]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/classq/classq_sfb.c
xnu-2050.48.11.tar.gz
[apple/xnu.git] / bsd / net / classq / classq_sfb.c
1 /*
2 * Copyright (c) 2011-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/socket.h>
34 #include <sys/sockio.h>
35 #include <sys/systm.h>
36 #include <sys/sysctl.h>
37 #include <sys/syslog.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/kernel.h>
41 #include <sys/kauth.h>
42
43 #include <kern/zalloc.h>
44
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_types.h>
48 #include <net/dlil.h>
49
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/ip.h>
53 #if INET6
54 #include <netinet/ip6.h>
55 #endif
56
57 #include <net/classq/classq_sfb.h>
58 #include <net/flowhash.h>
59 #include <net/net_osdep.h>
60
61 /*
62 * Stochastic Fair Blue
63 *
64 * Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha, Kang G. Shin
65 * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
66 *
67 * Based on the NS code with the following parameters:
68 *
69 * bytes: false
70 * decrement: 0.001
71 * increment: 0.005
72 * hold-time: 10ms-50ms (randomized)
73 * algorithm: 0
74 * pbox: 1
75 * pbox-time: 50-100ms (randomized)
76 * hinterval: 11-23 (randomized)
77 *
78 * This implementation uses L = 2 and N = 32 for 2 sets of:
79 *
80 * B[L][N]: L x N array of bins (L levels, N bins per level)
81 *
82 * Each set effectively creates 32^2 virtual buckets (bin combinations)
83 * while using only O(32*2) states.
84 *
85 * Given a 32-bit hash value, we divide it such that octets [0,1,2,3] are
86 * used as index for the bins across the 2 levels, where level 1 uses [0,2]
87 * and level 2 uses [1,3]. The 2 values per level correspond to the indices
88 * for the current and warm-up sets (section 4.4. in the SFB paper regarding
89 * Moving Hash Functions explains the purposes of these 2 sets.)
90 */
91
92 /*
93 * Use Murmur3A_x86_32 for hash function. It seems to perform consistently
94 * across platforms for 1-word key (32-bit flowhash value). See flowhash.h
95 * for other alternatives. We only need 16-bit hash output.
96 */
97 #define SFB_HASH net_flowhash_mh3_x86_32
98 #define SFB_HASHMASK HASHMASK(16)
99
100 #define SFB_BINMASK(_x) \
101 ((_x) & HASHMASK(SFB_BINS_SHIFT))
102
103 #define SFB_BINST(_sp, _l, _n, _c) \
104 (&(*(_sp)->sfb_bins)[_c].stats[_l][_n])
105
106 #define SFB_BINFT(_sp, _l, _n, _c) \
107 (&(*(_sp)->sfb_bins)[_c].freezetime[_l][_n])
108
109 #define SFB_FC_LIST(_sp, _n) \
110 (&(*(_sp)->sfb_fc_lists)[_n])
111
112 /*
113 * The holdtime parameter determines the minimum time interval between
114 * two successive updates of the marking probability. In the event the
115 * uplink speed is not known, a default value is chosen and is randomized
116 * to be within the following range.
117 */
118 #define HOLDTIME_BASE (100ULL * 1000 * 1000) /* 100ms */
119 #define HOLDTIME_MIN (10ULL * 1000 * 1000) /* 10ms */
120 #define HOLDTIME_MAX (100ULL * 1000 * 1000) /* 100ms */
121
122 /*
123 * The pboxtime parameter determines the bandwidth allocated for rogue
124 * flows, i.e. the rate limiting bandwidth. In the event the uplink speed
125 * is not known, a default value is chosen and is randomized to be within
126 * the following range.
127 */
128 #define PBOXTIME_BASE (300ULL * 1000 * 1000) /* 300ms */
129 #define PBOXTIME_MIN (30ULL * 1000 * 1000) /* 30ms */
130 #define PBOXTIME_MAX (300ULL * 1000 * 1000) /* 300ms */
131
132 #define SFB_RANDOM(sp, tmin, tmax) ((sfb_random(sp) % (tmax)) + (tmin))
133
134 #define SFB_PKT_PBOX PF_TAG_QUEUE1 /* in penalty box */
135
136 /* The following mantissa values are in SFB_FP_SHIFT Q format */
137 #define SFB_MAX_PMARK (1 << SFB_FP_SHIFT) /* Q14 representation of 1.00 */
138
139 /*
140 * These are d1 (increment) and d2 (decrement) parameters, used to determine
141 * the amount by which the marking probability is incremented when the queue
142 * overflows, or is decremented when the link is idle. d1 is set higher than
143 * d2, because link underutilization can occur when congestion management is
144 * either too conservative or too aggressive, but packet loss occurs only
145 * when congestion management is too conservative. By weighing heavily
146 * against packet loss, it can quickly reach to a substantial increase in
147 * traffic load.
148 */
149 #define SFB_INCREMENT 82 /* Q14 representation of 0.005 */
150 #define SFB_DECREMENT 16 /* Q14 representation of 0.001 */
151
152 #define SFB_PMARK_TH 16056 /* Q14 representation of 0.98 */
153 #define SFB_PMARK_WARM 3276 /* Q14 representation of 0.2 */
154
155 #define SFB_PMARK_INC(_bin) do { \
156 (_bin)->pmark += sfb_increment; \
157 if ((_bin)->pmark > SFB_MAX_PMARK) \
158 (_bin)->pmark = SFB_MAX_PMARK; \
159 } while (0)
160
161 #define SFB_PMARK_DEC(_bin) do { \
162 if ((_bin)->pmark > 0) { \
163 (_bin)->pmark -= sfb_decrement; \
164 if ((_bin)->pmark < 0) \
165 (_bin)->pmark = 0; \
166 } \
167 } while (0)
168
169 #define HINTERVAL_MIN (10) /* 10 seconds */
170 #define HINTERVAL_MAX (20) /* 20 seconds */
171 #define SFB_HINTERVAL(sp) ((sfb_random(sp) % HINTERVAL_MAX) + HINTERVAL_MIN)
172
173 #define DEQUEUE_DECAY 7 /* ilog2 of EWMA decay rate, (128) */
174 #define DEQUEUE_SPIKE(_new, _old) \
175 ((u_int64_t)ABS((int64_t)(_new) - (int64_t)(_old)) > ((_old) << 11))
176
177 #define ABS(v) (((v) > 0) ? (v) : -(v))
178
179 #define SFB_ZONE_MAX 32 /* maximum elements in zone */
180 #define SFB_ZONE_NAME "classq_sfb" /* zone name */
181
182 /* Place the flow control entries in current bin on level 0 */
183 #define SFB_FC_LEVEL 0
184
185 static unsigned int sfb_size; /* size of zone element */
186 static struct zone *sfb_zone; /* zone for sfb */
187
188 /* internal function prototypes */
189 static u_int32_t sfb_random(struct sfb *);
190 static struct mbuf *sfb_getq_flow(struct sfb *, class_queue_t *, u_int32_t,
191 boolean_t);
192 static void sfb_resetq(struct sfb *, cqev_t);
193 static void sfb_calc_holdtime(struct sfb *, u_int64_t);
194 static void sfb_calc_pboxtime(struct sfb *, u_int64_t);
195 static void sfb_calc_hinterval(struct sfb *, u_int64_t *);
196 static void sfb_swap_bins(struct sfb *, u_int32_t);
197 static inline int sfb_pcheck(struct sfb *, struct pf_mtag *);
198 static int sfb_penalize(struct sfb *, struct pf_mtag *, struct timespec *);
199 static void sfb_adjust_bin(struct sfb *, struct sfbbinstats *,
200 struct timespec *, struct timespec *, boolean_t);
201 static void sfb_decrement_bin(struct sfb *, struct sfbbinstats *,
202 struct timespec *, struct timespec *);
203 static void sfb_increment_bin(struct sfb *, struct sfbbinstats *,
204 struct timespec *, struct timespec *);
205 static inline void sfb_dq_update_bins(struct sfb *, struct pf_mtag *,
206 struct timespec *);
207 static inline void sfb_eq_update_bins(struct sfb *, struct pf_mtag *);
208 static int sfb_drop_early(struct sfb *, struct pf_mtag *, u_int16_t *,
209 struct timespec *);
210 static boolean_t sfb_bin_addfcentry(struct sfb *, struct pf_mtag *);
211 static void sfb_fclist_append(struct sfb *, struct sfb_fc_list *);
212 static void sfb_fclists_clean(struct sfb *sp);
213
214 SYSCTL_NODE(_net_classq, OID_AUTO, sfb, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "SFB");
215
216 static u_int64_t sfb_holdtime = 0; /* 0 indicates "automatic" */
217 SYSCTL_QUAD(_net_classq_sfb, OID_AUTO, holdtime, CTLFLAG_RW|CTLFLAG_LOCKED,
218 &sfb_holdtime, "SFB freeze time in nanoseconds");
219
220 static u_int64_t sfb_pboxtime = 0; /* 0 indicates "automatic" */
221 SYSCTL_QUAD(_net_classq_sfb, OID_AUTO, pboxtime, CTLFLAG_RW|CTLFLAG_LOCKED,
222 &sfb_pboxtime, "SFB penalty box time in nanoseconds");
223
224 static u_int64_t sfb_hinterval;
225 SYSCTL_QUAD(_net_classq_sfb, OID_AUTO, hinterval, CTLFLAG_RW|CTLFLAG_LOCKED,
226 &sfb_hinterval, "SFB hash interval in nanoseconds");
227
228 static u_int32_t sfb_increment = SFB_INCREMENT;
229 SYSCTL_UINT(_net_classq_sfb, OID_AUTO, increment, CTLFLAG_RW|CTLFLAG_LOCKED,
230 &sfb_increment, SFB_INCREMENT, "SFB increment [d1]");
231
232 static u_int32_t sfb_decrement = SFB_DECREMENT;
233 SYSCTL_UINT(_net_classq_sfb, OID_AUTO, decrement, CTLFLAG_RW|CTLFLAG_LOCKED,
234 &sfb_decrement, SFB_DECREMENT, "SFB decrement [d2]");
235
236 static u_int32_t sfb_allocation = 0; /* 0 means "automatic" */
237 SYSCTL_UINT(_net_classq_sfb, OID_AUTO, allocation, CTLFLAG_RW|CTLFLAG_LOCKED,
238 &sfb_allocation, 0, "SFB bin allocation");
239
240 static u_int32_t sfb_ratelimit = 0;
241 SYSCTL_UINT(_net_classq_sfb, OID_AUTO, ratelimit, CTLFLAG_RW|CTLFLAG_LOCKED,
242 &sfb_ratelimit, 0, "SFB rate limit");
243
244 #define MBPS (1ULL * 1000 * 1000)
245 #define GBPS (MBPS * 1000)
246
247 struct sfb_time_tbl {
248 u_int64_t speed; /* uplink speed */
249 u_int64_t holdtime; /* hold time */
250 u_int64_t pboxtime; /* penalty box time */
251 };
252
253 static struct sfb_time_tbl sfb_ttbl[] = {
254 { 1 * MBPS, HOLDTIME_BASE * 1000, PBOXTIME_BASE * 1000 },
255 { 10 * MBPS, HOLDTIME_BASE * 100, PBOXTIME_BASE * 100 },
256 { 100 * MBPS, HOLDTIME_BASE * 10, PBOXTIME_BASE * 10 },
257 { 1 * GBPS, HOLDTIME_BASE, PBOXTIME_BASE },
258 { 10 * GBPS, HOLDTIME_BASE / 10, PBOXTIME_BASE / 10 },
259 { 100 * GBPS, HOLDTIME_BASE / 100, PBOXTIME_BASE / 100 },
260 { 0, 0, 0 }
261 };
262
263 void
264 sfb_init(void)
265 {
266 _CASSERT(SFBF_ECN4 == CLASSQF_ECN4);
267 _CASSERT(SFBF_ECN6 == CLASSQF_ECN6);
268
269 sfb_size = sizeof (struct sfb);
270 sfb_zone = zinit(sfb_size, SFB_ZONE_MAX * sfb_size,
271 0, SFB_ZONE_NAME);
272 if (sfb_zone == NULL) {
273 panic("%s: failed allocating %s", __func__, SFB_ZONE_NAME);
274 /* NOTREACHED */
275 }
276 zone_change(sfb_zone, Z_EXPAND, TRUE);
277 zone_change(sfb_zone, Z_CALLERACCT, TRUE);
278 }
279
280 static u_int32_t
281 sfb_random(struct sfb *sp)
282 {
283 IFCQ_CONVERT_LOCK(&sp->sfb_ifp->if_snd);
284 return (random());
285 }
286
287 static void
288 sfb_calc_holdtime(struct sfb *sp, u_int64_t outbw)
289 {
290 u_int64_t holdtime;
291
292 if (sfb_holdtime != 0) {
293 holdtime = sfb_holdtime;
294 } else if (outbw == 0) {
295 holdtime = SFB_RANDOM(sp, HOLDTIME_MIN, HOLDTIME_MAX);
296 } else {
297 unsigned int n, i;
298
299 n = sfb_ttbl[0].holdtime;
300 for (i = 0; sfb_ttbl[i].speed != 0; i++) {
301 if (outbw < sfb_ttbl[i].speed)
302 break;
303 n = sfb_ttbl[i].holdtime;
304 }
305 holdtime = n;
306 }
307 net_nsectimer(&holdtime, &sp->sfb_holdtime);
308 }
309
310 static void
311 sfb_calc_pboxtime(struct sfb *sp, u_int64_t outbw)
312 {
313 u_int64_t pboxtime;
314
315 if (sfb_pboxtime != 0) {
316 pboxtime = sfb_pboxtime;
317 } else if (outbw == 0) {
318 pboxtime = SFB_RANDOM(sp, PBOXTIME_MIN, PBOXTIME_MAX);
319 } else {
320 unsigned int n, i;
321
322 n = sfb_ttbl[0].pboxtime;
323 for (i = 0; sfb_ttbl[i].speed != 0; i++) {
324 if (outbw < sfb_ttbl[i].speed)
325 break;
326 n = sfb_ttbl[i].pboxtime;
327 }
328 pboxtime = n;
329 }
330 net_nsectimer(&pboxtime, &sp->sfb_pboxtime);
331 net_timerclear(&sp->sfb_pboxfreeze);
332 }
333
334 static void
335 sfb_calc_hinterval(struct sfb *sp, u_int64_t *t)
336 {
337 u_int64_t hinterval;
338 struct timespec now;
339
340 if (t != NULL) {
341 /*
342 * TODO adi@apple.com: use dq_avg to derive hinterval.
343 */
344 hinterval = *t;
345 }
346
347 if (sfb_hinterval != 0)
348 hinterval = sfb_hinterval;
349 else if (t == NULL || hinterval == 0)
350 hinterval = ((u_int64_t)SFB_HINTERVAL(sp) * NSEC_PER_SEC);
351
352 net_nsectimer(&hinterval, &sp->sfb_hinterval);
353
354 nanouptime(&now);
355 net_timeradd(&now, &sp->sfb_hinterval, &sp->sfb_nextreset);
356 }
357
358 /*
359 * sfb support routines
360 */
361 struct sfb *
362 sfb_alloc(struct ifnet *ifp, u_int32_t qid, u_int32_t qlim, u_int32_t flags)
363 {
364 struct sfb *sp;
365
366 VERIFY(ifp != NULL && qlim > 0);
367
368 sp = zalloc(sfb_zone);
369 if (sp == NULL) {
370 log(LOG_ERR, "%s: SFB unable to allocate\n", if_name(ifp));
371 return (NULL);
372 }
373
374 bzero(sp, sfb_size);
375 if ((sp->sfb_bins = _MALLOC(sizeof (*sp->sfb_bins), M_DEVBUF,
376 M_WAITOK|M_ZERO)) == NULL) {
377 log(LOG_ERR, "%s: SFB unable to allocate bins\n", if_name(ifp));
378 sfb_destroy(sp);
379 return (NULL);
380 }
381
382 if ((sp->sfb_fc_lists = _MALLOC(sizeof (*sp->sfb_fc_lists), M_DEVBUF,
383 M_WAITOK|M_ZERO)) == NULL) {
384 log(LOG_ERR, "%s: SFB unable to allocate flow control lists\n",
385 if_name(ifp));
386 sfb_destroy(sp);
387 return(NULL);
388 }
389
390 sp->sfb_flags = (flags & SFBF_USERFLAGS);
391 sp->sfb_ifp = ifp;
392 sp->sfb_qlim = qlim;
393 sp->sfb_qid = qid;
394
395 sfb_resetq(sp, -1);
396
397 return (sp);
398 }
399
400 static void
401 sfb_fclist_append(struct sfb *sp, struct sfb_fc_list *fcl)
402 {
403 IFCQ_CONVERT_LOCK(&sp->sfb_ifp->if_snd);
404 ifnet_fclist_append(sp, fcl);
405 }
406
407 static void
408 sfb_fclists_clean(struct sfb *sp)
409 {
410 int i;
411
412 /* Move all the flow control entries to the ifnet list */
413 for (i = 0; i < SFB_BINS; ++i) {
414 struct sfb_fc_list *fcl = SFB_FC_LIST(sp, i);
415 if (!SLIST_EMPTY(fcl))
416 sfb_fclist_append(sp, fcl);
417 }
418 }
419
420 void
421 sfb_destroy(struct sfb *sp)
422 {
423 sfb_fclists_clean(sp);
424 if (sp->sfb_bins != NULL) {
425 _FREE(sp->sfb_bins, M_DEVBUF);
426 sp->sfb_bins = NULL;
427 }
428 if (sp->sfb_fc_lists != NULL) {
429 _FREE(sp->sfb_fc_lists, M_DEVBUF);
430 sp->sfb_fc_lists = NULL;
431 }
432 zfree(sfb_zone, sp);
433 }
434
435 static void
436 sfb_resetq(struct sfb *sp, cqev_t ev)
437 {
438 struct ifnet *ifp = sp->sfb_ifp;
439 u_int64_t eff_rate;
440
441 VERIFY(ifp != NULL);
442
443 if (ev != CLASSQ_EV_LINK_DOWN) {
444 (*sp->sfb_bins)[0].fudge = sfb_random(sp);
445 (*sp->sfb_bins)[1].fudge = sfb_random(sp);
446 sp->sfb_allocation = ((sfb_allocation == 0) ?
447 (sp->sfb_qlim / 3) : sfb_allocation);
448 sp->sfb_drop_thresh = sp->sfb_allocation +
449 (sp->sfb_allocation >> 1);
450 }
451
452 sp->sfb_clearpkts = 0;
453 sp->sfb_current = 0;
454
455 eff_rate = ifnet_output_linkrate(ifp);
456 sp->sfb_eff_rate = eff_rate;
457
458 sfb_calc_holdtime(sp, eff_rate);
459 sfb_calc_pboxtime(sp, eff_rate);
460 sfb_calc_hinterval(sp, NULL);
461
462 if (ev == CLASSQ_EV_LINK_DOWN ||
463 ev == CLASSQ_EV_LINK_UP)
464 sfb_fclists_clean(sp);
465
466 bzero(sp->sfb_bins, sizeof (*sp->sfb_bins));
467 bzero(&sp->sfb_stats, sizeof (sp->sfb_stats));
468
469 if (ev == CLASSQ_EV_LINK_DOWN || !classq_verbose)
470 return;
471
472 log(LOG_DEBUG, "%s: SFB qid=%d, holdtime=%llu nsec, "
473 "pboxtime=%llu nsec, allocation=%d, drop_thresh=%d, "
474 "hinterval=%d sec, sfb_bins=%d bytes, eff_rate=%llu bps\n",
475 if_name(ifp), sp->sfb_qid, (u_int64_t)sp->sfb_holdtime.tv_nsec,
476 (u_int64_t)sp->sfb_pboxtime.tv_nsec,
477 (u_int32_t)sp->sfb_allocation, (u_int32_t)sp->sfb_drop_thresh,
478 (int)sp->sfb_hinterval.tv_sec, (int)sizeof (*sp->sfb_bins),
479 eff_rate);
480 }
481
482 void
483 sfb_getstats(struct sfb *sp, struct sfb_stats *sps)
484 {
485 sps->allocation = sp->sfb_allocation;
486 sps->dropthresh = sp->sfb_drop_thresh;
487 sps->clearpkts = sp->sfb_clearpkts;
488 sps->current = sp->sfb_current;
489
490 net_timernsec(&sp->sfb_holdtime, &sp->sfb_stats.hold_time);
491 net_timernsec(&sp->sfb_pboxtime, &sp->sfb_stats.pbox_time);
492 net_timernsec(&sp->sfb_hinterval, &sp->sfb_stats.rehash_intval);
493 *(&(sps->sfbstats)) = *(&(sp->sfb_stats));
494
495 _CASSERT(sizeof ((*sp->sfb_bins)[0].stats) ==
496 sizeof (sps->binstats[0].stats));
497
498 bcopy(&(*sp->sfb_bins)[0].stats, &sps->binstats[0].stats,
499 sizeof (sps->binstats[0].stats));
500 bcopy(&(*sp->sfb_bins)[1].stats, &sps->binstats[1].stats,
501 sizeof (sps->binstats[1].stats));
502 }
503
504 static void
505 sfb_swap_bins(struct sfb *sp, u_int32_t len)
506 {
507 int i, j, s;
508
509 if (sp->sfb_flags & SFBF_SUSPENDED)
510 return;
511
512 s = sp->sfb_current;
513 VERIFY((s + (s ^ 1)) == 1);
514
515 (*sp->sfb_bins)[s].fudge = sfb_random(sp); /* recompute perturbation */
516 sp->sfb_clearpkts = len;
517 sp->sfb_stats.num_rehash++;
518
519 s = (sp->sfb_current ^= 1); /* flip the bit (swap current) */
520
521 if (classq_verbose) {
522 log(LOG_DEBUG, "%s: SFB qid=%d, set %d is now current, "
523 "qlen=%d\n", if_name(sp->sfb_ifp), sp->sfb_qid, s, len);
524 }
525
526 /* clear freezetime for all current bins */
527 bzero(&(*sp->sfb_bins)[s].freezetime,
528 sizeof ((*sp->sfb_bins)[s].freezetime));
529
530 /* clear/adjust bin statistics and flow control lists */
531 for (i = 0; i < SFB_BINS; i++) {
532 struct sfb_fc_list *fcl = SFB_FC_LIST(sp, i);
533
534 if (!SLIST_EMPTY(fcl))
535 sfb_fclist_append(sp, fcl);
536
537 for (j = 0; j < SFB_LEVELS; j++) {
538 struct sfbbinstats *cbin, *wbin;
539
540 cbin = SFB_BINST(sp, j, i, s); /* current */
541 wbin = SFB_BINST(sp, j, i, s ^ 1); /* warm-up */
542
543 cbin->pkts = 0;
544 if (cbin->pmark > SFB_MAX_PMARK)
545 cbin->pmark = SFB_MAX_PMARK;
546 if (cbin->pmark < 0)
547 cbin->pmark = 0;
548
549 /*
550 * Keep pmark from before to identify
551 * non-responsives immediately.
552 */
553 if (wbin->pmark > SFB_PMARK_WARM)
554 wbin->pmark = SFB_PMARK_WARM;
555 }
556 }
557 }
558
559 static inline int
560 sfb_pcheck(struct sfb *sp, struct pf_mtag *t)
561 {
562 #if SFB_LEVELS != 2
563 int i, n;
564 #endif /* SFB_LEVELS != 2 */
565 int s;
566
567 s = sp->sfb_current;
568 VERIFY((s + (s ^ 1)) == 1);
569
570 /*
571 * For current bins, returns 1 if all pmark >= SFB_PMARK_TH,
572 * 0 otherwise; optimize for SFB_LEVELS=2.
573 */
574 #if SFB_LEVELS == 2
575 /*
576 * Level 0: bin index at [0] for set 0; [2] for set 1
577 * Level 1: bin index at [1] for set 0; [3] for set 1
578 */
579 if (SFB_BINST(sp, 0, SFB_BINMASK(t->pftag_qpriv8[(s << 1)]),
580 s)->pmark < SFB_PMARK_TH ||
581 SFB_BINST(sp, 1, SFB_BINMASK(t->pftag_qpriv8[(s << 1) + 1]),
582 s)->pmark < SFB_PMARK_TH)
583 return (0);
584 #else /* SFB_LEVELS != 2 */
585 for (i = 0; i < SFB_LEVELS; i++) {
586 if (s == 0) /* set 0, bin index [0,1] */
587 n = SFB_BINMASK(t->pftag_qpriv8[i]);
588 else /* set 1, bin index [2,3] */
589 n = SFB_BINMASK(t->pftag_qpriv8[i + 2]);
590
591 if (SFB_BINST(sp, i, n, s)->pmark < SFB_PMARK_TH)
592 return (0);
593 }
594 #endif /* SFB_LEVELS != 2 */
595 return (1);
596 }
597
598 static int
599 sfb_penalize(struct sfb *sp, struct pf_mtag *t, struct timespec *now)
600 {
601 struct timespec delta = { 0, 0 };
602
603 /* If minimum pmark of current bins is < SFB_PMARK_TH, we're done */
604 if (!sfb_ratelimit || !sfb_pcheck(sp, t))
605 return (0);
606
607 net_timersub(now, &sp->sfb_pboxfreeze, &delta);
608 if (net_timercmp(&delta, &sp->sfb_pboxtime, <)) {
609 #if SFB_LEVELS != 2
610 int i;
611 #endif /* SFB_LEVELS != 2 */
612 struct sfbbinstats *bin;
613 int n, w;
614
615 w = sp->sfb_current ^ 1;
616 VERIFY((w + (w ^ 1)) == 1);
617
618 /*
619 * Update warm-up bins; optimize for SFB_LEVELS=2
620 */
621 #if SFB_LEVELS == 2
622 /* Level 0: bin index at [0] for set 0; [2] for set 1 */
623 n = SFB_BINMASK(t->pftag_qpriv8[(w << 1)]);
624 bin = SFB_BINST(sp, 0, n, w);
625 if (bin->pkts >= sp->sfb_allocation)
626 sfb_increment_bin(sp, bin, SFB_BINFT(sp, 0, n, w), now);
627
628 /* Level 0: bin index at [1] for set 0; [3] for set 1 */
629 n = SFB_BINMASK(t->pftag_qpriv8[(w << 1) + 1]);
630 bin = SFB_BINST(sp, 1, n, w);
631 if (bin->pkts >= sp->sfb_allocation)
632 sfb_increment_bin(sp, bin, SFB_BINFT(sp, 1, n, w), now);
633 #else /* SFB_LEVELS != 2 */
634 for (i = 0; i < SFB_LEVELS; i++) {
635 if (w == 0) /* set 0, bin index [0,1] */
636 n = SFB_BINMASK(t->pftag_qpriv8[i]);
637 else /* set 1, bin index [2,3] */
638 n = SFB_BINMASK(t->pftag_qpriv8[i + 2]);
639
640 bin = SFB_BINST(sp, i, n, w);
641 if (bin->pkts >= sp->sfb_allocation) {
642 sfb_increment_bin(sp, bin,
643 SFB_BINFT(sp, i, n, w), now);
644 }
645 }
646 #endif /* SFB_LEVELS != 2 */
647 return (1);
648 }
649
650 /* non-conformant or else misclassified flow; queue it anyway */
651 t->pftag_flags |= SFB_PKT_PBOX;
652 *(&sp->sfb_pboxfreeze) = *now;
653
654 return (0);
655 }
656
657 static void
658 sfb_adjust_bin(struct sfb *sp, struct sfbbinstats *bin, struct timespec *ft,
659 struct timespec *now, boolean_t inc)
660 {
661 struct timespec delta;
662
663 net_timersub(now, ft, &delta);
664 if (net_timercmp(&delta, &sp->sfb_holdtime, <)) {
665 if (classq_verbose > 1) {
666 log(LOG_DEBUG, "%s: SFB qid=%d, %s update frozen "
667 "(delta=%llu nsec)\n", if_name(sp->sfb_ifp),
668 sp->sfb_qid, inc ? "increment" : "decrement",
669 (u_int64_t)delta.tv_nsec);
670 }
671 return;
672 }
673
674 /* increment/decrement marking probability */
675 *ft = *now;
676 if (inc)
677 SFB_PMARK_INC(bin);
678 else
679 SFB_PMARK_DEC(bin);
680 }
681
682 static void
683 sfb_decrement_bin(struct sfb *sp, struct sfbbinstats *bin, struct timespec *ft,
684 struct timespec *now)
685 {
686 return (sfb_adjust_bin(sp, bin, ft, now, FALSE));
687 }
688
689 static void
690 sfb_increment_bin(struct sfb *sp, struct sfbbinstats *bin, struct timespec *ft,
691 struct timespec *now)
692 {
693 return (sfb_adjust_bin(sp, bin, ft, now, TRUE));
694 }
695
696 static inline void
697 sfb_dq_update_bins(struct sfb *sp, struct pf_mtag *t, struct timespec *now)
698 {
699 #if SFB_LEVELS != 2 || SFB_FC_LEVEL != 0
700 int i;
701 #endif /* SFB_LEVELS != 2 || SFB_FC_LEVEL != 0 */
702 struct sfbbinstats *bin;
703 int s, n;
704 struct sfb_fc_list *fcl = NULL;
705
706 s = sp->sfb_current;
707 VERIFY((s + (s ^ 1)) == 1);
708
709 /*
710 * Update current bins; optimize for SFB_LEVELS=2 and SFB_FC_LEVEL=0
711 */
712 #if SFB_LEVELS == 2 && SFB_FC_LEVEL == 0
713 /* Level 0: bin index at [0] for set 0; [2] for set 1 */
714 n = SFB_BINMASK(t->pftag_qpriv8[(s << 1)]);
715 bin = SFB_BINST(sp, 0, n, s);
716
717 VERIFY(bin->pkts > 0);
718 if (--bin->pkts == 0) {
719 sfb_decrement_bin(sp, bin, SFB_BINFT(sp, 0, n, s), now);
720 }
721 if (bin->pkts <= (sp->sfb_allocation >> 2)) {
722 /* deliver flow control feedback to the sockets */
723 fcl = SFB_FC_LIST(sp, n);
724 if (!SLIST_EMPTY(fcl))
725 sfb_fclist_append(sp, fcl);
726 }
727
728 /* Level 1: bin index at [1] for set 0; [3] for set 1 */
729 n = SFB_BINMASK(t->pftag_qpriv8[(s << 1) + 1]);
730 bin = SFB_BINST(sp, 1, n, s);
731
732 VERIFY(bin->pkts > 0);
733 if (--bin->pkts == 0)
734 sfb_decrement_bin(sp, bin, SFB_BINFT(sp, 1, n, s), now);
735 #else /* SFB_LEVELS != 2 || SFB_FC_LEVEL != 0 */
736 for (i = 0; i < SFB_LEVELS; i++) {
737 if (s == 0) /* set 0, bin index [0,1] */
738 n = SFB_BINMASK(t->pftag_qpriv8[i]);
739 else /* set 1, bin index [2,3] */
740 n = SFB_BINMASK(t->pftag_qpriv8[i + 2]);
741
742 bin = SFB_BINST(sp, i, n, s);
743
744 VERIFY(bin->pkts > 0);
745 if (--bin->pkts == 0) {
746 sfb_decrement_bin(sp, bin,
747 SFB_BINFT(sp, i, n, s), now);
748 }
749 if (bin->pkts <= (sp->sfb_allocation >> 2)) {
750 /* deliver flow control feedback to the sockets */
751 if (i == SFB_FC_LEVEL) {
752 fcl = SFB_FC_LIST(sp, n);
753 if (!SLIST_EMPTY(fcl))
754 sfb_fclist_append(sp, fcl);
755 }
756 }
757 }
758 #endif /* SFB_LEVELS != 2 || SFB_FC_LEVEL != 0 */
759 }
760
761 static inline void
762 sfb_eq_update_bins(struct sfb *sp, struct pf_mtag *t)
763 {
764 #if SFB_LEVELS != 2
765 int i, n;
766 #endif /* SFB_LEVELS != 2 */
767 int s;
768
769 s = sp->sfb_current;
770 VERIFY((s + (s ^ 1)) == 1);
771
772 /*
773 * Update current bins; optimize for SFB_LEVELS=2
774 */
775 #if SFB_LEVELS == 2
776 /* Level 0: bin index at [0] for set 0; [2] for set 1 */
777 SFB_BINST(sp, 0, SFB_BINMASK(t->pftag_qpriv8[(s << 1)]), s)->pkts++;
778
779 /* Level 1: bin index at [1] for set 0; [3] for set 1 */
780 SFB_BINST(sp, 1, SFB_BINMASK(t->pftag_qpriv8[(s << 1) + 1]), s)->pkts++;
781 #else /* SFB_LEVELS != 2 */
782 for (i = 0; i < SFB_LEVELS; i++) {
783 if (s == 0) /* set 0, bin index [0,1] */
784 n = SFB_BINMASK(t->pftag_qpriv8[i]);
785 else /* set 1, bin index [2,3] */
786 n = SFB_BINMASK(t->pftag_qpriv8[i + 2]);
787
788 SFB_BINST(sp, i, n, s)->pkts++;
789 }
790 #endif /* SFB_LEVELS != 2 */
791 }
792
793 static boolean_t
794 sfb_bin_addfcentry(struct sfb *sp, struct pf_mtag *t)
795 {
796 struct sfb_bin_fcentry *fce;
797 u_int32_t flowhash;
798 struct sfb_fc_list *fcl;
799 int s;
800
801 s = sp->sfb_current;
802 VERIFY((s + (s ^ 1)) == 1);
803
804 flowhash = t->pftag_flowhash;
805
806 if (flowhash == 0) {
807 sp->sfb_stats.null_flowhash++;
808 return (FALSE);
809 }
810
811 /*
812 * Use value at index 0 for set 0 and
813 * value at index 2 for set 1
814 */
815 fcl = SFB_FC_LIST(sp, SFB_BINMASK(t->pftag_qpriv8[(s << 1)]));
816 SLIST_FOREACH(fce, fcl, fce_link) {
817 if (fce->fce_flowhash == flowhash) {
818 /* Already on flow control list; just return */
819 return (TRUE);
820 }
821 }
822
823 IFCQ_CONVERT_LOCK(&sp->sfb_ifp->if_snd);
824 fce = ifnet_fce_alloc(M_WAITOK);
825 if (fce != NULL) {
826 fce->fce_flowhash = flowhash;
827 SLIST_INSERT_HEAD(fcl, fce, fce_link);
828 sp->sfb_stats.flow_controlled++;
829 }
830
831 return (fce != NULL);
832 }
833
834 /*
835 * early-drop probability is kept in pmark of each bin of the flow
836 */
837 static int
838 sfb_drop_early(struct sfb *sp, struct pf_mtag *t, u_int16_t *pmin,
839 struct timespec *now)
840 {
841 #if SFB_LEVELS != 2
842 int i;
843 #endif /* SFB_LEVELS != 2 */
844 struct sfbbinstats *bin;
845 int s, n, ret = 0;
846
847 s = sp->sfb_current;
848 VERIFY((s + (s ^ 1)) == 1);
849
850 *pmin = (u_int16_t)-1;
851
852 /*
853 * Update current bins; optimize for SFB_LEVELS=2
854 */
855 #if SFB_LEVELS == 2
856 /* Level 0: bin index at [0] for set 0; [2] for set 1 */
857 n = SFB_BINMASK(t->pftag_qpriv8[(s << 1)]);
858 bin = SFB_BINST(sp, 0, n, s);
859 if (*pmin > (u_int16_t)bin->pmark)
860 *pmin = (u_int16_t)bin->pmark;
861
862 if (bin->pkts >= sp->sfb_allocation) {
863 if (bin->pkts >= sp->sfb_drop_thresh)
864 ret = 1; /* drop or mark */
865 sfb_increment_bin(sp, bin, SFB_BINFT(sp, 0, n, s), now);
866 }
867
868 /* Level 1: bin index at [1] for set 0; [3] for set 1 */
869 n = SFB_BINMASK(t->pftag_qpriv8[(s << 1) + 1]);
870 bin = SFB_BINST(sp, 1, n, s);
871 if (*pmin > (u_int16_t)bin->pmark)
872 *pmin = (u_int16_t)bin->pmark;
873
874 if (bin->pkts >= sp->sfb_allocation) {
875 if (bin->pkts >= sp->sfb_drop_thresh)
876 ret = 1; /* drop or mark */
877 sfb_increment_bin(sp, bin, SFB_BINFT(sp, 1, n, s), now);
878 }
879 #else /* SFB_LEVELS != 2 */
880 for (i = 0; i < SFB_LEVELS; i++) {
881 if (s == 0) /* set 0, bin index [0,1] */
882 n = SFB_BINMASK(t->pftag_qpriv8[i]);
883 else /* set 1, bin index [2,3] */
884 n = SFB_BINMASK(t->pftag_qpriv8[i + 2]);
885
886 bin = SFB_BINST(sp, i, n, s);
887 if (*pmin > (u_int16_t)bin->pmark)
888 *pmin = (u_int16_t)bin->pmark;
889
890 if (bin->pkts >= sp->sfb_allocation) {
891 if (bin->pkts >= sp->sfb_drop_thresh)
892 ret = 1; /* drop or mark */
893 sfb_increment_bin(sp, bin,
894 SFB_BINFT(sp, i, n, s), now);
895 }
896 }
897 #endif /* SFB_LEVELS != 2 */
898
899 if (sp->sfb_flags & SFBF_SUSPENDED)
900 ret = 1; /* drop or mark */
901
902 return (ret);
903 }
904
905 #define DTYPE_NODROP 0 /* no drop */
906 #define DTYPE_FORCED 1 /* a "forced" drop */
907 #define DTYPE_EARLY 2 /* an "unforced" (early) drop */
908
909 int
910 sfb_addq(struct sfb *sp, class_queue_t *q, struct mbuf *m, struct pf_mtag *t)
911 {
912 struct timespec now;
913 int droptype, s;
914 u_int16_t pmin;
915 int fc_adv = 0;
916 int ret = CLASSQEQ_SUCCESS;
917
918 nanouptime(&now);
919
920 s = sp->sfb_current;
921 VERIFY((s + (s ^ 1)) == 1);
922
923 /* time to swap the bins? */
924 if (net_timercmp(&now, &sp->sfb_nextreset, >=)) {
925 net_timeradd(&now, &sp->sfb_hinterval, &sp->sfb_nextreset);
926 sfb_swap_bins(sp, qlen(q));
927 s = sp->sfb_current;
928 VERIFY((s + (s ^ 1)) == 1);
929 }
930
931 t->pftag_flags &= ~SFB_PKT_PBOX;
932 t->pftag_qpriv16[s] =
933 (SFB_HASH(&t->pftag_flowhash, sizeof (t->pftag_flowhash),
934 (*sp->sfb_bins)[s].fudge) & SFB_HASHMASK);
935 t->pftag_qpriv16[s ^ 1] =
936 (SFB_HASH(&t->pftag_flowhash, sizeof (t->pftag_flowhash),
937 (*sp->sfb_bins)[s ^ 1].fudge) & SFB_HASHMASK);
938
939 /* see if we drop early */
940 droptype = DTYPE_NODROP;
941 if (sfb_drop_early(sp, t, &pmin, &now)) {
942 /* flow control, mark or drop by sfb */
943 if ((sp->sfb_flags & SFBF_FLOWCTL) &&
944 (t->pftag_flags & PF_TAG_FLOWADV)) {
945 fc_adv = 1;
946 /* drop all during suspension or for non-TCP */
947 if ((sp->sfb_flags & SFBF_SUSPENDED) ||
948 !(t->pftag_flags & PF_TAG_TCP)) {
949 droptype = DTYPE_EARLY;
950 sp->sfb_stats.drop_early++;
951 }
952 } else if ((sp->sfb_flags & SFBF_ECN) &&
953 (t->pftag_flags & PF_TAG_TCP) && /* only for TCP */
954 ((sfb_random(sp) & SFB_MAX_PMARK) <= pmin) &&
955 mark_ecn(m, t, sp->sfb_flags) &&
956 !(sp->sfb_flags & SFBF_SUSPENDED)) {
957 /* successfully marked; do not drop. */
958 sp->sfb_stats.marked_packets++;
959 } else {
960 /* unforced drop by sfb */
961 droptype = DTYPE_EARLY;
962 sp->sfb_stats.drop_early++;
963 }
964 }
965
966 /* non-responsive flow penalty? */
967 if (droptype == DTYPE_NODROP && sfb_penalize(sp, t, &now)) {
968 droptype = DTYPE_FORCED;
969 sp->sfb_stats.drop_pbox++;
970 }
971
972 /* if the queue length hits the hard limit, it's a forced drop */
973 if (droptype == DTYPE_NODROP && qlen(q) >= qlimit(q)) {
974 droptype = DTYPE_FORCED;
975 sp->sfb_stats.drop_queue++;
976 }
977
978 if (fc_adv == 1 && droptype != DTYPE_FORCED &&
979 sfb_bin_addfcentry(sp, t)) {
980 /* deliver flow control advisory error */
981 if (droptype == DTYPE_NODROP) {
982 ret = CLASSQEQ_SUCCESS_FC;
983 VERIFY(!(sp->sfb_flags & SFBF_SUSPENDED));
984 } else if (sp->sfb_flags & SFBF_SUSPENDED) {
985 /* dropped due to suspension */
986 ret = CLASSQEQ_DROPPED_SP;
987 } else {
988 /* dropped due to flow-control */
989 ret = CLASSQEQ_DROPPED_FC;
990 }
991 }
992
993 /* if successful enqueue this packet, else drop it */
994 if (droptype == DTYPE_NODROP) {
995 _addq(q, m);
996 } else {
997 IFCQ_CONVERT_LOCK(&sp->sfb_ifp->if_snd);
998 m_freem(m);
999 return ((ret != CLASSQEQ_SUCCESS) ? ret : CLASSQEQ_DROPPED);
1000 }
1001
1002 if (!(t->pftag_flags & SFB_PKT_PBOX))
1003 sfb_eq_update_bins(sp, t);
1004 else
1005 sp->sfb_stats.pbox_packets++;
1006
1007 /* successfully queued */
1008 return (ret);
1009 }
1010
1011 static struct mbuf *
1012 sfb_getq_flow(struct sfb *sp, class_queue_t *q, u_int32_t flow, boolean_t purge)
1013 {
1014 struct timespec now;
1015 struct mbuf *m;
1016 struct pf_mtag *t;
1017
1018 if (!purge && (sp->sfb_flags & SFBF_SUSPENDED))
1019 return (NULL);
1020
1021 nanouptime(&now);
1022
1023 /* flow of 0 means head of queue */
1024 if ((m = ((flow == 0) ? _getq(q) : _getq_flow(q, flow))) == NULL) {
1025 if (!purge)
1026 net_timerclear(&sp->sfb_getqtime);
1027 return (NULL);
1028 }
1029
1030 VERIFY(m->m_flags & M_PKTHDR);
1031
1032 t = m_pftag(m);
1033
1034 if (!purge) {
1035 /* calculate EWMA of dequeues */
1036 if (net_timerisset(&sp->sfb_getqtime)) {
1037 struct timespec delta;
1038 u_int64_t avg, new;
1039
1040 net_timersub(&now, &sp->sfb_getqtime, &delta);
1041 net_timernsec(&delta, &new);
1042 avg = sp->sfb_stats.dequeue_avg;
1043 if (avg > 0) {
1044 int decay = DEQUEUE_DECAY;
1045 /*
1046 * If the time since last dequeue is
1047 * significantly greater than the current
1048 * average, weight the average more against
1049 * the old value.
1050 */
1051 if (DEQUEUE_SPIKE(new, avg))
1052 decay += 5;
1053 avg = (((avg << decay) - avg) + new) >> decay;
1054 } else {
1055 avg = new;
1056 }
1057 sp->sfb_stats.dequeue_avg = avg;
1058 }
1059 *(&sp->sfb_getqtime) = *(&now);
1060 }
1061
1062 /*
1063 * Clearpkts are the ones which were in the queue when the hash
1064 * function was perturbed. Since the perturbation value (fudge),
1065 * and thus bin information for these packets is not known, we do
1066 * not change accounting information while dequeuing these packets.
1067 * It is important not to set the hash interval too small due to
1068 * this reason. A rule of thumb is to set it to K*D, where D is
1069 * the time taken to drain queue.
1070 */
1071 if (t->pftag_flags & SFB_PKT_PBOX) {
1072 t->pftag_flags &= ~SFB_PKT_PBOX;
1073 if (sp->sfb_clearpkts > 0)
1074 sp->sfb_clearpkts--;
1075 } else if (sp->sfb_clearpkts > 0) {
1076 sp->sfb_clearpkts--;
1077 } else {
1078 sfb_dq_update_bins(sp, t, &now);
1079 }
1080
1081 return (m);
1082 }
1083
1084 struct mbuf *
1085 sfb_getq(struct sfb *sp, class_queue_t *q)
1086 {
1087 return (sfb_getq_flow(sp, q, 0, FALSE));
1088 }
1089
1090 void
1091 sfb_purgeq(struct sfb *sp, class_queue_t *q, u_int32_t flow, u_int32_t *packets,
1092 u_int32_t *bytes)
1093 {
1094 u_int32_t cnt = 0, len = 0;
1095 struct mbuf *m;
1096
1097 IFCQ_CONVERT_LOCK(&sp->sfb_ifp->if_snd);
1098
1099 while ((m = sfb_getq_flow(sp, q, flow, TRUE)) != NULL) {
1100 cnt++;
1101 len += m_pktlen(m);
1102 m_freem(m);
1103 }
1104
1105 if (packets != NULL)
1106 *packets = cnt;
1107 if (bytes != NULL)
1108 *bytes = len;
1109 }
1110
1111 void
1112 sfb_updateq(struct sfb *sp, cqev_t ev)
1113 {
1114 struct ifnet *ifp = sp->sfb_ifp;
1115
1116 VERIFY(ifp != NULL);
1117
1118 switch (ev) {
1119 case CLASSQ_EV_LINK_SPEED: {
1120 u_int64_t eff_rate = ifnet_output_linkrate(ifp);
1121
1122 /* update parameters only if rate has changed */
1123 if (eff_rate == sp->sfb_eff_rate)
1124 break;
1125
1126 if (classq_verbose) {
1127 log(LOG_DEBUG, "%s: SFB qid=%d, adapting to new "
1128 "eff_rate=%llu bps\n", if_name(ifp), sp->sfb_qid,
1129 eff_rate);
1130 }
1131 sfb_calc_holdtime(sp, eff_rate);
1132 sfb_calc_pboxtime(sp, eff_rate);
1133 break;
1134 }
1135
1136 case CLASSQ_EV_LINK_UP:
1137 case CLASSQ_EV_LINK_DOWN:
1138 if (classq_verbose) {
1139 log(LOG_DEBUG, "%s: SFB qid=%d, resetting due to "
1140 "link %s\n", if_name(ifp), sp->sfb_qid,
1141 (ev == CLASSQ_EV_LINK_UP) ? "UP" : "DOWN");
1142 }
1143 sfb_resetq(sp, ev);
1144 break;
1145
1146 case CLASSQ_EV_LINK_MTU:
1147 default:
1148 break;
1149 }
1150 }
1151
1152 int
1153 sfb_suspendq(struct sfb *sp, class_queue_t *q, boolean_t on)
1154 {
1155 #pragma unused(q)
1156 struct ifnet *ifp = sp->sfb_ifp;
1157
1158 VERIFY(ifp != NULL);
1159
1160 if ((on && (sp->sfb_flags & SFBF_SUSPENDED)) ||
1161 (!on && !(sp->sfb_flags & SFBF_SUSPENDED)))
1162 return (0);
1163
1164 if (!(sp->sfb_flags & SFBF_FLOWCTL)) {
1165 log(LOG_ERR, "%s: SFB qid=%d, unable to %s queue since "
1166 "flow-control is not enabled", if_name(ifp), sp->sfb_qid,
1167 (on ? "suspend" : "resume"));
1168 return (ENOTSUP);
1169 }
1170
1171 if (classq_verbose) {
1172 log(LOG_DEBUG, "%s: SFB qid=%d, setting state to %s",
1173 if_name(ifp), sp->sfb_qid, (on ? "SUSPENDED" : "RUNNING"));
1174 }
1175
1176 if (on) {
1177 sp->sfb_flags |= SFBF_SUSPENDED;
1178 } else {
1179 sp->sfb_flags &= ~SFBF_SUSPENDED;
1180 sfb_swap_bins(sp, qlen(q));
1181 }
1182
1183 return (0);
1184 }