]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_subr.c
xnu-6153.121.1.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_subr.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
67 */
68 /*
69 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74
75 /*
76 * External virtual filesystem routines
77 */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc_internal.h>
82 #include <sys/kauth.h>
83 #include <sys/mount_internal.h>
84 #include <sys/time.h>
85 #include <sys/lock.h>
86 #include <sys/vnode.h>
87 #include <sys/vnode_internal.h>
88 #include <sys/stat.h>
89 #include <sys/namei.h>
90 #include <sys/ucred.h>
91 #include <sys/buf_internal.h>
92 #include <sys/errno.h>
93 #include <sys/malloc.h>
94 #include <sys/uio_internal.h>
95 #include <sys/uio.h>
96 #include <sys/domain.h>
97 #include <sys/mbuf.h>
98 #include <sys/syslog.h>
99 #include <sys/ubc_internal.h>
100 #include <sys/vm.h>
101 #include <sys/sysctl.h>
102 #include <sys/filedesc.h>
103 #include <sys/event.h>
104 #include <sys/kdebug.h>
105 #include <sys/kauth.h>
106 #include <sys/user.h>
107 #include <sys/systm.h>
108 #include <sys/kern_memorystatus.h>
109 #include <sys/lockf.h>
110 #include <miscfs/fifofs/fifo.h>
111
112 #include <nfs/nfs_conf.h>
113
114 #include <string.h>
115 #include <machine/machine_routines.h>
116
117 #include <kern/assert.h>
118 #include <mach/kern_return.h>
119 #include <kern/thread.h>
120 #include <kern/sched_prim.h>
121
122 #include <miscfs/specfs/specdev.h>
123
124 #include <mach/mach_types.h>
125 #include <mach/memory_object_types.h>
126 #include <mach/memory_object_control.h>
127
128 #include <kern/kalloc.h> /* kalloc()/kfree() */
129 #include <kern/clock.h> /* delay_for_interval() */
130 #include <libkern/OSAtomic.h> /* OSAddAtomic() */
131 #if !CONFIG_EMBEDDED
132 #include <console/video_console.h>
133 #endif
134
135 #ifdef JOE_DEBUG
136 #include <libkern/OSDebug.h>
137 #endif
138
139 #include <vm/vm_protos.h> /* vnode_pager_vrele() */
140
141 #if CONFIG_MACF
142 #include <security/mac_framework.h>
143 #endif
144
145 #include <vfs/vfs_disk_conditioner.h>
146 #include <libkern/section_keywords.h>
147
148 extern lck_grp_t *vnode_lck_grp;
149 extern lck_attr_t *vnode_lck_attr;
150
151 #if CONFIG_TRIGGERS
152 extern lck_grp_t *trigger_vnode_lck_grp;
153 extern lck_attr_t *trigger_vnode_lck_attr;
154 #endif
155
156 extern lck_mtx_t * mnt_list_mtx_lock;
157
158 enum vtype iftovt_tab[16] = {
159 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
161 };
162 int vttoif_tab[9] = {
163 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 S_IFSOCK, S_IFIFO, S_IFMT,
165 };
166
167
168 /* XXX These should be in a BSD accessible Mach header, but aren't. */
169 extern void memory_object_mark_used(
170 memory_object_control_t control);
171
172 extern void memory_object_mark_unused(
173 memory_object_control_t control,
174 boolean_t rage);
175
176 extern void memory_object_mark_io_tracking(
177 memory_object_control_t control);
178
179 /* XXX next protptype should be from <nfs/nfs.h> */
180 extern int nfs_vinvalbuf(vnode_t, int, vfs_context_t, int);
181
182 extern int paniclog_append_noflush(const char *format, ...);
183
184 /* XXX next prototytype should be from libsa/stdlib.h> but conflicts libkern */
185 __private_extern__ void qsort(
186 void * array,
187 size_t nmembers,
188 size_t member_size,
189 int (*)(const void *, const void *));
190
191 __private_extern__ void vntblinit(void);
192 __private_extern__ int unlink1(vfs_context_t, vnode_t, user_addr_t,
193 enum uio_seg, int);
194
195 extern int system_inshutdown;
196
197 static void vnode_list_add(vnode_t);
198 static void vnode_async_list_add(vnode_t);
199 static void vnode_list_remove(vnode_t);
200 static void vnode_list_remove_locked(vnode_t);
201
202 static void vnode_abort_advlocks(vnode_t);
203 static errno_t vnode_drain(vnode_t);
204 static void vgone(vnode_t, int flags);
205 static void vclean(vnode_t vp, int flag);
206 static void vnode_reclaim_internal(vnode_t, int, int, int);
207
208 static void vnode_dropiocount(vnode_t);
209
210 static vnode_t checkalias(vnode_t vp, dev_t nvp_rdev);
211 static int vnode_reload(vnode_t);
212 static int vnode_isinuse_locked(vnode_t, int, int);
213
214 static int unmount_callback(mount_t, __unused void *);
215
216 static void insmntque(vnode_t vp, mount_t mp);
217 static int mount_getvfscnt(void);
218 static int mount_fillfsids(fsid_t *, int );
219 static void vnode_iterate_setup(mount_t);
220 int vnode_umount_preflight(mount_t, vnode_t, int);
221 static int vnode_iterate_prepare(mount_t);
222 static int vnode_iterate_reloadq(mount_t);
223 static void vnode_iterate_clear(mount_t);
224 static mount_t vfs_getvfs_locked(fsid_t *);
225 static int vn_create_reg(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp,
226 struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx);
227 static int vnode_authattr_new_internal(vnode_t dvp, struct vnode_attr *vap, int noauth, uint32_t *defaulted_fieldsp, vfs_context_t ctx);
228
229 errno_t rmdir_remove_orphaned_appleDouble(vnode_t, vfs_context_t, int *);
230
231 #ifdef JOE_DEBUG
232 static void record_vp(vnode_t vp, int count);
233 #endif
234
235 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
236 extern int bootarg_no_vnode_jetsam; /* from bsd_init.c default value is 0 */
237 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
238
239 extern int bootarg_no_vnode_drain; /* from bsd_init.c default value is 0 */
240
241 boolean_t root_is_CF_drive = FALSE;
242
243 #if CONFIG_TRIGGERS
244 static int vnode_resolver_create(mount_t, vnode_t, struct vnode_trigger_param *, boolean_t external);
245 static void vnode_resolver_detach(vnode_t);
246 #endif
247
248 TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
249 TAILQ_HEAD(deadlst, vnode) vnode_dead_list; /* vnode dead list */
250 TAILQ_HEAD(async_work_lst, vnode) vnode_async_work_list;
251
252
253 TAILQ_HEAD(ragelst, vnode) vnode_rage_list; /* vnode rapid age list */
254 struct timeval rage_tv;
255 int rage_limit = 0;
256 int ragevnodes = 0;
257 static int vfs_unmountall_started = 0;
258
259 #define RAGE_LIMIT_MIN 100
260 #define RAGE_TIME_LIMIT 5
261
262 /*
263 * ROSV definitions
264 * NOTE: These are shadowed from PlatformSupport definitions, but XNU
265 * builds standalone.
266 */
267 #define PLATFORM_DATA_VOLUME_MOUNT_POINT "/System/Volumes/Data"
268 #define PLATFORM_VM_VOLUME_MOUNT_POINT "/private/var/vm"
269
270
271 struct mntlist mountlist; /* mounted filesystem list */
272 static int nummounts = 0;
273
274 static int print_busy_vnodes = 0; /* print out busy vnodes */
275
276 #if DIAGNOSTIC
277 #define VLISTCHECK(fun, vp, list) \
278 if ((vp)->v_freelist.tqe_prev == (struct vnode **)0xdeadb) \
279 panic("%s: %s vnode not on %slist", (fun), (list), (list));
280 #else
281 #define VLISTCHECK(fun, vp, list)
282 #endif /* DIAGNOSTIC */
283
284 #define VLISTNONE(vp) \
285 do { \
286 (vp)->v_freelist.tqe_next = (struct vnode *)0; \
287 (vp)->v_freelist.tqe_prev = (struct vnode **)0xdeadb; \
288 } while(0)
289
290 #define VONLIST(vp) \
291 ((vp)->v_freelist.tqe_prev != (struct vnode **)0xdeadb)
292
293 /* remove a vnode from free vnode list */
294 #define VREMFREE(fun, vp) \
295 do { \
296 VLISTCHECK((fun), (vp), "free"); \
297 TAILQ_REMOVE(&vnode_free_list, (vp), v_freelist); \
298 VLISTNONE((vp)); \
299 freevnodes--; \
300 } while(0)
301
302
303 /* remove a vnode from dead vnode list */
304 #define VREMDEAD(fun, vp) \
305 do { \
306 VLISTCHECK((fun), (vp), "dead"); \
307 TAILQ_REMOVE(&vnode_dead_list, (vp), v_freelist); \
308 VLISTNONE((vp)); \
309 vp->v_listflag &= ~VLIST_DEAD; \
310 deadvnodes--; \
311 } while(0)
312
313
314 /* remove a vnode from async work vnode list */
315 #define VREMASYNC_WORK(fun, vp) \
316 do { \
317 VLISTCHECK((fun), (vp), "async_work"); \
318 TAILQ_REMOVE(&vnode_async_work_list, (vp), v_freelist); \
319 VLISTNONE((vp)); \
320 vp->v_listflag &= ~VLIST_ASYNC_WORK; \
321 async_work_vnodes--; \
322 } while(0)
323
324
325 /* remove a vnode from rage vnode list */
326 #define VREMRAGE(fun, vp) \
327 do { \
328 if ( !(vp->v_listflag & VLIST_RAGE)) \
329 panic("VREMRAGE: vp not on rage list"); \
330 VLISTCHECK((fun), (vp), "rage"); \
331 TAILQ_REMOVE(&vnode_rage_list, (vp), v_freelist); \
332 VLISTNONE((vp)); \
333 vp->v_listflag &= ~VLIST_RAGE; \
334 ragevnodes--; \
335 } while(0)
336
337 static void async_work_continue(void);
338
339 /*
340 * Initialize the vnode management data structures.
341 */
342 __private_extern__ void
343 vntblinit(void)
344 {
345 thread_t thread = THREAD_NULL;
346
347 TAILQ_INIT(&vnode_free_list);
348 TAILQ_INIT(&vnode_rage_list);
349 TAILQ_INIT(&vnode_dead_list);
350 TAILQ_INIT(&vnode_async_work_list);
351 TAILQ_INIT(&mountlist);
352
353 microuptime(&rage_tv);
354 rage_limit = desiredvnodes / 100;
355
356 if (rage_limit < RAGE_LIMIT_MIN) {
357 rage_limit = RAGE_LIMIT_MIN;
358 }
359
360 /*
361 * create worker threads
362 */
363 kernel_thread_start((thread_continue_t)async_work_continue, NULL, &thread);
364 thread_deallocate(thread);
365 }
366
367 /* the timeout is in 10 msecs */
368 int
369 vnode_waitforwrites(vnode_t vp, int output_target, int slpflag, int slptimeout, const char *msg)
370 {
371 int error = 0;
372 struct timespec ts;
373
374 KERNEL_DEBUG(0x3010280 | DBG_FUNC_START, (int)vp, output_target, vp->v_numoutput, 0, 0);
375
376 if (vp->v_numoutput > output_target) {
377 slpflag |= PDROP;
378
379 vnode_lock_spin(vp);
380
381 while ((vp->v_numoutput > output_target) && error == 0) {
382 if (output_target) {
383 vp->v_flag |= VTHROTTLED;
384 } else {
385 vp->v_flag |= VBWAIT;
386 }
387
388 ts.tv_sec = (slptimeout / 100);
389 ts.tv_nsec = (slptimeout % 1000) * 10 * NSEC_PER_USEC * 1000;
390 error = msleep((caddr_t)&vp->v_numoutput, &vp->v_lock, (slpflag | (PRIBIO + 1)), msg, &ts);
391
392 vnode_lock_spin(vp);
393 }
394 vnode_unlock(vp);
395 }
396 KERNEL_DEBUG(0x3010280 | DBG_FUNC_END, (int)vp, output_target, vp->v_numoutput, error, 0);
397
398 return error;
399 }
400
401
402 void
403 vnode_startwrite(vnode_t vp)
404 {
405 OSAddAtomic(1, &vp->v_numoutput);
406 }
407
408
409 void
410 vnode_writedone(vnode_t vp)
411 {
412 if (vp) {
413 int need_wakeup = 0;
414
415 OSAddAtomic(-1, &vp->v_numoutput);
416
417 vnode_lock_spin(vp);
418
419 if (vp->v_numoutput < 0) {
420 panic("vnode_writedone: numoutput < 0");
421 }
422
423 if ((vp->v_flag & VTHROTTLED)) {
424 vp->v_flag &= ~VTHROTTLED;
425 need_wakeup = 1;
426 }
427 if ((vp->v_flag & VBWAIT) && (vp->v_numoutput == 0)) {
428 vp->v_flag &= ~VBWAIT;
429 need_wakeup = 1;
430 }
431 vnode_unlock(vp);
432
433 if (need_wakeup) {
434 wakeup((caddr_t)&vp->v_numoutput);
435 }
436 }
437 }
438
439
440
441 int
442 vnode_hasdirtyblks(vnode_t vp)
443 {
444 struct cl_writebehind *wbp;
445
446 /*
447 * Not taking the buf_mtxp as there is little
448 * point doing it. Even if the lock is taken the
449 * state can change right after that. If their
450 * needs to be a synchronization, it must be driven
451 * by the caller
452 */
453 if (vp->v_dirtyblkhd.lh_first) {
454 return 1;
455 }
456
457 if (!UBCINFOEXISTS(vp)) {
458 return 0;
459 }
460
461 wbp = vp->v_ubcinfo->cl_wbehind;
462
463 if (wbp && (wbp->cl_number || wbp->cl_scmap)) {
464 return 1;
465 }
466
467 return 0;
468 }
469
470 int
471 vnode_hascleanblks(vnode_t vp)
472 {
473 /*
474 * Not taking the buf_mtxp as there is little
475 * point doing it. Even if the lock is taken the
476 * state can change right after that. If their
477 * needs to be a synchronization, it must be driven
478 * by the caller
479 */
480 if (vp->v_cleanblkhd.lh_first) {
481 return 1;
482 }
483 return 0;
484 }
485
486 void
487 vnode_iterate_setup(mount_t mp)
488 {
489 mp->mnt_lflag |= MNT_LITER;
490 }
491
492 int
493 vnode_umount_preflight(mount_t mp, vnode_t skipvp, int flags)
494 {
495 vnode_t vp;
496 int ret = 0;
497
498 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
499 if (vp->v_type == VDIR) {
500 continue;
501 }
502 if (vp == skipvp) {
503 continue;
504 }
505 if ((flags & SKIPSYSTEM) && ((vp->v_flag & VSYSTEM) || (vp->v_flag & VNOFLUSH))) {
506 continue;
507 }
508 if ((flags & SKIPSWAP) && (vp->v_flag & VSWAP)) {
509 continue;
510 }
511 if ((flags & WRITECLOSE) && (vp->v_writecount == 0 || vp->v_type != VREG)) {
512 continue;
513 }
514
515 /* Look for busy vnode */
516 if ((vp->v_usecount != 0) && ((vp->v_usecount - vp->v_kusecount) != 0)) {
517 ret = 1;
518 if (print_busy_vnodes && ((flags & FORCECLOSE) == 0)) {
519 vprint("vnode_umount_preflight - busy vnode", vp);
520 } else {
521 return ret;
522 }
523 } else if (vp->v_iocount > 0) {
524 /* Busy if iocount is > 0 for more than 3 seconds */
525 tsleep(&vp->v_iocount, PVFS, "vnode_drain_network", 3 * hz);
526 if (vp->v_iocount > 0) {
527 ret = 1;
528 if (print_busy_vnodes && ((flags & FORCECLOSE) == 0)) {
529 vprint("vnode_umount_preflight - busy vnode", vp);
530 } else {
531 return ret;
532 }
533 }
534 continue;
535 }
536 }
537
538 return ret;
539 }
540
541 /*
542 * This routine prepares iteration by moving all the vnodes to worker queue
543 * called with mount lock held
544 */
545 int
546 vnode_iterate_prepare(mount_t mp)
547 {
548 vnode_t vp;
549
550 if (TAILQ_EMPTY(&mp->mnt_vnodelist)) {
551 /* nothing to do */
552 return 0;
553 }
554
555 vp = TAILQ_FIRST(&mp->mnt_vnodelist);
556 vp->v_mntvnodes.tqe_prev = &(mp->mnt_workerqueue.tqh_first);
557 mp->mnt_workerqueue.tqh_first = mp->mnt_vnodelist.tqh_first;
558 mp->mnt_workerqueue.tqh_last = mp->mnt_vnodelist.tqh_last;
559
560 TAILQ_INIT(&mp->mnt_vnodelist);
561 if (mp->mnt_newvnodes.tqh_first != NULL) {
562 panic("vnode_iterate_prepare: newvnode when entering vnode");
563 }
564 TAILQ_INIT(&mp->mnt_newvnodes);
565
566 return 1;
567 }
568
569
570 /* called with mount lock held */
571 int
572 vnode_iterate_reloadq(mount_t mp)
573 {
574 int moved = 0;
575
576 /* add the remaining entries in workerq to the end of mount vnode list */
577 if (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
578 struct vnode * mvp;
579 mvp = TAILQ_LAST(&mp->mnt_vnodelist, vnodelst);
580
581 /* Joining the workerque entities to mount vnode list */
582 if (mvp) {
583 mvp->v_mntvnodes.tqe_next = mp->mnt_workerqueue.tqh_first;
584 } else {
585 mp->mnt_vnodelist.tqh_first = mp->mnt_workerqueue.tqh_first;
586 }
587 mp->mnt_workerqueue.tqh_first->v_mntvnodes.tqe_prev = mp->mnt_vnodelist.tqh_last;
588 mp->mnt_vnodelist.tqh_last = mp->mnt_workerqueue.tqh_last;
589 TAILQ_INIT(&mp->mnt_workerqueue);
590 }
591
592 /* add the newvnodes to the head of mount vnode list */
593 if (!TAILQ_EMPTY(&mp->mnt_newvnodes)) {
594 struct vnode * nlvp;
595 nlvp = TAILQ_LAST(&mp->mnt_newvnodes, vnodelst);
596
597 mp->mnt_newvnodes.tqh_first->v_mntvnodes.tqe_prev = &mp->mnt_vnodelist.tqh_first;
598 nlvp->v_mntvnodes.tqe_next = mp->mnt_vnodelist.tqh_first;
599 if (mp->mnt_vnodelist.tqh_first) {
600 mp->mnt_vnodelist.tqh_first->v_mntvnodes.tqe_prev = &nlvp->v_mntvnodes.tqe_next;
601 } else {
602 mp->mnt_vnodelist.tqh_last = mp->mnt_newvnodes.tqh_last;
603 }
604 mp->mnt_vnodelist.tqh_first = mp->mnt_newvnodes.tqh_first;
605 TAILQ_INIT(&mp->mnt_newvnodes);
606 moved = 1;
607 }
608
609 return moved;
610 }
611
612
613 void
614 vnode_iterate_clear(mount_t mp)
615 {
616 mp->mnt_lflag &= ~MNT_LITER;
617 }
618
619 #if !CONFIG_EMBEDDED
620
621 #include <i386/panic_hooks.h>
622
623 struct vnode_iterate_panic_hook {
624 panic_hook_t hook;
625 mount_t mp;
626 struct vnode *vp;
627 };
628
629 static void
630 vnode_iterate_panic_hook(panic_hook_t *hook_)
631 {
632 struct vnode_iterate_panic_hook *hook = (struct vnode_iterate_panic_hook *)hook_;
633 panic_phys_range_t range;
634 uint64_t phys;
635
636 if (panic_phys_range_before(hook->mp, &phys, &range)) {
637 paniclog_append_noflush("mp = %p, phys = %p, prev (%p: %p-%p)\n",
638 hook->mp, phys, range.type, range.phys_start,
639 range.phys_start + range.len);
640 } else {
641 paniclog_append_noflush("mp = %p, phys = %p, prev (!)\n", hook->mp, phys);
642 }
643
644 if (panic_phys_range_before(hook->vp, &phys, &range)) {
645 paniclog_append_noflush("vp = %p, phys = %p, prev (%p: %p-%p)\n",
646 hook->vp, phys, range.type, range.phys_start,
647 range.phys_start + range.len);
648 } else {
649 paniclog_append_noflush("vp = %p, phys = %p, prev (!)\n", hook->vp, phys);
650 }
651 panic_dump_mem((void *)(((vm_offset_t)hook->mp - 4096) & ~4095), 12288);
652 }
653 #endif //CONFIG_EMBEDDED
654
655 int
656 vnode_iterate(mount_t mp, int flags, int (*callout)(struct vnode *, void *),
657 void *arg)
658 {
659 struct vnode *vp;
660 int vid, retval;
661 int ret = 0;
662
663 /*
664 * The mount iterate mutex is held for the duration of the iteration.
665 * This can be done by a state flag on the mount structure but we can
666 * run into priority inversion issues sometimes.
667 * Using a mutex allows us to benefit from the priority donation
668 * mechanisms in the kernel for locks. This mutex should never be
669 * acquired in spin mode and it should be acquired before attempting to
670 * acquire the mount lock.
671 */
672 mount_iterate_lock(mp);
673
674 mount_lock(mp);
675
676 vnode_iterate_setup(mp);
677
678 /* If it returns 0 then there is nothing to do */
679 retval = vnode_iterate_prepare(mp);
680
681 if (retval == 0) {
682 vnode_iterate_clear(mp);
683 mount_unlock(mp);
684 mount_iterate_unlock(mp);
685 return ret;
686 }
687
688 #if !CONFIG_EMBEDDED
689 struct vnode_iterate_panic_hook hook;
690 hook.mp = mp;
691 hook.vp = NULL;
692 panic_hook(&hook.hook, vnode_iterate_panic_hook);
693 #endif
694 /* iterate over all the vnodes */
695 while (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
696 vp = TAILQ_FIRST(&mp->mnt_workerqueue);
697 #if !CONFIG_EMBEDDED
698 hook.vp = vp;
699 #endif
700 TAILQ_REMOVE(&mp->mnt_workerqueue, vp, v_mntvnodes);
701 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
702 vid = vp->v_id;
703 if ((vp->v_data == NULL) || (vp->v_type == VNON) || (vp->v_mount != mp)) {
704 continue;
705 }
706 mount_unlock(mp);
707
708 if (vget_internal(vp, vid, (flags | VNODE_NODEAD | VNODE_WITHID | VNODE_NOSUSPEND))) {
709 mount_lock(mp);
710 continue;
711 }
712 if (flags & VNODE_RELOAD) {
713 /*
714 * we're reloading the filesystem
715 * cast out any inactive vnodes...
716 */
717 if (vnode_reload(vp)) {
718 /* vnode will be recycled on the refcount drop */
719 vnode_put(vp);
720 mount_lock(mp);
721 continue;
722 }
723 }
724
725 retval = callout(vp, arg);
726
727 switch (retval) {
728 case VNODE_RETURNED:
729 case VNODE_RETURNED_DONE:
730 vnode_put(vp);
731 if (retval == VNODE_RETURNED_DONE) {
732 mount_lock(mp);
733 ret = 0;
734 goto out;
735 }
736 break;
737
738 case VNODE_CLAIMED_DONE:
739 mount_lock(mp);
740 ret = 0;
741 goto out;
742 case VNODE_CLAIMED:
743 default:
744 break;
745 }
746 mount_lock(mp);
747 }
748
749 out:
750 #if !CONFIG_EMBEDDED
751 panic_unhook(&hook.hook);
752 #endif
753 (void)vnode_iterate_reloadq(mp);
754 vnode_iterate_clear(mp);
755 mount_unlock(mp);
756 mount_iterate_unlock(mp);
757 return ret;
758 }
759
760 void
761 mount_lock_renames(mount_t mp)
762 {
763 lck_mtx_lock(&mp->mnt_renamelock);
764 }
765
766 void
767 mount_unlock_renames(mount_t mp)
768 {
769 lck_mtx_unlock(&mp->mnt_renamelock);
770 }
771
772 void
773 mount_iterate_lock(mount_t mp)
774 {
775 lck_mtx_lock(&mp->mnt_iter_lock);
776 }
777
778 void
779 mount_iterate_unlock(mount_t mp)
780 {
781 lck_mtx_unlock(&mp->mnt_iter_lock);
782 }
783
784 void
785 mount_lock(mount_t mp)
786 {
787 lck_mtx_lock(&mp->mnt_mlock);
788 }
789
790 void
791 mount_lock_spin(mount_t mp)
792 {
793 lck_mtx_lock_spin(&mp->mnt_mlock);
794 }
795
796 void
797 mount_unlock(mount_t mp)
798 {
799 lck_mtx_unlock(&mp->mnt_mlock);
800 }
801
802
803 void
804 mount_ref(mount_t mp, int locked)
805 {
806 if (!locked) {
807 mount_lock_spin(mp);
808 }
809
810 mp->mnt_count++;
811
812 if (!locked) {
813 mount_unlock(mp);
814 }
815 }
816
817
818 void
819 mount_drop(mount_t mp, int locked)
820 {
821 if (!locked) {
822 mount_lock_spin(mp);
823 }
824
825 mp->mnt_count--;
826
827 if (mp->mnt_count == 0 && (mp->mnt_lflag & MNT_LDRAIN)) {
828 wakeup(&mp->mnt_lflag);
829 }
830
831 if (!locked) {
832 mount_unlock(mp);
833 }
834 }
835
836
837 int
838 mount_iterref(mount_t mp, int locked)
839 {
840 int retval = 0;
841
842 if (!locked) {
843 mount_list_lock();
844 }
845 if (mp->mnt_iterref < 0) {
846 retval = 1;
847 } else {
848 mp->mnt_iterref++;
849 }
850 if (!locked) {
851 mount_list_unlock();
852 }
853 return retval;
854 }
855
856 int
857 mount_isdrained(mount_t mp, int locked)
858 {
859 int retval;
860
861 if (!locked) {
862 mount_list_lock();
863 }
864 if (mp->mnt_iterref < 0) {
865 retval = 1;
866 } else {
867 retval = 0;
868 }
869 if (!locked) {
870 mount_list_unlock();
871 }
872 return retval;
873 }
874
875 void
876 mount_iterdrop(mount_t mp)
877 {
878 mount_list_lock();
879 mp->mnt_iterref--;
880 wakeup(&mp->mnt_iterref);
881 mount_list_unlock();
882 }
883
884 void
885 mount_iterdrain(mount_t mp)
886 {
887 mount_list_lock();
888 while (mp->mnt_iterref) {
889 msleep((caddr_t)&mp->mnt_iterref, mnt_list_mtx_lock, PVFS, "mount_iterdrain", NULL);
890 }
891 /* mount iterations drained */
892 mp->mnt_iterref = -1;
893 mount_list_unlock();
894 }
895 void
896 mount_iterreset(mount_t mp)
897 {
898 mount_list_lock();
899 if (mp->mnt_iterref == -1) {
900 mp->mnt_iterref = 0;
901 }
902 mount_list_unlock();
903 }
904
905 /* always called with mount lock held */
906 int
907 mount_refdrain(mount_t mp)
908 {
909 if (mp->mnt_lflag & MNT_LDRAIN) {
910 panic("already in drain");
911 }
912 mp->mnt_lflag |= MNT_LDRAIN;
913
914 while (mp->mnt_count) {
915 msleep((caddr_t)&mp->mnt_lflag, &mp->mnt_mlock, PVFS, "mount_drain", NULL);
916 }
917
918 if (mp->mnt_vnodelist.tqh_first != NULL) {
919 panic("mount_refdrain: dangling vnode");
920 }
921
922 mp->mnt_lflag &= ~MNT_LDRAIN;
923
924 return 0;
925 }
926
927 /* Tags the mount point as not supportine extended readdir for NFS exports */
928 void
929 mount_set_noreaddirext(mount_t mp)
930 {
931 mount_lock(mp);
932 mp->mnt_kern_flag |= MNTK_DENY_READDIREXT;
933 mount_unlock(mp);
934 }
935
936 /*
937 * Mark a mount point as busy. Used to synchronize access and to delay
938 * unmounting.
939 */
940 int
941 vfs_busy(mount_t mp, int flags)
942 {
943 restart:
944 if (mp->mnt_lflag & MNT_LDEAD) {
945 return ENOENT;
946 }
947
948 mount_lock(mp);
949
950 if (mp->mnt_lflag & MNT_LUNMOUNT) {
951 if (flags & LK_NOWAIT || mp->mnt_lflag & MNT_LDEAD) {
952 mount_unlock(mp);
953 return ENOENT;
954 }
955
956 /*
957 * Since all busy locks are shared except the exclusive
958 * lock granted when unmounting, the only place that a
959 * wakeup needs to be done is at the release of the
960 * exclusive lock at the end of dounmount.
961 */
962 mp->mnt_lflag |= MNT_LWAIT;
963 msleep((caddr_t)mp, &mp->mnt_mlock, (PVFS | PDROP), "vfsbusy", NULL);
964 return ENOENT;
965 }
966
967 mount_unlock(mp);
968
969 lck_rw_lock_shared(&mp->mnt_rwlock);
970
971 /*
972 * Until we are granted the rwlock, it's possible for the mount point to
973 * change state, so re-evaluate before granting the vfs_busy.
974 */
975 if (mp->mnt_lflag & (MNT_LDEAD | MNT_LUNMOUNT)) {
976 lck_rw_done(&mp->mnt_rwlock);
977 goto restart;
978 }
979 return 0;
980 }
981
982 /*
983 * Free a busy filesystem.
984 */
985 void
986 vfs_unbusy(mount_t mp)
987 {
988 lck_rw_done(&mp->mnt_rwlock);
989 }
990
991
992
993 static void
994 vfs_rootmountfailed(mount_t mp)
995 {
996 mount_list_lock();
997 mp->mnt_vtable->vfc_refcount--;
998 mount_list_unlock();
999
1000 vfs_unbusy(mp);
1001
1002 mount_lock_destroy(mp);
1003
1004 #if CONFIG_MACF
1005 mac_mount_label_destroy(mp);
1006 #endif
1007
1008 FREE_ZONE(mp, sizeof(struct mount), M_MOUNT);
1009 }
1010
1011 /*
1012 * Lookup a filesystem type, and if found allocate and initialize
1013 * a mount structure for it.
1014 *
1015 * Devname is usually updated by mount(8) after booting.
1016 */
1017 static mount_t
1018 vfs_rootmountalloc_internal(struct vfstable *vfsp, const char *devname)
1019 {
1020 mount_t mp;
1021
1022 mp = _MALLOC_ZONE(sizeof(struct mount), M_MOUNT, M_WAITOK);
1023 bzero((char *)mp, sizeof(struct mount));
1024
1025 /* Initialize the default IO constraints */
1026 mp->mnt_maxreadcnt = mp->mnt_maxwritecnt = MAXPHYS;
1027 mp->mnt_segreadcnt = mp->mnt_segwritecnt = 32;
1028 mp->mnt_maxsegreadsize = mp->mnt_maxreadcnt;
1029 mp->mnt_maxsegwritesize = mp->mnt_maxwritecnt;
1030 mp->mnt_devblocksize = DEV_BSIZE;
1031 mp->mnt_alignmentmask = PAGE_MASK;
1032 mp->mnt_ioqueue_depth = MNT_DEFAULT_IOQUEUE_DEPTH;
1033 mp->mnt_ioscale = 1;
1034 mp->mnt_ioflags = 0;
1035 mp->mnt_realrootvp = NULLVP;
1036 mp->mnt_authcache_ttl = CACHED_LOOKUP_RIGHT_TTL;
1037 mp->mnt_throttle_mask = LOWPRI_MAX_NUM_DEV - 1;
1038 mp->mnt_devbsdunit = 0;
1039
1040 mount_lock_init(mp);
1041 (void)vfs_busy(mp, LK_NOWAIT);
1042
1043 TAILQ_INIT(&mp->mnt_vnodelist);
1044 TAILQ_INIT(&mp->mnt_workerqueue);
1045 TAILQ_INIT(&mp->mnt_newvnodes);
1046
1047 mp->mnt_vtable = vfsp;
1048 mp->mnt_op = vfsp->vfc_vfsops;
1049 mp->mnt_flag = MNT_RDONLY | MNT_ROOTFS;
1050 mp->mnt_vnodecovered = NULLVP;
1051 //mp->mnt_stat.f_type = vfsp->vfc_typenum;
1052 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
1053
1054 mount_list_lock();
1055 vfsp->vfc_refcount++;
1056 mount_list_unlock();
1057
1058 strlcpy(mp->mnt_vfsstat.f_fstypename, vfsp->vfc_name, MFSTYPENAMELEN);
1059 mp->mnt_vfsstat.f_mntonname[0] = '/';
1060 /* XXX const poisoning layering violation */
1061 (void) copystr((const void *)devname, mp->mnt_vfsstat.f_mntfromname, MAXPATHLEN - 1, NULL);
1062
1063 #if CONFIG_MACF
1064 mac_mount_label_init(mp);
1065 mac_mount_label_associate(vfs_context_kernel(), mp);
1066 #endif
1067 return mp;
1068 }
1069
1070 errno_t
1071 vfs_rootmountalloc(const char *fstypename, const char *devname, mount_t *mpp)
1072 {
1073 struct vfstable *vfsp;
1074
1075 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1076 if (!strncmp(vfsp->vfc_name, fstypename,
1077 sizeof(vfsp->vfc_name))) {
1078 break;
1079 }
1080 }
1081 if (vfsp == NULL) {
1082 return ENODEV;
1083 }
1084
1085 *mpp = vfs_rootmountalloc_internal(vfsp, devname);
1086
1087 if (*mpp) {
1088 return 0;
1089 }
1090
1091 return ENOMEM;
1092 }
1093
1094 #define DBG_MOUNTROOT (FSDBG_CODE(DBG_MOUNT, 0))
1095
1096 /*
1097 * Find an appropriate filesystem to use for the root. If a filesystem
1098 * has not been preselected, walk through the list of known filesystems
1099 * trying those that have mountroot routines, and try them until one
1100 * works or we have tried them all.
1101 */
1102 extern int (*mountroot)(void);
1103
1104 int
1105 vfs_mountroot(void)
1106 {
1107 #if CONFIG_MACF
1108 struct vnode *vp;
1109 #endif
1110 struct vfstable *vfsp;
1111 vfs_context_t ctx = vfs_context_kernel();
1112 struct vfs_attr vfsattr;
1113 int error;
1114 mount_t mp;
1115 vnode_t bdevvp_rootvp;
1116
1117 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_START);
1118 if (mountroot != NULL) {
1119 /*
1120 * used for netboot which follows a different set of rules
1121 */
1122 error = (*mountroot)();
1123
1124 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error, 0);
1125 return error;
1126 }
1127 if ((error = bdevvp(rootdev, &rootvp))) {
1128 printf("vfs_mountroot: can't setup bdevvp\n");
1129
1130 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error, 1);
1131 return error;
1132 }
1133 /*
1134 * 4951998 - code we call in vfc_mountroot may replace rootvp
1135 * so keep a local copy for some house keeping.
1136 */
1137 bdevvp_rootvp = rootvp;
1138
1139 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1140 if (vfsp->vfc_mountroot == NULL
1141 && !ISSET(vfsp->vfc_vfsflags, VFC_VFSCANMOUNTROOT)) {
1142 continue;
1143 }
1144
1145 mp = vfs_rootmountalloc_internal(vfsp, "root_device");
1146 mp->mnt_devvp = rootvp;
1147
1148 if (vfsp->vfc_mountroot) {
1149 error = (*vfsp->vfc_mountroot)(mp, rootvp, ctx);
1150 } else {
1151 error = VFS_MOUNT(mp, rootvp, 0, ctx);
1152 }
1153
1154 if (!error) {
1155 if (bdevvp_rootvp != rootvp) {
1156 /*
1157 * rootvp changed...
1158 * bump the iocount and fix up mnt_devvp for the
1159 * new rootvp (it will already have a usecount taken)...
1160 * drop the iocount and the usecount on the orignal
1161 * since we are no longer going to use it...
1162 */
1163 vnode_getwithref(rootvp);
1164 mp->mnt_devvp = rootvp;
1165
1166 vnode_rele(bdevvp_rootvp);
1167 vnode_put(bdevvp_rootvp);
1168 }
1169 mp->mnt_devvp->v_specflags |= SI_MOUNTEDON;
1170
1171 vfs_unbusy(mp);
1172
1173 mount_list_add(mp);
1174
1175 /*
1176 * cache the IO attributes for the underlying physical media...
1177 * an error return indicates the underlying driver doesn't
1178 * support all the queries necessary... however, reasonable
1179 * defaults will have been set, so no reason to bail or care
1180 */
1181 vfs_init_io_attributes(rootvp, mp);
1182
1183 if (mp->mnt_ioflags & MNT_IOFLAGS_FUSION_DRIVE) {
1184 root_is_CF_drive = TRUE;
1185 }
1186
1187 /*
1188 * Shadow the VFC_VFSNATIVEXATTR flag to MNTK_EXTENDED_ATTRS.
1189 */
1190 if (mp->mnt_vtable->vfc_vfsflags & VFC_VFSNATIVEXATTR) {
1191 mp->mnt_kern_flag |= MNTK_EXTENDED_ATTRS;
1192 }
1193 if (mp->mnt_vtable->vfc_vfsflags & VFC_VFSPREFLIGHT) {
1194 mp->mnt_kern_flag |= MNTK_UNMOUNT_PREFLIGHT;
1195 }
1196
1197 #if !CONFIG_EMBEDDED
1198 uint32_t speed;
1199
1200 if (MNTK_VIRTUALDEV & mp->mnt_kern_flag) {
1201 speed = 128;
1202 } else if (disk_conditioner_mount_is_ssd(mp)) {
1203 speed = 7 * 256;
1204 } else {
1205 speed = 256;
1206 }
1207 vc_progress_setdiskspeed(speed);
1208 #endif
1209 /*
1210 * Probe root file system for additional features.
1211 */
1212 (void)VFS_START(mp, 0, ctx);
1213
1214 VFSATTR_INIT(&vfsattr);
1215 VFSATTR_WANTED(&vfsattr, f_capabilities);
1216 if (vfs_getattr(mp, &vfsattr, ctx) == 0 &&
1217 VFSATTR_IS_SUPPORTED(&vfsattr, f_capabilities)) {
1218 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_EXTENDED_ATTR) &&
1219 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_EXTENDED_ATTR)) {
1220 mp->mnt_kern_flag |= MNTK_EXTENDED_ATTRS;
1221 }
1222 #if NAMEDSTREAMS
1223 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_NAMEDSTREAMS) &&
1224 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_NAMEDSTREAMS)) {
1225 mp->mnt_kern_flag |= MNTK_NAMED_STREAMS;
1226 }
1227 #endif
1228 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_PATH_FROM_ID) &&
1229 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_PATH_FROM_ID)) {
1230 mp->mnt_kern_flag |= MNTK_PATH_FROM_ID;
1231 }
1232
1233 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_DIR_HARDLINKS) &&
1234 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_DIR_HARDLINKS)) {
1235 mp->mnt_kern_flag |= MNTK_DIR_HARDLINKS;
1236 }
1237 }
1238
1239 /*
1240 * get rid of iocount reference returned
1241 * by bdevvp (or picked up by us on the substitued
1242 * rootvp)... it (or we) will have also taken
1243 * a usecount reference which we want to keep
1244 */
1245 vnode_put(rootvp);
1246
1247 #if CONFIG_MACF
1248 if ((vfs_flags(mp) & MNT_MULTILABEL) == 0) {
1249 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, 0, 2);
1250 return 0;
1251 }
1252
1253 error = VFS_ROOT(mp, &vp, ctx);
1254 if (error) {
1255 printf("%s() VFS_ROOT() returned %d\n",
1256 __func__, error);
1257 dounmount(mp, MNT_FORCE, 0, ctx);
1258 goto fail;
1259 }
1260 error = vnode_label(mp, NULL, vp, NULL, 0, ctx);
1261 /*
1262 * get rid of reference provided by VFS_ROOT
1263 */
1264 vnode_put(vp);
1265
1266 if (error) {
1267 printf("%s() vnode_label() returned %d\n",
1268 __func__, error);
1269 dounmount(mp, MNT_FORCE, 0, ctx);
1270 goto fail;
1271 }
1272 #endif
1273 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, 0, 3);
1274 return 0;
1275 }
1276 #if CONFIG_MACF
1277 fail:
1278 #endif
1279 vfs_rootmountfailed(mp);
1280
1281 if (error != EINVAL) {
1282 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
1283 }
1284 }
1285 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error ? error : ENODEV, 4);
1286 return ENODEV;
1287 }
1288
1289 /*
1290 * Mount the data volume of an ROSV volume group
1291 */
1292 int
1293 vfs_mount_rosv_data(void)
1294 {
1295 #if CONFIG_ROSV_STARTUP
1296 int error = 0;
1297 int do_rosv_mounts = 0;
1298
1299 error = vnode_get(rootvnode);
1300 if (error) {
1301 /* root must be mounted first */
1302 printf("vnode_get(rootvnode) failed with error %d\n", error);
1303 return error;
1304 }
1305
1306 printf("NOTE: Attempting ROSV mount\n");
1307 struct vfs_attr vfsattr;
1308 VFSATTR_INIT(&vfsattr);
1309 VFSATTR_WANTED(&vfsattr, f_capabilities);
1310 if (vfs_getattr(rootvnode->v_mount, &vfsattr, vfs_context_kernel()) == 0 &&
1311 VFSATTR_IS_SUPPORTED(&vfsattr, f_capabilities)) {
1312 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_VOL_GROUPS) &&
1313 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_VOL_GROUPS)) {
1314 printf("NOTE: DETECTED ROSV CONFIG\n");
1315 do_rosv_mounts = 1;
1316 }
1317 }
1318
1319 if (!do_rosv_mounts) {
1320 vnode_put(rootvnode);
1321 //bail out if config not supported
1322 return 0;
1323 }
1324
1325 char datapath[] = PLATFORM_DATA_VOLUME_MOUNT_POINT; /* !const because of internal casting */
1326
1327 /* Mount the data volume */
1328 printf("attempting kernel mount for data volume... \n");
1329 error = kernel_mount(rootvnode->v_mount->mnt_vfsstat.f_fstypename, NULLVP, NULLVP,
1330 datapath, (rootvnode->v_mount), 0, 0, (KERNEL_MOUNT_DATAVOL), vfs_context_kernel());
1331
1332 if (error) {
1333 printf("Failed to mount data volume (%d)\n", error);
1334 }
1335
1336 vnode_put(rootvnode);
1337
1338 return error;
1339
1340 #else
1341 return 0;
1342 #endif
1343 }
1344
1345 /*
1346 * Mount the VM volume of a container
1347 */
1348 int
1349 vfs_mount_vm(void)
1350 {
1351 #if CONFIG_MOUNT_VM
1352 int error = 0;
1353
1354 error = vnode_get(rootvnode);
1355 if (error) {
1356 /* root must be mounted first */
1357 printf("vnode_get(rootvnode) failed with error %d\n", error);
1358 return error;
1359 }
1360
1361 char vmpath[] = PLATFORM_VM_VOLUME_MOUNT_POINT; /* !const because of internal casting */
1362
1363 /* Mount the VM volume */
1364 printf("attempting kernel mount for vm volume... \n");
1365 error = kernel_mount(rootvnode->v_mount->mnt_vfsstat.f_fstypename, NULLVP, NULLVP,
1366 vmpath, (rootvnode->v_mount), 0, 0, (KERNEL_MOUNT_VMVOL), vfs_context_kernel());
1367
1368 if (error) {
1369 printf("Failed to mount vm volume (%d)\n", error);
1370 } else {
1371 printf("mounted VM volume\n");
1372 }
1373
1374 vnode_put(rootvnode);
1375 return error;
1376 #else
1377 return 0;
1378 #endif
1379 }
1380
1381 /*
1382 * Lookup a mount point by filesystem identifier.
1383 */
1384
1385 struct mount *
1386 vfs_getvfs(fsid_t *fsid)
1387 {
1388 return mount_list_lookupby_fsid(fsid, 0, 0);
1389 }
1390
1391 static struct mount *
1392 vfs_getvfs_locked(fsid_t *fsid)
1393 {
1394 return mount_list_lookupby_fsid(fsid, 1, 0);
1395 }
1396
1397 struct mount *
1398 vfs_getvfs_by_mntonname(char *path)
1399 {
1400 mount_t retmp = (mount_t)0;
1401 mount_t mp;
1402
1403 mount_list_lock();
1404 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1405 if (!strncmp(mp->mnt_vfsstat.f_mntonname, path,
1406 sizeof(mp->mnt_vfsstat.f_mntonname))) {
1407 retmp = mp;
1408 if (mount_iterref(retmp, 1)) {
1409 retmp = NULL;
1410 }
1411 goto out;
1412 }
1413 }
1414 out:
1415 mount_list_unlock();
1416 return retmp;
1417 }
1418
1419 /* generation number for creation of new fsids */
1420 u_short mntid_gen = 0;
1421 /*
1422 * Get a new unique fsid
1423 */
1424 void
1425 vfs_getnewfsid(struct mount *mp)
1426 {
1427 fsid_t tfsid;
1428 int mtype;
1429
1430 mount_list_lock();
1431
1432 /* generate a new fsid */
1433 mtype = mp->mnt_vtable->vfc_typenum;
1434 if (++mntid_gen == 0) {
1435 mntid_gen++;
1436 }
1437 tfsid.val[0] = makedev(nblkdev + mtype, mntid_gen);
1438 tfsid.val[1] = mtype;
1439
1440 while (vfs_getvfs_locked(&tfsid)) {
1441 if (++mntid_gen == 0) {
1442 mntid_gen++;
1443 }
1444 tfsid.val[0] = makedev(nblkdev + mtype, mntid_gen);
1445 }
1446
1447 mp->mnt_vfsstat.f_fsid.val[0] = tfsid.val[0];
1448 mp->mnt_vfsstat.f_fsid.val[1] = tfsid.val[1];
1449 mount_list_unlock();
1450 }
1451
1452 /*
1453 * Routines having to do with the management of the vnode table.
1454 */
1455 extern int(**dead_vnodeop_p)(void *);
1456 long numvnodes, freevnodes, deadvnodes, async_work_vnodes;
1457
1458
1459 int async_work_timed_out = 0;
1460 int async_work_handled = 0;
1461 int dead_vnode_wanted = 0;
1462 int dead_vnode_waited = 0;
1463
1464 /*
1465 * Move a vnode from one mount queue to another.
1466 */
1467 static void
1468 insmntque(vnode_t vp, mount_t mp)
1469 {
1470 mount_t lmp;
1471 /*
1472 * Delete from old mount point vnode list, if on one.
1473 */
1474 if ((lmp = vp->v_mount) != NULL && lmp != dead_mountp) {
1475 if ((vp->v_lflag & VNAMED_MOUNT) == 0) {
1476 panic("insmntque: vp not in mount vnode list");
1477 }
1478 vp->v_lflag &= ~VNAMED_MOUNT;
1479
1480 mount_lock_spin(lmp);
1481
1482 mount_drop(lmp, 1);
1483
1484 if (vp->v_mntvnodes.tqe_next == NULL) {
1485 if (TAILQ_LAST(&lmp->mnt_vnodelist, vnodelst) == vp) {
1486 TAILQ_REMOVE(&lmp->mnt_vnodelist, vp, v_mntvnodes);
1487 } else if (TAILQ_LAST(&lmp->mnt_newvnodes, vnodelst) == vp) {
1488 TAILQ_REMOVE(&lmp->mnt_newvnodes, vp, v_mntvnodes);
1489 } else if (TAILQ_LAST(&lmp->mnt_workerqueue, vnodelst) == vp) {
1490 TAILQ_REMOVE(&lmp->mnt_workerqueue, vp, v_mntvnodes);
1491 }
1492 } else {
1493 vp->v_mntvnodes.tqe_next->v_mntvnodes.tqe_prev = vp->v_mntvnodes.tqe_prev;
1494 *vp->v_mntvnodes.tqe_prev = vp->v_mntvnodes.tqe_next;
1495 }
1496 vp->v_mntvnodes.tqe_next = NULL;
1497 vp->v_mntvnodes.tqe_prev = NULL;
1498 mount_unlock(lmp);
1499 return;
1500 }
1501
1502 /*
1503 * Insert into list of vnodes for the new mount point, if available.
1504 */
1505 if ((vp->v_mount = mp) != NULL) {
1506 mount_lock_spin(mp);
1507 if ((vp->v_mntvnodes.tqe_next != 0) && (vp->v_mntvnodes.tqe_prev != 0)) {
1508 panic("vp already in mount list");
1509 }
1510 if (mp->mnt_lflag & MNT_LITER) {
1511 TAILQ_INSERT_HEAD(&mp->mnt_newvnodes, vp, v_mntvnodes);
1512 } else {
1513 TAILQ_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
1514 }
1515 if (vp->v_lflag & VNAMED_MOUNT) {
1516 panic("insmntque: vp already in mount vnode list");
1517 }
1518 vp->v_lflag |= VNAMED_MOUNT;
1519 mount_ref(mp, 1);
1520 mount_unlock(mp);
1521 }
1522 }
1523
1524
1525 /*
1526 * Create a vnode for a block device.
1527 * Used for root filesystem, argdev, and swap areas.
1528 * Also used for memory file system special devices.
1529 */
1530 int
1531 bdevvp(dev_t dev, vnode_t *vpp)
1532 {
1533 vnode_t nvp;
1534 int error;
1535 struct vnode_fsparam vfsp;
1536 struct vfs_context context;
1537
1538 if (dev == NODEV) {
1539 *vpp = NULLVP;
1540 return ENODEV;
1541 }
1542
1543 context.vc_thread = current_thread();
1544 context.vc_ucred = FSCRED;
1545
1546 vfsp.vnfs_mp = (struct mount *)0;
1547 vfsp.vnfs_vtype = VBLK;
1548 vfsp.vnfs_str = "bdevvp";
1549 vfsp.vnfs_dvp = NULL;
1550 vfsp.vnfs_fsnode = NULL;
1551 vfsp.vnfs_cnp = NULL;
1552 vfsp.vnfs_vops = spec_vnodeop_p;
1553 vfsp.vnfs_rdev = dev;
1554 vfsp.vnfs_filesize = 0;
1555
1556 vfsp.vnfs_flags = VNFS_NOCACHE | VNFS_CANTCACHE;
1557
1558 vfsp.vnfs_marksystem = 0;
1559 vfsp.vnfs_markroot = 0;
1560
1561 if ((error = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &nvp))) {
1562 *vpp = NULLVP;
1563 return error;
1564 }
1565 vnode_lock_spin(nvp);
1566 nvp->v_flag |= VBDEVVP;
1567 nvp->v_tag = VT_NON; /* set this to VT_NON so during aliasing it can be replaced */
1568 vnode_unlock(nvp);
1569 if ((error = vnode_ref(nvp))) {
1570 panic("bdevvp failed: vnode_ref");
1571 return error;
1572 }
1573 if ((error = VNOP_FSYNC(nvp, MNT_WAIT, &context))) {
1574 panic("bdevvp failed: fsync");
1575 return error;
1576 }
1577 if ((error = buf_invalidateblks(nvp, BUF_WRITE_DATA, 0, 0))) {
1578 panic("bdevvp failed: invalidateblks");
1579 return error;
1580 }
1581
1582 #if CONFIG_MACF
1583 /*
1584 * XXXMAC: We can't put a MAC check here, the system will
1585 * panic without this vnode.
1586 */
1587 #endif /* MAC */
1588
1589 if ((error = VNOP_OPEN(nvp, FREAD, &context))) {
1590 panic("bdevvp failed: open");
1591 return error;
1592 }
1593 *vpp = nvp;
1594
1595 return 0;
1596 }
1597
1598 /*
1599 * Check to see if the new vnode represents a special device
1600 * for which we already have a vnode (either because of
1601 * bdevvp() or because of a different vnode representing
1602 * the same block device). If such an alias exists, deallocate
1603 * the existing contents and return the aliased vnode. The
1604 * caller is responsible for filling it with its new contents.
1605 */
1606 static vnode_t
1607 checkalias(struct vnode *nvp, dev_t nvp_rdev)
1608 {
1609 struct vnode *vp;
1610 struct vnode **vpp;
1611 struct specinfo *sin = NULL;
1612 int vid = 0;
1613
1614 vpp = &speclisth[SPECHASH(nvp_rdev)];
1615 loop:
1616 SPECHASH_LOCK();
1617
1618 for (vp = *vpp; vp; vp = vp->v_specnext) {
1619 if (nvp_rdev == vp->v_rdev && nvp->v_type == vp->v_type) {
1620 vid = vp->v_id;
1621 break;
1622 }
1623 }
1624 SPECHASH_UNLOCK();
1625
1626 if (vp) {
1627 found_alias:
1628 if (vnode_getwithvid(vp, vid)) {
1629 goto loop;
1630 }
1631 /*
1632 * Termination state is checked in vnode_getwithvid
1633 */
1634 vnode_lock(vp);
1635
1636 /*
1637 * Alias, but not in use, so flush it out.
1638 */
1639 if ((vp->v_iocount == 1) && (vp->v_usecount == 0)) {
1640 vnode_reclaim_internal(vp, 1, 1, 0);
1641 vnode_put_locked(vp);
1642 vnode_unlock(vp);
1643 goto loop;
1644 }
1645 }
1646 if (vp == NULL || vp->v_tag != VT_NON) {
1647 if (sin == NULL) {
1648 MALLOC_ZONE(sin, struct specinfo *, sizeof(struct specinfo),
1649 M_SPECINFO, M_WAITOK);
1650 }
1651
1652 nvp->v_specinfo = sin;
1653 bzero(nvp->v_specinfo, sizeof(struct specinfo));
1654 nvp->v_rdev = nvp_rdev;
1655 nvp->v_specflags = 0;
1656 nvp->v_speclastr = -1;
1657 nvp->v_specinfo->si_opencount = 0;
1658 nvp->v_specinfo->si_initted = 0;
1659 nvp->v_specinfo->si_throttleable = 0;
1660
1661 SPECHASH_LOCK();
1662
1663 /* We dropped the lock, someone could have added */
1664 if (vp == NULLVP) {
1665 for (vp = *vpp; vp; vp = vp->v_specnext) {
1666 if (nvp_rdev == vp->v_rdev && nvp->v_type == vp->v_type) {
1667 vid = vp->v_id;
1668 SPECHASH_UNLOCK();
1669 goto found_alias;
1670 }
1671 }
1672 }
1673
1674 nvp->v_hashchain = vpp;
1675 nvp->v_specnext = *vpp;
1676 *vpp = nvp;
1677
1678 if (vp != NULLVP) {
1679 nvp->v_specflags |= SI_ALIASED;
1680 vp->v_specflags |= SI_ALIASED;
1681 SPECHASH_UNLOCK();
1682 vnode_put_locked(vp);
1683 vnode_unlock(vp);
1684 } else {
1685 SPECHASH_UNLOCK();
1686 }
1687
1688 return NULLVP;
1689 }
1690
1691 if (sin) {
1692 FREE_ZONE(sin, sizeof(struct specinfo), M_SPECINFO);
1693 }
1694
1695 if ((vp->v_flag & (VBDEVVP | VDEVFLUSH)) != 0) {
1696 return vp;
1697 }
1698
1699 panic("checkalias with VT_NON vp that shouldn't: %p", vp);
1700
1701 return vp;
1702 }
1703
1704
1705 /*
1706 * Get a reference on a particular vnode and lock it if requested.
1707 * If the vnode was on the inactive list, remove it from the list.
1708 * If the vnode was on the free list, remove it from the list and
1709 * move it to inactive list as needed.
1710 * The vnode lock bit is set if the vnode is being eliminated in
1711 * vgone. The process is awakened when the transition is completed,
1712 * and an error returned to indicate that the vnode is no longer
1713 * usable (possibly having been changed to a new file system type).
1714 */
1715 int
1716 vget_internal(vnode_t vp, int vid, int vflags)
1717 {
1718 int error = 0;
1719
1720 vnode_lock_spin(vp);
1721
1722 if ((vflags & VNODE_WRITEABLE) && (vp->v_writecount == 0)) {
1723 /*
1724 * vnode to be returned only if it has writers opened
1725 */
1726 error = EINVAL;
1727 } else {
1728 error = vnode_getiocount(vp, vid, vflags);
1729 }
1730
1731 vnode_unlock(vp);
1732
1733 return error;
1734 }
1735
1736 /*
1737 * Returns: 0 Success
1738 * ENOENT No such file or directory [terminating]
1739 */
1740 int
1741 vnode_ref(vnode_t vp)
1742 {
1743 return vnode_ref_ext(vp, 0, 0);
1744 }
1745
1746 /*
1747 * Returns: 0 Success
1748 * ENOENT No such file or directory [terminating]
1749 */
1750 int
1751 vnode_ref_ext(vnode_t vp, int fmode, int flags)
1752 {
1753 int error = 0;
1754
1755 vnode_lock_spin(vp);
1756
1757 /*
1758 * once all the current call sites have been fixed to insure they have
1759 * taken an iocount, we can toughen this assert up and insist that the
1760 * iocount is non-zero... a non-zero usecount doesn't insure correctness
1761 */
1762 if (vp->v_iocount <= 0 && vp->v_usecount <= 0) {
1763 panic("vnode_ref_ext: vp %p has no valid reference %d, %d", vp, vp->v_iocount, vp->v_usecount);
1764 }
1765
1766 /*
1767 * if you are the owner of drain/termination, can acquire usecount
1768 */
1769 if ((flags & VNODE_REF_FORCE) == 0) {
1770 if ((vp->v_lflag & (VL_DRAIN | VL_TERMINATE | VL_DEAD))) {
1771 if (vp->v_owner != current_thread()) {
1772 error = ENOENT;
1773 goto out;
1774 }
1775 }
1776 }
1777 vp->v_usecount++;
1778
1779 if (fmode & FWRITE) {
1780 if (++vp->v_writecount <= 0) {
1781 panic("vnode_ref_ext: v_writecount");
1782 }
1783 }
1784 if (fmode & O_EVTONLY) {
1785 if (++vp->v_kusecount <= 0) {
1786 panic("vnode_ref_ext: v_kusecount");
1787 }
1788 }
1789 if (vp->v_flag & VRAGE) {
1790 struct uthread *ut;
1791
1792 ut = get_bsdthread_info(current_thread());
1793
1794 if (!(current_proc()->p_lflag & P_LRAGE_VNODES) &&
1795 !(ut->uu_flag & UT_RAGE_VNODES)) {
1796 /*
1797 * a 'normal' process accessed this vnode
1798 * so make sure its no longer marked
1799 * for rapid aging... also, make sure
1800 * it gets removed from the rage list...
1801 * when v_usecount drops back to 0, it
1802 * will be put back on the real free list
1803 */
1804 vp->v_flag &= ~VRAGE;
1805 vp->v_references = 0;
1806 vnode_list_remove(vp);
1807 }
1808 }
1809 if (vp->v_usecount == 1 && vp->v_type == VREG && !(vp->v_flag & VSYSTEM)) {
1810 if (vp->v_ubcinfo) {
1811 vnode_lock_convert(vp);
1812 memory_object_mark_used(vp->v_ubcinfo->ui_control);
1813 }
1814 }
1815 out:
1816 vnode_unlock(vp);
1817
1818 return error;
1819 }
1820
1821
1822 boolean_t
1823 vnode_on_reliable_media(vnode_t vp)
1824 {
1825 if (!(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) && (vp->v_mount->mnt_flag & MNT_LOCAL)) {
1826 return TRUE;
1827 }
1828 return FALSE;
1829 }
1830
1831 static void
1832 vnode_async_list_add(vnode_t vp)
1833 {
1834 vnode_list_lock();
1835
1836 if (VONLIST(vp) || (vp->v_lflag & (VL_TERMINATE | VL_DEAD))) {
1837 panic("vnode_async_list_add: %p is in wrong state", vp);
1838 }
1839
1840 TAILQ_INSERT_HEAD(&vnode_async_work_list, vp, v_freelist);
1841 vp->v_listflag |= VLIST_ASYNC_WORK;
1842
1843 async_work_vnodes++;
1844
1845 vnode_list_unlock();
1846
1847 wakeup(&vnode_async_work_list);
1848 }
1849
1850
1851 /*
1852 * put the vnode on appropriate free list.
1853 * called with vnode LOCKED
1854 */
1855 static void
1856 vnode_list_add(vnode_t vp)
1857 {
1858 boolean_t need_dead_wakeup = FALSE;
1859
1860 #if DIAGNOSTIC
1861 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1862 #endif
1863
1864 again:
1865
1866 /*
1867 * if it is already on a list or non zero references return
1868 */
1869 if (VONLIST(vp) || (vp->v_usecount != 0) || (vp->v_iocount != 0) || (vp->v_lflag & VL_TERMINATE)) {
1870 return;
1871 }
1872
1873 /*
1874 * In vclean, we might have deferred ditching locked buffers
1875 * because something was still referencing them (indicated by
1876 * usecount). We can ditch them now.
1877 */
1878 if (ISSET(vp->v_lflag, VL_DEAD)
1879 && (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))) {
1880 ++vp->v_iocount; // Probably not necessary, but harmless
1881 #ifdef JOE_DEBUG
1882 record_vp(vp, 1);
1883 #endif
1884 vnode_unlock(vp);
1885 buf_invalidateblks(vp, BUF_INVALIDATE_LOCKED, 0, 0);
1886 vnode_lock(vp);
1887 vnode_dropiocount(vp);
1888 goto again;
1889 }
1890
1891 vnode_list_lock();
1892
1893 if ((vp->v_flag & VRAGE) && !(vp->v_lflag & VL_DEAD)) {
1894 /*
1895 * add the new guy to the appropriate end of the RAGE list
1896 */
1897 if ((vp->v_flag & VAGE)) {
1898 TAILQ_INSERT_HEAD(&vnode_rage_list, vp, v_freelist);
1899 } else {
1900 TAILQ_INSERT_TAIL(&vnode_rage_list, vp, v_freelist);
1901 }
1902
1903 vp->v_listflag |= VLIST_RAGE;
1904 ragevnodes++;
1905
1906 /*
1907 * reset the timestamp for the last inserted vp on the RAGE
1908 * queue to let new_vnode know that its not ok to start stealing
1909 * from this list... as long as we're actively adding to this list
1910 * we'll push out the vnodes we want to donate to the real free list
1911 * once we stop pushing, we'll let some time elapse before we start
1912 * stealing them in the new_vnode routine
1913 */
1914 microuptime(&rage_tv);
1915 } else {
1916 /*
1917 * if VL_DEAD, insert it at head of the dead list
1918 * else insert at tail of LRU list or at head if VAGE is set
1919 */
1920 if ((vp->v_lflag & VL_DEAD)) {
1921 TAILQ_INSERT_HEAD(&vnode_dead_list, vp, v_freelist);
1922 vp->v_listflag |= VLIST_DEAD;
1923 deadvnodes++;
1924
1925 if (dead_vnode_wanted) {
1926 dead_vnode_wanted--;
1927 need_dead_wakeup = TRUE;
1928 }
1929 } else if ((vp->v_flag & VAGE)) {
1930 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1931 vp->v_flag &= ~VAGE;
1932 freevnodes++;
1933 } else {
1934 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1935 freevnodes++;
1936 }
1937 }
1938 vnode_list_unlock();
1939
1940 if (need_dead_wakeup == TRUE) {
1941 wakeup_one((caddr_t)&dead_vnode_wanted);
1942 }
1943 }
1944
1945
1946 /*
1947 * remove the vnode from appropriate free list.
1948 * called with vnode LOCKED and
1949 * the list lock held
1950 */
1951 static void
1952 vnode_list_remove_locked(vnode_t vp)
1953 {
1954 if (VONLIST(vp)) {
1955 /*
1956 * the v_listflag field is
1957 * protected by the vnode_list_lock
1958 */
1959 if (vp->v_listflag & VLIST_RAGE) {
1960 VREMRAGE("vnode_list_remove", vp);
1961 } else if (vp->v_listflag & VLIST_DEAD) {
1962 VREMDEAD("vnode_list_remove", vp);
1963 } else if (vp->v_listflag & VLIST_ASYNC_WORK) {
1964 VREMASYNC_WORK("vnode_list_remove", vp);
1965 } else {
1966 VREMFREE("vnode_list_remove", vp);
1967 }
1968 }
1969 }
1970
1971
1972 /*
1973 * remove the vnode from appropriate free list.
1974 * called with vnode LOCKED
1975 */
1976 static void
1977 vnode_list_remove(vnode_t vp)
1978 {
1979 #if DIAGNOSTIC
1980 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1981 #endif
1982 /*
1983 * we want to avoid taking the list lock
1984 * in the case where we're not on the free
1985 * list... this will be true for most
1986 * directories and any currently in use files
1987 *
1988 * we're guaranteed that we can't go from
1989 * the not-on-list state to the on-list
1990 * state since we hold the vnode lock...
1991 * all calls to vnode_list_add are done
1992 * under the vnode lock... so we can
1993 * check for that condition (the prevelant one)
1994 * without taking the list lock
1995 */
1996 if (VONLIST(vp)) {
1997 vnode_list_lock();
1998 /*
1999 * however, we're not guaranteed that
2000 * we won't go from the on-list state
2001 * to the not-on-list state until we
2002 * hold the vnode_list_lock... this
2003 * is due to "new_vnode" removing vnodes
2004 * from the free list uder the list_lock
2005 * w/o the vnode lock... so we need to
2006 * check again whether we're currently
2007 * on the free list
2008 */
2009 vnode_list_remove_locked(vp);
2010
2011 vnode_list_unlock();
2012 }
2013 }
2014
2015
2016 void
2017 vnode_rele(vnode_t vp)
2018 {
2019 vnode_rele_internal(vp, 0, 0, 0);
2020 }
2021
2022
2023 void
2024 vnode_rele_ext(vnode_t vp, int fmode, int dont_reenter)
2025 {
2026 vnode_rele_internal(vp, fmode, dont_reenter, 0);
2027 }
2028
2029
2030 void
2031 vnode_rele_internal(vnode_t vp, int fmode, int dont_reenter, int locked)
2032 {
2033 if (!locked) {
2034 vnode_lock_spin(vp);
2035 }
2036 #if DIAGNOSTIC
2037 else {
2038 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
2039 }
2040 #endif
2041 if (--vp->v_usecount < 0) {
2042 panic("vnode_rele_ext: vp %p usecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_usecount, vp->v_tag, vp->v_type, vp->v_flag);
2043 }
2044
2045 if (fmode & FWRITE) {
2046 if (--vp->v_writecount < 0) {
2047 panic("vnode_rele_ext: vp %p writecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_writecount, vp->v_tag, vp->v_type, vp->v_flag);
2048 }
2049 }
2050 if (fmode & O_EVTONLY) {
2051 if (--vp->v_kusecount < 0) {
2052 panic("vnode_rele_ext: vp %p kusecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_kusecount, vp->v_tag, vp->v_type, vp->v_flag);
2053 }
2054 }
2055 if (vp->v_kusecount > vp->v_usecount) {
2056 panic("vnode_rele_ext: vp %p kusecount(%d) out of balance with usecount(%d). v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_kusecount, vp->v_usecount, vp->v_tag, vp->v_type, vp->v_flag);
2057 }
2058
2059 if ((vp->v_iocount > 0) || (vp->v_usecount > 0)) {
2060 /*
2061 * vnode is still busy... if we're the last
2062 * usecount, mark for a future call to VNOP_INACTIVE
2063 * when the iocount finally drops to 0
2064 */
2065 if (vp->v_usecount == 0) {
2066 vp->v_lflag |= VL_NEEDINACTIVE;
2067 vp->v_flag &= ~(VNOCACHE_DATA | VRAOFF | VOPENEVT);
2068 }
2069 goto done;
2070 }
2071 vp->v_flag &= ~(VNOCACHE_DATA | VRAOFF | VOPENEVT);
2072
2073 if (ISSET(vp->v_lflag, VL_TERMINATE | VL_DEAD) || dont_reenter) {
2074 /*
2075 * vnode is being cleaned, or
2076 * we've requested that we don't reenter
2077 * the filesystem on this release...in
2078 * the latter case, we'll mark the vnode aged
2079 */
2080 if (dont_reenter) {
2081 if (!(vp->v_lflag & (VL_TERMINATE | VL_DEAD | VL_MARKTERM))) {
2082 vp->v_lflag |= VL_NEEDINACTIVE;
2083
2084 if (vnode_on_reliable_media(vp) == FALSE || vp->v_flag & VISDIRTY) {
2085 vnode_async_list_add(vp);
2086 goto done;
2087 }
2088 }
2089 vp->v_flag |= VAGE;
2090 }
2091 vnode_list_add(vp);
2092
2093 goto done;
2094 }
2095 /*
2096 * at this point both the iocount and usecount
2097 * are zero
2098 * pick up an iocount so that we can call
2099 * VNOP_INACTIVE with the vnode lock unheld
2100 */
2101 vp->v_iocount++;
2102 #ifdef JOE_DEBUG
2103 record_vp(vp, 1);
2104 #endif
2105 vp->v_lflag &= ~VL_NEEDINACTIVE;
2106 vnode_unlock(vp);
2107
2108 VNOP_INACTIVE(vp, vfs_context_current());
2109
2110 vnode_lock_spin(vp);
2111 /*
2112 * because we dropped the vnode lock to call VNOP_INACTIVE
2113 * the state of the vnode may have changed... we may have
2114 * picked up an iocount, usecount or the MARKTERM may have
2115 * been set... we need to reevaluate the reference counts
2116 * to determine if we can call vnode_reclaim_internal at
2117 * this point... if the reference counts are up, we'll pick
2118 * up the MARKTERM state when they get subsequently dropped
2119 */
2120 if ((vp->v_iocount == 1) && (vp->v_usecount == 0) &&
2121 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
2122 struct uthread *ut;
2123
2124 ut = get_bsdthread_info(current_thread());
2125
2126 if (ut->uu_defer_reclaims) {
2127 vp->v_defer_reclaimlist = ut->uu_vreclaims;
2128 ut->uu_vreclaims = vp;
2129 goto done;
2130 }
2131 vnode_lock_convert(vp);
2132 vnode_reclaim_internal(vp, 1, 1, 0);
2133 }
2134 vnode_dropiocount(vp);
2135 vnode_list_add(vp);
2136 done:
2137 if (vp->v_usecount == 0 && vp->v_type == VREG && !(vp->v_flag & VSYSTEM)) {
2138 if (vp->v_ubcinfo) {
2139 vnode_lock_convert(vp);
2140 memory_object_mark_unused(vp->v_ubcinfo->ui_control, (vp->v_flag & VRAGE) == VRAGE);
2141 }
2142 }
2143 if (!locked) {
2144 vnode_unlock(vp);
2145 }
2146 return;
2147 }
2148
2149 /*
2150 * Remove any vnodes in the vnode table belonging to mount point mp.
2151 *
2152 * If MNT_NOFORCE is specified, there should not be any active ones,
2153 * return error if any are found (nb: this is a user error, not a
2154 * system error). If MNT_FORCE is specified, detach any active vnodes
2155 * that are found.
2156 */
2157
2158 int
2159 vflush(struct mount *mp, struct vnode *skipvp, int flags)
2160 {
2161 struct vnode *vp;
2162 int busy = 0;
2163 int reclaimed = 0;
2164 int retval;
2165 unsigned int vid;
2166 bool first_try = true;
2167
2168 /*
2169 * See comments in vnode_iterate() for the rationale for this lock
2170 */
2171 mount_iterate_lock(mp);
2172
2173 mount_lock(mp);
2174 vnode_iterate_setup(mp);
2175 /*
2176 * On regular unmounts(not forced) do a
2177 * quick check for vnodes to be in use. This
2178 * preserves the caching of vnodes. automounter
2179 * tries unmounting every so often to see whether
2180 * it is still busy or not.
2181 */
2182 if (((flags & FORCECLOSE) == 0) && ((mp->mnt_kern_flag & MNTK_UNMOUNT_PREFLIGHT) != 0)) {
2183 if (vnode_umount_preflight(mp, skipvp, flags)) {
2184 vnode_iterate_clear(mp);
2185 mount_unlock(mp);
2186 mount_iterate_unlock(mp);
2187 return EBUSY;
2188 }
2189 }
2190 loop:
2191 /* If it returns 0 then there is nothing to do */
2192 retval = vnode_iterate_prepare(mp);
2193
2194 if (retval == 0) {
2195 vnode_iterate_clear(mp);
2196 mount_unlock(mp);
2197 mount_iterate_unlock(mp);
2198 return retval;
2199 }
2200
2201 /* iterate over all the vnodes */
2202 while (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
2203 vp = TAILQ_FIRST(&mp->mnt_workerqueue);
2204 TAILQ_REMOVE(&mp->mnt_workerqueue, vp, v_mntvnodes);
2205 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
2206
2207 if ((vp->v_mount != mp) || (vp == skipvp)) {
2208 continue;
2209 }
2210 vid = vp->v_id;
2211 mount_unlock(mp);
2212
2213 vnode_lock_spin(vp);
2214
2215 // If vnode is already terminating, wait for it...
2216 while (vp->v_id == vid && ISSET(vp->v_lflag, VL_TERMINATE)) {
2217 vp->v_lflag |= VL_TERMWANT;
2218 msleep(&vp->v_lflag, &vp->v_lock, PVFS, "vflush", NULL);
2219 }
2220
2221 if ((vp->v_id != vid) || ISSET(vp->v_lflag, VL_DEAD)) {
2222 vnode_unlock(vp);
2223 mount_lock(mp);
2224 continue;
2225 }
2226
2227 /*
2228 * If requested, skip over vnodes marked VSYSTEM.
2229 * Skip over all vnodes marked VNOFLUSH.
2230 */
2231 if ((flags & SKIPSYSTEM) && ((vp->v_flag & VSYSTEM) ||
2232 (vp->v_flag & VNOFLUSH))) {
2233 vnode_unlock(vp);
2234 mount_lock(mp);
2235 continue;
2236 }
2237 /*
2238 * If requested, skip over vnodes marked VSWAP.
2239 */
2240 if ((flags & SKIPSWAP) && (vp->v_flag & VSWAP)) {
2241 vnode_unlock(vp);
2242 mount_lock(mp);
2243 continue;
2244 }
2245 /*
2246 * If requested, skip over vnodes marked VROOT.
2247 */
2248 if ((flags & SKIPROOT) && (vp->v_flag & VROOT)) {
2249 vnode_unlock(vp);
2250 mount_lock(mp);
2251 continue;
2252 }
2253 /*
2254 * If WRITECLOSE is set, only flush out regular file
2255 * vnodes open for writing.
2256 */
2257 if ((flags & WRITECLOSE) &&
2258 (vp->v_writecount == 0 || vp->v_type != VREG)) {
2259 vnode_unlock(vp);
2260 mount_lock(mp);
2261 continue;
2262 }
2263 /*
2264 * If the real usecount is 0, all we need to do is clear
2265 * out the vnode data structures and we are done.
2266 */
2267 if (((vp->v_usecount == 0) ||
2268 ((vp->v_usecount - vp->v_kusecount) == 0))) {
2269 vnode_lock_convert(vp);
2270 vp->v_iocount++; /* so that drain waits for * other iocounts */
2271 #ifdef JOE_DEBUG
2272 record_vp(vp, 1);
2273 #endif
2274 vnode_reclaim_internal(vp, 1, 1, 0);
2275 vnode_dropiocount(vp);
2276 vnode_list_add(vp);
2277 vnode_unlock(vp);
2278
2279 reclaimed++;
2280 mount_lock(mp);
2281 continue;
2282 }
2283 /*
2284 * If FORCECLOSE is set, forcibly close the vnode.
2285 * For block or character devices, revert to an
2286 * anonymous device. For all other files, just kill them.
2287 */
2288 if (flags & FORCECLOSE) {
2289 vnode_lock_convert(vp);
2290
2291 if (vp->v_type != VBLK && vp->v_type != VCHR) {
2292 vp->v_iocount++; /* so that drain waits * for other iocounts */
2293 #ifdef JOE_DEBUG
2294 record_vp(vp, 1);
2295 #endif
2296 vnode_abort_advlocks(vp);
2297 vnode_reclaim_internal(vp, 1, 1, 0);
2298 vnode_dropiocount(vp);
2299 vnode_list_add(vp);
2300 vnode_unlock(vp);
2301 } else {
2302 vclean(vp, 0);
2303 vp->v_lflag &= ~VL_DEAD;
2304 vp->v_op = spec_vnodeop_p;
2305 vp->v_flag |= VDEVFLUSH;
2306 vnode_unlock(vp);
2307 }
2308 mount_lock(mp);
2309 continue;
2310 }
2311
2312 /* log vnodes blocking unforced unmounts */
2313 if (print_busy_vnodes && first_try && ((flags & FORCECLOSE) == 0)) {
2314 vprint("vflush - busy vnode", vp);
2315 }
2316
2317 vnode_unlock(vp);
2318 mount_lock(mp);
2319 busy++;
2320 }
2321
2322 /* At this point the worker queue is completed */
2323 if (busy && ((flags & FORCECLOSE) == 0) && reclaimed) {
2324 busy = 0;
2325 reclaimed = 0;
2326 (void)vnode_iterate_reloadq(mp);
2327 first_try = false;
2328 /* returned with mount lock held */
2329 goto loop;
2330 }
2331
2332 /* if new vnodes were created in between retry the reclaim */
2333 if (vnode_iterate_reloadq(mp) != 0) {
2334 if (!(busy && ((flags & FORCECLOSE) == 0))) {
2335 first_try = false;
2336 goto loop;
2337 }
2338 }
2339 vnode_iterate_clear(mp);
2340 mount_unlock(mp);
2341 mount_iterate_unlock(mp);
2342
2343 if (busy && ((flags & FORCECLOSE) == 0)) {
2344 return EBUSY;
2345 }
2346 return 0;
2347 }
2348
2349 long num_recycledvnodes = 0;
2350 /*
2351 * Disassociate the underlying file system from a vnode.
2352 * The vnode lock is held on entry.
2353 */
2354 static void
2355 vclean(vnode_t vp, int flags)
2356 {
2357 vfs_context_t ctx = vfs_context_current();
2358 int active;
2359 int need_inactive;
2360 int already_terminating;
2361 int clflags = 0;
2362 #if NAMEDSTREAMS
2363 int is_namedstream;
2364 #endif
2365
2366 /*
2367 * Check to see if the vnode is in use.
2368 * If so we have to reference it before we clean it out
2369 * so that its count cannot fall to zero and generate a
2370 * race against ourselves to recycle it.
2371 */
2372 active = vp->v_usecount;
2373
2374 /*
2375 * just in case we missed sending a needed
2376 * VNOP_INACTIVE, we'll do it now
2377 */
2378 need_inactive = (vp->v_lflag & VL_NEEDINACTIVE);
2379
2380 vp->v_lflag &= ~VL_NEEDINACTIVE;
2381
2382 /*
2383 * Prevent the vnode from being recycled or
2384 * brought into use while we clean it out.
2385 */
2386 already_terminating = (vp->v_lflag & VL_TERMINATE);
2387
2388 vp->v_lflag |= VL_TERMINATE;
2389
2390 #if NAMEDSTREAMS
2391 is_namedstream = vnode_isnamedstream(vp);
2392 #endif
2393
2394 vnode_unlock(vp);
2395
2396 OSAddAtomicLong(1, &num_recycledvnodes);
2397
2398 if (flags & DOCLOSE) {
2399 clflags |= IO_NDELAY;
2400 }
2401 if (flags & REVOKEALL) {
2402 clflags |= IO_REVOKE;
2403 }
2404
2405 if (active && (flags & DOCLOSE)) {
2406 VNOP_CLOSE(vp, clflags, ctx);
2407 }
2408
2409 /*
2410 * Clean out any buffers associated with the vnode.
2411 */
2412 if (flags & DOCLOSE) {
2413 #if CONFIG_NFS_CLIENT
2414 if (vp->v_tag == VT_NFS) {
2415 nfs_vinvalbuf(vp, V_SAVE, ctx, 0);
2416 } else
2417 #endif /* CONFIG_NFS_CLIENT */
2418 {
2419 VNOP_FSYNC(vp, MNT_WAIT, ctx);
2420
2421 /*
2422 * If the vnode is still in use (by the journal for
2423 * example) we don't want to invalidate locked buffers
2424 * here. In that case, either the journal will tidy them
2425 * up, or we will deal with it when the usecount is
2426 * finally released in vnode_rele_internal.
2427 */
2428 buf_invalidateblks(vp, BUF_WRITE_DATA | (active ? 0 : BUF_INVALIDATE_LOCKED), 0, 0);
2429 }
2430 if (UBCINFOEXISTS(vp)) {
2431 /*
2432 * Clean the pages in VM.
2433 */
2434 (void)ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL | UBC_INVALIDATE | UBC_SYNC);
2435 }
2436 }
2437 if (active || need_inactive) {
2438 VNOP_INACTIVE(vp, ctx);
2439 }
2440
2441 #if NAMEDSTREAMS
2442 if ((is_namedstream != 0) && (vp->v_parent != NULLVP)) {
2443 vnode_t pvp = vp->v_parent;
2444
2445 /* Delete the shadow stream file before we reclaim its vnode */
2446 if (vnode_isshadow(vp)) {
2447 vnode_relenamedstream(pvp, vp);
2448 }
2449
2450 /*
2451 * No more streams associated with the parent. We
2452 * have a ref on it, so its identity is stable.
2453 * If the parent is on an opaque volume, then we need to know
2454 * whether it has associated named streams.
2455 */
2456 if (vfs_authopaque(pvp->v_mount)) {
2457 vnode_lock_spin(pvp);
2458 pvp->v_lflag &= ~VL_HASSTREAMS;
2459 vnode_unlock(pvp);
2460 }
2461 }
2462 #endif
2463
2464 /*
2465 * Destroy ubc named reference
2466 * cluster_release is done on this path
2467 * along with dropping the reference on the ucred
2468 * (and in the case of forced unmount of an mmap-ed file,
2469 * the ubc reference on the vnode is dropped here too).
2470 */
2471 ubc_destroy_named(vp);
2472
2473 #if CONFIG_TRIGGERS
2474 /*
2475 * cleanup trigger info from vnode (if any)
2476 */
2477 if (vp->v_resolve) {
2478 vnode_resolver_detach(vp);
2479 }
2480 #endif
2481
2482 /*
2483 * Reclaim the vnode.
2484 */
2485 if (VNOP_RECLAIM(vp, ctx)) {
2486 panic("vclean: cannot reclaim");
2487 }
2488
2489 // make sure the name & parent ptrs get cleaned out!
2490 vnode_update_identity(vp, NULLVP, NULL, 0, 0, VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME | VNODE_UPDATE_PURGE | VNODE_UPDATE_PURGEFIRMLINK);
2491
2492 vnode_lock(vp);
2493
2494 /*
2495 * Remove the vnode from any mount list it might be on. It is not
2496 * safe to do this any earlier because unmount needs to wait for
2497 * any vnodes to terminate and it cannot do that if it cannot find
2498 * them.
2499 */
2500 insmntque(vp, (struct mount *)0);
2501
2502 vp->v_mount = dead_mountp;
2503 vp->v_op = dead_vnodeop_p;
2504 vp->v_tag = VT_NON;
2505 vp->v_data = NULL;
2506
2507 vp->v_lflag |= VL_DEAD;
2508 vp->v_flag &= ~VISDIRTY;
2509
2510 if (already_terminating == 0) {
2511 vp->v_lflag &= ~VL_TERMINATE;
2512 /*
2513 * Done with purge, notify sleepers of the grim news.
2514 */
2515 if (vp->v_lflag & VL_TERMWANT) {
2516 vp->v_lflag &= ~VL_TERMWANT;
2517 wakeup(&vp->v_lflag);
2518 }
2519 }
2520 }
2521
2522 /*
2523 * Eliminate all activity associated with the requested vnode
2524 * and with all vnodes aliased to the requested vnode.
2525 */
2526 int
2527 #if DIAGNOSTIC
2528 vn_revoke(vnode_t vp, int flags, __unused vfs_context_t a_context)
2529 #else
2530 vn_revoke(vnode_t vp, __unused int flags, __unused vfs_context_t a_context)
2531 #endif
2532 {
2533 struct vnode *vq;
2534 int vid;
2535
2536 #if DIAGNOSTIC
2537 if ((flags & REVOKEALL) == 0) {
2538 panic("vnop_revoke");
2539 }
2540 #endif
2541
2542 if (vnode_isaliased(vp)) {
2543 /*
2544 * If a vgone (or vclean) is already in progress,
2545 * return an immediate error
2546 */
2547 if (vp->v_lflag & VL_TERMINATE) {
2548 return ENOENT;
2549 }
2550
2551 /*
2552 * Ensure that vp will not be vgone'd while we
2553 * are eliminating its aliases.
2554 */
2555 SPECHASH_LOCK();
2556 while ((vp->v_specflags & SI_ALIASED)) {
2557 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2558 if (vq->v_rdev != vp->v_rdev ||
2559 vq->v_type != vp->v_type || vp == vq) {
2560 continue;
2561 }
2562 vid = vq->v_id;
2563 SPECHASH_UNLOCK();
2564 if (vnode_getwithvid(vq, vid)) {
2565 SPECHASH_LOCK();
2566 break;
2567 }
2568 vnode_lock(vq);
2569 if (!(vq->v_lflag & VL_TERMINATE)) {
2570 vnode_reclaim_internal(vq, 1, 1, 0);
2571 }
2572 vnode_put_locked(vq);
2573 vnode_unlock(vq);
2574 SPECHASH_LOCK();
2575 break;
2576 }
2577 }
2578 SPECHASH_UNLOCK();
2579 }
2580 vnode_lock(vp);
2581 if (vp->v_lflag & VL_TERMINATE) {
2582 vnode_unlock(vp);
2583 return ENOENT;
2584 }
2585 vnode_reclaim_internal(vp, 1, 0, REVOKEALL);
2586 vnode_unlock(vp);
2587
2588 return 0;
2589 }
2590
2591 /*
2592 * Recycle an unused vnode to the front of the free list.
2593 * Release the passed interlock if the vnode will be recycled.
2594 */
2595 int
2596 vnode_recycle(struct vnode *vp)
2597 {
2598 vnode_lock_spin(vp);
2599
2600 if (vp->v_iocount || vp->v_usecount) {
2601 vp->v_lflag |= VL_MARKTERM;
2602 vnode_unlock(vp);
2603 return 0;
2604 }
2605 vnode_lock_convert(vp);
2606 vnode_reclaim_internal(vp, 1, 0, 0);
2607
2608 vnode_unlock(vp);
2609
2610 return 1;
2611 }
2612
2613 static int
2614 vnode_reload(vnode_t vp)
2615 {
2616 vnode_lock_spin(vp);
2617
2618 if ((vp->v_iocount > 1) || vp->v_usecount) {
2619 vnode_unlock(vp);
2620 return 0;
2621 }
2622 if (vp->v_iocount <= 0) {
2623 panic("vnode_reload with no iocount %d", vp->v_iocount);
2624 }
2625
2626 /* mark for release when iocount is dopped */
2627 vp->v_lflag |= VL_MARKTERM;
2628 vnode_unlock(vp);
2629
2630 return 1;
2631 }
2632
2633
2634 static void
2635 vgone(vnode_t vp, int flags)
2636 {
2637 struct vnode *vq;
2638 struct vnode *vx;
2639
2640 /*
2641 * Clean out the filesystem specific data.
2642 * vclean also takes care of removing the
2643 * vnode from any mount list it might be on
2644 */
2645 vclean(vp, flags | DOCLOSE);
2646
2647 /*
2648 * If special device, remove it from special device alias list
2649 * if it is on one.
2650 */
2651 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) {
2652 SPECHASH_LOCK();
2653 if (*vp->v_hashchain == vp) {
2654 *vp->v_hashchain = vp->v_specnext;
2655 } else {
2656 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2657 if (vq->v_specnext != vp) {
2658 continue;
2659 }
2660 vq->v_specnext = vp->v_specnext;
2661 break;
2662 }
2663 if (vq == NULL) {
2664 panic("missing bdev");
2665 }
2666 }
2667 if (vp->v_specflags & SI_ALIASED) {
2668 vx = NULL;
2669 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2670 if (vq->v_rdev != vp->v_rdev ||
2671 vq->v_type != vp->v_type) {
2672 continue;
2673 }
2674 if (vx) {
2675 break;
2676 }
2677 vx = vq;
2678 }
2679 if (vx == NULL) {
2680 panic("missing alias");
2681 }
2682 if (vq == NULL) {
2683 vx->v_specflags &= ~SI_ALIASED;
2684 }
2685 vp->v_specflags &= ~SI_ALIASED;
2686 }
2687 SPECHASH_UNLOCK();
2688 {
2689 struct specinfo *tmp = vp->v_specinfo;
2690 vp->v_specinfo = NULL;
2691 FREE_ZONE(tmp, sizeof(struct specinfo), M_SPECINFO);
2692 }
2693 }
2694 }
2695
2696 /*
2697 * Lookup a vnode by device number.
2698 */
2699 int
2700 check_mountedon(dev_t dev, enum vtype type, int *errorp)
2701 {
2702 vnode_t vp;
2703 int rc = 0;
2704 int vid;
2705
2706 loop:
2707 SPECHASH_LOCK();
2708 for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
2709 if (dev != vp->v_rdev || type != vp->v_type) {
2710 continue;
2711 }
2712 vid = vp->v_id;
2713 SPECHASH_UNLOCK();
2714 if (vnode_getwithvid(vp, vid)) {
2715 goto loop;
2716 }
2717 vnode_lock_spin(vp);
2718 if ((vp->v_usecount > 0) || (vp->v_iocount > 1)) {
2719 vnode_unlock(vp);
2720 if ((*errorp = vfs_mountedon(vp)) != 0) {
2721 rc = 1;
2722 }
2723 } else {
2724 vnode_unlock(vp);
2725 }
2726 vnode_put(vp);
2727 return rc;
2728 }
2729 SPECHASH_UNLOCK();
2730 return 0;
2731 }
2732
2733 /*
2734 * Calculate the total number of references to a special device.
2735 */
2736 int
2737 vcount(vnode_t vp)
2738 {
2739 vnode_t vq, vnext;
2740 int count;
2741 int vid;
2742
2743 if (!vnode_isspec(vp)) {
2744 return vp->v_usecount - vp->v_kusecount;
2745 }
2746
2747 loop:
2748 if (!vnode_isaliased(vp)) {
2749 return vp->v_specinfo->si_opencount;
2750 }
2751 count = 0;
2752
2753 SPECHASH_LOCK();
2754 /*
2755 * Grab first vnode and its vid.
2756 */
2757 vq = *vp->v_hashchain;
2758 vid = vq ? vq->v_id : 0;
2759
2760 SPECHASH_UNLOCK();
2761
2762 while (vq) {
2763 /*
2764 * Attempt to get the vnode outside the SPECHASH lock.
2765 */
2766 if (vnode_getwithvid(vq, vid)) {
2767 goto loop;
2768 }
2769 vnode_lock(vq);
2770
2771 if (vq->v_rdev == vp->v_rdev && vq->v_type == vp->v_type) {
2772 if ((vq->v_usecount == 0) && (vq->v_iocount == 1) && vq != vp) {
2773 /*
2774 * Alias, but not in use, so flush it out.
2775 */
2776 vnode_reclaim_internal(vq, 1, 1, 0);
2777 vnode_put_locked(vq);
2778 vnode_unlock(vq);
2779 goto loop;
2780 }
2781 count += vq->v_specinfo->si_opencount;
2782 }
2783 vnode_unlock(vq);
2784
2785 SPECHASH_LOCK();
2786 /*
2787 * must do this with the reference still held on 'vq'
2788 * so that it can't be destroyed while we're poking
2789 * through v_specnext
2790 */
2791 vnext = vq->v_specnext;
2792 vid = vnext ? vnext->v_id : 0;
2793
2794 SPECHASH_UNLOCK();
2795
2796 vnode_put(vq);
2797
2798 vq = vnext;
2799 }
2800
2801 return count;
2802 }
2803
2804 int prtactive = 0; /* 1 => print out reclaim of active vnodes */
2805
2806 /*
2807 * Print out a description of a vnode.
2808 */
2809 static const char *typename[] =
2810 { "VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD" };
2811
2812 void
2813 vprint(const char *label, struct vnode *vp)
2814 {
2815 char sbuf[64];
2816
2817 if (label != NULL) {
2818 printf("%s: ", label);
2819 }
2820 printf("name %s type %s, usecount %d, writecount %d\n",
2821 vp->v_name, typename[vp->v_type],
2822 vp->v_usecount, vp->v_writecount);
2823 sbuf[0] = '\0';
2824 if (vp->v_flag & VROOT) {
2825 strlcat(sbuf, "|VROOT", sizeof(sbuf));
2826 }
2827 if (vp->v_flag & VTEXT) {
2828 strlcat(sbuf, "|VTEXT", sizeof(sbuf));
2829 }
2830 if (vp->v_flag & VSYSTEM) {
2831 strlcat(sbuf, "|VSYSTEM", sizeof(sbuf));
2832 }
2833 if (vp->v_flag & VNOFLUSH) {
2834 strlcat(sbuf, "|VNOFLUSH", sizeof(sbuf));
2835 }
2836 if (vp->v_flag & VBWAIT) {
2837 strlcat(sbuf, "|VBWAIT", sizeof(sbuf));
2838 }
2839 if (vnode_isaliased(vp)) {
2840 strlcat(sbuf, "|VALIASED", sizeof(sbuf));
2841 }
2842 if (sbuf[0] != '\0') {
2843 printf("vnode flags (%s\n", &sbuf[1]);
2844 }
2845 }
2846
2847
2848 int
2849 vn_getpath(struct vnode *vp, char *pathbuf, int *len)
2850 {
2851 return build_path(vp, pathbuf, *len, len, BUILDPATH_NO_FS_ENTER, vfs_context_current());
2852 }
2853
2854 int
2855 vn_getpath_fsenter(struct vnode *vp, char *pathbuf, int *len)
2856 {
2857 return build_path(vp, pathbuf, *len, len, 0, vfs_context_current());
2858 }
2859
2860 /*
2861 * vn_getpath_fsenter_with_parent will reenter the file system to fine the path of the
2862 * vnode. It requires that there are IO counts on both the vnode and the directory vnode.
2863 *
2864 * vn_getpath_fsenter is called by MAC hooks to authorize operations for every thing, but
2865 * unlink, rmdir and rename. For these operation the MAC hook calls vn_getpath. This presents
2866 * problems where if the path can not be found from the name cache, those operations can
2867 * erroneously fail with EPERM even though the call should succeed. When removing or moving
2868 * file system objects with operations such as unlink or rename, those operations need to
2869 * take IO counts on the target and containing directory. Calling vn_getpath_fsenter from a
2870 * MAC hook from these operations during forced unmount operations can lead to dead
2871 * lock. This happens when the operation starts, IO counts are taken on the containing
2872 * directories and targets. Before the MAC hook is called a forced unmount from another
2873 * thread takes place and blocks on the on going operation's directory vnode in vdrain.
2874 * After which, the MAC hook gets called and calls vn_getpath_fsenter. vn_getpath_fsenter
2875 * is called with the understanding that there is an IO count on the target. If in
2876 * build_path the directory vnode is no longer in the cache, then the parent object id via
2877 * vnode_getattr from the target is obtain and used to call VFS_VGET to get the parent
2878 * vnode. The file system's VFS_VGET then looks up by inode in its hash and tries to get
2879 * an IO count. But VFS_VGET "sees" the directory vnode is in vdrain and can block
2880 * depending on which version and how it calls the vnode_get family of interfaces.
2881 *
2882 * N.B. A reasonable interface to use is vnode_getwithvid. This interface was modified to
2883 * call vnode_getiocount with VNODE_DRAINO, so it will happily get an IO count and not
2884 * cause issues, but there is no guarantee that all or any file systems are doing that.
2885 *
2886 * vn_getpath_fsenter_with_parent can enter the file system safely since there is a known
2887 * IO count on the directory vnode by calling build_path_with_parent.
2888 */
2889
2890 int
2891 vn_getpath_fsenter_with_parent(struct vnode *dvp, struct vnode *vp, char *pathbuf, int *len)
2892 {
2893 return build_path_with_parent(vp, dvp, pathbuf, *len, len, 0, vfs_context_current());
2894 }
2895
2896 int
2897 vn_getpath_ext(struct vnode *vp, struct vnode *dvp, char *pathbuf, int *len, int flags)
2898 {
2899 int bpflags = (flags & VN_GETPATH_FSENTER) ? 0 : BUILDPATH_NO_FS_ENTER;
2900
2901 if (flags && (flags != VN_GETPATH_FSENTER)) {
2902 if (flags & VN_GETPATH_NO_FIRMLINK) {
2903 bpflags |= BUILDPATH_NO_FIRMLINK;;
2904 }
2905 if (flags & VN_GETPATH_VOLUME_RELATIVE) {
2906 bpflags |= (BUILDPATH_VOLUME_RELATIVE | BUILDPATH_NO_FIRMLINK);
2907 }
2908 if (flags & VN_GETPATH_NO_PROCROOT) {
2909 bpflags |= BUILDPATH_NO_PROCROOT;
2910 }
2911 }
2912
2913 return build_path_with_parent(vp, dvp, pathbuf, *len, len, bpflags, vfs_context_current());
2914 }
2915
2916 int
2917 vn_getpath_no_firmlink(struct vnode *vp, char *pathbuf, int *len)
2918 {
2919 return vn_getpath_ext(vp, NULLVP, pathbuf, len, VN_GETPATH_NO_FIRMLINK);
2920 }
2921
2922 int
2923 vn_getcdhash(struct vnode *vp, off_t offset, unsigned char *cdhash)
2924 {
2925 return ubc_cs_getcdhash(vp, offset, cdhash);
2926 }
2927
2928
2929 static char *extension_table = NULL;
2930 static int nexts;
2931 static int max_ext_width;
2932
2933 static int
2934 extension_cmp(const void *a, const void *b)
2935 {
2936 return strlen((const char *)a) - strlen((const char *)b);
2937 }
2938
2939
2940 //
2941 // This is the api LaunchServices uses to inform the kernel
2942 // the list of package extensions to ignore.
2943 //
2944 // Internally we keep the list sorted by the length of the
2945 // the extension (from longest to shortest). We sort the
2946 // list of extensions so that we can speed up our searches
2947 // when comparing file names -- we only compare extensions
2948 // that could possibly fit into the file name, not all of
2949 // them (i.e. a short 8 character name can't have an 8
2950 // character extension).
2951 //
2952 extern lck_mtx_t *pkg_extensions_lck;
2953
2954 __private_extern__ int
2955 set_package_extensions_table(user_addr_t data, int nentries, int maxwidth)
2956 {
2957 char *new_exts, *old_exts;
2958 int error;
2959
2960 if (nentries <= 0 || nentries > 1024 || maxwidth <= 0 || maxwidth > 255) {
2961 return EINVAL;
2962 }
2963
2964
2965 // allocate one byte extra so we can guarantee null termination
2966 MALLOC(new_exts, char *, (nentries * maxwidth) + 1, M_TEMP, M_WAITOK);
2967 if (new_exts == NULL) {
2968 return ENOMEM;
2969 }
2970
2971 error = copyin(data, new_exts, nentries * maxwidth);
2972 if (error) {
2973 FREE(new_exts, M_TEMP);
2974 return error;
2975 }
2976
2977 new_exts[(nentries * maxwidth)] = '\0'; // guarantee null termination of the block
2978
2979 qsort(new_exts, nentries, maxwidth, extension_cmp);
2980
2981 lck_mtx_lock(pkg_extensions_lck);
2982
2983 old_exts = extension_table;
2984 extension_table = new_exts;
2985 nexts = nentries;
2986 max_ext_width = maxwidth;
2987
2988 lck_mtx_unlock(pkg_extensions_lck);
2989
2990 if (old_exts) {
2991 FREE(old_exts, M_TEMP);
2992 }
2993
2994 return 0;
2995 }
2996
2997
2998 int
2999 is_package_name(const char *name, int len)
3000 {
3001 int i, extlen;
3002 const char *ptr, *name_ext;
3003
3004 if (len <= 3) {
3005 return 0;
3006 }
3007
3008 name_ext = NULL;
3009 for (ptr = name; *ptr != '\0'; ptr++) {
3010 if (*ptr == '.') {
3011 name_ext = ptr;
3012 }
3013 }
3014
3015 // if there is no "." extension, it can't match
3016 if (name_ext == NULL) {
3017 return 0;
3018 }
3019
3020 // advance over the "."
3021 name_ext++;
3022
3023 lck_mtx_lock(pkg_extensions_lck);
3024
3025 // now iterate over all the extensions to see if any match
3026 ptr = &extension_table[0];
3027 for (i = 0; i < nexts; i++, ptr += max_ext_width) {
3028 extlen = strlen(ptr);
3029 if (strncasecmp(name_ext, ptr, extlen) == 0 && name_ext[extlen] == '\0') {
3030 // aha, a match!
3031 lck_mtx_unlock(pkg_extensions_lck);
3032 return 1;
3033 }
3034 }
3035
3036 lck_mtx_unlock(pkg_extensions_lck);
3037
3038 // if we get here, no extension matched
3039 return 0;
3040 }
3041
3042 int
3043 vn_path_package_check(__unused vnode_t vp, char *path, int pathlen, int *component)
3044 {
3045 char *ptr, *end;
3046 int comp = 0;
3047
3048 *component = -1;
3049 if (*path != '/') {
3050 return EINVAL;
3051 }
3052
3053 end = path + 1;
3054 while (end < path + pathlen && *end != '\0') {
3055 while (end < path + pathlen && *end == '/' && *end != '\0') {
3056 end++;
3057 }
3058
3059 ptr = end;
3060
3061 while (end < path + pathlen && *end != '/' && *end != '\0') {
3062 end++;
3063 }
3064
3065 if (end > path + pathlen) {
3066 // hmm, string wasn't null terminated
3067 return EINVAL;
3068 }
3069
3070 *end = '\0';
3071 if (is_package_name(ptr, end - ptr)) {
3072 *component = comp;
3073 break;
3074 }
3075
3076 end++;
3077 comp++;
3078 }
3079
3080 return 0;
3081 }
3082
3083 /*
3084 * Determine if a name is inappropriate for a searchfs query.
3085 * This list consists of /System currently.
3086 */
3087
3088 int
3089 vn_searchfs_inappropriate_name(const char *name, int len)
3090 {
3091 const char *bad_names[] = { "System" };
3092 int bad_len[] = { 6 };
3093 int i;
3094
3095 for (i = 0; i < (int) (sizeof(bad_names) / sizeof(bad_names[0])); i++) {
3096 if (len == bad_len[i] && strncmp(name, bad_names[i], strlen(bad_names[i]) + 1) == 0) {
3097 return 1;
3098 }
3099 }
3100
3101 // if we get here, no name matched
3102 return 0;
3103 }
3104
3105 /*
3106 * Top level filesystem related information gathering.
3107 */
3108 extern unsigned int vfs_nummntops;
3109
3110 /*
3111 * The VFS_NUMMNTOPS shouldn't be at name[1] since
3112 * is a VFS generic variable. Since we no longer support
3113 * VT_UFS, we reserve its value to support this sysctl node.
3114 *
3115 * It should have been:
3116 * name[0]: VFS_GENERIC
3117 * name[1]: VFS_NUMMNTOPS
3118 */
3119 SYSCTL_INT(_vfs, VFS_NUMMNTOPS, nummntops,
3120 CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
3121 &vfs_nummntops, 0, "");
3122
3123 int
3124 vfs_sysctl(int *name __unused, u_int namelen __unused,
3125 user_addr_t oldp __unused, size_t *oldlenp __unused,
3126 user_addr_t newp __unused, size_t newlen __unused, proc_t p __unused);
3127
3128 int
3129 vfs_sysctl(int *name __unused, u_int namelen __unused,
3130 user_addr_t oldp __unused, size_t *oldlenp __unused,
3131 user_addr_t newp __unused, size_t newlen __unused, proc_t p __unused)
3132 {
3133 return EINVAL;
3134 }
3135
3136
3137 //
3138 // The following code disallows specific sysctl's that came through
3139 // the direct sysctl interface (vfs_sysctl_node) instead of the newer
3140 // sysctl_vfs_ctlbyfsid() interface. We can not allow these selectors
3141 // through vfs_sysctl_node() because it passes the user's oldp pointer
3142 // directly to the file system which (for these selectors) casts it
3143 // back to a struct sysctl_req and then proceed to use SYSCTL_IN()
3144 // which jumps through an arbitrary function pointer. When called
3145 // through the sysctl_vfs_ctlbyfsid() interface this does not happen
3146 // and so it's safe.
3147 //
3148 // Unfortunately we have to pull in definitions from AFP and SMB and
3149 // perform explicit name checks on the file system to determine if
3150 // these selectors are being used.
3151 //
3152
3153 #define AFPFS_VFS_CTL_GETID 0x00020001
3154 #define AFPFS_VFS_CTL_NETCHANGE 0x00020002
3155 #define AFPFS_VFS_CTL_VOLCHANGE 0x00020003
3156
3157 #define SMBFS_SYSCTL_REMOUNT 1
3158 #define SMBFS_SYSCTL_REMOUNT_INFO 2
3159 #define SMBFS_SYSCTL_GET_SERVER_SHARE 3
3160
3161
3162 static int
3163 is_bad_sysctl_name(struct vfstable *vfsp, int selector_name)
3164 {
3165 switch (selector_name) {
3166 case VFS_CTL_QUERY:
3167 case VFS_CTL_TIMEO:
3168 case VFS_CTL_NOLOCKS:
3169 case VFS_CTL_NSTATUS:
3170 case VFS_CTL_SADDR:
3171 case VFS_CTL_DISC:
3172 case VFS_CTL_SERVERINFO:
3173 return 1;
3174
3175 default:
3176 break;
3177 }
3178
3179 // the more complicated check for some of SMB's special values
3180 if (strcmp(vfsp->vfc_name, "smbfs") == 0) {
3181 switch (selector_name) {
3182 case SMBFS_SYSCTL_REMOUNT:
3183 case SMBFS_SYSCTL_REMOUNT_INFO:
3184 case SMBFS_SYSCTL_GET_SERVER_SHARE:
3185 return 1;
3186 }
3187 } else if (strcmp(vfsp->vfc_name, "afpfs") == 0) {
3188 switch (selector_name) {
3189 case AFPFS_VFS_CTL_GETID:
3190 case AFPFS_VFS_CTL_NETCHANGE:
3191 case AFPFS_VFS_CTL_VOLCHANGE:
3192 return 1;
3193 }
3194 }
3195
3196 //
3197 // If we get here we passed all the checks so the selector is ok
3198 //
3199 return 0;
3200 }
3201
3202
3203 int vfs_sysctl_node SYSCTL_HANDLER_ARGS
3204 {
3205 int *name, namelen;
3206 struct vfstable *vfsp;
3207 int error;
3208 int fstypenum;
3209
3210 fstypenum = oidp->oid_number;
3211 name = arg1;
3212 namelen = arg2;
3213
3214 /* all sysctl names at this level should have at least one name slot for the FS */
3215 if (namelen < 1) {
3216 return EISDIR; /* overloaded */
3217 }
3218 mount_list_lock();
3219 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
3220 if (vfsp->vfc_typenum == fstypenum) {
3221 vfsp->vfc_refcount++;
3222 break;
3223 }
3224 }
3225 mount_list_unlock();
3226
3227 if (vfsp == NULL) {
3228 return ENOTSUP;
3229 }
3230
3231 if (is_bad_sysctl_name(vfsp, name[0])) {
3232 printf("vfs: bad selector 0x%.8x for old-style sysctl(). use the sysctl-by-fsid interface instead\n", name[0]);
3233 return EPERM;
3234 }
3235
3236 error = (vfsp->vfc_vfsops->vfs_sysctl)(name, namelen, req->oldptr, &req->oldlen, req->newptr, req->newlen, vfs_context_current());
3237
3238 mount_list_lock();
3239 vfsp->vfc_refcount--;
3240 mount_list_unlock();
3241
3242 return error;
3243 }
3244
3245 /*
3246 * Check to see if a filesystem is mounted on a block device.
3247 */
3248 int
3249 vfs_mountedon(struct vnode *vp)
3250 {
3251 struct vnode *vq;
3252 int error = 0;
3253
3254 SPECHASH_LOCK();
3255 if (vp->v_specflags & SI_MOUNTEDON) {
3256 error = EBUSY;
3257 goto out;
3258 }
3259 if (vp->v_specflags & SI_ALIASED) {
3260 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
3261 if (vq->v_rdev != vp->v_rdev ||
3262 vq->v_type != vp->v_type) {
3263 continue;
3264 }
3265 if (vq->v_specflags & SI_MOUNTEDON) {
3266 error = EBUSY;
3267 break;
3268 }
3269 }
3270 }
3271 out:
3272 SPECHASH_UNLOCK();
3273 return error;
3274 }
3275
3276 struct unmount_info {
3277 int u_errs; // Total failed unmounts
3278 int u_busy; // EBUSY failed unmounts
3279 };
3280
3281 static int
3282 unmount_callback(mount_t mp, void *arg)
3283 {
3284 int error;
3285 char *mntname;
3286 struct unmount_info *uip = arg;
3287
3288 mount_ref(mp, 0);
3289 mount_iterdrop(mp); // avoid vfs_iterate deadlock in dounmount()
3290
3291 MALLOC_ZONE(mntname, void *, MAXPATHLEN, M_NAMEI, M_WAITOK);
3292 if (mntname) {
3293 strlcpy(mntname, mp->mnt_vfsstat.f_mntonname, MAXPATHLEN);
3294 }
3295
3296 error = dounmount(mp, MNT_FORCE, 1, vfs_context_current());
3297 if (error) {
3298 uip->u_errs++;
3299 printf("Unmount of %s failed (%d)\n", mntname ? mntname:"?", error);
3300 if (error == EBUSY) {
3301 uip->u_busy++;
3302 }
3303 }
3304 if (mntname) {
3305 FREE_ZONE(mntname, MAXPATHLEN, M_NAMEI);
3306 }
3307
3308 return VFS_RETURNED;
3309 }
3310
3311 /*
3312 * Unmount all filesystems. The list is traversed in reverse order
3313 * of mounting to avoid dependencies.
3314 * Busy mounts are retried.
3315 */
3316 __private_extern__ void
3317 vfs_unmountall(void)
3318 {
3319 int mounts, sec = 1;
3320 struct unmount_info ui;
3321
3322 vfs_unmountall_started = 1;
3323
3324 retry:
3325 ui.u_errs = ui.u_busy = 0;
3326 vfs_iterate(VFS_ITERATE_CB_DROPREF | VFS_ITERATE_TAIL_FIRST, unmount_callback, &ui);
3327 mounts = mount_getvfscnt();
3328 if (mounts == 0) {
3329 return;
3330 }
3331
3332 if (ui.u_busy > 0) { // Busy mounts - wait & retry
3333 tsleep(&nummounts, PVFS, "busy mount", sec * hz);
3334 sec *= 2;
3335 if (sec <= 32) {
3336 goto retry;
3337 }
3338 printf("Unmounting timed out\n");
3339 } else if (ui.u_errs < mounts) {
3340 // If the vfs_iterate missed mounts in progress - wait a bit
3341 tsleep(&nummounts, PVFS, "missed mount", 2 * hz);
3342 }
3343 }
3344
3345 /*
3346 * This routine is called from vnode_pager_deallocate out of the VM
3347 * The path to vnode_pager_deallocate can only be initiated by ubc_destroy_named
3348 * on a vnode that has a UBCINFO
3349 */
3350 __private_extern__ void
3351 vnode_pager_vrele(vnode_t vp)
3352 {
3353 struct ubc_info *uip;
3354
3355 vnode_lock_spin(vp);
3356
3357 vp->v_lflag &= ~VNAMED_UBC;
3358 if (vp->v_usecount != 0) {
3359 /*
3360 * At the eleventh hour, just before the ubcinfo is
3361 * destroyed, ensure the ubc-specific v_usecount
3362 * reference has gone. We use v_usecount != 0 as a hint;
3363 * ubc_unmap() does nothing if there's no mapping.
3364 *
3365 * This case is caused by coming here via forced unmount,
3366 * versus the usual vm_object_deallocate() path.
3367 * In the forced unmount case, ubc_destroy_named()
3368 * releases the pager before memory_object_last_unmap()
3369 * can be called.
3370 */
3371 vnode_unlock(vp);
3372 ubc_unmap(vp);
3373 vnode_lock_spin(vp);
3374 }
3375
3376 uip = vp->v_ubcinfo;
3377 vp->v_ubcinfo = UBC_INFO_NULL;
3378
3379 vnode_unlock(vp);
3380
3381 ubc_info_deallocate(uip);
3382 }
3383
3384
3385 #include <sys/disk.h>
3386
3387 u_int32_t rootunit = (u_int32_t)-1;
3388
3389 #if CONFIG_IOSCHED
3390 extern int lowpri_throttle_enabled;
3391 extern int iosched_enabled;
3392 #endif
3393
3394 errno_t
3395 vfs_init_io_attributes(vnode_t devvp, mount_t mp)
3396 {
3397 int error;
3398 off_t readblockcnt = 0;
3399 off_t writeblockcnt = 0;
3400 off_t readmaxcnt = 0;
3401 off_t writemaxcnt = 0;
3402 off_t readsegcnt = 0;
3403 off_t writesegcnt = 0;
3404 off_t readsegsize = 0;
3405 off_t writesegsize = 0;
3406 off_t alignment = 0;
3407 u_int32_t minsaturationbytecount = 0;
3408 u_int32_t ioqueue_depth = 0;
3409 u_int32_t blksize;
3410 u_int64_t temp;
3411 u_int32_t features;
3412 u_int64_t location = 0;
3413 vfs_context_t ctx = vfs_context_current();
3414 dk_corestorage_info_t cs_info;
3415 boolean_t cs_present = FALSE;;
3416 int isssd = 0;
3417 int isvirtual = 0;
3418
3419
3420 VNOP_IOCTL(devvp, DKIOCGETTHROTTLEMASK, (caddr_t)&mp->mnt_throttle_mask, 0, NULL);
3421 /*
3422 * as a reasonable approximation, only use the lowest bit of the mask
3423 * to generate a disk unit number
3424 */
3425 mp->mnt_devbsdunit = num_trailing_0(mp->mnt_throttle_mask);
3426
3427 if (devvp == rootvp) {
3428 rootunit = mp->mnt_devbsdunit;
3429 }
3430
3431 if (mp->mnt_devbsdunit == rootunit) {
3432 /*
3433 * this mount point exists on the same device as the root
3434 * partition, so it comes under the hard throttle control...
3435 * this is true even for the root mount point itself
3436 */
3437 mp->mnt_kern_flag |= MNTK_ROOTDEV;
3438 }
3439 /*
3440 * force the spec device to re-cache
3441 * the underlying block size in case
3442 * the filesystem overrode the initial value
3443 */
3444 set_fsblocksize(devvp);
3445
3446
3447 if ((error = VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE,
3448 (caddr_t)&blksize, 0, ctx))) {
3449 return error;
3450 }
3451
3452 mp->mnt_devblocksize = blksize;
3453
3454 /*
3455 * set the maximum possible I/O size
3456 * this may get clipped to a smaller value
3457 * based on which constraints are being advertised
3458 * and if those advertised constraints result in a smaller
3459 * limit for a given I/O
3460 */
3461 mp->mnt_maxreadcnt = MAX_UPL_SIZE_BYTES;
3462 mp->mnt_maxwritecnt = MAX_UPL_SIZE_BYTES;
3463
3464 if (VNOP_IOCTL(devvp, DKIOCISVIRTUAL, (caddr_t)&isvirtual, 0, ctx) == 0) {
3465 if (isvirtual) {
3466 mp->mnt_kern_flag |= MNTK_VIRTUALDEV;
3467 mp->mnt_flag |= MNT_REMOVABLE;
3468 }
3469 }
3470 if (VNOP_IOCTL(devvp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ctx) == 0) {
3471 if (isssd) {
3472 mp->mnt_kern_flag |= MNTK_SSD;
3473 }
3474 }
3475 if ((error = VNOP_IOCTL(devvp, DKIOCGETFEATURES,
3476 (caddr_t)&features, 0, ctx))) {
3477 return error;
3478 }
3479
3480 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBLOCKCOUNTREAD,
3481 (caddr_t)&readblockcnt, 0, ctx))) {
3482 return error;
3483 }
3484
3485 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBLOCKCOUNTWRITE,
3486 (caddr_t)&writeblockcnt, 0, ctx))) {
3487 return error;
3488 }
3489
3490 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBYTECOUNTREAD,
3491 (caddr_t)&readmaxcnt, 0, ctx))) {
3492 return error;
3493 }
3494
3495 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBYTECOUNTWRITE,
3496 (caddr_t)&writemaxcnt, 0, ctx))) {
3497 return error;
3498 }
3499
3500 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTCOUNTREAD,
3501 (caddr_t)&readsegcnt, 0, ctx))) {
3502 return error;
3503 }
3504
3505 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTCOUNTWRITE,
3506 (caddr_t)&writesegcnt, 0, ctx))) {
3507 return error;
3508 }
3509
3510 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTBYTECOUNTREAD,
3511 (caddr_t)&readsegsize, 0, ctx))) {
3512 return error;
3513 }
3514
3515 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTBYTECOUNTWRITE,
3516 (caddr_t)&writesegsize, 0, ctx))) {
3517 return error;
3518 }
3519
3520 if ((error = VNOP_IOCTL(devvp, DKIOCGETMINSEGMENTALIGNMENTBYTECOUNT,
3521 (caddr_t)&alignment, 0, ctx))) {
3522 return error;
3523 }
3524
3525 if ((error = VNOP_IOCTL(devvp, DKIOCGETCOMMANDPOOLSIZE,
3526 (caddr_t)&ioqueue_depth, 0, ctx))) {
3527 return error;
3528 }
3529
3530 if (readmaxcnt) {
3531 mp->mnt_maxreadcnt = (readmaxcnt > UINT32_MAX) ? UINT32_MAX : readmaxcnt;
3532 }
3533
3534 if (readblockcnt) {
3535 temp = readblockcnt * blksize;
3536 temp = (temp > UINT32_MAX) ? UINT32_MAX : temp;
3537
3538 if (temp < mp->mnt_maxreadcnt) {
3539 mp->mnt_maxreadcnt = (u_int32_t)temp;
3540 }
3541 }
3542
3543 if (writemaxcnt) {
3544 mp->mnt_maxwritecnt = (writemaxcnt > UINT32_MAX) ? UINT32_MAX : writemaxcnt;
3545 }
3546
3547 if (writeblockcnt) {
3548 temp = writeblockcnt * blksize;
3549 temp = (temp > UINT32_MAX) ? UINT32_MAX : temp;
3550
3551 if (temp < mp->mnt_maxwritecnt) {
3552 mp->mnt_maxwritecnt = (u_int32_t)temp;
3553 }
3554 }
3555
3556 if (readsegcnt) {
3557 temp = (readsegcnt > UINT16_MAX) ? UINT16_MAX : readsegcnt;
3558 } else {
3559 temp = mp->mnt_maxreadcnt / PAGE_SIZE;
3560
3561 if (temp > UINT16_MAX) {
3562 temp = UINT16_MAX;
3563 }
3564 }
3565 mp->mnt_segreadcnt = (u_int16_t)temp;
3566
3567 if (writesegcnt) {
3568 temp = (writesegcnt > UINT16_MAX) ? UINT16_MAX : writesegcnt;
3569 } else {
3570 temp = mp->mnt_maxwritecnt / PAGE_SIZE;
3571
3572 if (temp > UINT16_MAX) {
3573 temp = UINT16_MAX;
3574 }
3575 }
3576 mp->mnt_segwritecnt = (u_int16_t)temp;
3577
3578 if (readsegsize) {
3579 temp = (readsegsize > UINT32_MAX) ? UINT32_MAX : readsegsize;
3580 } else {
3581 temp = mp->mnt_maxreadcnt;
3582 }
3583 mp->mnt_maxsegreadsize = (u_int32_t)temp;
3584
3585 if (writesegsize) {
3586 temp = (writesegsize > UINT32_MAX) ? UINT32_MAX : writesegsize;
3587 } else {
3588 temp = mp->mnt_maxwritecnt;
3589 }
3590 mp->mnt_maxsegwritesize = (u_int32_t)temp;
3591
3592 if (alignment) {
3593 temp = (alignment > PAGE_SIZE) ? PAGE_MASK : alignment - 1;
3594 } else {
3595 temp = 0;
3596 }
3597 mp->mnt_alignmentmask = temp;
3598
3599
3600 if (ioqueue_depth > MNT_DEFAULT_IOQUEUE_DEPTH) {
3601 temp = ioqueue_depth;
3602 } else {
3603 temp = MNT_DEFAULT_IOQUEUE_DEPTH;
3604 }
3605
3606 mp->mnt_ioqueue_depth = temp;
3607 mp->mnt_ioscale = MNT_IOSCALE(mp->mnt_ioqueue_depth);
3608
3609 if (mp->mnt_ioscale > 1) {
3610 printf("ioqueue_depth = %d, ioscale = %d\n", (int)mp->mnt_ioqueue_depth, (int)mp->mnt_ioscale);
3611 }
3612
3613 if (features & DK_FEATURE_FORCE_UNIT_ACCESS) {
3614 mp->mnt_ioflags |= MNT_IOFLAGS_FUA_SUPPORTED;
3615 }
3616
3617 if (VNOP_IOCTL(devvp, DKIOCGETIOMINSATURATIONBYTECOUNT, (caddr_t)&minsaturationbytecount, 0, ctx) == 0) {
3618 mp->mnt_minsaturationbytecount = minsaturationbytecount;
3619 } else {
3620 mp->mnt_minsaturationbytecount = 0;
3621 }
3622
3623 if (VNOP_IOCTL(devvp, DKIOCCORESTORAGE, (caddr_t)&cs_info, 0, ctx) == 0) {
3624 cs_present = TRUE;
3625 }
3626
3627 if (features & DK_FEATURE_UNMAP) {
3628 mp->mnt_ioflags |= MNT_IOFLAGS_UNMAP_SUPPORTED;
3629
3630 if (cs_present == TRUE) {
3631 mp->mnt_ioflags |= MNT_IOFLAGS_CSUNMAP_SUPPORTED;
3632 }
3633 }
3634 if (cs_present == TRUE) {
3635 /*
3636 * for now we'll use the following test as a proxy for
3637 * the underlying drive being FUSION in nature
3638 */
3639 if ((cs_info.flags & DK_CORESTORAGE_PIN_YOUR_METADATA)) {
3640 mp->mnt_ioflags |= MNT_IOFLAGS_FUSION_DRIVE;
3641 }
3642 } else {
3643 /* Check for APFS Fusion */
3644 dk_apfs_flavour_t flavour;
3645 if ((VNOP_IOCTL(devvp, DKIOCGETAPFSFLAVOUR, (caddr_t)&flavour, 0, ctx) == 0) &&
3646 (flavour == DK_APFS_FUSION)) {
3647 mp->mnt_ioflags |= MNT_IOFLAGS_FUSION_DRIVE;
3648 }
3649 }
3650
3651 if (VNOP_IOCTL(devvp, DKIOCGETLOCATION, (caddr_t)&location, 0, ctx) == 0) {
3652 if (location & DK_LOCATION_EXTERNAL) {
3653 mp->mnt_ioflags |= MNT_IOFLAGS_PERIPHERAL_DRIVE;
3654 mp->mnt_flag |= MNT_REMOVABLE;
3655 }
3656 }
3657
3658 #if CONFIG_IOSCHED
3659 if (iosched_enabled && (features & DK_FEATURE_PRIORITY)) {
3660 mp->mnt_ioflags |= MNT_IOFLAGS_IOSCHED_SUPPORTED;
3661 throttle_info_disable_throttle(mp->mnt_devbsdunit, (mp->mnt_ioflags & MNT_IOFLAGS_FUSION_DRIVE) != 0);
3662 }
3663 #endif /* CONFIG_IOSCHED */
3664 return error;
3665 }
3666
3667 static struct klist fs_klist;
3668 lck_grp_t *fs_klist_lck_grp;
3669 lck_mtx_t *fs_klist_lock;
3670
3671 void
3672 vfs_event_init(void)
3673 {
3674 klist_init(&fs_klist);
3675 fs_klist_lck_grp = lck_grp_alloc_init("fs_klist", NULL);
3676 fs_klist_lock = lck_mtx_alloc_init(fs_klist_lck_grp, NULL);
3677 }
3678
3679 void
3680 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data)
3681 {
3682 if (event == VQ_DEAD || event == VQ_NOTRESP) {
3683 struct mount *mp = vfs_getvfs(fsid);
3684 if (mp) {
3685 mount_lock_spin(mp);
3686 if (data) {
3687 mp->mnt_kern_flag &= ~MNT_LNOTRESP; // Now responding
3688 } else {
3689 mp->mnt_kern_flag |= MNT_LNOTRESP; // Not responding
3690 }
3691 mount_unlock(mp);
3692 }
3693 }
3694
3695 lck_mtx_lock(fs_klist_lock);
3696 KNOTE(&fs_klist, event);
3697 lck_mtx_unlock(fs_klist_lock);
3698 }
3699
3700 /*
3701 * return the number of mounted filesystems.
3702 */
3703 static int
3704 sysctl_vfs_getvfscnt(void)
3705 {
3706 return mount_getvfscnt();
3707 }
3708
3709
3710 static int
3711 mount_getvfscnt(void)
3712 {
3713 int ret;
3714
3715 mount_list_lock();
3716 ret = nummounts;
3717 mount_list_unlock();
3718 return ret;
3719 }
3720
3721
3722
3723 static int
3724 mount_fillfsids(fsid_t *fsidlst, int count)
3725 {
3726 struct mount *mp;
3727 int actual = 0;
3728
3729 actual = 0;
3730 mount_list_lock();
3731 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3732 if (actual <= count) {
3733 fsidlst[actual] = mp->mnt_vfsstat.f_fsid;
3734 actual++;
3735 }
3736 }
3737 mount_list_unlock();
3738 return actual;
3739 }
3740
3741 /*
3742 * fill in the array of fsid_t's up to a max of 'count', the actual
3743 * number filled in will be set in '*actual'. If there are more fsid_t's
3744 * than room in fsidlst then ENOMEM will be returned and '*actual' will
3745 * have the actual count.
3746 * having *actual filled out even in the error case is depended upon.
3747 */
3748 static int
3749 sysctl_vfs_getvfslist(fsid_t *fsidlst, int count, int *actual)
3750 {
3751 struct mount *mp;
3752
3753 *actual = 0;
3754 mount_list_lock();
3755 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3756 (*actual)++;
3757 if (*actual <= count) {
3758 fsidlst[(*actual) - 1] = mp->mnt_vfsstat.f_fsid;
3759 }
3760 }
3761 mount_list_unlock();
3762 return *actual <= count ? 0 : ENOMEM;
3763 }
3764
3765 static int
3766 sysctl_vfs_vfslist(__unused struct sysctl_oid *oidp, __unused void *arg1,
3767 __unused int arg2, struct sysctl_req *req)
3768 {
3769 int actual, error;
3770 size_t space;
3771 fsid_t *fsidlst;
3772
3773 /* This is a readonly node. */
3774 if (req->newptr != USER_ADDR_NULL) {
3775 return EPERM;
3776 }
3777
3778 /* they are querying us so just return the space required. */
3779 if (req->oldptr == USER_ADDR_NULL) {
3780 req->oldidx = sysctl_vfs_getvfscnt() * sizeof(fsid_t);
3781 return 0;
3782 }
3783 again:
3784 /*
3785 * Retrieve an accurate count of the amount of space required to copy
3786 * out all the fsids in the system.
3787 */
3788 space = req->oldlen;
3789 req->oldlen = sysctl_vfs_getvfscnt() * sizeof(fsid_t);
3790
3791 /* they didn't give us enough space. */
3792 if (space < req->oldlen) {
3793 return ENOMEM;
3794 }
3795
3796 MALLOC(fsidlst, fsid_t *, req->oldlen, M_TEMP, M_WAITOK | M_ZERO);
3797 if (fsidlst == NULL) {
3798 return ENOMEM;
3799 }
3800
3801 error = sysctl_vfs_getvfslist(fsidlst, req->oldlen / sizeof(fsid_t),
3802 &actual);
3803 /*
3804 * If we get back ENOMEM, then another mount has been added while we
3805 * slept in malloc above. If this is the case then try again.
3806 */
3807 if (error == ENOMEM) {
3808 FREE(fsidlst, M_TEMP);
3809 req->oldlen = space;
3810 goto again;
3811 }
3812 if (error == 0) {
3813 error = SYSCTL_OUT(req, fsidlst, actual * sizeof(fsid_t));
3814 }
3815 FREE(fsidlst, M_TEMP);
3816 return error;
3817 }
3818
3819 /*
3820 * Do a sysctl by fsid.
3821 */
3822 static int
3823 sysctl_vfs_ctlbyfsid(__unused struct sysctl_oid *oidp, void *arg1, int arg2,
3824 struct sysctl_req *req)
3825 {
3826 union union_vfsidctl vc;
3827 struct mount *mp;
3828 struct vfsstatfs *sp;
3829 int *name, flags, namelen;
3830 int error = 0, gotref = 0;
3831 vfs_context_t ctx = vfs_context_current();
3832 proc_t p = req->p; /* XXX req->p != current_proc()? */
3833 boolean_t is_64_bit;
3834
3835 name = arg1;
3836 namelen = arg2;
3837 is_64_bit = proc_is64bit(p);
3838
3839 error = SYSCTL_IN(req, &vc, is_64_bit? sizeof(vc.vc64):sizeof(vc.vc32));
3840 if (error) {
3841 goto out;
3842 }
3843 if (vc.vc32.vc_vers != VFS_CTL_VERS1) { /* works for 32 and 64 */
3844 error = EINVAL;
3845 goto out;
3846 }
3847 mp = mount_list_lookupby_fsid(&vc.vc32.vc_fsid, 0, 1); /* works for 32 and 64 */
3848 if (mp == NULL) {
3849 error = ENOENT;
3850 goto out;
3851 }
3852 gotref = 1;
3853 /* reset so that the fs specific code can fetch it. */
3854 req->newidx = 0;
3855 /*
3856 * Note if this is a VFS_CTL then we pass the actual sysctl req
3857 * in for "oldp" so that the lower layer can DTRT and use the
3858 * SYSCTL_IN/OUT routines.
3859 */
3860 if (mp->mnt_op->vfs_sysctl != NULL) {
3861 if (is_64_bit) {
3862 if (vfs_64bitready(mp)) {
3863 error = mp->mnt_op->vfs_sysctl(name, namelen,
3864 CAST_USER_ADDR_T(req),
3865 NULL, USER_ADDR_NULL, 0,
3866 ctx);
3867 } else {
3868 error = ENOTSUP;
3869 }
3870 } else {
3871 error = mp->mnt_op->vfs_sysctl(name, namelen,
3872 CAST_USER_ADDR_T(req),
3873 NULL, USER_ADDR_NULL, 0,
3874 ctx);
3875 }
3876 if (error != ENOTSUP) {
3877 goto out;
3878 }
3879 }
3880 switch (name[0]) {
3881 case VFS_CTL_UMOUNT:
3882 req->newidx = 0;
3883 if (is_64_bit) {
3884 req->newptr = vc.vc64.vc_ptr;
3885 req->newlen = (size_t)vc.vc64.vc_len;
3886 } else {
3887 req->newptr = CAST_USER_ADDR_T(vc.vc32.vc_ptr);
3888 req->newlen = vc.vc32.vc_len;
3889 }
3890 error = SYSCTL_IN(req, &flags, sizeof(flags));
3891 if (error) {
3892 break;
3893 }
3894
3895 mount_ref(mp, 0);
3896 mount_iterdrop(mp);
3897 gotref = 0;
3898 /* safedounmount consumes a ref */
3899 error = safedounmount(mp, flags, ctx);
3900 break;
3901 case VFS_CTL_STATFS:
3902 req->newidx = 0;
3903 if (is_64_bit) {
3904 req->newptr = vc.vc64.vc_ptr;
3905 req->newlen = (size_t)vc.vc64.vc_len;
3906 } else {
3907 req->newptr = CAST_USER_ADDR_T(vc.vc32.vc_ptr);
3908 req->newlen = vc.vc32.vc_len;
3909 }
3910 error = SYSCTL_IN(req, &flags, sizeof(flags));
3911 if (error) {
3912 break;
3913 }
3914 sp = &mp->mnt_vfsstat;
3915 if (((flags & MNT_NOWAIT) == 0 || (flags & (MNT_WAIT | MNT_DWAIT))) &&
3916 (error = vfs_update_vfsstat(mp, ctx, VFS_USER_EVENT))) {
3917 goto out;
3918 }
3919 if (is_64_bit) {
3920 struct user64_statfs sfs;
3921 bzero(&sfs, sizeof(sfs));
3922 sfs.f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3923 sfs.f_type = mp->mnt_vtable->vfc_typenum;
3924 sfs.f_bsize = (user64_long_t)sp->f_bsize;
3925 sfs.f_iosize = (user64_long_t)sp->f_iosize;
3926 sfs.f_blocks = (user64_long_t)sp->f_blocks;
3927 sfs.f_bfree = (user64_long_t)sp->f_bfree;
3928 sfs.f_bavail = (user64_long_t)sp->f_bavail;
3929 sfs.f_files = (user64_long_t)sp->f_files;
3930 sfs.f_ffree = (user64_long_t)sp->f_ffree;
3931 sfs.f_fsid = sp->f_fsid;
3932 sfs.f_owner = sp->f_owner;
3933 #ifdef CONFIG_NFS_CLIENT
3934 if (mp->mnt_kern_flag & MNTK_TYPENAME_OVERRIDE) {
3935 strlcpy(&sfs.f_fstypename[0], &mp->fstypename_override[0], MFSNAMELEN);
3936 } else
3937 #endif /* CONFIG_NFS_CLIENT */
3938 {
3939 strlcpy(sfs.f_fstypename, sp->f_fstypename, MFSNAMELEN);
3940 }
3941 strlcpy(sfs.f_mntonname, sp->f_mntonname, MNAMELEN);
3942 strlcpy(sfs.f_mntfromname, sp->f_mntfromname, MNAMELEN);
3943
3944 error = SYSCTL_OUT(req, &sfs, sizeof(sfs));
3945 } else {
3946 struct user32_statfs sfs;
3947 bzero(&sfs, sizeof(sfs));
3948 sfs.f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3949 sfs.f_type = mp->mnt_vtable->vfc_typenum;
3950
3951 /*
3952 * It's possible for there to be more than 2^^31 blocks in the filesystem, so we
3953 * have to fudge the numbers here in that case. We inflate the blocksize in order
3954 * to reflect the filesystem size as best we can.
3955 */
3956 if (sp->f_blocks > INT_MAX) {
3957 int shift;
3958
3959 /*
3960 * Work out how far we have to shift the block count down to make it fit.
3961 * Note that it's possible to have to shift so far that the resulting
3962 * blocksize would be unreportably large. At that point, we will clip
3963 * any values that don't fit.
3964 *
3965 * For safety's sake, we also ensure that f_iosize is never reported as
3966 * being smaller than f_bsize.
3967 */
3968 for (shift = 0; shift < 32; shift++) {
3969 if ((sp->f_blocks >> shift) <= INT_MAX) {
3970 break;
3971 }
3972 if ((((long long)sp->f_bsize) << (shift + 1)) > INT_MAX) {
3973 break;
3974 }
3975 }
3976 #define __SHIFT_OR_CLIP(x, s) ((((x) >> (s)) > INT_MAX) ? INT_MAX : ((x) >> (s)))
3977 sfs.f_blocks = (user32_long_t)__SHIFT_OR_CLIP(sp->f_blocks, shift);
3978 sfs.f_bfree = (user32_long_t)__SHIFT_OR_CLIP(sp->f_bfree, shift);
3979 sfs.f_bavail = (user32_long_t)__SHIFT_OR_CLIP(sp->f_bavail, shift);
3980 #undef __SHIFT_OR_CLIP
3981 sfs.f_bsize = (user32_long_t)(sp->f_bsize << shift);
3982 sfs.f_iosize = lmax(sp->f_iosize, sp->f_bsize);
3983 } else {
3984 sfs.f_bsize = (user32_long_t)sp->f_bsize;
3985 sfs.f_iosize = (user32_long_t)sp->f_iosize;
3986 sfs.f_blocks = (user32_long_t)sp->f_blocks;
3987 sfs.f_bfree = (user32_long_t)sp->f_bfree;
3988 sfs.f_bavail = (user32_long_t)sp->f_bavail;
3989 }
3990 sfs.f_files = (user32_long_t)sp->f_files;
3991 sfs.f_ffree = (user32_long_t)sp->f_ffree;
3992 sfs.f_fsid = sp->f_fsid;
3993 sfs.f_owner = sp->f_owner;
3994
3995 #ifdef CONFIG_NFS_CLIENT
3996 if (mp->mnt_kern_flag & MNTK_TYPENAME_OVERRIDE) {
3997 strlcpy(&sfs.f_fstypename[0], &mp->fstypename_override[0], MFSNAMELEN);
3998 } else
3999 #endif /* CONFIG_NFS_CLIENT */
4000 {
4001 strlcpy(sfs.f_fstypename, sp->f_fstypename, MFSNAMELEN);
4002 }
4003 strlcpy(sfs.f_mntonname, sp->f_mntonname, MNAMELEN);
4004 strlcpy(sfs.f_mntfromname, sp->f_mntfromname, MNAMELEN);
4005
4006 error = SYSCTL_OUT(req, &sfs, sizeof(sfs));
4007 }
4008 break;
4009 default:
4010 error = ENOTSUP;
4011 goto out;
4012 }
4013 out:
4014 if (gotref != 0) {
4015 mount_iterdrop(mp);
4016 }
4017 return error;
4018 }
4019
4020 static int filt_fsattach(struct knote *kn, struct kevent_qos_s *kev);
4021 static void filt_fsdetach(struct knote *kn);
4022 static int filt_fsevent(struct knote *kn, long hint);
4023 static int filt_fstouch(struct knote *kn, struct kevent_qos_s *kev);
4024 static int filt_fsprocess(struct knote *kn, struct kevent_qos_s *kev);
4025 SECURITY_READ_ONLY_EARLY(struct filterops) fs_filtops = {
4026 .f_attach = filt_fsattach,
4027 .f_detach = filt_fsdetach,
4028 .f_event = filt_fsevent,
4029 .f_touch = filt_fstouch,
4030 .f_process = filt_fsprocess,
4031 };
4032
4033 static int
4034 filt_fsattach(struct knote *kn, __unused struct kevent_qos_s *kev)
4035 {
4036 kn->kn_flags |= EV_CLEAR; /* automatic */
4037 kn->kn_sdata = 0; /* incoming data is ignored */
4038
4039 lck_mtx_lock(fs_klist_lock);
4040 KNOTE_ATTACH(&fs_klist, kn);
4041 lck_mtx_unlock(fs_klist_lock);
4042
4043 /*
4044 * filter only sees future events,
4045 * so it can't be fired already.
4046 */
4047 return 0;
4048 }
4049
4050 static void
4051 filt_fsdetach(struct knote *kn)
4052 {
4053 lck_mtx_lock(fs_klist_lock);
4054 KNOTE_DETACH(&fs_klist, kn);
4055 lck_mtx_unlock(fs_klist_lock);
4056 }
4057
4058 static int
4059 filt_fsevent(struct knote *kn, long hint)
4060 {
4061 /*
4062 * Backwards compatibility:
4063 * Other filters would do nothing if kn->kn_sfflags == 0
4064 */
4065
4066 if ((kn->kn_sfflags == 0) || (kn->kn_sfflags & hint)) {
4067 kn->kn_fflags |= hint;
4068 }
4069
4070 return kn->kn_fflags != 0;
4071 }
4072
4073 static int
4074 filt_fstouch(struct knote *kn, struct kevent_qos_s *kev)
4075 {
4076 int res;
4077
4078 lck_mtx_lock(fs_klist_lock);
4079
4080 kn->kn_sfflags = kev->fflags;
4081
4082 /*
4083 * the above filter function sets bits even if nobody is looking for them.
4084 * Just preserve those bits even in the new mask is more selective
4085 * than before.
4086 *
4087 * For compatibility with previous implementations, we leave kn_fflags
4088 * as they were before.
4089 */
4090 //if (kn->kn_sfflags)
4091 // kn->kn_fflags &= kn->kn_sfflags;
4092 res = (kn->kn_fflags != 0);
4093
4094 lck_mtx_unlock(fs_klist_lock);
4095
4096 return res;
4097 }
4098
4099 static int
4100 filt_fsprocess(struct knote *kn, struct kevent_qos_s *kev)
4101 {
4102 int res = 0;
4103
4104 lck_mtx_lock(fs_klist_lock);
4105 if (kn->kn_fflags) {
4106 knote_fill_kevent(kn, kev, 0);
4107 res = 1;
4108 }
4109 lck_mtx_unlock(fs_klist_lock);
4110 return res;
4111 }
4112
4113 static int
4114 sysctl_vfs_noremotehang(__unused struct sysctl_oid *oidp,
4115 __unused void *arg1, __unused int arg2, struct sysctl_req *req)
4116 {
4117 int out, error;
4118 pid_t pid;
4119 proc_t p;
4120
4121 /* We need a pid. */
4122 if (req->newptr == USER_ADDR_NULL) {
4123 return EINVAL;
4124 }
4125
4126 error = SYSCTL_IN(req, &pid, sizeof(pid));
4127 if (error) {
4128 return error;
4129 }
4130
4131 p = proc_find(pid < 0 ? -pid : pid);
4132 if (p == NULL) {
4133 return ESRCH;
4134 }
4135
4136 /*
4137 * Fetching the value is ok, but we only fetch if the old
4138 * pointer is given.
4139 */
4140 if (req->oldptr != USER_ADDR_NULL) {
4141 out = !((p->p_flag & P_NOREMOTEHANG) == 0);
4142 proc_rele(p);
4143 error = SYSCTL_OUT(req, &out, sizeof(out));
4144 return error;
4145 }
4146
4147 /* cansignal offers us enough security. */
4148 if (p != req->p && proc_suser(req->p) != 0) {
4149 proc_rele(p);
4150 return EPERM;
4151 }
4152
4153 if (pid < 0) {
4154 OSBitAndAtomic(~((uint32_t)P_NOREMOTEHANG), &p->p_flag);
4155 } else {
4156 OSBitOrAtomic(P_NOREMOTEHANG, &p->p_flag);
4157 }
4158 proc_rele(p);
4159
4160 return 0;
4161 }
4162
4163 static int
4164 sysctl_vfs_generic_conf SYSCTL_HANDLER_ARGS
4165 {
4166 int *name, namelen;
4167 struct vfstable *vfsp;
4168 struct vfsconf vfsc = {};
4169
4170 (void)oidp;
4171 name = arg1;
4172 namelen = arg2;
4173
4174 if (namelen < 1) {
4175 return EISDIR;
4176 } else if (namelen > 1) {
4177 return ENOTDIR;
4178 }
4179
4180 mount_list_lock();
4181 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
4182 if (vfsp->vfc_typenum == name[0]) {
4183 break;
4184 }
4185 }
4186
4187 if (vfsp == NULL) {
4188 mount_list_unlock();
4189 return ENOTSUP;
4190 }
4191
4192 vfsc.vfc_reserved1 = 0;
4193 bcopy(vfsp->vfc_name, vfsc.vfc_name, sizeof(vfsc.vfc_name));
4194 vfsc.vfc_typenum = vfsp->vfc_typenum;
4195 vfsc.vfc_refcount = vfsp->vfc_refcount;
4196 vfsc.vfc_flags = vfsp->vfc_flags;
4197 vfsc.vfc_reserved2 = 0;
4198 vfsc.vfc_reserved3 = 0;
4199
4200 mount_list_unlock();
4201 return SYSCTL_OUT(req, &vfsc, sizeof(struct vfsconf));
4202 }
4203
4204 /* the vfs.generic. branch. */
4205 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RW | CTLFLAG_LOCKED, NULL, "vfs generic hinge");
4206 /* retreive a list of mounted filesystem fsid_t */
4207 SYSCTL_PROC(_vfs_generic, OID_AUTO, vfsidlist,
4208 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
4209 NULL, 0, sysctl_vfs_vfslist, "S,fsid", "List of mounted filesystem ids");
4210 /* perform operations on filesystem via fsid_t */
4211 SYSCTL_NODE(_vfs_generic, OID_AUTO, ctlbyfsid, CTLFLAG_RW | CTLFLAG_LOCKED,
4212 sysctl_vfs_ctlbyfsid, "ctlbyfsid");
4213 SYSCTL_PROC(_vfs_generic, OID_AUTO, noremotehang, CTLFLAG_RW | CTLFLAG_ANYBODY,
4214 NULL, 0, sysctl_vfs_noremotehang, "I", "noremotehang");
4215 SYSCTL_INT(_vfs_generic, VFS_MAXTYPENUM, maxtypenum,
4216 CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
4217 &maxvfstypenum, 0, "");
4218 SYSCTL_INT(_vfs_generic, OID_AUTO, sync_timeout, CTLFLAG_RW | CTLFLAG_LOCKED, &sync_timeout_seconds, 0, "");
4219 SYSCTL_NODE(_vfs_generic, VFS_CONF, conf,
4220 CTLFLAG_RD | CTLFLAG_LOCKED,
4221 sysctl_vfs_generic_conf, "");
4222 #if DEVELOPMENT || DEBUG
4223 SYSCTL_INT(_vfs_generic, OID_AUTO, print_busy_vnodes,
4224 CTLTYPE_INT | CTLFLAG_RW,
4225 &print_busy_vnodes, 0,
4226 "VFS log busy vnodes blocking unmount");
4227 #endif
4228
4229 /* Indicate that the root file system unmounted cleanly */
4230 static int vfs_root_unmounted_cleanly = 0;
4231 SYSCTL_INT(_vfs_generic, OID_AUTO, root_unmounted_cleanly, CTLFLAG_RD, &vfs_root_unmounted_cleanly, 0, "Root filesystem was unmounted cleanly");
4232
4233 void
4234 vfs_set_root_unmounted_cleanly(void)
4235 {
4236 vfs_root_unmounted_cleanly = 1;
4237 }
4238
4239 /*
4240 * Print vnode state.
4241 */
4242 void
4243 vn_print_state(struct vnode *vp, const char *fmt, ...)
4244 {
4245 va_list ap;
4246 char perm_str[] = "(VM_KERNEL_ADDRPERM pointer)";
4247 char fs_name[MFSNAMELEN];
4248
4249 va_start(ap, fmt);
4250 vprintf(fmt, ap);
4251 va_end(ap);
4252 printf("vp 0x%0llx %s: ", (uint64_t)VM_KERNEL_ADDRPERM(vp), perm_str);
4253 printf("tag %d, type %d\n", vp->v_tag, vp->v_type);
4254 /* Counts .. */
4255 printf(" iocount %d, usecount %d, kusecount %d references %d\n",
4256 vp->v_iocount, vp->v_usecount, vp->v_kusecount, vp->v_references);
4257 printf(" writecount %d, numoutput %d\n", vp->v_writecount,
4258 vp->v_numoutput);
4259 /* Flags */
4260 printf(" flag 0x%x, lflag 0x%x, listflag 0x%x\n", vp->v_flag,
4261 vp->v_lflag, vp->v_listflag);
4262
4263 if (vp->v_mount == NULL || vp->v_mount == dead_mountp) {
4264 strlcpy(fs_name, "deadfs", MFSNAMELEN);
4265 } else {
4266 vfs_name(vp->v_mount, fs_name);
4267 }
4268
4269 printf(" v_data 0x%0llx %s\n",
4270 (vp->v_data ? (uint64_t)VM_KERNEL_ADDRPERM(vp->v_data) : 0),
4271 perm_str);
4272 printf(" v_mount 0x%0llx %s vfs_name %s\n",
4273 (vp->v_mount ? (uint64_t)VM_KERNEL_ADDRPERM(vp->v_mount) : 0),
4274 perm_str, fs_name);
4275 }
4276
4277 long num_reusedvnodes = 0;
4278
4279
4280 static vnode_t
4281 process_vp(vnode_t vp, int want_vp, int *deferred)
4282 {
4283 unsigned int vpid;
4284
4285 *deferred = 0;
4286
4287 vpid = vp->v_id;
4288
4289 vnode_list_remove_locked(vp);
4290
4291 vnode_list_unlock();
4292
4293 vnode_lock_spin(vp);
4294
4295 /*
4296 * We could wait for the vnode_lock after removing the vp from the freelist
4297 * and the vid is bumped only at the very end of reclaim. So it is possible
4298 * that we are looking at a vnode that is being terminated. If so skip it.
4299 */
4300 if ((vpid != vp->v_id) || (vp->v_usecount != 0) || (vp->v_iocount != 0) ||
4301 VONLIST(vp) || (vp->v_lflag & VL_TERMINATE)) {
4302 /*
4303 * we lost the race between dropping the list lock
4304 * and picking up the vnode_lock... someone else
4305 * used this vnode and it is now in a new state
4306 */
4307 vnode_unlock(vp);
4308
4309 return NULLVP;
4310 }
4311 if ((vp->v_lflag & (VL_NEEDINACTIVE | VL_MARKTERM)) == VL_NEEDINACTIVE) {
4312 /*
4313 * we did a vnode_rele_ext that asked for
4314 * us not to reenter the filesystem during
4315 * the release even though VL_NEEDINACTIVE was
4316 * set... we'll do it here by doing a
4317 * vnode_get/vnode_put
4318 *
4319 * pick up an iocount so that we can call
4320 * vnode_put and drive the VNOP_INACTIVE...
4321 * vnode_put will either leave us off
4322 * the freelist if a new ref comes in,
4323 * or put us back on the end of the freelist
4324 * or recycle us if we were marked for termination...
4325 * so we'll just go grab a new candidate
4326 */
4327 vp->v_iocount++;
4328 #ifdef JOE_DEBUG
4329 record_vp(vp, 1);
4330 #endif
4331 vnode_put_locked(vp);
4332 vnode_unlock(vp);
4333
4334 return NULLVP;
4335 }
4336 /*
4337 * Checks for anyone racing us for recycle
4338 */
4339 if (vp->v_type != VBAD) {
4340 if (want_vp && (vnode_on_reliable_media(vp) == FALSE || (vp->v_flag & VISDIRTY))) {
4341 vnode_async_list_add(vp);
4342 vnode_unlock(vp);
4343
4344 *deferred = 1;
4345
4346 return NULLVP;
4347 }
4348 if (vp->v_lflag & VL_DEAD) {
4349 panic("new_vnode(%p): the vnode is VL_DEAD but not VBAD", vp);
4350 }
4351
4352 vnode_lock_convert(vp);
4353 (void)vnode_reclaim_internal(vp, 1, want_vp, 0);
4354
4355 if (want_vp) {
4356 if ((VONLIST(vp))) {
4357 panic("new_vnode(%p): vp on list", vp);
4358 }
4359 if (vp->v_usecount || vp->v_iocount || vp->v_kusecount ||
4360 (vp->v_lflag & (VNAMED_UBC | VNAMED_MOUNT | VNAMED_FSHASH))) {
4361 panic("new_vnode(%p): free vnode still referenced", vp);
4362 }
4363 if ((vp->v_mntvnodes.tqe_prev != 0) && (vp->v_mntvnodes.tqe_next != 0)) {
4364 panic("new_vnode(%p): vnode seems to be on mount list", vp);
4365 }
4366 if (!LIST_EMPTY(&vp->v_nclinks) || !TAILQ_EMPTY(&vp->v_ncchildren)) {
4367 panic("new_vnode(%p): vnode still hooked into the name cache", vp);
4368 }
4369 } else {
4370 vnode_unlock(vp);
4371 vp = NULLVP;
4372 }
4373 }
4374 return vp;
4375 }
4376
4377 __attribute__((noreturn))
4378 static void
4379 async_work_continue(void)
4380 {
4381 struct async_work_lst *q;
4382 int deferred;
4383 vnode_t vp;
4384
4385 q = &vnode_async_work_list;
4386
4387 for (;;) {
4388 vnode_list_lock();
4389
4390 if (TAILQ_EMPTY(q)) {
4391 assert_wait(q, (THREAD_UNINT));
4392
4393 vnode_list_unlock();
4394
4395 thread_block((thread_continue_t)async_work_continue);
4396
4397 continue;
4398 }
4399 async_work_handled++;
4400
4401 vp = TAILQ_FIRST(q);
4402
4403 vp = process_vp(vp, 0, &deferred);
4404
4405 if (vp != NULLVP) {
4406 panic("found VBAD vp (%p) on async queue", vp);
4407 }
4408 }
4409 }
4410
4411
4412 static int
4413 new_vnode(vnode_t *vpp)
4414 {
4415 vnode_t vp;
4416 uint32_t retries = 0, max_retries = 100; /* retry incase of tablefull */
4417 int force_alloc = 0, walk_count = 0;
4418 boolean_t need_reliable_vp = FALSE;
4419 int deferred;
4420 struct timeval initial_tv;
4421 struct timeval current_tv;
4422 proc_t curproc = current_proc();
4423
4424 initial_tv.tv_sec = 0;
4425 retry:
4426 vp = NULLVP;
4427
4428 vnode_list_lock();
4429
4430 if (need_reliable_vp == TRUE) {
4431 async_work_timed_out++;
4432 }
4433
4434 if ((numvnodes - deadvnodes) < desiredvnodes || force_alloc) {
4435 struct timespec ts;
4436
4437 if (!TAILQ_EMPTY(&vnode_dead_list)) {
4438 /*
4439 * Can always reuse a dead one
4440 */
4441 vp = TAILQ_FIRST(&vnode_dead_list);
4442 goto steal_this_vp;
4443 }
4444 /*
4445 * no dead vnodes available... if we're under
4446 * the limit, we'll create a new vnode
4447 */
4448 numvnodes++;
4449 vnode_list_unlock();
4450
4451 MALLOC_ZONE(vp, struct vnode *, sizeof(*vp), M_VNODE, M_WAITOK);
4452 bzero((char *)vp, sizeof(*vp));
4453 VLISTNONE(vp); /* avoid double queue removal */
4454 lck_mtx_init(&vp->v_lock, vnode_lck_grp, vnode_lck_attr);
4455
4456 TAILQ_INIT(&vp->v_ncchildren);
4457
4458 klist_init(&vp->v_knotes);
4459 nanouptime(&ts);
4460 vp->v_id = ts.tv_nsec;
4461 vp->v_flag = VSTANDARD;
4462
4463 #if CONFIG_MACF
4464 if (mac_vnode_label_init_needed(vp)) {
4465 mac_vnode_label_init(vp);
4466 }
4467 #endif /* MAC */
4468
4469 vp->v_iocount = 1;
4470 goto done;
4471 }
4472 microuptime(&current_tv);
4473
4474 #define MAX_WALK_COUNT 1000
4475
4476 if (!TAILQ_EMPTY(&vnode_rage_list) &&
4477 (ragevnodes >= rage_limit ||
4478 (current_tv.tv_sec - rage_tv.tv_sec) >= RAGE_TIME_LIMIT)) {
4479 TAILQ_FOREACH(vp, &vnode_rage_list, v_freelist) {
4480 if (!(vp->v_listflag & VLIST_RAGE)) {
4481 panic("new_vnode: vp (%p) on RAGE list not marked VLIST_RAGE", vp);
4482 }
4483
4484 // if we're a dependency-capable process, skip vnodes that can
4485 // cause recycling deadlocks. (i.e. this process is diskimages
4486 // helper and the vnode is in a disk image). Querying the
4487 // mnt_kern_flag for the mount's virtual device status
4488 // is safer than checking the mnt_dependent_process, which
4489 // may not be updated if there are multiple devnode layers
4490 // in between the disk image and the final consumer.
4491
4492 if ((curproc->p_flag & P_DEPENDENCY_CAPABLE) == 0 || vp->v_mount == NULL ||
4493 (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) == 0) {
4494 /*
4495 * if need_reliable_vp == TRUE, then we've already sent one or more
4496 * non-reliable vnodes to the async thread for processing and timed
4497 * out waiting for a dead vnode to show up. Use the MAX_WALK_COUNT
4498 * mechanism to first scan for a reliable vnode before forcing
4499 * a new vnode to be created
4500 */
4501 if (need_reliable_vp == FALSE || vnode_on_reliable_media(vp) == TRUE) {
4502 break;
4503 }
4504 }
4505
4506 // don't iterate more than MAX_WALK_COUNT vnodes to
4507 // avoid keeping the vnode list lock held for too long.
4508
4509 if (walk_count++ > MAX_WALK_COUNT) {
4510 vp = NULL;
4511 break;
4512 }
4513 }
4514 }
4515
4516 if (vp == NULL && !TAILQ_EMPTY(&vnode_free_list)) {
4517 /*
4518 * Pick the first vp for possible reuse
4519 */
4520 walk_count = 0;
4521 TAILQ_FOREACH(vp, &vnode_free_list, v_freelist) {
4522 // if we're a dependency-capable process, skip vnodes that can
4523 // cause recycling deadlocks. (i.e. this process is diskimages
4524 // helper and the vnode is in a disk image). Querying the
4525 // mnt_kern_flag for the mount's virtual device status
4526 // is safer than checking the mnt_dependent_process, which
4527 // may not be updated if there are multiple devnode layers
4528 // in between the disk image and the final consumer.
4529
4530 if ((curproc->p_flag & P_DEPENDENCY_CAPABLE) == 0 || vp->v_mount == NULL ||
4531 (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) == 0) {
4532 /*
4533 * if need_reliable_vp == TRUE, then we've already sent one or more
4534 * non-reliable vnodes to the async thread for processing and timed
4535 * out waiting for a dead vnode to show up. Use the MAX_WALK_COUNT
4536 * mechanism to first scan for a reliable vnode before forcing
4537 * a new vnode to be created
4538 */
4539 if (need_reliable_vp == FALSE || vnode_on_reliable_media(vp) == TRUE) {
4540 break;
4541 }
4542 }
4543
4544 // don't iterate more than MAX_WALK_COUNT vnodes to
4545 // avoid keeping the vnode list lock held for too long.
4546
4547 if (walk_count++ > MAX_WALK_COUNT) {
4548 vp = NULL;
4549 break;
4550 }
4551 }
4552 }
4553
4554 //
4555 // if we don't have a vnode and the walk_count is >= MAX_WALK_COUNT
4556 // then we're trying to create a vnode on behalf of a
4557 // process like diskimages-helper that has file systems
4558 // mounted on top of itself (and thus we can't reclaim
4559 // vnodes in the file systems on top of us). if we can't
4560 // find a vnode to reclaim then we'll just have to force
4561 // the allocation.
4562 //
4563 if (vp == NULL && walk_count >= MAX_WALK_COUNT) {
4564 force_alloc = 1;
4565 vnode_list_unlock();
4566 goto retry;
4567 }
4568
4569 if (vp == NULL) {
4570 /*
4571 * we've reached the system imposed maximum number of vnodes
4572 * but there isn't a single one available
4573 * wait a bit and then retry... if we can't get a vnode
4574 * after our target number of retries, than log a complaint
4575 */
4576 if (++retries <= max_retries) {
4577 vnode_list_unlock();
4578 delay_for_interval(1, 1000 * 1000);
4579 goto retry;
4580 }
4581
4582 vnode_list_unlock();
4583 tablefull("vnode");
4584 log(LOG_EMERG, "%d desired, %d numvnodes, "
4585 "%d free, %d dead, %d async, %d rage\n",
4586 desiredvnodes, numvnodes, freevnodes, deadvnodes, async_work_vnodes, ragevnodes);
4587 #if CONFIG_JETSAM
4588
4589 #if DEVELOPMENT || DEBUG
4590 if (bootarg_no_vnode_jetsam) {
4591 panic("vnode table is full\n");
4592 }
4593 #endif /* DEVELOPMENT || DEBUG */
4594
4595 /*
4596 * Running out of vnodes tends to make a system unusable. Start killing
4597 * processes that jetsam knows are killable.
4598 */
4599 if (memorystatus_kill_on_vnode_limit() == FALSE) {
4600 /*
4601 * If jetsam can't find any more processes to kill and there
4602 * still aren't any free vnodes, panic. Hopefully we'll get a
4603 * panic log to tell us why we ran out.
4604 */
4605 panic("vnode table is full\n");
4606 }
4607
4608 /*
4609 * Now that we've killed someone, wait a bit and continue looking
4610 * (with fewer retries before trying another kill).
4611 */
4612 delay_for_interval(3, 1000 * 1000);
4613 retries = 0;
4614 max_retries = 10;
4615 goto retry;
4616 #endif
4617
4618 *vpp = NULL;
4619 return ENFILE;
4620 }
4621 steal_this_vp:
4622 if ((vp = process_vp(vp, 1, &deferred)) == NULLVP) {
4623 if (deferred) {
4624 int elapsed_msecs;
4625 struct timeval elapsed_tv;
4626
4627 if (initial_tv.tv_sec == 0) {
4628 microuptime(&initial_tv);
4629 }
4630
4631 vnode_list_lock();
4632
4633 dead_vnode_waited++;
4634 dead_vnode_wanted++;
4635
4636 /*
4637 * note that we're only going to explicitly wait 10ms
4638 * for a dead vnode to become available, since even if one
4639 * isn't available, a reliable vnode might now be available
4640 * at the head of the VRAGE or free lists... if so, we
4641 * can satisfy the new_vnode request with less latency then waiting
4642 * for the full 100ms duration we're ultimately willing to tolerate
4643 */
4644 assert_wait_timeout((caddr_t)&dead_vnode_wanted, (THREAD_INTERRUPTIBLE), 10000, NSEC_PER_USEC);
4645
4646 vnode_list_unlock();
4647
4648 thread_block(THREAD_CONTINUE_NULL);
4649
4650 microuptime(&elapsed_tv);
4651
4652 timevalsub(&elapsed_tv, &initial_tv);
4653 elapsed_msecs = elapsed_tv.tv_sec * 1000 + elapsed_tv.tv_usec / 1000;
4654
4655 if (elapsed_msecs >= 100) {
4656 /*
4657 * we've waited long enough... 100ms is
4658 * somewhat arbitrary for this case, but the
4659 * normal worst case latency used for UI
4660 * interaction is 100ms, so I've chosen to
4661 * go with that.
4662 *
4663 * setting need_reliable_vp to TRUE
4664 * forces us to find a reliable vnode
4665 * that we can process synchronously, or
4666 * to create a new one if the scan for
4667 * a reliable one hits the scan limit
4668 */
4669 need_reliable_vp = TRUE;
4670 }
4671 }
4672 goto retry;
4673 }
4674 OSAddAtomicLong(1, &num_reusedvnodes);
4675
4676
4677 #if CONFIG_MACF
4678 /*
4679 * We should never see VL_LABELWAIT or VL_LABEL here.
4680 * as those operations hold a reference.
4681 */
4682 assert((vp->v_lflag & VL_LABELWAIT) != VL_LABELWAIT);
4683 assert((vp->v_lflag & VL_LABEL) != VL_LABEL);
4684 if (vp->v_lflag & VL_LABELED || vp->v_label != NULL) {
4685 vnode_lock_convert(vp);
4686 mac_vnode_label_recycle(vp);
4687 } else if (mac_vnode_label_init_needed(vp)) {
4688 vnode_lock_convert(vp);
4689 mac_vnode_label_init(vp);
4690 }
4691
4692 #endif /* MAC */
4693
4694 vp->v_iocount = 1;
4695 vp->v_lflag = 0;
4696 vp->v_writecount = 0;
4697 vp->v_references = 0;
4698 vp->v_iterblkflags = 0;
4699 vp->v_flag = VSTANDARD;
4700 /* vbad vnodes can point to dead_mountp */
4701 vp->v_mount = NULL;
4702 vp->v_defer_reclaimlist = (vnode_t)0;
4703
4704 vnode_unlock(vp);
4705
4706 done:
4707 *vpp = vp;
4708
4709 return 0;
4710 }
4711
4712 void
4713 vnode_lock(vnode_t vp)
4714 {
4715 lck_mtx_lock(&vp->v_lock);
4716 }
4717
4718 void
4719 vnode_lock_spin(vnode_t vp)
4720 {
4721 lck_mtx_lock_spin(&vp->v_lock);
4722 }
4723
4724 void
4725 vnode_unlock(vnode_t vp)
4726 {
4727 lck_mtx_unlock(&vp->v_lock);
4728 }
4729
4730
4731
4732 int
4733 vnode_get(struct vnode *vp)
4734 {
4735 int retval;
4736
4737 vnode_lock_spin(vp);
4738 retval = vnode_get_locked(vp);
4739 vnode_unlock(vp);
4740
4741 return retval;
4742 }
4743
4744 int
4745 vnode_get_locked(struct vnode *vp)
4746 {
4747 #if DIAGNOSTIC
4748 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
4749 #endif
4750 if ((vp->v_iocount == 0) && (vp->v_lflag & (VL_TERMINATE | VL_DEAD))) {
4751 return ENOENT;
4752 }
4753
4754 if (os_add_overflow(vp->v_iocount, 1, &vp->v_iocount)) {
4755 panic("v_iocount overflow");
4756 }
4757
4758 #ifdef JOE_DEBUG
4759 record_vp(vp, 1);
4760 #endif
4761 return 0;
4762 }
4763
4764 /*
4765 * vnode_getwithvid() cuts in line in front of a vnode drain (that is,
4766 * while the vnode is draining, but at no point after that) to prevent
4767 * deadlocks when getting vnodes from filesystem hashes while holding
4768 * resources that may prevent other iocounts from being released.
4769 */
4770 int
4771 vnode_getwithvid(vnode_t vp, uint32_t vid)
4772 {
4773 return vget_internal(vp, vid, (VNODE_NODEAD | VNODE_WITHID | VNODE_DRAINO));
4774 }
4775
4776 /*
4777 * vnode_getwithvid_drainok() is like vnode_getwithvid(), but *does* block behind a vnode
4778 * drain; it exists for use in the VFS name cache, where we really do want to block behind
4779 * vnode drain to prevent holding off an unmount.
4780 */
4781 int
4782 vnode_getwithvid_drainok(vnode_t vp, uint32_t vid)
4783 {
4784 return vget_internal(vp, vid, (VNODE_NODEAD | VNODE_WITHID));
4785 }
4786
4787 int
4788 vnode_getwithref(vnode_t vp)
4789 {
4790 return vget_internal(vp, 0, 0);
4791 }
4792
4793
4794 __private_extern__ int
4795 vnode_getalways(vnode_t vp)
4796 {
4797 return vget_internal(vp, 0, VNODE_ALWAYS);
4798 }
4799
4800 int
4801 vnode_put(vnode_t vp)
4802 {
4803 int retval;
4804
4805 vnode_lock_spin(vp);
4806 retval = vnode_put_locked(vp);
4807 vnode_unlock(vp);
4808
4809 return retval;
4810 }
4811
4812 static inline void
4813 vn_set_dead(vnode_t vp)
4814 {
4815 vp->v_mount = NULL;
4816 vp->v_op = dead_vnodeop_p;
4817 vp->v_tag = VT_NON;
4818 vp->v_data = NULL;
4819 vp->v_type = VBAD;
4820 vp->v_lflag |= VL_DEAD;
4821 }
4822
4823 int
4824 vnode_put_locked(vnode_t vp)
4825 {
4826 vfs_context_t ctx = vfs_context_current(); /* hoist outside loop */
4827
4828 #if DIAGNOSTIC
4829 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
4830 #endif
4831 retry:
4832 if (vp->v_iocount < 1) {
4833 panic("vnode_put(%p): iocount < 1", vp);
4834 }
4835
4836 if ((vp->v_usecount > 0) || (vp->v_iocount > 1)) {
4837 vnode_dropiocount(vp);
4838 return 0;
4839 }
4840 if ((vp->v_lflag & (VL_DEAD | VL_NEEDINACTIVE)) == VL_NEEDINACTIVE) {
4841 vp->v_lflag &= ~VL_NEEDINACTIVE;
4842 vnode_unlock(vp);
4843
4844 VNOP_INACTIVE(vp, ctx);
4845
4846 vnode_lock_spin(vp);
4847 /*
4848 * because we had to drop the vnode lock before calling
4849 * VNOP_INACTIVE, the state of this vnode may have changed...
4850 * we may pick up both VL_MARTERM and either
4851 * an iocount or a usecount while in the VNOP_INACTIVE call
4852 * we don't want to call vnode_reclaim_internal on a vnode
4853 * that has active references on it... so loop back around
4854 * and reevaluate the state
4855 */
4856 goto retry;
4857 }
4858 vp->v_lflag &= ~VL_NEEDINACTIVE;
4859
4860 if ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM) {
4861 vnode_lock_convert(vp);
4862 vnode_reclaim_internal(vp, 1, 1, 0);
4863 }
4864 vnode_dropiocount(vp);
4865 vnode_list_add(vp);
4866
4867 return 0;
4868 }
4869
4870 /* is vnode_t in use by others? */
4871 int
4872 vnode_isinuse(vnode_t vp, int refcnt)
4873 {
4874 return vnode_isinuse_locked(vp, refcnt, 0);
4875 }
4876
4877 int
4878 vnode_usecount(vnode_t vp)
4879 {
4880 return vp->v_usecount;
4881 }
4882
4883 int
4884 vnode_iocount(vnode_t vp)
4885 {
4886 return vp->v_iocount;
4887 }
4888
4889 static int
4890 vnode_isinuse_locked(vnode_t vp, int refcnt, int locked)
4891 {
4892 int retval = 0;
4893
4894 if (!locked) {
4895 vnode_lock_spin(vp);
4896 }
4897 if ((vp->v_type != VREG) && ((vp->v_usecount - vp->v_kusecount) > refcnt)) {
4898 retval = 1;
4899 goto out;
4900 }
4901 if (vp->v_type == VREG) {
4902 retval = ubc_isinuse_locked(vp, refcnt, 1);
4903 }
4904
4905 out:
4906 if (!locked) {
4907 vnode_unlock(vp);
4908 }
4909 return retval;
4910 }
4911
4912
4913 /* resume vnode_t */
4914 errno_t
4915 vnode_resume(vnode_t vp)
4916 {
4917 if ((vp->v_lflag & VL_SUSPENDED) && vp->v_owner == current_thread()) {
4918 vnode_lock_spin(vp);
4919 vp->v_lflag &= ~VL_SUSPENDED;
4920 vp->v_owner = NULL;
4921 vnode_unlock(vp);
4922
4923 wakeup(&vp->v_iocount);
4924 }
4925 return 0;
4926 }
4927
4928 /* suspend vnode_t
4929 * Please do not use on more than one vnode at a time as it may
4930 * cause deadlocks.
4931 * xxx should we explicity prevent this from happening?
4932 */
4933
4934 errno_t
4935 vnode_suspend(vnode_t vp)
4936 {
4937 if (vp->v_lflag & VL_SUSPENDED) {
4938 return EBUSY;
4939 }
4940
4941 vnode_lock_spin(vp);
4942
4943 /*
4944 * xxx is this sufficient to check if a vnode_drain is
4945 * progress?
4946 */
4947
4948 if (vp->v_owner == NULL) {
4949 vp->v_lflag |= VL_SUSPENDED;
4950 vp->v_owner = current_thread();
4951 }
4952 vnode_unlock(vp);
4953
4954 return 0;
4955 }
4956
4957 /*
4958 * Release any blocked locking requests on the vnode.
4959 * Used for forced-unmounts.
4960 *
4961 * XXX What about network filesystems?
4962 */
4963 static void
4964 vnode_abort_advlocks(vnode_t vp)
4965 {
4966 if (vp->v_flag & VLOCKLOCAL) {
4967 lf_abort_advlocks(vp);
4968 }
4969 }
4970
4971
4972 static errno_t
4973 vnode_drain(vnode_t vp)
4974 {
4975 if (vp->v_lflag & VL_DRAIN) {
4976 panic("vnode_drain: recursive drain");
4977 return ENOENT;
4978 }
4979 vp->v_lflag |= VL_DRAIN;
4980 vp->v_owner = current_thread();
4981
4982 while (vp->v_iocount > 1) {
4983 if (bootarg_no_vnode_drain) {
4984 struct timespec ts = {.tv_sec = 10, .tv_nsec = 0};
4985 int error;
4986
4987 if (vfs_unmountall_started) {
4988 ts.tv_sec = 1;
4989 }
4990
4991 error = msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_drain_with_timeout", &ts);
4992
4993 /* Try to deal with leaked iocounts under bootarg and shutting down */
4994 if (vp->v_iocount > 1 && error == EWOULDBLOCK &&
4995 ts.tv_sec == 1 && vp->v_numoutput == 0) {
4996 vp->v_iocount = 1;
4997 break;
4998 }
4999 } else {
5000 msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_drain", NULL);
5001 }
5002 }
5003
5004 vp->v_lflag &= ~VL_DRAIN;
5005
5006 return 0;
5007 }
5008
5009
5010 /*
5011 * if the number of recent references via vnode_getwithvid or vnode_getwithref
5012 * exceeds this threshold, than 'UN-AGE' the vnode by removing it from
5013 * the LRU list if it's currently on it... once the iocount and usecount both drop
5014 * to 0, it will get put back on the end of the list, effectively making it younger
5015 * this allows us to keep actively referenced vnodes in the list without having
5016 * to constantly remove and add to the list each time a vnode w/o a usecount is
5017 * referenced which costs us taking and dropping a global lock twice.
5018 * However, if the vnode is marked DIRTY, we want to pull it out much earlier
5019 */
5020 #define UNAGE_THRESHHOLD 25
5021 #define UNAGE_DIRTYTHRESHHOLD 6
5022
5023 errno_t
5024 vnode_getiocount(vnode_t vp, unsigned int vid, int vflags)
5025 {
5026 int nodead = vflags & VNODE_NODEAD;
5027 int nosusp = vflags & VNODE_NOSUSPEND;
5028 int always = vflags & VNODE_ALWAYS;
5029 int beatdrain = vflags & VNODE_DRAINO;
5030 int withvid = vflags & VNODE_WITHID;
5031
5032 for (;;) {
5033 int sleepflg = 0;
5034
5035 /*
5036 * if it is a dead vnode with deadfs
5037 */
5038 if (nodead && (vp->v_lflag & VL_DEAD) && ((vp->v_type == VBAD) || (vp->v_data == 0))) {
5039 return ENOENT;
5040 }
5041 /*
5042 * will return VL_DEAD ones
5043 */
5044 if ((vp->v_lflag & (VL_SUSPENDED | VL_DRAIN | VL_TERMINATE)) == 0) {
5045 break;
5046 }
5047 /*
5048 * if suspended vnodes are to be failed
5049 */
5050 if (nosusp && (vp->v_lflag & VL_SUSPENDED)) {
5051 return ENOENT;
5052 }
5053 /*
5054 * if you are the owner of drain/suspend/termination , can acquire iocount
5055 * check for VL_TERMINATE; it does not set owner
5056 */
5057 if ((vp->v_lflag & (VL_DRAIN | VL_SUSPENDED | VL_TERMINATE)) &&
5058 (vp->v_owner == current_thread())) {
5059 break;
5060 }
5061
5062 if (always != 0) {
5063 break;
5064 }
5065
5066 /*
5067 * If this vnode is getting drained, there are some cases where
5068 * we can't block or, in case of tty vnodes, want to be
5069 * interruptible.
5070 */
5071 if (vp->v_lflag & VL_DRAIN) {
5072 /*
5073 * In some situations, we want to get an iocount
5074 * even if the vnode is draining to prevent deadlock,
5075 * e.g. if we're in the filesystem, potentially holding
5076 * resources that could prevent other iocounts from
5077 * being released.
5078 */
5079 if (beatdrain) {
5080 break;
5081 }
5082 /*
5083 * Don't block if the vnode's mount point is unmounting as
5084 * we may be the thread the unmount is itself waiting on
5085 * Only callers who pass in vids (at this point, we've already
5086 * handled nosusp and nodead) are expecting error returns
5087 * from this function, so only we can only return errors for
5088 * those. ENODEV is intended to inform callers that the call
5089 * failed because an unmount is in progress.
5090 */
5091 if (withvid && (vp->v_mount) && vfs_isunmount(vp->v_mount)) {
5092 return ENODEV;
5093 }
5094
5095 if (vnode_istty(vp)) {
5096 sleepflg = PCATCH;
5097 }
5098 }
5099
5100 vnode_lock_convert(vp);
5101
5102 if (vp->v_lflag & VL_TERMINATE) {
5103 int error;
5104
5105 vp->v_lflag |= VL_TERMWANT;
5106
5107 error = msleep(&vp->v_lflag, &vp->v_lock,
5108 (PVFS | sleepflg), "vnode getiocount", NULL);
5109 if (error) {
5110 return error;
5111 }
5112 } else {
5113 msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_getiocount", NULL);
5114 }
5115 }
5116 if (withvid && vid != vp->v_id) {
5117 return ENOENT;
5118 }
5119 if (++vp->v_references >= UNAGE_THRESHHOLD ||
5120 (vp->v_flag & VISDIRTY && vp->v_references >= UNAGE_DIRTYTHRESHHOLD)) {
5121 vp->v_references = 0;
5122 vnode_list_remove(vp);
5123 }
5124 vp->v_iocount++;
5125 #ifdef JOE_DEBUG
5126 record_vp(vp, 1);
5127 #endif
5128 return 0;
5129 }
5130
5131 static void
5132 vnode_dropiocount(vnode_t vp)
5133 {
5134 if (vp->v_iocount < 1) {
5135 panic("vnode_dropiocount(%p): v_iocount < 1", vp);
5136 }
5137
5138 vp->v_iocount--;
5139 #ifdef JOE_DEBUG
5140 record_vp(vp, -1);
5141 #endif
5142 if ((vp->v_lflag & (VL_DRAIN | VL_SUSPENDED)) && (vp->v_iocount <= 1)) {
5143 wakeup(&vp->v_iocount);
5144 }
5145 }
5146
5147
5148 void
5149 vnode_reclaim(struct vnode * vp)
5150 {
5151 vnode_reclaim_internal(vp, 0, 0, 0);
5152 }
5153
5154 __private_extern__
5155 void
5156 vnode_reclaim_internal(struct vnode * vp, int locked, int reuse, int flags)
5157 {
5158 int isfifo = 0;
5159
5160 if (!locked) {
5161 vnode_lock(vp);
5162 }
5163
5164 if (vp->v_lflag & VL_TERMINATE) {
5165 panic("vnode reclaim in progress");
5166 }
5167 vp->v_lflag |= VL_TERMINATE;
5168
5169 vn_clearunionwait(vp, 1);
5170
5171 if (vnode_istty(vp) && (flags & REVOKEALL) && vp->v_usecount &&
5172 (vp->v_iocount > 1)) {
5173 vnode_unlock(vp);
5174 VNOP_IOCTL(vp, TIOCREVOKE, (caddr_t)NULL, 0, vfs_context_kernel());
5175 vnode_lock(vp);
5176 }
5177
5178 vnode_drain(vp);
5179
5180 isfifo = (vp->v_type == VFIFO);
5181
5182 if (vp->v_type != VBAD) {
5183 vgone(vp, flags); /* clean and reclaim the vnode */
5184 }
5185 /*
5186 * give the vnode a new identity so that vnode_getwithvid will fail
5187 * on any stale cache accesses...
5188 * grab the list_lock so that if we're in "new_vnode"
5189 * behind the list_lock trying to steal this vnode, the v_id is stable...
5190 * once new_vnode drops the list_lock, it will block trying to take
5191 * the vnode lock until we release it... at that point it will evaluate
5192 * whether the v_vid has changed
5193 * also need to make sure that the vnode isn't on a list where "new_vnode"
5194 * can find it after the v_id has been bumped until we are completely done
5195 * with the vnode (i.e. putting it back on a list has to be the very last
5196 * thing we do to this vnode... many of the callers of vnode_reclaim_internal
5197 * are holding an io_count on the vnode... they need to drop the io_count
5198 * BEFORE doing a vnode_list_add or make sure to hold the vnode lock until
5199 * they are completely done with the vnode
5200 */
5201 vnode_list_lock();
5202
5203 vnode_list_remove_locked(vp);
5204 vp->v_id++;
5205
5206 vnode_list_unlock();
5207
5208 if (isfifo) {
5209 struct fifoinfo * fip;
5210
5211 fip = vp->v_fifoinfo;
5212 vp->v_fifoinfo = NULL;
5213 FREE(fip, M_TEMP);
5214 }
5215 vp->v_type = VBAD;
5216
5217 if (vp->v_data) {
5218 panic("vnode_reclaim_internal: cleaned vnode isn't");
5219 }
5220 if (vp->v_numoutput) {
5221 panic("vnode_reclaim_internal: clean vnode has pending I/O's");
5222 }
5223 if (UBCINFOEXISTS(vp)) {
5224 panic("vnode_reclaim_internal: ubcinfo not cleaned");
5225 }
5226 if (vp->v_parent) {
5227 panic("vnode_reclaim_internal: vparent not removed");
5228 }
5229 if (vp->v_name) {
5230 panic("vnode_reclaim_internal: vname not removed");
5231 }
5232
5233 vp->v_socket = NULL;
5234
5235 vp->v_lflag &= ~VL_TERMINATE;
5236 vp->v_owner = NULL;
5237
5238 KNOTE(&vp->v_knotes, NOTE_REVOKE);
5239
5240 /* Make sure that when we reuse the vnode, no knotes left over */
5241 klist_init(&vp->v_knotes);
5242
5243 if (vp->v_lflag & VL_TERMWANT) {
5244 vp->v_lflag &= ~VL_TERMWANT;
5245 wakeup(&vp->v_lflag);
5246 }
5247 if (!reuse) {
5248 /*
5249 * make sure we get on the
5250 * dead list if appropriate
5251 */
5252 vnode_list_add(vp);
5253 }
5254 if (!locked) {
5255 vnode_unlock(vp);
5256 }
5257 }
5258
5259 static int
5260 vnode_create_internal(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp,
5261 int init_vnode)
5262 {
5263 int error;
5264 int insert = 1;
5265 int existing_vnode;
5266 vnode_t vp;
5267 vnode_t nvp;
5268 vnode_t dvp;
5269 struct uthread *ut;
5270 struct componentname *cnp;
5271 struct vnode_fsparam *param = (struct vnode_fsparam *)data;
5272 #if CONFIG_TRIGGERS
5273 struct vnode_trigger_param *tinfo = NULL;
5274 #endif
5275 if (*vpp) {
5276 vp = *vpp;
5277 *vpp = NULLVP;
5278 existing_vnode = 1;
5279 } else {
5280 existing_vnode = 0;
5281 }
5282
5283 if (init_vnode) {
5284 /* Do quick sanity check on the parameters. */
5285 if ((param == NULL) || (param->vnfs_vtype == VBAD)) {
5286 error = EINVAL;
5287 goto error_out;
5288 }
5289
5290 #if CONFIG_TRIGGERS
5291 if ((flavor == VNCREATE_TRIGGER) && (size == VNCREATE_TRIGGER_SIZE)) {
5292 tinfo = (struct vnode_trigger_param *)data;
5293
5294 /* Validate trigger vnode input */
5295 if ((param->vnfs_vtype != VDIR) ||
5296 (tinfo->vnt_resolve_func == NULL) ||
5297 (tinfo->vnt_flags & ~VNT_VALID_MASK)) {
5298 error = EINVAL;
5299 goto error_out;
5300 }
5301 /* Fall through a normal create (params will be the same) */
5302 flavor = VNCREATE_FLAVOR;
5303 size = VCREATESIZE;
5304 }
5305 #endif
5306 if ((flavor != VNCREATE_FLAVOR) || (size != VCREATESIZE)) {
5307 error = EINVAL;
5308 goto error_out;
5309 }
5310 }
5311
5312 if (!existing_vnode) {
5313 if ((error = new_vnode(&vp))) {
5314 return error;
5315 }
5316 if (!init_vnode) {
5317 /* Make it so that it can be released by a vnode_put) */
5318 vn_set_dead(vp);
5319 *vpp = vp;
5320 return 0;
5321 }
5322 } else {
5323 /*
5324 * A vnode obtained by vnode_create_empty has been passed to
5325 * vnode_initialize - Unset VL_DEAD set by vn_set_dead. After
5326 * this point, it is set back on any error.
5327 *
5328 * N.B. vnode locking - We make the same assumptions as the
5329 * "unsplit" vnode_create did - i.e. it is safe to update the
5330 * vnode's fields without the vnode lock. This vnode has been
5331 * out and about with the filesystem and hopefully nothing
5332 * was done to the vnode between the vnode_create_empty and
5333 * now when it has come in through vnode_initialize.
5334 */
5335 vp->v_lflag &= ~VL_DEAD;
5336 }
5337
5338 dvp = param->vnfs_dvp;
5339 cnp = param->vnfs_cnp;
5340
5341 vp->v_op = param->vnfs_vops;
5342 vp->v_type = param->vnfs_vtype;
5343 vp->v_data = param->vnfs_fsnode;
5344
5345 if (param->vnfs_markroot) {
5346 vp->v_flag |= VROOT;
5347 }
5348 if (param->vnfs_marksystem) {
5349 vp->v_flag |= VSYSTEM;
5350 }
5351 if (vp->v_type == VREG) {
5352 error = ubc_info_init_withsize(vp, param->vnfs_filesize);
5353 if (error) {
5354 #ifdef JOE_DEBUG
5355 record_vp(vp, 1);
5356 #endif
5357 vn_set_dead(vp);
5358
5359 vnode_put(vp);
5360 return error;
5361 }
5362 if (param->vnfs_mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED) {
5363 memory_object_mark_io_tracking(vp->v_ubcinfo->ui_control);
5364 }
5365 }
5366 #ifdef JOE_DEBUG
5367 record_vp(vp, 1);
5368 #endif
5369
5370 #if CONFIG_FIRMLINKS
5371 vp->v_fmlink = NULLVP;
5372 #endif
5373 vp->v_flag &= ~VFMLINKTARGET;
5374
5375 #if CONFIG_TRIGGERS
5376 /*
5377 * For trigger vnodes, attach trigger info to vnode
5378 */
5379 if ((vp->v_type == VDIR) && (tinfo != NULL)) {
5380 /*
5381 * Note: has a side effect of incrementing trigger count on the
5382 * mount if successful, which we would need to undo on a
5383 * subsequent failure.
5384 */
5385 #ifdef JOE_DEBUG
5386 record_vp(vp, -1);
5387 #endif
5388 error = vnode_resolver_create(param->vnfs_mp, vp, tinfo, FALSE);
5389 if (error) {
5390 printf("vnode_create: vnode_resolver_create() err %d\n", error);
5391 vn_set_dead(vp);
5392 #ifdef JOE_DEBUG
5393 record_vp(vp, 1);
5394 #endif
5395 vnode_put(vp);
5396 return error;
5397 }
5398 }
5399 #endif
5400 if (vp->v_type == VCHR || vp->v_type == VBLK) {
5401 vp->v_tag = VT_DEVFS; /* callers will reset if needed (bdevvp) */
5402
5403 if ((nvp = checkalias(vp, param->vnfs_rdev))) {
5404 /*
5405 * if checkalias returns a vnode, it will be locked
5406 *
5407 * first get rid of the unneeded vnode we acquired
5408 */
5409 vp->v_data = NULL;
5410 vp->v_op = spec_vnodeop_p;
5411 vp->v_type = VBAD;
5412 vp->v_lflag = VL_DEAD;
5413 vp->v_data = NULL;
5414 vp->v_tag = VT_NON;
5415 vnode_put(vp);
5416
5417 /*
5418 * switch to aliased vnode and finish
5419 * preparing it
5420 */
5421 vp = nvp;
5422
5423 vclean(vp, 0);
5424 vp->v_op = param->vnfs_vops;
5425 vp->v_type = param->vnfs_vtype;
5426 vp->v_data = param->vnfs_fsnode;
5427 vp->v_lflag = 0;
5428 vp->v_mount = NULL;
5429 insmntque(vp, param->vnfs_mp);
5430 insert = 0;
5431 vnode_unlock(vp);
5432 }
5433
5434 if (VCHR == vp->v_type) {
5435 u_int maj = major(vp->v_rdev);
5436
5437 if (maj < (u_int)nchrdev && cdevsw[maj].d_type == D_TTY) {
5438 vp->v_flag |= VISTTY;
5439 }
5440 }
5441 }
5442
5443 if (vp->v_type == VFIFO) {
5444 struct fifoinfo *fip;
5445
5446 MALLOC(fip, struct fifoinfo *,
5447 sizeof(*fip), M_TEMP, M_WAITOK);
5448 bzero(fip, sizeof(struct fifoinfo));
5449 vp->v_fifoinfo = fip;
5450 }
5451 /* The file systems must pass the address of the location where
5452 * they store the vnode pointer. When we add the vnode into the mount
5453 * list and name cache they become discoverable. So the file system node
5454 * must have the connection to vnode setup by then
5455 */
5456 *vpp = vp;
5457
5458 /* Add fs named reference. */
5459 if (param->vnfs_flags & VNFS_ADDFSREF) {
5460 vp->v_lflag |= VNAMED_FSHASH;
5461 }
5462 if (param->vnfs_mp) {
5463 if (param->vnfs_mp->mnt_kern_flag & MNTK_LOCK_LOCAL) {
5464 vp->v_flag |= VLOCKLOCAL;
5465 }
5466 if (insert) {
5467 if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb)) {
5468 panic("insmntque: vp on the free list\n");
5469 }
5470
5471 /*
5472 * enter in mount vnode list
5473 */
5474 insmntque(vp, param->vnfs_mp);
5475 }
5476 }
5477 if (dvp && vnode_ref(dvp) == 0) {
5478 vp->v_parent = dvp;
5479 }
5480 if (cnp) {
5481 if (dvp && ((param->vnfs_flags & (VNFS_NOCACHE | VNFS_CANTCACHE)) == 0)) {
5482 /*
5483 * enter into name cache
5484 * we've got the info to enter it into the name cache now
5485 * cache_enter_create will pick up an extra reference on
5486 * the name entered into the string cache
5487 */
5488 vp->v_name = cache_enter_create(dvp, vp, cnp);
5489 } else {
5490 vp->v_name = vfs_addname(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, 0);
5491 }
5492
5493 if ((cnp->cn_flags & UNIONCREATED) == UNIONCREATED) {
5494 vp->v_flag |= VISUNION;
5495 }
5496 }
5497 if ((param->vnfs_flags & VNFS_CANTCACHE) == 0) {
5498 /*
5499 * this vnode is being created as cacheable in the name cache
5500 * this allows us to re-enter it in the cache
5501 */
5502 vp->v_flag |= VNCACHEABLE;
5503 }
5504 ut = get_bsdthread_info(current_thread());
5505
5506 if ((current_proc()->p_lflag & P_LRAGE_VNODES) ||
5507 (ut->uu_flag & (UT_RAGE_VNODES | UT_KERN_RAGE_VNODES))) {
5508 /*
5509 * process has indicated that it wants any
5510 * vnodes created on its behalf to be rapidly
5511 * aged to reduce the impact on the cached set
5512 * of vnodes
5513 *
5514 * if UT_KERN_RAGE_VNODES is set, then the
5515 * kernel internally wants vnodes to be rapidly
5516 * aged, even if the process hasn't requested
5517 * this
5518 */
5519 vp->v_flag |= VRAGE;
5520 }
5521
5522 #if CONFIG_SECLUDED_MEMORY
5523 switch (secluded_for_filecache) {
5524 case 0:
5525 /*
5526 * secluded_for_filecache == 0:
5527 * + no file contents in secluded pool
5528 */
5529 break;
5530 case 1:
5531 /*
5532 * secluded_for_filecache == 1:
5533 * + no files from /
5534 * + files from /Applications/ are OK
5535 * + files from /Applications/Camera are not OK
5536 * + no files that are open for write
5537 */
5538 if (vnode_vtype(vp) == VREG &&
5539 vnode_mount(vp) != NULL &&
5540 (!(vfs_flags(vnode_mount(vp)) & MNT_ROOTFS))) {
5541 /* not from root filesystem: eligible for secluded pages */
5542 memory_object_mark_eligible_for_secluded(
5543 ubc_getobject(vp, UBC_FLAGS_NONE),
5544 TRUE);
5545 }
5546 break;
5547 case 2:
5548 /*
5549 * secluded_for_filecache == 2:
5550 * + all read-only files OK, except:
5551 * + dyld_shared_cache_arm64*
5552 * + Camera
5553 * + mediaserverd
5554 */
5555 if (vnode_vtype(vp) == VREG) {
5556 memory_object_mark_eligible_for_secluded(
5557 ubc_getobject(vp, UBC_FLAGS_NONE),
5558 TRUE);
5559 }
5560 break;
5561 default:
5562 break;
5563 }
5564 #endif /* CONFIG_SECLUDED_MEMORY */
5565
5566 return 0;
5567
5568 error_out:
5569 if (existing_vnode) {
5570 vnode_put(vp);
5571 }
5572 return error;
5573 }
5574
5575 /* USAGE:
5576 * The following api creates a vnode and associates all the parameter specified in vnode_fsparam
5577 * structure and returns a vnode handle with a reference. device aliasing is handled here so checkalias
5578 * is obsoleted by this.
5579 */
5580 int
5581 vnode_create(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp)
5582 {
5583 *vpp = NULLVP;
5584 return vnode_create_internal(flavor, size, data, vpp, 1);
5585 }
5586
5587 int
5588 vnode_create_empty(vnode_t *vpp)
5589 {
5590 *vpp = NULLVP;
5591 return vnode_create_internal(VNCREATE_FLAVOR, VCREATESIZE, NULL,
5592 vpp, 0);
5593 }
5594
5595 int
5596 vnode_initialize(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp)
5597 {
5598 if (*vpp == NULLVP) {
5599 panic("NULL vnode passed to vnode_initialize");
5600 }
5601 #if DEVELOPMENT || DEBUG
5602 /*
5603 * We lock to check that vnode is fit for unlocked use in
5604 * vnode_create_internal.
5605 */
5606 vnode_lock_spin(*vpp);
5607 VNASSERT(((*vpp)->v_iocount == 1), *vpp,
5608 ("vnode_initialize : iocount not 1, is %d", (*vpp)->v_iocount));
5609 VNASSERT(((*vpp)->v_usecount == 0), *vpp,
5610 ("vnode_initialize : usecount not 0, is %d", (*vpp)->v_usecount));
5611 VNASSERT(((*vpp)->v_lflag & VL_DEAD), *vpp,
5612 ("vnode_initialize : v_lflag does not have VL_DEAD, is 0x%x",
5613 (*vpp)->v_lflag));
5614 VNASSERT(((*vpp)->v_data == NULL), *vpp,
5615 ("vnode_initialize : v_data not NULL"));
5616 vnode_unlock(*vpp);
5617 #endif
5618 return vnode_create_internal(flavor, size, data, vpp, 1);
5619 }
5620
5621 int
5622 vnode_addfsref(vnode_t vp)
5623 {
5624 vnode_lock_spin(vp);
5625 if (vp->v_lflag & VNAMED_FSHASH) {
5626 panic("add_fsref: vp already has named reference");
5627 }
5628 if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb)) {
5629 panic("addfsref: vp on the free list\n");
5630 }
5631 vp->v_lflag |= VNAMED_FSHASH;
5632 vnode_unlock(vp);
5633 return 0;
5634 }
5635 int
5636 vnode_removefsref(vnode_t vp)
5637 {
5638 vnode_lock_spin(vp);
5639 if ((vp->v_lflag & VNAMED_FSHASH) == 0) {
5640 panic("remove_fsref: no named reference");
5641 }
5642 vp->v_lflag &= ~VNAMED_FSHASH;
5643 vnode_unlock(vp);
5644 return 0;
5645 }
5646
5647
5648 int
5649 vfs_iterate(int flags, int (*callout)(mount_t, void *), void *arg)
5650 {
5651 mount_t mp;
5652 int ret = 0;
5653 fsid_t * fsid_list;
5654 int count, actualcount, i;
5655 void * allocmem;
5656 int indx_start, indx_stop, indx_incr;
5657 int cb_dropref = (flags & VFS_ITERATE_CB_DROPREF);
5658 int noskip_unmount = (flags & VFS_ITERATE_NOSKIP_UNMOUNT);
5659
5660 count = mount_getvfscnt();
5661 count += 10;
5662
5663 fsid_list = (fsid_t *)kalloc(count * sizeof(fsid_t));
5664 allocmem = (void *)fsid_list;
5665
5666 actualcount = mount_fillfsids(fsid_list, count);
5667
5668 /*
5669 * Establish the iteration direction
5670 * VFS_ITERATE_TAIL_FIRST overrides default head first order (oldest first)
5671 */
5672 if (flags & VFS_ITERATE_TAIL_FIRST) {
5673 indx_start = actualcount - 1;
5674 indx_stop = -1;
5675 indx_incr = -1;
5676 } else { /* Head first by default */
5677 indx_start = 0;
5678 indx_stop = actualcount;
5679 indx_incr = 1;
5680 }
5681
5682 for (i = indx_start; i != indx_stop; i += indx_incr) {
5683 /* obtain the mount point with iteration reference */
5684 mp = mount_list_lookupby_fsid(&fsid_list[i], 0, 1);
5685
5686 if (mp == (struct mount *)0) {
5687 continue;
5688 }
5689 mount_lock(mp);
5690 if ((mp->mnt_lflag & MNT_LDEAD) ||
5691 (!noskip_unmount && (mp->mnt_lflag & MNT_LUNMOUNT))) {
5692 mount_unlock(mp);
5693 mount_iterdrop(mp);
5694 continue;
5695 }
5696 mount_unlock(mp);
5697
5698 /* iterate over all the vnodes */
5699 ret = callout(mp, arg);
5700
5701 /*
5702 * Drop the iterref here if the callback didn't do it.
5703 * Note: If cb_dropref is set the mp may no longer exist.
5704 */
5705 if (!cb_dropref) {
5706 mount_iterdrop(mp);
5707 }
5708
5709 switch (ret) {
5710 case VFS_RETURNED:
5711 case VFS_RETURNED_DONE:
5712 if (ret == VFS_RETURNED_DONE) {
5713 ret = 0;
5714 goto out;
5715 }
5716 break;
5717
5718 case VFS_CLAIMED_DONE:
5719 ret = 0;
5720 goto out;
5721 case VFS_CLAIMED:
5722 default:
5723 break;
5724 }
5725 ret = 0;
5726 }
5727
5728 out:
5729 kfree(allocmem, (count * sizeof(fsid_t)));
5730 return ret;
5731 }
5732
5733 /*
5734 * Update the vfsstatfs structure in the mountpoint.
5735 * MAC: Parameter eventtype added, indicating whether the event that
5736 * triggered this update came from user space, via a system call
5737 * (VFS_USER_EVENT) or an internal kernel call (VFS_KERNEL_EVENT).
5738 */
5739 int
5740 vfs_update_vfsstat(mount_t mp, vfs_context_t ctx, __unused int eventtype)
5741 {
5742 struct vfs_attr va;
5743 int error;
5744
5745 /*
5746 * Request the attributes we want to propagate into
5747 * the per-mount vfsstat structure.
5748 */
5749 VFSATTR_INIT(&va);
5750 VFSATTR_WANTED(&va, f_iosize);
5751 VFSATTR_WANTED(&va, f_blocks);
5752 VFSATTR_WANTED(&va, f_bfree);
5753 VFSATTR_WANTED(&va, f_bavail);
5754 VFSATTR_WANTED(&va, f_bused);
5755 VFSATTR_WANTED(&va, f_files);
5756 VFSATTR_WANTED(&va, f_ffree);
5757 VFSATTR_WANTED(&va, f_bsize);
5758 VFSATTR_WANTED(&va, f_fssubtype);
5759
5760 if ((error = vfs_getattr(mp, &va, ctx)) != 0) {
5761 KAUTH_DEBUG("STAT - filesystem returned error %d", error);
5762 return error;
5763 }
5764 #if CONFIG_MACF
5765 if (eventtype == VFS_USER_EVENT) {
5766 error = mac_mount_check_getattr(ctx, mp, &va);
5767 if (error != 0) {
5768 return error;
5769 }
5770 }
5771 #endif
5772 /*
5773 * Unpack into the per-mount structure.
5774 *
5775 * We only overwrite these fields, which are likely to change:
5776 * f_blocks
5777 * f_bfree
5778 * f_bavail
5779 * f_bused
5780 * f_files
5781 * f_ffree
5782 *
5783 * And these which are not, but which the FS has no other way
5784 * of providing to us:
5785 * f_bsize
5786 * f_iosize
5787 * f_fssubtype
5788 *
5789 */
5790 if (VFSATTR_IS_SUPPORTED(&va, f_bsize)) {
5791 /* 4822056 - protect against malformed server mount */
5792 mp->mnt_vfsstat.f_bsize = (va.f_bsize > 0 ? va.f_bsize : 512);
5793 } else {
5794 mp->mnt_vfsstat.f_bsize = mp->mnt_devblocksize; /* default from the device block size */
5795 }
5796 if (VFSATTR_IS_SUPPORTED(&va, f_iosize)) {
5797 mp->mnt_vfsstat.f_iosize = va.f_iosize;
5798 } else {
5799 mp->mnt_vfsstat.f_iosize = 1024 * 1024; /* 1MB sensible I/O size */
5800 }
5801 if (VFSATTR_IS_SUPPORTED(&va, f_blocks)) {
5802 mp->mnt_vfsstat.f_blocks = va.f_blocks;
5803 }
5804 if (VFSATTR_IS_SUPPORTED(&va, f_bfree)) {
5805 mp->mnt_vfsstat.f_bfree = va.f_bfree;
5806 }
5807 if (VFSATTR_IS_SUPPORTED(&va, f_bavail)) {
5808 mp->mnt_vfsstat.f_bavail = va.f_bavail;
5809 }
5810 if (VFSATTR_IS_SUPPORTED(&va, f_bused)) {
5811 mp->mnt_vfsstat.f_bused = va.f_bused;
5812 }
5813 if (VFSATTR_IS_SUPPORTED(&va, f_files)) {
5814 mp->mnt_vfsstat.f_files = va.f_files;
5815 }
5816 if (VFSATTR_IS_SUPPORTED(&va, f_ffree)) {
5817 mp->mnt_vfsstat.f_ffree = va.f_ffree;
5818 }
5819
5820 /* this is unlikely to change, but has to be queried for */
5821 if (VFSATTR_IS_SUPPORTED(&va, f_fssubtype)) {
5822 mp->mnt_vfsstat.f_fssubtype = va.f_fssubtype;
5823 }
5824
5825 return 0;
5826 }
5827
5828 int
5829 mount_list_add(mount_t mp)
5830 {
5831 int res;
5832
5833 mount_list_lock();
5834 if (system_inshutdown != 0) {
5835 res = -1;
5836 } else {
5837 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
5838 nummounts++;
5839 res = 0;
5840 }
5841 mount_list_unlock();
5842
5843 return res;
5844 }
5845
5846 void
5847 mount_list_remove(mount_t mp)
5848 {
5849 mount_list_lock();
5850 TAILQ_REMOVE(&mountlist, mp, mnt_list);
5851 nummounts--;
5852 mp->mnt_list.tqe_next = NULL;
5853 mp->mnt_list.tqe_prev = NULL;
5854 mount_list_unlock();
5855 }
5856
5857 mount_t
5858 mount_lookupby_volfsid(int volfs_id, int withref)
5859 {
5860 mount_t cur_mount = (mount_t)0;
5861 mount_t mp;
5862
5863 mount_list_lock();
5864 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
5865 if (!(mp->mnt_kern_flag & MNTK_UNMOUNT) &&
5866 (mp->mnt_kern_flag & MNTK_PATH_FROM_ID) &&
5867 (mp->mnt_vfsstat.f_fsid.val[0] == volfs_id)) {
5868 cur_mount = mp;
5869 if (withref) {
5870 if (mount_iterref(cur_mount, 1)) {
5871 cur_mount = (mount_t)0;
5872 mount_list_unlock();
5873 goto out;
5874 }
5875 }
5876 break;
5877 }
5878 }
5879 mount_list_unlock();
5880 if (withref && (cur_mount != (mount_t)0)) {
5881 mp = cur_mount;
5882 if (vfs_busy(mp, LK_NOWAIT) != 0) {
5883 cur_mount = (mount_t)0;
5884 }
5885 mount_iterdrop(mp);
5886 }
5887 out:
5888 return cur_mount;
5889 }
5890
5891 mount_t
5892 mount_list_lookupby_fsid(fsid_t *fsid, int locked, int withref)
5893 {
5894 mount_t retmp = (mount_t)0;
5895 mount_t mp;
5896
5897 if (!locked) {
5898 mount_list_lock();
5899 }
5900 TAILQ_FOREACH(mp, &mountlist, mnt_list)
5901 if (mp->mnt_vfsstat.f_fsid.val[0] == fsid->val[0] &&
5902 mp->mnt_vfsstat.f_fsid.val[1] == fsid->val[1]) {
5903 retmp = mp;
5904 if (withref) {
5905 if (mount_iterref(retmp, 1)) {
5906 retmp = (mount_t)0;
5907 }
5908 }
5909 goto out;
5910 }
5911 out:
5912 if (!locked) {
5913 mount_list_unlock();
5914 }
5915 return retmp;
5916 }
5917
5918 errno_t
5919 vnode_lookupat(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx,
5920 vnode_t start_dvp)
5921 {
5922 struct nameidata nd;
5923 int error;
5924 u_int32_t ndflags = 0;
5925
5926 if (ctx == NULL) {
5927 return EINVAL;
5928 }
5929
5930 if (flags & VNODE_LOOKUP_NOFOLLOW) {
5931 ndflags = NOFOLLOW;
5932 } else {
5933 ndflags = FOLLOW;
5934 }
5935
5936 if (flags & VNODE_LOOKUP_NOCROSSMOUNT) {
5937 ndflags |= NOCROSSMOUNT;
5938 }
5939
5940 if (flags & VNODE_LOOKUP_CROSSMOUNTNOWAIT) {
5941 ndflags |= CN_NBMOUNTLOOK;
5942 }
5943
5944 /* XXX AUDITVNPATH1 needed ? */
5945 NDINIT(&nd, LOOKUP, OP_LOOKUP, ndflags, UIO_SYSSPACE,
5946 CAST_USER_ADDR_T(path), ctx);
5947
5948 if (start_dvp && (path[0] != '/')) {
5949 nd.ni_dvp = start_dvp;
5950 nd.ni_cnd.cn_flags |= USEDVP;
5951 /* Don't take proc lock vnode_lookupat with a startdir specified */
5952 nd.ni_flag |= NAMEI_NOPROCLOCK;
5953 }
5954
5955 if ((error = namei(&nd))) {
5956 return error;
5957 }
5958
5959 nd.ni_cnd.cn_flags &= ~USEDVP;
5960
5961 *vpp = nd.ni_vp;
5962 nameidone(&nd);
5963
5964 return 0;
5965 }
5966
5967 errno_t
5968 vnode_lookup(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx)
5969 {
5970 return vnode_lookupat(path, flags, vpp, ctx, NULLVP);
5971 }
5972
5973 errno_t
5974 vnode_open(const char *path, int fmode, int cmode, int flags, vnode_t *vpp, vfs_context_t ctx)
5975 {
5976 struct nameidata nd;
5977 int error;
5978 u_int32_t ndflags = 0;
5979 int lflags = flags;
5980
5981 if (ctx == NULL) { /* XXX technically an error */
5982 ctx = vfs_context_current();
5983 }
5984
5985 if (fmode & O_NOFOLLOW) {
5986 lflags |= VNODE_LOOKUP_NOFOLLOW;
5987 }
5988
5989 if (lflags & VNODE_LOOKUP_NOFOLLOW) {
5990 ndflags = NOFOLLOW;
5991 } else {
5992 ndflags = FOLLOW;
5993 }
5994
5995 if (lflags & VNODE_LOOKUP_NOCROSSMOUNT) {
5996 ndflags |= NOCROSSMOUNT;
5997 }
5998
5999 if (lflags & VNODE_LOOKUP_CROSSMOUNTNOWAIT) {
6000 ndflags |= CN_NBMOUNTLOOK;
6001 }
6002
6003 /* XXX AUDITVNPATH1 needed ? */
6004 NDINIT(&nd, LOOKUP, OP_OPEN, ndflags, UIO_SYSSPACE,
6005 CAST_USER_ADDR_T(path), ctx);
6006
6007 if ((error = vn_open(&nd, fmode, cmode))) {
6008 *vpp = NULL;
6009 } else {
6010 *vpp = nd.ni_vp;
6011 }
6012
6013 return error;
6014 }
6015
6016 errno_t
6017 vnode_close(vnode_t vp, int flags, vfs_context_t ctx)
6018 {
6019 int error;
6020
6021 if (ctx == NULL) {
6022 ctx = vfs_context_current();
6023 }
6024
6025 error = vn_close(vp, flags, ctx);
6026 vnode_put(vp);
6027 return error;
6028 }
6029
6030 errno_t
6031 vnode_mtime(vnode_t vp, struct timespec *mtime, vfs_context_t ctx)
6032 {
6033 struct vnode_attr va;
6034 int error;
6035
6036 VATTR_INIT(&va);
6037 VATTR_WANTED(&va, va_modify_time);
6038 error = vnode_getattr(vp, &va, ctx);
6039 if (!error) {
6040 *mtime = va.va_modify_time;
6041 }
6042 return error;
6043 }
6044
6045 errno_t
6046 vnode_flags(vnode_t vp, uint32_t *flags, vfs_context_t ctx)
6047 {
6048 struct vnode_attr va;
6049 int error;
6050
6051 VATTR_INIT(&va);
6052 VATTR_WANTED(&va, va_flags);
6053 error = vnode_getattr(vp, &va, ctx);
6054 if (!error) {
6055 *flags = va.va_flags;
6056 }
6057 return error;
6058 }
6059
6060 /*
6061 * Returns: 0 Success
6062 * vnode_getattr:???
6063 */
6064 errno_t
6065 vnode_size(vnode_t vp, off_t *sizep, vfs_context_t ctx)
6066 {
6067 struct vnode_attr va;
6068 int error;
6069
6070 VATTR_INIT(&va);
6071 VATTR_WANTED(&va, va_data_size);
6072 error = vnode_getattr(vp, &va, ctx);
6073 if (!error) {
6074 *sizep = va.va_data_size;
6075 }
6076 return error;
6077 }
6078
6079 errno_t
6080 vnode_setsize(vnode_t vp, off_t size, int ioflag, vfs_context_t ctx)
6081 {
6082 struct vnode_attr va;
6083
6084 VATTR_INIT(&va);
6085 VATTR_SET(&va, va_data_size, size);
6086 va.va_vaflags = ioflag & 0xffff;
6087 return vnode_setattr(vp, &va, ctx);
6088 }
6089
6090 int
6091 vnode_setdirty(vnode_t vp)
6092 {
6093 vnode_lock_spin(vp);
6094 vp->v_flag |= VISDIRTY;
6095 vnode_unlock(vp);
6096 return 0;
6097 }
6098
6099 int
6100 vnode_cleardirty(vnode_t vp)
6101 {
6102 vnode_lock_spin(vp);
6103 vp->v_flag &= ~VISDIRTY;
6104 vnode_unlock(vp);
6105 return 0;
6106 }
6107
6108 int
6109 vnode_isdirty(vnode_t vp)
6110 {
6111 int dirty;
6112
6113 vnode_lock_spin(vp);
6114 dirty = (vp->v_flag & VISDIRTY) ? 1 : 0;
6115 vnode_unlock(vp);
6116
6117 return dirty;
6118 }
6119
6120 static int
6121 vn_create_reg(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp, struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx)
6122 {
6123 /* Only use compound VNOP for compound operation */
6124 if (vnode_compound_open_available(dvp) && ((flags & VN_CREATE_DOOPEN) != 0)) {
6125 *vpp = NULLVP;
6126 return VNOP_COMPOUND_OPEN(dvp, vpp, ndp, O_CREAT, fmode, statusp, vap, ctx);
6127 } else {
6128 return VNOP_CREATE(dvp, vpp, &ndp->ni_cnd, vap, ctx);
6129 }
6130 }
6131
6132 /*
6133 * Create a filesystem object of arbitrary type with arbitrary attributes in
6134 * the spevied directory with the specified name.
6135 *
6136 * Parameters: dvp Pointer to the vnode of the directory
6137 * in which to create the object.
6138 * vpp Pointer to the area into which to
6139 * return the vnode of the created object.
6140 * cnp Component name pointer from the namei
6141 * data structure, containing the name to
6142 * use for the create object.
6143 * vap Pointer to the vnode_attr structure
6144 * describing the object to be created,
6145 * including the type of object.
6146 * flags VN_* flags controlling ACL inheritance
6147 * and whether or not authorization is to
6148 * be required for the operation.
6149 *
6150 * Returns: 0 Success
6151 * !0 errno value
6152 *
6153 * Implicit: *vpp Contains the vnode of the object that
6154 * was created, if successful.
6155 * *cnp May be modified by the underlying VFS.
6156 * *vap May be modified by the underlying VFS.
6157 * modified by either ACL inheritance or
6158 *
6159 *
6160 * be modified, even if the operation is
6161 *
6162 *
6163 * Notes: The kauth_filesec_t in 'vap', if any, is in host byte order.
6164 *
6165 * Modification of '*cnp' and '*vap' by the underlying VFS is
6166 * strongly discouraged.
6167 *
6168 * XXX: This function is a 'vn_*' function; it belongs in vfs_vnops.c
6169 *
6170 * XXX: We should enummerate the possible errno values here, and where
6171 * in the code they originated.
6172 */
6173 errno_t
6174 vn_create(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp, struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx)
6175 {
6176 errno_t error, old_error;
6177 vnode_t vp = (vnode_t)0;
6178 boolean_t batched;
6179 struct componentname *cnp;
6180 uint32_t defaulted;
6181
6182 cnp = &ndp->ni_cnd;
6183 error = 0;
6184 batched = namei_compound_available(dvp, ndp) ? TRUE : FALSE;
6185
6186 KAUTH_DEBUG("%p CREATE - '%s'", dvp, cnp->cn_nameptr);
6187
6188 if (flags & VN_CREATE_NOINHERIT) {
6189 vap->va_vaflags |= VA_NOINHERIT;
6190 }
6191 if (flags & VN_CREATE_NOAUTH) {
6192 vap->va_vaflags |= VA_NOAUTH;
6193 }
6194 /*
6195 * Handle ACL inheritance, initialize vap.
6196 */
6197 error = vn_attribute_prepare(dvp, vap, &defaulted, ctx);
6198 if (error) {
6199 return error;
6200 }
6201
6202 if (vap->va_type != VREG && (fmode != 0 || (flags & VN_CREATE_DOOPEN) || statusp)) {
6203 panic("Open parameters, but not a regular file.");
6204 }
6205 if ((fmode != 0) && ((flags & VN_CREATE_DOOPEN) == 0)) {
6206 panic("Mode for open, but not trying to open...");
6207 }
6208
6209
6210 /*
6211 * Create the requested node.
6212 */
6213 switch (vap->va_type) {
6214 case VREG:
6215 error = vn_create_reg(dvp, vpp, ndp, vap, flags, fmode, statusp, ctx);
6216 break;
6217 case VDIR:
6218 error = vn_mkdir(dvp, vpp, ndp, vap, ctx);
6219 break;
6220 case VSOCK:
6221 case VFIFO:
6222 case VBLK:
6223 case VCHR:
6224 error = VNOP_MKNOD(dvp, vpp, cnp, vap, ctx);
6225 break;
6226 default:
6227 panic("vnode_create: unknown vtype %d", vap->va_type);
6228 }
6229 if (error != 0) {
6230 KAUTH_DEBUG("%p CREATE - error %d returned by filesystem", dvp, error);
6231 goto out;
6232 }
6233
6234 vp = *vpp;
6235 old_error = error;
6236
6237 /*
6238 * If some of the requested attributes weren't handled by the VNOP,
6239 * use our fallback code.
6240 */
6241 if ((error == 0) && !VATTR_ALL_SUPPORTED(vap) && *vpp) {
6242 KAUTH_DEBUG(" CREATE - doing fallback with ACL %p", vap->va_acl);
6243 error = vnode_setattr_fallback(*vpp, vap, ctx);
6244 }
6245
6246 #if CONFIG_MACF
6247 if ((error == 0) && !(flags & VN_CREATE_NOLABEL)) {
6248 error = vnode_label(vnode_mount(vp), dvp, vp, cnp, VNODE_LABEL_CREATE, ctx);
6249 }
6250 #endif
6251
6252 if ((error != 0) && (vp != (vnode_t)0)) {
6253 /* If we've done a compound open, close */
6254 if (batched && (old_error == 0) && (vap->va_type == VREG)) {
6255 VNOP_CLOSE(vp, fmode, ctx);
6256 }
6257
6258 /* Need to provide notifications if a create succeeded */
6259 if (!batched) {
6260 *vpp = (vnode_t) 0;
6261 vnode_put(vp);
6262 vp = NULLVP;
6263 }
6264 }
6265
6266 /*
6267 * For creation VNOPs, this is the equivalent of
6268 * lookup_handle_found_vnode.
6269 */
6270 if (kdebug_enable && *vpp) {
6271 kdebug_lookup(*vpp, cnp);
6272 }
6273
6274 out:
6275 vn_attribute_cleanup(vap, defaulted);
6276
6277 return error;
6278 }
6279
6280 static kauth_scope_t vnode_scope;
6281 static int vnode_authorize_callback(kauth_cred_t credential, void *idata, kauth_action_t action,
6282 uintptr_t arg0, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3);
6283 static int vnode_authorize_callback_int(kauth_action_t action, vfs_context_t ctx,
6284 vnode_t vp, vnode_t dvp, int *errorp);
6285
6286 typedef struct _vnode_authorize_context {
6287 vnode_t vp;
6288 struct vnode_attr *vap;
6289 vnode_t dvp;
6290 struct vnode_attr *dvap;
6291 vfs_context_t ctx;
6292 int flags;
6293 int flags_valid;
6294 #define _VAC_IS_OWNER (1<<0)
6295 #define _VAC_IN_GROUP (1<<1)
6296 #define _VAC_IS_DIR_OWNER (1<<2)
6297 #define _VAC_IN_DIR_GROUP (1<<3)
6298 #define _VAC_NO_VNODE_POINTERS (1<<4)
6299 } *vauth_ctx;
6300
6301 void
6302 vnode_authorize_init(void)
6303 {
6304 vnode_scope = kauth_register_scope(KAUTH_SCOPE_VNODE, vnode_authorize_callback, NULL);
6305 }
6306
6307 #define VATTR_PREPARE_DEFAULTED_UID 0x1
6308 #define VATTR_PREPARE_DEFAULTED_GID 0x2
6309 #define VATTR_PREPARE_DEFAULTED_MODE 0x4
6310
6311 int
6312 vn_attribute_prepare(vnode_t dvp, struct vnode_attr *vap, uint32_t *defaulted_fieldsp, vfs_context_t ctx)
6313 {
6314 kauth_acl_t nacl = NULL, oacl = NULL;
6315 int error;
6316
6317 /*
6318 * Handle ACL inheritance.
6319 */
6320 if (!(vap->va_vaflags & VA_NOINHERIT) && vfs_extendedsecurity(dvp->v_mount)) {
6321 /* save the original filesec */
6322 if (VATTR_IS_ACTIVE(vap, va_acl)) {
6323 oacl = vap->va_acl;
6324 }
6325
6326 vap->va_acl = NULL;
6327 if ((error = kauth_acl_inherit(dvp,
6328 oacl,
6329 &nacl,
6330 vap->va_type == VDIR,
6331 ctx)) != 0) {
6332 KAUTH_DEBUG("%p CREATE - error %d processing inheritance", dvp, error);
6333 return error;
6334 }
6335
6336 /*
6337 * If the generated ACL is NULL, then we can save ourselves some effort
6338 * by clearing the active bit.
6339 */
6340 if (nacl == NULL) {
6341 VATTR_CLEAR_ACTIVE(vap, va_acl);
6342 } else {
6343 vap->va_base_acl = oacl;
6344 VATTR_SET(vap, va_acl, nacl);
6345 }
6346 }
6347
6348 error = vnode_authattr_new_internal(dvp, vap, (vap->va_vaflags & VA_NOAUTH), defaulted_fieldsp, ctx);
6349 if (error) {
6350 vn_attribute_cleanup(vap, *defaulted_fieldsp);
6351 }
6352
6353 return error;
6354 }
6355
6356 void
6357 vn_attribute_cleanup(struct vnode_attr *vap, uint32_t defaulted_fields)
6358 {
6359 /*
6360 * If the caller supplied a filesec in vap, it has been replaced
6361 * now by the post-inheritance copy. We need to put the original back
6362 * and free the inherited product.
6363 */
6364 kauth_acl_t nacl, oacl;
6365
6366 if (VATTR_IS_ACTIVE(vap, va_acl)) {
6367 nacl = vap->va_acl;
6368 oacl = vap->va_base_acl;
6369
6370 if (oacl) {
6371 VATTR_SET(vap, va_acl, oacl);
6372 vap->va_base_acl = NULL;
6373 } else {
6374 VATTR_CLEAR_ACTIVE(vap, va_acl);
6375 }
6376
6377 if (nacl != NULL) {
6378 kauth_acl_free(nacl);
6379 }
6380 }
6381
6382 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_MODE) != 0) {
6383 VATTR_CLEAR_ACTIVE(vap, va_mode);
6384 }
6385 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_GID) != 0) {
6386 VATTR_CLEAR_ACTIVE(vap, va_gid);
6387 }
6388 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_UID) != 0) {
6389 VATTR_CLEAR_ACTIVE(vap, va_uid);
6390 }
6391
6392 return;
6393 }
6394
6395 int
6396 vn_authorize_unlink(vnode_t dvp, vnode_t vp, struct componentname *cnp, vfs_context_t ctx, __unused void *reserved)
6397 {
6398 #if !CONFIG_MACF
6399 #pragma unused(cnp)
6400 #endif
6401 int error = 0;
6402
6403 /*
6404 * Normally, unlinking of directories is not supported.
6405 * However, some file systems may have limited support.
6406 */
6407 if ((vp->v_type == VDIR) &&
6408 !(vp->v_mount->mnt_kern_flag & MNTK_DIR_HARDLINKS)) {
6409 return EPERM; /* POSIX */
6410 }
6411
6412 /* authorize the delete operation */
6413 #if CONFIG_MACF
6414 if (!error) {
6415 error = mac_vnode_check_unlink(ctx, dvp, vp, cnp);
6416 }
6417 #endif /* MAC */
6418 if (!error) {
6419 error = vnode_authorize(vp, dvp, KAUTH_VNODE_DELETE, ctx);
6420 }
6421
6422 return error;
6423 }
6424
6425 int
6426 vn_authorize_open_existing(vnode_t vp, struct componentname *cnp, int fmode, vfs_context_t ctx, void *reserved)
6427 {
6428 /* Open of existing case */
6429 kauth_action_t action;
6430 int error = 0;
6431 if (cnp->cn_ndp == NULL) {
6432 panic("NULL ndp");
6433 }
6434 if (reserved != NULL) {
6435 panic("reserved not NULL.");
6436 }
6437
6438 #if CONFIG_MACF
6439 /* XXX may do duplicate work here, but ignore that for now (idempotent) */
6440 if (vfs_flags(vnode_mount(vp)) & MNT_MULTILABEL) {
6441 error = vnode_label(vnode_mount(vp), NULL, vp, NULL, 0, ctx);
6442 if (error) {
6443 return error;
6444 }
6445 }
6446 #endif
6447
6448 if ((fmode & O_DIRECTORY) && vp->v_type != VDIR) {
6449 return ENOTDIR;
6450 }
6451
6452 if (vp->v_type == VSOCK && vp->v_tag != VT_FDESC) {
6453 return EOPNOTSUPP; /* Operation not supported on socket */
6454 }
6455
6456 if (vp->v_type == VLNK && (fmode & O_NOFOLLOW) != 0) {
6457 return ELOOP; /* O_NOFOLLOW was specified and the target is a symbolic link */
6458 }
6459
6460 /* disallow write operations on directories */
6461 if (vnode_isdir(vp) && (fmode & (FWRITE | O_TRUNC))) {
6462 return EISDIR;
6463 }
6464
6465 if ((cnp->cn_ndp->ni_flag & NAMEI_TRAILINGSLASH)) {
6466 if (vp->v_type != VDIR) {
6467 return ENOTDIR;
6468 }
6469 }
6470
6471 #if CONFIG_MACF
6472 /* If a file being opened is a shadow file containing
6473 * namedstream data, ignore the macf checks because it
6474 * is a kernel internal file and access should always
6475 * be allowed.
6476 */
6477 if (!(vnode_isshadow(vp) && vnode_isnamedstream(vp))) {
6478 error = mac_vnode_check_open(ctx, vp, fmode);
6479 if (error) {
6480 return error;
6481 }
6482 }
6483 #endif
6484
6485 /* compute action to be authorized */
6486 action = 0;
6487 if (fmode & FREAD) {
6488 action |= KAUTH_VNODE_READ_DATA;
6489 }
6490 if (fmode & (FWRITE | O_TRUNC)) {
6491 /*
6492 * If we are writing, appending, and not truncating,
6493 * indicate that we are appending so that if the
6494 * UF_APPEND or SF_APPEND bits are set, we do not deny
6495 * the open.
6496 */
6497 if ((fmode & O_APPEND) && !(fmode & O_TRUNC)) {
6498 action |= KAUTH_VNODE_APPEND_DATA;
6499 } else {
6500 action |= KAUTH_VNODE_WRITE_DATA;
6501 }
6502 }
6503 error = vnode_authorize(vp, NULL, action, ctx);
6504 #if NAMEDSTREAMS
6505 if (error == EACCES) {
6506 /*
6507 * Shadow files may exist on-disk with a different UID/GID
6508 * than that of the current context. Verify that this file
6509 * is really a shadow file. If it was created successfully
6510 * then it should be authorized.
6511 */
6512 if (vnode_isshadow(vp) && vnode_isnamedstream(vp)) {
6513 error = vnode_verifynamedstream(vp);
6514 }
6515 }
6516 #endif
6517
6518 return error;
6519 }
6520
6521 int
6522 vn_authorize_create(vnode_t dvp, struct componentname *cnp, struct vnode_attr *vap, vfs_context_t ctx, void *reserved)
6523 {
6524 #if !CONFIG_MACF
6525 #pragma unused(vap)
6526 #endif
6527 /* Creation case */
6528 int error;
6529
6530 if (cnp->cn_ndp == NULL) {
6531 panic("NULL cn_ndp");
6532 }
6533 if (reserved != NULL) {
6534 panic("reserved not NULL.");
6535 }
6536
6537 /* Only validate path for creation if we didn't do a complete lookup */
6538 if (cnp->cn_ndp->ni_flag & NAMEI_UNFINISHED) {
6539 error = lookup_validate_creation_path(cnp->cn_ndp);
6540 if (error) {
6541 return error;
6542 }
6543 }
6544
6545 #if CONFIG_MACF
6546 error = mac_vnode_check_create(ctx, dvp, cnp, vap);
6547 if (error) {
6548 return error;
6549 }
6550 #endif /* CONFIG_MACF */
6551
6552 return vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_FILE, ctx);
6553 }
6554
6555 int
6556 vn_authorize_rename(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp,
6557 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp,
6558 vfs_context_t ctx, void *reserved)
6559 {
6560 return vn_authorize_renamex(fdvp, fvp, fcnp, tdvp, tvp, tcnp, ctx, 0, reserved);
6561 }
6562
6563 int
6564 vn_authorize_renamex(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp,
6565 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp,
6566 vfs_context_t ctx, vfs_rename_flags_t flags, void *reserved)
6567 {
6568 return vn_authorize_renamex_with_paths(fdvp, fvp, fcnp, NULL, tdvp, tvp, tcnp, NULL, ctx, flags, reserved);
6569 }
6570
6571 int
6572 vn_authorize_renamex_with_paths(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp, const char *from_path,
6573 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp, const char *to_path,
6574 vfs_context_t ctx, vfs_rename_flags_t flags, void *reserved)
6575 {
6576 int error = 0;
6577 int moving = 0;
6578 bool swap = flags & VFS_RENAME_SWAP;
6579
6580 if (reserved != NULL) {
6581 panic("Passed something other than NULL as reserved field!");
6582 }
6583
6584 /*
6585 * Avoid renaming "." and "..".
6586 *
6587 * XXX No need to check for this in the FS. We should always have the leaves
6588 * in VFS in this case.
6589 */
6590 if (fvp->v_type == VDIR &&
6591 ((fdvp == fvp) ||
6592 (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
6593 ((fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT))) {
6594 error = EINVAL;
6595 goto out;
6596 }
6597
6598 if (tvp == NULLVP && vnode_compound_rename_available(tdvp)) {
6599 error = lookup_validate_creation_path(tcnp->cn_ndp);
6600 if (error) {
6601 goto out;
6602 }
6603 }
6604
6605 /***** <MACF> *****/
6606 #if CONFIG_MACF
6607 error = mac_vnode_check_rename(ctx, fdvp, fvp, fcnp, tdvp, tvp, tcnp);
6608 if (error) {
6609 goto out;
6610 }
6611 if (swap) {
6612 error = mac_vnode_check_rename(ctx, tdvp, tvp, tcnp, fdvp, fvp, fcnp);
6613 if (error) {
6614 goto out;
6615 }
6616 }
6617 #endif
6618 /***** </MACF> *****/
6619
6620 /***** <MiscChecks> *****/
6621 if (tvp != NULL) {
6622 if (!swap) {
6623 if (fvp->v_type == VDIR && tvp->v_type != VDIR) {
6624 error = ENOTDIR;
6625 goto out;
6626 } else if (fvp->v_type != VDIR && tvp->v_type == VDIR) {
6627 error = EISDIR;
6628 goto out;
6629 }
6630 }
6631 } else if (swap) {
6632 /*
6633 * Caller should have already checked this and returned
6634 * ENOENT. If we send back ENOENT here, caller will retry
6635 * which isn't what we want so we send back EINVAL here
6636 * instead.
6637 */
6638 error = EINVAL;
6639 goto out;
6640 }
6641
6642 if (fvp == tdvp) {
6643 error = EINVAL;
6644 goto out;
6645 }
6646
6647 /*
6648 * The following edge case is caught here:
6649 * (to cannot be a descendent of from)
6650 *
6651 * o fdvp
6652 * /
6653 * /
6654 * o fvp
6655 * \
6656 * \
6657 * o tdvp
6658 * /
6659 * /
6660 * o tvp
6661 */
6662 if (tdvp->v_parent == fvp) {
6663 error = EINVAL;
6664 goto out;
6665 }
6666
6667 if (swap && fdvp->v_parent == tvp) {
6668 error = EINVAL;
6669 goto out;
6670 }
6671 /***** </MiscChecks> *****/
6672
6673 /***** <Kauth> *****/
6674
6675 /*
6676 * As part of the Kauth step, we call out to allow 3rd-party
6677 * fileop notification of "about to rename". This is needed
6678 * in the event that 3rd-parties need to know that the DELETE
6679 * authorization is actually part of a rename. It's important
6680 * that we guarantee that the DELETE call-out will always be
6681 * made if the WILL_RENAME call-out is made. Another fileop
6682 * call-out will be performed once the operation is completed.
6683 * We can ignore the result of kauth_authorize_fileop().
6684 *
6685 * N.B. We are passing the vnode and *both* paths to each
6686 * call; kauth_authorize_fileop() extracts the "from" path
6687 * when posting a KAUTH_FILEOP_WILL_RENAME notification.
6688 * As such, we only post these notifications if all of the
6689 * information we need is provided.
6690 */
6691
6692 if (swap) {
6693 kauth_action_t f = 0, t = 0;
6694
6695 /*
6696 * Directories changing parents need ...ADD_SUBDIR... to
6697 * permit changing ".."
6698 */
6699 if (fdvp != tdvp) {
6700 if (vnode_isdir(fvp)) {
6701 f = KAUTH_VNODE_ADD_SUBDIRECTORY;
6702 }
6703 if (vnode_isdir(tvp)) {
6704 t = KAUTH_VNODE_ADD_SUBDIRECTORY;
6705 }
6706 }
6707 if (to_path != NULL) {
6708 kauth_authorize_fileop(vfs_context_ucred(ctx),
6709 KAUTH_FILEOP_WILL_RENAME,
6710 (uintptr_t)fvp,
6711 (uintptr_t)to_path);
6712 }
6713 error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE | f, ctx);
6714 if (error) {
6715 goto out;
6716 }
6717 if (from_path != NULL) {
6718 kauth_authorize_fileop(vfs_context_ucred(ctx),
6719 KAUTH_FILEOP_WILL_RENAME,
6720 (uintptr_t)tvp,
6721 (uintptr_t)from_path);
6722 }
6723 error = vnode_authorize(tvp, tdvp, KAUTH_VNODE_DELETE | t, ctx);
6724 if (error) {
6725 goto out;
6726 }
6727 f = vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE;
6728 t = vnode_isdir(tvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE;
6729 if (fdvp == tdvp) {
6730 error = vnode_authorize(fdvp, NULL, f | t, ctx);
6731 } else {
6732 error = vnode_authorize(fdvp, NULL, t, ctx);
6733 if (error) {
6734 goto out;
6735 }
6736 error = vnode_authorize(tdvp, NULL, f, ctx);
6737 }
6738 if (error) {
6739 goto out;
6740 }
6741 } else {
6742 error = 0;
6743 if ((tvp != NULL) && vnode_isdir(tvp)) {
6744 if (tvp != fdvp) {
6745 moving = 1;
6746 }
6747 } else if (tdvp != fdvp) {
6748 moving = 1;
6749 }
6750
6751 /*
6752 * must have delete rights to remove the old name even in
6753 * the simple case of fdvp == tdvp.
6754 *
6755 * If fvp is a directory, and we are changing it's parent,
6756 * then we also need rights to rewrite its ".." entry as well.
6757 */
6758 if (to_path != NULL) {
6759 kauth_authorize_fileop(vfs_context_ucred(ctx),
6760 KAUTH_FILEOP_WILL_RENAME,
6761 (uintptr_t)fvp,
6762 (uintptr_t)to_path);
6763 }
6764 if (vnode_isdir(fvp)) {
6765 if ((error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE | KAUTH_VNODE_ADD_SUBDIRECTORY, ctx)) != 0) {
6766 goto out;
6767 }
6768 } else {
6769 if ((error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE, ctx)) != 0) {
6770 goto out;
6771 }
6772 }
6773 if (moving) {
6774 /* moving into tdvp or tvp, must have rights to add */
6775 if ((error = vnode_authorize(((tvp != NULL) && vnode_isdir(tvp)) ? tvp : tdvp,
6776 NULL,
6777 vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE,
6778 ctx)) != 0) {
6779 goto out;
6780 }
6781 } else {
6782 /* node staying in same directory, must be allowed to add new name */
6783 if ((error = vnode_authorize(fdvp, NULL,
6784 vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE, ctx)) != 0) {
6785 goto out;
6786 }
6787 }
6788 /* overwriting tvp */
6789 if ((tvp != NULL) && !vnode_isdir(tvp) &&
6790 ((error = vnode_authorize(tvp, tdvp, KAUTH_VNODE_DELETE, ctx)) != 0)) {
6791 goto out;
6792 }
6793 }
6794
6795 /***** </Kauth> *****/
6796
6797 /* XXX more checks? */
6798 out:
6799 return error;
6800 }
6801
6802 int
6803 vn_authorize_mkdir(vnode_t dvp, struct componentname *cnp, struct vnode_attr *vap, vfs_context_t ctx, void *reserved)
6804 {
6805 #if !CONFIG_MACF
6806 #pragma unused(vap)
6807 #endif
6808 int error;
6809
6810 if (reserved != NULL) {
6811 panic("reserved not NULL in vn_authorize_mkdir()");
6812 }
6813
6814 /* XXX A hack for now, to make shadow files work */
6815 if (cnp->cn_ndp == NULL) {
6816 return 0;
6817 }
6818
6819 if (vnode_compound_mkdir_available(dvp)) {
6820 error = lookup_validate_creation_path(cnp->cn_ndp);
6821 if (error) {
6822 goto out;
6823 }
6824 }
6825
6826 #if CONFIG_MACF
6827 error = mac_vnode_check_create(ctx,
6828 dvp, cnp, vap);
6829 if (error) {
6830 goto out;
6831 }
6832 #endif
6833
6834 /* authorize addition of a directory to the parent */
6835 if ((error = vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_SUBDIRECTORY, ctx)) != 0) {
6836 goto out;
6837 }
6838
6839 out:
6840 return error;
6841 }
6842
6843 int
6844 vn_authorize_rmdir(vnode_t dvp, vnode_t vp, struct componentname *cnp, vfs_context_t ctx, void *reserved)
6845 {
6846 #if CONFIG_MACF
6847 int error;
6848 #else
6849 #pragma unused(cnp)
6850 #endif
6851 if (reserved != NULL) {
6852 panic("Non-NULL reserved argument to vn_authorize_rmdir()");
6853 }
6854
6855 if (vp->v_type != VDIR) {
6856 /*
6857 * rmdir only deals with directories
6858 */
6859 return ENOTDIR;
6860 }
6861
6862 if (dvp == vp) {
6863 /*
6864 * No rmdir "." please.
6865 */
6866 return EINVAL;
6867 }
6868
6869 #if CONFIG_MACF
6870 error = mac_vnode_check_unlink(ctx, dvp,
6871 vp, cnp);
6872 if (error) {
6873 return error;
6874 }
6875 #endif
6876
6877 return vnode_authorize(vp, dvp, KAUTH_VNODE_DELETE, ctx);
6878 }
6879
6880 /*
6881 * Authorizer for directory cloning. This does not use vnodes but instead
6882 * uses prefilled vnode attributes from the filesystem.
6883 *
6884 * The same function is called to set up the attributes required, perform the
6885 * authorization and cleanup (if required)
6886 */
6887 int
6888 vnode_attr_authorize_dir_clone(struct vnode_attr *vap, kauth_action_t action,
6889 struct vnode_attr *dvap, __unused vnode_t sdvp, mount_t mp,
6890 dir_clone_authorizer_op_t vattr_op, uint32_t flags, vfs_context_t ctx,
6891 __unused void *reserved)
6892 {
6893 int error;
6894 int is_suser = vfs_context_issuser(ctx);
6895
6896 if (vattr_op == OP_VATTR_SETUP) {
6897 VATTR_INIT(vap);
6898
6899 /*
6900 * When ACL inheritence is implemented, both vap->va_acl and
6901 * dvap->va_acl will be required (even as superuser).
6902 */
6903 VATTR_WANTED(vap, va_type);
6904 VATTR_WANTED(vap, va_mode);
6905 VATTR_WANTED(vap, va_flags);
6906 VATTR_WANTED(vap, va_uid);
6907 VATTR_WANTED(vap, va_gid);
6908 if (dvap) {
6909 VATTR_INIT(dvap);
6910 VATTR_WANTED(dvap, va_flags);
6911 }
6912
6913 if (!is_suser) {
6914 /*
6915 * If not superuser, we have to evaluate ACLs and
6916 * need the target directory gid to set the initial
6917 * gid of the new object.
6918 */
6919 VATTR_WANTED(vap, va_acl);
6920 if (dvap) {
6921 VATTR_WANTED(dvap, va_gid);
6922 }
6923 } else if (dvap && (flags & VNODE_CLONEFILE_NOOWNERCOPY)) {
6924 VATTR_WANTED(dvap, va_gid);
6925 }
6926 return 0;
6927 } else if (vattr_op == OP_VATTR_CLEANUP) {
6928 return 0; /* Nothing to do for now */
6929 }
6930
6931 /* dvap isn't used for authorization */
6932 error = vnode_attr_authorize(vap, NULL, mp, action, ctx);
6933
6934 if (error) {
6935 return error;
6936 }
6937
6938 /*
6939 * vn_attribute_prepare should be able to accept attributes as well as
6940 * vnodes but for now we do this inline.
6941 */
6942 if (!is_suser || (flags & VNODE_CLONEFILE_NOOWNERCOPY)) {
6943 /*
6944 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit
6945 * owner is set, that owner takes ownership of all new files.
6946 */
6947 if ((mp->mnt_flag & MNT_IGNORE_OWNERSHIP) &&
6948 (mp->mnt_fsowner != KAUTH_UID_NONE)) {
6949 VATTR_SET(vap, va_uid, mp->mnt_fsowner);
6950 } else {
6951 /* default owner is current user */
6952 VATTR_SET(vap, va_uid,
6953 kauth_cred_getuid(vfs_context_ucred(ctx)));
6954 }
6955
6956 if ((mp->mnt_flag & MNT_IGNORE_OWNERSHIP) &&
6957 (mp->mnt_fsgroup != KAUTH_GID_NONE)) {
6958 VATTR_SET(vap, va_gid, mp->mnt_fsgroup);
6959 } else {
6960 /*
6961 * default group comes from parent object,
6962 * fallback to current user
6963 */
6964 if (VATTR_IS_SUPPORTED(dvap, va_gid)) {
6965 VATTR_SET(vap, va_gid, dvap->va_gid);
6966 } else {
6967 VATTR_SET(vap, va_gid,
6968 kauth_cred_getgid(vfs_context_ucred(ctx)));
6969 }
6970 }
6971 }
6972
6973 /* Inherit SF_RESTRICTED bit from destination directory only */
6974 if (VATTR_IS_ACTIVE(vap, va_flags)) {
6975 VATTR_SET(vap, va_flags,
6976 ((vap->va_flags & ~(UF_DATAVAULT | SF_RESTRICTED)))); /* Turn off from source */
6977 if (VATTR_IS_ACTIVE(dvap, va_flags)) {
6978 VATTR_SET(vap, va_flags,
6979 vap->va_flags | (dvap->va_flags & (UF_DATAVAULT | SF_RESTRICTED)));
6980 }
6981 } else if (VATTR_IS_ACTIVE(dvap, va_flags)) {
6982 VATTR_SET(vap, va_flags, (dvap->va_flags & (UF_DATAVAULT | SF_RESTRICTED)));
6983 }
6984
6985 return 0;
6986 }
6987
6988
6989 /*
6990 * Authorize an operation on a vnode.
6991 *
6992 * This is KPI, but here because it needs vnode_scope.
6993 *
6994 * Returns: 0 Success
6995 * kauth_authorize_action:EPERM ...
6996 * xlate => EACCES Permission denied
6997 * kauth_authorize_action:0 Success
6998 * kauth_authorize_action: Depends on callback return; this is
6999 * usually only vnode_authorize_callback(),
7000 * but may include other listerners, if any
7001 * exist.
7002 * EROFS
7003 * EACCES
7004 * EPERM
7005 * ???
7006 */
7007 int
7008 vnode_authorize(vnode_t vp, vnode_t dvp, kauth_action_t action, vfs_context_t ctx)
7009 {
7010 int error, result;
7011
7012 /*
7013 * We can't authorize against a dead vnode; allow all operations through so that
7014 * the correct error can be returned.
7015 */
7016 if (vp->v_type == VBAD) {
7017 return 0;
7018 }
7019
7020 error = 0;
7021 result = kauth_authorize_action(vnode_scope, vfs_context_ucred(ctx), action,
7022 (uintptr_t)ctx, (uintptr_t)vp, (uintptr_t)dvp, (uintptr_t)&error);
7023 if (result == EPERM) { /* traditional behaviour */
7024 result = EACCES;
7025 }
7026 /* did the lower layers give a better error return? */
7027 if ((result != 0) && (error != 0)) {
7028 return error;
7029 }
7030 return result;
7031 }
7032
7033 /*
7034 * Test for vnode immutability.
7035 *
7036 * The 'append' flag is set when the authorization request is constrained
7037 * to operations which only request the right to append to a file.
7038 *
7039 * The 'ignore' flag is set when an operation modifying the immutability flags
7040 * is being authorized. We check the system securelevel to determine which
7041 * immutability flags we can ignore.
7042 */
7043 static int
7044 vnode_immutable(struct vnode_attr *vap, int append, int ignore)
7045 {
7046 int mask;
7047
7048 /* start with all bits precluding the operation */
7049 mask = IMMUTABLE | APPEND;
7050
7051 /* if appending only, remove the append-only bits */
7052 if (append) {
7053 mask &= ~APPEND;
7054 }
7055
7056 /* ignore only set when authorizing flags changes */
7057 if (ignore) {
7058 if (securelevel <= 0) {
7059 /* in insecure state, flags do not inhibit changes */
7060 mask = 0;
7061 } else {
7062 /* in secure state, user flags don't inhibit */
7063 mask &= ~(UF_IMMUTABLE | UF_APPEND);
7064 }
7065 }
7066 KAUTH_DEBUG("IMMUTABLE - file flags 0x%x mask 0x%x append = %d ignore = %d", vap->va_flags, mask, append, ignore);
7067 if ((vap->va_flags & mask) != 0) {
7068 return EPERM;
7069 }
7070 return 0;
7071 }
7072
7073 static int
7074 vauth_node_owner(struct vnode_attr *vap, kauth_cred_t cred)
7075 {
7076 int result;
7077
7078 /* default assumption is not-owner */
7079 result = 0;
7080
7081 /*
7082 * If the filesystem has given us a UID, we treat this as authoritative.
7083 */
7084 if (vap && VATTR_IS_SUPPORTED(vap, va_uid)) {
7085 result = (vap->va_uid == kauth_cred_getuid(cred)) ? 1 : 0;
7086 }
7087 /* we could test the owner UUID here if we had a policy for it */
7088
7089 return result;
7090 }
7091
7092 /*
7093 * vauth_node_group
7094 *
7095 * Description: Ask if a cred is a member of the group owning the vnode object
7096 *
7097 * Parameters: vap vnode attribute
7098 * vap->va_gid group owner of vnode object
7099 * cred credential to check
7100 * ismember pointer to where to put the answer
7101 * idontknow Return this if we can't get an answer
7102 *
7103 * Returns: 0 Success
7104 * idontknow Can't get information
7105 * kauth_cred_ismember_gid:? Error from kauth subsystem
7106 * kauth_cred_ismember_gid:? Error from kauth subsystem
7107 */
7108 static int
7109 vauth_node_group(struct vnode_attr *vap, kauth_cred_t cred, int *ismember, int idontknow)
7110 {
7111 int error;
7112 int result;
7113
7114 error = 0;
7115 result = 0;
7116
7117 /*
7118 * The caller is expected to have asked the filesystem for a group
7119 * at some point prior to calling this function. The answer may
7120 * have been that there is no group ownership supported for the
7121 * vnode object, in which case we return
7122 */
7123 if (vap && VATTR_IS_SUPPORTED(vap, va_gid)) {
7124 error = kauth_cred_ismember_gid(cred, vap->va_gid, &result);
7125 /*
7126 * Credentials which are opted into external group membership
7127 * resolution which are not known to the external resolver
7128 * will result in an ENOENT error. We translate this into
7129 * the appropriate 'idontknow' response for our caller.
7130 *
7131 * XXX We do not make a distinction here between an ENOENT
7132 * XXX arising from a response from the external resolver,
7133 * XXX and an ENOENT which is internally generated. This is
7134 * XXX a deficiency of the published kauth_cred_ismember_gid()
7135 * XXX KPI which can not be overcome without new KPI. For
7136 * XXX all currently known cases, however, this wil result
7137 * XXX in correct behaviour.
7138 */
7139 if (error == ENOENT) {
7140 error = idontknow;
7141 }
7142 }
7143 /*
7144 * XXX We could test the group UUID here if we had a policy for it,
7145 * XXX but this is problematic from the perspective of synchronizing
7146 * XXX group UUID and POSIX GID ownership of a file and keeping the
7147 * XXX values coherent over time. The problem is that the local
7148 * XXX system will vend transient group UUIDs for unknown POSIX GID
7149 * XXX values, and these are not persistent, whereas storage of values
7150 * XXX is persistent. One potential solution to this is a local
7151 * XXX (persistent) replica of remote directory entries and vended
7152 * XXX local ids in a local directory server (think in terms of a
7153 * XXX caching DNS server).
7154 */
7155
7156 if (!error) {
7157 *ismember = result;
7158 }
7159 return error;
7160 }
7161
7162 static int
7163 vauth_file_owner(vauth_ctx vcp)
7164 {
7165 int result;
7166
7167 if (vcp->flags_valid & _VAC_IS_OWNER) {
7168 result = (vcp->flags & _VAC_IS_OWNER) ? 1 : 0;
7169 } else {
7170 result = vauth_node_owner(vcp->vap, vcp->ctx->vc_ucred);
7171
7172 /* cache our result */
7173 vcp->flags_valid |= _VAC_IS_OWNER;
7174 if (result) {
7175 vcp->flags |= _VAC_IS_OWNER;
7176 } else {
7177 vcp->flags &= ~_VAC_IS_OWNER;
7178 }
7179 }
7180 return result;
7181 }
7182
7183
7184 /*
7185 * vauth_file_ingroup
7186 *
7187 * Description: Ask if a user is a member of the group owning the directory
7188 *
7189 * Parameters: vcp The vnode authorization context that
7190 * contains the user and directory info
7191 * vcp->flags_valid Valid flags
7192 * vcp->flags Flags values
7193 * vcp->vap File vnode attributes
7194 * vcp->ctx VFS Context (for user)
7195 * ismember pointer to where to put the answer
7196 * idontknow Return this if we can't get an answer
7197 *
7198 * Returns: 0 Success
7199 * vauth_node_group:? Error from vauth_node_group()
7200 *
7201 * Implicit returns: *ismember 0 The user is not a group member
7202 * 1 The user is a group member
7203 */
7204 static int
7205 vauth_file_ingroup(vauth_ctx vcp, int *ismember, int idontknow)
7206 {
7207 int error;
7208
7209 /* Check for a cached answer first, to avoid the check if possible */
7210 if (vcp->flags_valid & _VAC_IN_GROUP) {
7211 *ismember = (vcp->flags & _VAC_IN_GROUP) ? 1 : 0;
7212 error = 0;
7213 } else {
7214 /* Otherwise, go look for it */
7215 error = vauth_node_group(vcp->vap, vcp->ctx->vc_ucred, ismember, idontknow);
7216
7217 if (!error) {
7218 /* cache our result */
7219 vcp->flags_valid |= _VAC_IN_GROUP;
7220 if (*ismember) {
7221 vcp->flags |= _VAC_IN_GROUP;
7222 } else {
7223 vcp->flags &= ~_VAC_IN_GROUP;
7224 }
7225 }
7226 }
7227 return error;
7228 }
7229
7230 static int
7231 vauth_dir_owner(vauth_ctx vcp)
7232 {
7233 int result;
7234
7235 if (vcp->flags_valid & _VAC_IS_DIR_OWNER) {
7236 result = (vcp->flags & _VAC_IS_DIR_OWNER) ? 1 : 0;
7237 } else {
7238 result = vauth_node_owner(vcp->dvap, vcp->ctx->vc_ucred);
7239
7240 /* cache our result */
7241 vcp->flags_valid |= _VAC_IS_DIR_OWNER;
7242 if (result) {
7243 vcp->flags |= _VAC_IS_DIR_OWNER;
7244 } else {
7245 vcp->flags &= ~_VAC_IS_DIR_OWNER;
7246 }
7247 }
7248 return result;
7249 }
7250
7251 /*
7252 * vauth_dir_ingroup
7253 *
7254 * Description: Ask if a user is a member of the group owning the directory
7255 *
7256 * Parameters: vcp The vnode authorization context that
7257 * contains the user and directory info
7258 * vcp->flags_valid Valid flags
7259 * vcp->flags Flags values
7260 * vcp->dvap Dir vnode attributes
7261 * vcp->ctx VFS Context (for user)
7262 * ismember pointer to where to put the answer
7263 * idontknow Return this if we can't get an answer
7264 *
7265 * Returns: 0 Success
7266 * vauth_node_group:? Error from vauth_node_group()
7267 *
7268 * Implicit returns: *ismember 0 The user is not a group member
7269 * 1 The user is a group member
7270 */
7271 static int
7272 vauth_dir_ingroup(vauth_ctx vcp, int *ismember, int idontknow)
7273 {
7274 int error;
7275
7276 /* Check for a cached answer first, to avoid the check if possible */
7277 if (vcp->flags_valid & _VAC_IN_DIR_GROUP) {
7278 *ismember = (vcp->flags & _VAC_IN_DIR_GROUP) ? 1 : 0;
7279 error = 0;
7280 } else {
7281 /* Otherwise, go look for it */
7282 error = vauth_node_group(vcp->dvap, vcp->ctx->vc_ucred, ismember, idontknow);
7283
7284 if (!error) {
7285 /* cache our result */
7286 vcp->flags_valid |= _VAC_IN_DIR_GROUP;
7287 if (*ismember) {
7288 vcp->flags |= _VAC_IN_DIR_GROUP;
7289 } else {
7290 vcp->flags &= ~_VAC_IN_DIR_GROUP;
7291 }
7292 }
7293 }
7294 return error;
7295 }
7296
7297 /*
7298 * Test the posix permissions in (vap) to determine whether (credential)
7299 * may perform (action)
7300 */
7301 static int
7302 vnode_authorize_posix(vauth_ctx vcp, int action, int on_dir)
7303 {
7304 struct vnode_attr *vap;
7305 int needed, error, owner_ok, group_ok, world_ok, ismember;
7306 #ifdef KAUTH_DEBUG_ENABLE
7307 const char *where = "uninitialized";
7308 # define _SETWHERE(c) where = c;
7309 #else
7310 # define _SETWHERE(c)
7311 #endif
7312
7313 /* checking file or directory? */
7314 if (on_dir) {
7315 vap = vcp->dvap;
7316 } else {
7317 vap = vcp->vap;
7318 }
7319
7320 error = 0;
7321
7322 /*
7323 * We want to do as little work here as possible. So first we check
7324 * which sets of permissions grant us the access we need, and avoid checking
7325 * whether specific permissions grant access when more generic ones would.
7326 */
7327
7328 /* owner permissions */
7329 needed = 0;
7330 if (action & VREAD) {
7331 needed |= S_IRUSR;
7332 }
7333 if (action & VWRITE) {
7334 needed |= S_IWUSR;
7335 }
7336 if (action & VEXEC) {
7337 needed |= S_IXUSR;
7338 }
7339 owner_ok = (needed & vap->va_mode) == needed;
7340
7341 /* group permissions */
7342 needed = 0;
7343 if (action & VREAD) {
7344 needed |= S_IRGRP;
7345 }
7346 if (action & VWRITE) {
7347 needed |= S_IWGRP;
7348 }
7349 if (action & VEXEC) {
7350 needed |= S_IXGRP;
7351 }
7352 group_ok = (needed & vap->va_mode) == needed;
7353
7354 /* world permissions */
7355 needed = 0;
7356 if (action & VREAD) {
7357 needed |= S_IROTH;
7358 }
7359 if (action & VWRITE) {
7360 needed |= S_IWOTH;
7361 }
7362 if (action & VEXEC) {
7363 needed |= S_IXOTH;
7364 }
7365 world_ok = (needed & vap->va_mode) == needed;
7366
7367 /* If granted/denied by all three, we're done */
7368 if (owner_ok && group_ok && world_ok) {
7369 _SETWHERE("all");
7370 goto out;
7371 }
7372 if (!owner_ok && !group_ok && !world_ok) {
7373 _SETWHERE("all");
7374 error = EACCES;
7375 goto out;
7376 }
7377
7378 /* Check ownership (relatively cheap) */
7379 if ((on_dir && vauth_dir_owner(vcp)) ||
7380 (!on_dir && vauth_file_owner(vcp))) {
7381 _SETWHERE("user");
7382 if (!owner_ok) {
7383 error = EACCES;
7384 }
7385 goto out;
7386 }
7387
7388 /* Not owner; if group and world both grant it we're done */
7389 if (group_ok && world_ok) {
7390 _SETWHERE("group/world");
7391 goto out;
7392 }
7393 if (!group_ok && !world_ok) {
7394 _SETWHERE("group/world");
7395 error = EACCES;
7396 goto out;
7397 }
7398
7399 /* Check group membership (most expensive) */
7400 ismember = 0; /* Default to allow, if the target has no group owner */
7401
7402 /*
7403 * In the case we can't get an answer about the user from the call to
7404 * vauth_dir_ingroup() or vauth_file_ingroup(), we want to fail on
7405 * the side of caution, rather than simply granting access, or we will
7406 * fail to correctly implement exclusion groups, so we set the third
7407 * parameter on the basis of the state of 'group_ok'.
7408 */
7409 if (on_dir) {
7410 error = vauth_dir_ingroup(vcp, &ismember, (!group_ok ? EACCES : 0));
7411 } else {
7412 error = vauth_file_ingroup(vcp, &ismember, (!group_ok ? EACCES : 0));
7413 }
7414 if (error) {
7415 if (!group_ok) {
7416 ismember = 1;
7417 }
7418 error = 0;
7419 }
7420 if (ismember) {
7421 _SETWHERE("group");
7422 if (!group_ok) {
7423 error = EACCES;
7424 }
7425 goto out;
7426 }
7427
7428 /* Not owner, not in group, use world result */
7429 _SETWHERE("world");
7430 if (!world_ok) {
7431 error = EACCES;
7432 }
7433
7434 /* FALLTHROUGH */
7435
7436 out:
7437 KAUTH_DEBUG("%p %s - posix %s permissions : need %s%s%s %x have %s%s%s%s%s%s%s%s%s UID = %d file = %d,%d",
7438 vcp->vp, (error == 0) ? "ALLOWED" : "DENIED", where,
7439 (action & VREAD) ? "r" : "-",
7440 (action & VWRITE) ? "w" : "-",
7441 (action & VEXEC) ? "x" : "-",
7442 needed,
7443 (vap->va_mode & S_IRUSR) ? "r" : "-",
7444 (vap->va_mode & S_IWUSR) ? "w" : "-",
7445 (vap->va_mode & S_IXUSR) ? "x" : "-",
7446 (vap->va_mode & S_IRGRP) ? "r" : "-",
7447 (vap->va_mode & S_IWGRP) ? "w" : "-",
7448 (vap->va_mode & S_IXGRP) ? "x" : "-",
7449 (vap->va_mode & S_IROTH) ? "r" : "-",
7450 (vap->va_mode & S_IWOTH) ? "w" : "-",
7451 (vap->va_mode & S_IXOTH) ? "x" : "-",
7452 kauth_cred_getuid(vcp->ctx->vc_ucred),
7453 on_dir ? vcp->dvap->va_uid : vcp->vap->va_uid,
7454 on_dir ? vcp->dvap->va_gid : vcp->vap->va_gid);
7455 return error;
7456 }
7457
7458 /*
7459 * Authorize the deletion of the node vp from the directory dvp.
7460 *
7461 * We assume that:
7462 * - Neither the node nor the directory are immutable.
7463 * - The user is not the superuser.
7464 *
7465 * The precedence of factors for authorizing or denying delete for a credential
7466 *
7467 * 1) Explicit ACE on the node. (allow or deny DELETE)
7468 * 2) Explicit ACE on the directory (allow or deny DELETE_CHILD).
7469 *
7470 * If there are conflicting ACEs on the node and the directory, the node
7471 * ACE wins.
7472 *
7473 * 3) Sticky bit on the directory.
7474 * Deletion is not permitted if the directory is sticky and the caller is
7475 * not owner of the node or directory. The sticky bit rules are like a deny
7476 * delete ACE except lower in priority than ACL's either allowing or denying
7477 * delete.
7478 *
7479 * 4) POSIX permisions on the directory.
7480 *
7481 * As an optimization, we cache whether or not delete child is permitted
7482 * on directories. This enables us to skip directory ACL and POSIX checks
7483 * as we already have the result from those checks. However, we always check the
7484 * node ACL and, if the directory has the sticky bit set, we always check its
7485 * ACL (even for a directory with an authorized delete child). Furthermore,
7486 * caching the delete child authorization is independent of the sticky bit
7487 * being set as it is only applicable in determining whether the node can be
7488 * deleted or not.
7489 */
7490 static int
7491 vnode_authorize_delete(vauth_ctx vcp, boolean_t cached_delete_child)
7492 {
7493 struct vnode_attr *vap = vcp->vap;
7494 struct vnode_attr *dvap = vcp->dvap;
7495 kauth_cred_t cred = vcp->ctx->vc_ucred;
7496 struct kauth_acl_eval eval;
7497 int error, ismember;
7498
7499 /* Check the ACL on the node first */
7500 if (VATTR_IS_NOT(vap, va_acl, NULL)) {
7501 eval.ae_requested = KAUTH_VNODE_DELETE;
7502 eval.ae_acl = &vap->va_acl->acl_ace[0];
7503 eval.ae_count = vap->va_acl->acl_entrycount;
7504 eval.ae_options = 0;
7505 if (vauth_file_owner(vcp)) {
7506 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7507 }
7508 /*
7509 * We use ENOENT as a marker to indicate we could not get
7510 * information in order to delay evaluation until after we
7511 * have the ACL evaluation answer. Previously, we would
7512 * always deny the operation at this point.
7513 */
7514 if ((error = vauth_file_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT) {
7515 return error;
7516 }
7517 if (error == ENOENT) {
7518 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7519 } else if (ismember) {
7520 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7521 }
7522 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7523 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7524 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7525 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7526
7527 if ((error = kauth_acl_evaluate(cred, &eval)) != 0) {
7528 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7529 return error;
7530 }
7531
7532 switch (eval.ae_result) {
7533 case KAUTH_RESULT_DENY:
7534 KAUTH_DEBUG("%p DENIED - denied by ACL", vcp->vp);
7535 return EACCES;
7536 case KAUTH_RESULT_ALLOW:
7537 KAUTH_DEBUG("%p ALLOWED - granted by ACL", vcp->vp);
7538 return 0;
7539 case KAUTH_RESULT_DEFER:
7540 default:
7541 /* Defer to directory */
7542 KAUTH_DEBUG("%p DEFERRED - by file ACL", vcp->vp);
7543 break;
7544 }
7545 }
7546
7547 /*
7548 * Without a sticky bit, a previously authorized delete child is
7549 * sufficient to authorize this delete.
7550 *
7551 * If the sticky bit is set, a directory ACL which allows delete child
7552 * overrides a (potential) sticky bit deny. The authorized delete child
7553 * cannot tell us if it was authorized because of an explicit delete
7554 * child allow ACE or because of POSIX permisions so we have to check
7555 * the directory ACL everytime if the directory has a sticky bit.
7556 */
7557 if (!(dvap->va_mode & S_ISTXT) && cached_delete_child) {
7558 KAUTH_DEBUG("%p ALLOWED - granted by directory ACL or POSIX permissions and no sticky bit on directory", vcp->vp);
7559 return 0;
7560 }
7561
7562 /* check the ACL on the directory */
7563 if (VATTR_IS_NOT(dvap, va_acl, NULL)) {
7564 eval.ae_requested = KAUTH_VNODE_DELETE_CHILD;
7565 eval.ae_acl = &dvap->va_acl->acl_ace[0];
7566 eval.ae_count = dvap->va_acl->acl_entrycount;
7567 eval.ae_options = 0;
7568 if (vauth_dir_owner(vcp)) {
7569 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7570 }
7571 /*
7572 * We use ENOENT as a marker to indicate we could not get
7573 * information in order to delay evaluation until after we
7574 * have the ACL evaluation answer. Previously, we would
7575 * always deny the operation at this point.
7576 */
7577 if ((error = vauth_dir_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT) {
7578 return error;
7579 }
7580 if (error == ENOENT) {
7581 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7582 } else if (ismember) {
7583 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7584 }
7585 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7586 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7587 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7588 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7589
7590 /*
7591 * If there is no entry, we are going to defer to other
7592 * authorization mechanisms.
7593 */
7594 error = kauth_acl_evaluate(cred, &eval);
7595
7596 if (error != 0) {
7597 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7598 return error;
7599 }
7600 switch (eval.ae_result) {
7601 case KAUTH_RESULT_DENY:
7602 KAUTH_DEBUG("%p DENIED - denied by directory ACL", vcp->vp);
7603 return EACCES;
7604 case KAUTH_RESULT_ALLOW:
7605 KAUTH_DEBUG("%p ALLOWED - granted by directory ACL", vcp->vp);
7606 if (!cached_delete_child && vcp->dvp) {
7607 vnode_cache_authorized_action(vcp->dvp,
7608 vcp->ctx, KAUTH_VNODE_DELETE_CHILD);
7609 }
7610 return 0;
7611 case KAUTH_RESULT_DEFER:
7612 default:
7613 /* Deferred by directory ACL */
7614 KAUTH_DEBUG("%p DEFERRED - directory ACL", vcp->vp);
7615 break;
7616 }
7617 }
7618
7619 /*
7620 * From this point, we can't explicitly allow and if we reach the end
7621 * of the function without a denial, then the delete is authorized.
7622 */
7623 if (!cached_delete_child) {
7624 if (vnode_authorize_posix(vcp, VWRITE, 1 /* on_dir */) != 0) {
7625 KAUTH_DEBUG("%p DENIED - denied by posix permisssions", vcp->vp);
7626 return EACCES;
7627 }
7628 /*
7629 * Cache the authorized action on the vnode if allowed by the
7630 * directory ACL or POSIX permissions. It is correct to cache
7631 * this action even if sticky bit would deny deleting the node.
7632 */
7633 if (vcp->dvp) {
7634 vnode_cache_authorized_action(vcp->dvp, vcp->ctx,
7635 KAUTH_VNODE_DELETE_CHILD);
7636 }
7637 }
7638
7639 /* enforce sticky bit behaviour */
7640 if ((dvap->va_mode & S_ISTXT) && !vauth_file_owner(vcp) && !vauth_dir_owner(vcp)) {
7641 KAUTH_DEBUG("%p DENIED - sticky bit rules (user %d file %d dir %d)",
7642 vcp->vp, cred->cr_posix.cr_uid, vap->va_uid, dvap->va_uid);
7643 return EACCES;
7644 }
7645
7646 /* not denied, must be OK */
7647 return 0;
7648 }
7649
7650
7651 /*
7652 * Authorize an operation based on the node's attributes.
7653 */
7654 static int
7655 vnode_authorize_simple(vauth_ctx vcp, kauth_ace_rights_t acl_rights, kauth_ace_rights_t preauth_rights, boolean_t *found_deny)
7656 {
7657 struct vnode_attr *vap = vcp->vap;
7658 kauth_cred_t cred = vcp->ctx->vc_ucred;
7659 struct kauth_acl_eval eval;
7660 int error, ismember;
7661 mode_t posix_action;
7662
7663 /*
7664 * If we are the file owner, we automatically have some rights.
7665 *
7666 * Do we need to expand this to support group ownership?
7667 */
7668 if (vauth_file_owner(vcp)) {
7669 acl_rights &= ~(KAUTH_VNODE_WRITE_SECURITY);
7670 }
7671
7672 /*
7673 * If we are checking both TAKE_OWNERSHIP and WRITE_SECURITY, we can
7674 * mask the latter. If TAKE_OWNERSHIP is requested the caller is about to
7675 * change ownership to themselves, and WRITE_SECURITY is implicitly
7676 * granted to the owner. We need to do this because at this point
7677 * WRITE_SECURITY may not be granted as the caller is not currently
7678 * the owner.
7679 */
7680 if ((acl_rights & KAUTH_VNODE_TAKE_OWNERSHIP) &&
7681 (acl_rights & KAUTH_VNODE_WRITE_SECURITY)) {
7682 acl_rights &= ~KAUTH_VNODE_WRITE_SECURITY;
7683 }
7684
7685 if (acl_rights == 0) {
7686 KAUTH_DEBUG("%p ALLOWED - implicit or no rights required", vcp->vp);
7687 return 0;
7688 }
7689
7690 /* if we have an ACL, evaluate it */
7691 if (VATTR_IS_NOT(vap, va_acl, NULL)) {
7692 eval.ae_requested = acl_rights;
7693 eval.ae_acl = &vap->va_acl->acl_ace[0];
7694 eval.ae_count = vap->va_acl->acl_entrycount;
7695 eval.ae_options = 0;
7696 if (vauth_file_owner(vcp)) {
7697 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7698 }
7699 /*
7700 * We use ENOENT as a marker to indicate we could not get
7701 * information in order to delay evaluation until after we
7702 * have the ACL evaluation answer. Previously, we would
7703 * always deny the operation at this point.
7704 */
7705 if ((error = vauth_file_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT) {
7706 return error;
7707 }
7708 if (error == ENOENT) {
7709 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7710 } else if (ismember) {
7711 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7712 }
7713 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7714 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7715 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7716 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7717
7718 if ((error = kauth_acl_evaluate(cred, &eval)) != 0) {
7719 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7720 return error;
7721 }
7722
7723 switch (eval.ae_result) {
7724 case KAUTH_RESULT_DENY:
7725 KAUTH_DEBUG("%p DENIED - by ACL", vcp->vp);
7726 return EACCES; /* deny, deny, counter-allege */
7727 case KAUTH_RESULT_ALLOW:
7728 KAUTH_DEBUG("%p ALLOWED - all rights granted by ACL", vcp->vp);
7729 return 0;
7730 case KAUTH_RESULT_DEFER:
7731 default:
7732 /* Effectively the same as !delete_child_denied */
7733 KAUTH_DEBUG("%p DEFERRED - directory ACL", vcp->vp);
7734 break;
7735 }
7736
7737 *found_deny = eval.ae_found_deny;
7738
7739 /* fall through and evaluate residual rights */
7740 } else {
7741 /* no ACL, everything is residual */
7742 eval.ae_residual = acl_rights;
7743 }
7744
7745 /*
7746 * Grant residual rights that have been pre-authorized.
7747 */
7748 eval.ae_residual &= ~preauth_rights;
7749
7750 /*
7751 * We grant WRITE_ATTRIBUTES to the owner if it hasn't been denied.
7752 */
7753 if (vauth_file_owner(vcp)) {
7754 eval.ae_residual &= ~KAUTH_VNODE_WRITE_ATTRIBUTES;
7755 }
7756
7757 if (eval.ae_residual == 0) {
7758 KAUTH_DEBUG("%p ALLOWED - rights already authorized", vcp->vp);
7759 return 0;
7760 }
7761
7762 /*
7763 * Bail if we have residual rights that can't be granted by posix permissions,
7764 * or aren't presumed granted at this point.
7765 *
7766 * XXX these can be collapsed for performance
7767 */
7768 if (eval.ae_residual & KAUTH_VNODE_CHANGE_OWNER) {
7769 KAUTH_DEBUG("%p DENIED - CHANGE_OWNER not permitted", vcp->vp);
7770 return EACCES;
7771 }
7772 if (eval.ae_residual & KAUTH_VNODE_WRITE_SECURITY) {
7773 KAUTH_DEBUG("%p DENIED - WRITE_SECURITY not permitted", vcp->vp);
7774 return EACCES;
7775 }
7776
7777 #if DIAGNOSTIC
7778 if (eval.ae_residual & KAUTH_VNODE_DELETE) {
7779 panic("vnode_authorize: can't be checking delete permission here");
7780 }
7781 #endif
7782
7783 /*
7784 * Compute the fallback posix permissions that will satisfy the remaining
7785 * rights.
7786 */
7787 posix_action = 0;
7788 if (eval.ae_residual & (KAUTH_VNODE_READ_DATA |
7789 KAUTH_VNODE_LIST_DIRECTORY |
7790 KAUTH_VNODE_READ_EXTATTRIBUTES)) {
7791 posix_action |= VREAD;
7792 }
7793 if (eval.ae_residual & (KAUTH_VNODE_WRITE_DATA |
7794 KAUTH_VNODE_ADD_FILE |
7795 KAUTH_VNODE_ADD_SUBDIRECTORY |
7796 KAUTH_VNODE_DELETE_CHILD |
7797 KAUTH_VNODE_WRITE_ATTRIBUTES |
7798 KAUTH_VNODE_WRITE_EXTATTRIBUTES)) {
7799 posix_action |= VWRITE;
7800 }
7801 if (eval.ae_residual & (KAUTH_VNODE_EXECUTE |
7802 KAUTH_VNODE_SEARCH)) {
7803 posix_action |= VEXEC;
7804 }
7805
7806 if (posix_action != 0) {
7807 return vnode_authorize_posix(vcp, posix_action, 0 /* !on_dir */);
7808 } else {
7809 KAUTH_DEBUG("%p ALLOWED - residual rights %s%s%s%s%s%s%s%s%s%s%s%s%s%s granted due to no posix mapping",
7810 vcp->vp,
7811 (eval.ae_residual & KAUTH_VNODE_READ_DATA)
7812 ? vnode_isdir(vcp->vp) ? " LIST_DIRECTORY" : " READ_DATA" : "",
7813 (eval.ae_residual & KAUTH_VNODE_WRITE_DATA)
7814 ? vnode_isdir(vcp->vp) ? " ADD_FILE" : " WRITE_DATA" : "",
7815 (eval.ae_residual & KAUTH_VNODE_EXECUTE)
7816 ? vnode_isdir(vcp->vp) ? " SEARCH" : " EXECUTE" : "",
7817 (eval.ae_residual & KAUTH_VNODE_DELETE)
7818 ? " DELETE" : "",
7819 (eval.ae_residual & KAUTH_VNODE_APPEND_DATA)
7820 ? vnode_isdir(vcp->vp) ? " ADD_SUBDIRECTORY" : " APPEND_DATA" : "",
7821 (eval.ae_residual & KAUTH_VNODE_DELETE_CHILD)
7822 ? " DELETE_CHILD" : "",
7823 (eval.ae_residual & KAUTH_VNODE_READ_ATTRIBUTES)
7824 ? " READ_ATTRIBUTES" : "",
7825 (eval.ae_residual & KAUTH_VNODE_WRITE_ATTRIBUTES)
7826 ? " WRITE_ATTRIBUTES" : "",
7827 (eval.ae_residual & KAUTH_VNODE_READ_EXTATTRIBUTES)
7828 ? " READ_EXTATTRIBUTES" : "",
7829 (eval.ae_residual & KAUTH_VNODE_WRITE_EXTATTRIBUTES)
7830 ? " WRITE_EXTATTRIBUTES" : "",
7831 (eval.ae_residual & KAUTH_VNODE_READ_SECURITY)
7832 ? " READ_SECURITY" : "",
7833 (eval.ae_residual & KAUTH_VNODE_WRITE_SECURITY)
7834 ? " WRITE_SECURITY" : "",
7835 (eval.ae_residual & KAUTH_VNODE_CHECKIMMUTABLE)
7836 ? " CHECKIMMUTABLE" : "",
7837 (eval.ae_residual & KAUTH_VNODE_CHANGE_OWNER)
7838 ? " CHANGE_OWNER" : "");
7839 }
7840
7841 /*
7842 * Lack of required Posix permissions implies no reason to deny access.
7843 */
7844 return 0;
7845 }
7846
7847 /*
7848 * Check for file immutability.
7849 */
7850 static int
7851 vnode_authorize_checkimmutable(mount_t mp, struct vnode_attr *vap, int rights, int ignore)
7852 {
7853 int error;
7854 int append;
7855
7856 /*
7857 * Perform immutability checks for operations that change data.
7858 *
7859 * Sockets, fifos and devices require special handling.
7860 */
7861 switch (vap->va_type) {
7862 case VSOCK:
7863 case VFIFO:
7864 case VBLK:
7865 case VCHR:
7866 /*
7867 * Writing to these nodes does not change the filesystem data,
7868 * so forget that it's being tried.
7869 */
7870 rights &= ~KAUTH_VNODE_WRITE_DATA;
7871 break;
7872 default:
7873 break;
7874 }
7875
7876 error = 0;
7877 if (rights & KAUTH_VNODE_WRITE_RIGHTS) {
7878 /* check per-filesystem options if possible */
7879 if (mp != NULL) {
7880 /* check for no-EA filesystems */
7881 if ((rights & KAUTH_VNODE_WRITE_EXTATTRIBUTES) &&
7882 (vfs_flags(mp) & MNT_NOUSERXATTR)) {
7883 KAUTH_DEBUG("%p DENIED - filesystem disallowed extended attributes", vap);
7884 error = EACCES; /* User attributes disabled */
7885 goto out;
7886 }
7887 }
7888
7889 /*
7890 * check for file immutability. first, check if the requested rights are
7891 * allowable for a UF_APPEND file.
7892 */
7893 append = 0;
7894 if (vap->va_type == VDIR) {
7895 if ((rights & (KAUTH_VNODE_ADD_FILE | KAUTH_VNODE_ADD_SUBDIRECTORY | KAUTH_VNODE_WRITE_EXTATTRIBUTES)) == rights) {
7896 append = 1;
7897 }
7898 } else {
7899 if ((rights & (KAUTH_VNODE_APPEND_DATA | KAUTH_VNODE_WRITE_EXTATTRIBUTES)) == rights) {
7900 append = 1;
7901 }
7902 }
7903 if ((error = vnode_immutable(vap, append, ignore)) != 0) {
7904 KAUTH_DEBUG("%p DENIED - file is immutable", vap);
7905 goto out;
7906 }
7907 }
7908 out:
7909 return error;
7910 }
7911
7912 /*
7913 * Handle authorization actions for filesystems that advertise that the
7914 * server will be enforcing.
7915 *
7916 * Returns: 0 Authorization should be handled locally
7917 * 1 Authorization was handled by the FS
7918 *
7919 * Note: Imputed returns will only occur if the authorization request
7920 * was handled by the FS.
7921 *
7922 * Imputed: *resultp, modified Return code from FS when the request is
7923 * handled by the FS.
7924 * VNOP_ACCESS:???
7925 * VNOP_OPEN:???
7926 */
7927 static int
7928 vnode_authorize_opaque(vnode_t vp, int *resultp, kauth_action_t action, vfs_context_t ctx)
7929 {
7930 int error;
7931
7932 /*
7933 * If the vp is a device node, socket or FIFO it actually represents a local
7934 * endpoint, so we need to handle it locally.
7935 */
7936 switch (vp->v_type) {
7937 case VBLK:
7938 case VCHR:
7939 case VSOCK:
7940 case VFIFO:
7941 return 0;
7942 default:
7943 break;
7944 }
7945
7946 /*
7947 * In the advisory request case, if the filesystem doesn't think it's reliable
7948 * we will attempt to formulate a result ourselves based on VNOP_GETATTR data.
7949 */
7950 if ((action & KAUTH_VNODE_ACCESS) && !vfs_authopaqueaccess(vp->v_mount)) {
7951 return 0;
7952 }
7953
7954 /*
7955 * Let the filesystem have a say in the matter. It's OK for it to not implemnent
7956 * VNOP_ACCESS, as most will authorise inline with the actual request.
7957 */
7958 if ((error = VNOP_ACCESS(vp, action, ctx)) != ENOTSUP) {
7959 *resultp = error;
7960 KAUTH_DEBUG("%p DENIED - opaque filesystem VNOP_ACCESS denied access", vp);
7961 return 1;
7962 }
7963
7964 /*
7965 * Typically opaque filesystems do authorisation in-line, but exec is a special case. In
7966 * order to be reasonably sure that exec will be permitted, we try a bit harder here.
7967 */
7968 if ((action & KAUTH_VNODE_EXECUTE) && (vp->v_type == VREG)) {
7969 /* try a VNOP_OPEN for readonly access */
7970 if ((error = VNOP_OPEN(vp, FREAD, ctx)) != 0) {
7971 *resultp = error;
7972 KAUTH_DEBUG("%p DENIED - EXECUTE denied because file could not be opened readonly", vp);
7973 return 1;
7974 }
7975 VNOP_CLOSE(vp, FREAD, ctx);
7976 }
7977
7978 /*
7979 * We don't have any reason to believe that the request has to be denied at this point,
7980 * so go ahead and allow it.
7981 */
7982 *resultp = 0;
7983 KAUTH_DEBUG("%p ALLOWED - bypassing access check for non-local filesystem", vp);
7984 return 1;
7985 }
7986
7987
7988
7989
7990 /*
7991 * Returns: KAUTH_RESULT_ALLOW
7992 * KAUTH_RESULT_DENY
7993 *
7994 * Imputed: *arg3, modified Error code in the deny case
7995 * EROFS Read-only file system
7996 * EACCES Permission denied
7997 * EPERM Operation not permitted [no execute]
7998 * vnode_getattr:ENOMEM Not enough space [only if has filesec]
7999 * vnode_getattr:???
8000 * vnode_authorize_opaque:*arg2 ???
8001 * vnode_authorize_checkimmutable:???
8002 * vnode_authorize_delete:???
8003 * vnode_authorize_simple:???
8004 */
8005
8006
8007 static int
8008 vnode_authorize_callback(__unused kauth_cred_t cred, __unused void *idata,
8009 kauth_action_t action, uintptr_t arg0, uintptr_t arg1, uintptr_t arg2,
8010 uintptr_t arg3)
8011 {
8012 vfs_context_t ctx;
8013 vnode_t cvp = NULLVP;
8014 vnode_t vp, dvp;
8015 int result = KAUTH_RESULT_DENY;
8016 int parent_iocount = 0;
8017 int parent_action; /* In case we need to use namedstream's data fork for cached rights*/
8018
8019 ctx = (vfs_context_t)arg0;
8020 vp = (vnode_t)arg1;
8021 dvp = (vnode_t)arg2;
8022
8023 /*
8024 * if there are 2 vnodes passed in, we don't know at
8025 * this point which rights to look at based on the
8026 * combined action being passed in... defer until later...
8027 * otherwise check the kauth 'rights' cache hung
8028 * off of the vnode we're interested in... if we've already
8029 * been granted the right we're currently interested in,
8030 * we can just return success... otherwise we'll go through
8031 * the process of authorizing the requested right(s)... if that
8032 * succeeds, we'll add the right(s) to the cache.
8033 * VNOP_SETATTR and VNOP_SETXATTR will invalidate this cache
8034 */
8035 if (dvp && vp) {
8036 goto defer;
8037 }
8038 if (dvp) {
8039 cvp = dvp;
8040 } else {
8041 /*
8042 * For named streams on local-authorization volumes, rights are cached on the parent;
8043 * authorization is determined by looking at the parent's properties anyway, so storing
8044 * on the parent means that we don't recompute for the named stream and that if
8045 * we need to flush rights (e.g. on VNOP_SETATTR()) we don't need to track down the
8046 * stream to flush its cache separately. If we miss in the cache, then we authorize
8047 * as if there were no cached rights (passing the named stream vnode and desired rights to
8048 * vnode_authorize_callback_int()).
8049 *
8050 * On an opaquely authorized volume, we don't know the relationship between the
8051 * data fork's properties and the rights granted on a stream. Thus, named stream vnodes
8052 * on such a volume are authorized directly (rather than using the parent) and have their
8053 * own caches. When a named stream vnode is created, we mark the parent as having a named
8054 * stream. On a VNOP_SETATTR() for the parent that may invalidate cached authorization, we
8055 * find the stream and flush its cache.
8056 */
8057 if (vnode_isnamedstream(vp) && (!vfs_authopaque(vp->v_mount))) {
8058 cvp = vnode_getparent(vp);
8059 if (cvp != NULLVP) {
8060 parent_iocount = 1;
8061 } else {
8062 cvp = NULL;
8063 goto defer; /* If we can't use the parent, take the slow path */
8064 }
8065
8066 /* Have to translate some actions */
8067 parent_action = action;
8068 if (parent_action & KAUTH_VNODE_READ_DATA) {
8069 parent_action &= ~KAUTH_VNODE_READ_DATA;
8070 parent_action |= KAUTH_VNODE_READ_EXTATTRIBUTES;
8071 }
8072 if (parent_action & KAUTH_VNODE_WRITE_DATA) {
8073 parent_action &= ~KAUTH_VNODE_WRITE_DATA;
8074 parent_action |= KAUTH_VNODE_WRITE_EXTATTRIBUTES;
8075 }
8076 } else {
8077 cvp = vp;
8078 }
8079 }
8080
8081 if (vnode_cache_is_authorized(cvp, ctx, parent_iocount ? parent_action : action) == TRUE) {
8082 result = KAUTH_RESULT_ALLOW;
8083 goto out;
8084 }
8085 defer:
8086 result = vnode_authorize_callback_int(action, ctx, vp, dvp, (int *)arg3);
8087
8088 if (result == KAUTH_RESULT_ALLOW && cvp != NULLVP) {
8089 KAUTH_DEBUG("%p - caching action = %x", cvp, action);
8090 vnode_cache_authorized_action(cvp, ctx, action);
8091 }
8092
8093 out:
8094 if (parent_iocount) {
8095 vnode_put(cvp);
8096 }
8097
8098 return result;
8099 }
8100
8101 static int
8102 vnode_attr_authorize_internal(vauth_ctx vcp, mount_t mp,
8103 kauth_ace_rights_t rights, int is_suser, boolean_t *found_deny,
8104 int noimmutable, int parent_authorized_for_delete_child)
8105 {
8106 int result;
8107
8108 /*
8109 * Check for immutability.
8110 *
8111 * In the deletion case, parent directory immutability vetoes specific
8112 * file rights.
8113 */
8114 if ((result = vnode_authorize_checkimmutable(mp, vcp->vap, rights,
8115 noimmutable)) != 0) {
8116 goto out;
8117 }
8118
8119 if ((rights & KAUTH_VNODE_DELETE) &&
8120 !parent_authorized_for_delete_child) {
8121 result = vnode_authorize_checkimmutable(mp, vcp->dvap,
8122 KAUTH_VNODE_DELETE_CHILD, 0);
8123 if (result) {
8124 goto out;
8125 }
8126 }
8127
8128 /*
8129 * Clear rights that have been authorized by reaching this point, bail if nothing left to
8130 * check.
8131 */
8132 rights &= ~(KAUTH_VNODE_LINKTARGET | KAUTH_VNODE_CHECKIMMUTABLE);
8133 if (rights == 0) {
8134 goto out;
8135 }
8136
8137 /*
8138 * If we're not the superuser, authorize based on file properties;
8139 * note that even if parent_authorized_for_delete_child is TRUE, we
8140 * need to check on the node itself.
8141 */
8142 if (!is_suser) {
8143 /* process delete rights */
8144 if ((rights & KAUTH_VNODE_DELETE) &&
8145 ((result = vnode_authorize_delete(vcp, parent_authorized_for_delete_child)) != 0)) {
8146 goto out;
8147 }
8148
8149 /* process remaining rights */
8150 if ((rights & ~KAUTH_VNODE_DELETE) &&
8151 (result = vnode_authorize_simple(vcp, rights, rights & KAUTH_VNODE_DELETE, found_deny)) != 0) {
8152 goto out;
8153 }
8154 } else {
8155 /*
8156 * Execute is only granted to root if one of the x bits is set. This check only
8157 * makes sense if the posix mode bits are actually supported.
8158 */
8159 if ((rights & KAUTH_VNODE_EXECUTE) &&
8160 (vcp->vap->va_type == VREG) &&
8161 VATTR_IS_SUPPORTED(vcp->vap, va_mode) &&
8162 !(vcp->vap->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) {
8163 result = EPERM;
8164 KAUTH_DEBUG("%p DENIED - root execute requires at least one x bit in 0x%x", vcp, vcp->vap->va_mode);
8165 goto out;
8166 }
8167
8168 /* Assume that there were DENYs so we don't wrongly cache KAUTH_VNODE_SEARCHBYANYONE */
8169 *found_deny = TRUE;
8170
8171 KAUTH_DEBUG("%p ALLOWED - caller is superuser", vcp);
8172 }
8173 out:
8174 return result;
8175 }
8176
8177 static int
8178 vnode_authorize_callback_int(kauth_action_t action, vfs_context_t ctx,
8179 vnode_t vp, vnode_t dvp, int *errorp)
8180 {
8181 struct _vnode_authorize_context auth_context;
8182 vauth_ctx vcp;
8183 kauth_cred_t cred;
8184 kauth_ace_rights_t rights;
8185 struct vnode_attr va, dva;
8186 int result;
8187 int noimmutable;
8188 boolean_t parent_authorized_for_delete_child = FALSE;
8189 boolean_t found_deny = FALSE;
8190 boolean_t parent_ref = FALSE;
8191 boolean_t is_suser = FALSE;
8192
8193 vcp = &auth_context;
8194 vcp->ctx = ctx;
8195 vcp->vp = vp;
8196 vcp->dvp = dvp;
8197 /*
8198 * Note that we authorize against the context, not the passed cred
8199 * (the same thing anyway)
8200 */
8201 cred = ctx->vc_ucred;
8202
8203 VATTR_INIT(&va);
8204 vcp->vap = &va;
8205 VATTR_INIT(&dva);
8206 vcp->dvap = &dva;
8207
8208 vcp->flags = vcp->flags_valid = 0;
8209
8210 #if DIAGNOSTIC
8211 if ((ctx == NULL) || (vp == NULL) || (cred == NULL)) {
8212 panic("vnode_authorize: bad arguments (context %p vp %p cred %p)", ctx, vp, cred);
8213 }
8214 #endif
8215
8216 KAUTH_DEBUG("%p AUTH - %s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s on %s '%s' (0x%x:%p/%p)",
8217 vp, vfs_context_proc(ctx)->p_comm,
8218 (action & KAUTH_VNODE_ACCESS) ? "access" : "auth",
8219 (action & KAUTH_VNODE_READ_DATA) ? vnode_isdir(vp) ? " LIST_DIRECTORY" : " READ_DATA" : "",
8220 (action & KAUTH_VNODE_WRITE_DATA) ? vnode_isdir(vp) ? " ADD_FILE" : " WRITE_DATA" : "",
8221 (action & KAUTH_VNODE_EXECUTE) ? vnode_isdir(vp) ? " SEARCH" : " EXECUTE" : "",
8222 (action & KAUTH_VNODE_DELETE) ? " DELETE" : "",
8223 (action & KAUTH_VNODE_APPEND_DATA) ? vnode_isdir(vp) ? " ADD_SUBDIRECTORY" : " APPEND_DATA" : "",
8224 (action & KAUTH_VNODE_DELETE_CHILD) ? " DELETE_CHILD" : "",
8225 (action & KAUTH_VNODE_READ_ATTRIBUTES) ? " READ_ATTRIBUTES" : "",
8226 (action & KAUTH_VNODE_WRITE_ATTRIBUTES) ? " WRITE_ATTRIBUTES" : "",
8227 (action & KAUTH_VNODE_READ_EXTATTRIBUTES) ? " READ_EXTATTRIBUTES" : "",
8228 (action & KAUTH_VNODE_WRITE_EXTATTRIBUTES) ? " WRITE_EXTATTRIBUTES" : "",
8229 (action & KAUTH_VNODE_READ_SECURITY) ? " READ_SECURITY" : "",
8230 (action & KAUTH_VNODE_WRITE_SECURITY) ? " WRITE_SECURITY" : "",
8231 (action & KAUTH_VNODE_CHANGE_OWNER) ? " CHANGE_OWNER" : "",
8232 (action & KAUTH_VNODE_NOIMMUTABLE) ? " (noimmutable)" : "",
8233 vnode_isdir(vp) ? "directory" : "file",
8234 vp->v_name ? vp->v_name : "<NULL>", action, vp, dvp);
8235
8236 /*
8237 * Extract the control bits from the action, everything else is
8238 * requested rights.
8239 */
8240 noimmutable = (action & KAUTH_VNODE_NOIMMUTABLE) ? 1 : 0;
8241 rights = action & ~(KAUTH_VNODE_ACCESS | KAUTH_VNODE_NOIMMUTABLE);
8242
8243 if (rights & KAUTH_VNODE_DELETE) {
8244 #if DIAGNOSTIC
8245 if (dvp == NULL) {
8246 panic("vnode_authorize: KAUTH_VNODE_DELETE test requires a directory");
8247 }
8248 #endif
8249 /*
8250 * check to see if we've already authorized the parent
8251 * directory for deletion of its children... if so, we
8252 * can skip a whole bunch of work... we will still have to
8253 * authorize that this specific child can be removed
8254 */
8255 if (vnode_cache_is_authorized(dvp, ctx, KAUTH_VNODE_DELETE_CHILD) == TRUE) {
8256 parent_authorized_for_delete_child = TRUE;
8257 }
8258 } else {
8259 vcp->dvp = NULLVP;
8260 vcp->dvap = NULL;
8261 }
8262
8263 /*
8264 * Check for read-only filesystems.
8265 */
8266 if ((rights & KAUTH_VNODE_WRITE_RIGHTS) &&
8267 (vp->v_mount->mnt_flag & MNT_RDONLY) &&
8268 ((vp->v_type == VREG) || (vp->v_type == VDIR) ||
8269 (vp->v_type == VLNK) || (vp->v_type == VCPLX) ||
8270 (rights & KAUTH_VNODE_DELETE) || (rights & KAUTH_VNODE_DELETE_CHILD))) {
8271 result = EROFS;
8272 goto out;
8273 }
8274
8275 /*
8276 * Check for noexec filesystems.
8277 */
8278 if ((rights & KAUTH_VNODE_EXECUTE) && (vp->v_type == VREG) && (vp->v_mount->mnt_flag & MNT_NOEXEC)) {
8279 result = EACCES;
8280 goto out;
8281 }
8282
8283 /*
8284 * Handle cases related to filesystems with non-local enforcement.
8285 * This call can return 0, in which case we will fall through to perform a
8286 * check based on VNOP_GETATTR data. Otherwise it returns 1 and sets
8287 * an appropriate result, at which point we can return immediately.
8288 */
8289 if ((vp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) && vnode_authorize_opaque(vp, &result, action, ctx)) {
8290 goto out;
8291 }
8292
8293 /*
8294 * If the vnode is a namedstream (extended attribute) data vnode (eg.
8295 * a resource fork), *_DATA becomes *_EXTATTRIBUTES.
8296 */
8297 if (vnode_isnamedstream(vp)) {
8298 if (rights & KAUTH_VNODE_READ_DATA) {
8299 rights &= ~KAUTH_VNODE_READ_DATA;
8300 rights |= KAUTH_VNODE_READ_EXTATTRIBUTES;
8301 }
8302 if (rights & KAUTH_VNODE_WRITE_DATA) {
8303 rights &= ~KAUTH_VNODE_WRITE_DATA;
8304 rights |= KAUTH_VNODE_WRITE_EXTATTRIBUTES;
8305 }
8306
8307 /*
8308 * Point 'vp' to the namedstream's parent for ACL checking
8309 */
8310 if ((vp->v_parent != NULL) &&
8311 (vget_internal(vp->v_parent, 0, VNODE_NODEAD | VNODE_DRAINO) == 0)) {
8312 parent_ref = TRUE;
8313 vcp->vp = vp = vp->v_parent;
8314 }
8315 }
8316
8317 if (vfs_context_issuser(ctx)) {
8318 /*
8319 * if we're not asking for execute permissions or modifications,
8320 * then we're done, this action is authorized.
8321 */
8322 if (!(rights & (KAUTH_VNODE_EXECUTE | KAUTH_VNODE_WRITE_RIGHTS))) {
8323 goto success;
8324 }
8325
8326 is_suser = TRUE;
8327 }
8328
8329 /*
8330 * Get vnode attributes and extended security information for the vnode
8331 * and directory if required.
8332 *
8333 * If we're root we only want mode bits and flags for checking
8334 * execute and immutability.
8335 */
8336 VATTR_WANTED(&va, va_mode);
8337 VATTR_WANTED(&va, va_flags);
8338 if (!is_suser) {
8339 VATTR_WANTED(&va, va_uid);
8340 VATTR_WANTED(&va, va_gid);
8341 VATTR_WANTED(&va, va_acl);
8342 }
8343 if ((result = vnode_getattr(vp, &va, ctx)) != 0) {
8344 KAUTH_DEBUG("%p ERROR - failed to get vnode attributes - %d", vp, result);
8345 goto out;
8346 }
8347 VATTR_WANTED(&va, va_type);
8348 VATTR_RETURN(&va, va_type, vnode_vtype(vp));
8349
8350 if (vcp->dvp) {
8351 VATTR_WANTED(&dva, va_mode);
8352 VATTR_WANTED(&dva, va_flags);
8353 if (!is_suser) {
8354 VATTR_WANTED(&dva, va_uid);
8355 VATTR_WANTED(&dva, va_gid);
8356 VATTR_WANTED(&dva, va_acl);
8357 }
8358 if ((result = vnode_getattr(vcp->dvp, &dva, ctx)) != 0) {
8359 KAUTH_DEBUG("%p ERROR - failed to get directory vnode attributes - %d", vp, result);
8360 goto out;
8361 }
8362 VATTR_WANTED(&dva, va_type);
8363 VATTR_RETURN(&dva, va_type, vnode_vtype(vcp->dvp));
8364 }
8365
8366 result = vnode_attr_authorize_internal(vcp, vp->v_mount, rights, is_suser,
8367 &found_deny, noimmutable, parent_authorized_for_delete_child);
8368 out:
8369 if (VATTR_IS_SUPPORTED(&va, va_acl) && (va.va_acl != NULL)) {
8370 kauth_acl_free(va.va_acl);
8371 }
8372 if (VATTR_IS_SUPPORTED(&dva, va_acl) && (dva.va_acl != NULL)) {
8373 kauth_acl_free(dva.va_acl);
8374 }
8375
8376 if (result) {
8377 if (parent_ref) {
8378 vnode_put(vp);
8379 }
8380 *errorp = result;
8381 KAUTH_DEBUG("%p DENIED - auth denied", vp);
8382 return KAUTH_RESULT_DENY;
8383 }
8384 if ((rights & KAUTH_VNODE_SEARCH) && found_deny == FALSE && vp->v_type == VDIR) {
8385 /*
8386 * if we were successfully granted the right to search this directory
8387 * and there were NO ACL DENYs for search and the posix permissions also don't
8388 * deny execute, we can synthesize a global right that allows anyone to
8389 * traverse this directory during a pathname lookup without having to
8390 * match the credential associated with this cache of rights.
8391 *
8392 * Note that we can correctly cache KAUTH_VNODE_SEARCHBYANYONE
8393 * only if we actually check ACLs which we don't for root. As
8394 * a workaround, the lookup fast path checks for root.
8395 */
8396 if (!VATTR_IS_SUPPORTED(&va, va_mode) ||
8397 ((va.va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) ==
8398 (S_IXUSR | S_IXGRP | S_IXOTH))) {
8399 vnode_cache_authorized_action(vp, ctx, KAUTH_VNODE_SEARCHBYANYONE);
8400 }
8401 }
8402 success:
8403 if (parent_ref) {
8404 vnode_put(vp);
8405 }
8406
8407 /*
8408 * Note that this implies that we will allow requests for no rights, as well as
8409 * for rights that we do not recognise. There should be none of these.
8410 */
8411 KAUTH_DEBUG("%p ALLOWED - auth granted", vp);
8412 return KAUTH_RESULT_ALLOW;
8413 }
8414
8415 int
8416 vnode_attr_authorize_init(struct vnode_attr *vap, struct vnode_attr *dvap,
8417 kauth_action_t action, vfs_context_t ctx)
8418 {
8419 VATTR_INIT(vap);
8420 VATTR_WANTED(vap, va_type);
8421 VATTR_WANTED(vap, va_mode);
8422 VATTR_WANTED(vap, va_flags);
8423 if (dvap) {
8424 VATTR_INIT(dvap);
8425 if (action & KAUTH_VNODE_DELETE) {
8426 VATTR_WANTED(dvap, va_type);
8427 VATTR_WANTED(dvap, va_mode);
8428 VATTR_WANTED(dvap, va_flags);
8429 }
8430 } else if (action & KAUTH_VNODE_DELETE) {
8431 return EINVAL;
8432 }
8433
8434 if (!vfs_context_issuser(ctx)) {
8435 VATTR_WANTED(vap, va_uid);
8436 VATTR_WANTED(vap, va_gid);
8437 VATTR_WANTED(vap, va_acl);
8438 if (dvap && (action & KAUTH_VNODE_DELETE)) {
8439 VATTR_WANTED(dvap, va_uid);
8440 VATTR_WANTED(dvap, va_gid);
8441 VATTR_WANTED(dvap, va_acl);
8442 }
8443 }
8444
8445 return 0;
8446 }
8447
8448 int
8449 vnode_attr_authorize(struct vnode_attr *vap, struct vnode_attr *dvap, mount_t mp,
8450 kauth_action_t action, vfs_context_t ctx)
8451 {
8452 struct _vnode_authorize_context auth_context;
8453 vauth_ctx vcp;
8454 kauth_ace_rights_t rights;
8455 int noimmutable;
8456 boolean_t found_deny;
8457 boolean_t is_suser = FALSE;
8458 int result = 0;
8459
8460 vcp = &auth_context;
8461 vcp->ctx = ctx;
8462 vcp->vp = NULLVP;
8463 vcp->vap = vap;
8464 vcp->dvp = NULLVP;
8465 vcp->dvap = dvap;
8466 vcp->flags = vcp->flags_valid = 0;
8467
8468 noimmutable = (action & KAUTH_VNODE_NOIMMUTABLE) ? 1 : 0;
8469 rights = action & ~(KAUTH_VNODE_ACCESS | KAUTH_VNODE_NOIMMUTABLE);
8470
8471 /*
8472 * Check for read-only filesystems.
8473 */
8474 if ((rights & KAUTH_VNODE_WRITE_RIGHTS) &&
8475 mp && (mp->mnt_flag & MNT_RDONLY) &&
8476 ((vap->va_type == VREG) || (vap->va_type == VDIR) ||
8477 (vap->va_type == VLNK) || (rights & KAUTH_VNODE_DELETE) ||
8478 (rights & KAUTH_VNODE_DELETE_CHILD))) {
8479 result = EROFS;
8480 goto out;
8481 }
8482
8483 /*
8484 * Check for noexec filesystems.
8485 */
8486 if ((rights & KAUTH_VNODE_EXECUTE) &&
8487 (vap->va_type == VREG) && mp && (mp->mnt_flag & MNT_NOEXEC)) {
8488 result = EACCES;
8489 goto out;
8490 }
8491
8492 if (vfs_context_issuser(ctx)) {
8493 /*
8494 * if we're not asking for execute permissions or modifications,
8495 * then we're done, this action is authorized.
8496 */
8497 if (!(rights & (KAUTH_VNODE_EXECUTE | KAUTH_VNODE_WRITE_RIGHTS))) {
8498 goto out;
8499 }
8500 is_suser = TRUE;
8501 } else {
8502 if (!VATTR_IS_SUPPORTED(vap, va_uid) ||
8503 !VATTR_IS_SUPPORTED(vap, va_gid) ||
8504 (mp && vfs_extendedsecurity(mp) && !VATTR_IS_SUPPORTED(vap, va_acl))) {
8505 panic("vnode attrs not complete for vnode_attr_authorize\n");
8506 }
8507 }
8508
8509 result = vnode_attr_authorize_internal(vcp, mp, rights, is_suser,
8510 &found_deny, noimmutable, FALSE);
8511
8512 if (result == EPERM) {
8513 result = EACCES;
8514 }
8515 out:
8516 return result;
8517 }
8518
8519
8520 int
8521 vnode_authattr_new(vnode_t dvp, struct vnode_attr *vap, int noauth, vfs_context_t ctx)
8522 {
8523 return vnode_authattr_new_internal(dvp, vap, noauth, NULL, ctx);
8524 }
8525
8526 /*
8527 * Check that the attribute information in vattr can be legally applied to
8528 * a new file by the context.
8529 */
8530 static int
8531 vnode_authattr_new_internal(vnode_t dvp, struct vnode_attr *vap, int noauth, uint32_t *defaulted_fieldsp, vfs_context_t ctx)
8532 {
8533 int error;
8534 int has_priv_suser, ismember, defaulted_owner, defaulted_group, defaulted_mode;
8535 uint32_t inherit_flags;
8536 kauth_cred_t cred;
8537 guid_t changer;
8538 mount_t dmp;
8539 struct vnode_attr dva;
8540
8541 error = 0;
8542
8543 if (defaulted_fieldsp) {
8544 *defaulted_fieldsp = 0;
8545 }
8546
8547 defaulted_owner = defaulted_group = defaulted_mode = 0;
8548
8549 inherit_flags = 0;
8550
8551 /*
8552 * Require that the filesystem support extended security to apply any.
8553 */
8554 if (!vfs_extendedsecurity(dvp->v_mount) &&
8555 (VATTR_IS_ACTIVE(vap, va_acl) || VATTR_IS_ACTIVE(vap, va_uuuid) || VATTR_IS_ACTIVE(vap, va_guuid))) {
8556 error = EINVAL;
8557 goto out;
8558 }
8559
8560 /*
8561 * Default some fields.
8562 */
8563 dmp = dvp->v_mount;
8564
8565 /*
8566 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit owner is set, that
8567 * owner takes ownership of all new files.
8568 */
8569 if ((dmp->mnt_flag & MNT_IGNORE_OWNERSHIP) && (dmp->mnt_fsowner != KAUTH_UID_NONE)) {
8570 VATTR_SET(vap, va_uid, dmp->mnt_fsowner);
8571 defaulted_owner = 1;
8572 } else {
8573 if (!VATTR_IS_ACTIVE(vap, va_uid)) {
8574 /* default owner is current user */
8575 VATTR_SET(vap, va_uid, kauth_cred_getuid(vfs_context_ucred(ctx)));
8576 defaulted_owner = 1;
8577 }
8578 }
8579
8580 /*
8581 * We need the dvp's va_flags and *may* need the gid of the directory,
8582 * we ask for both here.
8583 */
8584 VATTR_INIT(&dva);
8585 VATTR_WANTED(&dva, va_gid);
8586 VATTR_WANTED(&dva, va_flags);
8587 if ((error = vnode_getattr(dvp, &dva, ctx)) != 0) {
8588 goto out;
8589 }
8590
8591 /*
8592 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit grouo is set, that
8593 * group takes ownership of all new files.
8594 */
8595 if ((dmp->mnt_flag & MNT_IGNORE_OWNERSHIP) && (dmp->mnt_fsgroup != KAUTH_GID_NONE)) {
8596 VATTR_SET(vap, va_gid, dmp->mnt_fsgroup);
8597 defaulted_group = 1;
8598 } else {
8599 if (!VATTR_IS_ACTIVE(vap, va_gid)) {
8600 /* default group comes from parent object, fallback to current user */
8601 if (VATTR_IS_SUPPORTED(&dva, va_gid)) {
8602 VATTR_SET(vap, va_gid, dva.va_gid);
8603 } else {
8604 VATTR_SET(vap, va_gid, kauth_cred_getgid(vfs_context_ucred(ctx)));
8605 }
8606 defaulted_group = 1;
8607 }
8608 }
8609
8610 if (!VATTR_IS_ACTIVE(vap, va_flags)) {
8611 VATTR_SET(vap, va_flags, 0);
8612 }
8613
8614 /* Determine if SF_RESTRICTED should be inherited from the parent
8615 * directory. */
8616 if (VATTR_IS_SUPPORTED(&dva, va_flags)) {
8617 inherit_flags = dva.va_flags & (UF_DATAVAULT | SF_RESTRICTED);
8618 }
8619
8620 /* default mode is everything, masked with current umask */
8621 if (!VATTR_IS_ACTIVE(vap, va_mode)) {
8622 VATTR_SET(vap, va_mode, ACCESSPERMS & ~vfs_context_proc(ctx)->p_fd->fd_cmask);
8623 KAUTH_DEBUG("ATTR - defaulting new file mode to %o from umask %o", vap->va_mode, vfs_context_proc(ctx)->p_fd->fd_cmask);
8624 defaulted_mode = 1;
8625 }
8626 /* set timestamps to now */
8627 if (!VATTR_IS_ACTIVE(vap, va_create_time)) {
8628 nanotime(&vap->va_create_time);
8629 VATTR_SET_ACTIVE(vap, va_create_time);
8630 }
8631
8632 /*
8633 * Check for attempts to set nonsensical fields.
8634 */
8635 if (vap->va_active & ~VNODE_ATTR_NEWOBJ) {
8636 error = EINVAL;
8637 KAUTH_DEBUG("ATTR - ERROR - attempt to set unsupported new-file attributes %llx",
8638 vap->va_active & ~VNODE_ATTR_NEWOBJ);
8639 goto out;
8640 }
8641
8642 /*
8643 * Quickly check for the applicability of any enforcement here.
8644 * Tests below maintain the integrity of the local security model.
8645 */
8646 if (vfs_authopaque(dvp->v_mount)) {
8647 goto out;
8648 }
8649
8650 /*
8651 * We need to know if the caller is the superuser, or if the work is
8652 * otherwise already authorised.
8653 */
8654 cred = vfs_context_ucred(ctx);
8655 if (noauth) {
8656 /* doing work for the kernel */
8657 has_priv_suser = 1;
8658 } else {
8659 has_priv_suser = vfs_context_issuser(ctx);
8660 }
8661
8662
8663 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8664 vap->va_flags &= ~SF_SYNTHETIC;
8665 if (has_priv_suser) {
8666 if ((vap->va_flags & (UF_SETTABLE | SF_SETTABLE)) != vap->va_flags) {
8667 error = EPERM;
8668 KAUTH_DEBUG(" DENIED - superuser attempt to set illegal flag(s)");
8669 goto out;
8670 }
8671 } else {
8672 if ((vap->va_flags & UF_SETTABLE) != vap->va_flags) {
8673 error = EPERM;
8674 KAUTH_DEBUG(" DENIED - user attempt to set illegal flag(s)");
8675 goto out;
8676 }
8677 }
8678 }
8679
8680 /* if not superuser, validate legality of new-item attributes */
8681 if (!has_priv_suser) {
8682 if (!defaulted_mode && VATTR_IS_ACTIVE(vap, va_mode)) {
8683 /* setgid? */
8684 if (vap->va_mode & S_ISGID) {
8685 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8686 KAUTH_DEBUG("ATTR - ERROR: got %d checking for membership in %d", error, vap->va_gid);
8687 goto out;
8688 }
8689 if (!ismember) {
8690 KAUTH_DEBUG(" DENIED - can't set SGID bit, not a member of %d", vap->va_gid);
8691 error = EPERM;
8692 goto out;
8693 }
8694 }
8695
8696 /* setuid? */
8697 if ((vap->va_mode & S_ISUID) && (vap->va_uid != kauth_cred_getuid(cred))) {
8698 KAUTH_DEBUG("ATTR - ERROR: illegal attempt to set the setuid bit");
8699 error = EPERM;
8700 goto out;
8701 }
8702 }
8703 if (!defaulted_owner && (vap->va_uid != kauth_cred_getuid(cred))) {
8704 KAUTH_DEBUG(" DENIED - cannot create new item owned by %d", vap->va_uid);
8705 error = EPERM;
8706 goto out;
8707 }
8708 if (!defaulted_group) {
8709 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8710 KAUTH_DEBUG(" ERROR - got %d checking for membership in %d", error, vap->va_gid);
8711 goto out;
8712 }
8713 if (!ismember) {
8714 KAUTH_DEBUG(" DENIED - cannot create new item with group %d - not a member", vap->va_gid);
8715 error = EPERM;
8716 goto out;
8717 }
8718 }
8719
8720 /* initialising owner/group UUID */
8721 if (VATTR_IS_ACTIVE(vap, va_uuuid)) {
8722 if ((error = kauth_cred_getguid(cred, &changer)) != 0) {
8723 KAUTH_DEBUG(" ERROR - got %d trying to get caller UUID", error);
8724 /* XXX ENOENT here - no GUID - should perhaps become EPERM */
8725 goto out;
8726 }
8727 if (!kauth_guid_equal(&vap->va_uuuid, &changer)) {
8728 KAUTH_DEBUG(" ERROR - cannot create item with supplied owner UUID - not us");
8729 error = EPERM;
8730 goto out;
8731 }
8732 }
8733 if (VATTR_IS_ACTIVE(vap, va_guuid)) {
8734 if ((error = kauth_cred_ismember_guid(cred, &vap->va_guuid, &ismember)) != 0) {
8735 KAUTH_DEBUG(" ERROR - got %d trying to check group membership", error);
8736 goto out;
8737 }
8738 if (!ismember) {
8739 KAUTH_DEBUG(" ERROR - cannot create item with supplied group UUID - not a member");
8740 error = EPERM;
8741 goto out;
8742 }
8743 }
8744 }
8745 out:
8746 if (inherit_flags) {
8747 /* Apply SF_RESTRICTED to the file if its parent directory was
8748 * restricted. This is done at the end so that root is not
8749 * required if this flag is only set due to inheritance. */
8750 VATTR_SET(vap, va_flags, (vap->va_flags | inherit_flags));
8751 }
8752 if (defaulted_fieldsp) {
8753 if (defaulted_mode) {
8754 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_MODE;
8755 }
8756 if (defaulted_group) {
8757 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_GID;
8758 }
8759 if (defaulted_owner) {
8760 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_UID;
8761 }
8762 }
8763 return error;
8764 }
8765
8766 /*
8767 * Check that the attribute information in vap can be legally written by the
8768 * context.
8769 *
8770 * Call this when you're not sure about the vnode_attr; either its contents
8771 * have come from an unknown source, or when they are variable.
8772 *
8773 * Returns errno, or zero and sets *actionp to the KAUTH_VNODE_* actions that
8774 * must be authorized to be permitted to write the vattr.
8775 */
8776 int
8777 vnode_authattr(vnode_t vp, struct vnode_attr *vap, kauth_action_t *actionp, vfs_context_t ctx)
8778 {
8779 struct vnode_attr ova;
8780 kauth_action_t required_action;
8781 int error, has_priv_suser, ismember, chowner, chgroup, clear_suid, clear_sgid;
8782 guid_t changer;
8783 gid_t group;
8784 uid_t owner;
8785 mode_t newmode;
8786 kauth_cred_t cred;
8787 uint32_t fdelta;
8788
8789 VATTR_INIT(&ova);
8790 required_action = 0;
8791 error = 0;
8792
8793 /*
8794 * Quickly check for enforcement applicability.
8795 */
8796 if (vfs_authopaque(vp->v_mount)) {
8797 goto out;
8798 }
8799
8800 /*
8801 * Check for attempts to set nonsensical fields.
8802 */
8803 if (vap->va_active & VNODE_ATTR_RDONLY) {
8804 KAUTH_DEBUG("ATTR - ERROR: attempt to set readonly attribute(s)");
8805 error = EINVAL;
8806 goto out;
8807 }
8808
8809 /*
8810 * We need to know if the caller is the superuser.
8811 */
8812 cred = vfs_context_ucred(ctx);
8813 has_priv_suser = kauth_cred_issuser(cred);
8814
8815 /*
8816 * If any of the following are changing, we need information from the old file:
8817 * va_uid
8818 * va_gid
8819 * va_mode
8820 * va_uuuid
8821 * va_guuid
8822 */
8823 if (VATTR_IS_ACTIVE(vap, va_uid) ||
8824 VATTR_IS_ACTIVE(vap, va_gid) ||
8825 VATTR_IS_ACTIVE(vap, va_mode) ||
8826 VATTR_IS_ACTIVE(vap, va_uuuid) ||
8827 VATTR_IS_ACTIVE(vap, va_guuid)) {
8828 VATTR_WANTED(&ova, va_mode);
8829 VATTR_WANTED(&ova, va_uid);
8830 VATTR_WANTED(&ova, va_gid);
8831 VATTR_WANTED(&ova, va_uuuid);
8832 VATTR_WANTED(&ova, va_guuid);
8833 KAUTH_DEBUG("ATTR - security information changing, fetching existing attributes");
8834 }
8835
8836 /*
8837 * If timestamps are being changed, we need to know who the file is owned
8838 * by.
8839 */
8840 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
8841 VATTR_IS_ACTIVE(vap, va_change_time) ||
8842 VATTR_IS_ACTIVE(vap, va_modify_time) ||
8843 VATTR_IS_ACTIVE(vap, va_access_time) ||
8844 VATTR_IS_ACTIVE(vap, va_backup_time) ||
8845 VATTR_IS_ACTIVE(vap, va_addedtime)) {
8846 VATTR_WANTED(&ova, va_uid);
8847 #if 0 /* enable this when we support UUIDs as official owners */
8848 VATTR_WANTED(&ova, va_uuuid);
8849 #endif
8850 KAUTH_DEBUG("ATTR - timestamps changing, fetching uid and GUID");
8851 }
8852
8853 /*
8854 * If flags are being changed, we need the old flags.
8855 */
8856 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8857 KAUTH_DEBUG("ATTR - flags changing, fetching old flags");
8858 VATTR_WANTED(&ova, va_flags);
8859 }
8860
8861 /*
8862 * If ACLs are being changed, we need the old ACLs.
8863 */
8864 if (VATTR_IS_ACTIVE(vap, va_acl)) {
8865 KAUTH_DEBUG("ATTR - acl changing, fetching old flags");
8866 VATTR_WANTED(&ova, va_acl);
8867 }
8868
8869 /*
8870 * If the size is being set, make sure it's not a directory.
8871 */
8872 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
8873 /* size is only meaningful on regular files, don't permit otherwise */
8874 if (!vnode_isreg(vp)) {
8875 KAUTH_DEBUG("ATTR - ERROR: size change requested on non-file");
8876 error = vnode_isdir(vp) ? EISDIR : EINVAL;
8877 goto out;
8878 }
8879 }
8880
8881 /*
8882 * Get old data.
8883 */
8884 KAUTH_DEBUG("ATTR - fetching old attributes %016llx", ova.va_active);
8885 if ((error = vnode_getattr(vp, &ova, ctx)) != 0) {
8886 KAUTH_DEBUG(" ERROR - got %d trying to get attributes", error);
8887 goto out;
8888 }
8889
8890 /*
8891 * Size changes require write access to the file data.
8892 */
8893 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
8894 /* if we can't get the size, or it's different, we need write access */
8895 KAUTH_DEBUG("ATTR - size change, requiring WRITE_DATA");
8896 required_action |= KAUTH_VNODE_WRITE_DATA;
8897 }
8898
8899 /*
8900 * Changing timestamps?
8901 *
8902 * Note that we are only called to authorize user-requested time changes;
8903 * side-effect time changes are not authorized. Authorisation is only
8904 * required for existing files.
8905 *
8906 * Non-owners are not permitted to change the time on an existing
8907 * file to anything other than the current time.
8908 */
8909 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
8910 VATTR_IS_ACTIVE(vap, va_change_time) ||
8911 VATTR_IS_ACTIVE(vap, va_modify_time) ||
8912 VATTR_IS_ACTIVE(vap, va_access_time) ||
8913 VATTR_IS_ACTIVE(vap, va_backup_time) ||
8914 VATTR_IS_ACTIVE(vap, va_addedtime)) {
8915 /*
8916 * The owner and root may set any timestamps they like,
8917 * provided that the file is not immutable. The owner still needs
8918 * WRITE_ATTRIBUTES (implied by ownership but still deniable).
8919 */
8920 if (has_priv_suser || vauth_node_owner(&ova, cred)) {
8921 KAUTH_DEBUG("ATTR - root or owner changing timestamps");
8922 required_action |= KAUTH_VNODE_CHECKIMMUTABLE | KAUTH_VNODE_WRITE_ATTRIBUTES;
8923 } else {
8924 /* just setting the current time? */
8925 if (vap->va_vaflags & VA_UTIMES_NULL) {
8926 KAUTH_DEBUG("ATTR - non-root/owner changing timestamps, requiring WRITE_ATTRIBUTES");
8927 required_action |= KAUTH_VNODE_WRITE_ATTRIBUTES;
8928 } else {
8929 KAUTH_DEBUG("ATTR - ERROR: illegal timestamp modification attempted");
8930 error = EACCES;
8931 goto out;
8932 }
8933 }
8934 }
8935
8936 /*
8937 * Changing file mode?
8938 */
8939 if (VATTR_IS_ACTIVE(vap, va_mode) && VATTR_IS_SUPPORTED(&ova, va_mode) && (ova.va_mode != vap->va_mode)) {
8940 KAUTH_DEBUG("ATTR - mode change from %06o to %06o", ova.va_mode, vap->va_mode);
8941
8942 /*
8943 * Mode changes always have the same basic auth requirements.
8944 */
8945 if (has_priv_suser) {
8946 KAUTH_DEBUG("ATTR - superuser mode change, requiring immutability check");
8947 required_action |= KAUTH_VNODE_CHECKIMMUTABLE;
8948 } else {
8949 /* need WRITE_SECURITY */
8950 KAUTH_DEBUG("ATTR - non-superuser mode change, requiring WRITE_SECURITY");
8951 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8952 }
8953
8954 /*
8955 * Can't set the setgid bit if you're not in the group and not root. Have to have
8956 * existing group information in the case we're not setting it right now.
8957 */
8958 if (vap->va_mode & S_ISGID) {
8959 required_action |= KAUTH_VNODE_CHECKIMMUTABLE; /* always required */
8960 if (!has_priv_suser) {
8961 if (VATTR_IS_ACTIVE(vap, va_gid)) {
8962 group = vap->va_gid;
8963 } else if (VATTR_IS_SUPPORTED(&ova, va_gid)) {
8964 group = ova.va_gid;
8965 } else {
8966 KAUTH_DEBUG("ATTR - ERROR: setgid but no gid available");
8967 error = EINVAL;
8968 goto out;
8969 }
8970 /*
8971 * This might be too restrictive; WRITE_SECURITY might be implied by
8972 * membership in this case, rather than being an additional requirement.
8973 */
8974 if ((error = kauth_cred_ismember_gid(cred, group, &ismember)) != 0) {
8975 KAUTH_DEBUG("ATTR - ERROR: got %d checking for membership in %d", error, vap->va_gid);
8976 goto out;
8977 }
8978 if (!ismember) {
8979 KAUTH_DEBUG(" DENIED - can't set SGID bit, not a member of %d", group);
8980 error = EPERM;
8981 goto out;
8982 }
8983 }
8984 }
8985
8986 /*
8987 * Can't set the setuid bit unless you're root or the file's owner.
8988 */
8989 if (vap->va_mode & S_ISUID) {
8990 required_action |= KAUTH_VNODE_CHECKIMMUTABLE; /* always required */
8991 if (!has_priv_suser) {
8992 if (VATTR_IS_ACTIVE(vap, va_uid)) {
8993 owner = vap->va_uid;
8994 } else if (VATTR_IS_SUPPORTED(&ova, va_uid)) {
8995 owner = ova.va_uid;
8996 } else {
8997 KAUTH_DEBUG("ATTR - ERROR: setuid but no uid available");
8998 error = EINVAL;
8999 goto out;
9000 }
9001 if (owner != kauth_cred_getuid(cred)) {
9002 /*
9003 * We could allow this if WRITE_SECURITY is permitted, perhaps.
9004 */
9005 KAUTH_DEBUG("ATTR - ERROR: illegal attempt to set the setuid bit");
9006 error = EPERM;
9007 goto out;
9008 }
9009 }
9010 }
9011 }
9012
9013 /*
9014 * Validate/mask flags changes. This checks that only the flags in
9015 * the UF_SETTABLE mask are being set, and preserves the flags in
9016 * the SF_SETTABLE case.
9017 *
9018 * Since flags changes may be made in conjunction with other changes,
9019 * we will ask the auth code to ignore immutability in the case that
9020 * the SF_* flags are not set and we are only manipulating the file flags.
9021 *
9022 */
9023 if (VATTR_IS_ACTIVE(vap, va_flags)) {
9024 /* compute changing flags bits */
9025 vap->va_flags &= ~SF_SYNTHETIC;
9026 ova.va_flags &= ~SF_SYNTHETIC;
9027 if (VATTR_IS_SUPPORTED(&ova, va_flags)) {
9028 fdelta = vap->va_flags ^ ova.va_flags;
9029 } else {
9030 fdelta = vap->va_flags;
9031 }
9032
9033 if (fdelta != 0) {
9034 KAUTH_DEBUG("ATTR - flags changing, requiring WRITE_SECURITY");
9035 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9036
9037 /* check that changing bits are legal */
9038 if (has_priv_suser) {
9039 /*
9040 * The immutability check will prevent us from clearing the SF_*
9041 * flags unless the system securelevel permits it, so just check
9042 * for legal flags here.
9043 */
9044 if (fdelta & ~(UF_SETTABLE | SF_SETTABLE)) {
9045 error = EPERM;
9046 KAUTH_DEBUG(" DENIED - superuser attempt to set illegal flag(s)");
9047 goto out;
9048 }
9049 } else {
9050 if (fdelta & ~UF_SETTABLE) {
9051 error = EPERM;
9052 KAUTH_DEBUG(" DENIED - user attempt to set illegal flag(s)");
9053 goto out;
9054 }
9055 }
9056 /*
9057 * If the caller has the ability to manipulate file flags,
9058 * security is not reduced by ignoring them for this operation.
9059 *
9060 * A more complete test here would consider the 'after' states of the flags
9061 * to determine whether it would permit the operation, but this becomes
9062 * very complex.
9063 *
9064 * Ignoring immutability is conditional on securelevel; this does not bypass
9065 * the SF_* flags if securelevel > 0.
9066 */
9067 required_action |= KAUTH_VNODE_NOIMMUTABLE;
9068 }
9069 }
9070
9071 /*
9072 * Validate ownership information.
9073 */
9074 chowner = 0;
9075 chgroup = 0;
9076 clear_suid = 0;
9077 clear_sgid = 0;
9078
9079 /*
9080 * uid changing
9081 * Note that if the filesystem didn't give us a UID, we expect that it doesn't
9082 * support them in general, and will ignore it if/when we try to set it.
9083 * We might want to clear the uid out of vap completely here.
9084 */
9085 if (VATTR_IS_ACTIVE(vap, va_uid)) {
9086 if (VATTR_IS_SUPPORTED(&ova, va_uid) && (vap->va_uid != ova.va_uid)) {
9087 if (!has_priv_suser && (kauth_cred_getuid(cred) != vap->va_uid)) {
9088 KAUTH_DEBUG(" DENIED - non-superuser cannot change ownershipt to a third party");
9089 error = EPERM;
9090 goto out;
9091 }
9092 chowner = 1;
9093 }
9094 clear_suid = 1;
9095 }
9096
9097 /*
9098 * gid changing
9099 * Note that if the filesystem didn't give us a GID, we expect that it doesn't
9100 * support them in general, and will ignore it if/when we try to set it.
9101 * We might want to clear the gid out of vap completely here.
9102 */
9103 if (VATTR_IS_ACTIVE(vap, va_gid)) {
9104 if (VATTR_IS_SUPPORTED(&ova, va_gid) && (vap->va_gid != ova.va_gid)) {
9105 if (!has_priv_suser) {
9106 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
9107 KAUTH_DEBUG(" ERROR - got %d checking for membership in %d", error, vap->va_gid);
9108 goto out;
9109 }
9110 if (!ismember) {
9111 KAUTH_DEBUG(" DENIED - group change from %d to %d but not a member of target group",
9112 ova.va_gid, vap->va_gid);
9113 error = EPERM;
9114 goto out;
9115 }
9116 }
9117 chgroup = 1;
9118 }
9119 clear_sgid = 1;
9120 }
9121
9122 /*
9123 * Owner UUID being set or changed.
9124 */
9125 if (VATTR_IS_ACTIVE(vap, va_uuuid)) {
9126 /* if the owner UUID is not actually changing ... */
9127 if (VATTR_IS_SUPPORTED(&ova, va_uuuid)) {
9128 if (kauth_guid_equal(&vap->va_uuuid, &ova.va_uuuid)) {
9129 goto no_uuuid_change;
9130 }
9131
9132 /*
9133 * If the current owner UUID is a null GUID, check
9134 * it against the UUID corresponding to the owner UID.
9135 */
9136 if (kauth_guid_equal(&ova.va_uuuid, &kauth_null_guid) &&
9137 VATTR_IS_SUPPORTED(&ova, va_uid)) {
9138 guid_t uid_guid;
9139
9140 if (kauth_cred_uid2guid(ova.va_uid, &uid_guid) == 0 &&
9141 kauth_guid_equal(&vap->va_uuuid, &uid_guid)) {
9142 goto no_uuuid_change;
9143 }
9144 }
9145 }
9146
9147 /*
9148 * The owner UUID cannot be set by a non-superuser to anything other than
9149 * their own or a null GUID (to "unset" the owner UUID).
9150 * Note that file systems must be prepared to handle the
9151 * null UUID case in a manner appropriate for that file
9152 * system.
9153 */
9154 if (!has_priv_suser) {
9155 if ((error = kauth_cred_getguid(cred, &changer)) != 0) {
9156 KAUTH_DEBUG(" ERROR - got %d trying to get caller UUID", error);
9157 /* XXX ENOENT here - no UUID - should perhaps become EPERM */
9158 goto out;
9159 }
9160 if (!kauth_guid_equal(&vap->va_uuuid, &changer) &&
9161 !kauth_guid_equal(&vap->va_uuuid, &kauth_null_guid)) {
9162 KAUTH_DEBUG(" ERROR - cannot set supplied owner UUID - not us / null");
9163 error = EPERM;
9164 goto out;
9165 }
9166 }
9167 chowner = 1;
9168 clear_suid = 1;
9169 }
9170 no_uuuid_change:
9171 /*
9172 * Group UUID being set or changed.
9173 */
9174 if (VATTR_IS_ACTIVE(vap, va_guuid)) {
9175 /* if the group UUID is not actually changing ... */
9176 if (VATTR_IS_SUPPORTED(&ova, va_guuid)) {
9177 if (kauth_guid_equal(&vap->va_guuid, &ova.va_guuid)) {
9178 goto no_guuid_change;
9179 }
9180
9181 /*
9182 * If the current group UUID is a null UUID, check
9183 * it against the UUID corresponding to the group GID.
9184 */
9185 if (kauth_guid_equal(&ova.va_guuid, &kauth_null_guid) &&
9186 VATTR_IS_SUPPORTED(&ova, va_gid)) {
9187 guid_t gid_guid;
9188
9189 if (kauth_cred_gid2guid(ova.va_gid, &gid_guid) == 0 &&
9190 kauth_guid_equal(&vap->va_guuid, &gid_guid)) {
9191 goto no_guuid_change;
9192 }
9193 }
9194 }
9195
9196 /*
9197 * The group UUID cannot be set by a non-superuser to anything other than
9198 * one of which they are a member or a null GUID (to "unset"
9199 * the group UUID).
9200 * Note that file systems must be prepared to handle the
9201 * null UUID case in a manner appropriate for that file
9202 * system.
9203 */
9204 if (!has_priv_suser) {
9205 if (kauth_guid_equal(&vap->va_guuid, &kauth_null_guid)) {
9206 ismember = 1;
9207 } else if ((error = kauth_cred_ismember_guid(cred, &vap->va_guuid, &ismember)) != 0) {
9208 KAUTH_DEBUG(" ERROR - got %d trying to check group membership", error);
9209 goto out;
9210 }
9211 if (!ismember) {
9212 KAUTH_DEBUG(" ERROR - cannot set supplied group UUID - not a member / null");
9213 error = EPERM;
9214 goto out;
9215 }
9216 }
9217 chgroup = 1;
9218 }
9219 no_guuid_change:
9220
9221 /*
9222 * Compute authorisation for group/ownership changes.
9223 */
9224 if (chowner || chgroup || clear_suid || clear_sgid) {
9225 if (has_priv_suser) {
9226 KAUTH_DEBUG("ATTR - superuser changing file owner/group, requiring immutability check");
9227 required_action |= KAUTH_VNODE_CHECKIMMUTABLE;
9228 } else {
9229 if (chowner) {
9230 KAUTH_DEBUG("ATTR - ownership change, requiring TAKE_OWNERSHIP");
9231 required_action |= KAUTH_VNODE_TAKE_OWNERSHIP;
9232 }
9233 if (chgroup && !chowner) {
9234 KAUTH_DEBUG("ATTR - group change, requiring WRITE_SECURITY");
9235 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9236 }
9237 }
9238
9239 /*
9240 * clear set-uid and set-gid bits. POSIX only requires this for
9241 * non-privileged processes but we do it even for root.
9242 */
9243 if (VATTR_IS_ACTIVE(vap, va_mode)) {
9244 newmode = vap->va_mode;
9245 } else if (VATTR_IS_SUPPORTED(&ova, va_mode)) {
9246 newmode = ova.va_mode;
9247 } else {
9248 KAUTH_DEBUG("CHOWN - trying to change owner but cannot get mode from filesystem to mask setugid bits");
9249 newmode = 0;
9250 }
9251
9252 /* chown always clears setuid/gid bits. An exception is made for
9253 * setattrlist which can set both at the same time: <uid, gid, mode> on a file:
9254 * setattrlist is allowed to set the new mode on the file and change (chown)
9255 * uid/gid.
9256 */
9257 if (newmode & (S_ISUID | S_ISGID)) {
9258 if (!VATTR_IS_ACTIVE(vap, va_mode)) {
9259 KAUTH_DEBUG("CHOWN - masking setugid bits from mode %o to %o",
9260 newmode, newmode & ~(S_ISUID | S_ISGID));
9261 newmode &= ~(S_ISUID | S_ISGID);
9262 }
9263 VATTR_SET(vap, va_mode, newmode);
9264 }
9265 }
9266
9267 /*
9268 * Authorise changes in the ACL.
9269 */
9270 if (VATTR_IS_ACTIVE(vap, va_acl)) {
9271 /* no existing ACL */
9272 if (!VATTR_IS_ACTIVE(&ova, va_acl) || (ova.va_acl == NULL)) {
9273 /* adding an ACL */
9274 if (vap->va_acl != NULL) {
9275 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9276 KAUTH_DEBUG("CHMOD - adding ACL");
9277 }
9278
9279 /* removing an existing ACL */
9280 } else if (vap->va_acl == NULL) {
9281 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9282 KAUTH_DEBUG("CHMOD - removing ACL");
9283
9284 /* updating an existing ACL */
9285 } else {
9286 if (vap->va_acl->acl_entrycount != ova.va_acl->acl_entrycount) {
9287 /* entry count changed, must be different */
9288 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9289 KAUTH_DEBUG("CHMOD - adding/removing ACL entries");
9290 } else if (vap->va_acl->acl_entrycount > 0) {
9291 /* both ACLs have the same ACE count, said count is 1 or more, bitwise compare ACLs */
9292 if (memcmp(&vap->va_acl->acl_ace[0], &ova.va_acl->acl_ace[0],
9293 sizeof(struct kauth_ace) * vap->va_acl->acl_entrycount)) {
9294 required_action |= KAUTH_VNODE_WRITE_SECURITY;
9295 KAUTH_DEBUG("CHMOD - changing ACL entries");
9296 }
9297 }
9298 }
9299 }
9300
9301 /*
9302 * Other attributes that require authorisation.
9303 */
9304 if (VATTR_IS_ACTIVE(vap, va_encoding)) {
9305 required_action |= KAUTH_VNODE_WRITE_ATTRIBUTES;
9306 }
9307
9308 out:
9309 if (VATTR_IS_SUPPORTED(&ova, va_acl) && (ova.va_acl != NULL)) {
9310 kauth_acl_free(ova.va_acl);
9311 }
9312 if (error == 0) {
9313 *actionp = required_action;
9314 }
9315 return error;
9316 }
9317
9318 static int
9319 setlocklocal_callback(struct vnode *vp, __unused void *cargs)
9320 {
9321 vnode_lock_spin(vp);
9322 vp->v_flag |= VLOCKLOCAL;
9323 vnode_unlock(vp);
9324
9325 return VNODE_RETURNED;
9326 }
9327
9328 void
9329 vfs_setlocklocal(mount_t mp)
9330 {
9331 mount_lock_spin(mp);
9332 mp->mnt_kern_flag |= MNTK_LOCK_LOCAL;
9333 mount_unlock(mp);
9334
9335 /*
9336 * The number of active vnodes is expected to be
9337 * very small when vfs_setlocklocal is invoked.
9338 */
9339 vnode_iterate(mp, 0, setlocklocal_callback, NULL);
9340 }
9341
9342 void
9343 vfs_setcompoundopen(mount_t mp)
9344 {
9345 mount_lock_spin(mp);
9346 mp->mnt_compound_ops |= COMPOUND_VNOP_OPEN;
9347 mount_unlock(mp);
9348 }
9349
9350 void
9351 vnode_setswapmount(vnode_t vp)
9352 {
9353 mount_lock(vp->v_mount);
9354 vp->v_mount->mnt_kern_flag |= MNTK_SWAP_MOUNT;
9355 mount_unlock(vp->v_mount);
9356 }
9357
9358
9359 int64_t
9360 vnode_getswappin_avail(vnode_t vp)
9361 {
9362 int64_t max_swappin_avail = 0;
9363
9364 mount_lock(vp->v_mount);
9365 if (vp->v_mount->mnt_ioflags & MNT_IOFLAGS_SWAPPIN_SUPPORTED) {
9366 max_swappin_avail = vp->v_mount->mnt_max_swappin_available;
9367 }
9368 mount_unlock(vp->v_mount);
9369
9370 return max_swappin_avail;
9371 }
9372
9373
9374 void
9375 vn_setunionwait(vnode_t vp)
9376 {
9377 vnode_lock_spin(vp);
9378 vp->v_flag |= VISUNION;
9379 vnode_unlock(vp);
9380 }
9381
9382
9383 void
9384 vn_checkunionwait(vnode_t vp)
9385 {
9386 vnode_lock_spin(vp);
9387 while ((vp->v_flag & VISUNION) == VISUNION) {
9388 msleep((caddr_t)&vp->v_flag, &vp->v_lock, 0, 0, 0);
9389 }
9390 vnode_unlock(vp);
9391 }
9392
9393 void
9394 vn_clearunionwait(vnode_t vp, int locked)
9395 {
9396 if (!locked) {
9397 vnode_lock_spin(vp);
9398 }
9399 if ((vp->v_flag & VISUNION) == VISUNION) {
9400 vp->v_flag &= ~VISUNION;
9401 wakeup((caddr_t)&vp->v_flag);
9402 }
9403 if (!locked) {
9404 vnode_unlock(vp);
9405 }
9406 }
9407
9408 int
9409 vnode_materialize_dataless_file(vnode_t vp, uint64_t op_type)
9410 {
9411 int error;
9412
9413 /* Swap files are special; ignore them */
9414 if (vnode_isswap(vp)) {
9415 return 0;
9416 }
9417
9418 error = resolve_nspace_item(vp,
9419 op_type | NAMESPACE_HANDLER_NSPACE_EVENT);
9420
9421 /*
9422 * The file resolver owns the logic about what error to return
9423 * to the caller. We only need to handle a couple of special
9424 * cases here:
9425 */
9426 if (error == EJUSTRETURN) {
9427 /*
9428 * The requesting process is allowed to interact with
9429 * dataless objects. Make a couple of sanity-checks
9430 * here to ensure the action makes sense.
9431 */
9432 switch (op_type) {
9433 case NAMESPACE_HANDLER_WRITE_OP:
9434 case NAMESPACE_HANDLER_TRUNCATE_OP:
9435 case NAMESPACE_HANDLER_RENAME_OP:
9436 /*
9437 * This handles the case of the resolver itself
9438 * writing data to the file (or throwing it
9439 * away).
9440 */
9441 error = 0;
9442 break;
9443 case NAMESPACE_HANDLER_READ_OP:
9444 /*
9445 * This handles the case of the resolver needing
9446 * to look up inside of a dataless directory while
9447 * it's in the process of materializing it (for
9448 * example, creating files or directories).
9449 */
9450 error = (vnode_vtype(vp) == VDIR) ? 0 : EBADF;
9451 break;
9452 default:
9453 error = EBADF;
9454 break;
9455 }
9456 }
9457
9458 return error;
9459 }
9460
9461 /*
9462 * Removes orphaned apple double files during a rmdir
9463 * Works by:
9464 * 1. vnode_suspend().
9465 * 2. Call VNOP_READDIR() till the end of directory is reached.
9466 * 3. Check if the directory entries returned are regular files with name starting with "._". If not, return ENOTEMPTY.
9467 * 4. Continue (2) and (3) till end of directory is reached.
9468 * 5. If all the entries in the directory were files with "._" name, delete all the files.
9469 * 6. vnode_resume()
9470 * 7. If deletion of all files succeeded, call VNOP_RMDIR() again.
9471 */
9472
9473 errno_t
9474 rmdir_remove_orphaned_appleDouble(vnode_t vp, vfs_context_t ctx, int * restart_flag)
9475 {
9476 #define UIO_BUFF_SIZE 2048
9477 uio_t auio = NULL;
9478 int eofflag, siz = UIO_BUFF_SIZE, nentries = 0;
9479 int open_flag = 0, full_erase_flag = 0;
9480 char uio_buf[UIO_SIZEOF(1)];
9481 char *rbuf = NULL;
9482 void *dir_pos;
9483 void *dir_end;
9484 struct dirent *dp;
9485 errno_t error;
9486
9487 error = vnode_suspend(vp);
9488
9489 /*
9490 * restart_flag is set so that the calling rmdir sleeps and resets
9491 */
9492 if (error == EBUSY) {
9493 *restart_flag = 1;
9494 }
9495 if (error != 0) {
9496 return error;
9497 }
9498
9499 /*
9500 * Prevent dataless fault materialization while we have
9501 * a suspended vnode.
9502 */
9503 uthread_t ut = get_bsdthread_info(current_thread());
9504 bool saved_nodatalessfaults =
9505 (ut->uu_flag & UT_NSPACE_NODATALESSFAULTS) ? true : false;
9506 ut->uu_flag |= UT_NSPACE_NODATALESSFAULTS;
9507
9508 /*
9509 * set up UIO
9510 */
9511 MALLOC(rbuf, caddr_t, siz, M_TEMP, M_WAITOK);
9512 if (rbuf) {
9513 auio = uio_createwithbuffer(1, 0, UIO_SYSSPACE, UIO_READ,
9514 &uio_buf[0], sizeof(uio_buf));
9515 }
9516 if (!rbuf || !auio) {
9517 error = ENOMEM;
9518 goto outsc;
9519 }
9520
9521 uio_setoffset(auio, 0);
9522
9523 eofflag = 0;
9524
9525 if ((error = VNOP_OPEN(vp, FREAD, ctx))) {
9526 goto outsc;
9527 } else {
9528 open_flag = 1;
9529 }
9530
9531 /*
9532 * First pass checks if all files are appleDouble files.
9533 */
9534
9535 do {
9536 siz = UIO_BUFF_SIZE;
9537 uio_reset(auio, uio_offset(auio), UIO_SYSSPACE, UIO_READ);
9538 uio_addiov(auio, CAST_USER_ADDR_T(rbuf), UIO_BUFF_SIZE);
9539
9540 if ((error = VNOP_READDIR(vp, auio, 0, &eofflag, &nentries, ctx))) {
9541 goto outsc;
9542 }
9543
9544 if (uio_resid(auio) != 0) {
9545 siz -= uio_resid(auio);
9546 }
9547
9548 /*
9549 * Iterate through directory
9550 */
9551 dir_pos = (void*) rbuf;
9552 dir_end = (void*) (rbuf + siz);
9553 dp = (struct dirent*) (dir_pos);
9554
9555 if (dir_pos == dir_end) {
9556 eofflag = 1;
9557 }
9558
9559 while (dir_pos < dir_end) {
9560 /*
9561 * Check for . and .. as well as directories
9562 */
9563 if (dp->d_ino != 0 &&
9564 !((dp->d_namlen == 1 && dp->d_name[0] == '.') ||
9565 (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'))) {
9566 /*
9567 * Check for irregular files and ._ files
9568 * If there is a ._._ file abort the op
9569 */
9570 if (dp->d_namlen < 2 ||
9571 strncmp(dp->d_name, "._", 2) ||
9572 (dp->d_namlen >= 4 && !strncmp(&(dp->d_name[2]), "._", 2))) {
9573 error = ENOTEMPTY;
9574 goto outsc;
9575 }
9576 }
9577 dir_pos = (void*) ((uint8_t*)dir_pos + dp->d_reclen);
9578 dp = (struct dirent*)dir_pos;
9579 }
9580
9581 /*
9582 * workaround for HFS/NFS setting eofflag before end of file
9583 */
9584 if (vp->v_tag == VT_HFS && nentries > 2) {
9585 eofflag = 0;
9586 }
9587
9588 if (vp->v_tag == VT_NFS) {
9589 if (eofflag && !full_erase_flag) {
9590 full_erase_flag = 1;
9591 eofflag = 0;
9592 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9593 } else if (!eofflag && full_erase_flag) {
9594 full_erase_flag = 0;
9595 }
9596 }
9597 } while (!eofflag);
9598 /*
9599 * If we've made it here all the files in the dir are ._ files.
9600 * We can delete the files even though the node is suspended
9601 * because we are the owner of the file.
9602 */
9603
9604 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9605 eofflag = 0;
9606 full_erase_flag = 0;
9607
9608 do {
9609 siz = UIO_BUFF_SIZE;
9610 uio_reset(auio, uio_offset(auio), UIO_SYSSPACE, UIO_READ);
9611 uio_addiov(auio, CAST_USER_ADDR_T(rbuf), UIO_BUFF_SIZE);
9612
9613 error = VNOP_READDIR(vp, auio, 0, &eofflag, &nentries, ctx);
9614
9615 if (error != 0) {
9616 goto outsc;
9617 }
9618
9619 if (uio_resid(auio) != 0) {
9620 siz -= uio_resid(auio);
9621 }
9622
9623 /*
9624 * Iterate through directory
9625 */
9626 dir_pos = (void*) rbuf;
9627 dir_end = (void*) (rbuf + siz);
9628 dp = (struct dirent*) dir_pos;
9629
9630 if (dir_pos == dir_end) {
9631 eofflag = 1;
9632 }
9633
9634 while (dir_pos < dir_end) {
9635 /*
9636 * Check for . and .. as well as directories
9637 */
9638 if (dp->d_ino != 0 &&
9639 !((dp->d_namlen == 1 && dp->d_name[0] == '.') ||
9640 (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'))
9641 ) {
9642 error = unlink1(ctx, vp,
9643 CAST_USER_ADDR_T(dp->d_name), UIO_SYSSPACE,
9644 VNODE_REMOVE_SKIP_NAMESPACE_EVENT |
9645 VNODE_REMOVE_NO_AUDIT_PATH);
9646
9647 if (error && error != ENOENT) {
9648 goto outsc;
9649 }
9650 }
9651 dir_pos = (void*) ((uint8_t*)dir_pos + dp->d_reclen);
9652 dp = (struct dirent*)dir_pos;
9653 }
9654
9655 /*
9656 * workaround for HFS/NFS setting eofflag before end of file
9657 */
9658 if (vp->v_tag == VT_HFS && nentries > 2) {
9659 eofflag = 0;
9660 }
9661
9662 if (vp->v_tag == VT_NFS) {
9663 if (eofflag && !full_erase_flag) {
9664 full_erase_flag = 1;
9665 eofflag = 0;
9666 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9667 } else if (!eofflag && full_erase_flag) {
9668 full_erase_flag = 0;
9669 }
9670 }
9671 } while (!eofflag);
9672
9673
9674 error = 0;
9675
9676 outsc:
9677 if (open_flag) {
9678 VNOP_CLOSE(vp, FREAD, ctx);
9679 }
9680
9681 if (auio) {
9682 uio_free(auio);
9683 }
9684 FREE(rbuf, M_TEMP);
9685
9686 if (saved_nodatalessfaults == false) {
9687 ut->uu_flag &= ~UT_NSPACE_NODATALESSFAULTS;
9688 }
9689
9690 vnode_resume(vp);
9691
9692 return error;
9693 }
9694
9695
9696 void
9697 lock_vnode_and_post(vnode_t vp, int kevent_num)
9698 {
9699 /* Only take the lock if there's something there! */
9700 if (vp->v_knotes.slh_first != NULL) {
9701 vnode_lock(vp);
9702 KNOTE(&vp->v_knotes, kevent_num);
9703 vnode_unlock(vp);
9704 }
9705 }
9706
9707 void panic_print_vnodes(void);
9708
9709 /* define PANIC_PRINTS_VNODES only if investigation is required. */
9710 #ifdef PANIC_PRINTS_VNODES
9711
9712 static const char *
9713 __vtype(uint16_t vtype)
9714 {
9715 switch (vtype) {
9716 case VREG:
9717 return "R";
9718 case VDIR:
9719 return "D";
9720 case VBLK:
9721 return "B";
9722 case VCHR:
9723 return "C";
9724 case VLNK:
9725 return "L";
9726 case VSOCK:
9727 return "S";
9728 case VFIFO:
9729 return "F";
9730 case VBAD:
9731 return "x";
9732 case VSTR:
9733 return "T";
9734 case VCPLX:
9735 return "X";
9736 default:
9737 return "?";
9738 }
9739 }
9740
9741 /*
9742 * build a path from the bottom up
9743 * NOTE: called from the panic path - no alloc'ing of memory and no locks!
9744 */
9745 static char *
9746 __vpath(vnode_t vp, char *str, int len, int depth)
9747 {
9748 int vnm_len;
9749 const char *src;
9750 char *dst;
9751
9752 if (len <= 0) {
9753 return str;
9754 }
9755 /* str + len is the start of the string we created */
9756 if (!vp->v_name) {
9757 return str + len;
9758 }
9759
9760 /* follow mount vnodes to get the full path */
9761 if ((vp->v_flag & VROOT)) {
9762 if (vp->v_mount != NULL && vp->v_mount->mnt_vnodecovered) {
9763 return __vpath(vp->v_mount->mnt_vnodecovered,
9764 str, len, depth + 1);
9765 }
9766 return str + len;
9767 }
9768
9769 src = vp->v_name;
9770 vnm_len = strlen(src);
9771 if (vnm_len > len) {
9772 /* truncate the name to fit in the string */
9773 src += (vnm_len - len);
9774 vnm_len = len;
9775 }
9776
9777 /* start from the back and copy just characters (no NULLs) */
9778
9779 /* this will chop off leaf path (file) names */
9780 if (depth > 0) {
9781 dst = str + len - vnm_len;
9782 memcpy(dst, src, vnm_len);
9783 len -= vnm_len;
9784 } else {
9785 dst = str + len;
9786 }
9787
9788 if (vp->v_parent && len > 1) {
9789 /* follow parents up the chain */
9790 len--;
9791 *(dst - 1) = '/';
9792 return __vpath(vp->v_parent, str, len, depth + 1);
9793 }
9794
9795 return dst;
9796 }
9797
9798 #define SANE_VNODE_PRINT_LIMIT 5000
9799 void
9800 panic_print_vnodes(void)
9801 {
9802 mount_t mnt;
9803 vnode_t vp;
9804 int nvnodes = 0;
9805 const char *type;
9806 char *nm;
9807 char vname[257];
9808
9809 paniclog_append_noflush("\n***** VNODES *****\n"
9810 "TYPE UREF ICNT PATH\n");
9811
9812 /* NULL-terminate the path name */
9813 vname[sizeof(vname) - 1] = '\0';
9814
9815 /*
9816 * iterate all vnodelist items in all mounts (mntlist) -> mnt_vnodelist
9817 */
9818 TAILQ_FOREACH(mnt, &mountlist, mnt_list) {
9819 if (!ml_validate_nofault((vm_offset_t)mnt, sizeof(mount_t))) {
9820 paniclog_append_noflush("Unable to iterate the mount list %p - encountered an invalid mount pointer %p \n",
9821 &mountlist, mnt);
9822 break;
9823 }
9824
9825 TAILQ_FOREACH(vp, &mnt->mnt_vnodelist, v_mntvnodes) {
9826 if (!ml_validate_nofault((vm_offset_t)vp, sizeof(vnode_t))) {
9827 paniclog_append_noflush("Unable to iterate the vnode list %p - encountered an invalid vnode pointer %p \n",
9828 &mnt->mnt_vnodelist, vp);
9829 break;
9830 }
9831
9832 if (++nvnodes > SANE_VNODE_PRINT_LIMIT) {
9833 return;
9834 }
9835 type = __vtype(vp->v_type);
9836 nm = __vpath(vp, vname, sizeof(vname) - 1, 0);
9837 paniclog_append_noflush("%s %0d %0d %s\n",
9838 type, vp->v_usecount, vp->v_iocount, nm);
9839 }
9840 }
9841 }
9842
9843 #else /* !PANIC_PRINTS_VNODES */
9844 void
9845 panic_print_vnodes(void)
9846 {
9847 return;
9848 }
9849 #endif
9850
9851
9852 #ifdef JOE_DEBUG
9853 static void
9854 record_vp(vnode_t vp, int count)
9855 {
9856 struct uthread *ut;
9857
9858 #if CONFIG_TRIGGERS
9859 if (vp->v_resolve) {
9860 return;
9861 }
9862 #endif
9863 if ((vp->v_flag & VSYSTEM)) {
9864 return;
9865 }
9866
9867 ut = get_bsdthread_info(current_thread());
9868 ut->uu_iocount += count;
9869
9870 if (count == 1) {
9871 if (ut->uu_vpindex < 32) {
9872 OSBacktrace((void **)&ut->uu_pcs[ut->uu_vpindex][0], 10);
9873
9874 ut->uu_vps[ut->uu_vpindex] = vp;
9875 ut->uu_vpindex++;
9876 }
9877 }
9878 }
9879 #endif
9880
9881
9882 #if CONFIG_TRIGGERS
9883
9884 #define TRIG_DEBUG 0
9885
9886 #if TRIG_DEBUG
9887 #define TRIG_LOG(...) do { printf("%s: ", __FUNCTION__); printf(__VA_ARGS__); } while (0)
9888 #else
9889 #define TRIG_LOG(...)
9890 #endif
9891
9892 /*
9893 * Resolver result functions
9894 */
9895
9896 resolver_result_t
9897 vfs_resolver_result(uint32_t seq, enum resolver_status stat, int aux)
9898 {
9899 /*
9900 * |<--- 32 --->|<--- 28 --->|<- 4 ->|
9901 * sequence auxiliary status
9902 */
9903 return (((uint64_t)seq) << 32) |
9904 (((uint64_t)(aux & 0x0fffffff)) << 4) |
9905 (uint64_t)(stat & 0x0000000F);
9906 }
9907
9908 enum resolver_status
9909 vfs_resolver_status(resolver_result_t result)
9910 {
9911 /* lower 4 bits is status */
9912 return result & 0x0000000F;
9913 }
9914
9915 uint32_t
9916 vfs_resolver_sequence(resolver_result_t result)
9917 {
9918 /* upper 32 bits is sequence */
9919 return (uint32_t)(result >> 32);
9920 }
9921
9922 int
9923 vfs_resolver_auxiliary(resolver_result_t result)
9924 {
9925 /* 28 bits of auxiliary */
9926 return (int)(((uint32_t)(result & 0xFFFFFFF0)) >> 4);
9927 }
9928
9929 /*
9930 * SPI
9931 * Call in for resolvers to update vnode trigger state
9932 */
9933 int
9934 vnode_trigger_update(vnode_t vp, resolver_result_t result)
9935 {
9936 vnode_resolve_t rp;
9937 uint32_t seq;
9938 enum resolver_status stat;
9939
9940 if (vp->v_resolve == NULL) {
9941 return EINVAL;
9942 }
9943
9944 stat = vfs_resolver_status(result);
9945 seq = vfs_resolver_sequence(result);
9946
9947 if ((stat != RESOLVER_RESOLVED) && (stat != RESOLVER_UNRESOLVED)) {
9948 return EINVAL;
9949 }
9950
9951 rp = vp->v_resolve;
9952 lck_mtx_lock(&rp->vr_lock);
9953
9954 if (seq > rp->vr_lastseq) {
9955 if (stat == RESOLVER_RESOLVED) {
9956 rp->vr_flags |= VNT_RESOLVED;
9957 } else {
9958 rp->vr_flags &= ~VNT_RESOLVED;
9959 }
9960
9961 rp->vr_lastseq = seq;
9962 }
9963
9964 lck_mtx_unlock(&rp->vr_lock);
9965
9966 return 0;
9967 }
9968
9969 static int
9970 vnode_resolver_attach(vnode_t vp, vnode_resolve_t rp, boolean_t ref)
9971 {
9972 int error;
9973
9974 vnode_lock_spin(vp);
9975 if (vp->v_resolve != NULL) {
9976 vnode_unlock(vp);
9977 return EINVAL;
9978 } else {
9979 vp->v_resolve = rp;
9980 }
9981 vnode_unlock(vp);
9982
9983 if (ref) {
9984 error = vnode_ref_ext(vp, O_EVTONLY, VNODE_REF_FORCE);
9985 if (error != 0) {
9986 panic("VNODE_REF_FORCE didn't help...");
9987 }
9988 }
9989
9990 return 0;
9991 }
9992
9993 /*
9994 * VFS internal interfaces for vnode triggers
9995 *
9996 * vnode must already have an io count on entry
9997 * v_resolve is stable when io count is non-zero
9998 */
9999 static int
10000 vnode_resolver_create(mount_t mp, vnode_t vp, struct vnode_trigger_param *tinfo, boolean_t external)
10001 {
10002 vnode_resolve_t rp;
10003 int result;
10004 char byte;
10005
10006 #if 1
10007 /* minimum pointer test (debugging) */
10008 if (tinfo->vnt_data) {
10009 byte = *((char *)tinfo->vnt_data);
10010 }
10011 #endif
10012 MALLOC(rp, vnode_resolve_t, sizeof(*rp), M_TEMP, M_WAITOK);
10013 if (rp == NULL) {
10014 return ENOMEM;
10015 }
10016
10017 lck_mtx_init(&rp->vr_lock, trigger_vnode_lck_grp, trigger_vnode_lck_attr);
10018
10019 rp->vr_resolve_func = tinfo->vnt_resolve_func;
10020 rp->vr_unresolve_func = tinfo->vnt_unresolve_func;
10021 rp->vr_rearm_func = tinfo->vnt_rearm_func;
10022 rp->vr_reclaim_func = tinfo->vnt_reclaim_func;
10023 rp->vr_data = tinfo->vnt_data;
10024 rp->vr_lastseq = 0;
10025 rp->vr_flags = tinfo->vnt_flags & VNT_VALID_MASK;
10026 if (external) {
10027 rp->vr_flags |= VNT_EXTERNAL;
10028 }
10029
10030 result = vnode_resolver_attach(vp, rp, external);
10031 if (result != 0) {
10032 goto out;
10033 }
10034
10035 if (mp) {
10036 OSAddAtomic(1, &mp->mnt_numtriggers);
10037 }
10038
10039 return result;
10040
10041 out:
10042 FREE(rp, M_TEMP);
10043 return result;
10044 }
10045
10046 static void
10047 vnode_resolver_release(vnode_resolve_t rp)
10048 {
10049 /*
10050 * Give them a chance to free any private data
10051 */
10052 if (rp->vr_data && rp->vr_reclaim_func) {
10053 rp->vr_reclaim_func(NULLVP, rp->vr_data);
10054 }
10055
10056 lck_mtx_destroy(&rp->vr_lock, trigger_vnode_lck_grp);
10057 FREE(rp, M_TEMP);
10058 }
10059
10060 /* Called after the vnode has been drained */
10061 static void
10062 vnode_resolver_detach(vnode_t vp)
10063 {
10064 vnode_resolve_t rp;
10065 mount_t mp;
10066
10067 mp = vnode_mount(vp);
10068
10069 vnode_lock(vp);
10070 rp = vp->v_resolve;
10071 vp->v_resolve = NULL;
10072 vnode_unlock(vp);
10073
10074 if ((rp->vr_flags & VNT_EXTERNAL) != 0) {
10075 vnode_rele_ext(vp, O_EVTONLY, 1);
10076 }
10077
10078 vnode_resolver_release(rp);
10079
10080 /* Keep count of active trigger vnodes per mount */
10081 OSAddAtomic(-1, &mp->mnt_numtriggers);
10082 }
10083
10084 __private_extern__
10085 void
10086 vnode_trigger_rearm(vnode_t vp, vfs_context_t ctx)
10087 {
10088 vnode_resolve_t rp;
10089 resolver_result_t result;
10090 enum resolver_status status;
10091 uint32_t seq;
10092
10093 if ((vp->v_resolve == NULL) ||
10094 (vp->v_resolve->vr_rearm_func == NULL) ||
10095 (vp->v_resolve->vr_flags & VNT_AUTO_REARM) == 0) {
10096 return;
10097 }
10098
10099 rp = vp->v_resolve;
10100 lck_mtx_lock(&rp->vr_lock);
10101
10102 /*
10103 * Check if VFS initiated this unmount. If so, we'll catch it after the unresolve completes.
10104 */
10105 if (rp->vr_flags & VNT_VFS_UNMOUNTED) {
10106 lck_mtx_unlock(&rp->vr_lock);
10107 return;
10108 }
10109
10110 /* Check if this vnode is already armed */
10111 if ((rp->vr_flags & VNT_RESOLVED) == 0) {
10112 lck_mtx_unlock(&rp->vr_lock);
10113 return;
10114 }
10115
10116 lck_mtx_unlock(&rp->vr_lock);
10117
10118 result = rp->vr_rearm_func(vp, 0, rp->vr_data, ctx);
10119 status = vfs_resolver_status(result);
10120 seq = vfs_resolver_sequence(result);
10121
10122 lck_mtx_lock(&rp->vr_lock);
10123 if (seq > rp->vr_lastseq) {
10124 if (status == RESOLVER_UNRESOLVED) {
10125 rp->vr_flags &= ~VNT_RESOLVED;
10126 }
10127 rp->vr_lastseq = seq;
10128 }
10129 lck_mtx_unlock(&rp->vr_lock);
10130 }
10131
10132 __private_extern__
10133 int
10134 vnode_trigger_resolve(vnode_t vp, struct nameidata *ndp, vfs_context_t ctx)
10135 {
10136 vnode_resolve_t rp;
10137 enum path_operation op;
10138 resolver_result_t result;
10139 enum resolver_status status;
10140 uint32_t seq;
10141
10142 /* Only trigger on topmost vnodes */
10143 if ((vp->v_resolve == NULL) ||
10144 (vp->v_resolve->vr_resolve_func == NULL) ||
10145 (vp->v_mountedhere != NULL)) {
10146 return 0;
10147 }
10148
10149 rp = vp->v_resolve;
10150 lck_mtx_lock(&rp->vr_lock);
10151
10152 /* Check if this vnode is already resolved */
10153 if (rp->vr_flags & VNT_RESOLVED) {
10154 lck_mtx_unlock(&rp->vr_lock);
10155 return 0;
10156 }
10157
10158 lck_mtx_unlock(&rp->vr_lock);
10159
10160 #if CONFIG_MACF
10161 if ((rp->vr_flags & VNT_KERN_RESOLVE) == 0) {
10162 /*
10163 * VNT_KERN_RESOLVE indicates this trigger has no parameters
10164 * at the discression of the accessing process other than
10165 * the act of access. All other triggers must be checked
10166 */
10167 int rv = mac_vnode_check_trigger_resolve(ctx, vp, &ndp->ni_cnd);
10168 if (rv != 0) {
10169 return rv;
10170 }
10171 }
10172 #endif
10173
10174 /*
10175 * XXX
10176 * assumes that resolver will not access this trigger vnode (otherwise the kernel will deadlock)
10177 * is there anyway to know this???
10178 * there can also be other legitimate lookups in parallel
10179 *
10180 * XXX - should we call this on a separate thread with a timeout?
10181 *
10182 * XXX - should we use ISLASTCN to pick the op value??? Perhaps only leafs should
10183 * get the richer set and non-leafs should get generic OP_LOOKUP? TBD
10184 */
10185 op = (ndp->ni_op < OP_MAXOP) ? ndp->ni_op: OP_LOOKUP;
10186
10187 result = rp->vr_resolve_func(vp, &ndp->ni_cnd, op, 0, rp->vr_data, ctx);
10188 status = vfs_resolver_status(result);
10189 seq = vfs_resolver_sequence(result);
10190
10191 lck_mtx_lock(&rp->vr_lock);
10192 if (seq > rp->vr_lastseq) {
10193 if (status == RESOLVER_RESOLVED) {
10194 rp->vr_flags |= VNT_RESOLVED;
10195 }
10196 rp->vr_lastseq = seq;
10197 }
10198 lck_mtx_unlock(&rp->vr_lock);
10199
10200 /* On resolver errors, propagate the error back up */
10201 return status == RESOLVER_ERROR ? vfs_resolver_auxiliary(result) : 0;
10202 }
10203
10204 static int
10205 vnode_trigger_unresolve(vnode_t vp, int flags, vfs_context_t ctx)
10206 {
10207 vnode_resolve_t rp;
10208 resolver_result_t result;
10209 enum resolver_status status;
10210 uint32_t seq;
10211
10212 if ((vp->v_resolve == NULL) || (vp->v_resolve->vr_unresolve_func == NULL)) {
10213 return 0;
10214 }
10215
10216 rp = vp->v_resolve;
10217 lck_mtx_lock(&rp->vr_lock);
10218
10219 /* Check if this vnode is already resolved */
10220 if ((rp->vr_flags & VNT_RESOLVED) == 0) {
10221 printf("vnode_trigger_unresolve: not currently resolved\n");
10222 lck_mtx_unlock(&rp->vr_lock);
10223 return 0;
10224 }
10225
10226 rp->vr_flags |= VNT_VFS_UNMOUNTED;
10227
10228 lck_mtx_unlock(&rp->vr_lock);
10229
10230 /*
10231 * XXX
10232 * assumes that resolver will not access this trigger vnode (otherwise the kernel will deadlock)
10233 * there can also be other legitimate lookups in parallel
10234 *
10235 * XXX - should we call this on a separate thread with a timeout?
10236 */
10237
10238 result = rp->vr_unresolve_func(vp, flags, rp->vr_data, ctx);
10239 status = vfs_resolver_status(result);
10240 seq = vfs_resolver_sequence(result);
10241
10242 lck_mtx_lock(&rp->vr_lock);
10243 if (seq > rp->vr_lastseq) {
10244 if (status == RESOLVER_UNRESOLVED) {
10245 rp->vr_flags &= ~VNT_RESOLVED;
10246 }
10247 rp->vr_lastseq = seq;
10248 }
10249 rp->vr_flags &= ~VNT_VFS_UNMOUNTED;
10250 lck_mtx_unlock(&rp->vr_lock);
10251
10252 /* On resolver errors, propagate the error back up */
10253 return status == RESOLVER_ERROR ? vfs_resolver_auxiliary(result) : 0;
10254 }
10255
10256 static int
10257 triggerisdescendant(mount_t mp, mount_t rmp)
10258 {
10259 int match = FALSE;
10260
10261 /*
10262 * walk up vnode covered chain looking for a match
10263 */
10264 name_cache_lock_shared();
10265
10266 while (1) {
10267 vnode_t vp;
10268
10269 /* did we encounter "/" ? */
10270 if (mp->mnt_flag & MNT_ROOTFS) {
10271 break;
10272 }
10273
10274 vp = mp->mnt_vnodecovered;
10275 if (vp == NULLVP) {
10276 break;
10277 }
10278
10279 mp = vp->v_mount;
10280 if (mp == rmp) {
10281 match = TRUE;
10282 break;
10283 }
10284 }
10285
10286 name_cache_unlock();
10287
10288 return match;
10289 }
10290
10291 struct trigger_unmount_info {
10292 vfs_context_t ctx;
10293 mount_t top_mp;
10294 vnode_t trigger_vp;
10295 mount_t trigger_mp;
10296 uint32_t trigger_vid;
10297 int flags;
10298 };
10299
10300 static int
10301 trigger_unmount_callback(mount_t mp, void * arg)
10302 {
10303 struct trigger_unmount_info * infop = (struct trigger_unmount_info *)arg;
10304 boolean_t mountedtrigger = FALSE;
10305
10306 /*
10307 * When we encounter the top level mount we're done
10308 */
10309 if (mp == infop->top_mp) {
10310 return VFS_RETURNED_DONE;
10311 }
10312
10313 if ((mp->mnt_vnodecovered == NULL) ||
10314 (vnode_getwithref(mp->mnt_vnodecovered) != 0)) {
10315 return VFS_RETURNED;
10316 }
10317
10318 if ((mp->mnt_vnodecovered->v_mountedhere == mp) &&
10319 (mp->mnt_vnodecovered->v_resolve != NULL) &&
10320 (mp->mnt_vnodecovered->v_resolve->vr_flags & VNT_RESOLVED)) {
10321 mountedtrigger = TRUE;
10322 }
10323 vnode_put(mp->mnt_vnodecovered);
10324
10325 /*
10326 * When we encounter a mounted trigger, check if its under the top level mount
10327 */
10328 if (!mountedtrigger || !triggerisdescendant(mp, infop->top_mp)) {
10329 return VFS_RETURNED;
10330 }
10331
10332 /*
10333 * Process any pending nested mount (now that its not referenced)
10334 */
10335 if ((infop->trigger_vp != NULLVP) &&
10336 (vnode_getwithvid(infop->trigger_vp, infop->trigger_vid) == 0)) {
10337 vnode_t vp = infop->trigger_vp;
10338 int error;
10339
10340 infop->trigger_vp = NULLVP;
10341
10342 if (mp == vp->v_mountedhere) {
10343 vnode_put(vp);
10344 printf("trigger_unmount_callback: unexpected match '%s'\n",
10345 mp->mnt_vfsstat.f_mntonname);
10346 return VFS_RETURNED;
10347 }
10348 if (infop->trigger_mp != vp->v_mountedhere) {
10349 vnode_put(vp);
10350 printf("trigger_unmount_callback: trigger mnt changed! (%p != %p)\n",
10351 infop->trigger_mp, vp->v_mountedhere);
10352 goto savenext;
10353 }
10354
10355 error = vnode_trigger_unresolve(vp, infop->flags, infop->ctx);
10356 vnode_put(vp);
10357 if (error) {
10358 printf("unresolving: '%s', err %d\n",
10359 vp->v_mountedhere ? vp->v_mountedhere->mnt_vfsstat.f_mntonname :
10360 "???", error);
10361 return VFS_RETURNED_DONE; /* stop iteration on errors */
10362 }
10363 }
10364 savenext:
10365 /*
10366 * We can't call resolver here since we hold a mount iter
10367 * ref on mp so save its covered vp for later processing
10368 */
10369 infop->trigger_vp = mp->mnt_vnodecovered;
10370 if ((infop->trigger_vp != NULLVP) &&
10371 (vnode_getwithref(infop->trigger_vp) == 0)) {
10372 if (infop->trigger_vp->v_mountedhere == mp) {
10373 infop->trigger_vid = infop->trigger_vp->v_id;
10374 infop->trigger_mp = mp;
10375 }
10376 vnode_put(infop->trigger_vp);
10377 }
10378
10379 return VFS_RETURNED;
10380 }
10381
10382 /*
10383 * Attempt to unmount any trigger mounts nested underneath a mount.
10384 * This is a best effort attempt and no retries are performed here.
10385 *
10386 * Note: mp->mnt_rwlock is held exclusively on entry (so be carefull)
10387 */
10388 __private_extern__
10389 void
10390 vfs_nested_trigger_unmounts(mount_t mp, int flags, vfs_context_t ctx)
10391 {
10392 struct trigger_unmount_info info;
10393
10394 /* Must have trigger vnodes */
10395 if (mp->mnt_numtriggers == 0) {
10396 return;
10397 }
10398 /* Avoid recursive requests (by checking covered vnode) */
10399 if ((mp->mnt_vnodecovered != NULL) &&
10400 (vnode_getwithref(mp->mnt_vnodecovered) == 0)) {
10401 boolean_t recursive = FALSE;
10402
10403 if ((mp->mnt_vnodecovered->v_mountedhere == mp) &&
10404 (mp->mnt_vnodecovered->v_resolve != NULL) &&
10405 (mp->mnt_vnodecovered->v_resolve->vr_flags & VNT_VFS_UNMOUNTED)) {
10406 recursive = TRUE;
10407 }
10408 vnode_put(mp->mnt_vnodecovered);
10409 if (recursive) {
10410 return;
10411 }
10412 }
10413
10414 /*
10415 * Attempt to unmount any nested trigger mounts (best effort)
10416 */
10417 info.ctx = ctx;
10418 info.top_mp = mp;
10419 info.trigger_vp = NULLVP;
10420 info.trigger_vid = 0;
10421 info.trigger_mp = NULL;
10422 info.flags = flags;
10423
10424 (void) vfs_iterate(VFS_ITERATE_TAIL_FIRST, trigger_unmount_callback, &info);
10425
10426 /*
10427 * Process remaining nested mount (now that its not referenced)
10428 */
10429 if ((info.trigger_vp != NULLVP) &&
10430 (vnode_getwithvid(info.trigger_vp, info.trigger_vid) == 0)) {
10431 vnode_t vp = info.trigger_vp;
10432
10433 if (info.trigger_mp == vp->v_mountedhere) {
10434 (void) vnode_trigger_unresolve(vp, flags, ctx);
10435 }
10436 vnode_put(vp);
10437 }
10438 }
10439
10440 int
10441 vfs_addtrigger(mount_t mp, const char *relpath, struct vnode_trigger_info *vtip, vfs_context_t ctx)
10442 {
10443 struct nameidata nd;
10444 int res;
10445 vnode_t rvp, vp;
10446 struct vnode_trigger_param vtp;
10447
10448 /*
10449 * Must be called for trigger callback, wherein rwlock is held
10450 */
10451 lck_rw_assert(&mp->mnt_rwlock, LCK_RW_ASSERT_HELD);
10452
10453 TRIG_LOG("Adding trigger at %s\n", relpath);
10454 TRIG_LOG("Trying VFS_ROOT\n");
10455
10456 /*
10457 * We do a lookup starting at the root of the mountpoint, unwilling
10458 * to cross into other mountpoints.
10459 */
10460 res = VFS_ROOT(mp, &rvp, ctx);
10461 if (res != 0) {
10462 goto out;
10463 }
10464
10465 TRIG_LOG("Trying namei\n");
10466
10467 NDINIT(&nd, LOOKUP, OP_LOOKUP, USEDVP | NOCROSSMOUNT | FOLLOW, UIO_SYSSPACE,
10468 CAST_USER_ADDR_T(relpath), ctx);
10469 nd.ni_dvp = rvp;
10470 res = namei(&nd);
10471 if (res != 0) {
10472 vnode_put(rvp);
10473 goto out;
10474 }
10475
10476 vp = nd.ni_vp;
10477 nameidone(&nd);
10478 vnode_put(rvp);
10479
10480 TRIG_LOG("Trying vnode_resolver_create()\n");
10481
10482 /*
10483 * Set up blob. vnode_create() takes a larger structure
10484 * with creation info, and we needed something different
10485 * for this case. One needs to win, or we need to munge both;
10486 * vnode_create() wins.
10487 */
10488 bzero(&vtp, sizeof(vtp));
10489 vtp.vnt_resolve_func = vtip->vti_resolve_func;
10490 vtp.vnt_unresolve_func = vtip->vti_unresolve_func;
10491 vtp.vnt_rearm_func = vtip->vti_rearm_func;
10492 vtp.vnt_reclaim_func = vtip->vti_reclaim_func;
10493 vtp.vnt_reclaim_func = vtip->vti_reclaim_func;
10494 vtp.vnt_data = vtip->vti_data;
10495 vtp.vnt_flags = vtip->vti_flags;
10496
10497 res = vnode_resolver_create(mp, vp, &vtp, TRUE);
10498 vnode_put(vp);
10499 out:
10500 TRIG_LOG("Returning %d\n", res);
10501 return res;
10502 }
10503
10504 #endif /* CONFIG_TRIGGERS */
10505
10506 vm_offset_t
10507 kdebug_vnode(vnode_t vp)
10508 {
10509 return VM_KERNEL_ADDRPERM(vp);
10510 }
10511
10512 static int flush_cache_on_write = 0;
10513 SYSCTL_INT(_kern, OID_AUTO, flush_cache_on_write,
10514 CTLFLAG_RW | CTLFLAG_LOCKED, &flush_cache_on_write, 0,
10515 "always flush the drive cache on writes to uncached files");
10516
10517 int
10518 vnode_should_flush_after_write(vnode_t vp, int ioflag)
10519 {
10520 return flush_cache_on_write
10521 && (ISSET(ioflag, IO_NOCACHE) || vnode_isnocache(vp));
10522 }
10523
10524 /*
10525 * sysctl for use by disk I/O tracing tools to get the list of existing
10526 * vnodes' paths
10527 */
10528
10529 struct vnode_trace_paths_context {
10530 uint64_t count;
10531 long path[MAXPATHLEN / sizeof(long) + 1]; /* + 1 in case sizeof (long) does not divide MAXPATHLEN */
10532 };
10533
10534 static int
10535 vnode_trace_path_callback(struct vnode *vp, void *arg)
10536 {
10537 int len, rv;
10538 struct vnode_trace_paths_context *ctx;
10539
10540 ctx = arg;
10541
10542 len = sizeof(ctx->path);
10543 rv = vn_getpath(vp, (char *)ctx->path, &len);
10544 /* vn_getpath() NUL-terminates, and len includes the NUL */
10545
10546 if (!rv) {
10547 kdebug_vfs_lookup(ctx->path, len, vp,
10548 KDBG_VFS_LOOKUP_FLAG_LOOKUP | KDBG_VFS_LOOKUP_FLAG_NOPROCFILT);
10549
10550 if (++(ctx->count) == 1000) {
10551 thread_yield_to_preemption();
10552 ctx->count = 0;
10553 }
10554 }
10555
10556 return VNODE_RETURNED;
10557 }
10558
10559 static int
10560 vfs_trace_paths_callback(mount_t mp, void *arg)
10561 {
10562 if (mp->mnt_flag & MNT_LOCAL) {
10563 vnode_iterate(mp, VNODE_ITERATE_ALL, vnode_trace_path_callback, arg);
10564 }
10565
10566 return VFS_RETURNED;
10567 }
10568
10569 static int sysctl_vfs_trace_paths SYSCTL_HANDLER_ARGS {
10570 struct vnode_trace_paths_context ctx;
10571
10572 (void)oidp;
10573 (void)arg1;
10574 (void)arg2;
10575 (void)req;
10576
10577 if (!kauth_cred_issuser(kauth_cred_get())) {
10578 return EPERM;
10579 }
10580
10581 if (!kdebug_enable || !kdebug_debugid_enabled(VFS_LOOKUP)) {
10582 return EINVAL;
10583 }
10584
10585 bzero(&ctx, sizeof(struct vnode_trace_paths_context));
10586
10587 vfs_iterate(0, vfs_trace_paths_callback, &ctx);
10588
10589 return 0;
10590 }
10591
10592 SYSCTL_PROC(_vfs_generic, OID_AUTO, trace_paths, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, NULL, 0, &sysctl_vfs_trace_paths, "-", "trace_paths");