]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/in_mcast.c
xnu-2050.48.11.tar.gz
[apple/xnu.git] / bsd / netinet / in_mcast.c
1 /*
2 * Copyright (c) 2010-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*-
29 * Copyright (c) 2007-2009 Bruce Simpson.
30 * Copyright (c) 2005 Robert N. M. Watson.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. The name of the author may not be used to endorse or promote
42 * products derived from this software without specific prior written
43 * permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * IPv4 multicast socket, group, and socket option processing module.
60 */
61
62 #include <sys/cdefs.h>
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/protosw.h>
73 #include <sys/sysctl.h>
74 #include <sys/tree.h>
75 #include <sys/mcache.h>
76
77 #include <kern/zalloc.h>
78
79 #include <pexpert/pexpert.h>
80
81 #include <net/if.h>
82 #include <net/if_dl.h>
83 #include <net/route.h>
84
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/igmp_var.h>
91
92 #ifndef __SOCKUNION_DECLARED
93 union sockunion {
94 struct sockaddr_storage ss;
95 struct sockaddr sa;
96 struct sockaddr_dl sdl;
97 struct sockaddr_in sin;
98 };
99 typedef union sockunion sockunion_t;
100 #define __SOCKUNION_DECLARED
101 #endif /* __SOCKUNION_DECLARED */
102
103 /*
104 * Functions with non-static linkage defined in this file should be
105 * declared in in_var.h:
106 * imo_multi_filter()
107 * in_addmulti()
108 * in_delmulti()
109 * in_joingroup()
110 * in_leavegroup()
111 * and ip_var.h:
112 * inp_freemoptions()
113 * inp_getmoptions()
114 * inp_setmoptions()
115 *
116 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
117 * and in_delmulti().
118 */
119 static void imf_commit(struct in_mfilter *);
120 static int imf_get_source(struct in_mfilter *imf,
121 const struct sockaddr_in *psin,
122 struct in_msource **);
123 static struct in_msource *
124 imf_graft(struct in_mfilter *, const uint8_t,
125 const struct sockaddr_in *);
126 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *);
127 static void imf_rollback(struct in_mfilter *);
128 static void imf_reap(struct in_mfilter *);
129 static int imo_grow(struct ip_moptions *, size_t);
130 static size_t imo_match_group(const struct ip_moptions *,
131 const struct ifnet *, const struct sockaddr *);
132 static struct in_msource *
133 imo_match_source(const struct ip_moptions *, const size_t,
134 const struct sockaddr *);
135 static void ims_merge(struct ip_msource *ims,
136 const struct in_msource *lims, const int rollback);
137 static int in_getmulti(struct ifnet *, const struct in_addr *,
138 struct in_multi **);
139 static int in_joingroup(struct ifnet *, const struct in_addr *,
140 struct in_mfilter *, struct in_multi **);
141 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr,
142 const int noalloc, struct ip_msource **pims);
143 static int inm_is_ifp_detached(const struct in_multi *);
144 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
145 static void inm_reap(struct in_multi *);
146 static struct ip_moptions *
147 inp_findmoptions(struct inpcb *);
148 static int inp_get_source_filters(struct inpcb *, struct sockopt *);
149 static struct ifnet *
150 inp_lookup_mcast_ifp(const struct inpcb *,
151 const struct sockaddr_in *, const struct in_addr);
152 static int inp_block_unblock_source(struct inpcb *, struct sockopt *);
153 static int inp_set_multicast_if(struct inpcb *, struct sockopt *);
154 static int inp_set_source_filters(struct inpcb *, struct sockopt *);
155 static int sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS;
156 static struct ifnet * ip_multicast_if(struct in_addr *, unsigned int *);
157 static __inline__ int ip_msource_cmp(const struct ip_msource *,
158 const struct ip_msource *);
159
160 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv4 multicast");
161
162 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
163 SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
164 CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxgrpsrc, "Max source filters per group");
165
166 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
167 SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
168 CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxsocksrc,
169 "Max source filters per socket");
170
171 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
172 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED,
173 &in_mcast_loop, 0, "Loopback multicast datagrams by default");
174
175 SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
176 CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip_mcast_filters,
177 "Per-interface stack-wide source filters");
178
179 RB_GENERATE_PREV(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
180
181 #define INM_TRACE_HIST_SIZE 32 /* size of trace history */
182
183 /* For gdb */
184 __private_extern__ unsigned int inm_trace_hist_size = INM_TRACE_HIST_SIZE;
185
186 struct in_multi_dbg {
187 struct in_multi inm; /* in_multi */
188 u_int16_t inm_refhold_cnt; /* # of ref */
189 u_int16_t inm_refrele_cnt; /* # of rele */
190 /*
191 * Circular lists of inm_addref and inm_remref callers.
192 */
193 ctrace_t inm_refhold[INM_TRACE_HIST_SIZE];
194 ctrace_t inm_refrele[INM_TRACE_HIST_SIZE];
195 /*
196 * Trash list linkage
197 */
198 TAILQ_ENTRY(in_multi_dbg) inm_trash_link;
199 };
200
201 /* List of trash in_multi entries protected by inm_trash_lock */
202 static TAILQ_HEAD(, in_multi_dbg) inm_trash_head;
203 static decl_lck_mtx_data(, inm_trash_lock);
204
205 #define INM_ZONE_MAX 64 /* maximum elements in zone */
206 #define INM_ZONE_NAME "in_multi" /* zone name */
207
208 #if DEBUG
209 static unsigned int inm_debug = 1; /* debugging (enabled) */
210 #else
211 static unsigned int inm_debug; /* debugging (disabled) */
212 #endif /* !DEBUG */
213 static unsigned int inm_size; /* size of zone element */
214 static struct zone *inm_zone; /* zone for in_multi */
215
216 #define IPMS_ZONE_MAX 64 /* maximum elements in zone */
217 #define IPMS_ZONE_NAME "ip_msource" /* zone name */
218
219 static unsigned int ipms_size; /* size of zone element */
220 static struct zone *ipms_zone; /* zone for ip_msource */
221
222 #define INMS_ZONE_MAX 64 /* maximum elements in zone */
223 #define INMS_ZONE_NAME "in_msource" /* zone name */
224
225 static unsigned int inms_size; /* size of zone element */
226 static struct zone *inms_zone; /* zone for in_msource */
227
228 /* Lock group and attribute for in_multihead_lock lock */
229 static lck_attr_t *in_multihead_lock_attr;
230 static lck_grp_t *in_multihead_lock_grp;
231 static lck_grp_attr_t *in_multihead_lock_grp_attr;
232
233 static decl_lck_rw_data(, in_multihead_lock);
234 struct in_multihead in_multihead;
235
236 static struct in_multi *in_multi_alloc(int);
237 static void in_multi_free(struct in_multi *);
238 static void in_multi_attach(struct in_multi *);
239 static void inm_trace(struct in_multi *, int);
240
241 static struct ip_msource *ipms_alloc(int);
242 static void ipms_free(struct ip_msource *);
243 static struct in_msource *inms_alloc(int);
244 static void inms_free(struct in_msource *);
245
246 #define IMO_CAST_TO_NONCONST(x) ((struct ip_moptions *)(void *)(uintptr_t)x)
247 #define INM_CAST_TO_NONCONST(x) ((struct in_multi *)(void *)(uintptr_t)x)
248
249 static __inline int
250 ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b)
251 {
252
253 if (a->ims_haddr < b->ims_haddr)
254 return (-1);
255 if (a->ims_haddr == b->ims_haddr)
256 return (0);
257 return (1);
258 }
259
260 /*
261 * Inline function which wraps assertions for a valid ifp.
262 */
263 static __inline__ int
264 inm_is_ifp_detached(const struct in_multi *inm)
265 {
266 VERIFY(inm->inm_ifma != NULL);
267 VERIFY(inm->inm_ifp == inm->inm_ifma->ifma_ifp);
268
269 return (!ifnet_is_attached(inm->inm_ifp, 0));
270 }
271
272 /*
273 * Initialize an in_mfilter structure to a known state at t0, t1
274 * with an empty source filter list.
275 */
276 static __inline__ void
277 imf_init(struct in_mfilter *imf, const int st0, const int st1)
278 {
279 memset(imf, 0, sizeof(struct in_mfilter));
280 RB_INIT(&imf->imf_sources);
281 imf->imf_st[0] = st0;
282 imf->imf_st[1] = st1;
283 }
284
285 /*
286 * Resize the ip_moptions vector to the next power-of-two minus 1.
287 */
288 static int
289 imo_grow(struct ip_moptions *imo, size_t newmax)
290 {
291 struct in_multi **nmships;
292 struct in_multi **omships;
293 struct in_mfilter *nmfilters;
294 struct in_mfilter *omfilters;
295 size_t idx;
296 size_t oldmax;
297
298 IMO_LOCK_ASSERT_HELD(imo);
299
300 nmships = NULL;
301 nmfilters = NULL;
302 omships = imo->imo_membership;
303 omfilters = imo->imo_mfilters;
304 oldmax = imo->imo_max_memberships;
305 if (newmax == 0)
306 newmax = ((oldmax + 1) * 2) - 1;
307
308 if (newmax > IP_MAX_MEMBERSHIPS)
309 return (ETOOMANYREFS);
310
311 if ((nmships = (struct in_multi **)_REALLOC(omships,
312 sizeof (struct in_multi *) * newmax, M_IPMOPTS,
313 M_WAITOK | M_ZERO)) == NULL)
314 return (ENOMEM);
315
316 imo->imo_membership = nmships;
317
318 if ((nmfilters = (struct in_mfilter *)_REALLOC(omfilters,
319 sizeof (struct in_mfilter) * newmax, M_INMFILTER,
320 M_WAITOK | M_ZERO)) == NULL)
321 return (ENOMEM);
322
323 imo->imo_mfilters = nmfilters;
324
325 /* Initialize newly allocated source filter heads. */
326 for (idx = oldmax; idx < newmax; idx++)
327 imf_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
328
329 imo->imo_max_memberships = newmax;
330
331 return (0);
332 }
333
334 /*
335 * Find an IPv4 multicast group entry for this ip_moptions instance
336 * which matches the specified group, and optionally an interface.
337 * Return its index into the array, or -1 if not found.
338 */
339 static size_t
340 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
341 const struct sockaddr *group)
342 {
343 const struct sockaddr_in *gsin;
344 struct in_multi *pinm;
345 int idx;
346 int nmships;
347
348 IMO_LOCK_ASSERT_HELD(IMO_CAST_TO_NONCONST(imo));
349
350 gsin = (struct sockaddr_in *)(uintptr_t)(size_t)group;
351
352 /* The imo_membership array may be lazy allocated. */
353 if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
354 return (-1);
355
356 nmships = imo->imo_num_memberships;
357 for (idx = 0; idx < nmships; idx++) {
358 pinm = imo->imo_membership[idx];
359 if (pinm == NULL)
360 continue;
361 INM_LOCK(pinm);
362 if ((ifp == NULL || (pinm->inm_ifp == ifp)) &&
363 in_hosteq(pinm->inm_addr, gsin->sin_addr)) {
364 INM_UNLOCK(pinm);
365 break;
366 }
367 INM_UNLOCK(pinm);
368 }
369 if (idx >= nmships)
370 idx = -1;
371
372 return (idx);
373 }
374
375 /*
376 * Find an IPv4 multicast source entry for this imo which matches
377 * the given group index for this socket, and source address.
378 *
379 * NOTE: This does not check if the entry is in-mode, merely if
380 * it exists, which may not be the desired behaviour.
381 */
382 static struct in_msource *
383 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
384 const struct sockaddr *src)
385 {
386 struct ip_msource find;
387 struct in_mfilter *imf;
388 struct ip_msource *ims;
389 const sockunion_t *psa;
390
391 IMO_LOCK_ASSERT_HELD(IMO_CAST_TO_NONCONST(imo));
392
393 VERIFY(src->sa_family == AF_INET);
394 VERIFY(gidx != (size_t)-1 && gidx < imo->imo_num_memberships);
395
396 /* The imo_mfilters array may be lazy allocated. */
397 if (imo->imo_mfilters == NULL)
398 return (NULL);
399 imf = &imo->imo_mfilters[gidx];
400
401 /* Source trees are keyed in host byte order. */
402 psa = (sockunion_t *)(uintptr_t)(size_t)src;
403 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
404 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
405
406 return ((struct in_msource *)ims);
407 }
408
409 /*
410 * Perform filtering for multicast datagrams on a socket by group and source.
411 *
412 * Returns 0 if a datagram should be allowed through, or various error codes
413 * if the socket was not a member of the group, or the source was muted, etc.
414 */
415 int
416 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
417 const struct sockaddr *group, const struct sockaddr *src)
418 {
419 size_t gidx;
420 struct in_msource *ims;
421 int mode;
422
423 IMO_LOCK_ASSERT_HELD(IMO_CAST_TO_NONCONST(imo));
424 VERIFY(ifp != NULL);
425
426 gidx = imo_match_group(imo, ifp, group);
427 if (gidx == (size_t)-1)
428 return (MCAST_NOTGMEMBER);
429
430 /*
431 * Check if the source was included in an (S,G) join.
432 * Allow reception on exclusive memberships by default,
433 * reject reception on inclusive memberships by default.
434 * Exclude source only if an in-mode exclude filter exists.
435 * Include source only if an in-mode include filter exists.
436 * NOTE: We are comparing group state here at IGMP t1 (now)
437 * with socket-layer t0 (since last downcall).
438 */
439 mode = imo->imo_mfilters[gidx].imf_st[1];
440 ims = imo_match_source(imo, gidx, src);
441
442 if ((ims == NULL && mode == MCAST_INCLUDE) ||
443 (ims != NULL && ims->imsl_st[0] != mode)) {
444 return (MCAST_NOTSMEMBER);
445 }
446
447 return (MCAST_PASS);
448 }
449
450 int
451 imo_clone(struct inpcb *from_inp, struct inpcb *to_inp)
452 {
453 int i, err = 0;
454 struct ip_moptions *from;
455 struct ip_moptions *to;
456
457 from = inp_findmoptions(from_inp);
458 if (from == NULL)
459 return (ENOMEM);
460
461 to = inp_findmoptions(to_inp);
462 if (to == NULL) {
463 IMO_REMREF(from);
464 return (ENOMEM);
465 }
466
467 IMO_LOCK(from);
468 IMO_LOCK(to);
469
470 to->imo_multicast_ifp = from->imo_multicast_ifp;
471 to->imo_multicast_vif = from->imo_multicast_vif;
472 to->imo_multicast_ttl = from->imo_multicast_ttl;
473 to->imo_multicast_loop = from->imo_multicast_loop;
474
475 /*
476 * We're cloning, so drop any existing memberships and source
477 * filters on the destination ip_moptions.
478 */
479 for (i = 0; i < to->imo_num_memberships; ++i) {
480 struct in_mfilter *imf;
481
482 imf = to->imo_mfilters ? &to->imo_mfilters[i] : NULL;
483 if (imf != NULL)
484 imf_leave(imf);
485
486 (void) in_leavegroup(to->imo_membership[i], imf);
487
488 if (imf != NULL)
489 imf_purge(imf);
490
491 INM_REMREF(to->imo_membership[i]);
492 to->imo_membership[i] = NULL;
493 }
494 to->imo_num_memberships = 0;
495
496 VERIFY(to->imo_max_memberships != 0 && from->imo_max_memberships != 0);
497 if (to->imo_max_memberships < from->imo_max_memberships) {
498 /*
499 * Ensure source and destination ip_moptions memberships
500 * and source filters arrays are at least equal in size.
501 */
502 err = imo_grow(to, from->imo_max_memberships);
503 if (err != 0)
504 goto done;
505 }
506 VERIFY(to->imo_max_memberships >= from->imo_max_memberships);
507
508 /*
509 * Source filtering doesn't apply to OpenTransport socket,
510 * so simply hold additional reference count per membership.
511 */
512 for (i = 0; i < from->imo_num_memberships; i++) {
513 to->imo_membership[i] =
514 in_addmulti(&from->imo_membership[i]->inm_addr,
515 from->imo_membership[i]->inm_ifp);
516 if (to->imo_membership[i] == NULL)
517 break;
518 to->imo_num_memberships++;
519 }
520 VERIFY(to->imo_num_memberships == from->imo_num_memberships);
521
522 done:
523 IMO_UNLOCK(to);
524 IMO_REMREF(to);
525 IMO_UNLOCK(from);
526 IMO_REMREF(from);
527
528 return (err);
529 }
530
531 /*
532 * Find and return a reference to an in_multi record for (ifp, group),
533 * and bump its reference count.
534 * If one does not exist, try to allocate it, and update link-layer multicast
535 * filters on ifp to listen for group.
536 * Return 0 if successful, otherwise return an appropriate error code.
537 */
538 static int
539 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
540 struct in_multi **pinm)
541 {
542 struct sockaddr_in gsin;
543 struct ifmultiaddr *ifma;
544 struct in_multi *inm;
545 int error;
546
547 in_multihead_lock_shared();
548 IN_LOOKUP_MULTI(group, ifp, inm);
549 if (inm != NULL) {
550 INM_LOCK(inm);
551 VERIFY(inm->inm_reqcnt >= 1);
552 inm->inm_reqcnt++;
553 VERIFY(inm->inm_reqcnt != 0);
554 *pinm = inm;
555 INM_UNLOCK(inm);
556 in_multihead_lock_done();
557 /*
558 * We already joined this group; return the inm
559 * with a refcount held (via lookup) for caller.
560 */
561 return (0);
562 }
563 in_multihead_lock_done();
564
565 bzero(&gsin, sizeof(gsin));
566 gsin.sin_family = AF_INET;
567 gsin.sin_len = sizeof(struct sockaddr_in);
568 gsin.sin_addr = *group;
569
570 /*
571 * Check if a link-layer group is already associated
572 * with this network-layer group on the given ifnet.
573 */
574 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
575 if (error != 0)
576 return (error);
577
578 /*
579 * See comments in inm_remref() for access to ifma_protospec.
580 */
581 in_multihead_lock_exclusive();
582 IFMA_LOCK(ifma);
583 if ((inm = ifma->ifma_protospec) != NULL) {
584 VERIFY(ifma->ifma_addr != NULL);
585 VERIFY(ifma->ifma_addr->sa_family == AF_INET);
586 INM_ADDREF(inm); /* for caller */
587 IFMA_UNLOCK(ifma);
588 INM_LOCK(inm);
589 VERIFY(inm->inm_ifma == ifma);
590 VERIFY(inm->inm_ifp == ifp);
591 VERIFY(in_hosteq(inm->inm_addr, *group));
592 if (inm->inm_debug & IFD_ATTACHED) {
593 VERIFY(inm->inm_reqcnt >= 1);
594 inm->inm_reqcnt++;
595 VERIFY(inm->inm_reqcnt != 0);
596 *pinm = inm;
597 INM_UNLOCK(inm);
598 in_multihead_lock_done();
599 IFMA_REMREF(ifma);
600 /*
601 * We lost the race with another thread doing
602 * in_getmulti(); since this group has already
603 * been joined; return the inm with a refcount
604 * held for caller.
605 */
606 return (0);
607 }
608 /*
609 * We lost the race with another thread doing in_delmulti();
610 * the inm referring to the ifma has been detached, thus we
611 * reattach it back to the in_multihead list and return the
612 * inm with a refcount held for the caller.
613 */
614 in_multi_attach(inm);
615 VERIFY((inm->inm_debug &
616 (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
617 *pinm = inm;
618 INM_UNLOCK(inm);
619 in_multihead_lock_done();
620 IFMA_REMREF(ifma);
621 return (0);
622 }
623 IFMA_UNLOCK(ifma);
624
625 /*
626 * A new in_multi record is needed; allocate and initialize it.
627 * We DO NOT perform an IGMP join as the in_ layer may need to
628 * push an initial source list down to IGMP to support SSM.
629 *
630 * The initial source filter state is INCLUDE, {} as per the RFC.
631 */
632 inm = in_multi_alloc(M_WAITOK);
633 if (inm == NULL) {
634 in_multihead_lock_done();
635 IFMA_REMREF(ifma);
636 return (ENOMEM);
637 }
638 INM_LOCK(inm);
639 inm->inm_addr = *group;
640 inm->inm_ifp = ifp;
641 inm->inm_igi = IGMP_IFINFO(ifp);
642 VERIFY(inm->inm_igi != NULL);
643 IGI_ADDREF(inm->inm_igi);
644 inm->inm_ifma = ifma; /* keep refcount from if_addmulti() */
645 inm->inm_state = IGMP_NOT_MEMBER;
646 /*
647 * Pending state-changes per group are subject to a bounds check.
648 */
649 inm->inm_scq.ifq_maxlen = IGMP_MAX_STATE_CHANGES;
650 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
651 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
652 RB_INIT(&inm->inm_srcs);
653 *pinm = inm;
654 in_multi_attach(inm);
655 VERIFY((inm->inm_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
656 INM_ADDREF_LOCKED(inm); /* for caller */
657 INM_UNLOCK(inm);
658
659 IFMA_LOCK(ifma);
660 VERIFY(ifma->ifma_protospec == NULL);
661 ifma->ifma_protospec = inm;
662 IFMA_UNLOCK(ifma);
663 in_multihead_lock_done();
664
665 return (0);
666 }
667
668 /*
669 * Clear recorded source entries for a group.
670 * Used by the IGMP code.
671 * FIXME: Should reap.
672 */
673 void
674 inm_clear_recorded(struct in_multi *inm)
675 {
676 struct ip_msource *ims;
677
678 INM_LOCK_ASSERT_HELD(inm);
679
680 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
681 if (ims->ims_stp) {
682 ims->ims_stp = 0;
683 --inm->inm_st[1].iss_rec;
684 }
685 }
686 VERIFY(inm->inm_st[1].iss_rec == 0);
687 }
688
689 /*
690 * Record a source as pending for a Source-Group IGMPv3 query.
691 * This lives here as it modifies the shared tree.
692 *
693 * inm is the group descriptor.
694 * naddr is the address of the source to record in network-byte order.
695 *
696 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
697 * lazy-allocate a source node in response to an SG query.
698 * Otherwise, no allocation is performed. This saves some memory
699 * with the trade-off that the source will not be reported to the
700 * router if joined in the window between the query response and
701 * the group actually being joined on the local host.
702 *
703 * Return 0 if the source didn't exist or was already marked as recorded.
704 * Return 1 if the source was marked as recorded by this function.
705 * Return <0 if any error occured (negated errno code).
706 */
707 int
708 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
709 {
710 struct ip_msource find;
711 struct ip_msource *ims, *nims;
712
713 INM_LOCK_ASSERT_HELD(inm);
714
715 find.ims_haddr = ntohl(naddr);
716 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
717 if (ims && ims->ims_stp)
718 return (0);
719 if (ims == NULL) {
720 if (inm->inm_nsrc == in_mcast_maxgrpsrc)
721 return (-ENOSPC);
722 nims = ipms_alloc(M_WAITOK);
723 if (nims == NULL)
724 return (-ENOMEM);
725 nims->ims_haddr = find.ims_haddr;
726 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
727 ++inm->inm_nsrc;
728 ims = nims;
729 }
730
731 /*
732 * Mark the source as recorded and update the recorded
733 * source count.
734 */
735 ++ims->ims_stp;
736 ++inm->inm_st[1].iss_rec;
737
738 return (1);
739 }
740
741 /*
742 * Return a pointer to an in_msource owned by an in_mfilter,
743 * given its source address.
744 * Lazy-allocate if needed. If this is a new entry its filter state is
745 * undefined at t0.
746 *
747 * imf is the filter set being modified.
748 * haddr is the source address in *host* byte-order.
749 *
750 * Caller is expected to be holding imo_lock.
751 */
752 static int
753 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
754 struct in_msource **plims)
755 {
756 struct ip_msource find;
757 struct ip_msource *ims;
758 struct in_msource *lims;
759 int error;
760
761 error = 0;
762 ims = NULL;
763 lims = NULL;
764
765 /* key is host byte order */
766 find.ims_haddr = ntohl(psin->sin_addr.s_addr);
767 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
768 lims = (struct in_msource *)ims;
769 if (lims == NULL) {
770 if (imf->imf_nsrc == in_mcast_maxsocksrc)
771 return (ENOSPC);
772 lims = inms_alloc(M_WAITOK);
773 if (lims == NULL)
774 return (ENOMEM);
775 lims->ims_haddr = find.ims_haddr;
776 lims->imsl_st[0] = MCAST_UNDEFINED;
777 RB_INSERT(ip_msource_tree, &imf->imf_sources,
778 (struct ip_msource *)lims);
779 ++imf->imf_nsrc;
780 }
781
782 *plims = lims;
783
784 return (error);
785 }
786
787 /*
788 * Graft a source entry into an existing socket-layer filter set,
789 * maintaining any required invariants and checking allocations.
790 *
791 * The source is marked as being in the new filter mode at t1.
792 *
793 * Return the pointer to the new node, otherwise return NULL.
794 *
795 * Caller is expected to be holding imo_lock.
796 */
797 static struct in_msource *
798 imf_graft(struct in_mfilter *imf, const uint8_t st1,
799 const struct sockaddr_in *psin)
800 {
801 struct in_msource *lims;
802
803 lims = inms_alloc(M_WAITOK);
804 if (lims == NULL)
805 return (NULL);
806 lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
807 lims->imsl_st[0] = MCAST_UNDEFINED;
808 lims->imsl_st[1] = st1;
809 RB_INSERT(ip_msource_tree, &imf->imf_sources,
810 (struct ip_msource *)lims);
811 ++imf->imf_nsrc;
812
813 return (lims);
814 }
815
816 /*
817 * Prune a source entry from an existing socket-layer filter set,
818 * maintaining any required invariants and checking allocations.
819 *
820 * The source is marked as being left at t1, it is not freed.
821 *
822 * Return 0 if no error occurred, otherwise return an errno value.
823 *
824 * Caller is expected to be holding imo_lock.
825 */
826 static int
827 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
828 {
829 struct ip_msource find;
830 struct ip_msource *ims;
831 struct in_msource *lims;
832
833 /* key is host byte order */
834 find.ims_haddr = ntohl(psin->sin_addr.s_addr);
835 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
836 if (ims == NULL)
837 return (ENOENT);
838 lims = (struct in_msource *)ims;
839 lims->imsl_st[1] = MCAST_UNDEFINED;
840 return (0);
841 }
842
843 /*
844 * Revert socket-layer filter set deltas at t1 to t0 state.
845 *
846 * Caller is expected to be holding imo_lock.
847 */
848 static void
849 imf_rollback(struct in_mfilter *imf)
850 {
851 struct ip_msource *ims, *tims;
852 struct in_msource *lims;
853
854 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
855 lims = (struct in_msource *)ims;
856 if (lims->imsl_st[0] == lims->imsl_st[1]) {
857 /* no change at t1 */
858 continue;
859 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
860 /* revert change to existing source at t1 */
861 lims->imsl_st[1] = lims->imsl_st[0];
862 } else {
863 /* revert source added t1 */
864 IGMP_PRINTF(("%s: free inms %p\n", __func__, lims));
865 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
866 inms_free(lims);
867 imf->imf_nsrc--;
868 }
869 }
870 imf->imf_st[1] = imf->imf_st[0];
871 }
872
873 /*
874 * Mark socket-layer filter set as INCLUDE {} at t1.
875 *
876 * Caller is expected to be holding imo_lock.
877 */
878 void
879 imf_leave(struct in_mfilter *imf)
880 {
881 struct ip_msource *ims;
882 struct in_msource *lims;
883
884 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
885 lims = (struct in_msource *)ims;
886 lims->imsl_st[1] = MCAST_UNDEFINED;
887 }
888 imf->imf_st[1] = MCAST_INCLUDE;
889 }
890
891 /*
892 * Mark socket-layer filter set deltas as committed.
893 *
894 * Caller is expected to be holding imo_lock.
895 */
896 static void
897 imf_commit(struct in_mfilter *imf)
898 {
899 struct ip_msource *ims;
900 struct in_msource *lims;
901
902 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
903 lims = (struct in_msource *)ims;
904 lims->imsl_st[0] = lims->imsl_st[1];
905 }
906 imf->imf_st[0] = imf->imf_st[1];
907 }
908
909 /*
910 * Reap unreferenced sources from socket-layer filter set.
911 *
912 * Caller is expected to be holding imo_lock.
913 */
914 static void
915 imf_reap(struct in_mfilter *imf)
916 {
917 struct ip_msource *ims, *tims;
918 struct in_msource *lims;
919
920 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
921 lims = (struct in_msource *)ims;
922 if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
923 (lims->imsl_st[1] == MCAST_UNDEFINED)) {
924 IGMP_PRINTF(("%s: free inms %p\n", __func__, lims));
925 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
926 inms_free(lims);
927 imf->imf_nsrc--;
928 }
929 }
930 }
931
932 /*
933 * Purge socket-layer filter set.
934 *
935 * Caller is expected to be holding imo_lock.
936 */
937 void
938 imf_purge(struct in_mfilter *imf)
939 {
940 struct ip_msource *ims, *tims;
941 struct in_msource *lims;
942
943 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
944 lims = (struct in_msource *)ims;
945 IGMP_PRINTF(("%s: free inms %p\n", __func__, lims));
946 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
947 inms_free(lims);
948 imf->imf_nsrc--;
949 }
950 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
951 VERIFY(RB_EMPTY(&imf->imf_sources));
952 }
953
954 /*
955 * Look up a source filter entry for a multicast group.
956 *
957 * inm is the group descriptor to work with.
958 * haddr is the host-byte-order IPv4 address to look up.
959 * noalloc may be non-zero to suppress allocation of sources.
960 * *pims will be set to the address of the retrieved or allocated source.
961 *
962 * Return 0 if successful, otherwise return a non-zero error code.
963 */
964 static int
965 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
966 const int noalloc, struct ip_msource **pims)
967 {
968 struct ip_msource find;
969 struct ip_msource *ims, *nims;
970 #ifdef IGMP_DEBUG
971 struct in_addr ia;
972 #endif
973 INM_LOCK_ASSERT_HELD(inm);
974
975 find.ims_haddr = haddr;
976 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
977 if (ims == NULL && !noalloc) {
978 if (inm->inm_nsrc == in_mcast_maxgrpsrc)
979 return (ENOSPC);
980 nims = ipms_alloc(M_WAITOK);
981 if (nims == NULL)
982 return (ENOMEM);
983 nims->ims_haddr = haddr;
984 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
985 ++inm->inm_nsrc;
986 ims = nims;
987 #ifdef IGMP_DEBUG
988 ia.s_addr = htonl(haddr);
989 IGMP_PRINTF(("%s: allocated %s as %p\n", __func__,
990 inet_ntoa(ia), ims));
991 #endif
992 }
993
994 *pims = ims;
995 return (0);
996 }
997
998 /*
999 * Helper function to derive the filter mode on a source entry
1000 * from its internal counters. Predicates are:
1001 * A source is only excluded if all listeners exclude it.
1002 * A source is only included if no listeners exclude it,
1003 * and at least one listener includes it.
1004 * May be used by ifmcstat(8).
1005 */
1006 uint8_t
1007 ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims,
1008 uint8_t t)
1009 {
1010 INM_LOCK_ASSERT_HELD(INM_CAST_TO_NONCONST(inm));
1011
1012 t = !!t;
1013 if (inm->inm_st[t].iss_ex > 0 &&
1014 inm->inm_st[t].iss_ex == ims->ims_st[t].ex)
1015 return (MCAST_EXCLUDE);
1016 else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0)
1017 return (MCAST_INCLUDE);
1018 return (MCAST_UNDEFINED);
1019 }
1020
1021 /*
1022 * Merge socket-layer source into IGMP-layer source.
1023 * If rollback is non-zero, perform the inverse of the merge.
1024 */
1025 static void
1026 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
1027 const int rollback)
1028 {
1029 int n = rollback ? -1 : 1;
1030 #ifdef IGMP_DEBUG
1031 struct in_addr ia;
1032
1033 ia.s_addr = htonl(ims->ims_haddr);
1034 #endif
1035
1036 if (lims->imsl_st[0] == MCAST_EXCLUDE) {
1037 IGMP_PRINTF(("%s: t1 ex -= %d on %s\n",
1038 __func__, n, inet_ntoa(ia)));
1039 ims->ims_st[1].ex -= n;
1040 } else if (lims->imsl_st[0] == MCAST_INCLUDE) {
1041 IGMP_PRINTF(("%s: t1 in -= %d on %s\n",
1042 __func__, n, inet_ntoa(ia)));
1043 ims->ims_st[1].in -= n;
1044 }
1045
1046 if (lims->imsl_st[1] == MCAST_EXCLUDE) {
1047 IGMP_PRINTF(("%s: t1 ex += %d on %s\n",
1048 __func__, n, inet_ntoa(ia)));
1049 ims->ims_st[1].ex += n;
1050 } else if (lims->imsl_st[1] == MCAST_INCLUDE) {
1051 IGMP_PRINTF(("%s: t1 in += %d on %s\n",
1052 __func__, n, inet_ntoa(ia)));
1053 ims->ims_st[1].in += n;
1054 }
1055 }
1056
1057 /*
1058 * Atomically update the global in_multi state, when a membership's
1059 * filter list is being updated in any way.
1060 *
1061 * imf is the per-inpcb-membership group filter pointer.
1062 * A fake imf may be passed for in-kernel consumers.
1063 *
1064 * XXX This is a candidate for a set-symmetric-difference style loop
1065 * which would eliminate the repeated lookup from root of ims nodes,
1066 * as they share the same key space.
1067 *
1068 * If any error occurred this function will back out of refcounts
1069 * and return a non-zero value.
1070 */
1071 static int
1072 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1073 {
1074 struct ip_msource *ims, *nims;
1075 struct in_msource *lims;
1076 int schanged, error;
1077 int nsrc0, nsrc1;
1078
1079 INM_LOCK_ASSERT_HELD(inm);
1080
1081 schanged = 0;
1082 error = 0;
1083 nsrc1 = nsrc0 = 0;
1084
1085 /*
1086 * Update the source filters first, as this may fail.
1087 * Maintain count of in-mode filters at t0, t1. These are
1088 * used to work out if we transition into ASM mode or not.
1089 * Maintain a count of source filters whose state was
1090 * actually modified by this operation.
1091 */
1092 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1093 lims = (struct in_msource *)ims;
1094 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1095 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1096 if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1097 error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1098 ++schanged;
1099 if (error)
1100 break;
1101 ims_merge(nims, lims, 0);
1102 }
1103 if (error) {
1104 struct ip_msource *bims;
1105
1106 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1107 lims = (struct in_msource *)ims;
1108 if (lims->imsl_st[0] == lims->imsl_st[1])
1109 continue;
1110 (void) inm_get_source(inm, lims->ims_haddr, 1, &bims);
1111 if (bims == NULL)
1112 continue;
1113 ims_merge(bims, lims, 1);
1114 }
1115 goto out_reap;
1116 }
1117
1118 IGMP_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n",
1119 __func__, nsrc0, nsrc1));
1120
1121 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1122 if (imf->imf_st[0] == imf->imf_st[1] &&
1123 imf->imf_st[1] == MCAST_INCLUDE) {
1124 if (nsrc1 == 0) {
1125 IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
1126 --inm->inm_st[1].iss_in;
1127 }
1128 }
1129
1130 /* Handle filter mode transition on socket. */
1131 if (imf->imf_st[0] != imf->imf_st[1]) {
1132 IGMP_PRINTF(("%s: imf transition %d to %d\n",
1133 __func__, imf->imf_st[0], imf->imf_st[1]));
1134
1135 if (imf->imf_st[0] == MCAST_EXCLUDE) {
1136 IGMP_PRINTF(("%s: --ex on inm at t1\n", __func__));
1137 --inm->inm_st[1].iss_ex;
1138 } else if (imf->imf_st[0] == MCAST_INCLUDE) {
1139 IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
1140 --inm->inm_st[1].iss_in;
1141 }
1142
1143 if (imf->imf_st[1] == MCAST_EXCLUDE) {
1144 IGMP_PRINTF(("%s: ex++ on inm at t1\n", __func__));
1145 inm->inm_st[1].iss_ex++;
1146 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1147 IGMP_PRINTF(("%s: in++ on inm at t1\n", __func__));
1148 inm->inm_st[1].iss_in++;
1149 }
1150 }
1151
1152 /*
1153 * Track inm filter state in terms of listener counts.
1154 * If there are any exclusive listeners, stack-wide
1155 * membership is exclusive.
1156 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1157 * If no listeners remain, state is undefined at t1,
1158 * and the IGMP lifecycle for this group should finish.
1159 */
1160 if (inm->inm_st[1].iss_ex > 0) {
1161 IGMP_PRINTF(("%s: transition to EX\n", __func__));
1162 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1163 } else if (inm->inm_st[1].iss_in > 0) {
1164 IGMP_PRINTF(("%s: transition to IN\n", __func__));
1165 inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1166 } else {
1167 IGMP_PRINTF(("%s: transition to UNDEF\n", __func__));
1168 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1169 }
1170
1171 /* Decrement ASM listener count on transition out of ASM mode. */
1172 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1173 if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1174 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1175 IGMP_PRINTF(("%s: --asm on inm at t1\n", __func__));
1176 --inm->inm_st[1].iss_asm;
1177 }
1178 }
1179
1180 /* Increment ASM listener count on transition to ASM mode. */
1181 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1182 IGMP_PRINTF(("%s: asm++ on inm at t1\n", __func__));
1183 inm->inm_st[1].iss_asm++;
1184 }
1185
1186 IGMP_PRINTF(("%s: merged imf %p to inm %p\n", __func__, imf, inm));
1187 inm_print(inm);
1188
1189 out_reap:
1190 if (schanged > 0) {
1191 IGMP_PRINTF(("%s: sources changed; reaping\n", __func__));
1192 inm_reap(inm);
1193 }
1194 return (error);
1195 }
1196
1197 /*
1198 * Mark an in_multi's filter set deltas as committed.
1199 * Called by IGMP after a state change has been enqueued.
1200 */
1201 void
1202 inm_commit(struct in_multi *inm)
1203 {
1204 struct ip_msource *ims;
1205
1206 INM_LOCK_ASSERT_HELD(inm);
1207
1208 IGMP_PRINTF(("%s: commit inm %p\n", __func__, inm));
1209 IGMP_PRINTF(("%s: pre commit:\n", __func__));
1210 inm_print(inm);
1211
1212 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1213 ims->ims_st[0] = ims->ims_st[1];
1214 }
1215 inm->inm_st[0] = inm->inm_st[1];
1216 }
1217
1218 /*
1219 * Reap unreferenced nodes from an in_multi's filter set.
1220 */
1221 static void
1222 inm_reap(struct in_multi *inm)
1223 {
1224 struct ip_msource *ims, *tims;
1225
1226 INM_LOCK_ASSERT_HELD(inm);
1227
1228 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1229 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1230 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1231 ims->ims_stp != 0)
1232 continue;
1233 IGMP_PRINTF(("%s: free ims %p\n", __func__, ims));
1234 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1235 ipms_free(ims);
1236 inm->inm_nsrc--;
1237 }
1238 }
1239
1240 /*
1241 * Purge all source nodes from an in_multi's filter set.
1242 */
1243 void
1244 inm_purge(struct in_multi *inm)
1245 {
1246 struct ip_msource *ims, *tims;
1247
1248 INM_LOCK_ASSERT_HELD(inm);
1249
1250 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1251 IGMP_PRINTF(("%s: free ims %p\n", __func__, ims));
1252 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1253 ipms_free(ims);
1254 inm->inm_nsrc--;
1255 }
1256 }
1257
1258 /*
1259 * Join a multicast group; real entry point.
1260 *
1261 * Only preserves atomicity at inm level.
1262 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1263 *
1264 * If the IGMP downcall fails, the group is not joined, and an error
1265 * code is returned.
1266 */
1267 static int
1268 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1269 /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1270 {
1271 struct in_mfilter timf;
1272 struct in_multi *inm = NULL;
1273 int error = 0;
1274
1275 IGMP_PRINTF(("%s: join %s on %p(%s%d))\n", __func__,
1276 inet_ntoa(*gina), ifp, ifp->if_name, ifp->if_unit));
1277
1278 *pinm = NULL;
1279
1280 /*
1281 * If no imf was specified (i.e. kernel consumer),
1282 * fake one up and assume it is an ASM join.
1283 */
1284 if (imf == NULL) {
1285 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1286 imf = &timf;
1287 }
1288
1289 error = in_getmulti(ifp, gina, &inm);
1290 if (error) {
1291 IGMP_PRINTF(("%s: in_getmulti() failure\n", __func__));
1292 return (error);
1293 }
1294
1295 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1296
1297 INM_LOCK(inm);
1298 error = inm_merge(inm, imf);
1299 if (error) {
1300 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
1301 goto out_inm_release;
1302 }
1303
1304 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1305 error = igmp_change_state(inm);
1306 if (error) {
1307 IGMP_PRINTF(("%s: failed to update source\n", __func__));
1308 goto out_inm_release;
1309 }
1310
1311 out_inm_release:
1312 if (error) {
1313 IGMP_PRINTF(("%s: dropping ref on %p\n", __func__, inm));
1314 INM_UNLOCK(inm);
1315 INM_REMREF(inm);
1316 } else {
1317 INM_UNLOCK(inm);
1318 *pinm = inm; /* keep refcount from in_getmulti() */
1319 }
1320
1321 return (error);
1322 }
1323
1324 /*
1325 * Leave a multicast group; real entry point.
1326 * All source filters will be expunged.
1327 *
1328 * Only preserves atomicity at inm level.
1329 *
1330 * Note: This is not the same as inm_release(*) as this function also
1331 * makes a state change downcall into IGMP.
1332 */
1333 int
1334 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1335 {
1336 struct in_mfilter timf;
1337 int error, lastref;
1338
1339 error = 0;
1340
1341 INM_LOCK_ASSERT_NOTHELD(inm);
1342
1343 in_multihead_lock_exclusive();
1344 INM_LOCK(inm);
1345
1346 IGMP_PRINTF(("%s: leave inm %p, %s/%s%d, imf %p\n", __func__,
1347 inm, inet_ntoa(inm->inm_addr),
1348 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_name),
1349 inm->inm_ifp->if_unit, imf));
1350
1351 /*
1352 * If no imf was specified (i.e. kernel consumer),
1353 * fake one up and assume it is an ASM join.
1354 */
1355 if (imf == NULL) {
1356 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1357 imf = &timf;
1358 }
1359
1360 /*
1361 * Begin state merge transaction at IGMP layer.
1362 *
1363 * As this particular invocation should not cause any memory
1364 * to be allocated, and there is no opportunity to roll back
1365 * the transaction, it MUST NOT fail.
1366 */
1367 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1368
1369 error = inm_merge(inm, imf);
1370 KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__));
1371
1372 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1373 error = igmp_change_state(inm);
1374 #if IGMP_DEBUG
1375 if (error)
1376 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
1377 #endif
1378 lastref = in_multi_detach(inm);
1379 VERIFY(!lastref || (!(inm->inm_debug & IFD_ATTACHED) &&
1380 inm->inm_reqcnt == 0));
1381 INM_UNLOCK(inm);
1382 in_multihead_lock_done();
1383
1384 if (lastref)
1385 INM_REMREF(inm); /* for in_multihead list */
1386
1387 return (error);
1388 }
1389
1390 /*
1391 * Join an IPv4 multicast group in (*,G) exclusive mode.
1392 * The group must be a 224.0.0.0/24 link-scope group.
1393 * This KPI is for legacy kernel consumers only.
1394 */
1395 struct in_multi *
1396 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1397 {
1398 struct in_multi *pinm = NULL;
1399 int error;
1400
1401 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1402 ("%s: %s not in 224.0.0.0/24\n", __func__, inet_ntoa(*ap)));
1403
1404 error = in_joingroup(ifp, ap, NULL, &pinm);
1405 VERIFY(pinm != NULL || error != 0);
1406
1407 return (pinm);
1408 }
1409
1410 /*
1411 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1412 * This KPI is for legacy kernel consumers only.
1413 */
1414 void
1415 in_delmulti(struct in_multi *inm)
1416 {
1417
1418 (void) in_leavegroup(inm, NULL);
1419 }
1420
1421 /*
1422 * Block or unblock an ASM multicast source on an inpcb.
1423 * This implements the delta-based API described in RFC 3678.
1424 *
1425 * The delta-based API applies only to exclusive-mode memberships.
1426 * An IGMP downcall will be performed.
1427 *
1428 * Return 0 if successful, otherwise return an appropriate error code.
1429 */
1430 static int
1431 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1432 {
1433 struct group_source_req gsr;
1434 sockunion_t *gsa, *ssa;
1435 struct ifnet *ifp;
1436 struct in_mfilter *imf;
1437 struct ip_moptions *imo;
1438 struct in_msource *ims;
1439 struct in_multi *inm;
1440 size_t idx;
1441 uint16_t fmode;
1442 int error, doblock;
1443 unsigned int ifindex = 0;
1444
1445 ifp = NULL;
1446 error = 0;
1447 doblock = 0;
1448
1449 memset(&gsr, 0, sizeof(struct group_source_req));
1450 gsa = (sockunion_t *)&gsr.gsr_group;
1451 ssa = (sockunion_t *)&gsr.gsr_source;
1452
1453 switch (sopt->sopt_name) {
1454 case IP_BLOCK_SOURCE:
1455 case IP_UNBLOCK_SOURCE: {
1456 struct ip_mreq_source mreqs;
1457
1458 error = sooptcopyin(sopt, &mreqs,
1459 sizeof(struct ip_mreq_source),
1460 sizeof(struct ip_mreq_source));
1461 if (error)
1462 return (error);
1463
1464 gsa->sin.sin_family = AF_INET;
1465 gsa->sin.sin_len = sizeof(struct sockaddr_in);
1466 gsa->sin.sin_addr = mreqs.imr_multiaddr;
1467
1468 ssa->sin.sin_family = AF_INET;
1469 ssa->sin.sin_len = sizeof(struct sockaddr_in);
1470 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1471
1472 if (!in_nullhost(mreqs.imr_interface))
1473 ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
1474
1475 if (sopt->sopt_name == IP_BLOCK_SOURCE)
1476 doblock = 1;
1477
1478 IGMP_PRINTF(("%s: imr_interface = %s, ifp = %p\n",
1479 __func__, inet_ntoa(mreqs.imr_interface), ifp));
1480 break;
1481 }
1482
1483 case MCAST_BLOCK_SOURCE:
1484 case MCAST_UNBLOCK_SOURCE:
1485 error = sooptcopyin(sopt, &gsr,
1486 sizeof(struct group_source_req),
1487 sizeof(struct group_source_req));
1488 if (error)
1489 return (error);
1490
1491 if (gsa->sin.sin_family != AF_INET ||
1492 gsa->sin.sin_len != sizeof(struct sockaddr_in))
1493 return (EINVAL);
1494
1495 if (ssa->sin.sin_family != AF_INET ||
1496 ssa->sin.sin_len != sizeof(struct sockaddr_in))
1497 return (EINVAL);
1498
1499 ifnet_head_lock_shared();
1500 if (gsr.gsr_interface == 0 ||
1501 (u_int)if_index < gsr.gsr_interface) {
1502 ifnet_head_done();
1503 return (EADDRNOTAVAIL);
1504 }
1505
1506 ifp = ifindex2ifnet[gsr.gsr_interface];
1507 ifnet_head_done();
1508
1509 if (ifp == NULL)
1510 return (EADDRNOTAVAIL);
1511
1512 if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1513 doblock = 1;
1514 break;
1515
1516 default:
1517 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
1518 __func__, sopt->sopt_name));
1519 return (EOPNOTSUPP);
1520 break;
1521 }
1522
1523 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1524 return (EINVAL);
1525
1526 /*
1527 * Check if we are actually a member of this group.
1528 */
1529 imo = inp_findmoptions(inp);
1530 if (imo == NULL)
1531 return (ENOMEM);
1532
1533 IMO_LOCK(imo);
1534 idx = imo_match_group(imo, ifp, &gsa->sa);
1535 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
1536 error = EADDRNOTAVAIL;
1537 goto out_imo_locked;
1538 }
1539
1540 VERIFY(imo->imo_mfilters != NULL);
1541 imf = &imo->imo_mfilters[idx];
1542 inm = imo->imo_membership[idx];
1543
1544 /*
1545 * Attempting to use the delta-based API on an
1546 * non exclusive-mode membership is an error.
1547 */
1548 fmode = imf->imf_st[0];
1549 if (fmode != MCAST_EXCLUDE) {
1550 error = EINVAL;
1551 goto out_imo_locked;
1552 }
1553
1554 /*
1555 * Deal with error cases up-front:
1556 * Asked to block, but already blocked; or
1557 * Asked to unblock, but nothing to unblock.
1558 * If adding a new block entry, allocate it.
1559 */
1560 ims = imo_match_source(imo, idx, &ssa->sa);
1561 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1562 IGMP_PRINTF(("%s: source %s %spresent\n", __func__,
1563 inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not "));
1564 error = EADDRNOTAVAIL;
1565 goto out_imo_locked;
1566 }
1567
1568 /*
1569 * Begin state merge transaction at socket layer.
1570 */
1571 if (doblock) {
1572 IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
1573 ims = imf_graft(imf, fmode, &ssa->sin);
1574 if (ims == NULL)
1575 error = ENOMEM;
1576 } else {
1577 IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
1578 error = imf_prune(imf, &ssa->sin);
1579 }
1580
1581 if (error) {
1582 IGMP_PRINTF(("%s: merge imf state failed\n", __func__));
1583 goto out_imf_rollback;
1584 }
1585
1586 /*
1587 * Begin state merge transaction at IGMP layer.
1588 */
1589 INM_LOCK(inm);
1590 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1591 error = inm_merge(inm, imf);
1592 if (error) {
1593 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
1594 INM_UNLOCK(inm);
1595 goto out_imf_rollback;
1596 }
1597
1598 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1599 error = igmp_change_state(inm);
1600 INM_UNLOCK(inm);
1601 #if IGMP_DEBUG
1602 if (error)
1603 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
1604 #endif
1605
1606 out_imf_rollback:
1607 if (error)
1608 imf_rollback(imf);
1609 else
1610 imf_commit(imf);
1611
1612 imf_reap(imf);
1613
1614 out_imo_locked:
1615 IMO_UNLOCK(imo);
1616 IMO_REMREF(imo); /* from inp_findmoptions() */
1617 return (error);
1618 }
1619
1620 /*
1621 * Given an inpcb, return its multicast options structure pointer.
1622 *
1623 * Caller is responsible for locking the inpcb, and releasing the
1624 * extra reference held on the imo, upon a successful return.
1625 */
1626 static struct ip_moptions *
1627 inp_findmoptions(struct inpcb *inp)
1628 {
1629 struct ip_moptions *imo;
1630 struct in_multi **immp;
1631 struct in_mfilter *imfp;
1632 size_t idx;
1633
1634 if ((imo = inp->inp_moptions) != NULL) {
1635 IMO_ADDREF(imo); /* for caller */
1636 return (imo);
1637 }
1638
1639 imo = ip_allocmoptions(M_WAITOK);
1640 if (imo == NULL)
1641 return (NULL);
1642
1643 immp = _MALLOC(sizeof (*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1644 M_WAITOK | M_ZERO);
1645 if (immp == NULL) {
1646 IMO_REMREF(imo);
1647 return (NULL);
1648 }
1649
1650 imfp = _MALLOC(sizeof (struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1651 M_INMFILTER, M_WAITOK | M_ZERO);
1652 if (imfp == NULL) {
1653 _FREE(immp, M_IPMOPTS);
1654 IMO_REMREF(imo);
1655 return (NULL);
1656 }
1657
1658 imo->imo_multicast_ifp = NULL;
1659 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1660 imo->imo_multicast_vif = -1;
1661 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1662 imo->imo_multicast_loop = in_mcast_loop;
1663 imo->imo_num_memberships = 0;
1664 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1665 imo->imo_membership = immp;
1666
1667 /* Initialize per-group source filters. */
1668 for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1669 imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1670
1671 imo->imo_mfilters = imfp;
1672 inp->inp_moptions = imo; /* keep reference from ip_allocmoptions() */
1673 IMO_ADDREF(imo); /* for caller */
1674
1675 return (imo);
1676 }
1677 /*
1678 * Atomically get source filters on a socket for an IPv4 multicast group.
1679 */
1680 static int
1681 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1682 {
1683 struct __msfilterreq64 msfr, msfr64;
1684 struct __msfilterreq32 msfr32;
1685 sockunion_t *gsa;
1686 struct ifnet *ifp;
1687 struct ip_moptions *imo;
1688 struct in_mfilter *imf;
1689 struct ip_msource *ims;
1690 struct in_msource *lims;
1691 struct sockaddr_in *psin;
1692 struct sockaddr_storage *ptss;
1693 struct sockaddr_storage *tss;
1694 int error;
1695 size_t idx, nsrcs, ncsrcs;
1696 user_addr_t tmp_ptr;
1697
1698 imo = inp->inp_moptions;
1699 VERIFY(imo != NULL);
1700
1701 if (IS_64BIT_PROCESS(current_proc())) {
1702 error = sooptcopyin(sopt, &msfr64,
1703 sizeof(struct __msfilterreq64),
1704 sizeof(struct __msfilterreq64));
1705 if (error)
1706 return (error);
1707 /* we never use msfr.msfr_srcs; */
1708 memcpy(&msfr, &msfr64, sizeof(msfr));
1709 } else {
1710 error = sooptcopyin(sopt, &msfr32,
1711 sizeof(struct __msfilterreq32),
1712 sizeof(struct __msfilterreq32));
1713 if (error)
1714 return (error);
1715 /* we never use msfr.msfr_srcs; */
1716 memcpy(&msfr, &msfr32, sizeof(msfr));
1717 }
1718
1719 ifnet_head_lock_shared();
1720 if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) {
1721 ifnet_head_done();
1722 return (EADDRNOTAVAIL);
1723 }
1724
1725 ifp = ifindex2ifnet[msfr.msfr_ifindex];
1726 ifnet_head_done();
1727
1728 if (ifp == NULL)
1729 return (EADDRNOTAVAIL);
1730
1731 if ((size_t) msfr.msfr_nsrcs >
1732 SIZE_MAX / sizeof(struct sockaddr_storage))
1733 msfr.msfr_nsrcs = SIZE_MAX / sizeof(struct sockaddr_storage);
1734
1735 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1736 msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1737
1738 IMO_LOCK(imo);
1739 /*
1740 * Lookup group on the socket.
1741 */
1742 gsa = (sockunion_t *)&msfr.msfr_group;
1743 idx = imo_match_group(imo, ifp, &gsa->sa);
1744 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
1745 IMO_UNLOCK(imo);
1746 return (EADDRNOTAVAIL);
1747 }
1748 imf = &imo->imo_mfilters[idx];
1749
1750 /*
1751 * Ignore memberships which are in limbo.
1752 */
1753 if (imf->imf_st[1] == MCAST_UNDEFINED) {
1754 IMO_UNLOCK(imo);
1755 return (EAGAIN);
1756 }
1757 msfr.msfr_fmode = imf->imf_st[1];
1758
1759 /*
1760 * If the user specified a buffer, copy out the source filter
1761 * entries to userland gracefully.
1762 * We only copy out the number of entries which userland
1763 * has asked for, but we always tell userland how big the
1764 * buffer really needs to be.
1765 */
1766
1767 if (IS_64BIT_PROCESS(current_proc()))
1768 tmp_ptr = msfr64.msfr_srcs;
1769 else
1770 tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
1771
1772 tss = NULL;
1773 if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) {
1774 tss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*tss),
1775 M_TEMP, M_WAITOK | M_ZERO);
1776 if (tss == NULL) {
1777 IMO_UNLOCK(imo);
1778 return (ENOBUFS);
1779 }
1780 bzero(tss, (size_t) msfr.msfr_nsrcs * sizeof(*tss));
1781 }
1782
1783 /*
1784 * Count number of sources in-mode at t0.
1785 * If buffer space exists and remains, copy out source entries.
1786 */
1787 nsrcs = msfr.msfr_nsrcs;
1788 ncsrcs = 0;
1789 ptss = tss;
1790 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1791 lims = (struct in_msource *)ims;
1792 if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1793 lims->imsl_st[0] != imf->imf_st[0])
1794 continue;
1795 if (tss != NULL && nsrcs > 0) {
1796 psin = (struct sockaddr_in *)ptss;
1797 psin->sin_family = AF_INET;
1798 psin->sin_len = sizeof(struct sockaddr_in);
1799 psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1800 psin->sin_port = 0;
1801 ++ptss;
1802 --nsrcs;
1803 ++ncsrcs;
1804 }
1805 }
1806
1807 IMO_UNLOCK(imo);
1808
1809 if (tss != NULL) {
1810 error = copyout(tss, tmp_ptr, ncsrcs * sizeof(*tss));
1811 FREE(tss, M_TEMP);
1812 if (error)
1813 return (error);
1814 }
1815
1816 msfr.msfr_nsrcs = ncsrcs;
1817 if (IS_64BIT_PROCESS(current_proc())) {
1818 msfr64.msfr_ifindex = msfr.msfr_ifindex;
1819 msfr64.msfr_fmode = msfr.msfr_fmode;
1820 msfr64.msfr_nsrcs = msfr.msfr_nsrcs;
1821 memcpy(&msfr64.msfr_group, &msfr.msfr_group,
1822 sizeof(struct sockaddr_storage));
1823 error = sooptcopyout(sopt, &msfr64,
1824 sizeof(struct __msfilterreq64));
1825 } else {
1826 msfr32.msfr_ifindex = msfr.msfr_ifindex;
1827 msfr32.msfr_fmode = msfr.msfr_fmode;
1828 msfr32.msfr_nsrcs = msfr.msfr_nsrcs;
1829 memcpy(&msfr64.msfr_group, &msfr.msfr_group,
1830 sizeof(struct sockaddr_storage));
1831 error = sooptcopyout(sopt, &msfr32,
1832 sizeof(struct __msfilterreq32));
1833 }
1834
1835 return (error);
1836 }
1837
1838 /*
1839 * Return the IP multicast options in response to user getsockopt().
1840 */
1841 int
1842 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1843 {
1844 struct ip_mreqn mreqn;
1845 struct ip_moptions *imo;
1846 struct ifnet *ifp;
1847 struct in_ifaddr *ia;
1848 int error, optval;
1849 unsigned int ifindex;
1850 u_char coptval;
1851
1852 imo = inp->inp_moptions;
1853 /*
1854 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1855 * or is a divert socket, reject it.
1856 */
1857 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1858 (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1859 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1860 return (EOPNOTSUPP);
1861 }
1862
1863 error = 0;
1864 switch (sopt->sopt_name) {
1865 #ifdef MROUTING
1866 case IP_MULTICAST_VIF:
1867 if (imo != NULL) {
1868 IMO_LOCK(imo);
1869 optval = imo->imo_multicast_vif;
1870 IMO_UNLOCK(imo);
1871 } else
1872 optval = -1;
1873 error = sooptcopyout(sopt, &optval, sizeof(int));
1874 break;
1875 #endif /* MROUTING */
1876
1877 case IP_MULTICAST_IF:
1878 memset(&mreqn, 0, sizeof(struct ip_mreqn));
1879 if (imo != NULL) {
1880 IMO_LOCK(imo);
1881 ifp = imo->imo_multicast_ifp;
1882 if (!in_nullhost(imo->imo_multicast_addr)) {
1883 mreqn.imr_address = imo->imo_multicast_addr;
1884 } else if (ifp != NULL) {
1885 mreqn.imr_ifindex = ifp->if_index;
1886 IFP_TO_IA(ifp, ia);
1887 if (ia != NULL) {
1888 IFA_LOCK_SPIN(&ia->ia_ifa);
1889 mreqn.imr_address =
1890 IA_SIN(ia)->sin_addr;
1891 IFA_UNLOCK(&ia->ia_ifa);
1892 IFA_REMREF(&ia->ia_ifa);
1893 }
1894 }
1895 IMO_UNLOCK(imo);
1896 }
1897 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1898 error = sooptcopyout(sopt, &mreqn,
1899 sizeof(struct ip_mreqn));
1900 } else {
1901 error = sooptcopyout(sopt, &mreqn.imr_address,
1902 sizeof(struct in_addr));
1903 }
1904 break;
1905
1906 case IP_MULTICAST_IFINDEX:
1907 if (imo != NULL)
1908 IMO_LOCK(imo);
1909 if (imo == NULL || imo->imo_multicast_ifp == NULL) {
1910 ifindex = 0;
1911 } else {
1912 ifindex = imo->imo_multicast_ifp->if_index;
1913 }
1914 if (imo != NULL)
1915 IMO_UNLOCK(imo);
1916 error = sooptcopyout(sopt, &ifindex, sizeof (ifindex));
1917 break;
1918
1919 case IP_MULTICAST_TTL:
1920 if (imo == NULL)
1921 optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1922 else {
1923 IMO_LOCK(imo);
1924 optval = coptval = imo->imo_multicast_ttl;
1925 IMO_UNLOCK(imo);
1926 }
1927 if (sopt->sopt_valsize == sizeof(u_char))
1928 error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1929 else
1930 error = sooptcopyout(sopt, &optval, sizeof(int));
1931 break;
1932
1933 case IP_MULTICAST_LOOP:
1934 if (imo == 0)
1935 optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1936 else {
1937 IMO_LOCK(imo);
1938 optval = coptval = imo->imo_multicast_loop;
1939 IMO_UNLOCK(imo);
1940 }
1941 if (sopt->sopt_valsize == sizeof(u_char))
1942 error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1943 else
1944 error = sooptcopyout(sopt, &optval, sizeof(int));
1945 break;
1946
1947 case IP_MSFILTER:
1948 if (imo == NULL) {
1949 error = EADDRNOTAVAIL;
1950 } else {
1951 error = inp_get_source_filters(inp, sopt);
1952 }
1953 break;
1954
1955 default:
1956 error = ENOPROTOOPT;
1957 break;
1958 }
1959
1960 return (error);
1961 }
1962
1963 /*
1964 * Look up the ifnet to use for a multicast group membership,
1965 * given the IPv4 address of an interface, and the IPv4 group address.
1966 *
1967 * This routine exists to support legacy multicast applications
1968 * which do not understand that multicast memberships are scoped to
1969 * specific physical links in the networking stack, or which need
1970 * to join link-scope groups before IPv4 addresses are configured.
1971 *
1972 * If inp is non-NULL and is bound to an interface, use this socket's
1973 * inp_boundif for any required routing table lookup.
1974 *
1975 * If the route lookup fails, attempt to use the first non-loopback
1976 * interface with multicast capability in the system as a
1977 * last resort. The legacy IPv4 ASM API requires that we do
1978 * this in order to allow groups to be joined when the routing
1979 * table has not yet been populated during boot.
1980 *
1981 * Returns NULL if no ifp could be found.
1982 *
1983 */
1984 static struct ifnet *
1985 inp_lookup_mcast_ifp(const struct inpcb *inp,
1986 const struct sockaddr_in *gsin, const struct in_addr ina)
1987 {
1988 struct ifnet *ifp;
1989 unsigned int ifindex = 0;
1990
1991 VERIFY(gsin->sin_family == AF_INET);
1992 VERIFY(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)));
1993
1994 ifp = NULL;
1995 if (!in_nullhost(ina)) {
1996 struct in_addr new_ina;
1997 memcpy(&new_ina, &ina, sizeof(struct in_addr));
1998 ifp = ip_multicast_if(&new_ina, &ifindex);
1999 } else {
2000 struct route ro;
2001 unsigned int ifscope = IFSCOPE_NONE;
2002
2003 if (inp != NULL && (inp->inp_flags & INP_BOUND_IF))
2004 ifscope = inp->inp_boundifp->if_index;
2005
2006 bzero(&ro, sizeof (ro));
2007 memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
2008 rtalloc_scoped_ign(&ro, 0, ifscope);
2009 if (ro.ro_rt != NULL) {
2010 ifp = ro.ro_rt->rt_ifp;
2011 VERIFY(ifp != NULL);
2012 rtfree(ro.ro_rt);
2013 } else {
2014 struct in_ifaddr *ia;
2015 struct ifnet *mifp;
2016
2017 mifp = NULL;
2018 lck_rw_lock_shared(in_ifaddr_rwlock);
2019 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
2020 IFA_LOCK_SPIN(&ia->ia_ifa);
2021 mifp = ia->ia_ifp;
2022 IFA_UNLOCK(&ia->ia_ifa);
2023 if (!(mifp->if_flags & IFF_LOOPBACK) &&
2024 (mifp->if_flags & IFF_MULTICAST)) {
2025 ifp = mifp;
2026 break;
2027 }
2028 }
2029 lck_rw_done(in_ifaddr_rwlock);
2030 }
2031 }
2032
2033 return (ifp);
2034 }
2035
2036 /*
2037 * Join an IPv4 multicast group, possibly with a source.
2038 *
2039 * NB: sopt->sopt_val might point to the kernel address space. This means that
2040 * we were called by the IPv6 stack due to the presence of an IPv6 v4 mapped
2041 * address. In this scenario, sopt_p points to kernproc and sooptcopyin() will
2042 * just issue an in-kernel memcpy.
2043 */
2044 int
2045 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
2046 {
2047 struct group_source_req gsr;
2048 sockunion_t *gsa, *ssa;
2049 struct ifnet *ifp;
2050 struct in_mfilter *imf;
2051 struct ip_moptions *imo;
2052 struct in_multi *inm = NULL;
2053 struct in_msource *lims;
2054 size_t idx;
2055 int error, is_new;
2056
2057 ifp = NULL;
2058 imf = NULL;
2059 error = 0;
2060 is_new = 0;
2061
2062 memset(&gsr, 0, sizeof(struct group_source_req));
2063 gsa = (sockunion_t *)&gsr.gsr_group;
2064 gsa->ss.ss_family = AF_UNSPEC;
2065 ssa = (sockunion_t *)&gsr.gsr_source;
2066 ssa->ss.ss_family = AF_UNSPEC;
2067
2068 switch (sopt->sopt_name) {
2069 case IP_ADD_MEMBERSHIP:
2070 case IP_ADD_SOURCE_MEMBERSHIP: {
2071 struct ip_mreq_source mreqs;
2072
2073 if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
2074 error = sooptcopyin(sopt, &mreqs,
2075 sizeof(struct ip_mreq),
2076 sizeof(struct ip_mreq));
2077 /*
2078 * Do argument switcharoo from ip_mreq into
2079 * ip_mreq_source to avoid using two instances.
2080 */
2081 mreqs.imr_interface = mreqs.imr_sourceaddr;
2082 mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2083 } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2084 error = sooptcopyin(sopt, &mreqs,
2085 sizeof(struct ip_mreq_source),
2086 sizeof(struct ip_mreq_source));
2087 }
2088 if (error) {
2089 IGMP_PRINTF(("%s: error copyin IP_ADD_MEMBERSHIP/"
2090 "IP_ADD_SOURCE_MEMBERSHIP %d err=%d\n",
2091 __func__, sopt->sopt_name, error));
2092 return (error);
2093 }
2094
2095 gsa->sin.sin_family = AF_INET;
2096 gsa->sin.sin_len = sizeof(struct sockaddr_in);
2097 gsa->sin.sin_addr = mreqs.imr_multiaddr;
2098
2099 if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2100 ssa->sin.sin_family = AF_INET;
2101 ssa->sin.sin_len = sizeof(struct sockaddr_in);
2102 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2103 }
2104
2105 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2106 return (EINVAL);
2107
2108 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2109 mreqs.imr_interface);
2110 IGMP_PRINTF(("%s: imr_interface = %s, ifp = %p\n",
2111 __func__, inet_ntoa(mreqs.imr_interface), ifp));
2112 break;
2113 }
2114
2115 case MCAST_JOIN_GROUP:
2116 case MCAST_JOIN_SOURCE_GROUP:
2117 if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2118 error = sooptcopyin(sopt, &gsr,
2119 sizeof(struct group_req),
2120 sizeof(struct group_req));
2121 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2122 error = sooptcopyin(sopt, &gsr,
2123 sizeof(struct group_source_req),
2124 sizeof(struct group_source_req));
2125 }
2126 if (error)
2127 return (error);
2128
2129 if (gsa->sin.sin_family != AF_INET ||
2130 gsa->sin.sin_len != sizeof(struct sockaddr_in))
2131 return (EINVAL);
2132
2133 /*
2134 * Overwrite the port field if present, as the sockaddr
2135 * being copied in may be matched with a binary comparison.
2136 */
2137 gsa->sin.sin_port = 0;
2138 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2139 if (ssa->sin.sin_family != AF_INET ||
2140 ssa->sin.sin_len != sizeof(struct sockaddr_in))
2141 return (EINVAL);
2142 ssa->sin.sin_port = 0;
2143 }
2144
2145 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2146 return (EINVAL);
2147
2148 ifnet_head_lock_shared();
2149 if (gsr.gsr_interface == 0 ||
2150 (u_int)if_index < gsr.gsr_interface) {
2151 ifnet_head_done();
2152 return (EADDRNOTAVAIL);
2153 }
2154 ifp = ifindex2ifnet[gsr.gsr_interface];
2155 ifnet_head_done();
2156
2157 break;
2158
2159 default:
2160 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
2161 __func__, sopt->sopt_name));
2162 return (EOPNOTSUPP);
2163 break;
2164 }
2165
2166 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2167 return (EADDRNOTAVAIL);
2168
2169 imo = inp_findmoptions(inp);
2170 if (imo == NULL)
2171 return (ENOMEM);
2172
2173 IMO_LOCK(imo);
2174 idx = imo_match_group(imo, ifp, &gsa->sa);
2175 if (idx == (size_t)-1) {
2176 is_new = 1;
2177 } else {
2178 inm = imo->imo_membership[idx];
2179 imf = &imo->imo_mfilters[idx];
2180 if (ssa->ss.ss_family != AF_UNSPEC) {
2181 /*
2182 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2183 * is an error. On an existing inclusive membership,
2184 * it just adds the source to the filter list.
2185 */
2186 if (imf->imf_st[1] != MCAST_INCLUDE) {
2187 error = EINVAL;
2188 goto out_imo_locked;
2189 }
2190 /*
2191 * Throw out duplicates.
2192 *
2193 * XXX FIXME: This makes a naive assumption that
2194 * even if entries exist for *ssa in this imf,
2195 * they will be rejected as dupes, even if they
2196 * are not valid in the current mode (in-mode).
2197 *
2198 * in_msource is transactioned just as for anything
2199 * else in SSM -- but note naive use of inm_graft()
2200 * below for allocating new filter entries.
2201 *
2202 * This is only an issue if someone mixes the
2203 * full-state SSM API with the delta-based API,
2204 * which is discouraged in the relevant RFCs.
2205 */
2206 lims = imo_match_source(imo, idx, &ssa->sa);
2207 if (lims != NULL /*&&
2208 lims->imsl_st[1] == MCAST_INCLUDE*/) {
2209 error = EADDRNOTAVAIL;
2210 goto out_imo_locked;
2211 }
2212 } else {
2213 /*
2214 * MCAST_JOIN_GROUP on an existing exclusive
2215 * membership is an error; return EADDRINUSE
2216 * to preserve 4.4BSD API idempotence, and
2217 * avoid tedious detour to code below.
2218 * NOTE: This is bending RFC 3678 a bit.
2219 *
2220 * On an existing inclusive membership, this is also
2221 * an error; if you want to change filter mode,
2222 * you must use the userland API setsourcefilter().
2223 * XXX We don't reject this for imf in UNDEFINED
2224 * state at t1, because allocation of a filter
2225 * is atomic with allocation of a membership.
2226 */
2227 error = EINVAL;
2228 /* See comments above for EADDRINUSE */
2229 if (imf->imf_st[1] == MCAST_EXCLUDE)
2230 error = EADDRINUSE;
2231 goto out_imo_locked;
2232 }
2233 }
2234
2235 /*
2236 * Begin state merge transaction at socket layer.
2237 */
2238
2239 if (is_new) {
2240 if (imo->imo_num_memberships == imo->imo_max_memberships) {
2241 error = imo_grow(imo, 0);
2242 if (error)
2243 goto out_imo_locked;
2244 }
2245 /*
2246 * Allocate the new slot upfront so we can deal with
2247 * grafting the new source filter in same code path
2248 * as for join-source on existing membership.
2249 */
2250 idx = imo->imo_num_memberships;
2251 imo->imo_membership[idx] = NULL;
2252 imo->imo_num_memberships++;
2253 VERIFY(imo->imo_mfilters != NULL);
2254 imf = &imo->imo_mfilters[idx];
2255 VERIFY(RB_EMPTY(&imf->imf_sources));
2256 }
2257
2258 /*
2259 * Graft new source into filter list for this inpcb's
2260 * membership of the group. The in_multi may not have
2261 * been allocated yet if this is a new membership, however,
2262 * the in_mfilter slot will be allocated and must be initialized.
2263 */
2264 if (ssa->ss.ss_family != AF_UNSPEC) {
2265 /* Membership starts in IN mode */
2266 if (is_new) {
2267 IGMP_PRINTF(("%s: new join w/source\n", __func__));
2268 imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2269 } else {
2270 IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
2271 }
2272 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2273 if (lims == NULL) {
2274 IGMP_PRINTF(("%s: merge imf state failed\n",
2275 __func__));
2276 error = ENOMEM;
2277 goto out_imo_free;
2278 }
2279 } else {
2280 /* No address specified; Membership starts in EX mode */
2281 if (is_new) {
2282 IGMP_PRINTF(("%s: new join w/o source\n", __func__));
2283 imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2284 }
2285 }
2286
2287 /*
2288 * Begin state merge transaction at IGMP layer.
2289 */
2290
2291 if (is_new) {
2292 VERIFY(inm == NULL);
2293 error = in_joingroup(ifp, &gsa->sin.sin_addr, imf, &inm);
2294 VERIFY(inm != NULL || error != 0);
2295 if (error)
2296 goto out_imo_free;
2297 imo->imo_membership[idx] = inm; /* from in_joingroup() */
2298 } else {
2299 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2300 INM_LOCK(inm);
2301 error = inm_merge(inm, imf);
2302 if (error) {
2303 IGMP_PRINTF(("%s: failed to merge inm state\n",
2304 __func__));
2305 INM_UNLOCK(inm);
2306 goto out_imf_rollback;
2307 }
2308 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2309 error = igmp_change_state(inm);
2310 INM_UNLOCK(inm);
2311 if (error) {
2312 IGMP_PRINTF(("%s: failed igmp downcall\n",
2313 __func__));
2314 goto out_imf_rollback;
2315 }
2316 }
2317
2318 out_imf_rollback:
2319 if (error) {
2320 imf_rollback(imf);
2321 if (is_new)
2322 imf_purge(imf);
2323 else
2324 imf_reap(imf);
2325 } else {
2326 imf_commit(imf);
2327 }
2328
2329 out_imo_free:
2330 if (error && is_new) {
2331 VERIFY(inm == NULL);
2332 imo->imo_membership[idx] = NULL;
2333 --imo->imo_num_memberships;
2334 }
2335
2336 out_imo_locked:
2337 IMO_UNLOCK(imo);
2338 IMO_REMREF(imo); /* from inp_findmoptions() */
2339 return (error);
2340 }
2341
2342 /*
2343 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2344 *
2345 * NB: sopt->sopt_val might point to the kernel address space. Refer to the
2346 * block comment on top of inp_join_group() for more information.
2347 */
2348 int
2349 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2350 {
2351 struct group_source_req gsr;
2352 struct ip_mreq_source mreqs;
2353 sockunion_t *gsa, *ssa;
2354 struct ifnet *ifp;
2355 struct in_mfilter *imf;
2356 struct ip_moptions *imo;
2357 struct in_msource *ims;
2358 struct in_multi *inm = NULL;
2359 size_t idx;
2360 int error, is_final;
2361 unsigned int ifindex = 0;
2362
2363 ifp = NULL;
2364 error = 0;
2365 is_final = 1;
2366
2367 memset(&gsr, 0, sizeof(struct group_source_req));
2368 gsa = (sockunion_t *)&gsr.gsr_group;
2369 gsa->ss.ss_family = AF_UNSPEC;
2370 ssa = (sockunion_t *)&gsr.gsr_source;
2371 ssa->ss.ss_family = AF_UNSPEC;
2372
2373 switch (sopt->sopt_name) {
2374 case IP_DROP_MEMBERSHIP:
2375 case IP_DROP_SOURCE_MEMBERSHIP:
2376 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2377 error = sooptcopyin(sopt, &mreqs,
2378 sizeof(struct ip_mreq),
2379 sizeof(struct ip_mreq));
2380 /*
2381 * Swap interface and sourceaddr arguments,
2382 * as ip_mreq and ip_mreq_source are laid
2383 * out differently.
2384 */
2385 mreqs.imr_interface = mreqs.imr_sourceaddr;
2386 mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2387 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2388 error = sooptcopyin(sopt, &mreqs,
2389 sizeof(struct ip_mreq_source),
2390 sizeof(struct ip_mreq_source));
2391 }
2392 if (error)
2393 return (error);
2394
2395 gsa->sin.sin_family = AF_INET;
2396 gsa->sin.sin_len = sizeof(struct sockaddr_in);
2397 gsa->sin.sin_addr = mreqs.imr_multiaddr;
2398
2399 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2400 ssa->sin.sin_family = AF_INET;
2401 ssa->sin.sin_len = sizeof(struct sockaddr_in);
2402 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2403 }
2404 /*
2405 * Attempt to look up hinted ifp from interface address.
2406 * Fallthrough with null ifp iff lookup fails, to
2407 * preserve 4.4BSD mcast API idempotence.
2408 * XXX NOTE WELL: The RFC 3678 API is preferred because
2409 * using an IPv4 address as a key is racy.
2410 */
2411 if (!in_nullhost(mreqs.imr_interface))
2412 ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
2413
2414 IGMP_PRINTF(("%s: imr_interface = %s, ifp = %p\n",
2415 __func__, inet_ntoa(mreqs.imr_interface), ifp));
2416
2417 break;
2418
2419 case MCAST_LEAVE_GROUP:
2420 case MCAST_LEAVE_SOURCE_GROUP:
2421 if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2422 error = sooptcopyin(sopt, &gsr,
2423 sizeof(struct group_req),
2424 sizeof(struct group_req));
2425 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2426 error = sooptcopyin(sopt, &gsr,
2427 sizeof(struct group_source_req),
2428 sizeof(struct group_source_req));
2429 }
2430 if (error)
2431 return (error);
2432
2433 if (gsa->sin.sin_family != AF_INET ||
2434 gsa->sin.sin_len != sizeof(struct sockaddr_in))
2435 return (EINVAL);
2436
2437 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2438 if (ssa->sin.sin_family != AF_INET ||
2439 ssa->sin.sin_len != sizeof(struct sockaddr_in))
2440 return (EINVAL);
2441 }
2442
2443 ifnet_head_lock_shared();
2444 if (gsr.gsr_interface == 0 ||
2445 (u_int)if_index < gsr.gsr_interface) {
2446 ifnet_head_done();
2447 return (EADDRNOTAVAIL);
2448 }
2449
2450 ifp = ifindex2ifnet[gsr.gsr_interface];
2451 ifnet_head_done();
2452 break;
2453
2454 default:
2455 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
2456 __func__, sopt->sopt_name));
2457 return (EOPNOTSUPP);
2458 break;
2459 }
2460
2461 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2462 return (EINVAL);
2463
2464 /*
2465 * Find the membership in the membership array.
2466 */
2467 imo = inp_findmoptions(inp);
2468 if (imo == NULL)
2469 return (ENOMEM);
2470
2471 IMO_LOCK(imo);
2472 idx = imo_match_group(imo, ifp, &gsa->sa);
2473 if (idx == (size_t)-1) {
2474 error = EADDRNOTAVAIL;
2475 goto out_locked;
2476 }
2477 inm = imo->imo_membership[idx];
2478 imf = &imo->imo_mfilters[idx];
2479
2480 if (ssa->ss.ss_family != AF_UNSPEC) {
2481 IGMP_PRINTF(("%s: opt=%d is_final=0\n", __func__,
2482 sopt->sopt_name));
2483 is_final = 0;
2484 }
2485
2486 /*
2487 * Begin state merge transaction at socket layer.
2488 */
2489
2490 /*
2491 * If we were instructed only to leave a given source, do so.
2492 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2493 */
2494 if (is_final) {
2495 imf_leave(imf);
2496 } else {
2497 if (imf->imf_st[0] == MCAST_EXCLUDE) {
2498 error = EADDRNOTAVAIL;
2499 goto out_locked;
2500 }
2501 ims = imo_match_source(imo, idx, &ssa->sa);
2502 if (ims == NULL) {
2503 IGMP_PRINTF(("%s: source %s %spresent\n", __func__,
2504 inet_ntoa(ssa->sin.sin_addr), "not "));
2505 error = EADDRNOTAVAIL;
2506 goto out_locked;
2507 }
2508 IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
2509 error = imf_prune(imf, &ssa->sin);
2510 if (error) {
2511 IGMP_PRINTF(("%s: merge imf state failed\n",
2512 __func__));
2513 goto out_locked;
2514 }
2515 }
2516
2517 /*
2518 * Begin state merge transaction at IGMP layer.
2519 */
2520
2521 if (is_final) {
2522 /*
2523 * Give up the multicast address record to which
2524 * the membership points. Reference held in imo
2525 * will be released below.
2526 */
2527 (void) in_leavegroup(inm, imf);
2528 } else {
2529 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2530 INM_LOCK(inm);
2531 error = inm_merge(inm, imf);
2532 if (error) {
2533 IGMP_PRINTF(("%s: failed to merge inm state\n",
2534 __func__));
2535 INM_UNLOCK(inm);
2536 goto out_imf_rollback;
2537 }
2538
2539 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2540 error = igmp_change_state(inm);
2541 if (error) {
2542 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
2543 }
2544 INM_UNLOCK(inm);
2545 }
2546
2547 out_imf_rollback:
2548 if (error)
2549 imf_rollback(imf);
2550 else
2551 imf_commit(imf);
2552
2553 imf_reap(imf);
2554
2555 if (is_final) {
2556 /* Remove the gap in the membership and filter array. */
2557 VERIFY(inm == imo->imo_membership[idx]);
2558 imo->imo_membership[idx] = NULL;
2559 INM_REMREF(inm);
2560 for (++idx; idx < imo->imo_num_memberships; ++idx) {
2561 imo->imo_membership[idx-1] = imo->imo_membership[idx];
2562 imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2563 }
2564 imo->imo_num_memberships--;
2565 }
2566
2567 out_locked:
2568 IMO_UNLOCK(imo);
2569 IMO_REMREF(imo); /* from inp_findmoptions() */
2570 return (error);
2571 }
2572
2573 /*
2574 * Select the interface for transmitting IPv4 multicast datagrams.
2575 *
2576 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2577 * may be passed to this socket option. An address of INADDR_ANY or an
2578 * interface index of 0 is used to remove a previous selection.
2579 * When no interface is selected, one is chosen for every send.
2580 */
2581 static int
2582 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2583 {
2584 struct in_addr addr;
2585 struct ip_mreqn mreqn;
2586 struct ifnet *ifp;
2587 struct ip_moptions *imo;
2588 int error = 0 ;
2589 unsigned int ifindex = 0;
2590
2591 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2592 /*
2593 * An interface index was specified using the
2594 * Linux-derived ip_mreqn structure.
2595 */
2596 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2597 sizeof(struct ip_mreqn));
2598 if (error)
2599 return (error);
2600
2601 ifnet_head_lock_shared();
2602 if (mreqn.imr_ifindex < 0 || if_index < mreqn.imr_ifindex) {
2603 ifnet_head_done();
2604 return (EINVAL);
2605 }
2606
2607 if (mreqn.imr_ifindex == 0) {
2608 ifp = NULL;
2609 } else {
2610 ifp = ifindex2ifnet[mreqn.imr_ifindex];
2611 if (ifp == NULL) {
2612 ifnet_head_done();
2613 return (EADDRNOTAVAIL);
2614 }
2615 }
2616 ifnet_head_done();
2617 } else {
2618 /*
2619 * An interface was specified by IPv4 address.
2620 * This is the traditional BSD usage.
2621 */
2622 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2623 sizeof(struct in_addr));
2624 if (error)
2625 return (error);
2626 if (in_nullhost(addr)) {
2627 ifp = NULL;
2628 } else {
2629 ifp = ip_multicast_if(&addr, &ifindex);
2630 if (ifp == NULL) {
2631 IGMP_PRINTF(("%s: can't find ifp for addr=%s\n",
2632 __func__, inet_ntoa(addr)));
2633 return (EADDRNOTAVAIL);
2634 }
2635 }
2636 #ifdef IGMP_DEBUG0
2637 IGMP_PRINTF(("%s: ifp = %p, addr = %s\n", __func__, ifp,
2638 inet_ntoa(addr)));
2639 #endif
2640 }
2641
2642 /* Reject interfaces which do not support multicast. */
2643 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2644 return (EOPNOTSUPP);
2645
2646 imo = inp_findmoptions(inp);
2647 if (imo == NULL)
2648 return (ENOMEM);
2649
2650 IMO_LOCK(imo);
2651 imo->imo_multicast_ifp = ifp;
2652 if (ifindex)
2653 imo->imo_multicast_addr = addr;
2654 else
2655 imo->imo_multicast_addr.s_addr = INADDR_ANY;
2656 IMO_UNLOCK(imo);
2657 IMO_REMREF(imo); /* from inp_findmoptions() */
2658
2659 return (0);
2660 }
2661
2662 /*
2663 * Atomically set source filters on a socket for an IPv4 multicast group.
2664 */
2665 static int
2666 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2667 {
2668 struct __msfilterreq64 msfr, msfr64;
2669 struct __msfilterreq32 msfr32;
2670 sockunion_t *gsa;
2671 struct ifnet *ifp;
2672 struct in_mfilter *imf;
2673 struct ip_moptions *imo;
2674 struct in_multi *inm;
2675 size_t idx;
2676 int error;
2677 user_addr_t tmp_ptr;
2678
2679 if (IS_64BIT_PROCESS(current_proc())) {
2680 error = sooptcopyin(sopt, &msfr64,
2681 sizeof(struct __msfilterreq64),
2682 sizeof(struct __msfilterreq64));
2683 if (error)
2684 return (error);
2685 /* we never use msfr.msfr_srcs; */
2686 memcpy(&msfr, &msfr64, sizeof(msfr));
2687 } else {
2688 error = sooptcopyin(sopt, &msfr32,
2689 sizeof(struct __msfilterreq32),
2690 sizeof(struct __msfilterreq32));
2691 if (error)
2692 return (error);
2693 /* we never use msfr.msfr_srcs; */
2694 memcpy(&msfr, &msfr32, sizeof(msfr));
2695 }
2696
2697 if ((size_t) msfr.msfr_nsrcs >
2698 SIZE_MAX / sizeof(struct sockaddr_storage))
2699 msfr.msfr_nsrcs = SIZE_MAX / sizeof(struct sockaddr_storage);
2700
2701 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2702 return (ENOBUFS);
2703
2704 if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2705 msfr.msfr_fmode != MCAST_INCLUDE))
2706 return (EINVAL);
2707
2708 if (msfr.msfr_group.ss_family != AF_INET ||
2709 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2710 return (EINVAL);
2711
2712 gsa = (sockunion_t *)&msfr.msfr_group;
2713 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2714 return (EINVAL);
2715
2716 gsa->sin.sin_port = 0; /* ignore port */
2717
2718 ifnet_head_lock_shared();
2719 if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) {
2720 ifnet_head_done();
2721 return (EADDRNOTAVAIL);
2722 }
2723
2724 ifp = ifindex2ifnet[msfr.msfr_ifindex];
2725 ifnet_head_done();
2726 if (ifp == NULL)
2727 return (EADDRNOTAVAIL);
2728
2729 /*
2730 * Check if this socket is a member of this group.
2731 */
2732 imo = inp_findmoptions(inp);
2733 if (imo == NULL)
2734 return (ENOMEM);
2735
2736 IMO_LOCK(imo);
2737 idx = imo_match_group(imo, ifp, &gsa->sa);
2738 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
2739 error = EADDRNOTAVAIL;
2740 goto out_imo_locked;
2741 }
2742 inm = imo->imo_membership[idx];
2743 imf = &imo->imo_mfilters[idx];
2744
2745 /*
2746 * Begin state merge transaction at socket layer.
2747 */
2748
2749 imf->imf_st[1] = msfr.msfr_fmode;
2750
2751 /*
2752 * Apply any new source filters, if present.
2753 * Make a copy of the user-space source vector so
2754 * that we may copy them with a single copyin. This
2755 * allows us to deal with page faults up-front.
2756 */
2757 if (msfr.msfr_nsrcs > 0) {
2758 struct in_msource *lims;
2759 struct sockaddr_in *psin;
2760 struct sockaddr_storage *kss, *pkss;
2761 int i;
2762
2763 if (IS_64BIT_PROCESS(current_proc()))
2764 tmp_ptr = msfr64.msfr_srcs;
2765 else
2766 tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
2767
2768 IGMP_PRINTF(("%s: loading %lu source list entries\n",
2769 __func__, (unsigned long)msfr.msfr_nsrcs));
2770 kss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*kss),
2771 M_TEMP, M_WAITOK);
2772 if (kss == NULL) {
2773 error = ENOMEM;
2774 goto out_imo_locked;
2775 }
2776 error = copyin(tmp_ptr, kss,
2777 (size_t) msfr.msfr_nsrcs * sizeof(*kss));
2778 if (error) {
2779 FREE(kss, M_TEMP);
2780 goto out_imo_locked;
2781 }
2782
2783 /*
2784 * Mark all source filters as UNDEFINED at t1.
2785 * Restore new group filter mode, as imf_leave()
2786 * will set it to INCLUDE.
2787 */
2788 imf_leave(imf);
2789 imf->imf_st[1] = msfr.msfr_fmode;
2790
2791 /*
2792 * Update socket layer filters at t1, lazy-allocating
2793 * new entries. This saves a bunch of memory at the
2794 * cost of one RB_FIND() per source entry; duplicate
2795 * entries in the msfr_nsrcs vector are ignored.
2796 * If we encounter an error, rollback transaction.
2797 *
2798 * XXX This too could be replaced with a set-symmetric
2799 * difference like loop to avoid walking from root
2800 * every time, as the key space is common.
2801 */
2802 for (i = 0, pkss = kss; (u_int)i < msfr.msfr_nsrcs;
2803 i++, pkss++) {
2804 psin = (struct sockaddr_in *)pkss;
2805 if (psin->sin_family != AF_INET) {
2806 error = EAFNOSUPPORT;
2807 break;
2808 }
2809 if (psin->sin_len != sizeof(struct sockaddr_in)) {
2810 error = EINVAL;
2811 break;
2812 }
2813 error = imf_get_source(imf, psin, &lims);
2814 if (error)
2815 break;
2816 lims->imsl_st[1] = imf->imf_st[1];
2817 }
2818 FREE(kss, M_TEMP);
2819 }
2820
2821 if (error)
2822 goto out_imf_rollback;
2823
2824 /*
2825 * Begin state merge transaction at IGMP layer.
2826 */
2827 INM_LOCK(inm);
2828 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2829 error = inm_merge(inm, imf);
2830 if (error) {
2831 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
2832 INM_UNLOCK(inm);
2833 goto out_imf_rollback;
2834 }
2835
2836 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2837 error = igmp_change_state(inm);
2838 INM_UNLOCK(inm);
2839 #ifdef IGMP_DEBUG
2840 if (error)
2841 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
2842 #endif
2843
2844 out_imf_rollback:
2845 if (error)
2846 imf_rollback(imf);
2847 else
2848 imf_commit(imf);
2849
2850 imf_reap(imf);
2851
2852 out_imo_locked:
2853 IMO_UNLOCK(imo);
2854 IMO_REMREF(imo); /* from inp_findmoptions() */
2855
2856 return (error);
2857 }
2858
2859 /*
2860 * Set the IP multicast options in response to user setsockopt().
2861 *
2862 * Many of the socket options handled in this function duplicate the
2863 * functionality of socket options in the regular unicast API. However,
2864 * it is not possible to merge the duplicate code, because the idempotence
2865 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2866 * the effects of these options must be treated as separate and distinct.
2867 *
2868 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2869 * is refactored to no longer use vifs.
2870 */
2871 int
2872 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2873 {
2874 struct ip_moptions *imo;
2875 int error;
2876 unsigned int ifindex;
2877 struct ifnet *ifp;
2878
2879 error = 0;
2880
2881 /*
2882 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2883 * or is a divert socket, reject it.
2884 */
2885 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2886 (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2887 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2888 return (EOPNOTSUPP);
2889
2890 switch (sopt->sopt_name) {
2891 #if MROUTING
2892 case IP_MULTICAST_VIF: {
2893 int vifi;
2894 /*
2895 * Select a multicast VIF for transmission.
2896 * Only useful if multicast forwarding is active.
2897 */
2898 if (legal_vif_num == NULL) {
2899 error = EOPNOTSUPP;
2900 break;
2901 }
2902 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2903 if (error)
2904 break;
2905 if (!legal_vif_num(vifi) && (vifi != -1)) {
2906 error = EINVAL;
2907 break;
2908 }
2909 imo = inp_findmoptions(inp);
2910 if (imo == NULL) {
2911 error = ENOMEM;
2912 break;
2913 }
2914 IMO_LOCK(imo);
2915 imo->imo_multicast_vif = vifi;
2916 IMO_UNLOCK(imo);
2917 IMO_REMREF(imo); /* from inp_findmoptions() */
2918 break;
2919 }
2920 #endif
2921 case IP_MULTICAST_IF:
2922 error = inp_set_multicast_if(inp, sopt);
2923 break;
2924
2925 case IP_MULTICAST_IFINDEX:
2926 /*
2927 * Select the interface for outgoing multicast packets.
2928 */
2929 error = sooptcopyin(sopt, &ifindex, sizeof (ifindex),
2930 sizeof (ifindex));
2931 if (error)
2932 break;
2933
2934 imo = inp_findmoptions(inp);
2935 if (imo == NULL) {
2936 error = ENOMEM;
2937 break;
2938 }
2939 /*
2940 * Index 0 is used to remove a previous selection.
2941 * When no interface is selected, a default one is
2942 * chosen every time a multicast packet is sent.
2943 */
2944 if (ifindex == 0) {
2945 IMO_LOCK(imo);
2946 imo->imo_multicast_ifp = NULL;
2947 IMO_UNLOCK(imo);
2948 IMO_REMREF(imo); /* from inp_findmoptions() */
2949 break;
2950 }
2951
2952 ifnet_head_lock_shared();
2953 /* Don't need to check is ifindex is < 0 since it's unsigned */
2954 if ((unsigned int)if_index < ifindex) {
2955 ifnet_head_done();
2956 IMO_REMREF(imo); /* from inp_findmoptions() */
2957 error = ENXIO; /* per IPV6_MULTICAST_IF */
2958 break;
2959 }
2960 ifp = ifindex2ifnet[ifindex];
2961 ifnet_head_done();
2962
2963 /* If it's detached or isn't a multicast interface, bail out */
2964 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2965 IMO_REMREF(imo); /* from inp_findmoptions() */
2966 error = EADDRNOTAVAIL;
2967 break;
2968 }
2969 IMO_LOCK(imo);
2970 imo->imo_multicast_ifp = ifp;
2971 /*
2972 * Clear out any remnants of past IP_MULTICAST_IF. The addr
2973 * isn't really used anywhere in the kernel; we could have
2974 * iterated thru the addresses of the interface and pick one
2975 * here, but that is redundant since ip_getmoptions() already
2976 * takes care of that for INADDR_ANY.
2977 */
2978 imo->imo_multicast_addr.s_addr = INADDR_ANY;
2979 IMO_UNLOCK(imo);
2980 IMO_REMREF(imo); /* from inp_findmoptions() */
2981 break;
2982
2983 case IP_MULTICAST_TTL: {
2984 u_char ttl;
2985
2986 /*
2987 * Set the IP time-to-live for outgoing multicast packets.
2988 * The original multicast API required a char argument,
2989 * which is inconsistent with the rest of the socket API.
2990 * We allow either a char or an int.
2991 */
2992 if (sopt->sopt_valsize == sizeof(u_char)) {
2993 error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2994 sizeof(u_char));
2995 if (error)
2996 break;
2997 } else {
2998 u_int ittl;
2999
3000 error = sooptcopyin(sopt, &ittl, sizeof(u_int),
3001 sizeof(u_int));
3002 if (error)
3003 break;
3004 if (ittl > 255) {
3005 error = EINVAL;
3006 break;
3007 }
3008 ttl = (u_char)ittl;
3009 }
3010 imo = inp_findmoptions(inp);
3011 if (imo == NULL) {
3012 error = ENOMEM;
3013 break;
3014 }
3015 IMO_LOCK(imo);
3016 imo->imo_multicast_ttl = ttl;
3017 IMO_UNLOCK(imo);
3018 IMO_REMREF(imo); /* from inp_findmoptions() */
3019 break;
3020 }
3021
3022 case IP_MULTICAST_LOOP: {
3023 u_char loop;
3024
3025 /*
3026 * Set the loopback flag for outgoing multicast packets.
3027 * Must be zero or one. The original multicast API required a
3028 * char argument, which is inconsistent with the rest
3029 * of the socket API. We allow either a char or an int.
3030 */
3031 if (sopt->sopt_valsize == sizeof(u_char)) {
3032 error = sooptcopyin(sopt, &loop, sizeof(u_char),
3033 sizeof(u_char));
3034 if (error)
3035 break;
3036 } else {
3037 u_int iloop;
3038
3039 error = sooptcopyin(sopt, &iloop, sizeof(u_int),
3040 sizeof(u_int));
3041 if (error)
3042 break;
3043 loop = (u_char)iloop;
3044 }
3045 imo = inp_findmoptions(inp);
3046 if (imo == NULL) {
3047 error = ENOMEM;
3048 break;
3049 }
3050 IMO_LOCK(imo);
3051 imo->imo_multicast_loop = !!loop;
3052 IMO_UNLOCK(imo);
3053 IMO_REMREF(imo); /* from inp_findmoptions() */
3054 break;
3055 }
3056
3057 case IP_ADD_MEMBERSHIP:
3058 case IP_ADD_SOURCE_MEMBERSHIP:
3059 case MCAST_JOIN_GROUP:
3060 case MCAST_JOIN_SOURCE_GROUP:
3061 error = inp_join_group(inp, sopt);
3062 break;
3063
3064 case IP_DROP_MEMBERSHIP:
3065 case IP_DROP_SOURCE_MEMBERSHIP:
3066 case MCAST_LEAVE_GROUP:
3067 case MCAST_LEAVE_SOURCE_GROUP:
3068 error = inp_leave_group(inp, sopt);
3069 break;
3070
3071 case IP_BLOCK_SOURCE:
3072 case IP_UNBLOCK_SOURCE:
3073 case MCAST_BLOCK_SOURCE:
3074 case MCAST_UNBLOCK_SOURCE:
3075 error = inp_block_unblock_source(inp, sopt);
3076 break;
3077
3078 case IP_MSFILTER:
3079 error = inp_set_source_filters(inp, sopt);
3080 break;
3081
3082 default:
3083 error = EOPNOTSUPP;
3084 break;
3085 }
3086
3087 return (error);
3088 }
3089
3090 /*
3091 * Expose IGMP's multicast filter mode and source list(s) to userland,
3092 * keyed by (ifindex, group).
3093 * The filter mode is written out as a uint32_t, followed by
3094 * 0..n of struct in_addr.
3095 * For use by ifmcstat(8).
3096 */
3097 static int
3098 sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS
3099 {
3100 #pragma unused(oidp)
3101
3102 struct in_addr src, group;
3103 struct ifnet *ifp;
3104 struct in_multi *inm;
3105 struct in_multistep step;
3106 struct ip_msource *ims;
3107 int *name;
3108 int retval = 0;
3109 u_int namelen;
3110 uint32_t fmode, ifindex;
3111
3112 name = (int *)arg1;
3113 namelen = (u_int)arg2;
3114
3115 if (req->newptr != USER_ADDR_NULL)
3116 return (EPERM);
3117
3118 if (namelen != 2)
3119 return (EINVAL);
3120
3121 ifindex = name[0];
3122 ifnet_head_lock_shared();
3123 if (ifindex <= 0 || ifindex > (u_int)if_index) {
3124 IGMP_PRINTF(("%s: ifindex %u out of range\n",
3125 __func__, ifindex));
3126 ifnet_head_done();
3127 return (ENOENT);
3128 }
3129
3130 group.s_addr = name[1];
3131 if (!IN_MULTICAST(ntohl(group.s_addr))) {
3132 IGMP_PRINTF(("%s: group %s is not multicast\n",
3133 __func__, inet_ntoa(group)));
3134 ifnet_head_done();
3135 return (EINVAL);
3136 }
3137
3138 ifp = ifindex2ifnet[ifindex];
3139 ifnet_head_done();
3140 if (ifp == NULL) {
3141 IGMP_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex));
3142 return (ENOENT);
3143 }
3144
3145 in_multihead_lock_shared();
3146 IN_FIRST_MULTI(step, inm);
3147 while (inm != NULL) {
3148 INM_LOCK(inm);
3149 if (inm->inm_ifp != ifp)
3150 goto next;
3151
3152 if (!in_hosteq(inm->inm_addr, group))
3153 goto next;
3154
3155 fmode = inm->inm_st[1].iss_fmode;
3156 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
3157 if (retval != 0) {
3158 INM_UNLOCK(inm);
3159 break; /* abort */
3160 }
3161 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
3162 #ifdef IGMP_DEBUG
3163 struct in_addr ina;
3164 ina.s_addr = htonl(ims->ims_haddr);
3165 IGMP_PRINTF(("%s: visit node %s\n", __func__,
3166 inet_ntoa(ina)));
3167 #endif
3168 /*
3169 * Only copy-out sources which are in-mode.
3170 */
3171 if (fmode != ims_get_mode(inm, ims, 1)) {
3172 IGMP_PRINTF(("%s: skip non-in-mode\n",
3173 __func__));
3174 continue; /* process next source */
3175 }
3176 src.s_addr = htonl(ims->ims_haddr);
3177 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
3178 if (retval != 0)
3179 break; /* process next inm */
3180 }
3181 next:
3182 INM_UNLOCK(inm);
3183 IN_NEXT_MULTI(step, inm);
3184 }
3185 in_multihead_lock_done();
3186
3187 return (retval);
3188 }
3189
3190 /*
3191 * XXX
3192 * The whole multicast option thing needs to be re-thought.
3193 * Several of these options are equally applicable to non-multicast
3194 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
3195 * standard option (IP_TTL).
3196 */
3197 /*
3198 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
3199 */
3200 static struct ifnet *
3201 ip_multicast_if(struct in_addr *a, unsigned int *ifindexp)
3202 {
3203 unsigned int ifindex;
3204 struct ifnet *ifp;
3205
3206 if (ifindexp != NULL)
3207 *ifindexp = 0;
3208 if (ntohl(a->s_addr) >> 24 == 0) {
3209 ifindex = ntohl(a->s_addr) & 0xffffff;
3210 ifnet_head_lock_shared();
3211 /* Don't need to check is ifindex is < 0 since it's unsigned */
3212 if ((unsigned int)if_index < ifindex) {
3213 ifnet_head_done();
3214 return (NULL);
3215 }
3216 ifp = ifindex2ifnet[ifindex];
3217 ifnet_head_done();
3218 if (ifp != NULL && ifindexp != NULL)
3219 *ifindexp = ifindex;
3220 } else {
3221 INADDR_TO_IFP(*a, ifp);
3222 }
3223 return (ifp);
3224 }
3225
3226 void
3227 in_multi_init(void)
3228 {
3229 PE_parse_boot_argn("ifa_debug", &inm_debug, sizeof (inm_debug));
3230
3231 /* Setup lock group and attribute for in_multihead */
3232 in_multihead_lock_grp_attr = lck_grp_attr_alloc_init();
3233 in_multihead_lock_grp = lck_grp_alloc_init("in_multihead",
3234 in_multihead_lock_grp_attr);
3235 in_multihead_lock_attr = lck_attr_alloc_init();
3236 lck_rw_init(&in_multihead_lock, in_multihead_lock_grp,
3237 in_multihead_lock_attr);
3238
3239 lck_mtx_init(&inm_trash_lock, in_multihead_lock_grp,
3240 in_multihead_lock_attr);
3241 TAILQ_INIT(&inm_trash_head);
3242
3243 inm_size = (inm_debug == 0) ? sizeof (struct in_multi) :
3244 sizeof (struct in_multi_dbg);
3245 inm_zone = zinit(inm_size, INM_ZONE_MAX * inm_size,
3246 0, INM_ZONE_NAME);
3247 if (inm_zone == NULL) {
3248 panic("%s: failed allocating %s", __func__, INM_ZONE_NAME);
3249 /* NOTREACHED */
3250 }
3251 zone_change(inm_zone, Z_EXPAND, TRUE);
3252
3253 ipms_size = sizeof (struct ip_msource);
3254 ipms_zone = zinit(ipms_size, IPMS_ZONE_MAX * ipms_size,
3255 0, IPMS_ZONE_NAME);
3256 if (ipms_zone == NULL) {
3257 panic("%s: failed allocating %s", __func__, IPMS_ZONE_NAME);
3258 /* NOTREACHED */
3259 }
3260 zone_change(ipms_zone, Z_EXPAND, TRUE);
3261
3262 inms_size = sizeof (struct in_msource);
3263 inms_zone = zinit(inms_size, INMS_ZONE_MAX * inms_size,
3264 0, INMS_ZONE_NAME);
3265 if (inms_zone == NULL) {
3266 panic("%s: failed allocating %s", __func__, INMS_ZONE_NAME);
3267 /* NOTREACHED */
3268 }
3269 zone_change(inms_zone, Z_EXPAND, TRUE);
3270 }
3271
3272 static struct in_multi *
3273 in_multi_alloc(int how)
3274 {
3275 struct in_multi *inm;
3276
3277 inm = (how == M_WAITOK) ? zalloc(inm_zone) : zalloc_noblock(inm_zone);
3278 if (inm != NULL) {
3279 bzero(inm, inm_size);
3280 lck_mtx_init(&inm->inm_lock, in_multihead_lock_grp,
3281 in_multihead_lock_attr);
3282 inm->inm_debug |= IFD_ALLOC;
3283 if (inm_debug != 0) {
3284 inm->inm_debug |= IFD_DEBUG;
3285 inm->inm_trace = inm_trace;
3286 }
3287 }
3288 return (inm);
3289 }
3290
3291 static void
3292 in_multi_free(struct in_multi *inm)
3293 {
3294 INM_LOCK(inm);
3295 if (inm->inm_debug & IFD_ATTACHED) {
3296 panic("%s: attached inm=%p is being freed", __func__, inm);
3297 /* NOTREACHED */
3298 } else if (inm->inm_ifma != NULL) {
3299 panic("%s: ifma not NULL for inm=%p", __func__, inm);
3300 /* NOTREACHED */
3301 } else if (!(inm->inm_debug & IFD_ALLOC)) {
3302 panic("%s: inm %p cannot be freed", __func__, inm);
3303 /* NOTREACHED */
3304 } else if (inm->inm_refcount != 0) {
3305 panic("%s: non-zero refcount inm=%p", __func__, inm);
3306 /* NOTREACHED */
3307 } else if (inm->inm_reqcnt != 0) {
3308 panic("%s: non-zero reqcnt inm=%p", __func__, inm);
3309 /* NOTREACHED */
3310 }
3311
3312 /* Free any pending IGMPv3 state-change records */
3313 IF_DRAIN(&inm->inm_scq);
3314
3315 inm->inm_debug &= ~IFD_ALLOC;
3316 if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
3317 (IFD_DEBUG | IFD_TRASHED)) {
3318 lck_mtx_lock(&inm_trash_lock);
3319 TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
3320 inm_trash_link);
3321 lck_mtx_unlock(&inm_trash_lock);
3322 inm->inm_debug &= ~IFD_TRASHED;
3323 }
3324 INM_UNLOCK(inm);
3325
3326 lck_mtx_destroy(&inm->inm_lock, in_multihead_lock_grp);
3327 zfree(inm_zone, inm);
3328 }
3329
3330 static void
3331 in_multi_attach(struct in_multi *inm)
3332 {
3333 in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
3334 INM_LOCK_ASSERT_HELD(inm);
3335
3336 if (inm->inm_debug & IFD_ATTACHED) {
3337 panic("%s: Attempt to attach an already attached inm=%p",
3338 __func__, inm);
3339 /* NOTREACHED */
3340 } else if (inm->inm_debug & IFD_TRASHED) {
3341 panic("%s: Attempt to reattach a detached inm=%p",
3342 __func__, inm);
3343 /* NOTREACHED */
3344 }
3345
3346 inm->inm_reqcnt++;
3347 VERIFY(inm->inm_reqcnt == 1);
3348 INM_ADDREF_LOCKED(inm);
3349 inm->inm_debug |= IFD_ATTACHED;
3350 /*
3351 * Reattach case: If debugging is enabled, take it
3352 * out of the trash list and clear IFD_TRASHED.
3353 */
3354 if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
3355 (IFD_DEBUG | IFD_TRASHED)) {
3356 /* Become a regular mutex, just in case */
3357 INM_CONVERT_LOCK(inm);
3358 lck_mtx_lock(&inm_trash_lock);
3359 TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
3360 inm_trash_link);
3361 lck_mtx_unlock(&inm_trash_lock);
3362 inm->inm_debug &= ~IFD_TRASHED;
3363 }
3364
3365 LIST_INSERT_HEAD(&in_multihead, inm, inm_link);
3366 }
3367
3368 int
3369 in_multi_detach(struct in_multi *inm)
3370 {
3371 in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
3372 INM_LOCK_ASSERT_HELD(inm);
3373
3374 if (inm->inm_reqcnt == 0) {
3375 panic("%s: inm=%p negative reqcnt", __func__, inm);
3376 /* NOTREACHED */
3377 }
3378
3379 --inm->inm_reqcnt;
3380 if (inm->inm_reqcnt > 0)
3381 return (0);
3382
3383 if (!(inm->inm_debug & IFD_ATTACHED)) {
3384 panic("%s: Attempt to detach an unattached record inm=%p",
3385 __func__, inm);
3386 /* NOTREACHED */
3387 } else if (inm->inm_debug & IFD_TRASHED) {
3388 panic("%s: inm %p is already in trash list", __func__, inm);
3389 /* NOTREACHED */
3390 }
3391
3392 /*
3393 * NOTE: Caller calls IFMA_REMREF
3394 */
3395 inm->inm_debug &= ~IFD_ATTACHED;
3396 LIST_REMOVE(inm, inm_link);
3397
3398 if (inm->inm_debug & IFD_DEBUG) {
3399 /* Become a regular mutex, just in case */
3400 INM_CONVERT_LOCK(inm);
3401 lck_mtx_lock(&inm_trash_lock);
3402 TAILQ_INSERT_TAIL(&inm_trash_head,
3403 (struct in_multi_dbg *)inm, inm_trash_link);
3404 lck_mtx_unlock(&inm_trash_lock);
3405 inm->inm_debug |= IFD_TRASHED;
3406 }
3407
3408 return (1);
3409 }
3410
3411 void
3412 inm_addref(struct in_multi *inm, int locked)
3413 {
3414 if (!locked)
3415 INM_LOCK_SPIN(inm);
3416 else
3417 INM_LOCK_ASSERT_HELD(inm);
3418
3419 if (++inm->inm_refcount == 0) {
3420 panic("%s: inm=%p wraparound refcnt", __func__, inm);
3421 /* NOTREACHED */
3422 } else if (inm->inm_trace != NULL) {
3423 (*inm->inm_trace)(inm, TRUE);
3424 }
3425 if (!locked)
3426 INM_UNLOCK(inm);
3427 }
3428
3429 void
3430 inm_remref(struct in_multi *inm, int locked)
3431 {
3432 struct ifmultiaddr *ifma;
3433 struct igmp_ifinfo *igi;
3434
3435 if (!locked)
3436 INM_LOCK_SPIN(inm);
3437 else
3438 INM_LOCK_ASSERT_HELD(inm);
3439
3440 if (inm->inm_refcount == 0 || (inm->inm_refcount == 1 && locked)) {
3441 panic("%s: inm=%p negative/missing refcnt", __func__, inm);
3442 /* NOTREACHED */
3443 } else if (inm->inm_trace != NULL) {
3444 (*inm->inm_trace)(inm, FALSE);
3445 }
3446
3447 --inm->inm_refcount;
3448 if (inm->inm_refcount > 0) {
3449 if (!locked)
3450 INM_UNLOCK(inm);
3451 return;
3452 }
3453
3454 /*
3455 * Synchronization with in_getmulti(). In the event the inm has been
3456 * detached, the underlying ifma would still be in the if_multiaddrs
3457 * list, and thus can be looked up via if_addmulti(). At that point,
3458 * the only way to find this inm is via ifma_protospec. To avoid
3459 * race conditions between the last inm_remref() of that inm and its
3460 * use via ifma_protospec, in_multihead lock is used for serialization.
3461 * In order to avoid violating the lock order, we must drop inm_lock
3462 * before acquiring in_multihead lock. To prevent the inm from being
3463 * freed prematurely, we hold an extra reference.
3464 */
3465 ++inm->inm_refcount;
3466 INM_UNLOCK(inm);
3467 in_multihead_lock_shared();
3468 INM_LOCK_SPIN(inm);
3469 --inm->inm_refcount;
3470 if (inm->inm_refcount > 0) {
3471 /* We've lost the race, so abort since inm is still in use */
3472 INM_UNLOCK(inm);
3473 in_multihead_lock_done();
3474 /* If it was locked, return it as such */
3475 if (locked)
3476 INM_LOCK(inm);
3477 return;
3478 }
3479 inm_purge(inm);
3480 ifma = inm->inm_ifma;
3481 inm->inm_ifma = NULL;
3482 inm->inm_ifp = NULL;
3483 igi = inm->inm_igi;
3484 inm->inm_igi = NULL;
3485 INM_UNLOCK(inm);
3486 IFMA_LOCK_SPIN(ifma);
3487 ifma->ifma_protospec = NULL;
3488 IFMA_UNLOCK(ifma);
3489 in_multihead_lock_done();
3490
3491 in_multi_free(inm);
3492 if_delmulti_ifma(ifma);
3493 /* Release reference held to the underlying ifmultiaddr */
3494 IFMA_REMREF(ifma);
3495
3496 if (igi != NULL)
3497 IGI_REMREF(igi);
3498 }
3499
3500 static void
3501 inm_trace(struct in_multi *inm, int refhold)
3502 {
3503 struct in_multi_dbg *inm_dbg = (struct in_multi_dbg *)inm;
3504 ctrace_t *tr;
3505 u_int32_t idx;
3506 u_int16_t *cnt;
3507
3508 if (!(inm->inm_debug & IFD_DEBUG)) {
3509 panic("%s: inm %p has no debug structure", __func__, inm);
3510 /* NOTREACHED */
3511 }
3512 if (refhold) {
3513 cnt = &inm_dbg->inm_refhold_cnt;
3514 tr = inm_dbg->inm_refhold;
3515 } else {
3516 cnt = &inm_dbg->inm_refrele_cnt;
3517 tr = inm_dbg->inm_refrele;
3518 }
3519
3520 idx = atomic_add_16_ov(cnt, 1) % INM_TRACE_HIST_SIZE;
3521 ctrace_record(&tr[idx]);
3522 }
3523
3524 void
3525 in_multihead_lock_exclusive(void)
3526 {
3527 lck_rw_lock_exclusive(&in_multihead_lock);
3528 }
3529
3530 void
3531 in_multihead_lock_shared(void)
3532 {
3533 lck_rw_lock_shared(&in_multihead_lock);
3534 }
3535
3536 void
3537 in_multihead_lock_assert(int what)
3538 {
3539 lck_rw_assert(&in_multihead_lock, what);
3540 }
3541
3542 void
3543 in_multihead_lock_done(void)
3544 {
3545 lck_rw_done(&in_multihead_lock);
3546 }
3547
3548 static struct ip_msource *
3549 ipms_alloc(int how)
3550 {
3551 struct ip_msource *ims;
3552
3553 ims = (how == M_WAITOK) ? zalloc(ipms_zone) : zalloc_noblock(ipms_zone);
3554 if (ims != NULL)
3555 bzero(ims, ipms_size);
3556
3557 return (ims);
3558 }
3559
3560 static void
3561 ipms_free(struct ip_msource *ims)
3562 {
3563 zfree(ipms_zone, ims);
3564 }
3565
3566 static struct in_msource *
3567 inms_alloc(int how)
3568 {
3569 struct in_msource *inms;
3570
3571 inms = (how == M_WAITOK) ? zalloc(inms_zone) :
3572 zalloc_noblock(inms_zone);
3573 if (inms != NULL)
3574 bzero(inms, inms_size);
3575
3576 return (inms);
3577 }
3578
3579 static void
3580 inms_free(struct in_msource *inms)
3581 {
3582 zfree(inms_zone, inms);
3583 }
3584
3585 #ifdef IGMP_DEBUG
3586
3587 static const char *inm_modestrs[] = { "un\n", "in", "ex" };
3588
3589 static const char *
3590 inm_mode_str(const int mode)
3591 {
3592 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3593 return (inm_modestrs[mode]);
3594 return ("??");
3595 }
3596
3597 static const char *inm_statestrs[] = {
3598 "not-member\n",
3599 "silent\n",
3600 "idle\n",
3601 "lazy\n",
3602 "sleeping\n",
3603 "awakening\n",
3604 "query-pending\n",
3605 "sg-query-pending\n",
3606 "leaving"
3607 };
3608
3609 static const char *
3610 inm_state_str(const int state)
3611 {
3612 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3613 return (inm_statestrs[state]);
3614 return ("??");
3615 }
3616
3617 /*
3618 * Dump an in_multi structure to the console.
3619 */
3620 void
3621 inm_print(const struct in_multi *inm)
3622 {
3623 int t;
3624
3625 INM_LOCK_ASSERT_HELD(INM_CAST_TO_NONCONST(inm));
3626
3627 if (igmp_debug == 0)
3628 return;
3629
3630 printf("%s: --- begin inm %p ---\n", __func__, inm);
3631 printf("addr %s ifp %p(%s%d) ifma %p\n",
3632 inet_ntoa(inm->inm_addr),
3633 inm->inm_ifp,
3634 inm->inm_ifp->if_name,
3635 inm->inm_ifp->if_unit,
3636 inm->inm_ifma);
3637 printf("timer %u state %s refcount %u scq.len %u\n",
3638 inm->inm_timer,
3639 inm_state_str(inm->inm_state),
3640 inm->inm_refcount,
3641 inm->inm_scq.ifq_len);
3642 printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3643 inm->inm_igi,
3644 inm->inm_nsrc,
3645 inm->inm_sctimer,
3646 inm->inm_scrv);
3647 for (t = 0; t < 2; t++) {
3648 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3649 inm_mode_str(inm->inm_st[t].iss_fmode),
3650 inm->inm_st[t].iss_asm,
3651 inm->inm_st[t].iss_ex,
3652 inm->inm_st[t].iss_in,
3653 inm->inm_st[t].iss_rec);
3654 }
3655 printf("%s: --- end inm %p ---\n", __func__, inm);
3656 }
3657
3658 #else
3659
3660 void
3661 inm_print(__unused const struct in_multi *inm)
3662 {
3663
3664 }
3665
3666 #endif