]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_cubic.c
xnu-6153.121.1.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_cubic.c
1 /*
2 * Copyright (c) 2013-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kernel.h>
31 #include <sys/protosw.h>
32 #include <sys/socketvar.h>
33 #include <sys/syslog.h>
34
35 #include <net/route.h>
36 #include <netinet/in.h>
37 #include <netinet/in_systm.h>
38 #include <netinet/ip.h>
39
40 #if INET6
41 #include <netinet/ip6.h>
42 #endif /* INET6 */
43
44 #include <netinet/ip_var.h>
45 #include <netinet/tcp.h>
46 #include <netinet/tcp_timer.h>
47 #include <netinet/tcp_var.h>
48 #include <netinet/tcp_fsm.h>
49 #include <netinet/tcp_var.h>
50 #include <netinet/tcp_cc.h>
51 #include <netinet/tcpip.h>
52 #include <netinet/tcp_seq.h>
53 #include <kern/task.h>
54 #include <libkern/OSAtomic.h>
55
56 static int tcp_cubic_init(struct tcpcb *tp);
57 static int tcp_cubic_cleanup(struct tcpcb *tp);
58 static void tcp_cubic_cwnd_init_or_reset(struct tcpcb *tp);
59 static void tcp_cubic_congestion_avd(struct tcpcb *tp, struct tcphdr *th);
60 static void tcp_cubic_ack_rcvd(struct tcpcb *tp, struct tcphdr *th);
61 static void tcp_cubic_pre_fr(struct tcpcb *tp);
62 static void tcp_cubic_post_fr(struct tcpcb *tp, struct tcphdr *th);
63 static void tcp_cubic_after_timeout(struct tcpcb *tp);
64 static int tcp_cubic_delay_ack(struct tcpcb *tp, struct tcphdr *th);
65 static void tcp_cubic_switch_cc(struct tcpcb *tp, u_int16_t old_index);
66 static uint32_t tcp_cubic_update(struct tcpcb *tp, u_int32_t rtt);
67 static uint32_t tcp_cubic_tcpwin(struct tcpcb *tp, struct tcphdr *th);
68 static inline void tcp_cubic_clear_state(struct tcpcb *tp);
69
70
71 extern float cbrtf(float x);
72
73 struct tcp_cc_algo tcp_cc_cubic = {
74 .name = "cubic",
75 .init = tcp_cubic_init,
76 .cleanup = tcp_cubic_cleanup,
77 .cwnd_init = tcp_cubic_cwnd_init_or_reset,
78 .congestion_avd = tcp_cubic_congestion_avd,
79 .ack_rcvd = tcp_cubic_ack_rcvd,
80 .pre_fr = tcp_cubic_pre_fr,
81 .post_fr = tcp_cubic_post_fr,
82 .after_idle = tcp_cubic_cwnd_init_or_reset,
83 .after_timeout = tcp_cubic_after_timeout,
84 .delay_ack = tcp_cubic_delay_ack,
85 .switch_to = tcp_cubic_switch_cc
86 };
87
88 const float tcp_cubic_backoff = 0.2f; /* multiplicative decrease factor */
89 const float tcp_cubic_coeff = 0.4f;
90 const float tcp_cubic_fast_convergence_factor = 0.875f;
91
92 SYSCTL_SKMEM_TCP_INT(OID_AUTO, cubic_tcp_friendliness, CTLFLAG_RW | CTLFLAG_LOCKED,
93 static int, tcp_cubic_tcp_friendliness, 0, "Enable TCP friendliness");
94
95 SYSCTL_SKMEM_TCP_INT(OID_AUTO, cubic_fast_convergence, CTLFLAG_RW | CTLFLAG_LOCKED,
96 static int, tcp_cubic_fast_convergence, 0, "Enable fast convergence");
97
98 SYSCTL_SKMEM_TCP_INT(OID_AUTO, cubic_use_minrtt, CTLFLAG_RW | CTLFLAG_LOCKED,
99 static int, tcp_cubic_use_minrtt, 0, "use a min of 5 sec rtt");
100
101 static int
102 tcp_cubic_init(struct tcpcb *tp)
103 {
104 OSIncrementAtomic((volatile SInt32 *)&tcp_cc_cubic.num_sockets);
105
106 VERIFY(tp->t_ccstate != NULL);
107 tcp_cubic_clear_state(tp);
108 return 0;
109 }
110
111 static int
112 tcp_cubic_cleanup(struct tcpcb *tp)
113 {
114 #pragma unused(tp)
115 OSDecrementAtomic((volatile SInt32 *)&tcp_cc_cubic.num_sockets);
116 return 0;
117 }
118
119 /*
120 * Initialize the congestion window at the beginning of a connection or
121 * after idle time
122 */
123 static void
124 tcp_cubic_cwnd_init_or_reset(struct tcpcb *tp)
125 {
126 VERIFY(tp->t_ccstate != NULL);
127
128 tcp_cubic_clear_state(tp);
129 tcp_cc_cwnd_init_or_reset(tp);
130 tp->t_pipeack = 0;
131 tcp_clear_pipeack_state(tp);
132
133 /* Start counting bytes for RFC 3465 again */
134 tp->t_bytes_acked = 0;
135
136 /*
137 * slow start threshold could get initialized to a lower value
138 * when there is a cached value in the route metrics. In this case,
139 * the connection can enter congestion avoidance without any packet
140 * loss and Cubic will enter steady-state too early. It is better
141 * to always probe to find the initial slow-start threshold.
142 */
143 if (tp->t_inpcb->inp_stat->txbytes <= TCP_CC_CWND_INIT_BYTES
144 && tp->snd_ssthresh < (TCP_MAXWIN << TCP_MAX_WINSHIFT)) {
145 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
146 }
147
148 /* Initialize cubic last max to be same as ssthresh */
149 tp->t_ccstate->cub_last_max = tp->snd_ssthresh;
150 }
151
152 /*
153 * Compute the target congestion window for the next RTT according to
154 * cubic equation when an ack is received.
155 *
156 * W(t) = C(t-K)^3 + W(last_max)
157 */
158 static uint32_t
159 tcp_cubic_update(struct tcpcb *tp, u_int32_t rtt)
160 {
161 float K, var;
162 u_int32_t elapsed_time, win;
163
164 win = min(tp->snd_cwnd, tp->snd_wnd);
165 if (tp->t_ccstate->cub_last_max == 0) {
166 tp->t_ccstate->cub_last_max = tp->snd_ssthresh;
167 }
168
169 if (tp->t_ccstate->cub_epoch_start == 0) {
170 /*
171 * This is the beginning of a new epoch, initialize some of
172 * the variables that we need to use for computing the
173 * congestion window later.
174 */
175 tp->t_ccstate->cub_epoch_start = tcp_now;
176 if (tp->t_ccstate->cub_epoch_start == 0) {
177 tp->t_ccstate->cub_epoch_start = 1;
178 }
179 if (win < tp->t_ccstate->cub_last_max) {
180 VERIFY(current_task() == kernel_task);
181
182 /*
183 * Compute cubic epoch period, this is the time
184 * period that the window will take to increase to
185 * last_max again after backoff due to loss.
186 */
187 K = (tp->t_ccstate->cub_last_max - win)
188 / tp->t_maxseg / tcp_cubic_coeff;
189 K = cbrtf(K);
190 tp->t_ccstate->cub_epoch_period = K * TCP_RETRANSHZ;
191 /* Origin point */
192 tp->t_ccstate->cub_origin_point =
193 tp->t_ccstate->cub_last_max;
194 } else {
195 tp->t_ccstate->cub_epoch_period = 0;
196 tp->t_ccstate->cub_origin_point = win;
197 }
198 tp->t_ccstate->cub_target_win = 0;
199 }
200
201 VERIFY(tp->t_ccstate->cub_origin_point > 0);
202 /*
203 * Compute the target window for the next RTT using smoothed RTT
204 * as an estimate for next RTT.
205 */
206 elapsed_time = timer_diff(tcp_now, 0,
207 tp->t_ccstate->cub_epoch_start, 0);
208
209 if (tcp_cubic_use_minrtt) {
210 elapsed_time += max(tcp_cubic_use_minrtt, rtt);
211 } else {
212 elapsed_time += rtt;
213 }
214 var = (elapsed_time - tp->t_ccstate->cub_epoch_period) / TCP_RETRANSHZ;
215 var = var * var * var * (tcp_cubic_coeff * tp->t_maxseg);
216
217 tp->t_ccstate->cub_target_win = (u_int32_t)(tp->t_ccstate->cub_origin_point + var);
218 return tp->t_ccstate->cub_target_win;
219 }
220
221 /*
222 * Standard TCP utilizes bandwidth well in low RTT and low BDP connections
223 * even when there is some packet loss. Enabling TCP mode will help Cubic
224 * to achieve this kind of utilization.
225 *
226 * But if there is a bottleneck link in the path with a fixed size queue
227 * and fixed bandwidth, TCP Cubic will help to reduce packet loss at this
228 * link because of the steady-state behavior. Using average and mean
229 * absolute deviation of W(lastmax), we try to detect if the congestion
230 * window is close to the bottleneck bandwidth. In that case, disabling
231 * TCP mode will help to minimize packet loss at this link.
232 *
233 * Disable TCP mode if the W(lastmax) (the window where previous packet
234 * loss happened) is within a small range from the average last max
235 * calculated.
236 */
237 #define TCP_CUBIC_ENABLE_TCPMODE(_tp_) \
238 ((!soissrcrealtime((_tp_)->t_inpcb->inp_socket) && \
239 (_tp_)->t_ccstate->cub_mean_dev > (tp->t_maxseg << 1)) ? 1 : 0)
240
241 /*
242 * Compute the window growth if standard TCP (AIMD) was used with
243 * a backoff of 0.5 and additive increase of 1 packet per RTT.
244 *
245 * TCP window at time t can be calculated using the following equation
246 * with beta as 0.8
247 *
248 * W(t) <- Wmax * beta + 3 * ((1 - beta)/(1 + beta)) * t/RTT
249 *
250 */
251 static uint32_t
252 tcp_cubic_tcpwin(struct tcpcb *tp, struct tcphdr *th)
253 {
254 if (tp->t_ccstate->cub_tcp_win == 0) {
255 tp->t_ccstate->cub_tcp_win = min(tp->snd_cwnd, tp->snd_wnd);
256 tp->t_ccstate->cub_tcp_bytes_acked = 0;
257 } else {
258 tp->t_ccstate->cub_tcp_bytes_acked +=
259 BYTES_ACKED(th, tp);
260 if (tp->t_ccstate->cub_tcp_bytes_acked >=
261 tp->t_ccstate->cub_tcp_win) {
262 tp->t_ccstate->cub_tcp_bytes_acked -=
263 tp->t_ccstate->cub_tcp_win;
264 tp->t_ccstate->cub_tcp_win += tp->t_maxseg;
265 }
266 }
267 return tp->t_ccstate->cub_tcp_win;
268 }
269
270 /*
271 * Handle an in-sequence ack during congestion avoidance phase.
272 */
273 static void
274 tcp_cubic_congestion_avd(struct tcpcb *tp, struct tcphdr *th)
275 {
276 u_int32_t cubic_target_win, tcp_win, rtt;
277
278 /* Do not increase congestion window in non-validated phase */
279 if (tcp_cc_is_cwnd_nonvalidated(tp) != 0) {
280 return;
281 }
282
283 tp->t_bytes_acked += BYTES_ACKED(th, tp);
284
285 rtt = get_base_rtt(tp);
286 /*
287 * First compute cubic window. If cubic variables are not
288 * initialized (after coming out of recovery), this call will
289 * initialize them.
290 */
291 cubic_target_win = tcp_cubic_update(tp, rtt);
292
293 /* Compute TCP window if a multiplicative decrease of 0.2 is used */
294 tcp_win = tcp_cubic_tcpwin(tp, th);
295
296 if (tp->snd_cwnd < tcp_win &&
297 (tcp_cubic_tcp_friendliness == 1 ||
298 TCP_CUBIC_ENABLE_TCPMODE(tp))) {
299 /* this connection is in TCP-friendly region */
300 if (tp->t_bytes_acked >= tp->snd_cwnd) {
301 tp->t_bytes_acked -= tp->snd_cwnd;
302 tp->snd_cwnd = min(tcp_win, TCP_MAXWIN << tp->snd_scale);
303 }
304 } else {
305 if (cubic_target_win > tp->snd_cwnd) {
306 /*
307 * The target win is computed for the next RTT.
308 * To reach this value, cwnd will have to be updated
309 * one segment at a time. Compute how many bytes
310 * need to be acknowledged before we can increase
311 * the cwnd by one segment.
312 */
313 u_int64_t incr_win;
314 incr_win = tp->snd_cwnd * tp->t_maxseg;
315 incr_win /= (cubic_target_win - tp->snd_cwnd);
316 if (incr_win > 0 &&
317 tp->t_bytes_acked >= incr_win) {
318 tp->t_bytes_acked -= incr_win;
319 tp->snd_cwnd =
320 min((tp->snd_cwnd + tp->t_maxseg),
321 TCP_MAXWIN << tp->snd_scale);
322 }
323 }
324 }
325 }
326
327 static void
328 tcp_cubic_ack_rcvd(struct tcpcb *tp, struct tcphdr *th)
329 {
330 /* Do not increase the congestion window in non-validated phase */
331 if (tcp_cc_is_cwnd_nonvalidated(tp) != 0) {
332 return;
333 }
334
335 if (tp->snd_cwnd >= tp->snd_ssthresh) {
336 /* Congestion avoidance phase */
337 tcp_cubic_congestion_avd(tp, th);
338 } else {
339 /*
340 * Use 2*SMSS as limit on increment as suggested
341 * by RFC 3465 section 2.3
342 */
343 uint32_t acked, abc_lim, incr;
344
345 acked = BYTES_ACKED(th, tp);
346 abc_lim = (tcp_do_rfc3465_lim2 &&
347 tp->snd_nxt == tp->snd_max) ?
348 2 * tp->t_maxseg : tp->t_maxseg;
349 incr = min(acked, abc_lim);
350
351 tp->snd_cwnd += incr;
352 tp->snd_cwnd = min(tp->snd_cwnd,
353 TCP_MAXWIN << tp->snd_scale);
354 }
355 }
356
357 static void
358 tcp_cubic_pre_fr(struct tcpcb *tp)
359 {
360 u_int32_t win, avg;
361 int32_t dev;
362 tp->t_ccstate->cub_epoch_start = 0;
363 tp->t_ccstate->cub_tcp_win = 0;
364 tp->t_ccstate->cub_target_win = 0;
365 tp->t_ccstate->cub_tcp_bytes_acked = 0;
366
367 win = min(tp->snd_cwnd, tp->snd_wnd);
368 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
369 tp->t_lossflightsize = tp->snd_max - tp->snd_una;
370 win = (max(tp->t_pipeack, tp->t_lossflightsize)) >> 1;
371 } else {
372 tp->t_lossflightsize = 0;
373 }
374 /*
375 * Note the congestion window at which packet loss occurred as
376 * cub_last_max.
377 *
378 * If the congestion window is less than the last max window when
379 * loss occurred, it indicates that capacity available in the
380 * network has gone down. This can happen if a new flow has started
381 * and it is capturing some of the bandwidth. To reach convergence
382 * quickly, backoff a little more. Disable fast convergence to
383 * disable this behavior.
384 */
385 if (win < tp->t_ccstate->cub_last_max &&
386 tcp_cubic_fast_convergence == 1) {
387 tp->t_ccstate->cub_last_max = (u_int32_t)(win *
388 tcp_cubic_fast_convergence_factor);
389 } else {
390 tp->t_ccstate->cub_last_max = win;
391 }
392
393 if (tp->t_ccstate->cub_last_max == 0) {
394 /*
395 * If last_max is zero because snd_wnd is zero or for
396 * any other reason, initialize it to the amount of data
397 * in flight
398 */
399 tp->t_ccstate->cub_last_max = tp->snd_max - tp->snd_una;
400 }
401
402 /*
403 * Compute average and mean absolute deviation of the
404 * window at which packet loss occurred.
405 */
406 if (tp->t_ccstate->cub_avg_lastmax == 0) {
407 tp->t_ccstate->cub_avg_lastmax = tp->t_ccstate->cub_last_max;
408 } else {
409 /*
410 * Average is computed by taking 63 parts of
411 * history and one part of the most recent value
412 */
413 avg = tp->t_ccstate->cub_avg_lastmax;
414 avg = (avg << 6) - avg;
415 tp->t_ccstate->cub_avg_lastmax =
416 (avg + tp->t_ccstate->cub_last_max) >> 6;
417 }
418
419 /* caluclate deviation from average */
420 dev = tp->t_ccstate->cub_avg_lastmax - tp->t_ccstate->cub_last_max;
421
422 /* Take the absolute value */
423 if (dev < 0) {
424 dev = -dev;
425 }
426
427 if (tp->t_ccstate->cub_mean_dev == 0) {
428 tp->t_ccstate->cub_mean_dev = dev;
429 } else {
430 dev = dev + ((tp->t_ccstate->cub_mean_dev << 4)
431 - tp->t_ccstate->cub_mean_dev);
432 tp->t_ccstate->cub_mean_dev = dev >> 4;
433 }
434
435 /* Backoff congestion window by tcp_cubic_backoff factor */
436 win = (u_int32_t)(win - (win * tcp_cubic_backoff));
437 win = (win / tp->t_maxseg);
438 if (win < 2) {
439 win = 2;
440 }
441 tp->snd_ssthresh = win * tp->t_maxseg;
442 tcp_cc_resize_sndbuf(tp);
443 }
444
445 static void
446 tcp_cubic_post_fr(struct tcpcb *tp, struct tcphdr *th)
447 {
448 uint32_t flight_size = 0;
449
450 if (SEQ_LEQ(th->th_ack, tp->snd_max)) {
451 flight_size = tp->snd_max - th->th_ack;
452 }
453
454 if (SACK_ENABLED(tp) && tp->t_lossflightsize > 0) {
455 u_int32_t total_rxt_size = 0, ncwnd;
456 /*
457 * When SACK is enabled, the number of retransmitted bytes
458 * can be counted more accurately.
459 */
460 total_rxt_size = tcp_rxtseg_total_size(tp);
461 ncwnd = max(tp->t_pipeack, tp->t_lossflightsize);
462 if (total_rxt_size <= ncwnd) {
463 ncwnd = ncwnd - total_rxt_size;
464 }
465
466 /*
467 * To avoid sending a large burst at the end of recovery
468 * set a max limit on ncwnd
469 */
470 ncwnd = min(ncwnd, (tp->t_maxseg << 6));
471 ncwnd = ncwnd >> 1;
472 flight_size = max(ncwnd, flight_size);
473 }
474 /*
475 * Complete ack. The current window was inflated for fast recovery.
476 * It has to be deflated post recovery.
477 *
478 * Window inflation should have left us with approx snd_ssthresh
479 * outstanding data. If the flight size is zero or one segment,
480 * make congestion window to be at least as big as 2 segments to
481 * avoid delayed acknowledgements. This is according to RFC 6582.
482 */
483 if (flight_size < tp->snd_ssthresh) {
484 tp->snd_cwnd = max(flight_size, tp->t_maxseg)
485 + tp->t_maxseg;
486 } else {
487 tp->snd_cwnd = tp->snd_ssthresh;
488 }
489 tp->t_ccstate->cub_tcp_win = 0;
490 tp->t_ccstate->cub_target_win = 0;
491 tp->t_ccstate->cub_tcp_bytes_acked = 0;
492 }
493
494 static void
495 tcp_cubic_after_timeout(struct tcpcb *tp)
496 {
497 VERIFY(tp->t_ccstate != NULL);
498
499 /*
500 * Avoid adjusting congestion window due to SYN retransmissions.
501 * If more than one byte (SYN) is outstanding then it is still
502 * needed to adjust the window.
503 */
504 if (tp->t_state < TCPS_ESTABLISHED &&
505 ((int)(tp->snd_max - tp->snd_una) <= 1)) {
506 return;
507 }
508
509 if (!IN_FASTRECOVERY(tp)) {
510 tcp_cubic_clear_state(tp);
511 tcp_cubic_pre_fr(tp);
512 }
513
514 /*
515 * Close the congestion window down to one segment as a retransmit
516 * timeout might indicate severe congestion.
517 */
518 tp->snd_cwnd = tp->t_maxseg;
519 }
520
521 static int
522 tcp_cubic_delay_ack(struct tcpcb *tp, struct tcphdr *th)
523 {
524 return tcp_cc_delay_ack(tp, th);
525 }
526
527 /*
528 * When switching from a different CC it is better for Cubic to start
529 * fresh. The state required for Cubic calculation might be stale and it
530 * might not represent the current state of the network. If it starts as
531 * a new connection it will probe and learn the existing network conditions.
532 */
533 static void
534 tcp_cubic_switch_cc(struct tcpcb *tp, uint16_t old_cc_index)
535 {
536 #pragma unused(old_cc_index)
537 tcp_cubic_cwnd_init_or_reset(tp);
538
539 OSIncrementAtomic((volatile SInt32 *)&tcp_cc_cubic.num_sockets);
540 }
541
542 static inline void
543 tcp_cubic_clear_state(struct tcpcb *tp)
544 {
545 tp->t_ccstate->cub_last_max = 0;
546 tp->t_ccstate->cub_epoch_start = 0;
547 tp->t_ccstate->cub_origin_point = 0;
548 tp->t_ccstate->cub_tcp_win = 0;
549 tp->t_ccstate->cub_tcp_bytes_acked = 0;
550 tp->t_ccstate->cub_epoch_period = 0;
551 tp->t_ccstate->cub_target_win = 0;
552 }