4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Portions copyright (c) 2011, Joyent, Inc. All rights reserved.
27 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
30 * Portions Copyright (c) 2012 by Delphix. All rights reserved.
36 /* #pragma ident "@(#)dtrace.h 1.37 07/06/05 SMI" */
43 * DTrace Dynamic Tracing Software: Kernel Interfaces
45 * Note: The contents of this file are private to the implementation of the
46 * Solaris system and DTrace subsystem and are subject to change at any time
47 * without notice. Applications and drivers using these interfaces will fail
48 * to run on future releases. These interfaces should not be used for any
49 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
50 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
55 #if !defined(__APPLE__)
56 #include <sys/types.h>
57 #include <sys/modctl.h>
58 #include <sys/processor.h>
59 #include <sys/systm.h>
60 #include <sys/ctf_api.h>
61 #include <sys/cyclic.h>
62 #include <sys/int_limits.h>
63 #else /* is Apple Mac OS X */
67 #define _LP64 /* Solaris vs. Darwin */
71 #define _ILP32 /* Solaris vs. Darwin */
77 #define _KERNEL /* Solaris vs. Darwin */
81 #if defined(__BIG_ENDIAN__)
82 #if !defined(_BIG_ENDIAN)
83 #define _BIG_ENDIAN /* Solaris vs. Darwin */
85 #elif defined(__LITTLE_ENDIAN__)
86 #if !defined(_LITTLE_ENDIAN)
87 #define _LITTLE_ENDIAN /* Solaris vs. Darwin */
90 #error Unknown endian-ness
93 #include <sys/types.h>
94 #include <sys/param.h>
98 #define NULL ((void *)0) /* quiets many warnings */
102 #define MILLISEC 1000
103 #define MICROSEC 1000000
104 #define NANOSEC 1000000000
106 #define S_ROUND(x, a) ((x) + (((a) ? (a) : 1) - 1) & ~(((a) ? (a) : 1) - 1))
107 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
108 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
110 #define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
111 #define CTF_MODEL_LP64 2 /* object data model is LP64 */
113 #define CTF_MODEL_NATIVE CTF_MODEL_LP64
115 #define CTF_MODEL_NATIVE CTF_MODEL_ILP32
118 typedef uint8_t uchar_t
;
119 typedef uint16_t ushort_t
;
120 typedef uint32_t uint_t
;
121 typedef unsigned long ulong_t
;
122 typedef uint64_t u_longlong_t
;
123 typedef int64_t longlong_t
;
124 typedef int64_t off64_t
;
125 typedef int processorid_t
;
126 typedef int64_t hrtime_t
;
128 typedef enum { B_FALSE
= 0, B_TRUE
= 1 } _dtrace_boolean
;
130 typedef uint8_t UUID
[16]; /* For modctl use in dtrace.h */
132 struct modctl
; /* In lieu of Solaris <sys/modctl.h> */
133 /* NOTHING */ /* In lieu of Solaris <sys/processor.h> */
134 #include <sys/ioctl.h> /* In lieu of Solaris <sys/systm.h> */
136 /* NOTHING */ /* In lieu of Solaris <sys/ctf_api.h> */
138 /* In lieu of Solaris <sys/ctf_api.h> */
139 typedef struct ctf_file ctf_file_t
;
140 typedef long ctf_id_t
;
142 /* NOTHING */ /* In lieu of Solaris <sys/cyclic.h> */
143 /* NOTHING */ /* In lieu of Solaris <sys/int_limits.h> */
145 typedef uint32_t zoneid_t
;
147 #include <sys/dtrace_glue.h>
150 typedef va_list __va_list
;
152 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
153 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
154 #endif /* __APPLE__ */
157 * DTrace Universal Constants and Typedefs
159 #define DTRACE_CPUALL -1 /* all CPUs */
160 #define DTRACE_IDNONE 0 /* invalid probe identifier */
161 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
162 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
163 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
164 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
165 #define DTRACE_PROVNONE 0 /* invalid provider identifier */
166 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
167 #define DTRACE_ARGNONE -1 /* invalid argument index */
169 #define DTRACE_PROVNAMELEN 64
170 #define DTRACE_MODNAMELEN 64
171 #define DTRACE_FUNCNAMELEN 128
172 #define DTRACE_NAMELEN 64
173 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
174 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
175 #define DTRACE_ARGTYPELEN 128
177 typedef uint32_t dtrace_id_t
; /* probe identifier */
178 typedef uint32_t dtrace_epid_t
; /* enabled probe identifier */
179 typedef uint32_t dtrace_aggid_t
; /* aggregation identifier */
180 typedef int64_t dtrace_aggvarid_t
; /* aggregation variable identifier */
181 typedef uint16_t dtrace_actkind_t
; /* action kind */
182 typedef int64_t dtrace_optval_t
; /* option value */
183 typedef uint32_t dtrace_cacheid_t
; /* predicate cache identifier */
185 typedef enum dtrace_probespec
{
186 DTRACE_PROBESPEC_NONE
= -1,
187 DTRACE_PROBESPEC_PROVIDER
= 0,
188 DTRACE_PROBESPEC_MOD
,
189 DTRACE_PROBESPEC_FUNC
,
190 DTRACE_PROBESPEC_NAME
191 } dtrace_probespec_t
;
194 * DTrace Intermediate Format (DIF)
196 * The following definitions describe the DTrace Intermediate Format (DIF), a
197 * a RISC-like instruction set and program encoding used to represent
198 * predicates and actions that can be bound to DTrace probes. The constants
199 * below defining the number of available registers are suggested minimums; the
200 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
201 * registers provided by the current DTrace implementation.
203 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
204 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
205 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
206 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */
207 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
209 #define DIF_OP_OR 1 /* or r1, r2, rd */
210 #define DIF_OP_XOR 2 /* xor r1, r2, rd */
211 #define DIF_OP_AND 3 /* and r1, r2, rd */
212 #define DIF_OP_SLL 4 /* sll r1, r2, rd */
213 #define DIF_OP_SRL 5 /* srl r1, r2, rd */
214 #define DIF_OP_SUB 6 /* sub r1, r2, rd */
215 #define DIF_OP_ADD 7 /* add r1, r2, rd */
216 #define DIF_OP_MUL 8 /* mul r1, r2, rd */
217 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
218 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
219 #define DIF_OP_SREM 11 /* srem r1, r2, rd */
220 #define DIF_OP_UREM 12 /* urem r1, r2, rd */
221 #define DIF_OP_NOT 13 /* not r1, rd */
222 #define DIF_OP_MOV 14 /* mov r1, rd */
223 #define DIF_OP_CMP 15 /* cmp r1, r2 */
224 #define DIF_OP_TST 16 /* tst r1 */
225 #define DIF_OP_BA 17 /* ba label */
226 #define DIF_OP_BE 18 /* be label */
227 #define DIF_OP_BNE 19 /* bne label */
228 #define DIF_OP_BG 20 /* bg label */
229 #define DIF_OP_BGU 21 /* bgu label */
230 #define DIF_OP_BGE 22 /* bge label */
231 #define DIF_OP_BGEU 23 /* bgeu label */
232 #define DIF_OP_BL 24 /* bl label */
233 #define DIF_OP_BLU 25 /* blu label */
234 #define DIF_OP_BLE 26 /* ble label */
235 #define DIF_OP_BLEU 27 /* bleu label */
236 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */
237 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */
238 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */
239 #define DIF_OP_LDUB 31 /* ldub [r1], rd */
240 #define DIF_OP_LDUH 32 /* lduh [r1], rd */
241 #define DIF_OP_LDUW 33 /* lduw [r1], rd */
242 #define DIF_OP_LDX 34 /* ldx [r1], rd */
243 #define DIF_OP_RET 35 /* ret rd */
244 #define DIF_OP_NOP 36 /* nop */
245 #define DIF_OP_SETX 37 /* setx intindex, rd */
246 #define DIF_OP_SETS 38 /* sets strindex, rd */
247 #define DIF_OP_SCMP 39 /* scmp r1, r2 */
248 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */
249 #define DIF_OP_LDGS 41 /* ldgs var, rd */
250 #define DIF_OP_STGS 42 /* stgs var, rs */
251 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */
252 #define DIF_OP_LDTS 44 /* ldts var, rd */
253 #define DIF_OP_STTS 45 /* stts var, rs */
254 #define DIF_OP_SRA 46 /* sra r1, r2, rd */
255 #define DIF_OP_CALL 47 /* call subr, rd */
256 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
257 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
258 #define DIF_OP_POPTS 50 /* popts */
259 #define DIF_OP_FLUSHTS 51 /* flushts */
260 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */
261 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */
262 #define DIF_OP_STGAA 54 /* stgaa var, rs */
263 #define DIF_OP_STTAA 55 /* sttaa var, rs */
264 #define DIF_OP_LDLS 56 /* ldls var, rd */
265 #define DIF_OP_STLS 57 /* stls var, rs */
266 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */
267 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */
268 #define DIF_OP_STB 60 /* stb r1, [rd] */
269 #define DIF_OP_STH 61 /* sth r1, [rd] */
270 #define DIF_OP_STW 62 /* stw r1, [rd] */
271 #define DIF_OP_STX 63 /* stx r1, [rd] */
272 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
273 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
274 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
275 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */
276 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
277 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
278 #define DIF_OP_ULDX 70 /* uldx [r1], rd */
279 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
280 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
281 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
282 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */
283 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
284 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
285 #define DIF_OP_RLDX 77 /* rldx [r1], rd */
286 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
287 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
289 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
290 #define DIF_STROFF_MAX 0xffff /* highest string table offset */
291 #define DIF_REGISTER_MAX 0xff /* highest register number */
292 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
293 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
295 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
296 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
297 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
299 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
300 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
301 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
303 #define DIF_VAR_ARGS 0x0000 /* arguments array */
304 #define DIF_VAR_REGS 0x0001 /* registers array */
305 #define DIF_VAR_UREGS 0x0002 /* user registers array */
306 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
307 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
308 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
309 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */
310 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */
311 #define DIF_VAR_ID 0x0105 /* probe ID */
312 #define DIF_VAR_ARG0 0x0106 /* first argument */
313 #define DIF_VAR_ARG1 0x0107 /* second argument */
314 #define DIF_VAR_ARG2 0x0108 /* third argument */
315 #define DIF_VAR_ARG3 0x0109 /* fourth argument */
316 #define DIF_VAR_ARG4 0x010a /* fifth argument */
317 #define DIF_VAR_ARG5 0x010b /* sixth argument */
318 #define DIF_VAR_ARG6 0x010c /* seventh argument */
319 #define DIF_VAR_ARG7 0x010d /* eighth argument */
320 #define DIF_VAR_ARG8 0x010e /* ninth argument */
321 #define DIF_VAR_ARG9 0x010f /* tenth argument */
322 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
323 #define DIF_VAR_CALLER 0x0111 /* caller */
324 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
325 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */
326 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
327 #define DIF_VAR_PROBENAME 0x0115 /* probe name */
328 #define DIF_VAR_PID 0x0116 /* process ID */
329 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
330 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */
331 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
332 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
333 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
334 #define DIF_VAR_UCALLER 0x011c /* user-level caller */
335 #define DIF_VAR_PPID 0x011d /* parent process ID */
336 #define DIF_VAR_UID 0x011e /* process user ID */
337 #define DIF_VAR_GID 0x011f /* process group ID */
338 #define DIF_VAR_ERRNO 0x0120 /* thread errno */
339 #if defined(__APPLE__)
340 #define DIF_VAR_PTHREAD_SELF 0x0200 /* Apple specific PTHREAD_SELF (Not currently supported!) */
341 #define DIF_VAR_DISPATCHQADDR 0x0201 /* Apple specific dispatch queue addr */
342 #define DIF_VAR_MACHTIMESTAMP 0x0202 /* mach_absolute_timestamp() */
343 #endif /* __APPLE __ */
345 #define DIF_SUBR_RAND 0
346 #define DIF_SUBR_MUTEX_OWNED 1
347 #define DIF_SUBR_MUTEX_OWNER 2
348 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
349 #define DIF_SUBR_MUTEX_TYPE_SPIN 4
350 #define DIF_SUBR_RW_READ_HELD 5
351 #define DIF_SUBR_RW_WRITE_HELD 6
352 #define DIF_SUBR_RW_ISWRITER 7
353 #define DIF_SUBR_COPYIN 8
354 #define DIF_SUBR_COPYINSTR 9
355 #define DIF_SUBR_SPECULATION 10
356 #define DIF_SUBR_PROGENYOF 11
357 #define DIF_SUBR_STRLEN 12
358 #define DIF_SUBR_COPYOUT 13
359 #define DIF_SUBR_COPYOUTSTR 14
360 #define DIF_SUBR_ALLOCA 15
361 #define DIF_SUBR_BCOPY 16
362 #define DIF_SUBR_COPYINTO 17
363 #define DIF_SUBR_MSGDSIZE 18
364 #define DIF_SUBR_MSGSIZE 19
365 #define DIF_SUBR_GETMAJOR 20
366 #define DIF_SUBR_GETMINOR 21
367 #define DIF_SUBR_DDI_PATHNAME 22
368 #define DIF_SUBR_STRJOIN 23
369 #define DIF_SUBR_LLTOSTR 24
370 #define DIF_SUBR_BASENAME 25
371 #define DIF_SUBR_DIRNAME 26
372 #define DIF_SUBR_CLEANPATH 27
373 #define DIF_SUBR_STRCHR 28
374 #define DIF_SUBR_STRRCHR 29
375 #define DIF_SUBR_STRSTR 30
376 #define DIF_SUBR_STRTOK 31
377 #define DIF_SUBR_SUBSTR 32
378 #define DIF_SUBR_INDEX 33
379 #define DIF_SUBR_RINDEX 34
380 #define DIF_SUBR_HTONS 35
381 #define DIF_SUBR_HTONL 36
382 #define DIF_SUBR_HTONLL 37
383 #define DIF_SUBR_NTOHS 38
384 #define DIF_SUBR_NTOHL 39
385 #define DIF_SUBR_NTOHLL 40
386 #define DIF_SUBR_INET_NTOP 41
387 #define DIF_SUBR_INET_NTOA 42
388 #define DIF_SUBR_INET_NTOA6 43
389 #define DIF_SUBR_TOUPPER 44
390 #define DIF_SUBR_TOLOWER 45
391 #if !defined(__APPLE__)
393 #define DIF_SUBR_MAX 45 /* max subroutine value */
395 #define DIF_SUBR_COREPROFILE 46
397 #define DIF_SUBR_MAX 46 /* max subroutine value */
398 #endif /* __APPLE__ */
400 typedef uint32_t dif_instr_t
;
402 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
403 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
404 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
405 #define DIF_INSTR_RD(i) ((i) & 0xff)
406 #define DIF_INSTR_RS(i) ((i) & 0xff)
407 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
408 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
409 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
410 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
411 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
412 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
413 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
415 #define DIF_INSTR_FMT(op, r1, r2, d) \
416 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
418 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
419 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
420 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
421 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
422 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
423 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
424 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
425 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
426 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
427 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
428 #define DIF_INSTR_NOP (DIF_OP_NOP << 24)
429 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
430 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
431 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
432 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
433 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
434 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
435 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
436 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
437 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
438 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
440 #define DIF_REG_R0 0 /* %r0 is always set to zero */
443 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
444 * of variables, function and associative array arguments, and the return type
445 * for each DIF object (shown below). It contains a description of the type,
446 * its size in bytes, and a module identifier.
448 typedef struct dtrace_diftype
{
449 uint8_t dtdt_kind
; /* type kind (see below) */
450 uint8_t dtdt_ckind
; /* type kind in CTF */
451 uint8_t dtdt_flags
; /* type flags (see below) */
452 uint8_t dtdt_pad
; /* reserved for future use */
453 uint32_t dtdt_size
; /* type size in bytes (unless string) */
456 #define DIF_TYPE_CTF 0 /* type is a CTF type */
457 #define DIF_TYPE_STRING 1 /* type is a D string */
459 #define DIF_TF_BYREF 0x1 /* type is passed by reference */
462 * A DTrace Intermediate Format variable record is used to describe each of the
463 * variables referenced by a given DIF object. It contains an integer variable
464 * identifier along with variable scope and properties, as shown below. The
465 * size of this structure must be sizeof (int) aligned.
467 typedef struct dtrace_difv
{
468 uint32_t dtdv_name
; /* variable name index in dtdo_strtab */
469 uint32_t dtdv_id
; /* variable reference identifier */
470 uint8_t dtdv_kind
; /* variable kind (see below) */
471 uint8_t dtdv_scope
; /* variable scope (see below) */
472 uint16_t dtdv_flags
; /* variable flags (see below) */
473 dtrace_diftype_t dtdv_type
; /* variable type (see above) */
476 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
477 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
479 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
480 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
481 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
483 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
484 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */
489 * The upper byte determines the class of the action; the low bytes determines
490 * the specific action within that class. The classes of actions are as
493 * [ no class ] <= May record process- or kernel-related data
494 * DTRACEACT_PROC <= Only records process-related data
495 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
496 * DTRACEACT_KERNEL <= Only records kernel-related data
497 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
498 * DTRACEACT_SPECULATIVE <= Speculation-related action
499 * DTRACEACT_AGGREGATION <= Aggregating action
501 #define DTRACEACT_NONE 0 /* no action */
502 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
503 #define DTRACEACT_EXIT 2 /* exit() action */
504 #define DTRACEACT_PRINTF 3 /* printf() action */
505 #define DTRACEACT_PRINTA 4 /* printa() action */
506 #define DTRACEACT_LIBACT 5 /* library-controlled action */
507 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */
508 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
510 #if defined(__APPLE__)
511 #define DTRACEACT_APPLEBINARY 50 /* Apple DT perf. tool action */
512 #endif /* __APPLE__ */
514 #define DTRACEACT_PROC 0x0100
515 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
516 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
517 #define DTRACEACT_USYM (DTRACEACT_PROC + 3)
518 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
519 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
521 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200
522 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
523 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
524 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
525 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
527 #if defined(__APPLE__)
529 * Dtrace stop() will task_suspend the currently running process.
530 * Dtrace pidresume(pid) will task_resume it.
533 #define DTRACEACT_PIDRESUME (DTRACEACT_PROC_DESTRUCTIVE + 50)
534 #endif /* __APPLE__ */
536 #define DTRACEACT_PROC_CONTROL 0x0300
538 #define DTRACEACT_KERNEL 0x0400
539 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
540 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
541 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
543 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
544 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
545 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
546 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
548 #define DTRACEACT_SPECULATIVE 0x0600
549 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
550 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
551 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
553 #define DTRACEACT_CLASS(x) ((x) & 0xff00)
555 #define DTRACEACT_ISDESTRUCTIVE(x) \
556 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
557 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
559 #define DTRACEACT_ISSPECULATIVE(x) \
560 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
562 #define DTRACEACT_ISPRINTFLIKE(x) \
563 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
564 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
567 * DTrace Aggregating Actions
569 * These are functions f(x) for which the following is true:
571 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
573 * where x_n is a set of arbitrary data. Aggregating actions are in their own
574 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
575 * for easier processing of the aggregation argument and data payload for a few
576 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
578 #define DTRACEACT_AGGREGATION 0x0700
579 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
580 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
581 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
582 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
583 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
584 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
585 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
586 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
587 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
589 #define DTRACEACT_ISAGG(x) \
590 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
592 #if !defined(__APPLE__) /* Quiet compiler warning. */
593 #define DTRACE_QUANTIZE_NBUCKETS \
594 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
596 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
598 #define DTRACE_QUANTIZE_NBUCKETS \
599 (int)(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
601 #define DTRACE_QUANTIZE_ZEROBUCKET (int64_t)((sizeof (uint64_t) * NBBY) - 1)
602 #endif /* __APPLE __*/
604 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \
605 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
606 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
607 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
608 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
610 #define DTRACE_LQUANTIZE_STEPSHIFT 48
611 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
612 #define DTRACE_LQUANTIZE_LEVELSHIFT 32
613 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
614 #define DTRACE_LQUANTIZE_BASESHIFT 0
615 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
617 #define DTRACE_LQUANTIZE_STEP(x) \
618 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
619 DTRACE_LQUANTIZE_STEPSHIFT)
621 #define DTRACE_LQUANTIZE_LEVELS(x) \
622 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
623 DTRACE_LQUANTIZE_LEVELSHIFT)
625 #define DTRACE_LQUANTIZE_BASE(x) \
626 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
627 DTRACE_LQUANTIZE_BASESHIFT)
629 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48
630 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
631 #define DTRACE_LLQUANTIZE_LOWSHIFT 32
632 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
633 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16
634 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
635 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
636 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
638 #define DTRACE_LLQUANTIZE_FACTOR(x) \
639 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
640 DTRACE_LLQUANTIZE_FACTORSHIFT)
642 #define DTRACE_LLQUANTIZE_LOW(x) \
643 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
644 DTRACE_LLQUANTIZE_LOWSHIFT)
646 #define DTRACE_LLQUANTIZE_HIGH(x) \
647 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
648 DTRACE_LLQUANTIZE_HIGHSHIFT)
650 #define DTRACE_LLQUANTIZE_NSTEP(x) \
651 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
652 DTRACE_LLQUANTIZE_NSTEPSHIFT)
654 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
655 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
656 #define DTRACE_USTACK_ARG(x, y) \
657 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
659 #if !defined(__APPLE__)
662 #ifndef _LITTLE_ENDIAN
663 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name
665 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad
668 #define DTRACE_PTR(type, name) type *name
674 #define DTRACE_PTR(type, name) user_addr_t name
676 #define DTRACE_PTR(type, name) type *name
679 #endif /* __APPLE__ */
682 * DTrace Object Format (DOF)
684 * DTrace programs can be persistently encoded in the DOF format so that they
685 * may be embedded in other programs (for example, in an ELF file) or in the
686 * dtrace driver configuration file for use in anonymous tracing. The DOF
687 * format is versioned and extensible so that it can be revised and so that
688 * internal data structures can be modified or extended compatibly. All DOF
689 * structures use fixed-size types, so the 32-bit and 64-bit representations
690 * are identical and consumers can use either data model transparently.
692 * The file layout is structured as follows:
694 * +---------------+-------------------+----- ... ----+---- ... ------+
695 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
696 * | (file header) | (section headers) | section data | section data |
697 * +---------------+-------------------+----- ... ----+---- ... ------+
698 * |<------------ dof_hdr.dofh_loadsz --------------->| |
699 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
701 * The file header stores meta-data including a magic number, data model for
702 * the instrumentation, data encoding, and properties of the DIF code within.
703 * The header describes its own size and the size of the section headers. By
704 * convention, an array of section headers follows the file header, and then
705 * the data for all loadable sections and unloadable sections. This permits
706 * consumer code to easily download the headers and all loadable data into the
707 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
709 * The section headers describe the size, offset, alignment, and section type
710 * for each section. Sections are described using a set of #defines that tell
711 * the consumer what kind of data is expected. Sections can contain links to
712 * other sections by storing a dof_secidx_t, an index into the section header
713 * array, inside of the section data structures. The section header includes
714 * an entry size so that sections with data arrays can grow their structures.
716 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
717 * are represented themselves as a collection of related DOF sections. This
718 * permits us to change the set of sections associated with a DIFO over time,
719 * and also permits us to encode DIFOs that contain different sets of sections.
720 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
721 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
722 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
724 * This loose coupling of the file structure (header and sections) to the
725 * structure of the DTrace program itself (ECB descriptions, action
726 * descriptions, and DIFOs) permits activities such as relocation processing
727 * to occur in a single pass without having to understand D program structure.
729 * Finally, strings are always stored in ELF-style string tables along with a
730 * string table section index and string table offset. Therefore strings in
731 * DOF are always arbitrary-length and not bound to the current implementation.
734 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
736 typedef struct dof_hdr
{
737 uint8_t dofh_ident
[DOF_ID_SIZE
]; /* identification bytes (see below) */
738 uint32_t dofh_flags
; /* file attribute flags (if any) */
739 uint32_t dofh_hdrsize
; /* size of file header in bytes */
740 uint32_t dofh_secsize
; /* size of section header in bytes */
741 uint32_t dofh_secnum
; /* number of section headers */
742 uint64_t dofh_secoff
; /* file offset of section headers */
743 uint64_t dofh_loadsz
; /* file size of loadable portion */
744 uint64_t dofh_filesz
; /* file size of entire DOF file */
745 uint64_t dofh_pad
; /* reserved for future use */
748 #define DOF_ID_MAG0 0 /* first byte of magic number */
749 #define DOF_ID_MAG1 1 /* second byte of magic number */
750 #define DOF_ID_MAG2 2 /* third byte of magic number */
751 #define DOF_ID_MAG3 3 /* fourth byte of magic number */
752 #define DOF_ID_MODEL 4 /* DOF data model (see below) */
753 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
754 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
755 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */
756 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
757 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
758 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
760 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
761 #define DOF_MAG_MAG1 'D'
762 #define DOF_MAG_MAG2 'O'
763 #define DOF_MAG_MAG3 'F'
765 #define DOF_MAG_STRING "\177DOF"
766 #define DOF_MAG_STRLEN 4
768 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
769 #define DOF_MODEL_ILP32 1
770 #define DOF_MODEL_LP64 2
773 #define DOF_MODEL_NATIVE DOF_MODEL_LP64
775 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32
778 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
779 #define DOF_ENCODE_LSB 1
780 #define DOF_ENCODE_MSB 2
783 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
785 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
788 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
789 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
790 #if !defined(__APPLE__)
791 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
793 #define DOF_VERSION_3 3 /* DOF version 3: Minimum version for Leopard */
794 #define DOF_VERSION DOF_VERSION_3 /* Latest DOF version */
795 #endif /* __APPLE__ */
797 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
799 typedef uint32_t dof_secidx_t
; /* section header table index type */
800 typedef uint32_t dof_stridx_t
; /* string table index type */
802 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */
803 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */
805 typedef struct dof_sec
{
806 uint32_t dofs_type
; /* section type (see below) */
807 uint32_t dofs_align
; /* section data memory alignment */
808 uint32_t dofs_flags
; /* section flags (if any) */
809 uint32_t dofs_entsize
; /* size of section entry (if table) */
810 uint64_t dofs_offset
; /* offset of section data within file */
811 uint64_t dofs_size
; /* size of section data in bytes */
814 #define DOF_SECT_NONE 0 /* null section */
815 #define DOF_SECT_COMMENTS 1 /* compiler comments */
816 #define DOF_SECT_SOURCE 2 /* D program source code */
817 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
818 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
819 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
820 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
821 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */
822 #define DOF_SECT_STRTAB 8 /* string table */
823 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
824 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
825 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
826 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
827 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
828 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
829 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */
830 #define DOF_SECT_PROBES 16 /* dof_probe_t array */
831 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
832 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
833 #define DOF_SECT_INTTAB 19 /* uint64_t array */
834 #define DOF_SECT_UTSNAME 20 /* struct utsname */
835 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
836 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
837 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
838 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
839 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
840 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
842 #define DOF_SECF_LOAD 1 /* section should be loaded */
844 typedef struct dof_ecbdesc
{
845 dof_secidx_t dofe_probes
; /* link to DOF_SECT_PROBEDESC */
846 dof_secidx_t dofe_pred
; /* link to DOF_SECT_DIFOHDR */
847 dof_secidx_t dofe_actions
; /* link to DOF_SECT_ACTDESC */
848 uint32_t dofe_pad
; /* reserved for future use */
849 uint64_t dofe_uarg
; /* user-supplied library argument */
852 typedef struct dof_probedesc
{
853 dof_secidx_t dofp_strtab
; /* link to DOF_SECT_STRTAB section */
854 dof_stridx_t dofp_provider
; /* provider string */
855 dof_stridx_t dofp_mod
; /* module string */
856 dof_stridx_t dofp_func
; /* function string */
857 dof_stridx_t dofp_name
; /* name string */
858 uint32_t dofp_id
; /* probe identifier (or zero) */
861 typedef struct dof_actdesc
{
862 dof_secidx_t dofa_difo
; /* link to DOF_SECT_DIFOHDR */
863 dof_secidx_t dofa_strtab
; /* link to DOF_SECT_STRTAB section */
864 uint32_t dofa_kind
; /* action kind (DTRACEACT_* constant) */
865 uint32_t dofa_ntuple
; /* number of subsequent tuple actions */
866 uint64_t dofa_arg
; /* kind-specific argument */
867 uint64_t dofa_uarg
; /* user-supplied argument */
870 typedef struct dof_difohdr
{
871 dtrace_diftype_t dofd_rtype
; /* return type for this fragment */
872 dof_secidx_t dofd_links
[1]; /* variable length array of indices */
875 typedef struct dof_relohdr
{
876 dof_secidx_t dofr_strtab
; /* link to DOF_SECT_STRTAB for names */
877 dof_secidx_t dofr_relsec
; /* link to DOF_SECT_RELTAB for relos */
878 dof_secidx_t dofr_tgtsec
; /* link to section we are relocating */
881 typedef struct dof_relodesc
{
882 dof_stridx_t dofr_name
; /* string name of relocation symbol */
883 uint32_t dofr_type
; /* relo type (DOF_RELO_* constant) */
884 uint64_t dofr_offset
; /* byte offset for relocation */
885 uint64_t dofr_data
; /* additional type-specific data */
888 #define DOF_RELO_NONE 0 /* empty relocation entry */
889 #define DOF_RELO_SETX 1 /* relocate setx value */
891 typedef struct dof_optdesc
{
892 uint32_t dofo_option
; /* option identifier */
893 dof_secidx_t dofo_strtab
; /* string table, if string option */
894 uint64_t dofo_value
; /* option value or string index */
897 typedef uint32_t dof_attr_t
; /* encoded stability attributes */
899 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
900 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
901 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
902 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
904 typedef struct dof_provider
{
905 dof_secidx_t dofpv_strtab
; /* link to DOF_SECT_STRTAB section */
906 dof_secidx_t dofpv_probes
; /* link to DOF_SECT_PROBES section */
907 dof_secidx_t dofpv_prargs
; /* link to DOF_SECT_PRARGS section */
908 dof_secidx_t dofpv_proffs
; /* link to DOF_SECT_PROFFS section */
909 dof_stridx_t dofpv_name
; /* provider name string */
910 dof_attr_t dofpv_provattr
; /* provider attributes */
911 dof_attr_t dofpv_modattr
; /* module attributes */
912 dof_attr_t dofpv_funcattr
; /* function attributes */
913 dof_attr_t dofpv_nameattr
; /* name attributes */
914 dof_attr_t dofpv_argsattr
; /* args attributes */
915 dof_secidx_t dofpv_prenoffs
; /* link to DOF_SECT_PRENOFFS section */
918 typedef struct dof_probe
{
919 uint64_t dofpr_addr
; /* probe base address or offset */
920 dof_stridx_t dofpr_func
; /* probe function string */
921 dof_stridx_t dofpr_name
; /* probe name string */
922 dof_stridx_t dofpr_nargv
; /* native argument type strings */
923 dof_stridx_t dofpr_xargv
; /* translated argument type strings */
924 uint32_t dofpr_argidx
; /* index of first argument mapping */
925 uint32_t dofpr_offidx
; /* index of first offset entry */
926 uint8_t dofpr_nargc
; /* native argument count */
927 uint8_t dofpr_xargc
; /* translated argument count */
928 uint16_t dofpr_noffs
; /* number of offset entries for probe */
929 uint32_t dofpr_enoffidx
; /* index of first is-enabled offset */
930 uint16_t dofpr_nenoffs
; /* number of is-enabled offsets */
931 uint16_t dofpr_pad1
; /* reserved for future use */
932 uint32_t dofpr_pad2
; /* reserved for future use */
935 typedef struct dof_xlator
{
936 dof_secidx_t dofxl_members
; /* link to DOF_SECT_XLMEMBERS section */
937 dof_secidx_t dofxl_strtab
; /* link to DOF_SECT_STRTAB section */
938 dof_stridx_t dofxl_argv
; /* input parameter type strings */
939 uint32_t dofxl_argc
; /* input parameter list length */
940 dof_stridx_t dofxl_type
; /* output type string name */
941 dof_attr_t dofxl_attr
; /* output stability attributes */
944 typedef struct dof_xlmember
{
945 dof_secidx_t dofxm_difo
; /* member link to DOF_SECT_DIFOHDR */
946 dof_stridx_t dofxm_name
; /* member name */
947 dtrace_diftype_t dofxm_type
; /* member type */
950 typedef struct dof_xlref
{
951 dof_secidx_t dofxr_xlator
; /* link to DOF_SECT_XLATORS section */
952 uint32_t dofxr_member
; /* index of referenced dof_xlmember */
953 uint32_t dofxr_argn
; /* index of argument for DIF_OP_XLARG */
957 * DTrace Intermediate Format Object (DIFO)
959 * A DIFO is used to store the compiled DIF for a D expression, its return
960 * type, and its string and variable tables. The string table is a single
961 * buffer of character data into which sets instructions and variable
962 * references can reference strings using a byte offset. The variable table
963 * is an array of dtrace_difv_t structures that describe the name and type of
964 * each variable and the id used in the DIF code. This structure is described
965 * above in the DIF section of this header file. The DIFO is used at both
966 * user-level (in the library) and in the kernel, but the structure is never
967 * passed between the two: the DOF structures form the only interface. As a
968 * result, the definition can change depending on the presence of _KERNEL.
970 typedef struct dtrace_difo
{
971 dif_instr_t
*dtdo_buf
; /* instruction buffer */
972 uint64_t *dtdo_inttab
; /* integer table (optional) */
973 char *dtdo_strtab
; /* string table (optional) */
974 dtrace_difv_t
*dtdo_vartab
; /* variable table (optional) */
975 uint_t dtdo_len
; /* length of instruction buffer */
976 uint_t dtdo_intlen
; /* length of integer table */
977 uint_t dtdo_strlen
; /* length of string table */
978 uint_t dtdo_varlen
; /* length of variable table */
979 dtrace_diftype_t dtdo_rtype
; /* return type */
980 uint_t dtdo_refcnt
; /* owner reference count */
981 uint_t dtdo_destructive
; /* invokes destructive subroutines */
983 dof_relodesc_t
*dtdo_kreltab
; /* kernel relocations */
984 dof_relodesc_t
*dtdo_ureltab
; /* user relocations */
985 struct dt_node
**dtdo_xlmtab
; /* translator references */
986 uint_t dtdo_krelen
; /* length of krelo table */
987 uint_t dtdo_urelen
; /* length of urelo table */
988 uint_t dtdo_xlmlen
; /* length of translator table */
993 * DTrace Enabling Description Structures
995 * When DTrace is tracking the description of a DTrace enabling entity (probe,
996 * predicate, action, ECB, record, etc.), it does so in a description
997 * structure. These structures all end in "desc", and are used at both
998 * user-level and in the kernel -- but (with the exception of
999 * dtrace_probedesc_t) they are never passed between them. Typically,
1000 * user-level will use the description structures when assembling an enabling.
1001 * It will then distill those description structures into a DOF object (see
1002 * above), and send it into the kernel. The kernel will again use the
1003 * description structures to create a description of the enabling as it reads
1004 * the DOF. When the description is complete, the enabling will be actually
1005 * created -- turning it into the structures that represent the enabling
1006 * instead of merely describing it. Not surprisingly, the description
1007 * structures bear a strong resemblance to the DOF structures that act as their
1010 struct dtrace_predicate
;
1012 typedef struct dtrace_probedesc
{
1013 dtrace_id_t dtpd_id
; /* probe identifier */
1014 char dtpd_provider
[DTRACE_PROVNAMELEN
]; /* probe provider name */
1015 char dtpd_mod
[DTRACE_MODNAMELEN
]; /* probe module name */
1016 char dtpd_func
[DTRACE_FUNCNAMELEN
]; /* probe function name */
1017 char dtpd_name
[DTRACE_NAMELEN
]; /* probe name */
1018 } dtrace_probedesc_t
;
1020 typedef struct dtrace_repldesc
{
1021 dtrace_probedesc_t dtrpd_match
; /* probe descr. to match */
1022 dtrace_probedesc_t dtrpd_create
; /* probe descr. to create */
1023 } dtrace_repldesc_t
;
1025 typedef struct dtrace_preddesc
{
1026 dtrace_difo_t
*dtpdd_difo
; /* pointer to DIF object */
1027 struct dtrace_predicate
*dtpdd_predicate
; /* pointer to predicate */
1028 } dtrace_preddesc_t
;
1030 typedef struct dtrace_actdesc
{
1031 dtrace_difo_t
*dtad_difo
; /* pointer to DIF object */
1032 struct dtrace_actdesc
*dtad_next
; /* next action */
1033 dtrace_actkind_t dtad_kind
; /* kind of action */
1034 uint32_t dtad_ntuple
; /* number in tuple */
1035 uint64_t dtad_arg
; /* action argument */
1036 uint64_t dtad_uarg
; /* user argument */
1037 int dtad_refcnt
; /* reference count */
1040 typedef struct dtrace_ecbdesc
{
1041 dtrace_actdesc_t
*dted_action
; /* action description(s) */
1042 dtrace_preddesc_t dted_pred
; /* predicate description */
1043 dtrace_probedesc_t dted_probe
; /* probe description */
1044 uint64_t dted_uarg
; /* library argument */
1045 int dted_refcnt
; /* reference count */
1049 * DTrace Metadata Description Structures
1051 * DTrace separates the trace data stream from the metadata stream. The only
1052 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
1053 * timestamp) or (in the case of aggregations) aggregation identifiers. To
1054 * determine the structure of the data, DTrace consumers pass the token to the
1055 * kernel, and receive in return a corresponding description of the enabled
1056 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
1057 * dtrace_aggdesc structure). Both of these structures are expressed in terms
1058 * of record descriptions (via the dtrace_recdesc structure) that describe the
1059 * exact structure of the data. Some record descriptions may also contain a
1060 * format identifier; this additional bit of metadata can be retrieved from the
1061 * kernel, for which a format description is returned via the dtrace_fmtdesc
1062 * structure. Note that all four of these structures must be bitness-neutral
1063 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
1065 typedef struct dtrace_recdesc
{
1066 dtrace_actkind_t dtrd_action
; /* kind of action */
1067 uint32_t dtrd_size
; /* size of record */
1068 uint32_t dtrd_offset
; /* offset in ECB's data */
1069 uint16_t dtrd_alignment
; /* required alignment */
1070 uint16_t dtrd_format
; /* format, if any */
1071 uint64_t dtrd_arg
; /* action argument */
1072 uint64_t dtrd_uarg
; /* user argument */
1075 typedef struct dtrace_eprobedesc
{
1076 dtrace_epid_t dtepd_epid
; /* enabled probe ID */
1077 dtrace_id_t dtepd_probeid
; /* probe ID */
1078 uint64_t dtepd_uarg
; /* library argument */
1079 uint32_t dtepd_size
; /* total size */
1080 int dtepd_nrecs
; /* number of records */
1081 dtrace_recdesc_t dtepd_rec
[1]; /* records themselves */
1082 } dtrace_eprobedesc_t
;
1084 typedef struct dtrace_aggdesc
{
1085 DTRACE_PTR(char, dtagd_name
); /* not filled in by kernel */
1086 dtrace_aggvarid_t dtagd_varid
; /* not filled in by kernel */
1087 int dtagd_flags
; /* not filled in by kernel */
1088 dtrace_aggid_t dtagd_id
; /* aggregation ID */
1089 dtrace_epid_t dtagd_epid
; /* enabled probe ID */
1090 uint32_t dtagd_size
; /* size in bytes */
1091 int dtagd_nrecs
; /* number of records */
1092 uint32_t dtagd_pad
; /* explicit padding */
1093 dtrace_recdesc_t dtagd_rec
[1]; /* record descriptions */
1096 typedef struct dtrace_fmtdesc
{
1097 DTRACE_PTR(char, dtfd_string
); /* format string */
1098 int dtfd_length
; /* length of format string */
1099 uint16_t dtfd_format
; /* format identifier */
1102 #define DTRACE_SIZEOF_EPROBEDESC(desc) \
1103 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
1104 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1106 #define DTRACE_SIZEOF_AGGDESC(desc) \
1107 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
1108 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1111 * DTrace Option Interface
1113 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1114 * in a DOF image. The dof_optdesc structure contains an option identifier and
1115 * an option value. The valid option identifiers are found below; the mapping
1116 * between option identifiers and option identifying strings is maintained at
1117 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
1118 * following are potentially valid option values: all positive integers, zero
1119 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
1120 * predefined tokens as their values; these are defined with
1121 * DTRACEOPT_{option}_{token}.
1123 #define DTRACEOPT_BUFSIZE 0 /* buffer size */
1124 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1125 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1126 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1127 #define DTRACEOPT_SPECSIZE 4 /* speculation size */
1128 #define DTRACEOPT_NSPEC 5 /* number of speculations */
1129 #define DTRACEOPT_STRSIZE 6 /* string size */
1130 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1131 #define DTRACEOPT_CPU 8 /* CPU to trace */
1132 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1133 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1134 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1135 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1136 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1137 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1138 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1139 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1140 #define DTRACEOPT_STATUSRATE 17 /* status rate */
1141 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1142 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1143 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1144 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1145 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1146 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1147 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1148 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1149 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1150 #define DTRACEOPT_AGGHIST 27 /* histogram aggregation output */
1151 #define DTRACEOPT_AGGPACK 28 /* packed aggregation output */
1152 #define DTRACEOPT_AGGZOOM 29 /* zoomed aggregation scaling */
1153 #define DTRACEOPT_TEMPORAL 30 /* temporally ordered output */
1154 #if !defined(__APPLE__)
1155 #define DTRACEOPT_MAX 31 /* number of options */
1157 #define DTRACEOPT_STACKSYMBOLS 31 /* clear to prevent stack symbolication */
1158 #define DTRACEOPT_MAX 32 /* number of options */
1159 #endif /* __APPLE__ */
1161 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1163 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1164 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1165 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1167 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1168 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1171 * DTrace Buffer Interface
1173 * In order to get a snapshot of the principal or aggregation buffer,
1174 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1175 * structure. This describes which CPU user-level is interested in, and
1176 * where user-level wishes the kernel to snapshot the buffer to (the
1177 * dtbd_data field). The kernel uses the same structure to pass back some
1178 * information regarding the buffer: the size of data actually copied out, the
1179 * number of drops, the number of errors, the offset of the oldest record,
1180 * and the time of the snapshot.
1182 * If the buffer policy is a "switch" policy, taking a snapshot of the
1183 * principal buffer has the additional effect of switching the active and
1184 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1185 * the additional effect of switching the active and inactive buffers.
1187 typedef struct dtrace_bufdesc
{
1188 uint64_t dtbd_size
; /* size of buffer */
1189 uint32_t dtbd_cpu
; /* CPU or DTRACE_CPUALL */
1190 uint32_t dtbd_errors
; /* number of errors */
1191 uint64_t dtbd_drops
; /* number of drops */
1192 DTRACE_PTR(char, dtbd_data
); /* data */
1193 uint64_t dtbd_oldest
; /* offset of oldest record */
1194 uint64_t dtbd_timestamp
; /* hrtime of snapshot */
1198 * Each record in the buffer (dtbd_data) begins with a header that includes
1199 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1200 * so that we do not require 8-byte alignment.
1202 typedef struct dtrace_rechdr
{
1203 dtrace_epid_t dtrh_epid
; /* enabled probe id */
1204 uint32_t dtrh_timestamp_hi
; /* high bits of hrtime_t */
1205 uint32_t dtrh_timestamp_lo
; /* low bits of hrtime_t */
1208 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1209 ((dtrh)->dtrh_timestamp_lo + \
1210 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1212 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1213 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1214 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1220 * The status of DTrace is relayed via the dtrace_status structure. This
1221 * structure contains members to count drops other than the capacity drops
1222 * available via the buffer interface (see above). This consists of dynamic
1223 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1224 * speculative drops (including capacity speculative drops, drops due to busy
1225 * speculative buffers and drops due to unavailable speculative buffers).
1226 * Additionally, the status structure contains a field to indicate the number
1227 * of "fill"-policy buffers have been filled and a boolean field to indicate
1228 * that exit() has been called. If the dtst_exiting field is non-zero, no
1229 * further data will be generated until tracing is stopped (at which time any
1230 * enablings of the END action will be processed); if user-level sees that
1231 * this field is non-zero, tracing should be stopped as soon as possible.
1233 typedef struct dtrace_status
{
1234 uint64_t dtst_dyndrops
; /* dynamic drops */
1235 uint64_t dtst_dyndrops_rinsing
; /* dyn drops due to rinsing */
1236 uint64_t dtst_dyndrops_dirty
; /* dyn drops due to dirty */
1237 uint64_t dtst_specdrops
; /* speculative drops */
1238 uint64_t dtst_specdrops_busy
; /* spec drops due to busy */
1239 uint64_t dtst_specdrops_unavail
; /* spec drops due to unavail */
1240 uint64_t dtst_errors
; /* total errors */
1241 uint64_t dtst_filled
; /* number of filled bufs */
1242 uint64_t dtst_stkstroverflows
; /* stack string tab overflows */
1243 uint64_t dtst_dblerrors
; /* errors in ERROR probes */
1244 char dtst_killed
; /* non-zero if killed */
1245 char dtst_exiting
; /* non-zero if exit() called */
1246 char dtst_pad
[6]; /* pad out to 64-bit align */
1250 * DTrace Configuration
1252 * User-level may need to understand some elements of the kernel DTrace
1253 * configuration in order to generate correct DIF. This information is
1254 * conveyed via the dtrace_conf structure.
1256 typedef struct dtrace_conf
{
1257 uint_t dtc_difversion
; /* supported DIF version */
1258 uint_t dtc_difintregs
; /* # of DIF integer registers */
1259 uint_t dtc_diftupregs
; /* # of DIF tuple registers */
1260 uint_t dtc_ctfmodel
; /* CTF data model */
1261 uint_t dtc_pad
[8]; /* reserved for future use */
1267 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1268 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1269 * postprocessing at user-level. Probe processing faults induce an ERROR
1270 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1271 * the error condition using thse symbolic labels.
1273 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1274 #define DTRACEFLT_BADADDR 1 /* Bad address */
1275 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1276 #define DTRACEFLT_ILLOP 3 /* Illegal operation */
1277 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1278 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1279 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1280 #define DTRACEFLT_UPRIV 7 /* Illegal user access */
1281 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1282 #define DTRACEFLT_BADSTACK 9 /* Bad stack */
1284 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1287 * DTrace Argument Types
1289 * Because it would waste both space and time, argument types do not reside
1290 * with the probe. In order to determine argument types for args[X]
1291 * variables, the D compiler queries for argument types on a probe-by-probe
1292 * basis. (This optimizes for the common case that arguments are either not
1293 * used or used in an untyped fashion.) Typed arguments are specified with a
1294 * string of the type name in the dtragd_native member of the argument
1295 * description structure. Typed arguments may be further translated to types
1296 * of greater stability; the provider indicates such a translated argument by
1297 * filling in the dtargd_xlate member with the string of the translated type.
1298 * Finally, the provider may indicate which argument value a given argument
1299 * maps to by setting the dtargd_mapping member -- allowing a single argument
1300 * to map to multiple args[X] variables.
1302 typedef struct dtrace_argdesc
{
1303 dtrace_id_t dtargd_id
; /* probe identifier */
1304 int dtargd_ndx
; /* arg number (-1 iff none) */
1305 int dtargd_mapping
; /* value mapping */
1306 char dtargd_native
[DTRACE_ARGTYPELEN
]; /* native type name */
1307 char dtargd_xlate
[DTRACE_ARGTYPELEN
]; /* translated type name */
1311 * DTrace Stability Attributes
1313 * Each DTrace provider advertises the name and data stability of each of its
1314 * probe description components, as well as its architectural dependencies.
1315 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1316 * order to compute the properties of an input program and report them.
1318 typedef uint8_t dtrace_stability_t
; /* stability code (see attributes(5)) */
1319 typedef uint8_t dtrace_class_t
; /* architectural dependency class */
1321 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1322 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1323 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1324 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1325 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1326 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1327 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1328 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1329 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1331 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1332 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1333 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1334 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1335 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1336 #define DTRACE_CLASS_COMMON 5 /* common to all systems */
1337 #define DTRACE_CLASS_MAX 5 /* maximum valid class */
1339 #define DTRACE_PRIV_NONE 0x0000
1340 #define DTRACE_PRIV_KERNEL 0x0001
1341 #define DTRACE_PRIV_USER 0x0002
1342 #define DTRACE_PRIV_PROC 0x0004
1343 #define DTRACE_PRIV_OWNER 0x0008
1344 #define DTRACE_PRIV_ZONEOWNER 0x0010
1346 #define DTRACE_PRIV_ALL \
1347 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1348 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1350 typedef struct dtrace_ppriv
{
1351 uint32_t dtpp_flags
; /* privilege flags */
1352 uid_t dtpp_uid
; /* user ID */
1353 zoneid_t dtpp_zoneid
; /* zone ID */
1356 typedef struct dtrace_attribute
{
1357 dtrace_stability_t dtat_name
; /* entity name stability */
1358 dtrace_stability_t dtat_data
; /* entity data stability */
1359 dtrace_class_t dtat_class
; /* entity data dependency */
1360 } dtrace_attribute_t
;
1362 typedef struct dtrace_pattr
{
1363 dtrace_attribute_t dtpa_provider
; /* provider attributes */
1364 dtrace_attribute_t dtpa_mod
; /* module attributes */
1365 dtrace_attribute_t dtpa_func
; /* function attributes */
1366 dtrace_attribute_t dtpa_name
; /* name attributes */
1367 dtrace_attribute_t dtpa_args
; /* args[] attributes */
1370 typedef struct dtrace_providerdesc
{
1371 char dtvd_name
[DTRACE_PROVNAMELEN
]; /* provider name */
1372 dtrace_pattr_t dtvd_attr
; /* stability attributes */
1373 dtrace_ppriv_t dtvd_priv
; /* privileges required */
1374 } dtrace_providerdesc_t
;
1377 * DTrace Pseudodevice Interface
1379 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1380 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1383 #if !defined(__APPLE__)
1384 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1385 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1386 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1387 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1388 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1389 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1390 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1391 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1392 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1393 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1394 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1395 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1396 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1397 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1398 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1399 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1400 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1402 /* coding this as IOC_VOID allows this driver to handle its own copyin/copuout */
1403 #define DTRACEIOC _IO('d',0)
1404 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1405 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1406 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1407 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1408 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1409 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1410 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1411 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1412 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1413 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1414 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1415 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1416 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1417 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1418 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1419 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1420 #define DTRACEIOC_MODUUIDSLIST (DTRACEIOC | 30) /* APPLE ONLY, query for modules with missing symbols */
1421 #define DTRACEIOC_PROVMODSYMS (DTRACEIOC | 31) /* APPLE ONLY, provide missing symbols for a given module */
1422 #define DTRACEIOC_PROCWAITFOR (DTRACEIOC | 32) /* APPLE ONLY, wait for process exec */
1425 * The following structs are used to provide symbol information to the kernel from userspace.
1428 typedef struct dtrace_symbol
{
1429 uint64_t dtsym_addr
; /* address of the symbol */
1430 uint64_t dtsym_size
; /* size of the symbol, must be uint64_t to maintain alignment when called by 64b uproc in i386 kernel */
1431 char dtsym_name
[DTRACE_FUNCNAMELEN
]; /* symbol name */
1434 typedef struct dtrace_module_symbols
{
1435 UUID dtmodsyms_uuid
;
1436 uint64_t dtmodsyms_count
;
1437 dtrace_symbol_t dtmodsyms_symbols
[1];
1438 } dtrace_module_symbols_t
;
1440 #define DTRACE_MODULE_SYMBOLS_SIZE(count) (sizeof(dtrace_module_symbols_t) + ((count - 1) * sizeof(dtrace_symbol_t)))
1442 typedef struct dtrace_module_uuids_list
{
1443 uint64_t dtmul_count
;
1445 } dtrace_module_uuids_list_t
;
1447 #define DTRACE_MODULE_UUIDS_LIST_SIZE(count) (sizeof(dtrace_module_uuids_list_t) + ((count - 1) * sizeof(UUID)))
1449 typedef struct dtrace_procdesc
{
1450 char p_comm
[MAXCOMLEN
+1];
1452 } dtrace_procdesc_t
;
1454 #endif /* __APPLE__ */
1459 * In general, DTrace establishes probes in processes and takes actions on
1460 * processes without knowing their specific user-level structures. Instead of
1461 * existing in the framework, process-specific knowledge is contained by the
1462 * enabling D program -- which can apply process-specific knowledge by making
1463 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1464 * operate on user-level data. However, there may exist some specific probes
1465 * of particular semantic relevance that the application developer may wish to
1466 * explicitly export. For example, an application may wish to export a probe
1467 * at the point that it begins and ends certain well-defined transactions. In
1468 * addition to providing probes, programs may wish to offer assistance for
1469 * certain actions. For example, in highly dynamic environments (e.g., Java),
1470 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1471 * names (the translation from instruction addresses to corresponding symbol
1472 * names may only be possible in situ); these environments may wish to define
1473 * a series of actions to be applied in situ to obtain a meaningful stack
1476 * These two mechanisms -- user-level statically defined tracing and assisting
1477 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1478 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1479 * providers, probes and their arguments. If a helper wishes to provide
1480 * action assistance, probe descriptions and corresponding DIF actions may be
1481 * specified in the helper DOF. For such helper actions, however, the probe
1482 * description describes the specific helper: all DTrace helpers have the
1483 * provider name "dtrace" and the module name "helper", and the name of the
1484 * helper is contained in the function name (for example, the ustack() helper
1485 * is named "ustack"). Any helper-specific name may be contained in the name
1486 * (for example, if a helper were to have a constructor, it might be named
1487 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1488 * action that they are helping is taken. Helper actions may only return DIF
1489 * expressions, and may only call the following subroutines:
1491 * alloca() <= Allocates memory out of the consumer's scratch space
1492 * bcopy() <= Copies memory to scratch space
1493 * copyin() <= Copies memory from user-level into consumer's scratch
1494 * copyinto() <= Copies memory into a specific location in scratch
1495 * copyinstr() <= Copies a string into a specific location in scratch
1497 * Helper actions may only access the following built-in variables:
1499 * curthread <= Current kthread_t pointer
1500 * tid <= Current thread identifier
1501 * pid <= Current process identifier
1502 * ppid <= Parent process identifier
1503 * uid <= Current user ID
1504 * gid <= Current group ID
1505 * execname <= Current executable name
1506 * zonename <= Current zone name
1508 * Helper actions may not manipulate or allocate dynamic variables, but they
1509 * may have clause-local and statically-allocated global variables. The
1510 * helper action variable state is specific to the helper action -- variables
1511 * used by the helper action may not be accessed outside of the helper
1512 * action, and the helper action may not access variables that like outside
1513 * of it. Helper actions may not load from kernel memory at-large; they are
1514 * restricting to loading current user state (via copyin() and variants) and
1515 * scratch space. As with probe enablings, helper actions are executed in
1516 * program order. The result of the helper action is the result of the last
1517 * executing helper expression.
1519 * Helpers -- composed of either providers/probes or probes/actions (or both)
1520 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1521 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1522 * encapsulates the name and base address of the user-level library or
1523 * executable publishing the helpers and probes as well as the DOF that
1524 * contains the definitions of those helpers and probes.
1526 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1527 * helpers and should no longer be used. No other ioctls are valid on the
1528 * helper minor node.
1530 #if !defined(__APPLE__)
1531 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1532 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1533 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1534 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1536 #define DTRACEHIOC_REMOVE _IO('h', 2) /* remove helper */
1537 #define DTRACEHIOC_ADDDOF _IOW('h', 4, user_addr_t) /* add helper DOF */
1538 #endif /* __APPLE__ */
1540 typedef struct dof_helper
{
1541 char dofhp_mod
[DTRACE_MODNAMELEN
]; /* executable or library name */
1542 uint64_t dofhp_addr
; /* base address of object */
1543 uint64_t dofhp_dof
; /* address of helper DOF */
1546 #if defined(__APPLE__)
1548 * This structure is used to register one or more dof_helper_t(s).
1549 * For counts greater than one, malloc the structure as if the
1550 * dofiod_helpers field was "count" sized. The kernel will copyin
1553 * sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t))
1555 typedef struct dof_ioctl_data
{
1557 * This field must be 64 bits to keep the alignment the same
1558 * when 64 bit user procs are sending data to 32 bit xnu
1560 uint64_t dofiod_count
;
1561 dof_helper_t dofiod_helpers
[1];
1564 #define DOF_IOCTL_DATA_T_SIZE(count) (sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t)))
1568 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1569 #if !defined(__APPLE__)
1570 #define DTRACEMNR_HELPER "helper" /* node for helpers */
1572 #define DTRACEMNR_HELPER "dtracehelper" /* node for helpers */
1573 #endif /* __APPLE__ */
1574 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1575 #define DTRACEMNRN_HELPER 1 /* minor for helpers */
1576 #define DTRACEMNRN_CLONE 2 /* first clone minor */
1581 * DTrace Provider API
1583 * The following functions are implemented by the DTrace framework and are
1584 * used to implement separate in-kernel DTrace providers. Common functions
1585 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1586 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1588 * The provider API has two halves: the API that the providers consume from
1589 * DTrace, and the API that providers make available to DTrace.
1591 * 1 Framework-to-Provider API
1595 * The Framework-to-Provider API is represented by the dtrace_pops structure
1596 * that the provider passes to the framework when registering itself. This
1597 * structure consists of the following members:
1599 * dtps_provide() <-- Provide all probes, all modules
1600 * dtps_provide_module() <-- Provide all probes in specified module
1601 * dtps_enable() <-- Enable specified probe
1602 * dtps_disable() <-- Disable specified probe
1603 * dtps_suspend() <-- Suspend specified probe
1604 * dtps_resume() <-- Resume specified probe
1605 * dtps_getargdesc() <-- Get the argument description for args[X]
1606 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1607 * dtps_usermode() <-- Find out if the probe was fired in user mode
1608 * dtps_destroy() <-- Destroy all state associated with this probe
1610 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1614 * Called to indicate that the provider should provide all probes. If the
1615 * specified description is non-NULL, dtps_provide() is being called because
1616 * no probe matched a specified probe -- if the provider has the ability to
1617 * create custom probes, it may wish to create a probe that matches the
1618 * specified description.
1620 * 1.2.2 Arguments and notes
1622 * The first argument is the cookie as passed to dtrace_register(). The
1623 * second argument is a pointer to a probe description that the provider may
1624 * wish to consider when creating custom probes. The provider is expected to
1625 * call back into the DTrace framework via dtrace_probe_create() to create
1626 * any necessary probes. dtps_provide() may be called even if the provider
1627 * has made available all probes; the provider should check the return value
1628 * of dtrace_probe_create() to handle this case. Note that the provider need
1629 * not implement both dtps_provide() and dtps_provide_module(); see
1630 * "Arguments and Notes" for dtrace_register(), below.
1632 * 1.2.3 Return value
1636 * 1.2.4 Caller's context
1638 * dtps_provide() is typically called from open() or ioctl() context, but may
1639 * be called from other contexts as well. The DTrace framework is locked in
1640 * such a way that providers may not register or unregister. This means that
1641 * the provider may not call any DTrace API that affects its registration with
1642 * the framework, including dtrace_register(), dtrace_unregister(),
1643 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1644 * that the provider may (and indeed, is expected to) call probe-related
1645 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1646 * and dtrace_probe_arg().
1648 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1652 * Called to indicate that the provider should provide all probes in the
1655 * 1.3.2 Arguments and notes
1657 * The first argument is the cookie as passed to dtrace_register(). The
1658 * second argument is a pointer to a modctl structure that indicates the
1659 * module for which probes should be created.
1661 * 1.3.3 Return value
1665 * 1.3.4 Caller's context
1667 * dtps_provide_module() may be called from open() or ioctl() context, but
1668 * may also be called from a module loading context. mod_lock is held, and
1669 * the DTrace framework is locked in such a way that providers may not
1670 * register or unregister. This means that the provider may not call any
1671 * DTrace API that affects its registration with the framework, including
1672 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1673 * dtrace_condense(). However, the context is such that the provider may (and
1674 * indeed, is expected to) call probe-related DTrace routines, including
1675 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1676 * that the provider need not implement both dtps_provide() and
1677 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1680 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1684 * Called to enable the specified probe.
1686 * 1.4.2 Arguments and notes
1688 * The first argument is the cookie as passed to dtrace_register(). The
1689 * second argument is the identifier of the probe to be enabled. The third
1690 * argument is the probe argument as passed to dtrace_probe_create().
1691 * dtps_enable() will be called when a probe transitions from not being
1692 * enabled at all to having one or more ECB. The number of ECBs associated
1693 * with the probe may change without subsequent calls into the provider.
1694 * When the number of ECBs drops to zero, the provider will be explicitly
1695 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1696 * be called for a probe identifier that hasn't been explicitly enabled via
1699 * 1.4.3 Return value
1701 * On success, dtps_enable() should return 0. On failure, -1 should be
1704 * 1.4.4 Caller's context
1706 * The DTrace framework is locked in such a way that it may not be called
1707 * back into at all. cpu_lock is held. mod_lock is not held and may not
1710 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1714 * Called to disable the specified probe.
1716 * 1.5.2 Arguments and notes
1718 * The first argument is the cookie as passed to dtrace_register(). The
1719 * second argument is the identifier of the probe to be disabled. The third
1720 * argument is the probe argument as passed to dtrace_probe_create().
1721 * dtps_disable() will be called when a probe transitions from being enabled
1722 * to having zero ECBs. dtrace_probe() should never be called for a probe
1723 * identifier that has been explicitly enabled via dtps_disable().
1725 * 1.5.3 Return value
1729 * 1.5.4 Caller's context
1731 * The DTrace framework is locked in such a way that it may not be called
1732 * back into at all. cpu_lock is held. mod_lock is not held and may not
1735 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1739 * Called to suspend the specified enabled probe. This entry point is for
1740 * providers that may need to suspend some or all of their probes when CPUs
1741 * are being powered on or when the boot monitor is being entered for a
1742 * prolonged period of time.
1744 * 1.6.2 Arguments and notes
1746 * The first argument is the cookie as passed to dtrace_register(). The
1747 * second argument is the identifier of the probe to be suspended. The
1748 * third argument is the probe argument as passed to dtrace_probe_create().
1749 * dtps_suspend will only be called on an enabled probe. Providers that
1750 * provide a dtps_suspend entry point will want to take roughly the action
1751 * that it takes for dtps_disable.
1753 * 1.6.3 Return value
1757 * 1.6.4 Caller's context
1759 * Interrupts are disabled. The DTrace framework is in a state such that the
1760 * specified probe cannot be disabled or destroyed for the duration of
1761 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1762 * little latitude; the provider is expected to do no more than a store to
1765 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1769 * Called to resume the specified enabled probe. This entry point is for
1770 * providers that may need to resume some or all of their probes after the
1771 * completion of an event that induced a call to dtps_suspend().
1773 * 1.7.2 Arguments and notes
1775 * The first argument is the cookie as passed to dtrace_register(). The
1776 * second argument is the identifier of the probe to be resumed. The
1777 * third argument is the probe argument as passed to dtrace_probe_create().
1778 * dtps_resume will only be called on an enabled probe. Providers that
1779 * provide a dtps_resume entry point will want to take roughly the action
1780 * that it takes for dtps_enable.
1782 * 1.7.3 Return value
1786 * 1.7.4 Caller's context
1788 * Interrupts are disabled. The DTrace framework is in a state such that the
1789 * specified probe cannot be disabled or destroyed for the duration of
1790 * dtps_resume(). As interrupts are disabled, the provider is afforded
1791 * little latitude; the provider is expected to do no more than a store to
1794 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1795 * dtrace_argdesc_t *desc)
1799 * Called to retrieve the argument description for an args[X] variable.
1801 * 1.8.2 Arguments and notes
1803 * The first argument is the cookie as passed to dtrace_register(). The
1804 * second argument is the identifier of the current probe. The third
1805 * argument is the probe argument as passed to dtrace_probe_create(). The
1806 * fourth argument is a pointer to the argument description. This
1807 * description is both an input and output parameter: it contains the
1808 * index of the desired argument in the dtargd_ndx field, and expects
1809 * the other fields to be filled in upon return. If there is no argument
1810 * corresponding to the specified index, the dtargd_ndx field should be set
1811 * to DTRACE_ARGNONE.
1813 * 1.8.3 Return value
1815 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1816 * members of the dtrace_argdesc_t structure are all output values.
1818 * 1.8.4 Caller's context
1820 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1821 * the DTrace framework is locked in such a way that providers may not
1822 * register or unregister. This means that the provider may not call any
1823 * DTrace API that affects its registration with the framework, including
1824 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1825 * dtrace_condense().
1827 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1828 * int argno, int aframes)
1832 * Called to retrieve a value for an argX or args[X] variable.
1834 * 1.9.2 Arguments and notes
1836 * The first argument is the cookie as passed to dtrace_register(). The
1837 * second argument is the identifier of the current probe. The third
1838 * argument is the probe argument as passed to dtrace_probe_create(). The
1839 * fourth argument is the number of the argument (the X in the example in
1840 * 1.9.1). The fifth argument is the number of stack frames that were used
1841 * to get from the actual place in the code that fired the probe to
1842 * dtrace_probe() itself, the so-called artificial frames. This argument may
1843 * be used to descend an appropriate number of frames to find the correct
1844 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1847 * 1.9.3 Return value
1849 * The value of the argument.
1851 * 1.9.4 Caller's context
1853 * This is called from within dtrace_probe() meaning that interrupts
1854 * are disabled. No locks should be taken within this entry point.
1856 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1860 * Called to determine if the probe was fired in a user context.
1862 * 1.10.2 Arguments and notes
1864 * The first argument is the cookie as passed to dtrace_register(). The
1865 * second argument is the identifier of the current probe. The third
1866 * argument is the probe argument as passed to dtrace_probe_create(). This
1867 * entry point must not be left NULL for providers whose probes allow for
1868 * mixed mode tracing, that is to say those probes that can fire during
1869 * kernel- _or_ user-mode execution
1871 * 1.10.3 Return value
1875 * 1.10.4 Caller's context
1877 * This is called from within dtrace_probe() meaning that interrupts
1878 * are disabled. No locks should be taken within this entry point.
1880 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1884 * Called to destroy the specified probe.
1886 * 1.11.2 Arguments and notes
1888 * The first argument is the cookie as passed to dtrace_register(). The
1889 * second argument is the identifier of the probe to be destroyed. The third
1890 * argument is the probe argument as passed to dtrace_probe_create(). The
1891 * provider should free all state associated with the probe. The framework
1892 * guarantees that dtps_destroy() is only called for probes that have either
1893 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1894 * Once dtps_disable() has been called for a probe, no further call will be
1895 * made specifying the probe.
1897 * 1.11.3 Return value
1901 * 1.11.4 Caller's context
1903 * The DTrace framework is locked in such a way that it may not be called
1904 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1908 * 2 Provider-to-Framework API
1912 * The Provider-to-Framework API provides the mechanism for the provider to
1913 * register itself with the DTrace framework, to create probes, to lookup
1914 * probes and (most importantly) to fire probes. The Provider-to-Framework
1917 * dtrace_register() <-- Register a provider with the DTrace framework
1918 * dtrace_unregister() <-- Remove a provider's DTrace registration
1919 * dtrace_invalidate() <-- Invalidate the specified provider
1920 * dtrace_condense() <-- Remove a provider's unenabled probes
1921 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1922 * dtrace_probe_create() <-- Create a DTrace probe
1923 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1924 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1925 * dtrace_probe() <-- Fire the specified probe
1927 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1928 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1929 * dtrace_provider_id_t *idp)
1933 * dtrace_register() registers the calling provider with the DTrace
1934 * framework. It should generally be called by DTrace providers in their
1935 * attach(9E) entry point.
1937 * 2.2.2 Arguments and Notes
1939 * The first argument is the name of the provider. The second argument is a
1940 * pointer to the stability attributes for the provider. The third argument
1941 * is the privilege flags for the provider, and must be some combination of:
1943 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1945 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1946 * enable probes from this provider
1948 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1949 * enable probes from this provider
1951 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1952 * may enable probes from this provider
1954 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1955 * the privilege requirements above. These probes
1956 * require either (a) a user ID matching the user
1957 * ID of the cred passed in the fourth argument
1958 * or (b) the PRIV_PROC_OWNER privilege.
1960 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1961 * the privilege requirements above. These probes
1962 * require either (a) a zone ID matching the zone
1963 * ID of the cred passed in the fourth argument
1964 * or (b) the PRIV_PROC_ZONE privilege.
1966 * Note that these flags designate the _visibility_ of the probes, not
1967 * the conditions under which they may or may not fire.
1969 * The fourth argument is the credential that is associated with the
1970 * provider. This argument should be NULL if the privilege flags don't
1971 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1972 * framework stashes the uid and zoneid represented by this credential
1973 * for use at probe-time, in implicit predicates. These limit visibility
1974 * of the probes to users and/or zones which have sufficient privilege to
1977 * The fifth argument is a DTrace provider operations vector, which provides
1978 * the implementation for the Framework-to-Provider API. (See Section 1,
1979 * above.) This must be non-NULL, and each member must be non-NULL. The
1980 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1981 * members (if the provider so desires, _one_ of these members may be left
1982 * NULL -- denoting that the provider only implements the other) and (2)
1983 * the dtps_suspend() and dtps_resume() members, which must either both be
1984 * NULL or both be non-NULL.
1986 * The sixth argument is a cookie to be specified as the first argument for
1987 * each function in the Framework-to-Provider API. This argument may have
1990 * The final argument is a pointer to dtrace_provider_id_t. If
1991 * dtrace_register() successfully completes, the provider identifier will be
1992 * stored in the memory pointed to be this argument. This argument must be
1995 * 2.2.3 Return value
1997 * On success, dtrace_register() returns 0 and stores the new provider's
1998 * identifier into the memory pointed to by the idp argument. On failure,
1999 * dtrace_register() returns an errno:
2001 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
2002 * This may because a parameter that must be non-NULL was NULL,
2003 * because the name was invalid (either empty or an illegal
2004 * provider name) or because the attributes were invalid.
2006 * No other failure code is returned.
2008 * 2.2.4 Caller's context
2010 * dtrace_register() may induce calls to dtrace_provide(); the provider must
2011 * hold no locks across dtrace_register() that may also be acquired by
2012 * dtrace_provide(). cpu_lock and mod_lock must not be held.
2014 * 2.3 int dtrace_unregister(dtrace_provider_t id)
2018 * Unregisters the specified provider from the DTrace framework. It should
2019 * generally be called by DTrace providers in their detach(9E) entry point.
2021 * 2.3.2 Arguments and Notes
2023 * The only argument is the provider identifier, as returned from a
2024 * successful call to dtrace_register(). As a result of calling
2025 * dtrace_unregister(), the DTrace framework will call back into the provider
2026 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
2027 * completes, however, the DTrace framework will no longer make calls through
2028 * the Framework-to-Provider API.
2030 * 2.3.3 Return value
2032 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
2035 * EBUSY There are currently processes that have the DTrace pseudodevice
2036 * open, or there exists an anonymous enabling that hasn't yet
2039 * No other failure code is returned.
2041 * 2.3.4 Caller's context
2043 * Because a call to dtrace_unregister() may induce calls through the
2044 * Framework-to-Provider API, the caller may not hold any lock across
2045 * dtrace_register() that is also acquired in any of the Framework-to-
2046 * Provider API functions. Additionally, mod_lock may not be held.
2048 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
2052 * Invalidates the specified provider. All subsequent probe lookups for the
2053 * specified provider will fail, but its probes will not be removed.
2055 * 2.4.2 Arguments and note
2057 * The only argument is the provider identifier, as returned from a
2058 * successful call to dtrace_register(). In general, a provider's probes
2059 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
2060 * an entire provider, regardless of whether or not probes are enabled or
2061 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
2062 * probes from firing -- it will merely prevent any new enablings of the
2063 * provider's probes.
2065 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
2069 * Removes all the unenabled probes for the given provider. This function is
2070 * not unlike dtrace_unregister(), except that it doesn't remove the
2071 * provider just as many of its associated probes as it can.
2073 * 2.5.2 Arguments and Notes
2075 * As with dtrace_unregister(), the sole argument is the provider identifier
2076 * as returned from a successful call to dtrace_register(). As a result of
2077 * calling dtrace_condense(), the DTrace framework will call back into the
2078 * given provider's dtps_destroy() entry point for each of the provider's
2081 * 2.5.3 Return value
2083 * Currently, dtrace_condense() always returns 0. However, consumers of this
2084 * function should check the return value as appropriate; its behavior may
2085 * change in the future.
2087 * 2.5.4 Caller's context
2089 * As with dtrace_unregister(), the caller may not hold any lock across
2090 * dtrace_condense() that is also acquired in the provider's entry points.
2091 * Also, mod_lock may not be held.
2093 * 2.6 int dtrace_attached()
2097 * Indicates whether or not DTrace has attached.
2099 * 2.6.2 Arguments and Notes
2101 * For most providers, DTrace makes initial contact beyond registration.
2102 * That is, once a provider has registered with DTrace, it waits to hear
2103 * from DTrace to create probes. However, some providers may wish to
2104 * proactively create probes without first being told by DTrace to do so.
2105 * If providers wish to do this, they must first call dtrace_attached() to
2106 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
2107 * the provider must not make any other Provider-to-Framework API call.
2109 * 2.6.3 Return value
2111 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
2113 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
2114 * const char *func, const char *name, int aframes, void *arg)
2118 * Creates a probe with specified module name, function name, and name.
2120 * 2.7.2 Arguments and Notes
2122 * The first argument is the provider identifier, as returned from a
2123 * successful call to dtrace_register(). The second, third, and fourth
2124 * arguments are the module name, function name, and probe name,
2125 * respectively. Of these, module name and function name may both be NULL
2126 * (in which case the probe is considered to be unanchored), or they may both
2127 * be non-NULL. The name must be non-NULL, and must point to a non-empty
2130 * The fifth argument is the number of artificial stack frames that will be
2131 * found on the stack when dtrace_probe() is called for the new probe. These
2132 * artificial frames will be automatically be pruned should the stack() or
2133 * stackdepth() functions be called as part of one of the probe's ECBs. If
2134 * the parameter doesn't add an artificial frame, this parameter should be
2137 * The final argument is a probe argument that will be passed back to the
2138 * provider when a probe-specific operation is called. (e.g., via
2139 * dtps_enable(), dtps_disable(), etc.)
2141 * Note that it is up to the provider to be sure that the probe that it
2142 * creates does not already exist -- if the provider is unsure of the probe's
2143 * existence, it should assure its absence with dtrace_probe_lookup() before
2144 * calling dtrace_probe_create().
2146 * 2.7.3 Return value
2148 * dtrace_probe_create() always succeeds, and always returns the identifier
2149 * of the newly-created probe.
2151 * 2.7.4 Caller's context
2153 * While dtrace_probe_create() is generally expected to be called from
2154 * dtps_provide() and/or dtps_provide_module(), it may be called from other
2155 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2157 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2158 * const char *func, const char *name)
2162 * Looks up a probe based on provdider and one or more of module name,
2163 * function name and probe name.
2165 * 2.8.2 Arguments and Notes
2167 * The first argument is the provider identifier, as returned from a
2168 * successful call to dtrace_register(). The second, third, and fourth
2169 * arguments are the module name, function name, and probe name,
2170 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
2171 * the identifier of the first probe that is provided by the specified
2172 * provider and matches all of the non-NULL matching criteria.
2173 * dtrace_probe_lookup() is generally used by a provider to be check the
2174 * existence of a probe before creating it with dtrace_probe_create().
2176 * 2.8.3 Return value
2178 * If the probe exists, returns its identifier. If the probe does not exist,
2179 * return DTRACE_IDNONE.
2181 * 2.8.4 Caller's context
2183 * While dtrace_probe_lookup() is generally expected to be called from
2184 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2185 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2187 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2191 * Returns the probe argument associated with the specified probe.
2193 * 2.9.2 Arguments and Notes
2195 * The first argument is the provider identifier, as returned from a
2196 * successful call to dtrace_register(). The second argument is a probe
2197 * identifier, as returned from dtrace_probe_lookup() or
2198 * dtrace_probe_create(). This is useful if a probe has multiple
2199 * provider-specific components to it: the provider can create the probe
2200 * once with provider-specific state, and then add to the state by looking
2201 * up the probe based on probe identifier.
2203 * 2.9.3 Return value
2205 * Returns the argument associated with the specified probe. If the
2206 * specified probe does not exist, or if the specified probe is not provided
2207 * by the specified provider, NULL is returned.
2209 * 2.9.4 Caller's context
2211 * While dtrace_probe_arg() is generally expected to be called from
2212 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2213 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2215 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2216 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2220 * The epicenter of DTrace: fires the specified probes with the specified
2223 * 2.10.2 Arguments and Notes
2225 * The first argument is a probe identifier as returned by
2226 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2227 * arguments are the values to which the D variables "arg0" through "arg4"
2230 * dtrace_probe() should be called whenever the specified probe has fired --
2231 * however the provider defines it.
2233 * 2.10.3 Return value
2237 * 2.10.4 Caller's context
2239 * dtrace_probe() may be called in virtually any context: kernel, user,
2240 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2241 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2242 * that must be afforded to DTrace is the ability to make calls within
2243 * itself (and to its in-kernel subroutines) and the ability to access
2244 * arbitrary (but mapped) memory. On some platforms, this constrains
2245 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2246 * from any context in which TL is greater than zero. dtrace_probe() may
2247 * also not be called from any routine which may be called by dtrace_probe()
2248 * -- which includes functions in the DTrace framework and some in-kernel
2249 * DTrace subroutines. All such functions "dtrace_"; providers that
2250 * instrument the kernel arbitrarily should be sure to not instrument these
2253 typedef struct dtrace_pops
{
2254 void (*dtps_provide
)(void *arg
, const dtrace_probedesc_t
*spec
);
2255 void (*dtps_provide_module
)(void *arg
, struct modctl
*mp
);
2256 int (*dtps_enable
)(void *arg
, dtrace_id_t id
, void *parg
);
2257 void (*dtps_disable
)(void *arg
, dtrace_id_t id
, void *parg
);
2258 void (*dtps_suspend
)(void *arg
, dtrace_id_t id
, void *parg
);
2259 void (*dtps_resume
)(void *arg
, dtrace_id_t id
, void *parg
);
2260 void (*dtps_getargdesc
)(void *arg
, dtrace_id_t id
, void *parg
,
2261 dtrace_argdesc_t
*desc
);
2262 uint64_t (*dtps_getargval
)(void *arg
, dtrace_id_t id
, void *parg
,
2263 int argno
, int aframes
);
2264 int (*dtps_usermode
)(void *arg
, dtrace_id_t id
, void *parg
);
2265 void (*dtps_destroy
)(void *arg
, dtrace_id_t id
, void *parg
);
2268 typedef uintptr_t dtrace_provider_id_t
;
2270 extern int dtrace_register(const char *, const dtrace_pattr_t
*, uint32_t,
2271 cred_t
*, const dtrace_pops_t
*, void *, dtrace_provider_id_t
*);
2272 extern int dtrace_unregister(dtrace_provider_id_t
);
2273 extern int dtrace_condense(dtrace_provider_id_t
);
2274 extern void dtrace_invalidate(dtrace_provider_id_t
);
2275 extern dtrace_id_t
dtrace_probe_lookup(dtrace_provider_id_t
, const char *,
2276 const char *, const char *);
2277 extern dtrace_id_t
dtrace_probe_create(dtrace_provider_id_t
, const char *,
2278 const char *, const char *, int, void *);
2279 extern void *dtrace_probe_arg(dtrace_provider_id_t
, dtrace_id_t
);
2280 #if !defined(__APPLE__)
2281 extern void dtrace_probe(dtrace_id_t
, uintptr_t arg0
, uintptr_t arg1
,
2282 uintptr_t arg2
, uintptr_t arg3
, uintptr_t arg4
);
2284 extern void dtrace_probe(dtrace_id_t
, uint64_t arg0
, uint64_t arg1
,
2285 uint64_t arg2
, uint64_t arg3
, uint64_t arg4
);
2286 #endif /* __APPLE__ */
2289 * DTrace Meta Provider API
2291 * The following functions are implemented by the DTrace framework and are
2292 * used to implement meta providers. Meta providers plug into the DTrace
2293 * framework and are used to instantiate new providers on the fly. At
2294 * present, there is only one type of meta provider and only one meta
2295 * provider may be registered with the DTrace framework at a time. The
2296 * sole meta provider type provides user-land static tracing facilities
2297 * by taking meta probe descriptions and adding a corresponding provider
2298 * into the DTrace framework.
2300 * 1 Framework-to-Provider
2304 * The Framework-to-Provider API is represented by the dtrace_mops structure
2305 * that the meta provider passes to the framework when registering itself as
2306 * a meta provider. This structure consists of the following members:
2308 * dtms_create_probe() <-- Add a new probe to a created provider
2309 * dtms_provide_pid() <-- Create a new provider for a given process
2310 * dtms_remove_pid() <-- Remove a previously created provider
2312 * 1.2 void dtms_create_probe(void *arg, void *parg,
2313 * dtrace_helper_probedesc_t *probedesc);
2317 * Called by the DTrace framework to create a new probe in a provider
2318 * created by this meta provider.
2320 * 1.2.2 Arguments and notes
2322 * The first argument is the cookie as passed to dtrace_meta_register().
2323 * The second argument is the provider cookie for the associated provider;
2324 * this is obtained from the return value of dtms_provide_pid(). The third
2325 * argument is the helper probe description.
2327 * 1.2.3 Return value
2331 * 1.2.4 Caller's context
2333 * dtms_create_probe() is called from either ioctl() or module load context.
2334 * The DTrace framework is locked in such a way that meta providers may not
2335 * register or unregister. This means that the meta provider cannot call
2336 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2337 * such that the provider may (and is expected to) call provider-related
2338 * DTrace provider APIs including dtrace_probe_create().
2340 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2345 * Called by the DTrace framework to instantiate a new provider given the
2346 * description of the provider and probes in the mprov argument. The
2347 * meta provider should call dtrace_register() to insert the new provider
2348 * into the DTrace framework.
2350 * 1.3.2 Arguments and notes
2352 * The first argument is the cookie as passed to dtrace_meta_register().
2353 * The second argument is a pointer to a structure describing the new
2354 * helper provider. The third argument is the process identifier for
2355 * process associated with this new provider. Note that the name of the
2356 * provider as passed to dtrace_register() should be the contatenation of
2357 * the dtmpb_provname member of the mprov argument and the processs
2358 * identifier as a string.
2360 * 1.3.3 Return value
2362 * The cookie for the provider that the meta provider creates. This is
2363 * the same value that it passed to dtrace_register().
2365 * 1.3.4 Caller's context
2367 * dtms_provide_pid() is called from either ioctl() or module load context.
2368 * The DTrace framework is locked in such a way that meta providers may not
2369 * register or unregister. This means that the meta provider cannot call
2370 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2371 * is such that the provider may -- and is expected to -- call
2372 * provider-related DTrace provider APIs including dtrace_register().
2374 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2379 * Called by the DTrace framework to remove a provider that had previously
2380 * been instantiated via the dtms_provide_pid() entry point. The meta
2381 * provider need not remove the provider immediately, but this entry
2382 * point indicates that the provider should be removed as soon as possible
2383 * using the dtrace_unregister() API.
2385 * 1.4.2 Arguments and notes
2387 * The first argument is the cookie as passed to dtrace_meta_register().
2388 * The second argument is a pointer to a structure describing the helper
2389 * provider. The third argument is the process identifier for process
2390 * associated with this new provider.
2392 * 1.4.3 Return value
2396 * 1.4.4 Caller's context
2398 * dtms_remove_pid() is called from either ioctl() or exit() context.
2399 * The DTrace framework is locked in such a way that meta providers may not
2400 * register or unregister. This means that the meta provider cannot call
2401 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2402 * is such that the provider may -- and is expected to -- call
2403 * provider-related DTrace provider APIs including dtrace_unregister().
2405 typedef struct dtrace_helper_probedesc
{
2406 char *dthpb_mod
; /* probe module */
2407 char *dthpb_func
; /* probe function */
2408 char *dthpb_name
; /* probe name */
2409 uint64_t dthpb_base
; /* base address */
2410 #if !defined(__APPLE__)
2411 uint32_t *dthpb_offs
; /* offsets array */
2412 uint32_t *dthpb_enoffs
; /* is-enabled offsets array */
2414 int32_t *dthpb_offs
; /* (signed) offsets array */
2415 int32_t *dthpb_enoffs
; /* (signed) is-enabled offsets array */
2417 uint32_t dthpb_noffs
; /* offsets count */
2418 uint32_t dthpb_nenoffs
; /* is-enabled offsets count */
2419 uint8_t *dthpb_args
; /* argument mapping array */
2420 uint8_t dthpb_xargc
; /* translated argument count */
2421 uint8_t dthpb_nargc
; /* native argument count */
2422 char *dthpb_xtypes
; /* translated types strings */
2423 char *dthpb_ntypes
; /* native types strings */
2424 } dtrace_helper_probedesc_t
;
2426 typedef struct dtrace_helper_provdesc
{
2427 char *dthpv_provname
; /* provider name */
2428 dtrace_pattr_t dthpv_pattr
; /* stability attributes */
2429 } dtrace_helper_provdesc_t
;
2431 typedef struct dtrace_mops
{
2432 void (*dtms_create_probe
)(void *, void *, dtrace_helper_probedesc_t
*);
2433 void *(*dtms_provide_pid
)(void *, dtrace_helper_provdesc_t
*, pid_t
);
2434 void (*dtms_remove_pid
)(void *, dtrace_helper_provdesc_t
*, pid_t
);
2437 typedef uintptr_t dtrace_meta_provider_id_t
;
2439 extern int dtrace_meta_register(const char *, const dtrace_mops_t
*, void *,
2440 dtrace_meta_provider_id_t
*);
2441 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t
);
2444 * DTrace Kernel Hooks
2446 * The following functions are implemented by the base kernel and form a set of
2447 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2448 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2449 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2452 typedef enum dtrace_vtime_state
{
2453 DTRACE_VTIME_INACTIVE
= 0, /* No DTrace, no TNF */
2454 DTRACE_VTIME_ACTIVE
, /* DTrace virtual time, no TNF */
2455 DTRACE_VTIME_INACTIVE_TNF
, /* No DTrace, TNF active */
2456 DTRACE_VTIME_ACTIVE_TNF
/* DTrace virtual time _and_ TNF */
2457 } dtrace_vtime_state_t
;
2459 extern dtrace_vtime_state_t dtrace_vtime_active
;
2460 extern void dtrace_vtime_switch(kthread_t
*next
);
2461 extern void dtrace_vtime_enable_tnf(void);
2462 extern void dtrace_vtime_disable_tnf(void);
2463 extern void dtrace_vtime_enable(void);
2464 extern void dtrace_vtime_disable(void);
2466 #if !defined(__APPLE__)
2469 extern int (*dtrace_pid_probe_ptr
)(struct regs
*);
2470 extern int (*dtrace_return_probe_ptr
)(struct regs
*);
2472 #if defined (__i386__) || defined(__x86_64__)
2473 extern int (*dtrace_pid_probe_ptr
)(x86_saved_state_t
*regs
);
2474 extern int (*dtrace_return_probe_ptr
)(x86_saved_state_t
* regs
);
2476 #error architecture not supported
2478 #endif /* __APPLE__ */
2479 extern void (*dtrace_fasttrap_fork_ptr
)(proc_t
*, proc_t
*);
2480 extern void (*dtrace_fasttrap_exec_ptr
)(proc_t
*);
2481 extern void (*dtrace_fasttrap_exit_ptr
)(proc_t
*);
2482 extern void dtrace_fasttrap_fork(proc_t
*, proc_t
*);
2484 typedef uintptr_t dtrace_icookie_t
;
2485 typedef void (*dtrace_xcall_t
)(void *);
2487 extern dtrace_icookie_t
dtrace_interrupt_disable(void);
2488 extern void dtrace_interrupt_enable(dtrace_icookie_t
);
2490 extern void dtrace_membar_producer(void);
2491 extern void dtrace_membar_consumer(void);
2493 extern void (*dtrace_cpu_init
)(processorid_t
);
2494 #if !defined(__APPLE__)
2495 extern void (*dtrace_modload
)(struct modctl
*);
2496 extern void (*dtrace_modunload
)(struct modctl
*);
2498 extern int (*dtrace_modload
)(struct kmod_info
*, uint32_t);
2499 extern int (*dtrace_modunload
)(struct kmod_info
*);
2500 #endif /* __APPLE__ */
2501 extern void (*dtrace_helpers_cleanup
)(proc_t
*);
2502 extern void (*dtrace_helpers_fork
)(proc_t
*parent
, proc_t
*child
);
2503 extern void (*dtrace_cpustart_init
)(void);
2504 extern void (*dtrace_cpustart_fini
)(void);
2506 extern void (*dtrace_kreloc_init
)(void);
2507 extern void (*dtrace_kreloc_fini
)(void);
2509 extern void (*dtrace_debugger_init
)(void);
2510 extern void (*dtrace_debugger_fini
)(void);
2511 extern dtrace_cacheid_t dtrace_predcache_id
;
2513 extern hrtime_t
dtrace_gethrtime(void);
2514 extern void dtrace_sync(void);
2515 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2516 extern void dtrace_xcall(processorid_t
, dtrace_xcall_t
, void *);
2518 extern int dtrace_safe_defer_signal(void);
2519 extern void dtrace_safe_synchronous_signal(void);
2521 extern int dtrace_mach_aframes(void);
2523 #if !defined(__APPLE__)
2524 #if defined(__i386) || defined(__amd64)
2525 extern int dtrace_instr_size(uchar_t
*instr
);
2526 extern int dtrace_instr_size_isa(uchar_t
*, model_t
, int *);
2527 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2528 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2529 extern void dtrace_invop_callsite(void);
2533 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2534 extern void dtrace_getfsr(uint64_t *);
2537 #if defined(__i386__) || defined(__x86_64__)
2538 extern int dtrace_instr_size(uchar_t
*instr
);
2539 extern int dtrace_instr_size_isa(uchar_t
*, model_t
, int *);
2540 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2541 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2542 extern void *dtrace_invop_callsite_pre
;
2543 extern void *dtrace_invop_callsite_post
;
2548 #endif /* __APPLE__ */
2550 #define DTRACE_CPUFLAG_ISSET(flag) \
2551 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2553 #define DTRACE_CPUFLAG_SET(flag) \
2554 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2556 #define DTRACE_CPUFLAG_CLEAR(flag) \
2557 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2559 #endif /* _KERNEL */
2563 #if !defined(__APPLE__)
2564 #if defined(__i386) || defined(__amd64)
2566 #define DTRACE_INVOP_PUSHL_EBP 1
2567 #define DTRACE_INVOP_POPL_EBP 2
2568 #define DTRACE_INVOP_LEAVE 3
2569 #define DTRACE_INVOP_NOP 4
2570 #define DTRACE_INVOP_RET 5
2574 #if defined(__i386__) || defined(__x86_64__)
2576 #define DTRACE_INVOP_PUSHL_EBP 1
2577 #define DTRACE_INVOP_POPL_EBP 2
2578 #define DTRACE_INVOP_LEAVE 3
2579 #define DTRACE_INVOP_NOP 4
2580 #define DTRACE_INVOP_RET 5
2585 #endif /* __APPLE__ */
2591 #endif /* _SYS_DTRACE_H */