]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/frag6.c
xnu-6153.121.1.tar.gz
[apple/xnu.git] / bsd / netinet6 / frag6.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */
30 /* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/malloc.h>
64 #include <sys/mcache.h>
65 #include <sys/mbuf.h>
66 #include <sys/domain.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/errno.h>
70 #include <sys/time.h>
71 #include <sys/kernel.h>
72 #include <sys/syslog.h>
73 #include <kern/queue.h>
74 #include <kern/locks.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip_var.h>
83 #include <netinet/ip6.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet/icmp6.h>
86
87 #include <net/net_osdep.h>
88 #include <dev/random/randomdev.h>
89
90 /*
91 * Define it to get a correct behavior on per-interface statistics.
92 */
93 #define IN6_IFSTAT_STRICT
94
95 MBUFQ_HEAD(fq6_head);
96
97 static void frag6_save_context(struct mbuf *, int);
98 static void frag6_scrub_context(struct mbuf *);
99 static int frag6_restore_context(struct mbuf *);
100
101 static void frag6_icmp6_paramprob_error(struct fq6_head *);
102 static void frag6_icmp6_timeex_error(struct fq6_head *);
103
104 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
105 static void frag6_deq(struct ip6asfrag *);
106 static void frag6_insque(struct ip6q *, struct ip6q *);
107 static void frag6_remque(struct ip6q *);
108 static void frag6_freef(struct ip6q *, struct fq6_head *, struct fq6_head *);
109
110 static int frag6_timeout_run; /* frag6 timer is scheduled to run */
111 static void frag6_timeout(void *);
112 static void frag6_sched_timeout(void);
113
114 static struct ip6q *ip6q_alloc(int);
115 static void ip6q_free(struct ip6q *);
116 static void ip6q_updateparams(void);
117 static struct ip6asfrag *ip6af_alloc(int);
118 static void ip6af_free(struct ip6asfrag *);
119
120 decl_lck_mtx_data(static, ip6qlock);
121 static lck_attr_t *ip6qlock_attr;
122 static lck_grp_t *ip6qlock_grp;
123 static lck_grp_attr_t *ip6qlock_grp_attr;
124
125 /* IPv6 fragment reassembly queues (protected by ip6qlock) */
126 static struct ip6q ip6q; /* ip6 reassembly queues */
127 static int ip6_maxfragpackets; /* max packets in reass queues */
128 static u_int32_t frag6_nfragpackets; /* # of packets in reass queues */
129 static int ip6_maxfrags; /* max fragments in reass queues */
130 static u_int32_t frag6_nfrags; /* # of fragments in reass queues */
131 static u_int32_t ip6q_limit; /* ip6q allocation limit */
132 static u_int32_t ip6q_count; /* current # of allocated ip6q's */
133 static u_int32_t ip6af_limit; /* ip6asfrag allocation limit */
134 static u_int32_t ip6af_count; /* current # of allocated ip6asfrag's */
135
136 static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS;
137 static int sysctl_maxfrags SYSCTL_HANDLER_ARGS;
138
139 SYSCTL_DECL(_net_inet6_ip6);
140
141 SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGPACKETS, maxfragpackets,
142 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfragpackets, 0,
143 sysctl_maxfragpackets, "I",
144 "Maximum number of IPv6 fragment reassembly queue entries");
145
146 SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, fragpackets,
147 CTLFLAG_RD | CTLFLAG_LOCKED, &frag6_nfragpackets, 0,
148 "Current number of IPv6 fragment reassembly queue entries");
149
150 SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGS, maxfrags,
151 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfrags, 0,
152 sysctl_maxfrags, "I", "Maximum number of IPv6 fragments allowed");
153
154 /*
155 * Initialise reassembly queue and fragment identifier.
156 */
157 void
158 frag6_init(void)
159 {
160 /* ip6q_alloc() uses mbufs for IPv6 fragment queue structures */
161 _CASSERT(sizeof(struct ip6q) <= _MLEN);
162 /* ip6af_alloc() uses mbufs for IPv6 fragment queue structures */
163 _CASSERT(sizeof(struct ip6asfrag) <= _MLEN);
164
165 /* IPv6 fragment reassembly queue lock */
166 ip6qlock_grp_attr = lck_grp_attr_alloc_init();
167 ip6qlock_grp = lck_grp_alloc_init("ip6qlock", ip6qlock_grp_attr);
168 ip6qlock_attr = lck_attr_alloc_init();
169 lck_mtx_init(&ip6qlock, ip6qlock_grp, ip6qlock_attr);
170
171 lck_mtx_lock(&ip6qlock);
172 /* Initialize IPv6 reassembly queue. */
173 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
174
175 /* same limits as IPv4 */
176 ip6_maxfragpackets = nmbclusters / 32;
177 ip6_maxfrags = ip6_maxfragpackets * 2;
178 ip6q_updateparams();
179 lck_mtx_unlock(&ip6qlock);
180 }
181
182 static void
183 frag6_save_context(struct mbuf *m, int val)
184 {
185 m->m_pkthdr.pkt_hdr = (void *)(uintptr_t)val;
186 }
187
188 static void
189 frag6_scrub_context(struct mbuf *m)
190 {
191 m->m_pkthdr.pkt_hdr = NULL;
192 }
193
194 static int
195 frag6_restore_context(struct mbuf *m)
196 {
197 return (int)m->m_pkthdr.pkt_hdr;
198 }
199
200 /*
201 * Send any deferred ICMP param problem error messages; caller must not be
202 * holding ip6qlock and is expected to have saved the per-packet parameter
203 * value via frag6_save_context().
204 */
205 static void
206 frag6_icmp6_paramprob_error(struct fq6_head *diq6)
207 {
208 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
209
210 if (!MBUFQ_EMPTY(diq6)) {
211 struct mbuf *merr, *merr_tmp;
212 int param;
213 MBUFQ_FOREACH_SAFE(merr, diq6, merr_tmp) {
214 MBUFQ_REMOVE(diq6, merr);
215 MBUFQ_NEXT(merr) = NULL;
216 param = frag6_restore_context(merr);
217 frag6_scrub_context(merr);
218 icmp6_error(merr, ICMP6_PARAM_PROB,
219 ICMP6_PARAMPROB_HEADER, param);
220 }
221 }
222 }
223
224 /*
225 * Send any deferred ICMP time exceeded error messages;
226 * caller must not be holding ip6qlock.
227 */
228 static void
229 frag6_icmp6_timeex_error(struct fq6_head *diq6)
230 {
231 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
232
233 if (!MBUFQ_EMPTY(diq6)) {
234 struct mbuf *m, *m_tmp;
235 MBUFQ_FOREACH_SAFE(m, diq6, m_tmp) {
236 MBUFQ_REMOVE(diq6, m);
237 MBUFQ_NEXT(m) = NULL;
238 icmp6_error_flag(m, ICMP6_TIME_EXCEEDED,
239 ICMP6_TIME_EXCEED_REASSEMBLY, 0, 0);
240 }
241 }
242 }
243
244 /*
245 * In RFC2460, fragment and reassembly rule do not agree with each other,
246 * in terms of next header field handling in fragment header.
247 * While the sender will use the same value for all of the fragmented packets,
248 * receiver is suggested not to check the consistency.
249 *
250 * fragment rule (p20):
251 * (2) A Fragment header containing:
252 * The Next Header value that identifies the first header of
253 * the Fragmentable Part of the original packet.
254 * -> next header field is same for all fragments
255 *
256 * reassembly rule (p21):
257 * The Next Header field of the last header of the Unfragmentable
258 * Part is obtained from the Next Header field of the first
259 * fragment's Fragment header.
260 * -> should grab it from the first fragment only
261 *
262 * The following note also contradicts with fragment rule - noone is going to
263 * send different fragment with different next header field.
264 *
265 * additional note (p22):
266 * The Next Header values in the Fragment headers of different
267 * fragments of the same original packet may differ. Only the value
268 * from the Offset zero fragment packet is used for reassembly.
269 * -> should grab it from the first fragment only
270 *
271 * There is no explicit reason given in the RFC. Historical reason maybe?
272 */
273 /*
274 * Fragment input
275 */
276 int
277 frag6_input(struct mbuf **mp, int *offp, int proto)
278 {
279 #pragma unused(proto)
280 struct mbuf *m = *mp, *t;
281 struct ip6_hdr *ip6;
282 struct ip6_frag *ip6f;
283 struct ip6q *q6;
284 struct ip6asfrag *af6, *ip6af, *af6dwn;
285 int offset = *offp, nxt, i, next;
286 int first_frag = 0;
287 int fragoff, frgpartlen; /* must be larger than u_int16_t */
288 struct ifnet *dstifp = NULL;
289 u_int8_t ecn, ecn0;
290 uint32_t csum, csum_flags;
291 struct fq6_head diq6;
292 int locked = 0;
293
294 VERIFY(m->m_flags & M_PKTHDR);
295
296 MBUFQ_INIT(&diq6); /* for deferred ICMP param problem errors */
297
298 /* Expect 32-bit aligned data pointer on strict-align platforms */
299 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
300
301 ip6 = mtod(m, struct ip6_hdr *);
302 IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), goto done);
303 ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
304
305 #ifdef IN6_IFSTAT_STRICT
306 /* find the destination interface of the packet. */
307 if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
308 uint32_t idx;
309
310 if (ip6_getdstifaddr_info(m, &idx, NULL) == 0) {
311 if (idx > 0 && idx <= if_index) {
312 ifnet_head_lock_shared();
313 dstifp = ifindex2ifnet[idx];
314 ifnet_head_done();
315 }
316 }
317 }
318 #endif /* IN6_IFSTAT_STRICT */
319
320 /* we are violating the spec, this may not be the dst interface */
321 if (dstifp == NULL) {
322 dstifp = m->m_pkthdr.rcvif;
323 }
324
325 /* jumbo payload can't contain a fragment header */
326 if (ip6->ip6_plen == 0) {
327 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
328 in6_ifstat_inc(dstifp, ifs6_reass_fail);
329 m = NULL;
330 goto done;
331 }
332
333 /*
334 * check whether fragment packet's fragment length is
335 * multiple of 8 octets.
336 * sizeof(struct ip6_frag) == 8
337 * sizeof(struct ip6_hdr) = 40
338 */
339 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
340 (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
341 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
342 offsetof(struct ip6_hdr, ip6_plen));
343 in6_ifstat_inc(dstifp, ifs6_reass_fail);
344 m = NULL;
345 goto done;
346 }
347
348 /* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */
349 if (ip6_maxfragpackets == 0 || ip6_maxfrags == 0) {
350 ip6stat.ip6s_fragments++;
351 ip6stat.ip6s_fragdropped++;
352 in6_ifstat_inc(dstifp, ifs6_reass_fail);
353 m_freem(m);
354 m = NULL;
355 goto done;
356 }
357
358 /* offset now points to data portion */
359 offset += sizeof(struct ip6_frag);
360
361 /*
362 * RFC 6946: Handle "atomic" fragments (offset and m bit set to 0)
363 * upfront, unrelated to any reassembly. Just skip the fragment header.
364 */
365 if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) {
366 /*
367 * Mark packet as reassembled.
368 * In ICMPv6 processing, we drop certain
369 * NDP messages that are not expected to
370 * have fragment header based on recommendations
371 * against security vulnerability as described in
372 * RFC 6980.
373 * Treat atomic fragments as re-assembled packets as well.
374 */
375 m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED;
376 ip6stat.ip6s_atmfrag_rcvd++;
377 in6_ifstat_inc(dstifp, ifs6_atmfrag_rcvd);
378 *offp = offset;
379 return ip6f->ip6f_nxt;
380 }
381
382 /*
383 * Leverage partial checksum offload for simple UDP/IP fragments,
384 * as that is the most common case.
385 *
386 * Perform 1's complement adjustment of octets that got included/
387 * excluded in the hardware-calculated checksum value. Also take
388 * care of any trailing bytes and subtract out their partial sum.
389 */
390 if (ip6f->ip6f_nxt == IPPROTO_UDP &&
391 offset == (sizeof(*ip6) + sizeof(*ip6f)) &&
392 (m->m_pkthdr.csum_flags &
393 (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
394 (CSUM_DATA_VALID | CSUM_PARTIAL)) {
395 uint32_t start = m->m_pkthdr.csum_rx_start;
396 uint32_t ip_len = (sizeof(*ip6) + ntohs(ip6->ip6_plen));
397 int32_t trailer = (m_pktlen(m) - ip_len);
398 uint32_t swbytes = (uint32_t)trailer;
399
400 csum = m->m_pkthdr.csum_rx_val;
401
402 ASSERT(trailer >= 0);
403 if (start != offset || trailer != 0) {
404 uint16_t s = 0, d = 0;
405
406 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
407 s = ip6->ip6_src.s6_addr16[1];
408 ip6->ip6_src.s6_addr16[1] = 0;
409 }
410 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
411 d = ip6->ip6_dst.s6_addr16[1];
412 ip6->ip6_dst.s6_addr16[1] = 0;
413 }
414
415 /* callee folds in sum */
416 csum = m_adj_sum16(m, start, offset,
417 (ip_len - offset), csum);
418 if (offset > start) {
419 swbytes += (offset - start);
420 } else {
421 swbytes += (start - offset);
422 }
423
424 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
425 ip6->ip6_src.s6_addr16[1] = s;
426 }
427 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
428 ip6->ip6_dst.s6_addr16[1] = d;
429 }
430 }
431 csum_flags = m->m_pkthdr.csum_flags;
432
433 if (swbytes != 0) {
434 udp_in6_cksum_stats(swbytes);
435 }
436 if (trailer != 0) {
437 m_adj(m, -trailer);
438 }
439 } else {
440 csum = 0;
441 csum_flags = 0;
442 }
443
444 /* Invalidate checksum */
445 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
446
447 ip6stat.ip6s_fragments++;
448 in6_ifstat_inc(dstifp, ifs6_reass_reqd);
449
450 lck_mtx_lock(&ip6qlock);
451 locked = 1;
452
453 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next) {
454 if (ip6f->ip6f_ident == q6->ip6q_ident &&
455 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
456 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst)) {
457 break;
458 }
459 }
460
461 if (q6 == &ip6q) {
462 /*
463 * the first fragment to arrive, create a reassembly queue.
464 */
465 first_frag = 1;
466
467 q6 = ip6q_alloc(M_DONTWAIT);
468 if (q6 == NULL) {
469 goto dropfrag;
470 }
471
472 frag6_insque(q6, &ip6q);
473 frag6_nfragpackets++;
474
475 /* ip6q_nxt will be filled afterwards, from 1st fragment */
476 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
477 #ifdef notyet
478 q6->ip6q_nxtp = (u_char *)nxtp;
479 #endif
480 q6->ip6q_ident = ip6f->ip6f_ident;
481 q6->ip6q_ttl = IPV6_FRAGTTL;
482 q6->ip6q_src = ip6->ip6_src;
483 q6->ip6q_dst = ip6->ip6_dst;
484 q6->ip6q_ecn =
485 (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
486 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
487
488 q6->ip6q_nfrag = 0;
489
490 /*
491 * If the first fragment has valid checksum offload
492 * info, the rest of fragments are eligible as well.
493 */
494 if (csum_flags != 0) {
495 q6->ip6q_csum = csum;
496 q6->ip6q_csum_flags = csum_flags;
497 }
498 }
499
500 /*
501 * If it's the 1st fragment, record the length of the
502 * unfragmentable part and the next header of the fragment header.
503 */
504 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
505 if (fragoff == 0) {
506 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
507 sizeof(struct ip6_frag);
508 q6->ip6q_nxt = ip6f->ip6f_nxt;
509 }
510
511 /*
512 * Check that the reassembled packet would not exceed 65535 bytes
513 * in size.
514 * If it would exceed, discard the fragment and return an ICMP error.
515 */
516 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
517 if (q6->ip6q_unfrglen >= 0) {
518 /* The 1st fragment has already arrived. */
519 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
520 lck_mtx_unlock(&ip6qlock);
521 locked = 0;
522 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
523 offset - sizeof(struct ip6_frag) +
524 offsetof(struct ip6_frag, ip6f_offlg));
525 m = NULL;
526 goto done;
527 }
528 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
529 lck_mtx_unlock(&ip6qlock);
530 locked = 0;
531 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
532 offset - sizeof(struct ip6_frag) +
533 offsetof(struct ip6_frag, ip6f_offlg));
534 m = NULL;
535 goto done;
536 }
537 /*
538 * If it's the first fragment, do the above check for each
539 * fragment already stored in the reassembly queue.
540 */
541 if (fragoff == 0) {
542 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
543 af6 = af6dwn) {
544 af6dwn = af6->ip6af_down;
545
546 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
547 IPV6_MAXPACKET) {
548 struct mbuf *merr = IP6_REASS_MBUF(af6);
549 struct ip6_hdr *ip6err;
550 int erroff = af6->ip6af_offset;
551
552 /* dequeue the fragment. */
553 frag6_deq(af6);
554 ip6af_free(af6);
555
556 /* adjust pointer. */
557 ip6err = mtod(merr, struct ip6_hdr *);
558
559 /*
560 * Restore source and destination addresses
561 * in the erroneous IPv6 header.
562 */
563 ip6err->ip6_src = q6->ip6q_src;
564 ip6err->ip6_dst = q6->ip6q_dst;
565
566 frag6_save_context(merr,
567 erroff - sizeof(struct ip6_frag) +
568 offsetof(struct ip6_frag, ip6f_offlg));
569
570 MBUFQ_ENQUEUE(&diq6, merr);
571 }
572 }
573 }
574
575 ip6af = ip6af_alloc(M_DONTWAIT);
576 if (ip6af == NULL) {
577 goto dropfrag;
578 }
579
580 ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
581 ip6af->ip6af_off = fragoff;
582 ip6af->ip6af_frglen = frgpartlen;
583 ip6af->ip6af_offset = offset;
584 IP6_REASS_MBUF(ip6af) = m;
585
586 if (first_frag) {
587 af6 = (struct ip6asfrag *)q6;
588 goto insert;
589 }
590
591 /*
592 * Handle ECN by comparing this segment with the first one;
593 * if CE is set, do not lose CE.
594 * drop if CE and not-ECT are mixed for the same packet.
595 */
596 ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
597 ecn0 = q6->ip6q_ecn;
598 if (ecn == IPTOS_ECN_CE) {
599 if (ecn0 == IPTOS_ECN_NOTECT) {
600 ip6af_free(ip6af);
601 goto dropfrag;
602 }
603 if (ecn0 != IPTOS_ECN_CE) {
604 q6->ip6q_ecn = IPTOS_ECN_CE;
605 }
606 }
607 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
608 ip6af_free(ip6af);
609 goto dropfrag;
610 }
611
612 /*
613 * Find a segment which begins after this one does.
614 */
615 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
616 af6 = af6->ip6af_down) {
617 if (af6->ip6af_off > ip6af->ip6af_off) {
618 break;
619 }
620 }
621
622 #if 0
623 /*
624 * If there is a preceding segment, it may provide some of
625 * our data already. If so, drop the data from the incoming
626 * segment. If it provides all of our data, drop us.
627 *
628 * If some of the data is dropped from the preceding
629 * segment, then it's checksum is invalidated.
630 */
631 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
632 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
633 - ip6af->ip6af_off;
634 if (i > 0) {
635 if (i >= ip6af->ip6af_frglen) {
636 goto dropfrag;
637 }
638 m_adj(IP6_REASS_MBUF(ip6af), i);
639 q6->ip6q_csum_flags = 0;
640 ip6af->ip6af_off += i;
641 ip6af->ip6af_frglen -= i;
642 }
643 }
644
645 /*
646 * While we overlap succeeding segments trim them or,
647 * if they are completely covered, dequeue them.
648 */
649 while (af6 != (struct ip6asfrag *)q6 &&
650 ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
651 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
652 if (i < af6->ip6af_frglen) {
653 af6->ip6af_frglen -= i;
654 af6->ip6af_off += i;
655 m_adj(IP6_REASS_MBUF(af6), i);
656 q6->ip6q_csum_flags = 0;
657 break;
658 }
659 af6 = af6->ip6af_down;
660 m_freem(IP6_REASS_MBUF(af6->ip6af_up));
661 frag6_deq(af6->ip6af_up);
662 }
663 #else
664 /*
665 * If the incoming framgent overlaps some existing fragments in
666 * the reassembly queue, drop it, since it is dangerous to override
667 * existing fragments from a security point of view.
668 * We don't know which fragment is the bad guy - here we trust
669 * fragment that came in earlier, with no real reason.
670 *
671 * Note: due to changes after disabling this part, mbuf passed to
672 * m_adj() below now does not meet the requirement.
673 */
674 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
675 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
676 - ip6af->ip6af_off;
677 if (i > 0) {
678 #if 0 /* suppress the noisy log */
679 log(LOG_ERR, "%d bytes of a fragment from %s "
680 "overlaps the previous fragment\n",
681 i, ip6_sprintf(&q6->ip6q_src));
682 #endif
683 ip6af_free(ip6af);
684 goto dropfrag;
685 }
686 }
687 if (af6 != (struct ip6asfrag *)q6) {
688 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
689 if (i > 0) {
690 #if 0 /* suppress the noisy log */
691 log(LOG_ERR, "%d bytes of a fragment from %s "
692 "overlaps the succeeding fragment",
693 i, ip6_sprintf(&q6->ip6q_src));
694 #endif
695 ip6af_free(ip6af);
696 goto dropfrag;
697 }
698 }
699 #endif
700
701 /*
702 * If this fragment contains similar checksum offload info
703 * as that of the existing ones, accumulate checksum. Otherwise,
704 * invalidate checksum offload info for the entire datagram.
705 */
706 if (csum_flags != 0 && csum_flags == q6->ip6q_csum_flags) {
707 q6->ip6q_csum += csum;
708 } else if (q6->ip6q_csum_flags != 0) {
709 q6->ip6q_csum_flags = 0;
710 }
711
712 insert:
713
714 /*
715 * Stick new segment in its place;
716 * check for complete reassembly.
717 * Move to front of packet queue, as we are
718 * the most recently active fragmented packet.
719 */
720 frag6_enq(ip6af, af6->ip6af_up);
721 frag6_nfrags++;
722 q6->ip6q_nfrag++;
723 #if 0 /* xxx */
724 if (q6 != ip6q.ip6q_next) {
725 frag6_remque(q6);
726 frag6_insque(q6, &ip6q);
727 }
728 #endif
729 next = 0;
730 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
731 af6 = af6->ip6af_down) {
732 if (af6->ip6af_off != next) {
733 lck_mtx_unlock(&ip6qlock);
734 locked = 0;
735 m = NULL;
736 goto done;
737 }
738 next += af6->ip6af_frglen;
739 }
740 if (af6->ip6af_up->ip6af_mff) {
741 lck_mtx_unlock(&ip6qlock);
742 locked = 0;
743 m = NULL;
744 goto done;
745 }
746
747 /*
748 * Reassembly is complete; concatenate fragments.
749 */
750 ip6af = q6->ip6q_down;
751 t = m = IP6_REASS_MBUF(ip6af);
752 af6 = ip6af->ip6af_down;
753 frag6_deq(ip6af);
754 while (af6 != (struct ip6asfrag *)q6) {
755 af6dwn = af6->ip6af_down;
756 frag6_deq(af6);
757 while (t->m_next) {
758 t = t->m_next;
759 }
760 t->m_next = IP6_REASS_MBUF(af6);
761 m_adj(t->m_next, af6->ip6af_offset);
762 ip6af_free(af6);
763 af6 = af6dwn;
764 }
765
766 /*
767 * Store partial hardware checksum info from the fragment queue;
768 * the receive start offset is set to 40 bytes (see code at the
769 * top of this routine.)
770 */
771 if (q6->ip6q_csum_flags != 0) {
772 csum = q6->ip6q_csum;
773
774 ADDCARRY(csum);
775
776 m->m_pkthdr.csum_rx_val = csum;
777 m->m_pkthdr.csum_rx_start = sizeof(struct ip6_hdr);
778 m->m_pkthdr.csum_flags = q6->ip6q_csum_flags;
779 } else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
780 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
781 /* loopback checksums are always OK */
782 m->m_pkthdr.csum_data = 0xffff;
783 m->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
784 }
785
786 /* adjust offset to point where the original next header starts */
787 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
788 ip6af_free(ip6af);
789 ip6 = mtod(m, struct ip6_hdr *);
790 ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr));
791 ip6->ip6_src = q6->ip6q_src;
792 ip6->ip6_dst = q6->ip6q_dst;
793 if (q6->ip6q_ecn == IPTOS_ECN_CE) {
794 ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20);
795 }
796
797 nxt = q6->ip6q_nxt;
798 #ifdef notyet
799 *q6->ip6q_nxtp = (u_char)(nxt & 0xff);
800 #endif
801
802 /* Delete frag6 header */
803 if (m->m_len >= offset + sizeof(struct ip6_frag)) {
804 /* This is the only possible case with !PULLDOWN_TEST */
805 ovbcopy((caddr_t)ip6, (caddr_t)ip6 + sizeof(struct ip6_frag),
806 offset);
807 m->m_data += sizeof(struct ip6_frag);
808 m->m_len -= sizeof(struct ip6_frag);
809 } else {
810 /* this comes with no copy if the boundary is on cluster */
811 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
812 frag6_remque(q6);
813 frag6_nfragpackets--;
814 frag6_nfrags -= q6->ip6q_nfrag;
815 ip6q_free(q6);
816 goto dropfrag;
817 }
818 m_adj(t, sizeof(struct ip6_frag));
819 m_cat(m, t);
820 }
821
822 /*
823 * Store NXT to the original.
824 */
825 {
826 char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
827 *prvnxtp = nxt;
828 }
829
830 frag6_remque(q6);
831 frag6_nfragpackets--;
832 frag6_nfrags -= q6->ip6q_nfrag;
833 ip6q_free(q6);
834
835 if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
836 m_fixhdr(m);
837 /*
838 * Mark packet as reassembled
839 * In ICMPv6 processing, we drop certain
840 * NDP messages that are not expected to
841 * have fragment header based on recommendations
842 * against security vulnerability as described in
843 * RFC 6980.
844 */
845 m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED;
846 }
847 ip6stat.ip6s_reassembled++;
848
849 /*
850 * Tell launch routine the next header
851 */
852 *mp = m;
853 *offp = offset;
854
855 /* arm the purge timer if not already and if there's work to do */
856 frag6_sched_timeout();
857 lck_mtx_unlock(&ip6qlock);
858 in6_ifstat_inc(dstifp, ifs6_reass_ok);
859 frag6_icmp6_paramprob_error(&diq6);
860 VERIFY(MBUFQ_EMPTY(&diq6));
861 return nxt;
862
863 done:
864 VERIFY(m == NULL);
865 if (!locked) {
866 if (frag6_nfragpackets == 0) {
867 frag6_icmp6_paramprob_error(&diq6);
868 VERIFY(MBUFQ_EMPTY(&diq6));
869 return IPPROTO_DONE;
870 }
871 lck_mtx_lock(&ip6qlock);
872 }
873 /* arm the purge timer if not already and if there's work to do */
874 frag6_sched_timeout();
875 lck_mtx_unlock(&ip6qlock);
876 frag6_icmp6_paramprob_error(&diq6);
877 VERIFY(MBUFQ_EMPTY(&diq6));
878 return IPPROTO_DONE;
879
880 dropfrag:
881 ip6stat.ip6s_fragdropped++;
882 /* arm the purge timer if not already and if there's work to do */
883 frag6_sched_timeout();
884 lck_mtx_unlock(&ip6qlock);
885 in6_ifstat_inc(dstifp, ifs6_reass_fail);
886 m_freem(m);
887 frag6_icmp6_paramprob_error(&diq6);
888 VERIFY(MBUFQ_EMPTY(&diq6));
889 return IPPROTO_DONE;
890 }
891
892 /*
893 * Free a fragment reassembly header and all
894 * associated datagrams.
895 */
896 void
897 frag6_freef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6)
898 {
899 struct ip6asfrag *af6, *down6;
900
901 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
902
903 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
904 af6 = down6) {
905 struct mbuf *m = IP6_REASS_MBUF(af6);
906
907 down6 = af6->ip6af_down;
908 frag6_deq(af6);
909
910 /*
911 * Return ICMP time exceeded error for the 1st fragment.
912 * Just free other fragments.
913 */
914 if (af6->ip6af_off == 0) {
915 struct ip6_hdr *ip6;
916
917 /* adjust pointer */
918 ip6 = mtod(m, struct ip6_hdr *);
919
920 /* restore source and destination addresses */
921 ip6->ip6_src = q6->ip6q_src;
922 ip6->ip6_dst = q6->ip6q_dst;
923
924 MBUFQ_ENQUEUE(diq6, m);
925 } else {
926 MBUFQ_ENQUEUE(dfq6, m);
927 }
928 ip6af_free(af6);
929 }
930 frag6_remque(q6);
931 frag6_nfragpackets--;
932 frag6_nfrags -= q6->ip6q_nfrag;
933 ip6q_free(q6);
934 }
935
936 /*
937 * Put an ip fragment on a reassembly chain.
938 * Like insque, but pointers in middle of structure.
939 */
940 void
941 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
942 {
943 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
944
945 af6->ip6af_up = up6;
946 af6->ip6af_down = up6->ip6af_down;
947 up6->ip6af_down->ip6af_up = af6;
948 up6->ip6af_down = af6;
949 }
950
951 /*
952 * To frag6_enq as remque is to insque.
953 */
954 void
955 frag6_deq(struct ip6asfrag *af6)
956 {
957 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
958
959 af6->ip6af_up->ip6af_down = af6->ip6af_down;
960 af6->ip6af_down->ip6af_up = af6->ip6af_up;
961 }
962
963 void
964 frag6_insque(struct ip6q *new, struct ip6q *old)
965 {
966 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
967
968 new->ip6q_prev = old;
969 new->ip6q_next = old->ip6q_next;
970 old->ip6q_next->ip6q_prev = new;
971 old->ip6q_next = new;
972 }
973
974 void
975 frag6_remque(struct ip6q *p6)
976 {
977 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
978
979 p6->ip6q_prev->ip6q_next = p6->ip6q_next;
980 p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
981 }
982
983 /*
984 * IPv6 reassembling timer processing;
985 * if a timer expires on a reassembly
986 * queue, discard it.
987 */
988 static void
989 frag6_timeout(void *arg)
990 {
991 #pragma unused(arg)
992 struct fq6_head dfq6, diq6;
993 struct ip6q *q6;
994
995 MBUFQ_INIT(&dfq6); /* for deferred frees */
996 MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */
997
998 /*
999 * Update coarse-grained networking timestamp (in sec.); the idea
1000 * is to piggy-back on the timeout callout to update the counter
1001 * returnable via net_uptime().
1002 */
1003 net_update_uptime();
1004
1005 lck_mtx_lock(&ip6qlock);
1006 q6 = ip6q.ip6q_next;
1007 if (q6) {
1008 while (q6 != &ip6q) {
1009 --q6->ip6q_ttl;
1010 q6 = q6->ip6q_next;
1011 if (q6->ip6q_prev->ip6q_ttl == 0) {
1012 ip6stat.ip6s_fragtimeout++;
1013 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1014 frag6_freef(q6->ip6q_prev, &dfq6, &diq6);
1015 }
1016 }
1017 }
1018 /*
1019 * If we are over the maximum number of fragments
1020 * (due to the limit being lowered), drain off
1021 * enough to get down to the new limit.
1022 */
1023 if (ip6_maxfragpackets >= 0) {
1024 while (frag6_nfragpackets > (unsigned)ip6_maxfragpackets &&
1025 ip6q.ip6q_prev) {
1026 ip6stat.ip6s_fragoverflow++;
1027 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1028 frag6_freef(ip6q.ip6q_prev, &dfq6, &diq6);
1029 }
1030 }
1031 /* re-arm the purge timer if there's work to do */
1032 frag6_timeout_run = 0;
1033 frag6_sched_timeout();
1034 lck_mtx_unlock(&ip6qlock);
1035
1036 /* free fragments that need to be freed */
1037 if (!MBUFQ_EMPTY(&dfq6)) {
1038 MBUFQ_DRAIN(&dfq6);
1039 }
1040
1041 frag6_icmp6_timeex_error(&diq6);
1042
1043 VERIFY(MBUFQ_EMPTY(&dfq6));
1044 VERIFY(MBUFQ_EMPTY(&diq6));
1045 }
1046
1047 static void
1048 frag6_sched_timeout(void)
1049 {
1050 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
1051
1052 if (!frag6_timeout_run && frag6_nfragpackets > 0) {
1053 frag6_timeout_run = 1;
1054 timeout(frag6_timeout, NULL, hz);
1055 }
1056 }
1057
1058 /*
1059 * Drain off all datagram fragments.
1060 */
1061 void
1062 frag6_drain(void)
1063 {
1064 struct fq6_head dfq6, diq6;
1065
1066 MBUFQ_INIT(&dfq6); /* for deferred frees */
1067 MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */
1068
1069 lck_mtx_lock(&ip6qlock);
1070 while (ip6q.ip6q_next != &ip6q) {
1071 ip6stat.ip6s_fragdropped++;
1072 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1073 frag6_freef(ip6q.ip6q_next, &dfq6, &diq6);
1074 }
1075 lck_mtx_unlock(&ip6qlock);
1076
1077 /* free fragments that need to be freed */
1078 if (!MBUFQ_EMPTY(&dfq6)) {
1079 MBUFQ_DRAIN(&dfq6);
1080 }
1081
1082 frag6_icmp6_timeex_error(&diq6);
1083
1084 VERIFY(MBUFQ_EMPTY(&dfq6));
1085 VERIFY(MBUFQ_EMPTY(&diq6));
1086 }
1087
1088 static struct ip6q *
1089 ip6q_alloc(int how)
1090 {
1091 struct mbuf *t;
1092 struct ip6q *q6;
1093
1094 /*
1095 * See comments in ip6q_updateparams(). Keep the count separate
1096 * from frag6_nfragpackets since the latter represents the elements
1097 * already in the reassembly queues.
1098 */
1099 if (ip6q_limit > 0 && ip6q_count > ip6q_limit) {
1100 return NULL;
1101 }
1102
1103 t = m_get(how, MT_FTABLE);
1104 if (t != NULL) {
1105 atomic_add_32(&ip6q_count, 1);
1106 q6 = mtod(t, struct ip6q *);
1107 bzero(q6, sizeof(*q6));
1108 } else {
1109 q6 = NULL;
1110 }
1111 return q6;
1112 }
1113
1114 static void
1115 ip6q_free(struct ip6q *q6)
1116 {
1117 (void) m_free(dtom(q6));
1118 atomic_add_32(&ip6q_count, -1);
1119 }
1120
1121 static struct ip6asfrag *
1122 ip6af_alloc(int how)
1123 {
1124 struct mbuf *t;
1125 struct ip6asfrag *af6;
1126
1127 /*
1128 * See comments in ip6q_updateparams(). Keep the count separate
1129 * from frag6_nfrags since the latter represents the elements
1130 * already in the reassembly queues.
1131 */
1132 if (ip6af_limit > 0 && ip6af_count > ip6af_limit) {
1133 return NULL;
1134 }
1135
1136 t = m_get(how, MT_FTABLE);
1137 if (t != NULL) {
1138 atomic_add_32(&ip6af_count, 1);
1139 af6 = mtod(t, struct ip6asfrag *);
1140 bzero(af6, sizeof(*af6));
1141 } else {
1142 af6 = NULL;
1143 }
1144 return af6;
1145 }
1146
1147 static void
1148 ip6af_free(struct ip6asfrag *af6)
1149 {
1150 (void) m_free(dtom(af6));
1151 atomic_add_32(&ip6af_count, -1);
1152 }
1153
1154 static void
1155 ip6q_updateparams(void)
1156 {
1157 LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED);
1158 /*
1159 * -1 for unlimited allocation.
1160 */
1161 if (ip6_maxfragpackets < 0) {
1162 ip6q_limit = 0;
1163 }
1164 if (ip6_maxfrags < 0) {
1165 ip6af_limit = 0;
1166 }
1167 /*
1168 * Positive number for specific bound.
1169 */
1170 if (ip6_maxfragpackets > 0) {
1171 ip6q_limit = ip6_maxfragpackets;
1172 }
1173 if (ip6_maxfrags > 0) {
1174 ip6af_limit = ip6_maxfrags;
1175 }
1176 /*
1177 * Zero specifies no further fragment queue allocation -- set the
1178 * bound very low, but rely on implementation elsewhere to actually
1179 * prevent allocation and reclaim current queues.
1180 */
1181 if (ip6_maxfragpackets == 0) {
1182 ip6q_limit = 1;
1183 }
1184 if (ip6_maxfrags == 0) {
1185 ip6af_limit = 1;
1186 }
1187 /*
1188 * Arm the purge timer if not already and if there's work to do
1189 */
1190 frag6_sched_timeout();
1191 }
1192
1193 static int
1194 sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
1195 {
1196 #pragma unused(arg1, arg2)
1197 int error, i;
1198
1199 lck_mtx_lock(&ip6qlock);
1200 i = ip6_maxfragpackets;
1201 error = sysctl_handle_int(oidp, &i, 0, req);
1202 if (error || req->newptr == USER_ADDR_NULL) {
1203 goto done;
1204 }
1205 /* impose bounds */
1206 if (i < -1 || i > (nmbclusters / 4)) {
1207 error = EINVAL;
1208 goto done;
1209 }
1210 ip6_maxfragpackets = i;
1211 ip6q_updateparams();
1212 done:
1213 lck_mtx_unlock(&ip6qlock);
1214 return error;
1215 }
1216
1217 static int
1218 sysctl_maxfrags SYSCTL_HANDLER_ARGS
1219 {
1220 #pragma unused(arg1, arg2)
1221 int error, i;
1222
1223 lck_mtx_lock(&ip6qlock);
1224 i = ip6_maxfrags;
1225 error = sysctl_handle_int(oidp, &i, 0, req);
1226 if (error || req->newptr == USER_ADDR_NULL) {
1227 goto done;
1228 }
1229 /* impose bounds */
1230 if (i < -1 || i > (nmbclusters / 4)) {
1231 error = EINVAL;
1232 goto done;
1233 }
1234 ip6_maxfrags = i;
1235 ip6q_updateparams(); /* see if we need to arm timer */
1236 done:
1237 lck_mtx_unlock(&ip6qlock);
1238 return error;
1239 }