2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 /* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */
30 /* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/malloc.h>
64 #include <sys/mcache.h>
66 #include <sys/domain.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/errno.h>
71 #include <sys/kernel.h>
72 #include <sys/syslog.h>
73 #include <kern/queue.h>
74 #include <kern/locks.h>
77 #include <net/route.h>
79 #include <netinet/in.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip_var.h>
83 #include <netinet/ip6.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet/icmp6.h>
87 #include <net/net_osdep.h>
88 #include <dev/random/randomdev.h>
91 * Define it to get a correct behavior on per-interface statistics.
93 #define IN6_IFSTAT_STRICT
97 static void frag6_save_context(struct mbuf
*, int);
98 static void frag6_scrub_context(struct mbuf
*);
99 static int frag6_restore_context(struct mbuf
*);
101 static void frag6_icmp6_paramprob_error(struct fq6_head
*);
102 static void frag6_icmp6_timeex_error(struct fq6_head
*);
104 static void frag6_enq(struct ip6asfrag
*, struct ip6asfrag
*);
105 static void frag6_deq(struct ip6asfrag
*);
106 static void frag6_insque(struct ip6q
*, struct ip6q
*);
107 static void frag6_remque(struct ip6q
*);
108 static void frag6_freef(struct ip6q
*, struct fq6_head
*, struct fq6_head
*);
110 static int frag6_timeout_run
; /* frag6 timer is scheduled to run */
111 static void frag6_timeout(void *);
112 static void frag6_sched_timeout(void);
114 static struct ip6q
*ip6q_alloc(int);
115 static void ip6q_free(struct ip6q
*);
116 static void ip6q_updateparams(void);
117 static struct ip6asfrag
*ip6af_alloc(int);
118 static void ip6af_free(struct ip6asfrag
*);
120 decl_lck_mtx_data(static, ip6qlock
);
121 static lck_attr_t
*ip6qlock_attr
;
122 static lck_grp_t
*ip6qlock_grp
;
123 static lck_grp_attr_t
*ip6qlock_grp_attr
;
125 /* IPv6 fragment reassembly queues (protected by ip6qlock) */
126 static struct ip6q ip6q
; /* ip6 reassembly queues */
127 static int ip6_maxfragpackets
; /* max packets in reass queues */
128 static u_int32_t frag6_nfragpackets
; /* # of packets in reass queues */
129 static int ip6_maxfrags
; /* max fragments in reass queues */
130 static u_int32_t frag6_nfrags
; /* # of fragments in reass queues */
131 static u_int32_t ip6q_limit
; /* ip6q allocation limit */
132 static u_int32_t ip6q_count
; /* current # of allocated ip6q's */
133 static u_int32_t ip6af_limit
; /* ip6asfrag allocation limit */
134 static u_int32_t ip6af_count
; /* current # of allocated ip6asfrag's */
136 static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
;
137 static int sysctl_maxfrags SYSCTL_HANDLER_ARGS
;
139 SYSCTL_DECL(_net_inet6_ip6
);
141 SYSCTL_PROC(_net_inet6_ip6
, IPV6CTL_MAXFRAGPACKETS
, maxfragpackets
,
142 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_maxfragpackets
, 0,
143 sysctl_maxfragpackets
, "I",
144 "Maximum number of IPv6 fragment reassembly queue entries");
146 SYSCTL_UINT(_net_inet6_ip6
, OID_AUTO
, fragpackets
,
147 CTLFLAG_RD
| CTLFLAG_LOCKED
, &frag6_nfragpackets
, 0,
148 "Current number of IPv6 fragment reassembly queue entries");
150 SYSCTL_PROC(_net_inet6_ip6
, IPV6CTL_MAXFRAGS
, maxfrags
,
151 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_maxfrags
, 0,
152 sysctl_maxfrags
, "I", "Maximum number of IPv6 fragments allowed");
155 * Initialise reassembly queue and fragment identifier.
160 /* ip6q_alloc() uses mbufs for IPv6 fragment queue structures */
161 _CASSERT(sizeof(struct ip6q
) <= _MLEN
);
162 /* ip6af_alloc() uses mbufs for IPv6 fragment queue structures */
163 _CASSERT(sizeof(struct ip6asfrag
) <= _MLEN
);
165 /* IPv6 fragment reassembly queue lock */
166 ip6qlock_grp_attr
= lck_grp_attr_alloc_init();
167 ip6qlock_grp
= lck_grp_alloc_init("ip6qlock", ip6qlock_grp_attr
);
168 ip6qlock_attr
= lck_attr_alloc_init();
169 lck_mtx_init(&ip6qlock
, ip6qlock_grp
, ip6qlock_attr
);
171 lck_mtx_lock(&ip6qlock
);
172 /* Initialize IPv6 reassembly queue. */
173 ip6q
.ip6q_next
= ip6q
.ip6q_prev
= &ip6q
;
175 /* same limits as IPv4 */
176 ip6_maxfragpackets
= nmbclusters
/ 32;
177 ip6_maxfrags
= ip6_maxfragpackets
* 2;
179 lck_mtx_unlock(&ip6qlock
);
183 frag6_save_context(struct mbuf
*m
, int val
)
185 m
->m_pkthdr
.pkt_hdr
= (void *)(uintptr_t)val
;
189 frag6_scrub_context(struct mbuf
*m
)
191 m
->m_pkthdr
.pkt_hdr
= NULL
;
195 frag6_restore_context(struct mbuf
*m
)
197 return (int)m
->m_pkthdr
.pkt_hdr
;
201 * Send any deferred ICMP param problem error messages; caller must not be
202 * holding ip6qlock and is expected to have saved the per-packet parameter
203 * value via frag6_save_context().
206 frag6_icmp6_paramprob_error(struct fq6_head
*diq6
)
208 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_NOTOWNED
);
210 if (!MBUFQ_EMPTY(diq6
)) {
211 struct mbuf
*merr
, *merr_tmp
;
213 MBUFQ_FOREACH_SAFE(merr
, diq6
, merr_tmp
) {
214 MBUFQ_REMOVE(diq6
, merr
);
215 MBUFQ_NEXT(merr
) = NULL
;
216 param
= frag6_restore_context(merr
);
217 frag6_scrub_context(merr
);
218 icmp6_error(merr
, ICMP6_PARAM_PROB
,
219 ICMP6_PARAMPROB_HEADER
, param
);
225 * Send any deferred ICMP time exceeded error messages;
226 * caller must not be holding ip6qlock.
229 frag6_icmp6_timeex_error(struct fq6_head
*diq6
)
231 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_NOTOWNED
);
233 if (!MBUFQ_EMPTY(diq6
)) {
234 struct mbuf
*m
, *m_tmp
;
235 MBUFQ_FOREACH_SAFE(m
, diq6
, m_tmp
) {
236 MBUFQ_REMOVE(diq6
, m
);
237 MBUFQ_NEXT(m
) = NULL
;
238 icmp6_error_flag(m
, ICMP6_TIME_EXCEEDED
,
239 ICMP6_TIME_EXCEED_REASSEMBLY
, 0, 0);
245 * In RFC2460, fragment and reassembly rule do not agree with each other,
246 * in terms of next header field handling in fragment header.
247 * While the sender will use the same value for all of the fragmented packets,
248 * receiver is suggested not to check the consistency.
250 * fragment rule (p20):
251 * (2) A Fragment header containing:
252 * The Next Header value that identifies the first header of
253 * the Fragmentable Part of the original packet.
254 * -> next header field is same for all fragments
256 * reassembly rule (p21):
257 * The Next Header field of the last header of the Unfragmentable
258 * Part is obtained from the Next Header field of the first
259 * fragment's Fragment header.
260 * -> should grab it from the first fragment only
262 * The following note also contradicts with fragment rule - noone is going to
263 * send different fragment with different next header field.
265 * additional note (p22):
266 * The Next Header values in the Fragment headers of different
267 * fragments of the same original packet may differ. Only the value
268 * from the Offset zero fragment packet is used for reassembly.
269 * -> should grab it from the first fragment only
271 * There is no explicit reason given in the RFC. Historical reason maybe?
277 frag6_input(struct mbuf
**mp
, int *offp
, int proto
)
279 #pragma unused(proto)
280 struct mbuf
*m
= *mp
, *t
;
282 struct ip6_frag
*ip6f
;
284 struct ip6asfrag
*af6
, *ip6af
, *af6dwn
;
285 int offset
= *offp
, nxt
, i
, next
;
287 int fragoff
, frgpartlen
; /* must be larger than u_int16_t */
288 struct ifnet
*dstifp
= NULL
;
290 uint32_t csum
, csum_flags
;
291 struct fq6_head diq6
;
294 VERIFY(m
->m_flags
& M_PKTHDR
);
296 MBUFQ_INIT(&diq6
); /* for deferred ICMP param problem errors */
298 /* Expect 32-bit aligned data pointer on strict-align platforms */
299 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
301 ip6
= mtod(m
, struct ip6_hdr
*);
302 IP6_EXTHDR_CHECK(m
, offset
, sizeof(struct ip6_frag
), goto done
);
303 ip6f
= (struct ip6_frag
*)((caddr_t
)ip6
+ offset
);
305 #ifdef IN6_IFSTAT_STRICT
306 /* find the destination interface of the packet. */
307 if (m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
) {
310 if (ip6_getdstifaddr_info(m
, &idx
, NULL
) == 0) {
311 if (idx
> 0 && idx
<= if_index
) {
312 ifnet_head_lock_shared();
313 dstifp
= ifindex2ifnet
[idx
];
318 #endif /* IN6_IFSTAT_STRICT */
320 /* we are violating the spec, this may not be the dst interface */
321 if (dstifp
== NULL
) {
322 dstifp
= m
->m_pkthdr
.rcvif
;
325 /* jumbo payload can't contain a fragment header */
326 if (ip6
->ip6_plen
== 0) {
327 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
, offset
);
328 in6_ifstat_inc(dstifp
, ifs6_reass_fail
);
334 * check whether fragment packet's fragment length is
335 * multiple of 8 octets.
336 * sizeof(struct ip6_frag) == 8
337 * sizeof(struct ip6_hdr) = 40
339 if ((ip6f
->ip6f_offlg
& IP6F_MORE_FRAG
) &&
340 (((ntohs(ip6
->ip6_plen
) - offset
) & 0x7) != 0)) {
341 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
,
342 offsetof(struct ip6_hdr
, ip6_plen
));
343 in6_ifstat_inc(dstifp
, ifs6_reass_fail
);
348 /* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */
349 if (ip6_maxfragpackets
== 0 || ip6_maxfrags
== 0) {
350 ip6stat
.ip6s_fragments
++;
351 ip6stat
.ip6s_fragdropped
++;
352 in6_ifstat_inc(dstifp
, ifs6_reass_fail
);
358 /* offset now points to data portion */
359 offset
+= sizeof(struct ip6_frag
);
362 * RFC 6946: Handle "atomic" fragments (offset and m bit set to 0)
363 * upfront, unrelated to any reassembly. Just skip the fragment header.
365 if ((ip6f
->ip6f_offlg
& ~IP6F_RESERVED_MASK
) == 0) {
367 * Mark packet as reassembled.
368 * In ICMPv6 processing, we drop certain
369 * NDP messages that are not expected to
370 * have fragment header based on recommendations
371 * against security vulnerability as described in
373 * Treat atomic fragments as re-assembled packets as well.
375 m
->m_pkthdr
.pkt_flags
|= PKTF_REASSEMBLED
;
376 ip6stat
.ip6s_atmfrag_rcvd
++;
377 in6_ifstat_inc(dstifp
, ifs6_atmfrag_rcvd
);
379 return ip6f
->ip6f_nxt
;
383 * Leverage partial checksum offload for simple UDP/IP fragments,
384 * as that is the most common case.
386 * Perform 1's complement adjustment of octets that got included/
387 * excluded in the hardware-calculated checksum value. Also take
388 * care of any trailing bytes and subtract out their partial sum.
390 if (ip6f
->ip6f_nxt
== IPPROTO_UDP
&&
391 offset
== (sizeof(*ip6
) + sizeof(*ip6f
)) &&
392 (m
->m_pkthdr
.csum_flags
&
393 (CSUM_DATA_VALID
| CSUM_PARTIAL
| CSUM_PSEUDO_HDR
)) ==
394 (CSUM_DATA_VALID
| CSUM_PARTIAL
)) {
395 uint32_t start
= m
->m_pkthdr
.csum_rx_start
;
396 uint32_t ip_len
= (sizeof(*ip6
) + ntohs(ip6
->ip6_plen
));
397 int32_t trailer
= (m_pktlen(m
) - ip_len
);
398 uint32_t swbytes
= (uint32_t)trailer
;
400 csum
= m
->m_pkthdr
.csum_rx_val
;
402 ASSERT(trailer
>= 0);
403 if (start
!= offset
|| trailer
!= 0) {
404 uint16_t s
= 0, d
= 0;
406 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
407 s
= ip6
->ip6_src
.s6_addr16
[1];
408 ip6
->ip6_src
.s6_addr16
[1] = 0;
410 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
411 d
= ip6
->ip6_dst
.s6_addr16
[1];
412 ip6
->ip6_dst
.s6_addr16
[1] = 0;
415 /* callee folds in sum */
416 csum
= m_adj_sum16(m
, start
, offset
,
417 (ip_len
- offset
), csum
);
418 if (offset
> start
) {
419 swbytes
+= (offset
- start
);
421 swbytes
+= (start
- offset
);
424 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
425 ip6
->ip6_src
.s6_addr16
[1] = s
;
427 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
428 ip6
->ip6_dst
.s6_addr16
[1] = d
;
431 csum_flags
= m
->m_pkthdr
.csum_flags
;
434 udp_in6_cksum_stats(swbytes
);
444 /* Invalidate checksum */
445 m
->m_pkthdr
.csum_flags
&= ~CSUM_DATA_VALID
;
447 ip6stat
.ip6s_fragments
++;
448 in6_ifstat_inc(dstifp
, ifs6_reass_reqd
);
450 lck_mtx_lock(&ip6qlock
);
453 for (q6
= ip6q
.ip6q_next
; q6
!= &ip6q
; q6
= q6
->ip6q_next
) {
454 if (ip6f
->ip6f_ident
== q6
->ip6q_ident
&&
455 IN6_ARE_ADDR_EQUAL(&ip6
->ip6_src
, &q6
->ip6q_src
) &&
456 IN6_ARE_ADDR_EQUAL(&ip6
->ip6_dst
, &q6
->ip6q_dst
)) {
463 * the first fragment to arrive, create a reassembly queue.
467 q6
= ip6q_alloc(M_DONTWAIT
);
472 frag6_insque(q6
, &ip6q
);
473 frag6_nfragpackets
++;
475 /* ip6q_nxt will be filled afterwards, from 1st fragment */
476 q6
->ip6q_down
= q6
->ip6q_up
= (struct ip6asfrag
*)q6
;
478 q6
->ip6q_nxtp
= (u_char
*)nxtp
;
480 q6
->ip6q_ident
= ip6f
->ip6f_ident
;
481 q6
->ip6q_ttl
= IPV6_FRAGTTL
;
482 q6
->ip6q_src
= ip6
->ip6_src
;
483 q6
->ip6q_dst
= ip6
->ip6_dst
;
485 (ntohl(ip6
->ip6_flow
) >> 20) & IPTOS_ECN_MASK
;
486 q6
->ip6q_unfrglen
= -1; /* The 1st fragment has not arrived. */
491 * If the first fragment has valid checksum offload
492 * info, the rest of fragments are eligible as well.
494 if (csum_flags
!= 0) {
495 q6
->ip6q_csum
= csum
;
496 q6
->ip6q_csum_flags
= csum_flags
;
501 * If it's the 1st fragment, record the length of the
502 * unfragmentable part and the next header of the fragment header.
504 fragoff
= ntohs(ip6f
->ip6f_offlg
& IP6F_OFF_MASK
);
506 q6
->ip6q_unfrglen
= offset
- sizeof(struct ip6_hdr
) -
507 sizeof(struct ip6_frag
);
508 q6
->ip6q_nxt
= ip6f
->ip6f_nxt
;
512 * Check that the reassembled packet would not exceed 65535 bytes
514 * If it would exceed, discard the fragment and return an ICMP error.
516 frgpartlen
= sizeof(struct ip6_hdr
) + ntohs(ip6
->ip6_plen
) - offset
;
517 if (q6
->ip6q_unfrglen
>= 0) {
518 /* The 1st fragment has already arrived. */
519 if (q6
->ip6q_unfrglen
+ fragoff
+ frgpartlen
> IPV6_MAXPACKET
) {
520 lck_mtx_unlock(&ip6qlock
);
522 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
,
523 offset
- sizeof(struct ip6_frag
) +
524 offsetof(struct ip6_frag
, ip6f_offlg
));
528 } else if (fragoff
+ frgpartlen
> IPV6_MAXPACKET
) {
529 lck_mtx_unlock(&ip6qlock
);
531 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
,
532 offset
- sizeof(struct ip6_frag
) +
533 offsetof(struct ip6_frag
, ip6f_offlg
));
538 * If it's the first fragment, do the above check for each
539 * fragment already stored in the reassembly queue.
542 for (af6
= q6
->ip6q_down
; af6
!= (struct ip6asfrag
*)q6
;
544 af6dwn
= af6
->ip6af_down
;
546 if (q6
->ip6q_unfrglen
+ af6
->ip6af_off
+ af6
->ip6af_frglen
>
548 struct mbuf
*merr
= IP6_REASS_MBUF(af6
);
549 struct ip6_hdr
*ip6err
;
550 int erroff
= af6
->ip6af_offset
;
552 /* dequeue the fragment. */
556 /* adjust pointer. */
557 ip6err
= mtod(merr
, struct ip6_hdr
*);
560 * Restore source and destination addresses
561 * in the erroneous IPv6 header.
563 ip6err
->ip6_src
= q6
->ip6q_src
;
564 ip6err
->ip6_dst
= q6
->ip6q_dst
;
566 frag6_save_context(merr
,
567 erroff
- sizeof(struct ip6_frag
) +
568 offsetof(struct ip6_frag
, ip6f_offlg
));
570 MBUFQ_ENQUEUE(&diq6
, merr
);
575 ip6af
= ip6af_alloc(M_DONTWAIT
);
580 ip6af
->ip6af_mff
= ip6f
->ip6f_offlg
& IP6F_MORE_FRAG
;
581 ip6af
->ip6af_off
= fragoff
;
582 ip6af
->ip6af_frglen
= frgpartlen
;
583 ip6af
->ip6af_offset
= offset
;
584 IP6_REASS_MBUF(ip6af
) = m
;
587 af6
= (struct ip6asfrag
*)q6
;
592 * Handle ECN by comparing this segment with the first one;
593 * if CE is set, do not lose CE.
594 * drop if CE and not-ECT are mixed for the same packet.
596 ecn
= (ntohl(ip6
->ip6_flow
) >> 20) & IPTOS_ECN_MASK
;
598 if (ecn
== IPTOS_ECN_CE
) {
599 if (ecn0
== IPTOS_ECN_NOTECT
) {
603 if (ecn0
!= IPTOS_ECN_CE
) {
604 q6
->ip6q_ecn
= IPTOS_ECN_CE
;
607 if (ecn
== IPTOS_ECN_NOTECT
&& ecn0
!= IPTOS_ECN_NOTECT
) {
613 * Find a segment which begins after this one does.
615 for (af6
= q6
->ip6q_down
; af6
!= (struct ip6asfrag
*)q6
;
616 af6
= af6
->ip6af_down
) {
617 if (af6
->ip6af_off
> ip6af
->ip6af_off
) {
624 * If there is a preceding segment, it may provide some of
625 * our data already. If so, drop the data from the incoming
626 * segment. If it provides all of our data, drop us.
628 * If some of the data is dropped from the preceding
629 * segment, then it's checksum is invalidated.
631 if (af6
->ip6af_up
!= (struct ip6asfrag
*)q6
) {
632 i
= af6
->ip6af_up
->ip6af_off
+ af6
->ip6af_up
->ip6af_frglen
635 if (i
>= ip6af
->ip6af_frglen
) {
638 m_adj(IP6_REASS_MBUF(ip6af
), i
);
639 q6
->ip6q_csum_flags
= 0;
640 ip6af
->ip6af_off
+= i
;
641 ip6af
->ip6af_frglen
-= i
;
646 * While we overlap succeeding segments trim them or,
647 * if they are completely covered, dequeue them.
649 while (af6
!= (struct ip6asfrag
*)q6
&&
650 ip6af
->ip6af_off
+ ip6af
->ip6af_frglen
> af6
->ip6af_off
) {
651 i
= (ip6af
->ip6af_off
+ ip6af
->ip6af_frglen
) - af6
->ip6af_off
;
652 if (i
< af6
->ip6af_frglen
) {
653 af6
->ip6af_frglen
-= i
;
655 m_adj(IP6_REASS_MBUF(af6
), i
);
656 q6
->ip6q_csum_flags
= 0;
659 af6
= af6
->ip6af_down
;
660 m_freem(IP6_REASS_MBUF(af6
->ip6af_up
));
661 frag6_deq(af6
->ip6af_up
);
665 * If the incoming framgent overlaps some existing fragments in
666 * the reassembly queue, drop it, since it is dangerous to override
667 * existing fragments from a security point of view.
668 * We don't know which fragment is the bad guy - here we trust
669 * fragment that came in earlier, with no real reason.
671 * Note: due to changes after disabling this part, mbuf passed to
672 * m_adj() below now does not meet the requirement.
674 if (af6
->ip6af_up
!= (struct ip6asfrag
*)q6
) {
675 i
= af6
->ip6af_up
->ip6af_off
+ af6
->ip6af_up
->ip6af_frglen
678 #if 0 /* suppress the noisy log */
679 log(LOG_ERR
, "%d bytes of a fragment from %s "
680 "overlaps the previous fragment\n",
681 i
, ip6_sprintf(&q6
->ip6q_src
));
687 if (af6
!= (struct ip6asfrag
*)q6
) {
688 i
= (ip6af
->ip6af_off
+ ip6af
->ip6af_frglen
) - af6
->ip6af_off
;
690 #if 0 /* suppress the noisy log */
691 log(LOG_ERR
, "%d bytes of a fragment from %s "
692 "overlaps the succeeding fragment",
693 i
, ip6_sprintf(&q6
->ip6q_src
));
702 * If this fragment contains similar checksum offload info
703 * as that of the existing ones, accumulate checksum. Otherwise,
704 * invalidate checksum offload info for the entire datagram.
706 if (csum_flags
!= 0 && csum_flags
== q6
->ip6q_csum_flags
) {
707 q6
->ip6q_csum
+= csum
;
708 } else if (q6
->ip6q_csum_flags
!= 0) {
709 q6
->ip6q_csum_flags
= 0;
715 * Stick new segment in its place;
716 * check for complete reassembly.
717 * Move to front of packet queue, as we are
718 * the most recently active fragmented packet.
720 frag6_enq(ip6af
, af6
->ip6af_up
);
724 if (q6
!= ip6q
.ip6q_next
) {
726 frag6_insque(q6
, &ip6q
);
730 for (af6
= q6
->ip6q_down
; af6
!= (struct ip6asfrag
*)q6
;
731 af6
= af6
->ip6af_down
) {
732 if (af6
->ip6af_off
!= next
) {
733 lck_mtx_unlock(&ip6qlock
);
738 next
+= af6
->ip6af_frglen
;
740 if (af6
->ip6af_up
->ip6af_mff
) {
741 lck_mtx_unlock(&ip6qlock
);
748 * Reassembly is complete; concatenate fragments.
750 ip6af
= q6
->ip6q_down
;
751 t
= m
= IP6_REASS_MBUF(ip6af
);
752 af6
= ip6af
->ip6af_down
;
754 while (af6
!= (struct ip6asfrag
*)q6
) {
755 af6dwn
= af6
->ip6af_down
;
760 t
->m_next
= IP6_REASS_MBUF(af6
);
761 m_adj(t
->m_next
, af6
->ip6af_offset
);
767 * Store partial hardware checksum info from the fragment queue;
768 * the receive start offset is set to 40 bytes (see code at the
769 * top of this routine.)
771 if (q6
->ip6q_csum_flags
!= 0) {
772 csum
= q6
->ip6q_csum
;
776 m
->m_pkthdr
.csum_rx_val
= csum
;
777 m
->m_pkthdr
.csum_rx_start
= sizeof(struct ip6_hdr
);
778 m
->m_pkthdr
.csum_flags
= q6
->ip6q_csum_flags
;
779 } else if ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) ||
780 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
781 /* loopback checksums are always OK */
782 m
->m_pkthdr
.csum_data
= 0xffff;
783 m
->m_pkthdr
.csum_flags
= CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
;
786 /* adjust offset to point where the original next header starts */
787 offset
= ip6af
->ip6af_offset
- sizeof(struct ip6_frag
);
789 ip6
= mtod(m
, struct ip6_hdr
*);
790 ip6
->ip6_plen
= htons((u_short
)next
+ offset
- sizeof(struct ip6_hdr
));
791 ip6
->ip6_src
= q6
->ip6q_src
;
792 ip6
->ip6_dst
= q6
->ip6q_dst
;
793 if (q6
->ip6q_ecn
== IPTOS_ECN_CE
) {
794 ip6
->ip6_flow
|= htonl(IPTOS_ECN_CE
<< 20);
799 *q6
->ip6q_nxtp
= (u_char
)(nxt
& 0xff);
802 /* Delete frag6 header */
803 if (m
->m_len
>= offset
+ sizeof(struct ip6_frag
)) {
804 /* This is the only possible case with !PULLDOWN_TEST */
805 ovbcopy((caddr_t
)ip6
, (caddr_t
)ip6
+ sizeof(struct ip6_frag
),
807 m
->m_data
+= sizeof(struct ip6_frag
);
808 m
->m_len
-= sizeof(struct ip6_frag
);
810 /* this comes with no copy if the boundary is on cluster */
811 if ((t
= m_split(m
, offset
, M_DONTWAIT
)) == NULL
) {
813 frag6_nfragpackets
--;
814 frag6_nfrags
-= q6
->ip6q_nfrag
;
818 m_adj(t
, sizeof(struct ip6_frag
));
823 * Store NXT to the original.
826 char *prvnxtp
= ip6_get_prevhdr(m
, offset
); /* XXX */
831 frag6_nfragpackets
--;
832 frag6_nfrags
-= q6
->ip6q_nfrag
;
835 if (m
->m_flags
& M_PKTHDR
) { /* Isn't it always true? */
838 * Mark packet as reassembled
839 * In ICMPv6 processing, we drop certain
840 * NDP messages that are not expected to
841 * have fragment header based on recommendations
842 * against security vulnerability as described in
845 m
->m_pkthdr
.pkt_flags
|= PKTF_REASSEMBLED
;
847 ip6stat
.ip6s_reassembled
++;
850 * Tell launch routine the next header
855 /* arm the purge timer if not already and if there's work to do */
856 frag6_sched_timeout();
857 lck_mtx_unlock(&ip6qlock
);
858 in6_ifstat_inc(dstifp
, ifs6_reass_ok
);
859 frag6_icmp6_paramprob_error(&diq6
);
860 VERIFY(MBUFQ_EMPTY(&diq6
));
866 if (frag6_nfragpackets
== 0) {
867 frag6_icmp6_paramprob_error(&diq6
);
868 VERIFY(MBUFQ_EMPTY(&diq6
));
871 lck_mtx_lock(&ip6qlock
);
873 /* arm the purge timer if not already and if there's work to do */
874 frag6_sched_timeout();
875 lck_mtx_unlock(&ip6qlock
);
876 frag6_icmp6_paramprob_error(&diq6
);
877 VERIFY(MBUFQ_EMPTY(&diq6
));
881 ip6stat
.ip6s_fragdropped
++;
882 /* arm the purge timer if not already and if there's work to do */
883 frag6_sched_timeout();
884 lck_mtx_unlock(&ip6qlock
);
885 in6_ifstat_inc(dstifp
, ifs6_reass_fail
);
887 frag6_icmp6_paramprob_error(&diq6
);
888 VERIFY(MBUFQ_EMPTY(&diq6
));
893 * Free a fragment reassembly header and all
894 * associated datagrams.
897 frag6_freef(struct ip6q
*q6
, struct fq6_head
*dfq6
, struct fq6_head
*diq6
)
899 struct ip6asfrag
*af6
, *down6
;
901 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
903 for (af6
= q6
->ip6q_down
; af6
!= (struct ip6asfrag
*)q6
;
905 struct mbuf
*m
= IP6_REASS_MBUF(af6
);
907 down6
= af6
->ip6af_down
;
911 * Return ICMP time exceeded error for the 1st fragment.
912 * Just free other fragments.
914 if (af6
->ip6af_off
== 0) {
918 ip6
= mtod(m
, struct ip6_hdr
*);
920 /* restore source and destination addresses */
921 ip6
->ip6_src
= q6
->ip6q_src
;
922 ip6
->ip6_dst
= q6
->ip6q_dst
;
924 MBUFQ_ENQUEUE(diq6
, m
);
926 MBUFQ_ENQUEUE(dfq6
, m
);
931 frag6_nfragpackets
--;
932 frag6_nfrags
-= q6
->ip6q_nfrag
;
937 * Put an ip fragment on a reassembly chain.
938 * Like insque, but pointers in middle of structure.
941 frag6_enq(struct ip6asfrag
*af6
, struct ip6asfrag
*up6
)
943 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
946 af6
->ip6af_down
= up6
->ip6af_down
;
947 up6
->ip6af_down
->ip6af_up
= af6
;
948 up6
->ip6af_down
= af6
;
952 * To frag6_enq as remque is to insque.
955 frag6_deq(struct ip6asfrag
*af6
)
957 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
959 af6
->ip6af_up
->ip6af_down
= af6
->ip6af_down
;
960 af6
->ip6af_down
->ip6af_up
= af6
->ip6af_up
;
964 frag6_insque(struct ip6q
*new, struct ip6q
*old
)
966 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
968 new->ip6q_prev
= old
;
969 new->ip6q_next
= old
->ip6q_next
;
970 old
->ip6q_next
->ip6q_prev
= new;
971 old
->ip6q_next
= new;
975 frag6_remque(struct ip6q
*p6
)
977 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
979 p6
->ip6q_prev
->ip6q_next
= p6
->ip6q_next
;
980 p6
->ip6q_next
->ip6q_prev
= p6
->ip6q_prev
;
984 * IPv6 reassembling timer processing;
985 * if a timer expires on a reassembly
989 frag6_timeout(void *arg
)
992 struct fq6_head dfq6
, diq6
;
995 MBUFQ_INIT(&dfq6
); /* for deferred frees */
996 MBUFQ_INIT(&diq6
); /* for deferred ICMP time exceeded errors */
999 * Update coarse-grained networking timestamp (in sec.); the idea
1000 * is to piggy-back on the timeout callout to update the counter
1001 * returnable via net_uptime().
1003 net_update_uptime();
1005 lck_mtx_lock(&ip6qlock
);
1006 q6
= ip6q
.ip6q_next
;
1008 while (q6
!= &ip6q
) {
1011 if (q6
->ip6q_prev
->ip6q_ttl
== 0) {
1012 ip6stat
.ip6s_fragtimeout
++;
1013 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1014 frag6_freef(q6
->ip6q_prev
, &dfq6
, &diq6
);
1019 * If we are over the maximum number of fragments
1020 * (due to the limit being lowered), drain off
1021 * enough to get down to the new limit.
1023 if (ip6_maxfragpackets
>= 0) {
1024 while (frag6_nfragpackets
> (unsigned)ip6_maxfragpackets
&&
1026 ip6stat
.ip6s_fragoverflow
++;
1027 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1028 frag6_freef(ip6q
.ip6q_prev
, &dfq6
, &diq6
);
1031 /* re-arm the purge timer if there's work to do */
1032 frag6_timeout_run
= 0;
1033 frag6_sched_timeout();
1034 lck_mtx_unlock(&ip6qlock
);
1036 /* free fragments that need to be freed */
1037 if (!MBUFQ_EMPTY(&dfq6
)) {
1041 frag6_icmp6_timeex_error(&diq6
);
1043 VERIFY(MBUFQ_EMPTY(&dfq6
));
1044 VERIFY(MBUFQ_EMPTY(&diq6
));
1048 frag6_sched_timeout(void)
1050 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
1052 if (!frag6_timeout_run
&& frag6_nfragpackets
> 0) {
1053 frag6_timeout_run
= 1;
1054 timeout(frag6_timeout
, NULL
, hz
);
1059 * Drain off all datagram fragments.
1064 struct fq6_head dfq6
, diq6
;
1066 MBUFQ_INIT(&dfq6
); /* for deferred frees */
1067 MBUFQ_INIT(&diq6
); /* for deferred ICMP time exceeded errors */
1069 lck_mtx_lock(&ip6qlock
);
1070 while (ip6q
.ip6q_next
!= &ip6q
) {
1071 ip6stat
.ip6s_fragdropped
++;
1072 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1073 frag6_freef(ip6q
.ip6q_next
, &dfq6
, &diq6
);
1075 lck_mtx_unlock(&ip6qlock
);
1077 /* free fragments that need to be freed */
1078 if (!MBUFQ_EMPTY(&dfq6
)) {
1082 frag6_icmp6_timeex_error(&diq6
);
1084 VERIFY(MBUFQ_EMPTY(&dfq6
));
1085 VERIFY(MBUFQ_EMPTY(&diq6
));
1088 static struct ip6q
*
1095 * See comments in ip6q_updateparams(). Keep the count separate
1096 * from frag6_nfragpackets since the latter represents the elements
1097 * already in the reassembly queues.
1099 if (ip6q_limit
> 0 && ip6q_count
> ip6q_limit
) {
1103 t
= m_get(how
, MT_FTABLE
);
1105 atomic_add_32(&ip6q_count
, 1);
1106 q6
= mtod(t
, struct ip6q
*);
1107 bzero(q6
, sizeof(*q6
));
1115 ip6q_free(struct ip6q
*q6
)
1117 (void) m_free(dtom(q6
));
1118 atomic_add_32(&ip6q_count
, -1);
1121 static struct ip6asfrag
*
1122 ip6af_alloc(int how
)
1125 struct ip6asfrag
*af6
;
1128 * See comments in ip6q_updateparams(). Keep the count separate
1129 * from frag6_nfrags since the latter represents the elements
1130 * already in the reassembly queues.
1132 if (ip6af_limit
> 0 && ip6af_count
> ip6af_limit
) {
1136 t
= m_get(how
, MT_FTABLE
);
1138 atomic_add_32(&ip6af_count
, 1);
1139 af6
= mtod(t
, struct ip6asfrag
*);
1140 bzero(af6
, sizeof(*af6
));
1148 ip6af_free(struct ip6asfrag
*af6
)
1150 (void) m_free(dtom(af6
));
1151 atomic_add_32(&ip6af_count
, -1);
1155 ip6q_updateparams(void)
1157 LCK_MTX_ASSERT(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
1159 * -1 for unlimited allocation.
1161 if (ip6_maxfragpackets
< 0) {
1164 if (ip6_maxfrags
< 0) {
1168 * Positive number for specific bound.
1170 if (ip6_maxfragpackets
> 0) {
1171 ip6q_limit
= ip6_maxfragpackets
;
1173 if (ip6_maxfrags
> 0) {
1174 ip6af_limit
= ip6_maxfrags
;
1177 * Zero specifies no further fragment queue allocation -- set the
1178 * bound very low, but rely on implementation elsewhere to actually
1179 * prevent allocation and reclaim current queues.
1181 if (ip6_maxfragpackets
== 0) {
1184 if (ip6_maxfrags
== 0) {
1188 * Arm the purge timer if not already and if there's work to do
1190 frag6_sched_timeout();
1194 sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
1196 #pragma unused(arg1, arg2)
1199 lck_mtx_lock(&ip6qlock
);
1200 i
= ip6_maxfragpackets
;
1201 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
1202 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
1206 if (i
< -1 || i
> (nmbclusters
/ 4)) {
1210 ip6_maxfragpackets
= i
;
1211 ip6q_updateparams();
1213 lck_mtx_unlock(&ip6qlock
);
1218 sysctl_maxfrags SYSCTL_HANDLER_ARGS
1220 #pragma unused(arg1, arg2)
1223 lck_mtx_lock(&ip6qlock
);
1225 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
1226 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
1230 if (i
< -1 || i
> (nmbclusters
/ 4)) {
1235 ip6q_updateparams(); /* see if we need to arm timer */
1237 lck_mtx_unlock(&ip6qlock
);