2 * Copyright (c) 2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * @APPLE_FREE_COPYRIGHT@
36 * Purpose: Routines for handling the machine dependent
40 #include <mach/mach_types.h>
42 #include <kern/clock.h>
43 #include <kern/thread.h>
44 #include <kern/macro_help.h>
46 #include <kern/timer_queue.h>
48 #include <kern/host_notify.h>
50 #include <machine/commpage.h>
51 #include <machine/machine_routines.h>
52 #include <arm/exception.h>
53 #include <arm/cpu_data_internal.h>
55 #include <arm64/proc_reg.h>
57 #include <arm/proc_reg.h>
59 #error Unsupported arch
61 #include <arm/rtclock.h>
63 #include <IOKit/IOPlatformExpert.h>
64 #include <libkern/OSAtomic.h>
66 #include <sys/kdebug.h>
68 #define MAX_TIMEBASE_TRIES 10
70 int rtclock_init(void);
73 deadline_to_decrementer(uint64_t deadline
,
76 timebase_callback(struct timebase_freq_t
* freq
);
78 #if DEVELOPMENT || DEBUG
79 uint32_t absolute_time_validation
= 0;
83 * Configure the real-time clock device at boot
86 rtclock_early_init(void)
88 PE_register_timebase_callback(timebase_callback
);
89 #if DEVELOPMENT || DEBUG
92 /* Enable MAT validation on A0 hardware by default. */
93 absolute_time_validation
= (get_arm_cpu_version() == 0x00);
95 if (kern_feature_override(KF_MATV_OVRD
)) {
96 absolute_time_validation
= 0;
98 if (PE_parse_boot_argn("timebase_validation", &tmp_mv
, sizeof(tmp_mv
))) {
99 absolute_time_validation
= tmp_mv
;
105 timebase_callback(struct timebase_freq_t
* freq
)
107 unsigned long numer
, denom
;
108 uint64_t t64_1
, t64_2
;
111 if (freq
->timebase_den
< 1 || freq
->timebase_den
> 4 ||
112 freq
->timebase_num
< freq
->timebase_den
) {
113 panic("rtclock timebase_callback: invalid constant %ld / %ld",
114 freq
->timebase_num
, freq
->timebase_den
);
117 denom
= freq
->timebase_num
;
118 numer
= freq
->timebase_den
* NSEC_PER_SEC
;
119 // reduce by the greatest common denominator to minimize overflow
128 uint64_t temp
= t64_2
;
129 t64_2
= t64_1
% t64_2
;
135 rtclock_timebase_const
.numer
= (uint32_t)numer
;
136 rtclock_timebase_const
.denom
= (uint32_t)denom
;
137 divisor
= (uint32_t)(freq
->timebase_num
/ freq
->timebase_den
);
139 rtclock_sec_divisor
= divisor
;
140 rtclock_usec_divisor
= divisor
/ USEC_PER_SEC
;
144 * Initialize the system clock device for the current cpu
152 clock_timebase_init();
153 ml_init_lock_timeout();
157 abstime
= mach_absolute_time();
158 cdp
->rtcPop
= EndOfAllTime
; /* Init Pop time */
159 timer_resync_deadlines(); /* Start the timers going */
165 mach_absolute_time(void)
167 #if DEVELOPMENT || DEBUG
168 if (__improbable(absolute_time_validation
== 1)) {
169 static volatile uint64_t s_last_absolute_time
= 0;
170 uint64_t new_absolute_time
, old_absolute_time
;
173 /* ARM 64: We need a dsb here to ensure that the load of s_last_absolute_time
174 * completes before the timebase read. Were the load to complete after the
175 * timebase read, there would be a window for another CPU to update
176 * s_last_absolute_time and leave us in an inconsistent state. Consider the
177 * following interleaving:
179 * Let s_last_absolute_time = t0
180 * CPU0: Read timebase at t1
181 * CPU1: Read timebase at t2
182 * CPU1: Update s_last_absolute_time to t2
183 * CPU0: Load completes
184 * CPU0: Update s_last_absolute_time to t1
186 * This would cause the assertion to fail even though time did not go
187 * backwards. Thus, we use a dsb to guarantee completion of the load before
192 old_absolute_time
= s_last_absolute_time
;
195 __asm__
volatile ("dsb ld" ::: "memory");
197 OSSynchronizeIO(); // See osfmk/arm64/rtclock.c
200 new_absolute_time
= ml_get_timebase();
201 } while (attempts
< MAX_TIMEBASE_TRIES
&& !OSCompareAndSwap64(old_absolute_time
, new_absolute_time
, &s_last_absolute_time
));
203 if (attempts
< MAX_TIMEBASE_TRIES
&& old_absolute_time
> new_absolute_time
) {
204 panic("mach_absolute_time returning non-monotonically increasing value 0x%llx (old value 0x%llx\n)\n",
205 new_absolute_time
, old_absolute_time
);
207 return new_absolute_time
;
209 return ml_get_timebase();
212 return ml_get_timebase();
217 mach_approximate_time(void)
219 #if __ARM_TIME__ || __ARM_TIME_TIMEBASE_ONLY__ || __arm64__
220 /* Hardware supports a fast timestamp, so grab it without asserting monotonicity */
221 return ml_get_timebase();
223 processor_t processor
;
224 uint64_t approx_time
;
226 disable_preemption();
227 processor
= current_processor();
228 approx_time
= processor
->last_dispatch
;
236 clock_get_system_microtime(clock_sec_t
* secs
,
237 clock_usec_t
* microsecs
)
239 absolutetime_to_microtime(mach_absolute_time(), secs
, microsecs
);
243 clock_get_system_nanotime(clock_sec_t
* secs
,
244 clock_nsec_t
* nanosecs
)
249 abstime
= mach_absolute_time();
250 *secs
= (t64
= abstime
/ rtclock_sec_divisor
);
251 abstime
-= (t64
* rtclock_sec_divisor
);
253 *nanosecs
= (clock_nsec_t
)((abstime
* NSEC_PER_SEC
) / rtclock_sec_divisor
);
257 clock_gettimeofday_set_commpage(uint64_t abstime
,
261 uint64_t tick_per_sec
)
263 commpage_set_timestamp(abstime
, sec
, frac
, scale
, tick_per_sec
);
267 clock_timebase_info(mach_timebase_info_t info
)
269 *info
= rtclock_timebase_const
;
273 * Real-time clock device interrupt.
276 rtclock_intr(__unused
unsigned int is_user_context
)
280 struct arm_saved_state
* regs
;
281 unsigned int user_mode
;
286 cdp
->cpu_stat
.timer_cnt
++;
287 cdp
->cpu_stat
.timer_cnt_wake
++;
288 SCHED_STATS_TIMER_POP(current_processor());
290 assert(!ml_get_interrupts_enabled());
292 abstime
= mach_absolute_time();
294 if (cdp
->cpu_idle_pop
!= 0x0ULL
) {
295 if ((cdp
->rtcPop
- abstime
) < cdp
->cpu_idle_latency
) {
296 cdp
->cpu_idle_pop
= 0x0ULL
;
297 while (abstime
< cdp
->rtcPop
) {
298 abstime
= mach_absolute_time();
305 if ((regs
= cdp
->cpu_int_state
)) {
306 pc
= get_saved_state_pc(regs
);
309 user_mode
= PSR64_IS_USER(get_saved_state_cpsr(regs
));
311 user_mode
= (regs
->cpsr
& PSR_MODE_MASK
) == PSR_USER_MODE
;
317 if (abstime
>= cdp
->rtcPop
) {
318 /* Log the interrupt service latency (-ve value expected by tool) */
319 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
320 MACHDBG_CODE(DBG_MACH_EXCP_DECI
, 0) | DBG_FUNC_NONE
,
321 -(abstime
- cdp
->rtcPop
),
322 user_mode
? pc
: VM_KERNEL_UNSLIDE(pc
), user_mode
, 0, 0);
325 /* call the generic etimer */
326 timer_intr(user_mode
, pc
);
330 deadline_to_decrementer(uint64_t deadline
,
335 if (deadline
<= now
) {
336 return DECREMENTER_MIN
;
338 delt
= deadline
- now
;
340 return (delt
>= (DECREMENTER_MAX
+ 1)) ? DECREMENTER_MAX
: ((delt
>= (DECREMENTER_MIN
+ 1)) ? (int)delt
: DECREMENTER_MIN
);
345 * Request a decrementer pop
348 setPop(uint64_t time
)
351 uint64_t current_time
;
355 current_time
= mach_absolute_time();
357 delay_time
= deadline_to_decrementer(time
, current_time
);
358 cdp
->rtcPop
= delay_time
+ current_time
;
360 ml_set_decrementer((uint32_t) delay_time
);
366 * Request decrementer Idle Pop. Return true if set
373 uint64_t current_time
;
377 current_time
= mach_absolute_time();
379 if (((cdp
->rtcPop
< current_time
) ||
380 (cdp
->rtcPop
- current_time
) < cdp
->cpu_idle_latency
)) {
384 time
= cdp
->rtcPop
- cdp
->cpu_idle_latency
;
386 delay_time
= deadline_to_decrementer(time
, current_time
);
387 cdp
->cpu_idle_pop
= delay_time
+ current_time
;
388 ml_set_decrementer((uint32_t) delay_time
);
394 * Clear decrementer Idle Pop
406 cdp
->cpu_idle_pop
= 0x0ULL
;
410 * Don't update the HW timer if there's a pending
411 * interrupt (we can lose interrupt assertion);
412 * we want to take the interrupt right now and update
413 * the deadline from the handler).
415 * ARM64_TODO: consider this more carefully.
417 if (!(wfi
&& ml_get_timer_pending()))
425 absolutetime_to_microtime(uint64_t abstime
,
427 clock_usec_t
* microsecs
)
431 *secs
= t64
= abstime
/ rtclock_sec_divisor
;
432 abstime
-= (t64
* rtclock_sec_divisor
);
434 *microsecs
= (uint32_t)(abstime
/ rtclock_usec_divisor
);
438 absolutetime_to_nanoseconds(uint64_t abstime
,
443 *result
= (t64
= abstime
/ rtclock_sec_divisor
) * NSEC_PER_SEC
;
444 abstime
-= (t64
* rtclock_sec_divisor
);
445 *result
+= (abstime
* NSEC_PER_SEC
) / rtclock_sec_divisor
;
449 nanoseconds_to_absolutetime(uint64_t nanosecs
,
454 *result
= (t64
= nanosecs
/ NSEC_PER_SEC
) * rtclock_sec_divisor
;
455 nanosecs
-= (t64
* NSEC_PER_SEC
);
456 *result
+= (nanosecs
* rtclock_sec_divisor
) / NSEC_PER_SEC
;
460 nanotime_to_absolutetime(clock_sec_t secs
,
461 clock_nsec_t nanosecs
,
464 *result
= ((uint64_t) secs
* rtclock_sec_divisor
) +
465 ((uint64_t) nanosecs
* rtclock_sec_divisor
) / NSEC_PER_SEC
;
469 clock_interval_to_absolutetime_interval(uint32_t interval
,
470 uint32_t scale_factor
,
473 uint64_t nanosecs
= (uint64_t) interval
* scale_factor
;
476 *result
= (t64
= nanosecs
/ NSEC_PER_SEC
) * rtclock_sec_divisor
;
477 nanosecs
-= (t64
* NSEC_PER_SEC
);
478 *result
+= (nanosecs
* rtclock_sec_divisor
) / NSEC_PER_SEC
;
482 machine_delay_until(uint64_t interval
,
485 #pragma unused(interval)
489 #if __ARM_ENABLE_WFE_
491 if (arm64_wfe_allowed())
492 #endif /* __arm64__ */
496 #endif /* __ARM_ENABLE_WFE_ */
498 now
= mach_absolute_time();
499 } while (now
< deadline
);