2 * Copyright (c) 2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <mach/mach_types.h>
30 #include <mach/machine.h>
32 #include <machine/machine_routines.h>
33 #include <machine/sched_param.h>
34 #include <machine/machine_cpu.h>
36 #include <kern/kern_types.h>
37 #include <kern/debug.h>
38 #include <kern/mach_param.h>
39 #include <kern/machine.h>
40 #include <kern/misc_protos.h>
41 #include <kern/processor.h>
42 #include <kern/queue.h>
43 #include <kern/sched.h>
44 #include <kern/sched_prim.h>
45 #include <kern/task.h>
46 #include <kern/thread.h>
48 #include <sys/kdebug.h>
53 * How does the task scheduler work?
55 * It schedules threads across a few levels.
57 * RT threads are dealt with above us
58 * Bound threads go into the per-processor runq
59 * Non-bound threads are linked on their task's sched_group's runq
60 * sched_groups' sched_entries are linked on the pset's runq
62 * TODO: make this explicit - bound threads should have a different enqueue fxn
64 * When we choose a new thread, we will decide whether to look at the bound runqueue, the global runqueue
65 * or the current group's runqueue, then dequeue the next thread in that runqueue.
67 * We then manipulate the sched_entries to reflect the invariant that:
68 * Each non-empty priority level in a group's runq is represented by one sched_entry enqueued in the global
71 * A sched_entry represents a chance at running - for each priority in each task, there is one chance of getting
72 * to run. This reduces the excess contention bonus given to processes which have work spread among many threads
73 * as compared to processes which do the same amount of work under fewer threads.
75 * NOTE: Currently, the multiq scheduler only supports one pset.
77 * NOTE ABOUT thread->sched_pri:
79 * It can change after enqueue - it's changed without pset lock but with thread lock if thread->runq is 0.
80 * Therefore we can only depend on it not changing during the enqueue and remove path, not the dequeue.
82 * TODO: Future features:
84 * Decouple the task priority from the sched_entry priority, allowing for:
85 * fast task priority change without having to iterate and re-dispatch all threads in the task.
86 * i.e. task-wide priority, task-wide boosting
87 * fancier group decay features
89 * Group (or task) decay:
90 * Decay is used for a few different things:
91 * Prioritizing latency-needing threads over throughput-needing threads for time-to-running
92 * Balancing work between threads in a process
93 * Balancing work done at the same priority between different processes
94 * Recovering from priority inversions between two threads in the same process
95 * Recovering from priority inversions between two threads in different processes
96 * Simulating a proportional share scheduler by allowing lower priority threads
97 * to run for a certain percentage of the time
99 * Task decay lets us separately address the 'same process' and 'different process' needs,
100 * which will allow us to make smarter tradeoffs in different cases.
101 * For example, we could resolve priority inversion in the same process by reordering threads without dropping the
102 * process below low priority threads in other processes.
104 * One lock to rule them all (or at least all the runqueues) instead of the pset locks
106 * Shrink sched_entry size to the size of a queue_chain_t by inferring priority, group, and perhaps runq field.
107 * The entries array is 5K currently so it'd be really great to reduce.
108 * One way to get sched_group below 4K without a new runq structure would be to remove the extra queues above realtime.
110 * When preempting a processor, store a flag saying if the preemption
111 * was from a thread in the same group or different group,
112 * and tell choose_thread about it.
114 * When choosing a processor, bias towards those running in the same
115 * group as I am running (at the same priority, or within a certain band?).
117 * Decide if we need to support psets.
118 * Decide how to support psets - do we need duplicate entries for each pset,
119 * or can we get away with putting the entry in either one or the other pset?
121 * Consider the right way to handle runq count - I don't want to iterate groups.
122 * Perhaps keep a global counter. sched_run_count will not work.
123 * Alternate option - remove it from choose_processor. It doesn't add much value
124 * now that we have global runq.
126 * Need a better way of finding group to target instead of looking at current_task.
127 * Perhaps choose_thread could pass in the current thread?
129 * Consider unifying runq copy-pastes.
131 * Thoughts on having a group central quantum bucket:
133 * I see two algorithms to decide quanta:
134 * A) Hand off only when switching thread to thread in the same group
135 * B) Allocate and return quanta to the group's pool
138 * If a task blocks completely, should it come back with the leftover quanta
139 * or brand new quanta?
141 * Should I put a flag saying zero out a quanta you grab when youre dispatched'?
144 * Handing off quanta between threads will help with jumping around in the current task
145 * but will not help when a thread from a different task is involved.
146 * Need an algorithm that works with round robin-ing between threads in different tasks
148 * But wait - round robining can only be triggered by quantum expire or blocking.
149 * We need something that works with preemption or yielding - that's the more interesting idea.
151 * Existing algorithm - preemption doesn't re-set quantum, puts thread on head of runq.
152 * Blocking or quantum expiration does re-set quantum, puts thread on tail of runq.
155 * Hand off quanta when hopping between threads with same sched_group
156 * Even if thread was blocked it uses last thread remaining quanta when it starts.
158 * If we use the only cycle entry at quantum algorithm, then the quantum pool starts getting
161 * A thought - perhaps the handoff approach doesn't work so well in the presence of
162 * non-handoff wakeups i.e. wake other thread then wait then block - doesn't mean that
163 * woken thread will be what I switch to - other processor may have stolen it.
164 * What do we do there?
167 * We currently don't know of a scenario where quantum buckets on the task is beneficial.
168 * We will instead handoff quantum between threads in the task, and keep quantum
169 * on the preempted thread if it's preempted by something outside the task.
173 #if DEBUG || DEVELOPMENT
174 #define MULTIQ_SANITY_CHECK
177 typedef struct sched_entry
{
179 int16_t sched_pri
; /* scheduled (current) priority */
184 typedef run_queue_t entry_queue_t
; /* A run queue that holds sched_entries instead of threads */
185 typedef run_queue_t group_runq_t
; /* A run queue that is part of a sched_group */
187 #define SCHED_ENTRY_NULL ((sched_entry_t) 0)
188 #define MULTIQ_ERUNQ (-4) /* Indicates entry is on the main runq */
190 /* Each level in the run queue corresponds to one entry in the entries array */
192 struct sched_entry entries
[NRQS
];
193 struct run_queue runq
;
194 queue_chain_t sched_groups
;
197 /* TODO: Turn this into an attribute in the sched dispatch struct */
198 boolean_t sched_groups_enabled
= FALSE
;
201 * Keep entry on the head of the runqueue while dequeueing threads.
202 * Only cycle it to the end of the runqueue when a thread in the task
205 static boolean_t deep_drain
= FALSE
;
208 * Don't favor the task when an urgent thread is present.
210 static boolean_t drain_urgent_first
= TRUE
;
212 /* Verify the consistency of the runq before touching it */
213 static boolean_t multiq_sanity_check
= FALSE
;
216 * Draining threads from the current task is preferred
217 * when they're less than X steps below the current
218 * global highest priority
220 #define DEFAULT_DRAIN_BAND_LIMIT MAXPRI
221 static integer_t drain_band_limit
;
224 * Don't go below this priority level if there is something above it in another task
226 #define DEFAULT_DRAIN_DEPTH_LIMIT MAXPRI_THROTTLE
227 static integer_t drain_depth_limit
;
230 static struct zone
*sched_group_zone
;
232 static uint64_t num_sched_groups
= 0;
233 static queue_head_t sched_groups
;
235 static lck_attr_t sched_groups_lock_attr
;
236 static lck_grp_t sched_groups_lock_grp
;
237 static lck_grp_attr_t sched_groups_lock_grp_attr
;
239 static lck_mtx_t sched_groups_lock
;
243 sched_multiq_init(void);
246 sched_multiq_steal_thread(processor_set_t pset
);
249 sched_multiq_thread_update_scan(void);
252 sched_multiq_processor_enqueue(processor_t processor
, thread_t thread
, integer_t options
);
255 sched_multiq_processor_queue_remove(processor_t processor
, thread_t thread
);
258 sched_multiq_quantum_expire(thread_t thread
);
261 sched_multiq_processor_csw_check(processor_t processor
);
264 sched_multiq_processor_queue_has_priority(processor_t processor
, int priority
, boolean_t gte
);
267 sched_multiq_runq_count(processor_t processor
);
270 sched_multiq_processor_queue_empty(processor_t processor
);
273 sched_multiq_runq_stats_count_sum(processor_t processor
);
276 sched_multiq_processor_bound_count(processor_t processor
);
279 sched_multiq_pset_init(processor_set_t pset
);
282 sched_multiq_processor_init(processor_t processor
);
285 sched_multiq_choose_thread(processor_t processor
, int priority
, ast_t reason
);
288 sched_multiq_processor_queue_shutdown(processor_t processor
);
291 sched_multiq_initial_thread_sched_mode(task_t parent_task
);
294 sched_multiq_should_current_thread_rechoose_processor(processor_t processor
);
296 const struct sched_dispatch_table sched_multiq_dispatch
= {
297 .init
= sched_multiq_init
,
298 .timebase_init
= sched_traditional_timebase_init
,
299 .processor_init
= sched_multiq_processor_init
,
300 .pset_init
= sched_multiq_pset_init
,
301 .maintenance_continuation
= sched_traditional_maintenance_continue
,
302 .choose_thread
= sched_multiq_choose_thread
,
303 .steal_thread
= sched_multiq_steal_thread
,
304 .compute_priority
= compute_priority
,
305 .choose_processor
= choose_processor
,
306 .processor_enqueue
= sched_multiq_processor_enqueue
,
307 .processor_queue_shutdown
= sched_multiq_processor_queue_shutdown
,
308 .processor_queue_remove
= sched_multiq_processor_queue_remove
,
309 .processor_queue_empty
= sched_multiq_processor_queue_empty
,
310 .priority_is_urgent
= priority_is_urgent
,
311 .processor_csw_check
= sched_multiq_processor_csw_check
,
312 .processor_queue_has_priority
= sched_multiq_processor_queue_has_priority
,
313 .initial_quantum_size
= sched_traditional_initial_quantum_size
,
314 .initial_thread_sched_mode
= sched_multiq_initial_thread_sched_mode
,
315 .can_update_priority
= can_update_priority
,
316 .update_priority
= update_priority
,
317 .lightweight_update_priority
= lightweight_update_priority
,
318 .quantum_expire
= sched_multiq_quantum_expire
,
319 .should_current_thread_rechoose_processor
= sched_multiq_should_current_thread_rechoose_processor
,
320 .processor_runq_count
= sched_multiq_runq_count
,
321 .processor_runq_stats_count_sum
= sched_multiq_runq_stats_count_sum
,
322 .fairshare_init
= sched_traditional_fairshare_init
,
323 .fairshare_runq_count
= sched_traditional_fairshare_runq_count
,
324 .fairshare_runq_stats_count_sum
= sched_traditional_fairshare_runq_stats_count_sum
,
325 .fairshare_enqueue
= sched_traditional_fairshare_enqueue
,
326 .fairshare_dequeue
= sched_traditional_fairshare_dequeue
,
327 .fairshare_queue_remove
= sched_traditional_fairshare_queue_remove
,
328 .processor_bound_count
= sched_multiq_processor_bound_count
,
329 .thread_update_scan
= sched_multiq_thread_update_scan
,
330 .direct_dispatch_to_idle_processors
= FALSE
,
335 sched_multiq_init(void)
337 sched_groups_enabled
= TRUE
;
339 #if defined(MULTIQ_SANITY_CHECK)
340 PE_parse_boot_argn("-multiq-sanity-check", &multiq_sanity_check
, sizeof(multiq_sanity_check
));
343 PE_parse_boot_argn("-multiq-deep-drain", &deep_drain
, sizeof(deep_drain
));
345 PE_parse_boot_argn("multiq_drain_urgent_first", &drain_urgent_first
, sizeof(drain_urgent_first
));
347 if (!PE_parse_boot_argn("multiq_drain_depth_limit", &drain_depth_limit
, sizeof(drain_depth_limit
))) {
348 drain_depth_limit
= DEFAULT_DRAIN_DEPTH_LIMIT
;
351 if (!PE_parse_boot_argn("multiq_drain_band_limit", &drain_band_limit
, sizeof(drain_band_limit
))) {
352 drain_band_limit
= DEFAULT_DRAIN_BAND_LIMIT
;
355 printf("multiq scheduler config: deep-drain %d, urgent first %d, depth limit %d, band limit %d, sanity check %d\n",
356 deep_drain
, drain_urgent_first
, drain_depth_limit
, drain_band_limit
, multiq_sanity_check
);
358 sched_group_zone
= zinit(
359 sizeof(struct sched_group
),
360 task_max
* sizeof(struct sched_group
),
364 zone_change(sched_group_zone
, Z_NOENCRYPT
, TRUE
);
365 zone_change(sched_group_zone
, Z_NOCALLOUT
, TRUE
);
367 queue_init(&sched_groups
);
369 lck_grp_attr_setdefault(&sched_groups_lock_grp_attr
);
370 lck_grp_init(&sched_groups_lock_grp
, "sched_groups", &sched_groups_lock_grp_attr
);
371 lck_attr_setdefault(&sched_groups_lock_attr
);
372 lck_mtx_init(&sched_groups_lock
, &sched_groups_lock_grp
, &sched_groups_lock_attr
);
374 sched_traditional_init();
378 sched_multiq_processor_init(processor_t processor
)
380 run_queue_init(&processor
->runq
);
384 sched_multiq_pset_init(processor_set_t pset
)
386 run_queue_init(&pset
->pset_runq
);
390 sched_multiq_initial_thread_sched_mode(task_t parent_task
)
392 if (parent_task
== kernel_task
)
393 return TH_MODE_FIXED
;
395 return TH_MODE_TIMESHARE
;
399 sched_group_create(void)
401 sched_group_t sched_group
;
403 if (!sched_groups_enabled
)
404 return SCHED_GROUP_NULL
;
406 sched_group
= (sched_group_t
)zalloc(sched_group_zone
);
408 bzero(sched_group
, sizeof(struct sched_group
));
410 run_queue_init(&sched_group
->runq
);
412 for (int i
= 0; i
< NRQS
; i
++) {
413 sched_group
->entries
[i
].runq
= 0;
414 sched_group
->entries
[i
].sched_pri
= i
;
417 lck_mtx_lock(&sched_groups_lock
);
418 queue_enter(&sched_groups
, sched_group
, sched_group_t
, sched_groups
);
420 lck_mtx_unlock(&sched_groups_lock
);
422 return (sched_group
);
426 sched_group_destroy(sched_group_t sched_group
)
428 if (!sched_groups_enabled
) {
429 assert(sched_group
== SCHED_GROUP_NULL
);
433 assert(sched_group
!= SCHED_GROUP_NULL
);
434 assert(sched_group
->runq
.count
== 0);
436 for (int i
= 0; i
< NRQS
; i
++) {
437 assert(sched_group
->entries
[i
].runq
== 0);
438 assert(sched_group
->entries
[i
].sched_pri
== i
);
441 lck_mtx_lock(&sched_groups_lock
);
442 queue_remove(&sched_groups
, sched_group
, sched_group_t
, sched_groups
);
444 lck_mtx_unlock(&sched_groups_lock
);
446 zfree(sched_group_zone
, sched_group
);
449 __attribute__((always_inline
))
450 static inline entry_queue_t
451 multiq_main_entryq(processor_t processor
)
453 return (entry_queue_t
)&processor
->processor_set
->pset_runq
;
456 __attribute__((always_inline
))
457 static inline run_queue_t
458 multiq_bound_runq(processor_t processor
)
460 return &processor
->runq
;
463 __attribute__((always_inline
))
464 static inline sched_entry_t
465 group_entry_for_pri(sched_group_t group
, integer_t pri
)
467 return &group
->entries
[pri
];
470 __attribute__((always_inline
))
471 static inline sched_group_t
472 group_for_entry(sched_entry_t entry
)
474 sched_group_t group
= (sched_group_t
)(entry
- entry
->sched_pri
);
478 /* Peek at the head of the runqueue */
480 entry_queue_first_entry(entry_queue_t rq
)
482 assert(rq
->count
!= 0);
484 queue_t queue
= rq
->queues
+ rq
->highq
;
486 sched_entry_t entry
= (sched_entry_t
)queue_first(queue
);
488 assert(entry
->sched_pri
== rq
->highq
);
493 #if defined(MULTIQ_SANITY_CHECK)
495 __attribute__((always_inline
))
496 static inline boolean_t
497 queue_chain_linked(queue_chain_t
* chain
)
499 if (chain
->next
!= NULL
) {
500 assert(chain
->prev
!= NULL
);
503 assert(chain
->prev
== NULL
);
509 group_first_thread(sched_group_t group
)
511 group_runq_t rq
= &group
->runq
;
513 assert(rq
->count
!= 0);
515 queue_t queue
= rq
->queues
+ rq
->highq
;
517 thread_t thread
= (thread_t
)(void*)queue_first(queue
);
519 assert(thread
!= THREAD_NULL
);
521 assert(thread
->sched_group
== group
);
523 /* TODO: May not be safe */
524 assert(thread
->sched_pri
== rq
->highq
);
529 /* Asserts if entry is not in entry runq at pri */
531 entry_queue_check_entry(entry_queue_t runq
, sched_entry_t entry
, int expected_pri
)
536 assert(queue_chain_linked(&entry
->links
));
537 assert(entry
->runq
== MULTIQ_ERUNQ
);
539 q
= &runq
->queues
[expected_pri
];
541 queue_iterate(q
, elem
, sched_entry_t
, links
) {
546 panic("runq %p doesn't contain entry %p at pri %d", runq
, entry
, expected_pri
);
549 /* Asserts if thread is not in group at its priority */
551 sched_group_check_thread(sched_group_t group
, thread_t thread
)
555 int pri
= thread
->sched_pri
;
557 assert(thread
->runq
!= PROCESSOR_NULL
);
559 q
= &group
->runq
.queues
[pri
];
561 queue_iterate(q
, elem
, thread_t
, links
) {
566 panic("group %p doesn't contain thread %p at pri %d", group
, thread
, pri
);
570 global_check_entry_queue(entry_queue_t main_entryq
)
572 if (main_entryq
->count
== 0)
575 sched_entry_t entry
= entry_queue_first_entry(main_entryq
);
577 assert(entry
->runq
== MULTIQ_ERUNQ
);
579 sched_group_t group
= group_for_entry(entry
);
581 thread_t thread
= group_first_thread(group
);
583 __assert_only sched_entry_t thread_entry
= group_entry_for_pri(thread
->sched_group
, thread
->sched_pri
);
585 assert(entry
->sched_pri
== group
->runq
.highq
);
587 assert(entry
== thread_entry
);
588 assert(thread
->runq
!= PROCESSOR_NULL
);
592 group_check_run_queue(entry_queue_t main_entryq
, sched_group_t group
)
594 if (group
->runq
.count
== 0)
597 thread_t thread
= group_first_thread(group
);
599 assert(thread
->runq
!= PROCESSOR_NULL
);
601 sched_entry_t sched_entry
= group_entry_for_pri(thread
->sched_group
, thread
->sched_pri
);
603 entry_queue_check_entry(main_entryq
, sched_entry
, thread
->sched_pri
);
605 assert(sched_entry
->sched_pri
== thread
->sched_pri
);
606 assert(sched_entry
->runq
== MULTIQ_ERUNQ
);
609 #endif /* defined(MULTIQ_SANITY_CHECK) */
612 * The run queue must not be empty.
615 entry_queue_dequeue_entry(entry_queue_t rq
)
617 sched_entry_t sched_entry
;
618 queue_t queue
= rq
->queues
+ rq
->highq
;
620 assert(rq
->count
> 0);
621 assert(!queue_empty(queue
));
623 sched_entry
= (sched_entry_t
)dequeue_head(queue
);
625 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
627 if (SCHED(priority_is_urgent
)(rq
->highq
)) {
628 rq
->urgency
--; assert(rq
->urgency
>= 0);
630 if (queue_empty(queue
)) {
631 if (rq
->highq
!= IDLEPRI
)
632 clrbit(MAXPRI
- rq
->highq
, rq
->bitmap
);
633 rq
->highq
= MAXPRI
- ffsbit(rq
->bitmap
);
636 sched_entry
->runq
= 0;
638 return (sched_entry
);
642 * The run queue must not be empty.
645 entry_queue_enqueue_entry(
650 int sched_pri
= entry
->sched_pri
;
651 queue_t queue
= rq
->queues
+ sched_pri
;
652 boolean_t result
= FALSE
;
654 assert(entry
->runq
== 0);
656 if (queue_empty(queue
)) {
657 enqueue_tail(queue
, (queue_entry_t
)entry
);
659 setbit(MAXPRI
- sched_pri
, rq
->bitmap
);
660 if (sched_pri
> rq
->highq
) {
661 rq
->highq
= sched_pri
;
665 if (options
& SCHED_TAILQ
)
666 enqueue_tail(queue
, (queue_entry_t
)entry
);
668 enqueue_head(queue
, (queue_entry_t
)entry
);
670 if (SCHED(priority_is_urgent
)(sched_pri
))
672 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
675 entry
->runq
= MULTIQ_ERUNQ
;
681 * The entry must be in this runqueue.
684 entry_queue_remove_entry(
688 int sched_pri
= entry
->sched_pri
;
690 #if defined(MULTIQ_SANITY_CHECK)
691 if (multiq_sanity_check
) {
692 entry_queue_check_entry(rq
, entry
, sched_pri
);
696 remqueue((queue_entry_t
)entry
);
698 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
700 if (SCHED(priority_is_urgent
)(sched_pri
)) {
701 rq
->urgency
--; assert(rq
->urgency
>= 0);
704 if (queue_empty(rq
->queues
+ sched_pri
)) {
705 /* update run queue status */
706 if (sched_pri
!= IDLEPRI
)
707 clrbit(MAXPRI
- sched_pri
, rq
->bitmap
);
708 rq
->highq
= MAXPRI
- ffsbit(rq
->bitmap
);
715 * The run queue must not be empty.
717 * sets queue_empty to TRUE if queue is now empty at thread_pri
720 group_run_queue_dequeue_thread(
722 integer_t
*thread_pri
,
723 boolean_t
*queue_empty
)
726 queue_t queue
= rq
->queues
+ rq
->highq
;
728 assert(rq
->count
> 0);
729 assert(!queue_empty(queue
));
731 *thread_pri
= rq
->highq
;
733 thread
= (thread_t
)(void*)dequeue_head(queue
);
735 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
737 if (SCHED(priority_is_urgent
)(rq
->highq
)) {
738 rq
->urgency
--; assert(rq
->urgency
>= 0);
740 if (queue_empty(queue
)) {
741 if (rq
->highq
!= IDLEPRI
)
742 clrbit(MAXPRI
- rq
->highq
, rq
->bitmap
);
743 rq
->highq
= MAXPRI
- ffsbit(rq
->bitmap
);
746 *queue_empty
= FALSE
;
753 * The run queue must not be empty.
754 * returns TRUE if queue was empty at thread_pri
757 group_run_queue_enqueue_thread(
760 integer_t thread_pri
,
763 queue_t queue
= rq
->queues
+ thread_pri
;
764 boolean_t result
= FALSE
;
766 assert(thread
->runq
== PROCESSOR_NULL
);
768 if (queue_empty(queue
)) {
769 enqueue_tail(queue
, (queue_entry_t
)thread
);
771 setbit(MAXPRI
- thread_pri
, rq
->bitmap
);
772 if (thread_pri
> rq
->highq
) {
773 rq
->highq
= thread_pri
;
777 if (options
& SCHED_TAILQ
)
778 enqueue_tail(queue
, (queue_entry_t
)thread
);
780 enqueue_head(queue
, (queue_entry_t
)thread
);
782 if (SCHED(priority_is_urgent
)(thread_pri
))
784 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
791 * The thread must be in this runqueue.
792 * returns TRUE if queue is now empty at thread_pri
795 group_run_queue_remove_thread(
798 integer_t thread_pri
)
800 boolean_t result
= FALSE
;
802 assert(thread
->runq
!= PROCESSOR_NULL
);
804 remqueue((queue_entry_t
)thread
);
806 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
808 if (SCHED(priority_is_urgent
)(thread_pri
)) {
809 rq
->urgency
--; assert(rq
->urgency
>= 0);
812 if (queue_empty(rq
->queues
+ thread_pri
)) {
813 /* update run queue status */
814 if (thread_pri
!= IDLEPRI
)
815 clrbit(MAXPRI
- thread_pri
, rq
->bitmap
);
816 rq
->highq
= MAXPRI
- ffsbit(rq
->bitmap
);
820 thread
->runq
= PROCESSOR_NULL
;
826 * A thread's sched pri may change out from under us because
827 * we're clearing thread->runq here without the thread locked.
828 * Do not rely on it to be the same as when we enqueued.
831 sched_global_dequeue_thread(entry_queue_t main_entryq
)
833 boolean_t pri_level_empty
= FALSE
;
835 group_runq_t group_runq
;
837 integer_t thread_pri
;
840 assert(main_entryq
->count
> 0);
842 entry
= entry_queue_dequeue_entry(main_entryq
);
844 group
= group_for_entry(entry
);
845 group_runq
= &group
->runq
;
847 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
849 thread
->runq
= PROCESSOR_NULL
;
851 if (!pri_level_empty
) {
852 entry_queue_enqueue_entry(main_entryq
, entry
, SCHED_TAILQ
);
858 /* Dequeue a thread from the global runq without moving the entry */
860 sched_global_deep_drain_dequeue_thread(entry_queue_t main_entryq
)
862 boolean_t pri_level_empty
= FALSE
;
864 group_runq_t group_runq
;
866 integer_t thread_pri
;
869 assert(main_entryq
->count
> 0);
871 entry
= entry_queue_first_entry(main_entryq
);
873 group
= group_for_entry(entry
);
874 group_runq
= &group
->runq
;
876 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
878 thread
->runq
= PROCESSOR_NULL
;
880 if (pri_level_empty
) {
881 entry_queue_remove_entry(main_entryq
, entry
);
889 sched_group_dequeue_thread(
890 entry_queue_t main_entryq
,
893 group_runq_t group_runq
= &group
->runq
;
894 boolean_t pri_level_empty
= FALSE
;
896 integer_t thread_pri
;
898 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
900 thread
->runq
= PROCESSOR_NULL
;
902 if (pri_level_empty
) {
903 entry_queue_remove_entry(main_entryq
, group_entry_for_pri(group
, thread_pri
));
910 sched_group_remove_thread(
911 entry_queue_t main_entryq
,
915 integer_t thread_pri
= thread
->sched_pri
;
916 sched_entry_t sched_entry
= group_entry_for_pri(group
, thread_pri
);
918 #if defined(MULTIQ_SANITY_CHECK)
919 if (multiq_sanity_check
) {
920 global_check_entry_queue(main_entryq
);
921 group_check_run_queue(main_entryq
, group
);
923 sched_group_check_thread(group
, thread
);
924 entry_queue_check_entry(main_entryq
, sched_entry
, thread_pri
);
928 boolean_t pri_level_empty
= group_run_queue_remove_thread(&group
->runq
, thread
, thread_pri
);
930 if (pri_level_empty
) {
931 entry_queue_remove_entry(main_entryq
, sched_entry
);
934 #if defined(MULTIQ_SANITY_CHECK)
935 if (multiq_sanity_check
) {
936 global_check_entry_queue(main_entryq
);
937 group_check_run_queue(main_entryq
, group
);
943 sched_group_enqueue_thread(
944 entry_queue_t main_entryq
,
949 #if defined(MULTIQ_SANITY_CHECK)
950 if (multiq_sanity_check
) {
951 global_check_entry_queue(main_entryq
);
952 group_check_run_queue(main_entryq
, group
);
956 int sched_pri
= thread
->sched_pri
;
958 boolean_t pri_level_was_empty
= group_run_queue_enqueue_thread(&group
->runq
, thread
, sched_pri
, options
);
960 if (pri_level_was_empty
) {
962 * TODO: Need to figure out if passing options here is a good idea or not
963 * What effects would it have?
965 entry_queue_enqueue_entry(main_entryq
, &group
->entries
[sched_pri
], options
);
970 * Locate a thread to execute from the run queue and return it.
971 * Only choose a thread with greater or equal priority.
973 * pset is locked, thread is not locked.
975 * Returns THREAD_NULL if it cannot find a valid thread.
977 * Note: we cannot rely on the value of thread->sched_pri in this path because
978 * we don't have the thread locked.
980 * TODO: Remove tracepoints
983 sched_multiq_choose_thread(
984 processor_t processor
,
988 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
989 run_queue_t bound_runq
= multiq_bound_runq(processor
);
991 boolean_t choose_bound_runq
= FALSE
;
993 if (bound_runq
->highq
< priority
&&
994 main_entryq
->highq
< priority
)
997 if (bound_runq
->count
&& main_entryq
->count
) {
998 if (bound_runq
->highq
>= main_entryq
->highq
) {
999 choose_bound_runq
= TRUE
;
1003 } else if (bound_runq
->count
) {
1004 choose_bound_runq
= TRUE
;
1005 } else if (main_entryq
->count
) {
1008 return (THREAD_NULL
);
1011 if (choose_bound_runq
) {
1012 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1013 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1014 MACH_MULTIQ_BOUND
, main_entryq
->highq
, bound_runq
->highq
, 0, 0);
1016 return run_queue_dequeue(bound_runq
, SCHED_HEADQ
);
1019 sched_group_t group
= current_thread()->sched_group
;
1021 #if defined(MULTIQ_SANITY_CHECK)
1022 if (multiq_sanity_check
) {
1023 global_check_entry_queue(main_entryq
);
1024 group_check_run_queue(main_entryq
, group
);
1029 * Determine if we should look at the group or the global queue
1032 * Perhaps pass reason as a 'should look inside' argument to choose_thread
1033 * Should YIELD AST override drain limit?
1035 if (group
->runq
.count
!= 0 && (reason
& AST_PREEMPTION
) == 0) {
1036 boolean_t drain_limit_hit
= FALSE
;
1038 if (main_entryq
->highq
> group
->runq
.highq
) {
1040 * If there's something elsewhere above the depth limit,
1041 * don't pick a thread below the limit.
1043 if (main_entryq
->highq
> drain_depth_limit
&&
1044 group
->runq
.highq
<= drain_depth_limit
)
1045 drain_limit_hit
= TRUE
;
1048 * Don't go more than X steps below the global highest
1050 if ((main_entryq
->highq
- group
->runq
.highq
) >= drain_band_limit
)
1051 drain_limit_hit
= TRUE
;
1053 /* Don't favor the task when an urgent thread is present. */
1054 if (drain_urgent_first
&& main_entryq
->urgency
> 0)
1055 drain_limit_hit
= TRUE
;
1058 if (!drain_limit_hit
) {
1059 /* Pull from local runq */
1060 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1061 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1062 MACH_MULTIQ_GROUP
, main_entryq
->highq
, group
->runq
.highq
, 0, 0);
1064 return sched_group_dequeue_thread(main_entryq
, group
);
1068 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1069 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1070 MACH_MULTIQ_GLOBAL
, main_entryq
->highq
, group
->runq
.highq
, 0, 0);
1072 /* Couldn't pull from local runq, pull from global runq instead */
1074 return sched_global_deep_drain_dequeue_thread(main_entryq
);
1076 return sched_global_dequeue_thread(main_entryq
);
1082 * Thread must be locked, and not already be on a run queue.
1086 sched_multiq_processor_enqueue(
1087 processor_t processor
,
1093 assert(processor
== thread
->chosen_processor
);
1095 if (thread
->bound_processor
!= PROCESSOR_NULL
) {
1096 assert(thread
->bound_processor
== processor
);
1098 result
= run_queue_enqueue(multiq_bound_runq(processor
), thread
, options
);
1099 thread
->runq
= processor
;
1104 sched_group_enqueue_thread(multiq_main_entryq(processor
),
1105 thread
->sched_group
,
1108 thread
->runq
= processor
;
1114 * Called in the context of thread with thread and pset unlocked,
1115 * after updating thread priority but before propagating that priority
1119 sched_multiq_quantum_expire(thread_t thread
)
1123 * Move the entry at this priority to the end of the queue,
1124 * to allow the next task a shot at running.
1127 processor_t processor
= thread
->last_processor
;
1128 processor_set_t pset
= processor
->processor_set
;
1129 entry_queue_t entryq
= multiq_main_entryq(processor
);
1133 sched_entry_t entry
= group_entry_for_pri(thread
->sched_group
, processor
->current_pri
);
1135 if (entry
->runq
== MULTIQ_ERUNQ
) {
1136 entry_queue_remove_entry(entryq
, entry
);
1137 entry_queue_enqueue_entry(entryq
, entry
, SCHED_TAILQ
);
1145 sched_multiq_processor_queue_empty(processor_t processor
)
1147 return multiq_main_entryq(processor
)->count
== 0 &&
1148 multiq_bound_runq(processor
)->count
== 0;
1152 sched_multiq_processor_csw_check(processor_t processor
)
1154 boolean_t has_higher
;
1157 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
1158 run_queue_t bound_runq
= multiq_bound_runq(processor
);
1160 assert(processor
->active_thread
!= NULL
);
1162 pri
= MAX(main_entryq
->highq
, bound_runq
->highq
);
1164 if (first_timeslice(processor
)) {
1165 has_higher
= (pri
> processor
->current_pri
);
1167 has_higher
= (pri
>= processor
->current_pri
);
1171 if (main_entryq
->urgency
> 0)
1172 return (AST_PREEMPT
| AST_URGENT
);
1174 if (bound_runq
->urgency
> 0)
1175 return (AST_PREEMPT
| AST_URGENT
);
1177 if (processor
->active_thread
&& thread_eager_preemption(processor
->active_thread
))
1178 return (AST_PREEMPT
| AST_URGENT
);
1187 sched_multiq_processor_queue_has_priority(
1188 processor_t processor
,
1192 int qpri
= MAX(multiq_main_entryq(processor
)->highq
, multiq_bound_runq(processor
)->highq
);
1195 return qpri
>= priority
;
1197 return qpri
> priority
;
1201 sched_multiq_should_current_thread_rechoose_processor(processor_t processor
)
1203 return (processor
->current_pri
< BASEPRI_RTQUEUES
&& processor
->processor_primary
!= processor
);
1207 sched_multiq_runq_count(processor_t processor
)
1210 * TODO: Decide whether to keep a count of runnable threads in the pset
1211 * or just return something less than the true count.
1213 * This needs to be fast, so no iterating the whole runq.
1215 * Another possible decision is to remove this - with global runq
1216 * it doesn't make much sense.
1218 return multiq_main_entryq(processor
)->count
+ multiq_bound_runq(processor
)->count
;
1222 sched_multiq_runq_stats_count_sum(processor_t processor
)
1225 * TODO: This one does need to go through all the runqueues, but it's only needed for
1226 * the sched stats tool
1229 uint64_t bound_sum
= multiq_bound_runq(processor
)->runq_stats
.count_sum
;
1231 if (processor
->cpu_id
== processor
->processor_set
->cpu_set_low
)
1232 return bound_sum
+ multiq_main_entryq(processor
)->runq_stats
.count_sum
;
1238 sched_multiq_processor_bound_count(processor_t processor
)
1240 return multiq_bound_runq(processor
)->count
;
1244 sched_multiq_processor_queue_shutdown(processor_t processor
)
1246 processor_set_t pset
= processor
->processor_set
;
1247 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
1249 queue_head_t tqueue
;
1251 /* We only need to migrate threads if this is the last active processor in the pset */
1252 if (pset
->online_processor_count
> 0) {
1257 queue_init(&tqueue
);
1259 /* Note that we do not remove bound threads from the queues here */
1261 while (main_entryq
->count
> 0) {
1262 thread
= sched_global_dequeue_thread(main_entryq
);
1263 enqueue_tail(&tqueue
, (queue_entry_t
)thread
);
1268 while ((thread
= (thread_t
)(void*)dequeue_head(&tqueue
)) != THREAD_NULL
) {
1269 thread_lock(thread
);
1271 thread_setrun(thread
, SCHED_TAILQ
);
1273 thread_unlock(thread
);
1280 * This is why we can never read sched_pri unless we have the thread locked.
1281 * Which we do in the enqueue and remove cases, but not the dequeue case.
1284 sched_multiq_processor_queue_remove(
1285 processor_t processor
,
1288 boolean_t removed
= FALSE
;
1290 processor_set_t pset
= processor
->processor_set
;
1294 if (thread
->runq
!= PROCESSOR_NULL
) {
1296 * Thread is on a run queue and we have a lock on
1300 assert(thread
->runq
== processor
);
1302 if (thread
->bound_processor
!= PROCESSOR_NULL
) {
1303 assert(processor
== thread
->bound_processor
);
1304 run_queue_remove(multiq_bound_runq(processor
), thread
);
1305 thread
->runq
= PROCESSOR_NULL
;
1307 sched_group_remove_thread(multiq_main_entryq(processor
),
1308 thread
->sched_group
,
1320 /* pset is locked, returned unlocked */
1322 sched_multiq_steal_thread(processor_set_t pset
)
1325 return (THREAD_NULL
);
1329 * Scan the global queue for candidate groups, and scan those groups for
1330 * candidate threads.
1332 * Returns TRUE if retry is needed.
1335 group_scan(entry_queue_t runq
) {
1338 sched_group_t group
;
1339 sched_entry_t entry
;
1341 if ((count
= runq
->count
) > 0) {
1342 q
= runq
->queues
+ runq
->highq
;
1344 queue_iterate(q
, entry
, sched_entry_t
, links
) {
1345 group
= group_for_entry(entry
);
1346 if (group
->runq
.count
> 0) {
1347 if (runq_scan(&group
->runq
))
1360 sched_multiq_thread_update_scan(void)
1362 boolean_t restart_needed
= FALSE
;
1363 processor_t processor
= processor_list
;
1364 processor_set_t pset
;
1369 * We update the threads associated with each processor (bound and idle threads)
1370 * and then update the threads in each pset runqueue.
1375 pset
= processor
->processor_set
;
1380 restart_needed
= runq_scan(multiq_bound_runq(processor
));
1388 thread
= processor
->idle_thread
;
1389 if (thread
!= THREAD_NULL
&& thread
->sched_stamp
!= sched_tick
) {
1390 if (thread_update_add_thread(thread
) == FALSE
) {
1391 restart_needed
= TRUE
;
1395 } while ((processor
= processor
->processor_list
) != NULL
);
1397 /* Ok, we now have a collection of candidates -- fix them. */
1398 thread_update_process_threads();
1400 } while (restart_needed
);
1409 restart_needed
= group_scan(&pset
->pset_runq
);
1416 } while ((pset
= pset
->pset_list
) != NULL
);
1418 /* Ok, we now have a collection of candidates -- fix them. */
1419 thread_update_process_threads();
1421 } while (restart_needed
);