2 * Copyright (c) 2003-2018 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1988, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/malloc.h>
97 #include <sys/domain.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/kernel.h>
104 #include <sys/syslog.h>
105 #include <sys/sysctl.h>
106 #include <sys/proc.h>
107 #include <sys/kauth.h>
108 #include <sys/mcache.h>
110 #include <mach/mach_time.h>
111 #include <mach/sdt.h>
112 #include <pexpert/pexpert.h>
113 #include <dev/random/randomdev.h>
116 #include <net/if_var.h>
117 #include <net/if_types.h>
118 #include <net/if_dl.h>
119 #include <net/route.h>
120 #include <net/kpi_protocol.h>
121 #include <net/ntstat.h>
122 #include <net/init.h>
123 #include <net/net_osdep.h>
124 #include <net/net_perf.h>
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/ip_icmp.h>
132 #include <netinet/kpi_ipfilter_var.h>
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_var.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/icmp6.h>
138 #include <netinet6/in6_ifattach.h>
139 #include <netinet6/nd6.h>
140 #include <netinet6/scope6_var.h>
141 #include <netinet6/ip6protosw.h>
144 #include <netinet6/ipsec.h>
145 #include <netinet6/ipsec6.h>
146 extern int ipsec_bypass
;
150 #include <netinet/ip_fw.h>
151 #include <netinet/ip_dummynet.h>
152 #endif /* DUMMYNET */
154 /* we need it for NLOOP. */
158 #include <net/pfvar.h>
161 struct ip6protosw
*ip6_protox
[IPPROTO_MAX
];
163 static lck_grp_attr_t
*in6_ifaddr_rwlock_grp_attr
;
164 static lck_grp_t
*in6_ifaddr_rwlock_grp
;
165 static lck_attr_t
*in6_ifaddr_rwlock_attr
;
166 decl_lck_rw_data(, in6_ifaddr_rwlock
);
168 /* Protected by in6_ifaddr_rwlock */
169 struct in6_ifaddr
*in6_ifaddrs
= NULL
;
171 #define IN6_IFSTAT_REQUIRE_ALIGNED_64(f) \
172 _CASSERT(!(offsetof(struct in6_ifstat, f) % sizeof (uint64_t)))
174 #define ICMP6_IFSTAT_REQUIRE_ALIGNED_64(f) \
175 _CASSERT(!(offsetof(struct icmp6_ifstat, f) % sizeof (uint64_t)))
177 struct ip6stat ip6stat
;
179 decl_lck_mtx_data(, proxy6_lock
);
180 decl_lck_mtx_data(static, dad6_mutex_data
);
181 decl_lck_mtx_data(static, nd6_mutex_data
);
182 decl_lck_mtx_data(static, prefix6_mutex_data
);
183 lck_mtx_t
*dad6_mutex
= &dad6_mutex_data
;
184 lck_mtx_t
*nd6_mutex
= &nd6_mutex_data
;
185 lck_mtx_t
*prefix6_mutex
= &prefix6_mutex_data
;
186 #ifdef ENABLE_ADDRSEL
187 decl_lck_mtx_data(static, addrsel_mutex_data
);
188 lck_mtx_t
*addrsel_mutex
= &addrsel_mutex_data
;
190 static lck_attr_t
*ip6_mutex_attr
;
191 static lck_grp_t
*ip6_mutex_grp
;
192 static lck_grp_attr_t
*ip6_mutex_grp_attr
;
194 extern int loopattach_done
;
195 extern void addrsel_policy_init(void);
197 static int sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS
;
198 static int sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS
;
199 static int sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS
;
200 static void ip6_init_delayed(void);
201 static int ip6_hopopts_input(u_int32_t
*, u_int32_t
*, struct mbuf
**, int *);
204 extern void stfattach(void);
207 SYSCTL_DECL(_net_inet6_ip6
);
209 static uint32_t ip6_adj_clear_hwcksum
= 0;
210 SYSCTL_UINT(_net_inet6_ip6
, OID_AUTO
, adj_clear_hwcksum
,
211 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_adj_clear_hwcksum
, 0,
212 "Invalidate hwcksum info when adjusting length");
214 static uint32_t ip6_adj_partial_sum
= 1;
215 SYSCTL_UINT(_net_inet6_ip6
, OID_AUTO
, adj_partial_sum
,
216 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_adj_partial_sum
, 0,
217 "Perform partial sum adjustment of trailing bytes at IP layer");
219 static int ip6_input_measure
= 0;
220 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, input_perf
,
221 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
222 &ip6_input_measure
, 0, sysctl_reset_ip6_input_stats
, "I", "Do time measurement");
224 static uint64_t ip6_input_measure_bins
= 0;
225 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, input_perf_bins
,
226 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_input_measure_bins
, 0,
227 sysctl_ip6_input_measure_bins
, "I",
228 "bins for chaining performance data histogram");
230 static net_perf_t net_perf
;
231 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, input_perf_data
,
232 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
233 0, 0, sysctl_ip6_input_getperf
, "S,net_perf",
234 "IP6 input performance data (struct net_perf, net/net_perf.h)");
237 * On platforms which require strict alignment (currently for anything but
238 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
239 * copy the contents of the mbuf chain into a new chain, and free the original
240 * one. Create some head room in the first mbuf of the new chain, in case
241 * it's needed later on.
243 * RFC 2460 says that IPv6 headers are 64-bit aligned, but network interfaces
244 * mostly align to 32-bit boundaries. Care should be taken never to use 64-bit
245 * load/store operations on the fields in IPv6 headers.
247 #if defined(__i386__) || defined(__x86_64__)
248 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
249 #else /* !__i386__ && !__x86_64__ */
250 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
251 if (!IP6_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
253 struct ifnet *__ifp = (_ifp); \
254 atomic_add_64(&(__ifp)->if_alignerrs, 1); \
255 if (((_m)->m_flags & M_PKTHDR) && \
256 (_m)->m_pkthdr.pkt_hdr != NULL) \
257 (_m)->m_pkthdr.pkt_hdr = NULL; \
258 _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
260 ip6stat.ip6s_toosmall++; \
265 VERIFY(_n != (_m)); \
270 #endif /* !__i386__ && !__x86_64__ */
273 ip6_proto_input(protocol_family_t protocol
, mbuf_t packet
)
275 #pragma unused(protocol)
277 struct timeval start_tv
;
278 if (ip6_input_measure
) {
279 net_perf_start_time(&net_perf
, &start_tv
);
284 if (ip6_input_measure
) {
285 net_perf_measure_time(&net_perf
, &start_tv
, 1);
286 net_perf_histogram(&net_perf
, 1);
292 * IP6 initialization: fill in IP6 protocol switch table.
293 * All protocols not implemented in kernel go to raw IP6 protocol handler.
296 ip6_init(struct ip6protosw
*pp
, struct domain
*dp
)
298 static int ip6_initialized
= 0;
302 domain_unguard_t unguard
;
304 domain_proto_mtx_lock_assert_held();
305 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
| PR_ATTACHED
)) == PR_ATTACHED
);
307 _CASSERT((sizeof(struct ip6_hdr
) +
308 sizeof(struct icmp6_hdr
)) <= _MHLEN
);
310 if (ip6_initialized
) {
315 eventhandler_lists_ctxt_init(&in6_evhdlr_ctxt
);
316 (void)EVENTHANDLER_REGISTER(&in6_evhdlr_ctxt
, in6_event
,
317 in6_eventhdlr_callback
, eventhandler_entry_dummy_arg
,
318 EVENTHANDLER_PRI_ANY
);
320 eventhandler_lists_ctxt_init(&in6_clat46_evhdlr_ctxt
);
321 (void)EVENTHANDLER_REGISTER(&in6_clat46_evhdlr_ctxt
, in6_clat46_event
,
322 in6_clat46_eventhdlr_callback
, eventhandler_entry_dummy_arg
,
323 EVENTHANDLER_PRI_ANY
);
325 for (i
= 0; i
< IN6_EVENT_MAX
; i
++) {
326 VERIFY(in6_event2kev_array
[i
].in6_event_code
== i
);
329 pr
= pffindproto_locked(PF_INET6
, IPPROTO_RAW
, SOCK_RAW
);
331 panic("%s: Unable to find [PF_INET6,IPPROTO_RAW,SOCK_RAW]\n",
336 /* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */
337 for (i
= 0; i
< IPPROTO_MAX
; i
++) {
338 ip6_protox
[i
] = (struct ip6protosw
*)pr
;
341 * Cycle through IP protocols and put them into the appropriate place
342 * in ip6_protox[], skipping protocols IPPROTO_{IP,RAW}.
344 VERIFY(dp
== inet6domain
&& dp
->dom_family
== PF_INET6
);
345 TAILQ_FOREACH(pr
, &dp
->dom_protosw
, pr_entry
) {
346 VERIFY(pr
->pr_domain
== dp
);
347 if (pr
->pr_protocol
!= 0 && pr
->pr_protocol
!= IPPROTO_RAW
) {
348 /* Be careful to only index valid IP protocols. */
349 if (pr
->pr_protocol
< IPPROTO_MAX
) {
350 ip6_protox
[pr
->pr_protocol
] =
351 (struct ip6protosw
*)pr
;
356 ip6_mutex_grp_attr
= lck_grp_attr_alloc_init();
358 ip6_mutex_grp
= lck_grp_alloc_init("ip6", ip6_mutex_grp_attr
);
359 ip6_mutex_attr
= lck_attr_alloc_init();
361 lck_mtx_init(dad6_mutex
, ip6_mutex_grp
, ip6_mutex_attr
);
362 lck_mtx_init(nd6_mutex
, ip6_mutex_grp
, ip6_mutex_attr
);
363 lck_mtx_init(prefix6_mutex
, ip6_mutex_grp
, ip6_mutex_attr
);
364 scope6_init(ip6_mutex_grp
, ip6_mutex_attr
);
366 #ifdef ENABLE_ADDRSEL
367 lck_mtx_init(addrsel_mutex
, ip6_mutex_grp
, ip6_mutex_attr
);
370 lck_mtx_init(&proxy6_lock
, ip6_mutex_grp
, ip6_mutex_attr
);
372 in6_ifaddr_rwlock_grp_attr
= lck_grp_attr_alloc_init();
373 in6_ifaddr_rwlock_grp
= lck_grp_alloc_init("in6_ifaddr_rwlock",
374 in6_ifaddr_rwlock_grp_attr
);
375 in6_ifaddr_rwlock_attr
= lck_attr_alloc_init();
376 lck_rw_init(&in6_ifaddr_rwlock
, in6_ifaddr_rwlock_grp
,
377 in6_ifaddr_rwlock_attr
);
379 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_receive
);
380 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_hdrerr
);
381 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_toobig
);
382 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_noroute
);
383 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_addrerr
);
384 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_protounknown
);
385 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_truncated
);
386 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_discard
);
387 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_deliver
);
388 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_forward
);
389 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_request
);
390 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_discard
);
391 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragok
);
392 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragfail
);
393 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragcreat
);
394 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_reqd
);
395 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_ok
);
396 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_fail
);
397 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mcast
);
398 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mcast
);
400 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_msg
);
401 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_error
);
402 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_dstunreach
);
403 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_adminprohib
);
404 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_timeexceed
);
405 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_paramprob
);
406 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_pkttoobig
);
407 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echo
);
408 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echoreply
);
409 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routersolicit
);
410 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routeradvert
);
411 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighborsolicit
);
412 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighboradvert
);
413 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_redirect
);
414 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldquery
);
415 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldreport
);
416 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mlddone
);
418 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_msg
);
419 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_error
);
420 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_dstunreach
);
421 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_adminprohib
);
422 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_timeexceed
);
423 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_paramprob
);
424 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_pkttoobig
);
425 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echo
);
426 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echoreply
);
427 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routersolicit
);
428 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routeradvert
);
429 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighborsolicit
);
430 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighboradvert
);
431 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_redirect
);
432 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldquery
);
433 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldreport
);
434 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mlddone
);
438 (RandomULong() ^ tv
.tv_usec
) % MAX_TEMP_DESYNC_FACTOR
;
444 icmp6_init(NULL
, dp
);
445 addrsel_policy_init();
448 * P2P interfaces often route the local address to the loopback
449 * interface. At this point, lo0 hasn't been initialized yet, which
450 * means that we need to delay the IPv6 configuration of lo0.
452 net_init_add(ip6_init_delayed
);
454 unguard
= domain_unguard_deploy();
455 i
= proto_register_input(PF_INET6
, ip6_proto_input
, NULL
, 0);
457 panic("%s: failed to register PF_INET6 protocol: %d\n",
461 domain_unguard_release(unguard
);
465 ip6_init_delayed(void)
467 (void) in6_ifattach_prelim(lo_ifp
);
469 /* timer for regeneranation of temporary addresses randomize ID */
470 timeout(in6_tmpaddrtimer
, NULL
,
471 (ip6_temp_preferred_lifetime
- ip6_desync_factor
-
472 ip6_temp_regen_advance
) * hz
);
480 ip6_input_adjust(struct mbuf
*m
, struct ip6_hdr
*ip6
, uint32_t plen
,
483 boolean_t adjust
= TRUE
;
484 uint32_t tot_len
= sizeof(*ip6
) + plen
;
486 ASSERT(m_pktlen(m
) > tot_len
);
489 * Invalidate hardware checksum info if ip6_adj_clear_hwcksum
490 * is set; useful to handle buggy drivers. Note that this
491 * should not be enabled by default, as we may get here due
492 * to link-layer padding.
494 if (ip6_adj_clear_hwcksum
&&
495 (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
) &&
496 !(inifp
->if_flags
& IFF_LOOPBACK
) &&
497 !(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
498 m
->m_pkthdr
.csum_flags
&= ~CSUM_DATA_VALID
;
499 m
->m_pkthdr
.csum_data
= 0;
500 ip6stat
.ip6s_adj_hwcsum_clr
++;
504 * If partial checksum information is available, subtract
505 * out the partial sum of postpended extraneous bytes, and
506 * update the checksum metadata accordingly. By doing it
507 * here, the upper layer transport only needs to adjust any
508 * prepended extraneous bytes (else it will do both.)
510 if (ip6_adj_partial_sum
&&
511 (m
->m_pkthdr
.csum_flags
& (CSUM_DATA_VALID
| CSUM_PARTIAL
)) ==
512 (CSUM_DATA_VALID
| CSUM_PARTIAL
)) {
513 m
->m_pkthdr
.csum_rx_val
= m_adj_sum16(m
,
514 m
->m_pkthdr
.csum_rx_start
, m
->m_pkthdr
.csum_rx_start
,
515 (tot_len
- m
->m_pkthdr
.csum_rx_start
),
516 m
->m_pkthdr
.csum_rx_val
);
517 } else if ((m
->m_pkthdr
.csum_flags
&
518 (CSUM_DATA_VALID
| CSUM_PARTIAL
)) ==
519 (CSUM_DATA_VALID
| CSUM_PARTIAL
)) {
521 * If packet has partial checksum info and we decided not
522 * to subtract the partial sum of postpended extraneous
523 * bytes here (not the default case), leave that work to
524 * be handled by the other layers. For now, only TCP, UDP
525 * layers are capable of dealing with this. For all other
526 * protocols (including fragments), trim and ditch the
527 * partial sum as those layers might not implement partial
528 * checksumming (or adjustment) at all.
530 if (ip6
->ip6_nxt
== IPPROTO_TCP
||
531 ip6
->ip6_nxt
== IPPROTO_UDP
) {
534 m
->m_pkthdr
.csum_flags
&= ~CSUM_DATA_VALID
;
535 m
->m_pkthdr
.csum_data
= 0;
536 ip6stat
.ip6s_adj_hwcsum_clr
++;
542 if (m
->m_len
== m
->m_pkthdr
.len
) {
544 m
->m_pkthdr
.len
= tot_len
;
546 m_adj(m
, tot_len
- m
->m_pkthdr
.len
);
552 ip6_input(struct mbuf
*m
)
555 int off
= sizeof(struct ip6_hdr
), nest
;
557 u_int32_t rtalert
= ~0;
558 int nxt
= 0, ours
= 0;
559 struct ifnet
*inifp
, *deliverifp
= NULL
;
560 ipfilter_t inject_ipfref
= NULL
;
562 struct in6_ifaddr
*ia6
= NULL
;
563 struct sockaddr_in6
*dst6
;
566 #endif /* DUMMYNET */
568 struct route_in6 rin6
;
570 struct ip_fw_args args
;
571 #endif /* DUMMYNET */
573 #define rin6 ip6ibz.rin6
574 #define args ip6ibz.args
576 /* zero out {rin6, args} */
577 bzero(&ip6ibz
, sizeof(ip6ibz
));
580 * Check if the packet we received is valid after interface filter
583 MBUF_INPUT_CHECK(m
, m
->m_pkthdr
.rcvif
);
584 inifp
= m
->m_pkthdr
.rcvif
;
585 VERIFY(inifp
!= NULL
);
587 /* Perform IP header alignment fixup, if needed */
588 IP6_HDR_ALIGNMENT_FIXUP(m
, inifp
, return );
590 m
->m_pkthdr
.pkt_flags
&= ~PKTF_FORWARDED
;
593 * should the inner packet be considered authentic?
594 * see comment in ah4_input().
596 m
->m_flags
&= ~M_AUTHIPHDR
;
597 m
->m_flags
&= ~M_AUTHIPDGM
;
601 * make sure we don't have onion peering information into m_aux.
606 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
607 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
608 struct dn_pkt_tag
*dn_tag
;
610 dn_tag
= (struct dn_pkt_tag
*)(tag
+ 1);
612 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
614 m_tag_delete(m
, tag
);
617 if (args
.fwa_pf_rule
) {
618 ip6
= mtod(m
, struct ip6_hdr
*); /* In case PF got disabled */
622 #endif /* DUMMYNET */
625 * No need to proccess packet twice if we've already seen it.
627 inject_ipfref
= ipf_get_inject_filter(m
);
628 if (inject_ipfref
!= NULL
) {
629 ip6
= mtod(m
, struct ip6_hdr
*);
640 if (m
->m_flags
& M_EXT
) {
641 if (m
->m_next
!= NULL
) {
642 ip6stat
.ip6s_mext2m
++;
644 ip6stat
.ip6s_mext1
++;
647 #define M2MMAX (sizeof (ip6stat.ip6s_m2m) / sizeof (ip6stat.ip6s_m2m[0]))
648 if (m
->m_next
!= NULL
) {
649 if (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
) {
651 ip6stat
.ip6s_m2m
[ifnet_index(lo_ifp
)]++;
652 } else if (inifp
->if_index
< M2MMAX
) {
653 ip6stat
.ip6s_m2m
[inifp
->if_index
]++;
655 ip6stat
.ip6s_m2m
[0]++;
664 * Drop the packet if IPv6 operation is disabled on the interface.
666 if (inifp
->if_eflags
& IFEF_IPV6_DISABLED
) {
670 in6_ifstat_inc_na(inifp
, ifs6_in_receive
);
671 ip6stat
.ip6s_total
++;
674 * L2 bridge code and some other code can return mbuf chain
675 * that does not conform to KAME requirement. too bad.
676 * XXX: fails to join if interface MTU > MCLBYTES. jumbogram?
678 if (m
->m_next
!= NULL
&& m
->m_pkthdr
.len
< MCLBYTES
) {
681 MGETHDR(n
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
685 if (n
&& m
->m_pkthdr
.len
> MHLEN
) {
686 MCLGET(n
, M_DONTWAIT
);
687 if ((n
->m_flags
& M_EXT
) == 0) {
696 m_copydata(m
, 0, m
->m_pkthdr
.len
, mtod(n
, caddr_t
));
697 n
->m_len
= m
->m_pkthdr
.len
;
701 IP6_EXTHDR_CHECK(m
, 0, sizeof(struct ip6_hdr
), { goto done
; });
703 if (m
->m_len
< sizeof(struct ip6_hdr
)) {
704 if ((m
= m_pullup(m
, sizeof(struct ip6_hdr
))) == 0) {
705 ip6stat
.ip6s_toosmall
++;
706 in6_ifstat_inc(inifp
, ifs6_in_hdrerr
);
711 ip6
= mtod(m
, struct ip6_hdr
*);
713 if ((ip6
->ip6_vfc
& IPV6_VERSION_MASK
) != IPV6_VERSION
) {
714 ip6stat
.ip6s_badvers
++;
715 in6_ifstat_inc(inifp
, ifs6_in_hdrerr
);
719 ip6stat
.ip6s_nxthist
[ip6
->ip6_nxt
]++;
722 * Check against address spoofing/corruption.
724 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
) &&
725 IN6_IS_ADDR_LOOPBACK(&ip6
->ip6_src
)) {
726 ip6stat
.ip6s_badscope
++;
727 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
730 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
) ||
731 IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_dst
)) {
733 * XXX: "badscope" is not very suitable for a multicast source.
735 ip6stat
.ip6s_badscope
++;
736 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
739 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6
->ip6_dst
) &&
740 !(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
742 * In this case, the packet should come from the loopback
743 * interface. However, we cannot just check the if_flags,
744 * because ip6_mloopback() passes the "actual" interface
745 * as the outgoing/incoming interface.
747 ip6stat
.ip6s_badscope
++;
748 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
753 * The following check is not documented in specs. A malicious
754 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
755 * and bypass security checks (act as if it was from 127.0.0.1 by using
756 * IPv6 src ::ffff:127.0.0.1). Be cautious.
758 * This check chokes if we are in an SIIT cloud. As none of BSDs
759 * support IPv4-less kernel compilation, we cannot support SIIT
760 * environment at all. So, it makes more sense for us to reject any
761 * malicious packets for non-SIIT environment, than try to do a
762 * partial support for SIIT environment.
764 if (IN6_IS_ADDR_V4MAPPED(&ip6
->ip6_src
) ||
765 IN6_IS_ADDR_V4MAPPED(&ip6
->ip6_dst
)) {
766 ip6stat
.ip6s_badscope
++;
767 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
772 * Reject packets with IPv4 compatible addresses (auto tunnel).
774 * The code forbids auto tunnel relay case in RFC1933 (the check is
775 * stronger than RFC1933). We may want to re-enable it if mech-xx
776 * is revised to forbid relaying case.
778 if (IN6_IS_ADDR_V4COMPAT(&ip6
->ip6_src
) ||
779 IN6_IS_ADDR_V4COMPAT(&ip6
->ip6_dst
)) {
780 ip6stat
.ip6s_badscope
++;
781 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
787 * Naively assume we can attribute inbound data to the route we would
788 * use to send to this destination. Asymetric routing breaks this
789 * assumption, but it still allows us to account for traffic from
790 * a remote node in the routing table.
791 * this has a very significant performance impact so we bypass
792 * if nstat_collect is disabled. We may also bypass if the
793 * protocol is tcp in the future because tcp will have a route that
794 * we can use to attribute the data to. That does mean we would not
795 * account for forwarded tcp traffic.
798 struct rtentry
*rte
=
799 ifnet_cached_rtlookup_inet6(inifp
, &ip6
->ip6_src
);
801 nstat_route_rx(rte
, 1, m
->m_pkthdr
.len
, 0);
808 #endif /* DUMMYNET */
810 /* Invoke inbound packet filter */
814 error
= pf_af_hook(inifp
, NULL
, &m
, AF_INET6
, TRUE
, &args
);
815 #else /* !DUMMYNET */
816 error
= pf_af_hook(inifp
, NULL
, &m
, AF_INET6
, TRUE
, NULL
);
817 #endif /* !DUMMYNET */
818 if (error
!= 0 || m
== NULL
) {
820 panic("%s: unexpected packet %p\n",
824 /* Already freed by callee */
827 ip6
= mtod(m
, struct ip6_hdr
*);
831 /* drop packets if interface ID portion is already filled */
832 if (!(inifp
->if_flags
& IFF_LOOPBACK
) &&
833 !(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
834 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
) &&
835 ip6
->ip6_src
.s6_addr16
[1]) {
836 ip6stat
.ip6s_badscope
++;
839 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
) &&
840 ip6
->ip6_dst
.s6_addr16
[1]) {
841 ip6stat
.ip6s_badscope
++;
846 if (m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
) {
847 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
)) {
848 ip6
->ip6_src
.s6_addr16
[1] =
849 htons(m
->m_pkthdr
.src_ifindex
);
851 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
852 ip6
->ip6_dst
.s6_addr16
[1] =
853 htons(m
->m_pkthdr
.dst_ifindex
);
856 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_src
)) {
857 ip6
->ip6_src
.s6_addr16
[1] = htons(inifp
->if_index
);
859 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
860 ip6
->ip6_dst
.s6_addr16
[1] = htons(inifp
->if_index
);
867 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
868 struct in6_multi
*in6m
= NULL
;
870 in6_ifstat_inc_na(inifp
, ifs6_in_mcast
);
872 * See if we belong to the destination multicast group on the
875 in6_multihead_lock_shared();
876 IN6_LOOKUP_MULTI(&ip6
->ip6_dst
, inifp
, in6m
);
877 in6_multihead_lock_done();
881 } else if (!nd6_prproxy
) {
882 ip6stat
.ip6s_notmember
++;
883 ip6stat
.ip6s_cantforward
++;
884 in6_ifstat_inc(inifp
, ifs6_in_discard
);
895 * Fast path: see if the target is ourselves.
897 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
898 for (ia6
= in6_ifaddrs
; ia6
!= NULL
; ia6
= ia6
->ia_next
) {
900 * No reference is held on the address, as we just need
901 * to test for a few things while holding the RW lock.
903 if (IN6_ARE_ADDR_EQUAL(&ia6
->ia_addr
.sin6_addr
, &ip6
->ip6_dst
)) {
910 * For performance, test without acquiring the address lock;
911 * a lot of things in the address are set once and never
912 * changed (e.g. ia_ifp.)
914 if (!(ia6
->ia6_flags
& (IN6_IFF_NOTREADY
| IN6_IFF_CLAT46
))) {
915 /* this address is ready */
917 deliverifp
= ia6
->ia_ifp
;
919 * record dst address information into mbuf.
921 (void) ip6_setdstifaddr_info(m
, 0, ia6
);
922 lck_rw_done(&in6_ifaddr_rwlock
);
925 lck_rw_done(&in6_ifaddr_rwlock
);
927 /* address is not ready, so discard the packet. */
928 nd6log(info
, "%s: packet to an unready address %s->%s\n",
929 __func__
, ip6_sprintf(&ip6
->ip6_src
),
930 ip6_sprintf(&ip6
->ip6_dst
));
933 lck_rw_done(&in6_ifaddr_rwlock
);
936 * Slow path: route lookup.
938 dst6
= SIN6(&rin6
.ro_dst
);
939 dst6
->sin6_len
= sizeof(struct sockaddr_in6
);
940 dst6
->sin6_family
= AF_INET6
;
941 dst6
->sin6_addr
= ip6
->ip6_dst
;
943 rtalloc_scoped_ign((struct route
*)&rin6
,
944 RTF_PRCLONING
, IFSCOPE_NONE
);
945 if (rin6
.ro_rt
!= NULL
) {
946 RT_LOCK_SPIN(rin6
.ro_rt
);
949 #define rt6_key(r) (SIN6((r)->rt_nodes->rn_key))
952 * Accept the packet if the forwarding interface to the destination
953 * according to the routing table is the loopback interface,
954 * unless the associated route has a gateway.
955 * Note that this approach causes to accept a packet if there is a
956 * route to the loopback interface for the destination of the packet.
957 * But we think it's even useful in some situations, e.g. when using
958 * a special daemon which wants to intercept the packet.
960 * XXX: some OSes automatically make a cloned route for the destination
961 * of an outgoing packet. If the outgoing interface of the packet
962 * is a loopback one, the kernel would consider the packet to be
963 * accepted, even if we have no such address assinged on the interface.
964 * We check the cloned flag of the route entry to reject such cases,
965 * assuming that route entries for our own addresses are not made by
966 * cloning (it should be true because in6_addloop explicitly installs
967 * the host route). However, we might have to do an explicit check
968 * while it would be less efficient. Or, should we rather install a
969 * reject route for such a case?
971 if (rin6
.ro_rt
!= NULL
&&
972 (rin6
.ro_rt
->rt_flags
& (RTF_HOST
| RTF_GATEWAY
)) == RTF_HOST
&&
974 !(rin6
.ro_rt
->rt_flags
& RTF_WASCLONED
) &&
976 rin6
.ro_rt
->rt_ifp
->if_type
== IFT_LOOP
) {
977 ia6
= (struct in6_ifaddr
*)rin6
.ro_rt
->rt_ifa
;
979 * Packets to a tentative, duplicated, or somehow invalid
980 * address must not be accepted.
982 * For performance, test without acquiring the address lock;
983 * a lot of things in the address are set once and never
984 * changed (e.g. ia_ifp.)
986 if (!(ia6
->ia6_flags
& IN6_IFF_NOTREADY
)) {
987 /* this address is ready */
989 deliverifp
= ia6
->ia_ifp
; /* correct? */
991 * record dst address information into mbuf.
993 (void) ip6_setdstifaddr_info(m
, 0, ia6
);
994 RT_UNLOCK(rin6
.ro_rt
);
997 RT_UNLOCK(rin6
.ro_rt
);
999 /* address is not ready, so discard the packet. */
1000 nd6log(error
, "%s: packet to an unready address %s->%s\n",
1001 __func__
, ip6_sprintf(&ip6
->ip6_src
),
1002 ip6_sprintf(&ip6
->ip6_dst
));
1006 if (rin6
.ro_rt
!= NULL
) {
1007 RT_UNLOCK(rin6
.ro_rt
);
1011 * Now there is no reason to process the packet if it's not our own
1012 * and we're not a router.
1014 if (!ip6_forwarding
) {
1015 ip6stat
.ip6s_cantforward
++;
1016 in6_ifstat_inc(inifp
, ifs6_in_discard
);
1018 * Raise a kernel event if the packet received on cellular
1019 * interface is not intended for local host.
1020 * For now limit it to ICMPv6 packets.
1022 if (inifp
->if_type
== IFT_CELLULAR
&&
1023 ip6
->ip6_nxt
== IPPROTO_ICMPV6
) {
1024 in6_ifstat_inc(inifp
, ifs6_cantfoward_icmp6
);
1031 * record dst address information into mbuf, if we don't have one yet.
1032 * note that we are unable to record it, if the address is not listed
1033 * as our interface address (e.g. multicast addresses, etc.)
1035 if (deliverifp
!= NULL
&& ia6
== NULL
) {
1036 ia6
= in6_ifawithifp(deliverifp
, &ip6
->ip6_dst
);
1038 (void) ip6_setdstifaddr_info(m
, 0, ia6
);
1039 IFA_REMREF(&ia6
->ia_ifa
);
1044 * Process Hop-by-Hop options header if it's contained.
1045 * m may be modified in ip6_hopopts_input().
1046 * If a JumboPayload option is included, plen will also be modified.
1048 plen
= (u_int32_t
)ntohs(ip6
->ip6_plen
);
1049 if (ip6
->ip6_nxt
== IPPROTO_HOPOPTS
) {
1050 struct ip6_hbh
*hbh
;
1053 * Mark the packet to imply that HBH option has been checked.
1054 * This can only be true is the packet came in unfragmented
1055 * or if the option is in the first fragment
1057 m
->m_pkthdr
.pkt_flags
|= PKTF_HBH_CHKED
;
1058 if (ip6_hopopts_input(&plen
, &rtalert
, &m
, &off
)) {
1059 #if 0 /* touches NULL pointer */
1060 in6_ifstat_inc(inifp
, ifs6_in_discard
);
1062 goto done
; /* m have already been freed */
1065 /* adjust pointer */
1066 ip6
= mtod(m
, struct ip6_hdr
*);
1069 * if the payload length field is 0 and the next header field
1070 * indicates Hop-by-Hop Options header, then a Jumbo Payload
1071 * option MUST be included.
1073 if (ip6
->ip6_plen
== 0 && plen
== 0) {
1075 * Note that if a valid jumbo payload option is
1076 * contained, ip6_hopopts_input() must set a valid
1077 * (non-zero) payload length to the variable plen.
1079 ip6stat
.ip6s_badoptions
++;
1080 in6_ifstat_inc(inifp
, ifs6_in_discard
);
1081 in6_ifstat_inc(inifp
, ifs6_in_hdrerr
);
1082 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
,
1083 (caddr_t
)&ip6
->ip6_plen
- (caddr_t
)ip6
);
1086 /* ip6_hopopts_input() ensures that mbuf is contiguous */
1087 hbh
= (struct ip6_hbh
*)(ip6
+ 1);
1088 nxt
= hbh
->ip6h_nxt
;
1091 * If we are acting as a router and the packet contains a
1092 * router alert option, see if we know the option value.
1093 * Currently, we only support the option value for MLD, in which
1094 * case we should pass the packet to the multicast routing
1097 if (rtalert
!= ~0 && ip6_forwarding
) {
1099 case IP6OPT_RTALERT_MLD
:
1104 * RFC2711 requires unrecognized values must be
1115 * Check that the amount of data in the buffers
1116 * is as at least much as the IPv6 header would have us expect.
1117 * Trim mbufs if longer than we expect.
1118 * Drop packet if shorter than we expect.
1120 if (m
->m_pkthdr
.len
- sizeof(struct ip6_hdr
) < plen
) {
1121 ip6stat
.ip6s_tooshort
++;
1122 in6_ifstat_inc(inifp
, ifs6_in_truncated
);
1125 if (m
->m_pkthdr
.len
> sizeof(struct ip6_hdr
) + plen
) {
1126 ip6_input_adjust(m
, ip6
, plen
, inifp
);
1130 * Forward if desirable.
1132 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1133 if (!ours
&& nd6_prproxy
) {
1135 * If this isn't for us, this might be a Neighbor
1136 * Solicitation (dst is solicited-node multicast)
1137 * against an address in one of the proxied prefixes;
1138 * if so, claim the packet and let icmp6_input()
1141 ours
= nd6_prproxy_isours(m
, ip6
, NULL
, IFSCOPE_NONE
);
1143 (m
->m_pkthdr
.pkt_flags
& PKTF_PROXY_DST
));
1150 * The unicast forwarding function might return the packet
1151 * if we are proxying prefix(es), and if the packet is an
1152 * ICMPv6 packet that has failed the zone checks, but is
1153 * targetted towards a proxied address (this is optimized by
1154 * way of RTF_PROXY test.) If so, claim the packet as ours
1155 * and let icmp6_input() handle the rest. The packet's hop
1156 * limit value is kept intact (it's not decremented). This
1157 * is for supporting Neighbor Unreachability Detection between
1158 * proxied nodes on different links (src is link-local, dst
1159 * is target address.)
1161 if ((m
= ip6_forward(m
, &rin6
, 0)) == NULL
) {
1164 VERIFY(rin6
.ro_rt
!= NULL
);
1165 VERIFY(m
->m_pkthdr
.pkt_flags
& PKTF_PROXY_DST
);
1166 deliverifp
= rin6
.ro_rt
->rt_ifp
;
1170 ip6
= mtod(m
, struct ip6_hdr
*);
1173 * Malicious party may be able to use IPv4 mapped addr to confuse
1174 * tcp/udp stack and bypass security checks (act as if it was from
1175 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious.
1177 * For SIIT end node behavior, you may want to disable the check.
1178 * However, you will become vulnerable to attacks using IPv4 mapped
1181 if (IN6_IS_ADDR_V4MAPPED(&ip6
->ip6_src
) ||
1182 IN6_IS_ADDR_V4MAPPED(&ip6
->ip6_dst
)) {
1183 ip6stat
.ip6s_badscope
++;
1184 in6_ifstat_inc(inifp
, ifs6_in_addrerr
);
1189 * Tell launch routine the next header
1191 ip6stat
.ip6s_delivered
++;
1192 in6_ifstat_inc_na(deliverifp
, ifs6_in_deliver
);
1198 * Perform IP header alignment fixup again, if needed. Note that
1199 * we do it once for the outermost protocol, and we assume each
1200 * protocol handler wouldn't mess with the alignment afterwards.
1202 IP6_HDR_ALIGNMENT_FIXUP(m
, inifp
, return );
1204 while (nxt
!= IPPROTO_DONE
) {
1205 struct ipfilter
*filter
;
1206 int (*pr_input
)(struct mbuf
**, int *, int);
1209 * This would imply either IPPROTO_HOPOPTS was not the first
1210 * option or it did not come in the first fragment.
1212 if (nxt
== IPPROTO_HOPOPTS
&&
1213 (m
->m_pkthdr
.pkt_flags
& PKTF_HBH_CHKED
) == 0) {
1215 * This implies that HBH option was not contained
1216 * in the first fragment
1218 ip6stat
.ip6s_badoptions
++;
1222 if (ip6_hdrnestlimit
&& (++nest
> ip6_hdrnestlimit
)) {
1223 ip6stat
.ip6s_toomanyhdr
++;
1228 * protection against faulty packet - there should be
1229 * more sanity checks in header chain processing.
1231 if (m
->m_pkthdr
.len
< off
) {
1232 ip6stat
.ip6s_tooshort
++;
1233 in6_ifstat_inc(inifp
, ifs6_in_truncated
);
1239 * enforce IPsec policy checking if we are seeing last header.
1240 * note that we do not visit this with protocols with pcb layer
1241 * code - like udp/tcp/raw ip.
1243 if ((ipsec_bypass
== 0) &&
1244 (ip6_protox
[nxt
]->pr_flags
& PR_LASTHDR
) != 0) {
1245 if (ipsec6_in_reject(m
, NULL
)) {
1246 IPSEC_STAT_INCREMENT(ipsec6stat
.in_polvio
);
1255 if (!TAILQ_EMPTY(&ipv6_filters
) && !IFNET_IS_INTCOPROC(inifp
)) {
1257 TAILQ_FOREACH(filter
, &ipv6_filters
, ipf_link
) {
1259 if ((struct ipfilter
*)inject_ipfref
==
1263 } else if (filter
->ipf_filter
.ipf_input
) {
1266 result
= filter
->ipf_filter
.ipf_input(
1267 filter
->ipf_filter
.cookie
,
1268 (mbuf_t
*)&m
, off
, nxt
);
1269 if (result
== EJUSTRETURN
) {
1282 DTRACE_IP6(receive
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1283 struct ip6_hdr
*, ip6
, struct ifnet
*, inifp
,
1284 struct ip
*, NULL
, struct ip6_hdr
*, ip6
);
1286 if ((pr_input
= ip6_protox
[nxt
]->pr_input
) == NULL
) {
1290 } else if (!(ip6_protox
[nxt
]->pr_flags
& PR_PROTOLOCK
)) {
1291 lck_mtx_lock(inet6_domain_mutex
);
1292 nxt
= pr_input(&m
, &off
, nxt
);
1293 lck_mtx_unlock(inet6_domain_mutex
);
1295 nxt
= pr_input(&m
, &off
, nxt
);
1299 ROUTE_RELEASE(&rin6
);
1307 ip6_setsrcifaddr_info(struct mbuf
*m
, uint32_t src_idx
, struct in6_ifaddr
*ia6
)
1309 VERIFY(m
->m_flags
& M_PKTHDR
);
1312 * If the source ifaddr is specified, pick up the information
1313 * from there; otherwise just grab the passed-in ifindex as the
1314 * caller may not have the ifaddr available.
1317 m
->m_pkthdr
.pkt_flags
|= PKTF_IFAINFO
;
1318 m
->m_pkthdr
.src_ifindex
= ia6
->ia_ifp
->if_index
;
1320 /* See IN6_IFF comments in in6_var.h */
1321 m
->m_pkthdr
.src_iff
= (ia6
->ia6_flags
& 0xffff);
1323 m
->m_pkthdr
.src_iff
= 0;
1324 m
->m_pkthdr
.src_ifindex
= src_idx
;
1326 m
->m_pkthdr
.pkt_flags
|= PKTF_IFAINFO
;
1332 ip6_setdstifaddr_info(struct mbuf
*m
, uint32_t dst_idx
, struct in6_ifaddr
*ia6
)
1334 VERIFY(m
->m_flags
& M_PKTHDR
);
1337 * If the destination ifaddr is specified, pick up the information
1338 * from there; otherwise just grab the passed-in ifindex as the
1339 * caller may not have the ifaddr available.
1342 m
->m_pkthdr
.pkt_flags
|= PKTF_IFAINFO
;
1343 m
->m_pkthdr
.dst_ifindex
= ia6
->ia_ifp
->if_index
;
1345 /* See IN6_IFF comments in in6_var.h */
1346 m
->m_pkthdr
.dst_iff
= (ia6
->ia6_flags
& 0xffff);
1348 m
->m_pkthdr
.dst_iff
= 0;
1349 m
->m_pkthdr
.dst_ifindex
= dst_idx
;
1351 m
->m_pkthdr
.pkt_flags
|= PKTF_IFAINFO
;
1357 ip6_getsrcifaddr_info(struct mbuf
*m
, uint32_t *src_idx
, uint32_t *ia6f
)
1359 VERIFY(m
->m_flags
& M_PKTHDR
);
1361 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
)) {
1365 if (src_idx
!= NULL
) {
1366 *src_idx
= m
->m_pkthdr
.src_ifindex
;
1370 *ia6f
= m
->m_pkthdr
.src_iff
;
1377 ip6_getdstifaddr_info(struct mbuf
*m
, uint32_t *dst_idx
, uint32_t *ia6f
)
1379 VERIFY(m
->m_flags
& M_PKTHDR
);
1381 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
)) {
1385 if (dst_idx
!= NULL
) {
1386 *dst_idx
= m
->m_pkthdr
.dst_ifindex
;
1390 *ia6f
= m
->m_pkthdr
.dst_iff
;
1397 * Hop-by-Hop options header processing. If a valid jumbo payload option is
1398 * included, the real payload length will be stored in plenp.
1401 ip6_hopopts_input(uint32_t *plenp
, uint32_t *rtalertp
, struct mbuf
**mp
,
1404 struct mbuf
*m
= *mp
;
1405 int off
= *offp
, hbhlen
;
1406 struct ip6_hbh
*hbh
;
1409 /* validation of the length of the header */
1410 IP6_EXTHDR_CHECK(m
, off
, sizeof(*hbh
), return (-1));
1411 hbh
= (struct ip6_hbh
*)(mtod(m
, caddr_t
) + off
);
1412 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
1414 IP6_EXTHDR_CHECK(m
, off
, hbhlen
, return (-1));
1415 hbh
= (struct ip6_hbh
*)(mtod(m
, caddr_t
) + off
);
1417 hbhlen
-= sizeof(struct ip6_hbh
);
1418 opt
= (u_int8_t
*)hbh
+ sizeof(struct ip6_hbh
);
1420 if (ip6_process_hopopts(m
, (u_int8_t
*)hbh
+ sizeof(struct ip6_hbh
),
1421 hbhlen
, rtalertp
, plenp
) < 0) {
1431 * Search header for all Hop-by-hop options and process each option.
1432 * This function is separate from ip6_hopopts_input() in order to
1433 * handle a case where the sending node itself process its hop-by-hop
1434 * options header. In such a case, the function is called from ip6_output().
1436 * The function assumes that hbh header is located right after the IPv6 header
1437 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
1438 * opthead + hbhlen is located in continuous memory region.
1441 ip6_process_hopopts(struct mbuf
*m
, u_int8_t
*opthead
, int hbhlen
,
1442 u_int32_t
*rtalertp
, u_int32_t
*plenp
)
1444 struct ip6_hdr
*ip6
;
1446 u_int8_t
*opt
= opthead
;
1447 u_int16_t rtalert_val
;
1448 u_int32_t jumboplen
;
1449 const int erroff
= sizeof(struct ip6_hdr
) + sizeof(struct ip6_hbh
);
1451 for (; hbhlen
> 0; hbhlen
-= optlen
, opt
+= optlen
) {
1457 if (hbhlen
< IP6OPT_MINLEN
) {
1458 ip6stat
.ip6s_toosmall
++;
1461 optlen
= *(opt
+ 1) + 2;
1463 case IP6OPT_ROUTER_ALERT
:
1464 /* XXX may need check for alignment */
1465 if (hbhlen
< IP6OPT_RTALERT_LEN
) {
1466 ip6stat
.ip6s_toosmall
++;
1469 if (*(opt
+ 1) != IP6OPT_RTALERT_LEN
- 2) {
1471 icmp6_error(m
, ICMP6_PARAM_PROB
,
1472 ICMP6_PARAMPROB_HEADER
,
1473 erroff
+ opt
+ 1 - opthead
);
1476 optlen
= IP6OPT_RTALERT_LEN
;
1477 bcopy((caddr_t
)(opt
+ 2), (caddr_t
)&rtalert_val
, 2);
1478 *rtalertp
= ntohs(rtalert_val
);
1481 /* XXX may need check for alignment */
1482 if (hbhlen
< IP6OPT_JUMBO_LEN
) {
1483 ip6stat
.ip6s_toosmall
++;
1486 if (*(opt
+ 1) != IP6OPT_JUMBO_LEN
- 2) {
1488 icmp6_error(m
, ICMP6_PARAM_PROB
,
1489 ICMP6_PARAMPROB_HEADER
,
1490 erroff
+ opt
+ 1 - opthead
);
1493 optlen
= IP6OPT_JUMBO_LEN
;
1496 * IPv6 packets that have non 0 payload length
1497 * must not contain a jumbo payload option.
1499 ip6
= mtod(m
, struct ip6_hdr
*);
1500 if (ip6
->ip6_plen
) {
1501 ip6stat
.ip6s_badoptions
++;
1502 icmp6_error(m
, ICMP6_PARAM_PROB
,
1503 ICMP6_PARAMPROB_HEADER
,
1504 erroff
+ opt
- opthead
);
1509 * We may see jumbolen in unaligned location, so
1510 * we'd need to perform bcopy().
1512 bcopy(opt
+ 2, &jumboplen
, sizeof(jumboplen
));
1513 jumboplen
= (u_int32_t
)htonl(jumboplen
);
1517 * if there are multiple jumbo payload options,
1518 * *plenp will be non-zero and the packet will be
1520 * the behavior may need some debate in ipngwg -
1521 * multiple options does not make sense, however,
1522 * there's no explicit mention in specification.
1525 ip6stat
.ip6s_badoptions
++;
1526 icmp6_error(m
, ICMP6_PARAM_PROB
,
1527 ICMP6_PARAMPROB_HEADER
,
1528 erroff
+ opt
+ 2 - opthead
);
1534 * jumbo payload length must be larger than 65535.
1536 if (jumboplen
<= IPV6_MAXPACKET
) {
1537 ip6stat
.ip6s_badoptions
++;
1538 icmp6_error(m
, ICMP6_PARAM_PROB
,
1539 ICMP6_PARAMPROB_HEADER
,
1540 erroff
+ opt
+ 2 - opthead
);
1546 default: /* unknown option */
1547 if (hbhlen
< IP6OPT_MINLEN
) {
1548 ip6stat
.ip6s_toosmall
++;
1551 optlen
= ip6_unknown_opt(opt
, m
,
1552 erroff
+ opt
- opthead
);
1569 * Unknown option processing.
1570 * The third argument `off' is the offset from the IPv6 header to the option,
1571 * which is necessary if the IPv6 header the and option header and IPv6 header
1572 * is not continuous in order to return an ICMPv6 error.
1575 ip6_unknown_opt(uint8_t *optp
, struct mbuf
*m
, int off
)
1577 struct ip6_hdr
*ip6
;
1579 switch (IP6OPT_TYPE(*optp
)) {
1580 case IP6OPT_TYPE_SKIP
: /* ignore the option */
1581 return (int)*(optp
+ 1);
1583 case IP6OPT_TYPE_DISCARD
: /* silently discard */
1587 case IP6OPT_TYPE_FORCEICMP
: /* send ICMP even if multicasted */
1588 ip6stat
.ip6s_badoptions
++;
1589 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_OPTION
, off
);
1592 case IP6OPT_TYPE_ICMP
: /* send ICMP if not multicasted */
1593 ip6stat
.ip6s_badoptions
++;
1594 ip6
= mtod(m
, struct ip6_hdr
*);
1595 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
1596 (m
->m_flags
& (M_BCAST
| M_MCAST
))) {
1599 icmp6_error(m
, ICMP6_PARAM_PROB
,
1600 ICMP6_PARAMPROB_OPTION
, off
);
1605 m_freem(m
); /* XXX: NOTREACHED */
1610 * Create the "control" list for this pcb.
1611 * These functions will not modify mbuf chain at all.
1613 * With KAME mbuf chain restriction:
1614 * The routine will be called from upper layer handlers like tcp6_input().
1615 * Thus the routine assumes that the caller (tcp6_input) have already
1616 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1617 * very first mbuf on the mbuf chain.
1619 * ip6_savecontrol_v4 will handle those options that are possible to be
1620 * set on a v4-mapped socket.
1621 * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those
1622 * options and handle the v6-only ones itself.
1625 ip6_savecontrol_v4(struct inpcb
*inp
, struct mbuf
*m
, struct mbuf
**mp
,
1628 struct ip6_hdr
*ip6
= mtod(m
, struct ip6_hdr
*);
1630 if ((inp
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0) {
1634 mp
= sbcreatecontrol_mbuf((caddr_t
)&tv
, sizeof(tv
),
1635 SCM_TIMESTAMP
, SOL_SOCKET
, mp
);
1640 if ((inp
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0) {
1643 time
= mach_absolute_time();
1644 mp
= sbcreatecontrol_mbuf((caddr_t
)&time
, sizeof(time
),
1645 SCM_TIMESTAMP_MONOTONIC
, SOL_SOCKET
, mp
);
1650 if ((inp
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
1653 time
= mach_continuous_time();
1654 mp
= sbcreatecontrol_mbuf((caddr_t
)&time
, sizeof(time
),
1655 SCM_TIMESTAMP_CONTINUOUS
, SOL_SOCKET
, mp
);
1660 if ((inp
->inp_socket
->so_flags
& SOF_RECV_TRAFFIC_CLASS
) != 0) {
1661 int tc
= m_get_traffic_class(m
);
1663 mp
= sbcreatecontrol_mbuf((caddr_t
)&tc
, sizeof(tc
),
1664 SO_TRAFFIC_CLASS
, SOL_SOCKET
, mp
);
1670 #define IS2292(inp, x, y) (((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y))
1671 if ((ip6
->ip6_vfc
& IPV6_VERSION_MASK
) != IPV6_VERSION
) {
1672 if (v4only
!= NULL
) {
1676 // Send ECN flags for v4-mapped addresses
1677 if ((inp
->inp_flags
& IN6P_TCLASS
) != 0) {
1678 struct ip
*ip_header
= mtod(m
, struct ip
*);
1680 int tclass
= (int)(ip_header
->ip_tos
);
1681 mp
= sbcreatecontrol_mbuf((caddr_t
)&tclass
, sizeof(tclass
),
1682 IPV6_TCLASS
, IPPROTO_IPV6
, mp
);
1688 // Send IN6P_PKTINFO for v4-mapped address
1689 if ((inp
->inp_flags
& IN6P_PKTINFO
) != 0) {
1690 struct in6_pktinfo pi6
= {
1691 .ipi6_addr
= IN6ADDR_V4MAPPED_INIT
,
1692 .ipi6_ifindex
= (m
&& m
->m_pkthdr
.rcvif
) ? m
->m_pkthdr
.rcvif
->if_index
: 0,
1695 struct ip
*ip_header
= mtod(m
, struct ip
*);
1696 bcopy(&ip_header
->ip_dst
, &pi6
.ipi6_addr
.s6_addr32
[3], sizeof(struct in_addr
));
1698 mp
= sbcreatecontrol_mbuf((caddr_t
)&pi6
,
1699 sizeof(struct in6_pktinfo
),
1700 IS2292(inp
, IPV6_2292PKTINFO
, IPV6_PKTINFO
),
1709 /* RFC 2292 sec. 5 */
1710 if ((inp
->inp_flags
& IN6P_PKTINFO
) != 0) {
1711 struct in6_pktinfo pi6
;
1713 bcopy(&ip6
->ip6_dst
, &pi6
.ipi6_addr
, sizeof(struct in6_addr
));
1714 in6_clearscope(&pi6
.ipi6_addr
); /* XXX */
1716 (m
&& m
->m_pkthdr
.rcvif
) ? m
->m_pkthdr
.rcvif
->if_index
: 0;
1718 mp
= sbcreatecontrol_mbuf((caddr_t
)&pi6
,
1719 sizeof(struct in6_pktinfo
),
1720 IS2292(inp
, IPV6_2292PKTINFO
, IPV6_PKTINFO
),
1727 if ((inp
->inp_flags
& IN6P_HOPLIMIT
) != 0) {
1728 int hlim
= ip6
->ip6_hlim
& 0xff;
1730 mp
= sbcreatecontrol_mbuf((caddr_t
)&hlim
, sizeof(int),
1731 IS2292(inp
, IPV6_2292HOPLIMIT
, IPV6_HOPLIMIT
),
1738 if (v4only
!= NULL
) {
1745 ip6_savecontrol(struct inpcb
*in6p
, struct mbuf
*m
, struct mbuf
**mp
)
1748 struct ip6_hdr
*ip6
= mtod(m
, struct ip6_hdr
*);
1752 np
= ip6_savecontrol_v4(in6p
, m
, mp
, &v4only
);
1762 if ((in6p
->inp_flags
& IN6P_TCLASS
) != 0) {
1766 flowinfo
= (u_int32_t
)ntohl(ip6
->ip6_flow
& IPV6_FLOWINFO_MASK
);
1769 tclass
= flowinfo
& 0xff;
1770 mp
= sbcreatecontrol_mbuf((caddr_t
)&tclass
, sizeof(tclass
),
1771 IPV6_TCLASS
, IPPROTO_IPV6
, mp
);
1778 * IPV6_HOPOPTS socket option. Recall that we required super-user
1779 * privilege for the option (see ip6_ctloutput), but it might be too
1780 * strict, since there might be some hop-by-hop options which can be
1781 * returned to normal user.
1782 * See also RFC 2292 section 6 (or RFC 3542 section 8).
1784 if ((in6p
->inp_flags
& IN6P_HOPOPTS
) != 0) {
1786 * Check if a hop-by-hop options header is contatined in the
1787 * received packet, and if so, store the options as ancillary
1788 * data. Note that a hop-by-hop options header must be
1789 * just after the IPv6 header, which is assured through the
1790 * IPv6 input processing.
1792 ip6
= mtod(m
, struct ip6_hdr
*);
1793 if (ip6
->ip6_nxt
== IPPROTO_HOPOPTS
) {
1794 struct ip6_hbh
*hbh
;
1796 hbh
= (struct ip6_hbh
*)(ip6
+ 1);
1797 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
1800 * XXX: We copy the whole header even if a
1801 * jumbo payload option is included, the option which
1802 * is to be removed before returning according to
1804 * Note: this constraint is removed in RFC3542
1806 mp
= sbcreatecontrol_mbuf((caddr_t
)hbh
, hbhlen
,
1807 IS2292(in6p
, IPV6_2292HOPOPTS
, IPV6_HOPOPTS
),
1816 if ((in6p
->inp_flags
& (IN6P_RTHDR
| IN6P_DSTOPTS
)) != 0) {
1817 int nxt
= ip6
->ip6_nxt
, off
= sizeof(struct ip6_hdr
);
1820 * Search for destination options headers or routing
1821 * header(s) through the header chain, and stores each
1822 * header as ancillary data.
1823 * Note that the order of the headers remains in
1824 * the chain of ancillary data.
1826 while (1) { /* is explicit loop prevention necessary? */
1827 struct ip6_ext
*ip6e
= NULL
;
1831 * if it is not an extension header, don't try to
1832 * pull it from the chain.
1835 case IPPROTO_DSTOPTS
:
1836 case IPPROTO_ROUTING
:
1837 case IPPROTO_HOPOPTS
:
1838 case IPPROTO_AH
: /* is it possible? */
1844 if (off
+ sizeof(*ip6e
) > m
->m_len
) {
1847 ip6e
= (struct ip6_ext
*)(mtod(m
, caddr_t
) + off
);
1848 if (nxt
== IPPROTO_AH
) {
1849 elen
= (ip6e
->ip6e_len
+ 2) << 2;
1851 elen
= (ip6e
->ip6e_len
+ 1) << 3;
1853 if (off
+ elen
> m
->m_len
) {
1858 case IPPROTO_DSTOPTS
:
1859 if (!(in6p
->inp_flags
& IN6P_DSTOPTS
)) {
1863 mp
= sbcreatecontrol_mbuf((caddr_t
)ip6e
, elen
,
1864 IS2292(in6p
, IPV6_2292DSTOPTS
,
1865 IPV6_DSTOPTS
), IPPROTO_IPV6
, mp
);
1870 case IPPROTO_ROUTING
:
1871 if (!(in6p
->inp_flags
& IN6P_RTHDR
)) {
1875 mp
= sbcreatecontrol_mbuf((caddr_t
)ip6e
, elen
,
1876 IS2292(in6p
, IPV6_2292RTHDR
, IPV6_RTHDR
),
1882 case IPPROTO_HOPOPTS
:
1883 case IPPROTO_AH
: /* is it possible? */
1888 * other cases have been filtered in the above.
1889 * none will visit this case. here we supply
1890 * the code just in case (nxt overwritten or
1896 /* proceed with the next header. */
1898 nxt
= ip6e
->ip6e_nxt
;
1906 ip6stat
.ip6s_pktdropcntrl
++;
1907 /* XXX increment a stat to show the failure */
1913 ip6_notify_pmtu(struct inpcb
*in6p
, struct sockaddr_in6
*dst
, u_int32_t
*mtu
)
1917 struct ip6_mtuinfo mtuctl
;
1919 so
= in6p
->inp_socket
;
1921 if ((in6p
->inp_flags
& IN6P_MTU
) == 0) {
1930 if (so
== NULL
) { /* I believe this is impossible */
1931 panic("ip6_notify_pmtu: socket is NULL");
1936 if (IN6_IS_ADDR_UNSPECIFIED(&in6p
->in6p_faddr
) &&
1937 (so
->so_proto
== NULL
|| so
->so_proto
->pr_protocol
== IPPROTO_TCP
)) {
1941 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p
->in6p_faddr
) &&
1942 !IN6_ARE_ADDR_EQUAL(&in6p
->in6p_faddr
, &dst
->sin6_addr
)) {
1946 bzero(&mtuctl
, sizeof(mtuctl
)); /* zero-clear for safety */
1947 mtuctl
.ip6m_mtu
= *mtu
;
1948 mtuctl
.ip6m_addr
= *dst
;
1949 if (sa6_recoverscope(&mtuctl
.ip6m_addr
, TRUE
)) {
1953 if ((m_mtu
= sbcreatecontrol((caddr_t
)&mtuctl
, sizeof(mtuctl
),
1954 IPV6_PATHMTU
, IPPROTO_IPV6
)) == NULL
) {
1958 if (sbappendaddr(&so
->so_rcv
, SA(dst
), NULL
, m_mtu
, NULL
) == 0) {
1965 * Get pointer to the previous header followed by the header
1966 * currently processed.
1967 * XXX: This function supposes that
1968 * M includes all headers,
1969 * the next header field and the header length field of each header
1971 * the sum of each header length equals to OFF.
1972 * Because of these assumptions, this function must be called very
1973 * carefully. Moreover, it will not be used in the near future when
1974 * we develop `neater' mechanism to process extension headers.
1977 ip6_get_prevhdr(struct mbuf
*m
, int off
)
1979 struct ip6_hdr
*ip6
= mtod(m
, struct ip6_hdr
*);
1981 if (off
== sizeof(struct ip6_hdr
)) {
1982 return (char *)&ip6
->ip6_nxt
;
1985 struct ip6_ext
*ip6e
= NULL
;
1988 len
= sizeof(struct ip6_hdr
);
1990 ip6e
= (struct ip6_ext
*)(mtod(m
, caddr_t
) + len
);
1993 case IPPROTO_FRAGMENT
:
1994 len
+= sizeof(struct ip6_frag
);
1997 len
+= (ip6e
->ip6e_len
+ 2) << 2;
2000 len
+= (ip6e
->ip6e_len
+ 1) << 3;
2003 nxt
= ip6e
->ip6e_nxt
;
2006 return (char *)&ip6e
->ip6e_nxt
;
2014 * get next header offset. m will be retained.
2017 ip6_nexthdr(struct mbuf
*m
, int off
, int proto
, int *nxtp
)
2020 struct ip6_ext ip6e
;
2025 if ((m
->m_flags
& M_PKTHDR
) == 0 || m
->m_pkthdr
.len
< off
) {
2031 if (m
->m_pkthdr
.len
< off
+ sizeof(ip6
)) {
2034 m_copydata(m
, off
, sizeof(ip6
), (caddr_t
)&ip6
);
2036 *nxtp
= ip6
.ip6_nxt
;
2041 case IPPROTO_FRAGMENT
:
2043 * terminate parsing if it is not the first fragment,
2044 * it does not make sense to parse through it.
2046 if (m
->m_pkthdr
.len
< off
+ sizeof(fh
)) {
2049 m_copydata(m
, off
, sizeof(fh
), (caddr_t
)&fh
);
2050 /* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */
2051 if (fh
.ip6f_offlg
& IP6F_OFF_MASK
) {
2055 *nxtp
= fh
.ip6f_nxt
;
2057 off
+= sizeof(struct ip6_frag
);
2061 if (m
->m_pkthdr
.len
< off
+ sizeof(ip6e
)) {
2064 m_copydata(m
, off
, sizeof(ip6e
), (caddr_t
)&ip6e
);
2066 *nxtp
= ip6e
.ip6e_nxt
;
2068 off
+= (ip6e
.ip6e_len
+ 2) << 2;
2071 case IPPROTO_HOPOPTS
:
2072 case IPPROTO_ROUTING
:
2073 case IPPROTO_DSTOPTS
:
2074 if (m
->m_pkthdr
.len
< off
+ sizeof(ip6e
)) {
2077 m_copydata(m
, off
, sizeof(ip6e
), (caddr_t
)&ip6e
);
2079 *nxtp
= ip6e
.ip6e_nxt
;
2081 off
+= (ip6e
.ip6e_len
+ 1) << 3;
2086 case IPPROTO_IPCOMP
:
2096 * get offset for the last header in the chain. m will be kept untainted.
2099 ip6_lasthdr(struct mbuf
*m
, int off
, int proto
, int *nxtp
)
2109 newoff
= ip6_nexthdr(m
, off
, proto
, nxtp
);
2112 } else if (newoff
< off
) {
2113 return -1; /* invalid */
2114 } else if (newoff
== off
) {
2124 ip6_addaux(struct mbuf
*m
)
2128 /* Check if one is already allocated */
2129 tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
2130 KERNEL_TAG_TYPE_INET6
, NULL
);
2132 /* Allocate a tag */
2133 tag
= m_tag_create(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_INET6
,
2134 sizeof(struct ip6aux
), M_DONTWAIT
, m
);
2136 /* Attach it to the mbuf */
2138 m_tag_prepend(m
, tag
);
2142 return tag
? (struct ip6aux
*)(tag
+ 1) : NULL
;
2146 ip6_findaux(struct mbuf
*m
)
2150 tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
2151 KERNEL_TAG_TYPE_INET6
, NULL
);
2153 return tag
? (struct ip6aux
*)(tag
+ 1) : NULL
;
2157 ip6_delaux(struct mbuf
*m
)
2161 tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
,
2162 KERNEL_TAG_TYPE_INET6
, NULL
);
2164 m_tag_delete(m
, tag
);
2174 frag6_drain(); /* fragments */
2175 in6_rtqdrain(); /* protocol cloned routes */
2176 nd6_drain(NULL
); /* cloned routes: ND6 */
2180 * System control for IP6
2183 u_char inet6ctlerrmap
[PRC_NCMDS
] = {
2185 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
2186 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
2187 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
2193 sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS
2195 #pragma unused(arg1, arg2)
2198 i
= ip6_input_measure
;
2199 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
2200 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
2204 if (i
< 0 || i
> 1) {
2208 if (ip6_input_measure
!= i
&& i
== 1) {
2209 net_perf_initialize(&net_perf
, ip6_input_measure_bins
);
2211 ip6_input_measure
= i
;
2217 sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS
2219 #pragma unused(arg1, arg2)
2223 i
= ip6_input_measure_bins
;
2224 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
2225 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
2229 if (!net_perf_validate_bins(i
)) {
2233 ip6_input_measure_bins
= i
;
2239 sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS
2241 #pragma unused(oidp, arg1, arg2)
2242 if (req
->oldptr
== USER_ADDR_NULL
) {
2243 req
->oldlen
= (size_t)sizeof(struct ipstat
);
2246 return SYSCTL_OUT(req
, &net_perf
, MIN(sizeof(net_perf
), req
->oldlen
));