",
1188 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1190 snprintf(SNPARGS(proto
, len
), ":%d %s:%d",
1191 ntohs(udp
->uh_sport
),
1192 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)),
1193 ntohs(udp
->uh_dport
));
1195 snprintf(SNPARGS(proto
, len
), " %s",
1196 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1201 len
= snprintf(SNPARGS(proto
, 0),
1203 icmp
->icmp_type
, icmp
->icmp_code
);
1205 len
= snprintf(SNPARGS(proto
, 0), "ICMP ");
1206 len
+= snprintf(SNPARGS(proto
, len
), "%s",
1207 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1208 snprintf(SNPARGS(proto
, len
), " %s",
1209 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1213 len
= snprintf(SNPARGS(proto
, 0), "P:%d %s", ip
->ip_p
,
1214 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1215 snprintf(SNPARGS(proto
, len
), " %s",
1216 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1220 if (ip_off
& (IP_MF
| IP_OFFMASK
))
1221 snprintf(SNPARGS(fragment
, 0), " (frag %d:%d@%d%s)",
1222 ntohs(ip
->ip_id
), ip_len
- (ip
->ip_hl
<< 2),
1224 (ip_off
& IP_MF
) ? "+" : "");
1226 if (oif
|| m
->m_pkthdr
.rcvif
)
1228 dolog((LOG_AUTHPRIV
| LOG_INFO
,
1229 "ipfw: %d %s %s %s via %s%d%s\n",
1230 f
? f
->rulenum
: -1,
1231 action
, proto
, oif
? "out" : "in",
1232 oif
? oif
->if_name
: m
->m_pkthdr
.rcvif
->if_name
,
1233 oif
? oif
->if_unit
: m
->m_pkthdr
.rcvif
->if_unit
,
1237 dolog((LOG_AUTHPRIV
| LOG_INFO
,
1238 "ipfw: %d %s %s [no if info]%s\n",
1239 f
? f
->rulenum
: -1,
1240 action
, proto
, fragment
));
1243 dolog((LOG_AUTHPRIV
| LOG_NOTICE
,
1244 "ipfw: limit %d reached on entry %d\n",
1245 limit_reached
, f
? f
->rulenum
: -1));
1250 * IMPORTANT: the hash function for dynamic rules must be commutative
1251 * in source and destination (ip,port), because rules are bidirectional
1252 * and we want to find both in the same bucket.
1255 hash_packet(struct ip_flow_id
*id
)
1259 i
= (id
->dst_ip
) ^ (id
->src_ip
) ^ (id
->dst_port
) ^ (id
->src_port
);
1260 i
&= (curr_dyn_buckets
- 1);
1265 * unlink a dynamic rule from a chain. prev is a pointer to
1266 * the previous one, q is a pointer to the rule to delete,
1267 * head is a pointer to the head of the queue.
1268 * Modifies q and potentially also head.
1270 #define UNLINK_DYN_RULE(prev, head, q) { \
1271 ipfw_dyn_rule *old_q = q; \
1273 /* remove a refcount to the parent */ \
1274 if (q->dyn_type == O_LIMIT) \
1275 q->parent->count--; \
1276 DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1277 (q->id.src_ip), (q->id.src_port), \
1278 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \
1280 prev->next = q = q->next; \
1282 head = q = q->next; \
1284 _FREE(old_q, M_IPFW); }
1286 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
1289 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1291 * If keep_me == NULL, rules are deleted even if not expired,
1292 * otherwise only expired rules are removed.
1294 * The value of the second parameter is also used to point to identify
1295 * a rule we absolutely do not want to remove (e.g. because we are
1296 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1297 * rules). The pointer is only used for comparison, so any non-null
1301 remove_dyn_rule(struct ip_fw
*rule
, ipfw_dyn_rule
*keep_me
)
1303 static u_int32_t last_remove
= 0;
1305 #define FORCE (keep_me == NULL)
1307 ipfw_dyn_rule
*prev
, *q
;
1308 int i
, pass
= 0, max_pass
= 0;
1309 struct timeval timenow
;
1311 getmicrotime(&timenow
);
1313 if (ipfw_dyn_v
== NULL
|| dyn_count
== 0)
1315 /* do not expire more than once per second, it is useless */
1316 if (!FORCE
&& last_remove
== timenow
.tv_sec
)
1318 last_remove
= timenow
.tv_sec
;
1321 * because O_LIMIT refer to parent rules, during the first pass only
1322 * remove child and mark any pending LIMIT_PARENT, and remove
1323 * them in a second pass.
1326 for (i
= 0 ; i
< curr_dyn_buckets
; i
++) {
1327 for (prev
=NULL
, q
= ipfw_dyn_v
[i
] ; q
; ) {
1329 * Logic can become complex here, so we split tests.
1333 if (rule
!= NULL
&& rule
!= q
->rule
)
1334 goto next
; /* not the one we are looking for */
1335 if (q
->dyn_type
== O_LIMIT_PARENT
) {
1337 * handle parent in the second pass,
1338 * record we need one.
1343 if (FORCE
&& q
->count
!= 0 ) {
1344 /* XXX should not happen! */
1345 printf("ipfw: OUCH! cannot remove rule,"
1346 " count %d\n", q
->count
);
1350 !TIME_LEQ( q
->expire
, timenow
.tv_sec
))
1353 if (q
->dyn_type
!= O_LIMIT_PARENT
|| !q
->count
) {
1354 UNLINK_DYN_RULE(prev
, ipfw_dyn_v
[i
], q
);
1362 if (pass
++ < max_pass
)
1368 * lookup a dynamic rule.
1370 static ipfw_dyn_rule
*
1371 lookup_dyn_rule(struct ip_flow_id
*pkt
, int *match_direction
,
1375 * stateful ipfw extensions.
1376 * Lookup into dynamic session queue
1378 #define MATCH_REVERSE 0
1379 #define MATCH_FORWARD 1
1380 #define MATCH_NONE 2
1381 #define MATCH_UNKNOWN 3
1382 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
1383 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
1385 int i
, dir
= MATCH_NONE
;
1386 ipfw_dyn_rule
*prev
, *q
=NULL
;
1387 struct timeval timenow
;
1389 getmicrotime(&timenow
);
1391 if (ipfw_dyn_v
== NULL
)
1392 goto done
; /* not found */
1393 i
= hash_packet( pkt
);
1394 for (prev
=NULL
, q
= ipfw_dyn_v
[i
] ; q
!= NULL
; ) {
1395 if (q
->dyn_type
== O_LIMIT_PARENT
&& q
->count
)
1397 if (TIME_LEQ( q
->expire
, timenow
.tv_sec
)) { /* expire entry */
1400 /* check if entry is TCP */
1401 if ( q
->id
.proto
== IPPROTO_TCP
)
1403 /* do not delete an established TCP connection which hasn't been closed by both sides */
1404 if ( (q
->state
& (BOTH_SYN
| BOTH_FIN
)) != (BOTH_SYN
| BOTH_FIN
) )
1408 UNLINK_DYN_RULE(prev
, ipfw_dyn_v
[i
], q
);
1412 if (pkt
->proto
== q
->id
.proto
&&
1413 q
->dyn_type
!= O_LIMIT_PARENT
) {
1414 if (pkt
->src_ip
== q
->id
.src_ip
&&
1415 pkt
->dst_ip
== q
->id
.dst_ip
&&
1416 pkt
->src_port
== q
->id
.src_port
&&
1417 pkt
->dst_port
== q
->id
.dst_port
) {
1418 dir
= MATCH_FORWARD
;
1421 if (pkt
->src_ip
== q
->id
.dst_ip
&&
1422 pkt
->dst_ip
== q
->id
.src_ip
&&
1423 pkt
->src_port
== q
->id
.dst_port
&&
1424 pkt
->dst_port
== q
->id
.src_port
) {
1425 dir
= MATCH_REVERSE
;
1434 goto done
; /* q = NULL, not found */
1436 if ( prev
!= NULL
) { /* found and not in front */
1437 prev
->next
= q
->next
;
1438 q
->next
= ipfw_dyn_v
[i
];
1441 if (pkt
->proto
== IPPROTO_TCP
) { /* update state according to flags */
1442 u_char flags
= pkt
->flags
& (TH_FIN
|TH_SYN
|TH_RST
);
1444 q
->state
|= (dir
== MATCH_FORWARD
) ? flags
: (flags
<< 8);
1446 case TH_SYN
: /* opening */
1447 q
->expire
= timenow
.tv_sec
+ dyn_syn_lifetime
;
1450 case BOTH_SYN
: /* move to established */
1451 case BOTH_SYN
| TH_FIN
: /* one side tries to close */
1452 case BOTH_SYN
| (TH_FIN
<< 8) :
1454 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1455 u_int32_t ack
= ntohl(tcp
->th_ack
);
1456 if (dir
== MATCH_FORWARD
) {
1457 if (q
->ack_fwd
== 0 || _SEQ_GE(ack
, q
->ack_fwd
))
1459 else { /* ignore out-of-sequence */
1463 if (q
->ack_rev
== 0 || _SEQ_GE(ack
, q
->ack_rev
))
1465 else { /* ignore out-of-sequence */
1470 q
->expire
= timenow
.tv_sec
+ dyn_ack_lifetime
;
1473 case BOTH_SYN
| BOTH_FIN
: /* both sides closed */
1474 if (dyn_fin_lifetime
>= dyn_keepalive_period
)
1475 dyn_fin_lifetime
= dyn_keepalive_period
- 1;
1476 q
->expire
= timenow
.tv_sec
+ dyn_fin_lifetime
;
1482 * reset or some invalid combination, but can also
1483 * occur if we use keep-state the wrong way.
1485 if ( (q
->state
& ((TH_RST
<< 8)|TH_RST
)) == 0)
1486 printf("invalid state: 0x%x\n", q
->state
);
1488 if (dyn_rst_lifetime
>= dyn_keepalive_period
)
1489 dyn_rst_lifetime
= dyn_keepalive_period
- 1;
1490 q
->expire
= timenow
.tv_sec
+ dyn_rst_lifetime
;
1493 } else if (pkt
->proto
== IPPROTO_UDP
) {
1494 q
->expire
= timenow
.tv_sec
+ dyn_udp_lifetime
;
1496 /* other protocols */
1497 q
->expire
= timenow
.tv_sec
+ dyn_short_lifetime
;
1500 if (match_direction
)
1501 *match_direction
= dir
;
1506 realloc_dynamic_table(void)
1509 * Try reallocation, make sure we have a power of 2 and do
1510 * not allow more than 64k entries. In case of overflow,
1514 if (dyn_buckets
> 65536)
1516 if ((dyn_buckets
& (dyn_buckets
-1)) != 0) { /* not a power of 2 */
1517 dyn_buckets
= curr_dyn_buckets
; /* reset */
1520 curr_dyn_buckets
= dyn_buckets
;
1521 if (ipfw_dyn_v
!= NULL
)
1522 _FREE(ipfw_dyn_v
, M_IPFW
);
1524 ipfw_dyn_v
= _MALLOC(curr_dyn_buckets
* sizeof(ipfw_dyn_rule
*),
1525 M_IPFW
, M_NOWAIT
| M_ZERO
);
1526 if (ipfw_dyn_v
!= NULL
|| curr_dyn_buckets
<= 2)
1528 curr_dyn_buckets
/= 2;
1533 * Install state of type 'type' for a dynamic session.
1534 * The hash table contains two type of rules:
1535 * - regular rules (O_KEEP_STATE)
1536 * - rules for sessions with limited number of sess per user
1537 * (O_LIMIT). When they are created, the parent is
1538 * increased by 1, and decreased on delete. In this case,
1539 * the third parameter is the parent rule and not the chain.
1540 * - "parent" rules for the above (O_LIMIT_PARENT).
1542 static ipfw_dyn_rule
*
1543 add_dyn_rule(struct ip_flow_id
*id
, u_int8_t dyn_type
, struct ip_fw
*rule
)
1547 struct timeval timenow
;
1549 getmicrotime(&timenow
);
1551 if (ipfw_dyn_v
== NULL
||
1552 (dyn_count
== 0 && dyn_buckets
!= curr_dyn_buckets
)) {
1553 realloc_dynamic_table();
1554 if (ipfw_dyn_v
== NULL
)
1555 return NULL
; /* failed ! */
1557 i
= hash_packet(id
);
1559 r
= _MALLOC(sizeof *r
, M_IPFW
, M_NOWAIT
| M_ZERO
);
1562 printf ("ipfw: sorry cannot allocate state\n");
1567 /* increase refcount on parent, and set pointer */
1568 if (dyn_type
== O_LIMIT
) {
1569 ipfw_dyn_rule
*parent
= (ipfw_dyn_rule
*)rule
;
1570 if ( parent
->dyn_type
!= O_LIMIT_PARENT
)
1571 panic("invalid parent");
1574 rule
= parent
->rule
;
1578 r
->expire
= timenow
.tv_sec
+ dyn_syn_lifetime
;
1580 r
->dyn_type
= dyn_type
;
1581 r
->pcnt
= r
->bcnt
= 0;
1585 r
->next
= ipfw_dyn_v
[i
];
1588 DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1590 (r
->id
.src_ip
), (r
->id
.src_port
),
1591 (r
->id
.dst_ip
), (r
->id
.dst_port
),
1597 * lookup dynamic parent rule using pkt and rule as search keys.
1598 * If the lookup fails, then install one.
1600 static ipfw_dyn_rule
*
1601 lookup_dyn_parent(struct ip_flow_id
*pkt
, struct ip_fw
*rule
)
1605 struct timeval timenow
;
1607 getmicrotime(&timenow
);
1610 i
= hash_packet( pkt
);
1611 for (q
= ipfw_dyn_v
[i
] ; q
!= NULL
; q
=q
->next
)
1612 if (q
->dyn_type
== O_LIMIT_PARENT
&&
1614 pkt
->proto
== q
->id
.proto
&&
1615 pkt
->src_ip
== q
->id
.src_ip
&&
1616 pkt
->dst_ip
== q
->id
.dst_ip
&&
1617 pkt
->src_port
== q
->id
.src_port
&&
1618 pkt
->dst_port
== q
->id
.dst_port
) {
1619 q
->expire
= timenow
.tv_sec
+ dyn_short_lifetime
;
1620 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q
);)
1624 return add_dyn_rule(pkt
, O_LIMIT_PARENT
, rule
);
1628 * Install dynamic state for rule type cmd->o.opcode
1630 * Returns 1 (failure) if state is not installed because of errors or because
1631 * session limitations are enforced.
1634 install_state(struct ip_fw
*rule
, ipfw_insn_limit
*cmd
,
1635 struct ip_fw_args
*args
)
1637 static int last_log
;
1638 struct timeval timenow
;
1641 getmicrotime(&timenow
);
1643 DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1645 (args
->fwa_id
.src_ip
), (args
->fwa_id
.src_port
),
1646 (args
->fwa_id
.dst_ip
), (args
->fwa_id
.dst_port
) );)
1648 q
= lookup_dyn_rule(&args
->fwa_id
, NULL
, NULL
);
1650 if (q
!= NULL
) { /* should never occur */
1651 if (last_log
!= timenow
.tv_sec
) {
1652 last_log
= timenow
.tv_sec
;
1653 printf("ipfw: install_state: entry already present, done\n");
1658 if (dyn_count
>= dyn_max
)
1660 * Run out of slots, try to remove any expired rule.
1662 remove_dyn_rule(NULL
, (ipfw_dyn_rule
*)1);
1664 if (dyn_count
>= dyn_max
) {
1665 if (last_log
!= timenow
.tv_sec
) {
1666 last_log
= timenow
.tv_sec
;
1667 printf("ipfw: install_state: Too many dynamic rules\n");
1669 return 1; /* cannot install, notify caller */
1672 switch (cmd
->o
.opcode
) {
1673 case O_KEEP_STATE
: /* bidir rule */
1674 add_dyn_rule(&args
->fwa_id
, O_KEEP_STATE
, rule
);
1677 case O_LIMIT
: /* limit number of sessions */
1679 u_int16_t limit_mask
= cmd
->limit_mask
;
1680 struct ip_flow_id id
;
1681 ipfw_dyn_rule
*parent
;
1683 DEB(printf("ipfw: installing dyn-limit rule %d\n",
1686 id
.dst_ip
= id
.src_ip
= 0;
1687 id
.dst_port
= id
.src_port
= 0;
1688 id
.proto
= args
->fwa_id
.proto
;
1690 if (limit_mask
& DYN_SRC_ADDR
)
1691 id
.src_ip
= args
->fwa_id
.src_ip
;
1692 if (limit_mask
& DYN_DST_ADDR
)
1693 id
.dst_ip
= args
->fwa_id
.dst_ip
;
1694 if (limit_mask
& DYN_SRC_PORT
)
1695 id
.src_port
= args
->fwa_id
.src_port
;
1696 if (limit_mask
& DYN_DST_PORT
)
1697 id
.dst_port
= args
->fwa_id
.dst_port
;
1698 parent
= lookup_dyn_parent(&id
, rule
);
1699 if (parent
== NULL
) {
1700 printf("ipfw: add parent failed\n");
1703 if (parent
->count
>= cmd
->conn_limit
) {
1705 * See if we can remove some expired rule.
1707 remove_dyn_rule(rule
, parent
);
1708 if (parent
->count
>= cmd
->conn_limit
) {
1709 if (fw_verbose
&& last_log
!= timenow
.tv_sec
) {
1710 last_log
= timenow
.tv_sec
;
1711 dolog((LOG_AUTHPRIV
| LOG_DEBUG
,
1712 "drop session, too many entries\n"));
1717 add_dyn_rule(&args
->fwa_id
, O_LIMIT
, (struct ip_fw
*)parent
);
1721 printf("ipfw: unknown dynamic rule type %u\n", cmd
->o
.opcode
);
1724 lookup_dyn_rule(&args
->fwa_id
, NULL
, NULL
); /* XXX just set lifetime */
1729 * Generate a TCP packet, containing either a RST or a keepalive.
1730 * When flags & TH_RST, we are sending a RST packet, because of a
1731 * "reset" action matched the packet.
1732 * Otherwise we are sending a keepalive, and flags & TH_
1734 static struct mbuf
*
1735 send_pkt(struct ip_flow_id
*id
, u_int32_t seq
, u_int32_t ack
, int flags
)
1741 MGETHDR(m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
1744 m
->m_pkthdr
.rcvif
= (struct ifnet
*)0;
1745 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct ip
) + sizeof(struct tcphdr
);
1746 m
->m_data
+= max_linkhdr
;
1748 ip
= mtod(m
, struct ip
*);
1749 bzero(ip
, m
->m_len
);
1750 tcp
= (struct tcphdr
*)(ip
+ 1); /* no IP options */
1751 ip
->ip_p
= IPPROTO_TCP
;
1754 * Assume we are sending a RST (or a keepalive in the reverse
1755 * direction), swap src and destination addresses and ports.
1757 ip
->ip_src
.s_addr
= htonl(id
->dst_ip
);
1758 ip
->ip_dst
.s_addr
= htonl(id
->src_ip
);
1759 tcp
->th_sport
= htons(id
->dst_port
);
1760 tcp
->th_dport
= htons(id
->src_port
);
1761 if (flags
& TH_RST
) { /* we are sending a RST */
1762 if (flags
& TH_ACK
) {
1763 tcp
->th_seq
= htonl(ack
);
1764 tcp
->th_ack
= htonl(0);
1765 tcp
->th_flags
= TH_RST
;
1769 tcp
->th_seq
= htonl(0);
1770 tcp
->th_ack
= htonl(seq
);
1771 tcp
->th_flags
= TH_RST
| TH_ACK
;
1775 * We are sending a keepalive. flags & TH_SYN determines
1776 * the direction, forward if set, reverse if clear.
1777 * NOTE: seq and ack are always assumed to be correct
1778 * as set by the caller. This may be confusing...
1780 if (flags
& TH_SYN
) {
1782 * we have to rewrite the correct addresses!
1784 ip
->ip_dst
.s_addr
= htonl(id
->dst_ip
);
1785 ip
->ip_src
.s_addr
= htonl(id
->src_ip
);
1786 tcp
->th_dport
= htons(id
->dst_port
);
1787 tcp
->th_sport
= htons(id
->src_port
);
1789 tcp
->th_seq
= htonl(seq
);
1790 tcp
->th_ack
= htonl(ack
);
1791 tcp
->th_flags
= TH_ACK
;
1794 * set ip_len to the payload size so we can compute
1795 * the tcp checksum on the pseudoheader
1796 * XXX check this, could save a couple of words ?
1798 ip
->ip_len
= htons(sizeof(struct tcphdr
));
1799 tcp
->th_sum
= in_cksum(m
, m
->m_pkthdr
.len
);
1801 * now fill fields left out earlier
1803 ip
->ip_ttl
= ip_defttl
;
1804 ip
->ip_len
= m
->m_pkthdr
.len
;
1805 m
->m_flags
|= M_SKIP_FIREWALL
;
1811 * sends a reject message, consuming the mbuf passed as an argument.
1814 send_reject(struct ip_fw_args
*args
, int code
, int offset
, __unused
int ip_len
)
1817 if (code
!= ICMP_REJECT_RST
) { /* Send an ICMP unreach */
1818 /* We need the IP header in host order for icmp_error(). */
1819 if (args
->fwa_eh
!= NULL
) {
1820 struct ip
*ip
= mtod(args
->fwa_m
, struct ip
*);
1821 ip
->ip_len
= ntohs(ip
->ip_len
);
1822 ip
->ip_off
= ntohs(ip
->ip_off
);
1824 args
->fwa_m
->m_flags
|= M_SKIP_FIREWALL
;
1825 icmp_error(args
->fwa_m
, ICMP_UNREACH
, code
, 0L, 0);
1826 } else if (offset
== 0 && args
->fwa_id
.proto
== IPPROTO_TCP
) {
1827 struct tcphdr
*const tcp
=
1828 L3HDR(struct tcphdr
, mtod(args
->fwa_m
, struct ip
*));
1829 if ( (tcp
->th_flags
& TH_RST
) == 0) {
1832 m
= send_pkt(&(args
->fwa_id
), ntohl(tcp
->th_seq
),
1834 tcp
->th_flags
| TH_RST
);
1836 struct route sro
; /* fake route */
1838 bzero (&sro
, sizeof (sro
));
1839 ip_output_list(m
, 0, NULL
, &sro
, 0, NULL
, NULL
);
1844 m_freem(args
->fwa_m
);
1846 m_freem(args
->fwa_m
);
1852 * Given an ip_fw *, lookup_next_rule will return a pointer
1853 * to the next rule, which can be either the jump
1854 * target (for skipto instructions) or the next one in the list (in
1855 * all other cases including a missing jump target).
1856 * The result is also written in the "next_rule" field of the rule.
1857 * Backward jumps are not allowed, so start looking from the next
1860 * This never returns NULL -- in case we do not have an exact match,
1861 * the next rule is returned. When the ruleset is changed,
1862 * pointers are flushed so we are always correct.
1865 static struct ip_fw
*
1866 lookup_next_rule(struct ip_fw
*me
)
1868 struct ip_fw
*rule
= NULL
;
1871 /* look for action, in case it is a skipto */
1872 cmd
= ACTION_PTR(me
);
1873 if (cmd
->opcode
== O_LOG
)
1875 if ( cmd
->opcode
== O_SKIPTO
)
1876 for (rule
= me
->next
; rule
; rule
= rule
->next
)
1877 if (rule
->rulenum
>= cmd
->arg1
)
1879 if (rule
== NULL
) /* failure or not a skipto */
1881 me
->next_rule
= rule
;
1886 * The main check routine for the firewall.
1888 * All arguments are in args so we can modify them and return them
1889 * back to the caller.
1893 * args->fwa_m (in/out) The packet; we set to NULL when/if we nuke it.
1894 * Starts with the IP header.
1895 * args->fwa_eh (in) Mac header if present, or NULL for layer3 packet.
1896 * args->fwa_oif Outgoing interface, or NULL if packet is incoming.
1897 * The incoming interface is in the mbuf. (in)
1898 * args->fwa_divert_rule (in/out)
1899 * Skip up to the first rule past this rule number;
1900 * upon return, non-zero port number for divert or tee.
1902 * args->fwa_ipfw_rule Pointer to the last matching rule (in/out)
1903 * args->fwa_next_hop Socket we are forwarding to (out).
1904 * args->fwa_id Addresses grabbed from the packet (out)
1908 * IP_FW_PORT_DENY_FLAG the packet must be dropped.
1909 * 0 The packet is to be accepted and routed normally OR
1910 * the packet was denied/rejected and has been dropped;
1911 * in the latter case, *m is equal to NULL upon return.
1912 * port Divert the packet to port, with these caveats:
1914 * - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1915 * of diverting it (ie, 'ipfw tee').
1917 * - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1918 * 16 bits as a dummynet pipe number instead of diverting
1922 ipfw_chk(struct ip_fw_args
*args
)
1925 * Local variables hold state during the processing of a packet.
1927 * IMPORTANT NOTE: to speed up the processing of rules, there
1928 * are some assumption on the values of the variables, which
1929 * are documented here. Should you change them, please check
1930 * the implementation of the various instructions to make sure
1931 * that they still work.
1933 * args->fwa_eh The MAC header. It is non-null for a layer2
1934 * packet, it is NULL for a layer-3 packet.
1936 * m | args->fwa_m Pointer to the mbuf, as received from the caller.
1937 * It may change if ipfw_chk() does an m_pullup, or if it
1938 * consumes the packet because it calls send_reject().
1939 * XXX This has to change, so that ipfw_chk() never modifies
1940 * or consumes the buffer.
1941 * ip is simply an alias of the value of m, and it is kept
1942 * in sync with it (the packet is supposed to start with
1945 struct mbuf
*m
= args
->fwa_m
;
1946 struct ip
*ip
= mtod(m
, struct ip
*);
1949 * oif | args->fwa_oif If NULL, ipfw_chk has been called on the
1950 * inbound path (ether_input, bdg_forward, ip_input).
1951 * If non-NULL, ipfw_chk has been called on the outbound path
1952 * (ether_output, ip_output).
1954 struct ifnet
*oif
= args
->fwa_oif
;
1956 struct ip_fw
*f
= NULL
; /* matching rule */
1960 * hlen The length of the IPv4 header.
1961 * hlen >0 means we have an IPv4 packet.
1963 u_int hlen
= 0; /* hlen >0 means we have an IP pkt */
1966 * offset The offset of a fragment. offset != 0 means that
1967 * we have a fragment at this offset of an IPv4 packet.
1968 * offset == 0 means that (if this is an IPv4 packet)
1969 * this is the first or only fragment.
1974 * Local copies of addresses. They are only valid if we have
1977 * proto The protocol. Set to 0 for non-ip packets,
1978 * or to the protocol read from the packet otherwise.
1979 * proto != 0 means that we have an IPv4 packet.
1981 * src_port, dst_port port numbers, in HOST format. Only
1982 * valid for TCP and UDP packets.
1984 * src_ip, dst_ip ip addresses, in NETWORK format.
1985 * Only valid for IPv4 packets.
1988 u_int16_t src_port
= 0, dst_port
= 0; /* NOTE: host format */
1989 struct in_addr src_ip
= { 0 } , dst_ip
= { 0 }; /* NOTE: network format */
1992 int dyn_dir
= MATCH_UNKNOWN
;
1993 ipfw_dyn_rule
*q
= NULL
;
1994 struct timeval timenow
;
1996 if (m
->m_flags
& M_SKIP_FIREWALL
|| fw_bypass
) {
1997 return 0; /* accept */
2001 * Clear packet chain if we find one here.
2004 if (m
->m_nextpkt
!= NULL
) {
2005 m_freem_list(m
->m_nextpkt
);
2006 m
->m_nextpkt
= NULL
;
2009 lck_mtx_lock(ipfw_mutex
);
2011 getmicrotime(&timenow
);
2013 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2014 * MATCH_NONE when checked and not matched (q = NULL),
2015 * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2018 pktlen
= m
->m_pkthdr
.len
;
2019 if (args
->fwa_eh
== NULL
|| /* layer 3 packet */
2020 ( m
->m_pkthdr
.len
>= sizeof(struct ip
) &&
2021 ntohs(args
->fwa_eh
->ether_type
) == ETHERTYPE_IP
))
2022 hlen
= ip
->ip_hl
<< 2;
2025 * Collect parameters into local variables for faster matching.
2027 if (hlen
== 0) { /* do not grab addresses for non-ip pkts */
2028 proto
= args
->fwa_id
.proto
= 0; /* mark f_id invalid */
2029 goto after_ip_checks
;
2032 proto
= args
->fwa_id
.proto
= ip
->ip_p
;
2033 src_ip
= ip
->ip_src
;
2034 dst_ip
= ip
->ip_dst
;
2035 if (args
->fwa_eh
!= NULL
) { /* layer 2 packets are as on the wire */
2036 offset
= ntohs(ip
->ip_off
) & IP_OFFMASK
;
2037 ip_len
= ntohs(ip
->ip_len
);
2039 offset
= ip
->ip_off
& IP_OFFMASK
;
2040 ip_len
= ip
->ip_len
;
2042 pktlen
= ip_len
< pktlen
? ip_len
: pktlen
;
2044 #define PULLUP_TO(len) \
2046 if ((m)->m_len < (len)) { \
2047 args->fwa_m = m = m_pullup(m, (len)); \
2049 goto pullup_failed; \
2050 ip = mtod(m, struct ip *); \
2060 PULLUP_TO(hlen
+ sizeof(struct tcphdr
));
2061 tcp
= L3HDR(struct tcphdr
, ip
);
2062 dst_port
= tcp
->th_dport
;
2063 src_port
= tcp
->th_sport
;
2064 args
->fwa_id
.flags
= tcp
->th_flags
;
2072 PULLUP_TO(hlen
+ sizeof(struct udphdr
));
2073 udp
= L3HDR(struct udphdr
, ip
);
2074 dst_port
= udp
->uh_dport
;
2075 src_port
= udp
->uh_sport
;
2080 PULLUP_TO(hlen
+ 4); /* type, code and checksum. */
2081 args
->fwa_id
.flags
= L3HDR(struct icmp
, ip
)->icmp_type
;
2090 args
->fwa_id
.src_ip
= ntohl(src_ip
.s_addr
);
2091 args
->fwa_id
.dst_ip
= ntohl(dst_ip
.s_addr
);
2092 args
->fwa_id
.src_port
= src_port
= ntohs(src_port
);
2093 args
->fwa_id
.dst_port
= dst_port
= ntohs(dst_port
);
2096 if (args
->fwa_ipfw_rule
) {
2098 * Packet has already been tagged. Look for the next rule
2099 * to restart processing.
2101 * If fw_one_pass != 0 then just accept it.
2102 * XXX should not happen here, but optimized out in
2106 lck_mtx_unlock(ipfw_mutex
);
2110 f
= args
->fwa_ipfw_rule
->next_rule
;
2112 f
= lookup_next_rule(args
->fwa_ipfw_rule
);
2115 * Find the starting rule. It can be either the first
2116 * one, or the one after divert_rule if asked so.
2118 int skipto
= args
->fwa_divert_rule
;
2121 if (args
->fwa_eh
== NULL
&& skipto
!= 0) {
2122 if (skipto
>= IPFW_DEFAULT_RULE
) {
2123 lck_mtx_unlock(ipfw_mutex
);
2124 return(IP_FW_PORT_DENY_FLAG
); /* invalid */
2126 while (f
&& f
->rulenum
<= skipto
)
2128 if (f
== NULL
) { /* drop packet */
2129 lck_mtx_unlock(ipfw_mutex
);
2130 return(IP_FW_PORT_DENY_FLAG
);
2134 args
->fwa_divert_rule
= 0; /* reset to avoid confusion later */
2137 * Now scan the rules, and parse microinstructions for each rule.
2139 for (; f
; f
= f
->next
) {
2142 int skip_or
; /* skip rest of OR block */
2145 if (f
->reserved_1
== IPFW_RULE_INACTIVE
) {
2149 if (set_disable
& (1 << f
->set
) )
2153 for (l
= f
->cmd_len
, cmd
= f
->cmd
; l
> 0 ;
2154 l
-= cmdlen
, cmd
+= cmdlen
) {
2158 * check_body is a jump target used when we find a
2159 * CHECK_STATE, and need to jump to the body of
2164 cmdlen
= F_LEN(cmd
);
2166 * An OR block (insn_1 || .. || insn_n) has the
2167 * F_OR bit set in all but the last instruction.
2168 * The first match will set "skip_or", and cause
2169 * the following instructions to be skipped until
2170 * past the one with the F_OR bit clear.
2172 if (skip_or
) { /* skip this instruction */
2173 if ((cmd
->len
& F_OR
) == 0)
2174 skip_or
= 0; /* next one is good */
2177 match
= 0; /* set to 1 if we succeed */
2179 switch (cmd
->opcode
) {
2181 * The first set of opcodes compares the packet's
2182 * fields with some pattern, setting 'match' if a
2183 * match is found. At the end of the loop there is
2184 * logic to deal with F_NOT and F_OR flags associated
2192 printf("ipfw: opcode %d unimplemented\n",
2201 * We only check offset == 0 && proto != 0,
2202 * as this ensures that we have an IPv4
2203 * packet with the ports info.
2209 struct inpcbinfo
*pi
;
2213 if (proto
== IPPROTO_TCP
) {
2216 } else if (proto
== IPPROTO_UDP
) {
2223 in_pcblookup_hash(pi
,
2224 dst_ip
, htons(dst_port
),
2225 src_ip
, htons(src_port
),
2227 in_pcblookup_hash(pi
,
2228 src_ip
, htons(src_port
),
2229 dst_ip
, htons(dst_port
),
2232 if (pcb
== NULL
|| pcb
->inp_socket
== NULL
)
2234 #if __FreeBSD_version < 500034
2235 #define socheckuid(a,b) (kauth_cred_getuid((a)->so_cred) != (b))
2237 if (cmd
->opcode
== O_UID
) {
2240 (kauth_cred_getuid(pcb
->inp_socket
->so_cred
) == (uid_t
)((ipfw_insn_u32
*)cmd
)->d
[0]);
2242 !socheckuid(pcb
->inp_socket
,
2243 (uid_t
)((ipfw_insn_u32
*)cmd
)->d
[0]);
2249 kauth_cred_ismember_gid(pcb
->inp_socket
->so_cred
,
2250 (gid_t
)((ipfw_insn_u32
*)cmd
)->d
[0], &match
);
2253 /* release reference on pcb */
2254 in_pcb_checkstate(pcb
, WNT_RELEASE
, 0);
2260 match
= iface_match(m
->m_pkthdr
.rcvif
,
2261 (ipfw_insn_if
*)cmd
);
2265 match
= iface_match(oif
, (ipfw_insn_if
*)cmd
);
2269 match
= iface_match(oif
? oif
:
2270 m
->m_pkthdr
.rcvif
, (ipfw_insn_if
*)cmd
);
2274 if (args
->fwa_eh
!= NULL
) { /* have MAC header */
2275 u_int32_t
*want
= (u_int32_t
*)
2276 ((ipfw_insn_mac
*)cmd
)->addr
;
2277 u_int32_t
*mask
= (u_int32_t
*)
2278 ((ipfw_insn_mac
*)cmd
)->mask
;
2279 u_int32_t
*hdr
= (u_int32_t
*)args
->fwa_eh
;
2282 ( want
[0] == (hdr
[0] & mask
[0]) &&
2283 want
[1] == (hdr
[1] & mask
[1]) &&
2284 want
[2] == (hdr
[2] & mask
[2]) );
2289 if (args
->fwa_eh
!= NULL
) {
2291 ntohs(args
->fwa_eh
->ether_type
);
2293 ((ipfw_insn_u16
*)cmd
)->ports
;
2296 for (i
= cmdlen
- 1; !match
&& i
>0;
2298 match
= (t
>=p
[0] && t
<=p
[1]);
2303 match
= (hlen
> 0 && offset
!= 0);
2306 case O_IN
: /* "out" is "not in" */
2307 match
= (oif
== NULL
);
2311 match
= (args
->fwa_eh
!= NULL
);
2316 * We do not allow an arg of 0 so the
2317 * check of "proto" only suffices.
2319 match
= (proto
== cmd
->arg1
);
2323 match
= (hlen
> 0 &&
2324 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
2332 (cmd
->opcode
== O_IP_DST_MASK
) ?
2333 dst_ip
.s_addr
: src_ip
.s_addr
;
2334 uint32_t *p
= ((ipfw_insn_u32
*)cmd
)->d
;
2337 for (; !match
&& i
>0; i
-= 2, p
+= 2)
2338 match
= (p
[0] == (a
& p
[1]));
2346 INADDR_TO_IFP(src_ip
, tif
);
2347 match
= (tif
!= NULL
);
2354 u_int32_t
*d
= (u_int32_t
*)(cmd
+1);
2356 cmd
->opcode
== O_IP_DST_SET
?
2357 args
->fwa_id
.dst_ip
:
2358 args
->fwa_id
.src_ip
;
2362 addr
-= d
[0]; /* subtract base */
2363 match
= (addr
< cmd
->arg1
) &&
2364 ( d
[ 1 + (addr
>>5)] &
2365 (1<<(addr
& 0x1f)) );
2370 match
= (hlen
> 0 &&
2371 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
2379 INADDR_TO_IFP(dst_ip
, tif
);
2380 match
= (tif
!= NULL
);
2387 * offset == 0 && proto != 0 is enough
2388 * to guarantee that we have an IPv4
2389 * packet with port info.
2391 if ((proto
==IPPROTO_UDP
|| proto
==IPPROTO_TCP
)
2394 (cmd
->opcode
== O_IP_SRCPORT
) ?
2395 src_port
: dst_port
;
2397 ((ipfw_insn_u16
*)cmd
)->ports
;
2400 for (i
= cmdlen
- 1; !match
&& i
>0;
2402 match
= (x
>=p
[0] && x
<=p
[1]);
2407 match
= (offset
== 0 && proto
==IPPROTO_ICMP
&&
2408 icmptype_match(ip
, (ipfw_insn_u32
*)cmd
) );
2412 match
= (hlen
> 0 && ipopts_match(ip
, cmd
) );
2416 match
= (hlen
> 0 && cmd
->arg1
== ip
->ip_v
);
2422 if (hlen
> 0) { /* only for IP packets */
2427 if (cmd
->opcode
== O_IPLEN
)
2429 else if (cmd
->opcode
== O_IPTTL
)
2431 else /* must be IPID */
2432 x
= ntohs(ip
->ip_id
);
2434 match
= (cmd
->arg1
== x
);
2437 /* otherwise we have ranges */
2438 p
= ((ipfw_insn_u16
*)cmd
)->ports
;
2440 for (; !match
&& i
>0; i
--, p
+= 2)
2441 match
= (x
>= p
[0] && x
<= p
[1]);
2445 case O_IPPRECEDENCE
:
2446 match
= (hlen
> 0 &&
2447 (cmd
->arg1
== (ip
->ip_tos
& 0xe0)) );
2451 match
= (hlen
> 0 &&
2452 flags_match(cmd
, ip
->ip_tos
));
2456 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2458 L3HDR(struct tcphdr
,ip
)->th_flags
));
2462 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2463 tcpopts_match(ip
, cmd
));
2467 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2468 ((ipfw_insn_u32
*)cmd
)->d
[0] ==
2469 L3HDR(struct tcphdr
,ip
)->th_seq
);
2473 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2474 ((ipfw_insn_u32
*)cmd
)->d
[0] ==
2475 L3HDR(struct tcphdr
,ip
)->th_ack
);
2479 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2481 L3HDR(struct tcphdr
,ip
)->th_win
);
2485 /* reject packets which have SYN only */
2486 /* XXX should i also check for TH_ACK ? */
2487 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2488 (L3HDR(struct tcphdr
,ip
)->th_flags
&
2489 (TH_RST
| TH_ACK
| TH_SYN
)) != TH_SYN
);
2494 ipfw_log(f
, hlen
, args
->fwa_eh
, m
, oif
);
2499 match
= (random()<((ipfw_insn_u32
*)cmd
)->d
[0]);
2503 /* Outgoing packets automatically pass/match */
2504 match
= ((oif
!= NULL
) ||
2505 (m
->m_pkthdr
.rcvif
== NULL
) ||
2506 verify_rev_path(src_ip
, m
->m_pkthdr
.rcvif
));
2511 match
= (m_tag_find(m
,
2512 PACKET_TAG_IPSEC_IN_DONE
, NULL
) != NULL
);
2515 match
= (ipsec_gethist(m
, NULL
) != NULL
);
2517 /* otherwise no match */
2521 * The second set of opcodes represents 'actions',
2522 * i.e. the terminal part of a rule once the packet
2523 * matches all previous patterns.
2524 * Typically there is only one action for each rule,
2525 * and the opcode is stored at the end of the rule
2526 * (but there are exceptions -- see below).
2528 * In general, here we set retval and terminate the
2529 * outer loop (would be a 'break 3' in some language,
2530 * but we need to do a 'goto done').
2533 * O_COUNT and O_SKIPTO actions:
2534 * instead of terminating, we jump to the next rule
2535 * ('goto next_rule', equivalent to a 'break 2'),
2536 * or to the SKIPTO target ('goto again' after
2537 * having set f, cmd and l), respectively.
2539 * O_LIMIT and O_KEEP_STATE: these opcodes are
2540 * not real 'actions', and are stored right
2541 * before the 'action' part of the rule.
2542 * These opcodes try to install an entry in the
2543 * state tables; if successful, we continue with
2544 * the next opcode (match=1; break;), otherwise
2545 * the packet * must be dropped
2546 * ('goto done' after setting retval);
2548 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2549 * cause a lookup of the state table, and a jump
2550 * to the 'action' part of the parent rule
2551 * ('goto check_body') if an entry is found, or
2552 * (CHECK_STATE only) a jump to the next rule if
2553 * the entry is not found ('goto next_rule').
2554 * The result of the lookup is cached to make
2555 * further instances of these opcodes are
2560 if (install_state(f
,
2561 (ipfw_insn_limit
*)cmd
, args
)) {
2562 retval
= IP_FW_PORT_DENY_FLAG
;
2563 goto done
; /* error/limit violation */
2571 * dynamic rules are checked at the first
2572 * keep-state or check-state occurrence,
2573 * with the result being stored in dyn_dir.
2574 * The compiler introduces a PROBE_STATE
2575 * instruction for us when we have a
2576 * KEEP_STATE (because PROBE_STATE needs
2579 if (dyn_dir
== MATCH_UNKNOWN
&&
2580 (q
= lookup_dyn_rule(&args
->fwa_id
,
2581 &dyn_dir
, proto
== IPPROTO_TCP
?
2582 L3HDR(struct tcphdr
, ip
) : NULL
))
2585 * Found dynamic entry, update stats
2586 * and jump to the 'action' part of
2592 cmd
= ACTION_PTR(f
);
2593 l
= f
->cmd_len
- f
->act_ofs
;
2597 * Dynamic entry not found. If CHECK_STATE,
2598 * skip to next rule, if PROBE_STATE just
2599 * ignore and continue with next opcode.
2601 if (cmd
->opcode
== O_CHECK_STATE
)
2607 retval
= 0; /* accept */
2612 args
->fwa_ipfw_rule
= f
; /* report matching rule */
2613 retval
= cmd
->arg1
| IP_FW_PORT_DYNT_FLAG
;
2618 if (args
->fwa_eh
) /* not on layer 2 */
2620 args
->fwa_divert_rule
= f
->rulenum
;
2621 retval
= (cmd
->opcode
== O_DIVERT
) ?
2623 cmd
->arg1
| IP_FW_PORT_TEE_FLAG
;
2628 f
->pcnt
++; /* update stats */
2630 f
->timestamp
= timenow
.tv_sec
;
2631 if (cmd
->opcode
== O_COUNT
)
2634 if (f
->next_rule
== NULL
)
2635 lookup_next_rule(f
);
2641 * Drop the packet and send a reject notice
2642 * if the packet is not ICMP (or is an ICMP
2643 * query), and it is not multicast/broadcast.
2645 if (hlen
> 0 && offset
== 0 &&
2646 (proto
!= IPPROTO_ICMP
||
2647 is_icmp_query(ip
)) &&
2648 !(m
->m_flags
& (M_BCAST
|M_MCAST
)) &&
2649 !IN_MULTICAST(dst_ip
.s_addr
)) {
2650 send_reject(args
, cmd
->arg1
,
2656 retval
= IP_FW_PORT_DENY_FLAG
;
2660 if (args
->fwa_eh
) /* not valid on layer2 pkts */
2662 if (!q
|| dyn_dir
== MATCH_FORWARD
)
2663 args
->fwa_next_hop
=
2664 &((ipfw_insn_sa
*)cmd
)->sa
;
2669 panic("-- unknown opcode %d\n", cmd
->opcode
);
2670 } /* end of switch() on opcodes */
2672 if (cmd
->len
& F_NOT
)
2676 if (cmd
->len
& F_OR
)
2679 if (!(cmd
->len
& F_OR
)) /* not an OR block, */
2680 break; /* try next rule */
2683 } /* end of inner for, scan opcodes */
2685 next_rule
:; /* try next rule */
2687 } /* end of outer for, scan rules */
2688 printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2689 lck_mtx_unlock(ipfw_mutex
);
2690 return(IP_FW_PORT_DENY_FLAG
);
2693 /* Update statistics */
2696 f
->timestamp
= timenow
.tv_sec
;
2697 lck_mtx_unlock(ipfw_mutex
);
2702 printf("ipfw: pullup failed\n");
2703 lck_mtx_unlock(ipfw_mutex
);
2704 return(IP_FW_PORT_DENY_FLAG
);
2708 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2709 * These will be reconstructed on the fly as packets are matched.
2710 * Must be called at splimp().
2713 flush_rule_ptrs(void)
2717 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
2718 rule
->next_rule
= NULL
;
2722 * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
2723 * pipe/queue, or to all of them (match == NULL).
2724 * Must be called at splimp().
2727 flush_pipe_ptrs(struct dn_flow_set
*match
)
2731 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
2732 ipfw_insn_pipe
*cmd
= (ipfw_insn_pipe
*)ACTION_PTR(rule
);
2734 if (cmd
->o
.opcode
!= O_PIPE
&& cmd
->o
.opcode
!= O_QUEUE
)
2737 * XXX Use bcmp/bzero to handle pipe_ptr to overcome
2738 * possible alignment problems on 64-bit architectures.
2739 * This code is seldom used so we do not worry too
2740 * much about efficiency.
2742 if (match
== NULL
||
2743 !bcmp(&cmd
->pipe_ptr
, &match
, sizeof(match
)) )
2744 bzero(&cmd
->pipe_ptr
, sizeof(cmd
->pipe_ptr
));
2749 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2750 * possibly create a rule number and add the rule to the list.
2751 * Update the rule_number in the input struct so the caller knows it as well.
2754 add_rule(struct ip_fw
**head
, struct ip_fw
*input_rule
)
2756 struct ip_fw
*rule
, *f
, *prev
;
2757 int l
= RULESIZE(input_rule
);
2759 if (*head
== NULL
&& input_rule
->rulenum
!= IPFW_DEFAULT_RULE
)
2762 rule
= _MALLOC(l
, M_IPFW
, M_WAIT
);
2764 printf("ipfw2: add_rule MALLOC failed\n");
2769 bcopy(input_rule
, rule
, l
);
2772 rule
->next_rule
= NULL
;
2776 rule
->timestamp
= 0;
2778 if (*head
== NULL
) { /* default rule */
2784 * If rulenum is 0, find highest numbered rule before the
2785 * default rule, and add autoinc_step
2787 if (autoinc_step
< 1)
2789 else if (autoinc_step
> 1000)
2790 autoinc_step
= 1000;
2791 if (rule
->rulenum
== 0) {
2793 * locate the highest numbered rule before default
2795 for (f
= *head
; f
; f
= f
->next
) {
2796 if (f
->rulenum
== IPFW_DEFAULT_RULE
)
2798 rule
->rulenum
= f
->rulenum
;
2800 if (rule
->rulenum
< IPFW_DEFAULT_RULE
- autoinc_step
)
2801 rule
->rulenum
+= autoinc_step
;
2802 input_rule
->rulenum
= rule
->rulenum
;
2806 * Now insert the new rule in the right place in the sorted list.
2808 for (prev
= NULL
, f
= *head
; f
; prev
= f
, f
= f
->next
) {
2809 if (f
->rulenum
> rule
->rulenum
) { /* found the location */
2813 } else { /* head insert */
2824 static_len_32
+= RULESIZE32(input_rule
);
2825 static_len_64
+= RULESIZE64(input_rule
);
2826 DEB(printf("ipfw: installed rule %d, static count now %d\n",
2827 rule
->rulenum
, static_count
);)
2832 * Free storage associated with a static rule (including derived
2834 * The caller is in charge of clearing rule pointers to avoid
2835 * dangling pointers.
2836 * @return a pointer to the next entry.
2837 * Arguments are not checked, so they better be correct.
2838 * Must be called at splimp().
2840 static struct ip_fw
*
2841 delete_rule(struct ip_fw
**head
, struct ip_fw
*prev
, struct ip_fw
*rule
)
2844 int l
= RULESIZE(rule
);
2847 remove_dyn_rule(rule
, NULL
/* force removal */);
2854 static_len_32
-= RULESIZE32(rule
);
2855 static_len_64
-= RULESIZE64(rule
);
2858 if (DUMMYNET_LOADED
)
2859 dn_ipfw_rule_delete(rule
);
2860 #endif /* DUMMYNET */
2861 _FREE(rule
, M_IPFW
);
2865 #if DEBUG_INACTIVE_RULES
2867 print_chain(struct ip_fw
**chain
)
2869 struct ip_fw
*rule
= *chain
;
2871 for (; rule
; rule
= rule
->next
) {
2872 ipfw_insn
*cmd
= ACTION_PTR(rule
);
2874 printf("ipfw: rule->rulenum = %d\n", rule
->rulenum
);
2876 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
2877 printf("ipfw: rule->reserved = IPFW_RULE_INACTIVE\n");
2880 switch (cmd
->opcode
) {
2882 printf("ipfw: ACTION: Deny\n");
2886 if (cmd
->arg1
==ICMP_REJECT_RST
)
2887 printf("ipfw: ACTION: Reset\n");
2888 else if (cmd
->arg1
==ICMP_UNREACH_HOST
)
2889 printf("ipfw: ACTION: Reject\n");
2893 printf("ipfw: ACTION: Accept\n");
2896 printf("ipfw: ACTION: Count\n");
2899 printf("ipfw: ACTION: Divert\n");
2902 printf("ipfw: ACTION: Tee\n");
2905 printf("ipfw: ACTION: SkipTo\n");
2908 printf("ipfw: ACTION: Pipe\n");
2911 printf("ipfw: ACTION: Queue\n");
2914 printf("ipfw: ACTION: Forward\n");
2917 printf("ipfw: invalid action! %d\n", cmd
->opcode
);
2921 #endif /* DEBUG_INACTIVE_RULES */
2924 flush_inactive(void *param
)
2926 struct ip_fw
*inactive_rule
= (struct ip_fw
*)param
;
2927 struct ip_fw
*rule
, *prev
;
2929 lck_mtx_lock(ipfw_mutex
);
2931 for (rule
= layer3_chain
, prev
= NULL
; rule
; ) {
2932 if (rule
== inactive_rule
&& rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
2933 struct ip_fw
*n
= rule
;
2936 layer3_chain
= rule
->next
;
2939 prev
->next
= rule
->next
;
2950 #if DEBUG_INACTIVE_RULES
2951 print_chain(&layer3_chain
);
2953 lck_mtx_unlock(ipfw_mutex
);
2957 mark_inactive(struct ip_fw
**prev
, struct ip_fw
**rule
)
2959 int l
= RULESIZE(*rule
);
2961 if ((*rule
)->reserved_1
!= IPFW_RULE_INACTIVE
) {
2962 (*rule
)->reserved_1
= IPFW_RULE_INACTIVE
;
2965 static_len_32
-= RULESIZE32(*rule
);
2966 static_len_64
-= RULESIZE64(*rule
);
2968 timeout(flush_inactive
, *rule
, 30*hz
); /* 30 sec. */
2972 *rule
= (*rule
)->next
;
2976 * Deletes all rules from a chain (except rules in set RESVD_SET
2977 * unless kill_default = 1).
2978 * Must be called at splimp().
2981 free_chain(struct ip_fw
**chain
, int kill_default
)
2983 struct ip_fw
*prev
, *rule
;
2985 flush_rule_ptrs(); /* more efficient to do outside the loop */
2986 for (prev
= NULL
, rule
= *chain
; rule
; )
2987 if (kill_default
|| rule
->set
!= RESVD_SET
) {
2988 ipfw_insn
*cmd
= ACTION_PTR(rule
);
2990 /* skip over forwarding rules so struct isn't
2991 * deleted while pointer is still in use elsewhere
2993 if (cmd
->opcode
== O_FORWARD_IP
) {
2994 mark_inactive(&prev
, &rule
);
2997 rule
= delete_rule(chain
, prev
, rule
);
3007 * Remove all rules with given number, and also do set manipulation.
3008 * Assumes chain != NULL && *chain != NULL.
3010 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3011 * the next 8 bits are the new set, the top 8 bits are the command:
3013 * 0 delete rules with given number
3014 * 1 delete rules with given set number
3015 * 2 move rules with given number to new set
3016 * 3 move rules with given set number to new set
3017 * 4 swap sets with given numbers
3020 del_entry(struct ip_fw
**chain
, u_int32_t arg
)
3022 struct ip_fw
*prev
= NULL
, *rule
= *chain
;
3023 u_int16_t rulenum
; /* rule or old_set */
3024 u_int8_t cmd
, new_set
;
3026 rulenum
= arg
& 0xffff;
3027 cmd
= (arg
>> 24) & 0xff;
3028 new_set
= (arg
>> 16) & 0xff;
3032 if (new_set
> RESVD_SET
)
3034 if (cmd
== 0 || cmd
== 2) {
3035 if (rulenum
>= IPFW_DEFAULT_RULE
)
3038 if (rulenum
> RESVD_SET
) /* old_set */
3043 case 0: /* delete rules with given number */
3045 * locate first rule to delete
3047 for (; rule
->rulenum
< rulenum
; prev
= rule
, rule
= rule
->next
)
3049 if (rule
->rulenum
!= rulenum
)
3053 * flush pointers outside the loop, then delete all matching
3054 * rules. prev remains the same throughout the cycle.
3057 while (rule
->rulenum
== rulenum
) {
3058 ipfw_insn
*insn
= ACTION_PTR(rule
);
3060 /* keep forwarding rules around so struct isn't
3061 * deleted while pointer is still in use elsewhere
3063 if (insn
->opcode
== O_FORWARD_IP
) {
3064 mark_inactive(&prev
, &rule
);
3067 rule
= delete_rule(chain
, prev
, rule
);
3072 case 1: /* delete all rules with given set number */
3074 while (rule
->rulenum
< IPFW_DEFAULT_RULE
) {
3075 if (rule
->set
== rulenum
) {
3076 ipfw_insn
*insn
= ACTION_PTR(rule
);
3078 /* keep forwarding rules around so struct isn't
3079 * deleted while pointer is still in use elsewhere
3081 if (insn
->opcode
== O_FORWARD_IP
) {
3082 mark_inactive(&prev
, &rule
);
3085 rule
= delete_rule(chain
, prev
, rule
);
3095 case 2: /* move rules with given number to new set */
3096 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3097 if (rule
->rulenum
== rulenum
)
3098 rule
->set
= new_set
;
3101 case 3: /* move rules with given set number to new set */
3102 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3103 if (rule
->set
== rulenum
)
3104 rule
->set
= new_set
;
3107 case 4: /* swap two sets */
3108 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3109 if (rule
->set
== rulenum
)
3110 rule
->set
= new_set
;
3111 else if (rule
->set
== new_set
)
3112 rule
->set
= rulenum
;
3119 * Clear counters for a specific rule.
3122 clear_counters(struct ip_fw
*rule
, int log_only
)
3124 ipfw_insn_log
*l
= (ipfw_insn_log
*)ACTION_PTR(rule
);
3126 if (log_only
== 0) {
3127 rule
->bcnt
= rule
->pcnt
= 0;
3128 rule
->timestamp
= 0;
3130 if (l
->o
.opcode
== O_LOG
)
3131 l
->log_left
= l
->max_log
;
3135 * Reset some or all counters on firewall rules.
3136 * @arg frwl is null to clear all entries, or contains a specific
3138 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3141 zero_entry(int rulenum
, int log_only
)
3148 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
3149 clear_counters(rule
, log_only
);
3150 msg
= log_only
? "ipfw: All logging counts reset.\n" :
3151 "ipfw: Accounting cleared.\n";
3155 * We can have multiple rules with the same number, so we
3156 * need to clear them all.
3158 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
3159 if (rule
->rulenum
== rulenum
) {
3160 while (rule
&& rule
->rulenum
== rulenum
) {
3161 clear_counters(rule
, log_only
);
3167 if (!cleared
) /* we did not find any matching rules */
3169 msg
= log_only
? "ipfw: Entry %d logging count reset.\n" :
3170 "ipfw: Entry %d cleared.\n";
3174 dolog((LOG_AUTHPRIV
| LOG_NOTICE
, msg
, rulenum
));
3180 * Check validity of the structure before insert.
3181 * Fortunately rules are simple, so this mostly need to check rule sizes.
3184 check_ipfw_struct(struct ip_fw
*rule
, int size
)
3190 if (size
< sizeof(*rule
)) {
3191 printf("ipfw: rule too short\n");
3194 /* first, check for valid size */
3197 printf("ipfw: size mismatch (have %d want %d)\n", size
, l
);
3201 * Now go for the individual checks. Very simple ones, basically only
3202 * instruction sizes.
3204 for (l
= rule
->cmd_len
, cmd
= rule
->cmd
;
3205 l
> 0 ; l
-= cmdlen
, cmd
+= cmdlen
) {
3206 cmdlen
= F_LEN(cmd
);
3208 printf("ipfw: opcode %d size truncated\n",
3212 DEB(printf("ipfw: opcode %d\n", cmd
->opcode
);)
3213 switch (cmd
->opcode
) {
3224 case O_IPPRECEDENCE
:
3232 if (cmdlen
!= F_INSN_SIZE(ipfw_insn
))
3238 #endif /* __APPLE__ */
3245 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_u32
))
3250 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_limit
))
3255 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_log
))
3258 /* enforce logging limit */
3260 ((ipfw_insn_log
*)cmd
)->max_log
== 0 && verbose_limit
!= 0) {
3261 ((ipfw_insn_log
*)cmd
)->max_log
= verbose_limit
;
3264 ((ipfw_insn_log
*)cmd
)->log_left
=
3265 ((ipfw_insn_log
*)cmd
)->max_log
;
3271 /* only odd command lengths */
3272 if ( !(cmdlen
& 1) || cmdlen
> 31)
3278 if (cmd
->arg1
== 0 || cmd
->arg1
> 256) {
3279 printf("ipfw: invalid set size %d\n",
3283 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_u32
) +
3289 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_mac
))
3297 if (cmdlen
< 1 || cmdlen
> 31)
3303 case O_IP_DSTPORT
: /* XXX artificial limit, 30 port pairs */
3304 if (cmdlen
< 2 || cmdlen
> 31)
3311 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_if
))
3317 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_pipe
))
3322 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_sa
))
3326 case O_FORWARD_MAC
: /* XXX not implemented yet */
3335 if (cmdlen
!= F_INSN_SIZE(ipfw_insn
))
3339 printf("ipfw: opcode %d, multiple actions"
3346 printf("ipfw: opcode %d, action must be"
3353 printf("ipfw: opcode %d, unknown opcode\n",
3358 if (have_action
== 0) {
3359 printf("ipfw: missing action\n");
3365 printf("ipfw: opcode %d size %d wrong\n",
3366 cmd
->opcode
, cmdlen
);
3372 ipfw_kev_post_msg(u_int32_t event_code
)
3374 struct kev_msg ev_msg
;
3376 bzero(&ev_msg
, sizeof(struct kev_msg
));
3378 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3379 ev_msg
.kev_class
= KEV_FIREWALL_CLASS
;
3380 ev_msg
.kev_subclass
= KEV_IPFW_SUBCLASS
;
3381 ev_msg
.event_code
= event_code
;
3383 kev_post_msg(&ev_msg
);
3388 * {set|get}sockopt parser.
3391 ipfw_ctl(struct sockopt
*sopt
)
3393 #define RULE_MAXSIZE (256*sizeof(u_int32_t))
3394 u_int32_t api_version
;
3398 size_t rulesize
= RULE_MAXSIZE
;
3399 struct ip_fw
*bp
, *buf
, *rule
;
3402 /* copy of orig sopt to send to ipfw_get_command_and_version() */
3403 struct sockopt tmp_sopt
= *sopt
;
3404 struct timeval timenow
;
3406 getmicrotime(&timenow
);
3409 * Disallow modifications in really-really secure mode, but still allow
3410 * the logging counters to be reset.
3412 if (sopt
->sopt_name
== IP_FW_ADD
||
3413 (sopt
->sopt_dir
== SOPT_SET
&& sopt
->sopt_name
!= IP_FW_RESETLOG
)) {
3414 #if __FreeBSD_version >= 500034
3415 error
= securelevel_ge(sopt
->sopt_td
->td_ucred
, 3);
3418 #else /* FreeBSD 4.x */
3419 if (securelevel
>= 3)
3424 /* first get the command and version, then do conversion as necessary */
3425 error
= ipfw_get_command_and_version(&tmp_sopt
, &command
, &api_version
);
3427 /* error getting the version */
3431 if (proc_is64bit(sopt
->sopt_p
))
3439 * pass up a copy of the current rules. Static rules
3440 * come first (the last of which has number IPFW_DEFAULT_RULE),
3441 * followed by a possibly empty list of dynamic rule.
3442 * The last dynamic rule has NULL in the "next" field.
3444 lck_mtx_lock(ipfw_mutex
);
3447 size
= Get64static_len();
3448 dynrulesize
= sizeof(ipfw_dyn_rule_64
);
3450 size
+= (dyn_count
* dynrulesize
);
3452 size
= Get32static_len();
3453 dynrulesize
= sizeof(ipfw_dyn_rule_32
);
3455 size
+= (dyn_count
* dynrulesize
);
3459 * XXX todo: if the user passes a short length just to know
3460 * how much room is needed, do not bother filling up the
3461 * buffer, just jump to the sooptcopyout.
3463 buf
= _MALLOC(size
, M_TEMP
, M_WAITOK
);
3465 lck_mtx_unlock(ipfw_mutex
);
3473 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
3475 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
3482 copyto64fw( rule
, (struct ip_fw_64
*)bp
, size
);
3483 bcopy(&set_disable
, &(( (struct ip_fw_64
*)bp
)->next_rule
), sizeof(set_disable
));
3484 /* do not use macro RULESIZE64 since we want RULESIZE for ip_fw_64 */
3485 rulesize_64
= sizeof(struct ip_fw_64
) + ((struct ip_fw_64
*)(bp
))->cmd_len
* 4 - 4;
3486 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_64
);
3490 copyto32fw( rule
, (struct ip_fw_32
*)bp
, size
);
3491 bcopy(&set_disable
, &(( (struct ip_fw_32
*)bp
)->next_rule
), sizeof(set_disable
));
3492 /* do not use macro RULESIZE32 since we want RULESIZE for ip_fw_32 */
3493 rulesize_32
= sizeof(struct ip_fw_32
) + ((struct ip_fw_32
*)(bp
))->cmd_len
* 4 - 4;
3494 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_32
);
3500 char *dst
, *last
= NULL
;
3503 for (i
= 0 ; i
< curr_dyn_buckets
; i
++ )
3504 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
;
3505 p
= p
->next
, dst
+= dynrulesize
) {
3507 ipfw_dyn_rule_64
*ipfw_dyn_dst
;
3509 ipfw_dyn_dst
= (ipfw_dyn_rule_64
*)dst
;
3511 * store a non-null value in "next".
3512 * The userland code will interpret a
3513 * NULL here as a marker
3514 * for the last dynamic rule.
3516 ipfw_dyn_dst
->next
= CAST_DOWN_EXPLICIT(user64_addr_t
, dst
);
3517 ipfw_dyn_dst
->rule
= p
->rule
->rulenum
;
3518 ipfw_dyn_dst
->parent
= CAST_DOWN(user64_addr_t
, p
->parent
);
3519 ipfw_dyn_dst
->pcnt
= p
->pcnt
;
3520 ipfw_dyn_dst
->bcnt
= p
->bcnt
;
3521 externalize_flow_id(&ipfw_dyn_dst
->id
, &p
->id
);
3522 ipfw_dyn_dst
->expire
=
3523 TIME_LEQ(p
->expire
, timenow
.tv_sec
) ?
3524 0 : p
->expire
- timenow
.tv_sec
;
3525 ipfw_dyn_dst
->bucket
= p
->bucket
;
3526 ipfw_dyn_dst
->state
= p
->state
;
3527 ipfw_dyn_dst
->ack_fwd
= p
->ack_fwd
;
3528 ipfw_dyn_dst
->ack_rev
= p
->ack_rev
;
3529 ipfw_dyn_dst
->dyn_type
= p
->dyn_type
;
3530 ipfw_dyn_dst
->count
= p
->count
;
3531 last
= (char*)&ipfw_dyn_dst
->next
;
3533 ipfw_dyn_rule_32
*ipfw_dyn_dst
;
3535 ipfw_dyn_dst
= (ipfw_dyn_rule_32
*)dst
;
3537 * store a non-null value in "next".
3538 * The userland code will interpret a
3539 * NULL here as a marker
3540 * for the last dynamic rule.
3542 ipfw_dyn_dst
->next
= CAST_DOWN_EXPLICIT(user32_addr_t
, dst
);
3543 ipfw_dyn_dst
->rule
= p
->rule
->rulenum
;
3544 ipfw_dyn_dst
->parent
= CAST_DOWN_EXPLICIT(user32_addr_t
, p
->parent
);
3545 ipfw_dyn_dst
->pcnt
= p
->pcnt
;
3546 ipfw_dyn_dst
->bcnt
= p
->bcnt
;
3547 externalize_flow_id(&ipfw_dyn_dst
->id
, &p
->id
);
3548 ipfw_dyn_dst
->expire
=
3549 TIME_LEQ(p
->expire
, timenow
.tv_sec
) ?
3550 0 : p
->expire
- timenow
.tv_sec
;
3551 ipfw_dyn_dst
->bucket
= p
->bucket
;
3552 ipfw_dyn_dst
->state
= p
->state
;
3553 ipfw_dyn_dst
->ack_fwd
= p
->ack_fwd
;
3554 ipfw_dyn_dst
->ack_rev
= p
->ack_rev
;
3555 ipfw_dyn_dst
->dyn_type
= p
->dyn_type
;
3556 ipfw_dyn_dst
->count
= p
->count
;
3557 last
= (char*)&ipfw_dyn_dst
->next
;
3560 if (last
!= NULL
) /* mark last dynamic rule */
3561 bzero(last
, sizeof(last
));
3563 lck_mtx_unlock(ipfw_mutex
);
3565 /* convert back if necessary and copyout */
3566 if (api_version
== IP_FW_VERSION_0
) {
3568 struct ip_old_fw
*buf2
, *rule_vers0
;
3570 lck_mtx_lock(ipfw_mutex
);
3571 buf2
= _MALLOC(static_count
* sizeof(struct ip_old_fw
), M_TEMP
, M_WAITOK
);
3573 lck_mtx_unlock(ipfw_mutex
);
3581 for (i
= 0; i
< static_count
; i
++) {
3582 /* static rules have different sizes */
3583 int j
= RULESIZE(bp
);
3584 ipfw_convert_from_latest(bp
, rule_vers0
, api_version
, is64user
);
3585 bp
= (struct ip_fw
*)((char *)bp
+ j
);
3586 len
+= sizeof(*rule_vers0
);
3589 lck_mtx_unlock(ipfw_mutex
);
3590 error
= sooptcopyout(sopt
, buf2
, len
);
3591 _FREE(buf2
, M_TEMP
);
3593 } else if (api_version
== IP_FW_VERSION_1
) {
3594 int i
, len
= 0, buf_size
;
3595 struct ip_fw_compat
*buf2
;
3596 size_t ipfwcompsize
;
3597 size_t ipfwdyncompsize
;
3600 lck_mtx_lock(ipfw_mutex
);
3602 ipfwcompsize
= sizeof(struct ip_fw_compat_64
);
3603 ipfwdyncompsize
= sizeof(struct ipfw_dyn_rule_compat_64
);
3605 ipfwcompsize
= sizeof(struct ip_fw_compat_32
);
3606 ipfwdyncompsize
= sizeof(struct ipfw_dyn_rule_compat_32
);
3609 buf_size
= static_count
* ipfwcompsize
+
3610 dyn_count
* ipfwdyncompsize
;
3612 buf2
= _MALLOC(buf_size
, M_TEMP
, M_WAITOK
);
3614 lck_mtx_unlock(ipfw_mutex
);
3619 rule_vers1
= (char*)buf2
;
3621 /* first do static rules */
3622 for (i
= 0; i
< static_count
; i
++) {
3623 /* static rules have different sizes */
3626 ipfw_convert_from_latest(bp
, (void *)rule_vers1
, api_version
, is64user
);
3627 rulesize_64
= sizeof(struct ip_fw_64
) + ((struct ip_fw_64
*)(bp
))->cmd_len
* 4 - 4;
3628 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_64
);
3631 ipfw_convert_from_latest(bp
, (void *)rule_vers1
, api_version
, is64user
);
3632 rulesize_32
= sizeof(struct ip_fw_32
) + ((struct ip_fw_32
*)(bp
))->cmd_len
* 4 - 4;
3633 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_32
);
3635 len
+= ipfwcompsize
;
3636 rule_vers1
+= ipfwcompsize
;
3638 /* now do dynamic rules */
3640 cp_dyn_to_comp_64( (struct ipfw_dyn_rule_compat_64
*)rule_vers1
, &len
);
3642 cp_dyn_to_comp_32( (struct ipfw_dyn_rule_compat_32
*)rule_vers1
, &len
);
3644 lck_mtx_unlock(ipfw_mutex
);
3645 error
= sooptcopyout(sopt
, buf2
, len
);
3646 _FREE(buf2
, M_TEMP
);
3649 error
= sooptcopyout(sopt
, buf
, size
);
3658 * Normally we cannot release the lock on each iteration.
3659 * We could do it here only because we start from the head all
3660 * the times so there is no risk of missing some entries.
3661 * On the other hand, the risk is that we end up with
3662 * a very inconsistent ruleset, so better keep the lock
3663 * around the whole cycle.
3665 * XXX this code can be improved by resetting the head of
3666 * the list to point to the default rule, and then freeing
3667 * the old list without the need for a lock.
3670 lck_mtx_lock(ipfw_mutex
);
3671 free_chain(&layer3_chain
, 0 /* keep default rule */);
3673 #if DEBUG_INACTIVE_RULES
3674 print_chain(&layer3_chain
);
3676 lck_mtx_unlock(ipfw_mutex
);
3681 size_t savedsopt_valsize
=0;
3682 rule
= _MALLOC(RULE_MAXSIZE
, M_TEMP
, M_WAITOK
);
3688 bzero(rule
, RULE_MAXSIZE
);
3690 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3691 error
= ipfw_convert_to_latest(sopt
, rule
, api_version
, is64user
);
3694 savedsopt_valsize
= sopt
->sopt_valsize
; /* it might get modified in sooptcopyin_fw */
3695 error
= sooptcopyin_fw( sopt
, rule
, &rulesize
);
3700 if ((api_version
== IP_FW_VERSION_0
) || (api_version
== IP_FW_VERSION_1
)) {
3701 /* the rule has already been checked so just
3702 * adjust sopt_valsize to match what would be expected.
3704 sopt
->sopt_valsize
= RULESIZE(rule
);
3705 rulesize
= RULESIZE(rule
);
3707 error
= check_ipfw_struct(rule
, rulesize
);
3709 lck_mtx_lock(ipfw_mutex
);
3710 error
= add_rule(&layer3_chain
, rule
);
3711 if (!error
&& fw_bypass
)
3713 lck_mtx_unlock(ipfw_mutex
);
3715 size
= RULESIZE(rule
);
3716 if (!error
&& sopt
->sopt_dir
== SOPT_GET
) {
3717 /* convert back if necessary and copyout */
3718 if (api_version
== IP_FW_VERSION_0
) {
3719 struct ip_old_fw rule_vers0
;
3721 ipfw_convert_from_latest(rule
, &rule_vers0
, api_version
, is64user
);
3722 sopt
->sopt_valsize
= sizeof(struct ip_old_fw
);
3724 error
= sooptcopyout(sopt
, &rule_vers0
, sizeof(struct ip_old_fw
));
3725 } else if (api_version
== IP_FW_VERSION_1
) {
3726 struct ip_fw_compat rule_vers1
;
3727 ipfw_convert_from_latest(rule
, &rule_vers1
, api_version
, is64user
);
3728 sopt
->sopt_valsize
= sizeof(struct ip_fw_compat
);
3730 error
= sooptcopyout(sopt
, &rule_vers1
, sizeof(struct ip_fw_compat
));
3733 userrule
= _MALLOC(savedsopt_valsize
, M_TEMP
, M_WAITOK
);
3734 if ( userrule
== NULL
)
3735 userrule
= (char*)rule
;
3736 if (proc_is64bit(sopt
->sopt_p
)){
3737 copyto64fw( rule
, (struct ip_fw_64
*)userrule
, savedsopt_valsize
);
3740 copyto32fw( rule
, (struct ip_fw_32
*)userrule
, savedsopt_valsize
);
3742 error
= sooptcopyout(sopt
, userrule
, savedsopt_valsize
);
3744 _FREE(userrule
, M_TEMP
);
3750 _FREE(rule
, M_TEMP
);
3756 * IP_FW_DEL is used for deleting single rules or sets,
3757 * and (ab)used to atomically manipulate sets.
3758 * rule->rulenum != 0 indicates single rule delete
3759 * rule->set_masks used to manipulate sets
3760 * rule->set_masks[0] contains info on sets to be
3761 * disabled, swapped, or moved
3762 * rule->set_masks[1] contains sets to be enabled.
3765 /* there is only a simple rule passed in
3766 * (no cmds), so use a temp struct to copy
3768 struct ip_fw temp_rule
;
3772 bzero(&temp_rule
, sizeof(struct ip_fw
));
3773 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3774 error
= ipfw_convert_to_latest(sopt
, &temp_rule
, api_version
, is64user
);
3777 error
= sooptcopyin_fw(sopt
, &temp_rule
, 0 );
3781 /* set_masks is used to distinguish between deleting
3782 * single rules or atomically manipulating sets
3784 lck_mtx_lock(ipfw_mutex
);
3786 arg
= temp_rule
.set_masks
[0];
3787 cmd
= (arg
>> 24) & 0xff;
3789 if (temp_rule
.rulenum
) {
3791 error
= del_entry(&layer3_chain
, temp_rule
.rulenum
);
3792 #if DEBUG_INACTIVE_RULES
3793 print_chain(&layer3_chain
);
3797 /* set reassignment - see comment above del_entry() for details */
3798 error
= del_entry(&layer3_chain
, temp_rule
.set_masks
[0]);
3799 #if DEBUG_INACTIVE_RULES
3800 print_chain(&layer3_chain
);
3803 else if (temp_rule
.set_masks
[0] != 0 ||
3804 temp_rule
.set_masks
[1] != 0) {
3805 /* set enable/disable */
3807 (set_disable
| temp_rule
.set_masks
[0]) & ~temp_rule
.set_masks
[1] &
3808 ~(1<<RESVD_SET
); /* set RESVD_SET always enabled */
3811 if (!layer3_chain
->next
)
3813 lck_mtx_unlock(ipfw_mutex
);
3818 case IP_FW_RESETLOG
: /* using rule->rulenum */
3820 /* there is only a simple rule passed in
3821 * (no cmds), so use a temp struct to copy
3823 struct ip_fw temp_rule
;
3825 bzero(&temp_rule
, sizeof(struct ip_fw
));
3827 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3828 error
= ipfw_convert_to_latest(sopt
, &temp_rule
, api_version
, is64user
);
3831 if (sopt
->sopt_val
!= 0) {
3832 error
= sooptcopyin_fw( sopt
, &temp_rule
, 0);
3837 lck_mtx_lock(ipfw_mutex
);
3838 error
= zero_entry(temp_rule
.rulenum
, sopt
->sopt_name
== IP_FW_RESETLOG
);
3839 lck_mtx_unlock(ipfw_mutex
);
3844 printf("ipfw: ipfw_ctl invalid option %d\n", sopt
->sopt_name
);
3848 if (error
!= EINVAL
) {
3852 ipfw_kev_post_msg(KEV_IPFW_ADD
);
3856 ipfw_kev_post_msg(KEV_IPFW_DEL
);
3859 case IP_OLD_FW_FLUSH
:
3860 ipfw_kev_post_msg(KEV_IPFW_FLUSH
);
3872 * dummynet needs a reference to the default rule, because rules can be
3873 * deleted while packets hold a reference to them. When this happens,
3874 * dummynet changes the reference to the default rule (it could well be a
3875 * NULL pointer, but this way we do not need to check for the special
3876 * case, plus here he have info on the default behaviour).
3878 struct ip_fw
*ip_fw_default_rule
;
3881 * This procedure is only used to handle keepalives. It is invoked
3882 * every dyn_keepalive_period
3885 ipfw_tick(__unused
void * unused
)
3887 struct mbuf
*m0
, *m
, *mnext
, **mtailp
;
3890 struct timeval timenow
;
3892 if (dyn_keepalive
== 0 || ipfw_dyn_v
== NULL
|| dyn_count
== 0)
3895 getmicrotime(&timenow
);
3898 * We make a chain of packets to go out here -- not deferring
3899 * until after we drop the ipfw lock would result
3900 * in a lock order reversal with the normal packet input -> ipfw
3906 lck_mtx_lock(ipfw_mutex
);
3907 for (i
= 0 ; i
< curr_dyn_buckets
; i
++) {
3908 for (q
= ipfw_dyn_v
[i
] ; q
; q
= q
->next
) {
3909 if (q
->dyn_type
== O_LIMIT_PARENT
)
3911 if (q
->id
.proto
!= IPPROTO_TCP
)
3913 if ( (q
->state
& BOTH_SYN
) != BOTH_SYN
)
3915 if (TIME_LEQ( timenow
.tv_sec
+dyn_keepalive_interval
,
3917 continue; /* too early */
3918 if (TIME_LEQ(q
->expire
, timenow
.tv_sec
))
3919 continue; /* too late, rule expired */
3921 *mtailp
= send_pkt(&(q
->id
), q
->ack_rev
- 1, q
->ack_fwd
, TH_SYN
);
3922 if (*mtailp
!= NULL
)
3923 mtailp
= &(*mtailp
)->m_nextpkt
;
3925 *mtailp
= send_pkt(&(q
->id
), q
->ack_fwd
- 1, q
->ack_rev
, 0);
3926 if (*mtailp
!= NULL
)
3927 mtailp
= &(*mtailp
)->m_nextpkt
;
3930 lck_mtx_unlock(ipfw_mutex
);
3932 for (m
= mnext
= m0
; m
!= NULL
; m
= mnext
) {
3933 struct route sro
; /* fake route */
3935 mnext
= m
->m_nextpkt
;
3936 m
->m_nextpkt
= NULL
;
3937 bzero (&sro
, sizeof (sro
));
3938 ip_output_list(m
, 0, NULL
, &sro
, 0, NULL
, NULL
);
3943 timeout(ipfw_tick
, NULL
, dyn_keepalive_period
*hz
);
3949 struct ip_fw default_rule
;
3952 ipfw_mutex_grp_attr
= lck_grp_attr_alloc_init();
3953 ipfw_mutex_grp
= lck_grp_alloc_init("ipfw", ipfw_mutex_grp_attr
);
3954 ipfw_mutex_attr
= lck_attr_alloc_init();
3955 lck_mtx_init(ipfw_mutex
, ipfw_mutex_grp
, ipfw_mutex_attr
);
3957 layer3_chain
= NULL
;
3959 bzero(&default_rule
, sizeof default_rule
);
3961 default_rule
.act_ofs
= 0;
3962 default_rule
.rulenum
= IPFW_DEFAULT_RULE
;
3963 default_rule
.cmd_len
= 1;
3964 default_rule
.set
= RESVD_SET
;
3966 default_rule
.cmd
[0].len
= 1;
3967 default_rule
.cmd
[0].opcode
=
3968 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
3973 if (add_rule(&layer3_chain
, &default_rule
)) {
3974 printf("ipfw2: add_rule failed adding default rule\n");
3975 printf("ipfw2 failed initialization!!\n");
3979 ip_fw_default_rule
= layer3_chain
;
3981 #ifdef IPFIREWALL_VERBOSE
3984 #ifdef IPFIREWALL_VERBOSE_LIMIT
3985 verbose_limit
= IPFIREWALL_VERBOSE_LIMIT
;
3989 printf("ipfw2 verbose logging enabled: unlimited logging by default\n");
3991 printf("ipfw2 verbose logging enabled: limited to %d packets/entry by default\n",
3996 ip_fw_chk_ptr
= ipfw_chk
;
3997 ip_fw_ctl_ptr
= ipfw_ctl
;
3999 ipfwstringlen
= strlen( ipfwstring
);
4001 timeout(ipfw_tick
, NULL
, hz
);