2 * Copyright (c) 2003-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <sys/appleapiopts.h>
30 #include <machine/cpu_capabilities.h>
34 /* return mach_absolute_time in %edx:%eax
36 * The algorithm we use is:
38 * ns = ((((rdtsc - rnt_tsc_base)<<rnt_shift)*rnt_tsc_scale) / 2**32) + rnt_ns_base;
40 * rnt_shift, a constant computed during initialization, is the smallest value for which:
42 * (tscFreq << rnt_shift) > SLOW_TSC_THRESHOLD
44 * Where SLOW_TSC_THRESHOLD is about 10e9. Since most processor's tscFreq is greater
45 * than 1GHz, rnt_shift is usually 0. rnt_tsc_scale is also a 32-bit constant:
47 * rnt_tsc_scale = (10e9 * 2**32) / (tscFreq << rnt_shift);
50 .globl _mach_absolute_time
58 movl _COMM_PAGE_NT_GENERATION,%esi /* get generation (0 if being changed) */
59 testl %esi,%esi /* if being updated, loop until stable */
63 rdtsc /* get TSC in %edx:%eax */
66 subl _COMM_PAGE_NT_TSC_BASE,%eax
67 sbbl _COMM_PAGE_NT_TSC_BASE+4,%edx
70 * Prior to supporting "slow" processors, xnu always set _NT_SHIFT to 32.
71 * Now it defaults to 0, unless the processor is slow. The shifts
72 * below implicitly mask the count down to 5 bits, handling either default.
74 movl _COMM_PAGE_NT_SHIFT,%ecx
75 shldl %cl,%eax,%edx /* shift %edx left, filling in from %eax */
76 shll %cl,%eax /* finish shifting %edx:%eax left by _COMM_PAGE_NT_SHIFT bits */
78 movl _COMM_PAGE_NT_SCALE,%ecx
88 addl _COMM_PAGE_NT_NS_BASE,%eax
89 adcl _COMM_PAGE_NT_NS_BASE+4,%edx
91 cmpl _COMM_PAGE_NT_GENERATION,%esi /* have the parameters changed? */
92 jne 0b /* yes, loop until stable */
99 #elif defined(__x86_64__)
102 * 64-bit version _mach_absolute_time. We return the 64-bit nanotime in %rax.
104 * The algorithm we use is:
106 * ns = ((((rdtsc - rnt_tsc_base)<<rnt_shift)*rnt_tsc_scale) / 2**32) + rnt_ns_base;
108 * rnt_shift, a constant computed during initialization, is the smallest value for which:
110 * tscFreq << rnt_shift) > SLOW_TSC_THRESHOLD
112 * Where SLOW_TSC_THRESHOLD is about 10e9. Since most processor's tscFreqs are greater
113 * than 1GHz, rnt_shift is usually 0. rnt_tsc_scale is also a 32-bit constant:
115 * rnt_tsc_scale = (10e9 * 2**32) / (tscFreq << rnt_shift);
118 .globl _mach_absolute_time
120 pushq %rbp // set up a frame for backtraces
122 movq $(_COMM_PAGE_TIME_DATA_START),%rsi
124 movl _NT_GENERATION(%rsi),%r8d // get generation
125 testl %r8d,%r8d // if 0, data is being changed...
126 jz 1b // ...so loop until stable
128 rdtsc // edx:eax := tsc
130 shlq $32,%rdx // rax := ((edx << 32) | eax), ie 64-bit tsc
134 * Prior to supporting "slow" processors, xnu always set _NT_SHIFT to 32.
135 * Now it defaults to 0, unless the processor is slow. In order to maintain
136 * compatibility with both old and new versions of xnu, we mask the shift
137 * down to 0x1F, which maps the old default (32) into the new default (0).
139 movl _NT_SHIFT(%rsi),%ecx
140 andl $0x1F,%ecx // *** remove this line once 10.9 is GM ***
141 subq _NT_TSC_BASE(%rsi), %rax // rax := (tsc - base_tsc)
142 shlq %cl,%rax // rax := (tsc - base_tsc) << NT_SHIFT
143 movl _NT_SCALE(%rsi),%ecx
144 mulq %rcx // rdx:rax := ((tsc - base_tsc)<<shift) * scale
145 shrdq $32,%rdx,%rax // divide by 2**32
146 addq _NT_NS_BASE(%rsi),%rax // (((tsc - base_tsc) * scale) >> 32) + ns_base
148 cmpl _NT_GENERATION(%rsi),%r8d // did the data change during computation?
153 #elif defined(__arm__)
155 #include <mach/arm/syscall_sw.h>
158 * If userspace access to the timebase is supported (indicated through the commpage),
159 * directly reads the timebase and uses it and the current timebase offset (also in
160 * the commpage, and updated whenever the system wakes from sleep) to construct the
161 * current time value; otherwise, traps to the kernel to handle this.
163 * If we do this in user mode, there are two cases where we may need to redrive the
164 * read. We do 3 reads (high-low-high) to the timebase, because we only have a
165 * 32-bit interface to it (despite the use of mrrc). If the high bits change, we
166 * need to reread the register (as our returned value could otherwise be off by
167 * 2^32 mach absolute time units).
169 * We do two reads of the offset, before and after the register reads. If the offset
170 * changes, we have gone to sleep in the midst of doing a read. This case should be
171 * exceedingly rare, but could result in a terribly inaccurate result, so we need
172 * to get a fresh timebase value.
176 .globl _mach_absolute_time
178 movw ip, #((_COMM_PAGE_TIMEBASE_OFFSET) & 0x0000FFFF)
179 movt ip, #(((_COMM_PAGE_TIMEBASE_OFFSET) >> 16) & 0x0000FFFF)
180 ldrb r0, [ip, #((_COMM_PAGE_USER_TIMEBASE) - (_COMM_PAGE_TIMEBASE_OFFSET))]
181 cmp r0, #USER_TIMEBASE_NONE // Are userspace reads supported?
182 beq _mach_absolute_time_kernel // If not, go to the kernel
183 isb // Prevent speculation on CNTPCT across calls
184 // (see ARMV7C.b section B8.1.2, ARMv8 section D6.1.2)
185 push {r4, r5, r7, lr} // Push a frame
187 L_mach_absolute_time_user:
188 ldr r4, [ip] // Load offset low bits
189 ldr r5, [ip, #4] // Load offset high bits
190 mrrc p15, 0, r3, r1, c14 // Read timebase high to r1
191 mrrc p15, 0, r0, r3, c14 // Read timebase low to r0
192 mrrc p15, 0, r3, r2, c14 // Read timebase high to r2
193 cmp r1, r2 // Did the high bits change?
194 bne L_mach_absolute_time_user // Loop if timebase high changed
195 ldr r2, [ip] // Load offset low bits
196 ldr r3, [ip, #4] // Load offset high bits
197 eor r4, r2 // Compare our offset values...
200 bne L_mach_absolute_time_user // If they changed, try again
201 adds r0, r0, r2 // Construct mach_absolute_time
203 pop {r4, r5, r7, pc} // Pop the frame
207 .globl _mach_absolute_time_kernel
208 _mach_absolute_time_kernel:
209 mov r12, #-3 // Load the magic MAT number
215 .globl _mach_continuous_time_kernel
216 _mach_continuous_time_kernel:
217 mov r12, #-4 // Load the magic MCT number
221 #elif defined(__arm64__)
223 #include <mach/arm/syscall_sw.h>
226 * If userspace access to the timebase is supported (indicated through the commpage),
227 * directly reads the timebase and uses it and the current timebase offset (also in
228 * the commpage, and updated whenever the system wakes from sleep) to construct the
229 * current time value; otherwise, traps to the kernel to handle this.
231 * If we do this in user mode, we do two reads of the offset, before and after we
232 * read the register. If the offset changes, we have gone to sleep in the midst of
233 * doing a read. This case should be exceedingly rare, but could result in a terribly
234 * inaccurate result, so we need to get a fresh timebase value.
238 .globl _mach_absolute_time
240 movk x3, #(((_COMM_PAGE_TIMEBASE_OFFSET) >> 48) & 0x000000000000FFFF), lsl #48
241 movk x3, #(((_COMM_PAGE_TIMEBASE_OFFSET) >> 32) & 0x000000000000FFFF), lsl #32
242 movk x3, #(((_COMM_PAGE_TIMEBASE_OFFSET) >> 16) & 0x000000000000FFFF), lsl #16
243 movk x3, #((_COMM_PAGE_TIMEBASE_OFFSET) & 0x000000000000FFFF)
244 ldrb w2, [x3, #((_COMM_PAGE_USER_TIMEBASE) - (_COMM_PAGE_TIMEBASE_OFFSET))]
245 cmp x2, #USER_TIMEBASE_NONE // Are userspace reads supported?
246 b.eq _mach_absolute_time_kernel // If not, go to the kernel
247 isb // Prevent speculation on CNTPCT across calls
248 // (see ARMV7C.b section B8.1.2, ARMv8 section D6.1.2)
249 L_mach_absolute_time_user:
250 ldr x1, [x3] // Load the offset
251 mrs x0, CNTPCT_EL0 // Read the timebase
252 ldr x2, [x3] // Load the offset
253 cmp x1, x2 // Compare our offset values...
254 b.ne L_mach_absolute_time_user // If they changed, try again
255 add x0, x0, x1 // Construct mach_absolute_time
262 .globl _mach_absolute_time_kernel
263 _mach_absolute_time_kernel:
264 mov w16, #-3 // Load the magic MAT number
270 .globl _mach_continuous_time_kernel
271 _mach_continuous_time_kernel:
272 mov w16, #-4 // Load the magic MCT number
277 #error Unsupported architecture