2 * Copyright (c) 2013-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/kernel.h>
31 #include <sys/protosw.h>
32 #include <sys/socketvar.h>
33 #include <sys/syslog.h>
35 #include <net/route.h>
36 #include <netinet/in.h>
37 #include <netinet/in_systm.h>
38 #include <netinet/ip.h>
41 #include <netinet/ip6.h>
44 #include <netinet/ip_var.h>
45 #include <netinet/tcp.h>
46 #include <netinet/tcp_timer.h>
47 #include <netinet/tcp_var.h>
48 #include <netinet/tcp_fsm.h>
49 #include <netinet/tcp_var.h>
50 #include <netinet/tcp_cc.h>
51 #include <netinet/tcpip.h>
52 #include <netinet/tcp_seq.h>
53 #include <kern/task.h>
54 #include <libkern/OSAtomic.h>
56 static int tcp_cubic_init(struct tcpcb
*tp
);
57 static int tcp_cubic_cleanup(struct tcpcb
*tp
);
58 static void tcp_cubic_cwnd_init_or_reset(struct tcpcb
*tp
);
59 static void tcp_cubic_congestion_avd(struct tcpcb
*tp
, struct tcphdr
*th
);
60 static void tcp_cubic_ack_rcvd(struct tcpcb
*tp
, struct tcphdr
*th
);
61 static void tcp_cubic_pre_fr(struct tcpcb
*tp
);
62 static void tcp_cubic_post_fr(struct tcpcb
*tp
, struct tcphdr
*th
);
63 static void tcp_cubic_after_timeout(struct tcpcb
*tp
);
64 static int tcp_cubic_delay_ack(struct tcpcb
*tp
, struct tcphdr
*th
);
65 static void tcp_cubic_switch_cc(struct tcpcb
*tp
, u_int16_t old_index
);
66 static uint32_t tcp_cubic_update(struct tcpcb
*tp
, u_int32_t rtt
);
67 static uint32_t tcp_cubic_tcpwin(struct tcpcb
*tp
, struct tcphdr
*th
);
68 static inline void tcp_cubic_clear_state(struct tcpcb
*tp
);
71 extern float cbrtf(float x
);
73 struct tcp_cc_algo tcp_cc_cubic
= {
75 .init
= tcp_cubic_init
,
76 .cleanup
= tcp_cubic_cleanup
,
77 .cwnd_init
= tcp_cubic_cwnd_init_or_reset
,
78 .congestion_avd
= tcp_cubic_congestion_avd
,
79 .ack_rcvd
= tcp_cubic_ack_rcvd
,
80 .pre_fr
= tcp_cubic_pre_fr
,
81 .post_fr
= tcp_cubic_post_fr
,
82 .after_idle
= tcp_cubic_cwnd_init_or_reset
,
83 .after_timeout
= tcp_cubic_after_timeout
,
84 .delay_ack
= tcp_cubic_delay_ack
,
85 .switch_to
= tcp_cubic_switch_cc
88 const float tcp_cubic_backoff
= 0.2f
; /* multiplicative decrease factor */
89 const float tcp_cubic_coeff
= 0.4f
;
90 const float tcp_cubic_fast_convergence_factor
= 0.875f
;
92 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, cubic_tcp_friendliness
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
93 static int, tcp_cubic_tcp_friendliness
, 0, "Enable TCP friendliness");
95 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, cubic_fast_convergence
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
96 static int, tcp_cubic_fast_convergence
, 0, "Enable fast convergence");
98 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, cubic_use_minrtt
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
99 static int, tcp_cubic_use_minrtt
, 0, "use a min of 5 sec rtt");
102 tcp_cubic_init(struct tcpcb
*tp
)
104 OSIncrementAtomic((volatile SInt32
*)&tcp_cc_cubic
.num_sockets
);
106 VERIFY(tp
->t_ccstate
!= NULL
);
107 tcp_cubic_clear_state(tp
);
112 tcp_cubic_cleanup(struct tcpcb
*tp
)
115 OSDecrementAtomic((volatile SInt32
*)&tcp_cc_cubic
.num_sockets
);
120 * Initialize the congestion window at the beginning of a connection or
124 tcp_cubic_cwnd_init_or_reset(struct tcpcb
*tp
)
126 VERIFY(tp
->t_ccstate
!= NULL
);
128 tcp_cubic_clear_state(tp
);
129 tcp_cc_cwnd_init_or_reset(tp
);
131 tcp_clear_pipeack_state(tp
);
133 /* Start counting bytes for RFC 3465 again */
134 tp
->t_bytes_acked
= 0;
137 * slow start threshold could get initialized to a lower value
138 * when there is a cached value in the route metrics. In this case,
139 * the connection can enter congestion avoidance without any packet
140 * loss and Cubic will enter steady-state too early. It is better
141 * to always probe to find the initial slow-start threshold.
143 if (tp
->t_inpcb
->inp_stat
->txbytes
<= TCP_CC_CWND_INIT_BYTES
144 && tp
->snd_ssthresh
< (TCP_MAXWIN
<< TCP_MAX_WINSHIFT
)) {
145 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
148 /* Initialize cubic last max to be same as ssthresh */
149 tp
->t_ccstate
->cub_last_max
= tp
->snd_ssthresh
;
153 * Compute the target congestion window for the next RTT according to
154 * cubic equation when an ack is received.
156 * W(t) = C(t-K)^3 + W(last_max)
159 tcp_cubic_update(struct tcpcb
*tp
, u_int32_t rtt
)
162 u_int32_t elapsed_time
, win
;
164 win
= min(tp
->snd_cwnd
, tp
->snd_wnd
);
165 if (tp
->t_ccstate
->cub_last_max
== 0) {
166 tp
->t_ccstate
->cub_last_max
= tp
->snd_ssthresh
;
169 if (tp
->t_ccstate
->cub_epoch_start
== 0) {
171 * This is the beginning of a new epoch, initialize some of
172 * the variables that we need to use for computing the
173 * congestion window later.
175 tp
->t_ccstate
->cub_epoch_start
= tcp_now
;
176 if (tp
->t_ccstate
->cub_epoch_start
== 0) {
177 tp
->t_ccstate
->cub_epoch_start
= 1;
179 if (win
< tp
->t_ccstate
->cub_last_max
) {
180 VERIFY(current_task() == kernel_task
);
183 * Compute cubic epoch period, this is the time
184 * period that the window will take to increase to
185 * last_max again after backoff due to loss.
187 K
= (tp
->t_ccstate
->cub_last_max
- win
)
188 / tp
->t_maxseg
/ tcp_cubic_coeff
;
190 tp
->t_ccstate
->cub_epoch_period
= K
* TCP_RETRANSHZ
;
192 tp
->t_ccstate
->cub_origin_point
=
193 tp
->t_ccstate
->cub_last_max
;
195 tp
->t_ccstate
->cub_epoch_period
= 0;
196 tp
->t_ccstate
->cub_origin_point
= win
;
198 tp
->t_ccstate
->cub_target_win
= 0;
201 VERIFY(tp
->t_ccstate
->cub_origin_point
> 0);
203 * Compute the target window for the next RTT using smoothed RTT
204 * as an estimate for next RTT.
206 elapsed_time
= timer_diff(tcp_now
, 0,
207 tp
->t_ccstate
->cub_epoch_start
, 0);
209 if (tcp_cubic_use_minrtt
) {
210 elapsed_time
+= max(tcp_cubic_use_minrtt
, rtt
);
214 var
= (elapsed_time
- tp
->t_ccstate
->cub_epoch_period
) / TCP_RETRANSHZ
;
215 var
= var
* var
* var
* (tcp_cubic_coeff
* tp
->t_maxseg
);
217 tp
->t_ccstate
->cub_target_win
= (u_int32_t
)(tp
->t_ccstate
->cub_origin_point
+ var
);
218 return tp
->t_ccstate
->cub_target_win
;
222 * Standard TCP utilizes bandwidth well in low RTT and low BDP connections
223 * even when there is some packet loss. Enabling TCP mode will help Cubic
224 * to achieve this kind of utilization.
226 * But if there is a bottleneck link in the path with a fixed size queue
227 * and fixed bandwidth, TCP Cubic will help to reduce packet loss at this
228 * link because of the steady-state behavior. Using average and mean
229 * absolute deviation of W(lastmax), we try to detect if the congestion
230 * window is close to the bottleneck bandwidth. In that case, disabling
231 * TCP mode will help to minimize packet loss at this link.
233 * Disable TCP mode if the W(lastmax) (the window where previous packet
234 * loss happened) is within a small range from the average last max
237 #define TCP_CUBIC_ENABLE_TCPMODE(_tp_) \
238 ((!soissrcrealtime((_tp_)->t_inpcb->inp_socket) && \
239 (_tp_)->t_ccstate->cub_mean_dev > (tp->t_maxseg << 1)) ? 1 : 0)
242 * Compute the window growth if standard TCP (AIMD) was used with
243 * a backoff of 0.5 and additive increase of 1 packet per RTT.
245 * TCP window at time t can be calculated using the following equation
248 * W(t) <- Wmax * beta + 3 * ((1 - beta)/(1 + beta)) * t/RTT
252 tcp_cubic_tcpwin(struct tcpcb
*tp
, struct tcphdr
*th
)
254 if (tp
->t_ccstate
->cub_tcp_win
== 0) {
255 tp
->t_ccstate
->cub_tcp_win
= min(tp
->snd_cwnd
, tp
->snd_wnd
);
256 tp
->t_ccstate
->cub_tcp_bytes_acked
= 0;
258 tp
->t_ccstate
->cub_tcp_bytes_acked
+=
260 if (tp
->t_ccstate
->cub_tcp_bytes_acked
>=
261 tp
->t_ccstate
->cub_tcp_win
) {
262 tp
->t_ccstate
->cub_tcp_bytes_acked
-=
263 tp
->t_ccstate
->cub_tcp_win
;
264 tp
->t_ccstate
->cub_tcp_win
+= tp
->t_maxseg
;
267 return tp
->t_ccstate
->cub_tcp_win
;
271 * Handle an in-sequence ack during congestion avoidance phase.
274 tcp_cubic_congestion_avd(struct tcpcb
*tp
, struct tcphdr
*th
)
276 u_int32_t cubic_target_win
, tcp_win
, rtt
;
278 /* Do not increase congestion window in non-validated phase */
279 if (tcp_cc_is_cwnd_nonvalidated(tp
) != 0) {
283 tp
->t_bytes_acked
+= BYTES_ACKED(th
, tp
);
285 rtt
= get_base_rtt(tp
);
287 * First compute cubic window. If cubic variables are not
288 * initialized (after coming out of recovery), this call will
291 cubic_target_win
= tcp_cubic_update(tp
, rtt
);
293 /* Compute TCP window if a multiplicative decrease of 0.2 is used */
294 tcp_win
= tcp_cubic_tcpwin(tp
, th
);
296 if (tp
->snd_cwnd
< tcp_win
&&
297 (tcp_cubic_tcp_friendliness
== 1 ||
298 TCP_CUBIC_ENABLE_TCPMODE(tp
))) {
299 /* this connection is in TCP-friendly region */
300 if (tp
->t_bytes_acked
>= tp
->snd_cwnd
) {
301 tp
->t_bytes_acked
-= tp
->snd_cwnd
;
302 tp
->snd_cwnd
= min(tcp_win
, TCP_MAXWIN
<< tp
->snd_scale
);
305 if (cubic_target_win
> tp
->snd_cwnd
) {
307 * The target win is computed for the next RTT.
308 * To reach this value, cwnd will have to be updated
309 * one segment at a time. Compute how many bytes
310 * need to be acknowledged before we can increase
311 * the cwnd by one segment.
314 incr_win
= tp
->snd_cwnd
* tp
->t_maxseg
;
315 incr_win
/= (cubic_target_win
- tp
->snd_cwnd
);
317 tp
->t_bytes_acked
>= incr_win
) {
318 tp
->t_bytes_acked
-= incr_win
;
320 min((tp
->snd_cwnd
+ tp
->t_maxseg
),
321 TCP_MAXWIN
<< tp
->snd_scale
);
328 tcp_cubic_ack_rcvd(struct tcpcb
*tp
, struct tcphdr
*th
)
330 /* Do not increase the congestion window in non-validated phase */
331 if (tcp_cc_is_cwnd_nonvalidated(tp
) != 0) {
335 if (tp
->snd_cwnd
>= tp
->snd_ssthresh
) {
336 /* Congestion avoidance phase */
337 tcp_cubic_congestion_avd(tp
, th
);
340 * Use 2*SMSS as limit on increment as suggested
341 * by RFC 3465 section 2.3
343 uint32_t acked
, abc_lim
, incr
;
345 acked
= BYTES_ACKED(th
, tp
);
346 abc_lim
= (tcp_do_rfc3465_lim2
&&
347 tp
->snd_nxt
== tp
->snd_max
) ?
348 2 * tp
->t_maxseg
: tp
->t_maxseg
;
349 incr
= min(acked
, abc_lim
);
351 tp
->snd_cwnd
+= incr
;
352 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
353 TCP_MAXWIN
<< tp
->snd_scale
);
358 tcp_cubic_pre_fr(struct tcpcb
*tp
)
362 tp
->t_ccstate
->cub_epoch_start
= 0;
363 tp
->t_ccstate
->cub_tcp_win
= 0;
364 tp
->t_ccstate
->cub_target_win
= 0;
365 tp
->t_ccstate
->cub_tcp_bytes_acked
= 0;
367 win
= min(tp
->snd_cwnd
, tp
->snd_wnd
);
368 if (tp
->t_flagsext
& TF_CWND_NONVALIDATED
) {
369 tp
->t_lossflightsize
= tp
->snd_max
- tp
->snd_una
;
370 win
= (max(tp
->t_pipeack
, tp
->t_lossflightsize
)) >> 1;
372 tp
->t_lossflightsize
= 0;
375 * Note the congestion window at which packet loss occurred as
378 * If the congestion window is less than the last max window when
379 * loss occurred, it indicates that capacity available in the
380 * network has gone down. This can happen if a new flow has started
381 * and it is capturing some of the bandwidth. To reach convergence
382 * quickly, backoff a little more. Disable fast convergence to
383 * disable this behavior.
385 if (win
< tp
->t_ccstate
->cub_last_max
&&
386 tcp_cubic_fast_convergence
== 1) {
387 tp
->t_ccstate
->cub_last_max
= (u_int32_t
)(win
*
388 tcp_cubic_fast_convergence_factor
);
390 tp
->t_ccstate
->cub_last_max
= win
;
393 if (tp
->t_ccstate
->cub_last_max
== 0) {
395 * If last_max is zero because snd_wnd is zero or for
396 * any other reason, initialize it to the amount of data
399 tp
->t_ccstate
->cub_last_max
= tp
->snd_max
- tp
->snd_una
;
403 * Compute average and mean absolute deviation of the
404 * window at which packet loss occurred.
406 if (tp
->t_ccstate
->cub_avg_lastmax
== 0) {
407 tp
->t_ccstate
->cub_avg_lastmax
= tp
->t_ccstate
->cub_last_max
;
410 * Average is computed by taking 63 parts of
411 * history and one part of the most recent value
413 avg
= tp
->t_ccstate
->cub_avg_lastmax
;
414 avg
= (avg
<< 6) - avg
;
415 tp
->t_ccstate
->cub_avg_lastmax
=
416 (avg
+ tp
->t_ccstate
->cub_last_max
) >> 6;
419 /* caluclate deviation from average */
420 dev
= tp
->t_ccstate
->cub_avg_lastmax
- tp
->t_ccstate
->cub_last_max
;
422 /* Take the absolute value */
427 if (tp
->t_ccstate
->cub_mean_dev
== 0) {
428 tp
->t_ccstate
->cub_mean_dev
= dev
;
430 dev
= dev
+ ((tp
->t_ccstate
->cub_mean_dev
<< 4)
431 - tp
->t_ccstate
->cub_mean_dev
);
432 tp
->t_ccstate
->cub_mean_dev
= dev
>> 4;
435 /* Backoff congestion window by tcp_cubic_backoff factor */
436 win
= (u_int32_t
)(win
- (win
* tcp_cubic_backoff
));
437 win
= (win
/ tp
->t_maxseg
);
441 tp
->snd_ssthresh
= win
* tp
->t_maxseg
;
442 tcp_cc_resize_sndbuf(tp
);
446 tcp_cubic_post_fr(struct tcpcb
*tp
, struct tcphdr
*th
)
448 uint32_t flight_size
= 0;
450 if (SEQ_LEQ(th
->th_ack
, tp
->snd_max
)) {
451 flight_size
= tp
->snd_max
- th
->th_ack
;
454 if (SACK_ENABLED(tp
) && tp
->t_lossflightsize
> 0) {
455 u_int32_t total_rxt_size
= 0, ncwnd
;
457 * When SACK is enabled, the number of retransmitted bytes
458 * can be counted more accurately.
460 total_rxt_size
= tcp_rxtseg_total_size(tp
);
461 ncwnd
= max(tp
->t_pipeack
, tp
->t_lossflightsize
);
462 if (total_rxt_size
<= ncwnd
) {
463 ncwnd
= ncwnd
- total_rxt_size
;
467 * To avoid sending a large burst at the end of recovery
468 * set a max limit on ncwnd
470 ncwnd
= min(ncwnd
, (tp
->t_maxseg
<< 6));
472 flight_size
= max(ncwnd
, flight_size
);
475 * Complete ack. The current window was inflated for fast recovery.
476 * It has to be deflated post recovery.
478 * Window inflation should have left us with approx snd_ssthresh
479 * outstanding data. If the flight size is zero or one segment,
480 * make congestion window to be at least as big as 2 segments to
481 * avoid delayed acknowledgements. This is according to RFC 6582.
483 if (flight_size
< tp
->snd_ssthresh
) {
484 tp
->snd_cwnd
= max(flight_size
, tp
->t_maxseg
)
487 tp
->snd_cwnd
= tp
->snd_ssthresh
;
489 tp
->t_ccstate
->cub_tcp_win
= 0;
490 tp
->t_ccstate
->cub_target_win
= 0;
491 tp
->t_ccstate
->cub_tcp_bytes_acked
= 0;
495 tcp_cubic_after_timeout(struct tcpcb
*tp
)
497 VERIFY(tp
->t_ccstate
!= NULL
);
500 * Avoid adjusting congestion window due to SYN retransmissions.
501 * If more than one byte (SYN) is outstanding then it is still
502 * needed to adjust the window.
504 if (tp
->t_state
< TCPS_ESTABLISHED
&&
505 ((int)(tp
->snd_max
- tp
->snd_una
) <= 1)) {
509 if (!IN_FASTRECOVERY(tp
)) {
510 tcp_cubic_clear_state(tp
);
511 tcp_cubic_pre_fr(tp
);
515 * Close the congestion window down to one segment as a retransmit
516 * timeout might indicate severe congestion.
518 tp
->snd_cwnd
= tp
->t_maxseg
;
522 tcp_cubic_delay_ack(struct tcpcb
*tp
, struct tcphdr
*th
)
524 return tcp_cc_delay_ack(tp
, th
);
528 * When switching from a different CC it is better for Cubic to start
529 * fresh. The state required for Cubic calculation might be stale and it
530 * might not represent the current state of the network. If it starts as
531 * a new connection it will probe and learn the existing network conditions.
534 tcp_cubic_switch_cc(struct tcpcb
*tp
, uint16_t old_cc_index
)
536 #pragma unused(old_cc_index)
537 tcp_cubic_cwnd_init_or_reset(tp
);
539 OSIncrementAtomic((volatile SInt32
*)&tcp_cc_cubic
.num_sockets
);
543 tcp_cubic_clear_state(struct tcpcb
*tp
)
545 tp
->t_ccstate
->cub_last_max
= 0;
546 tp
->t_ccstate
->cub_epoch_start
= 0;
547 tp
->t_ccstate
->cub_origin_point
= 0;
548 tp
->t_ccstate
->cub_tcp_win
= 0;
549 tp
->t_ccstate
->cub_tcp_bytes_acked
= 0;
550 tp
->t_ccstate
->cub_epoch_period
= 0;
551 tp
->t_ccstate
->cub_target_win
= 0;