]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/ip6_input.c
xnu-2782.30.5.tar.gz
[apple/xnu.git] / bsd / netinet6 / ip6_input.c
1 /*
2 * Copyright (c) 2003-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Copyright (c) 1982, 1986, 1988, 1993
60 * The Regents of the University of California. All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
91 */
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/malloc.h>
96 #include <sys/mbuf.h>
97 #include <sys/domain.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/kernel.h>
104 #include <sys/syslog.h>
105 #include <sys/sysctl.h>
106 #include <sys/proc.h>
107 #include <sys/kauth.h>
108 #include <sys/mcache.h>
109
110 #include <mach/mach_time.h>
111 #include <mach/sdt.h>
112 #include <pexpert/pexpert.h>
113 #include <dev/random/randomdev.h>
114
115 #include <net/if.h>
116 #include <net/if_var.h>
117 #include <net/if_types.h>
118 #include <net/if_dl.h>
119 #include <net/route.h>
120 #include <net/kpi_protocol.h>
121 #include <net/ntstat.h>
122 #include <net/init.h>
123 #include <net/net_osdep.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #if INET
128 #include <netinet/ip.h>
129 #include <netinet/ip_icmp.h>
130 #endif /* INET */
131 #include <netinet/kpi_ipfilter_var.h>
132 #include <netinet/ip6.h>
133 #include <netinet6/in6_var.h>
134 #include <netinet6/ip6_var.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/icmp6.h>
137 #include <netinet6/in6_ifattach.h>
138 #include <netinet6/nd6.h>
139 #include <netinet6/scope6_var.h>
140 #include <netinet6/ip6protosw.h>
141
142 #if IPSEC
143 #include <netinet6/ipsec.h>
144 #include <netinet6/ipsec6.h>
145 extern int ipsec_bypass;
146 #endif /* IPSEC */
147
148 #if IPFW2
149 #include <netinet6/ip6_fw.h>
150 #endif /* IPFW2 */
151
152 #if DUMMYNET
153 #include <netinet/ip_fw.h>
154 #include <netinet/ip_dummynet.h>
155 #endif /* DUMMYNET */
156
157 /* we need it for NLOOP. */
158 #include "loop.h"
159
160 #if PF
161 #include <net/pfvar.h>
162 #endif /* PF */
163
164 struct ip6protosw *ip6_protox[IPPROTO_MAX];
165
166 static lck_grp_attr_t *in6_ifaddr_rwlock_grp_attr;
167 static lck_grp_t *in6_ifaddr_rwlock_grp;
168 static lck_attr_t *in6_ifaddr_rwlock_attr;
169 decl_lck_rw_data(, in6_ifaddr_rwlock);
170
171 /* Protected by in6_ifaddr_rwlock */
172 struct in6_ifaddr *in6_ifaddrs = NULL;
173
174 #define IN6_IFSTAT_REQUIRE_ALIGNED_64(f) \
175 _CASSERT(!(offsetof(struct in6_ifstat, f) % sizeof (uint64_t)))
176
177 #define ICMP6_IFSTAT_REQUIRE_ALIGNED_64(f) \
178 _CASSERT(!(offsetof(struct icmp6_ifstat, f) % sizeof (uint64_t)))
179
180 #if IPFW2
181 /* firewall hooks */
182 ip6_fw_chk_t *ip6_fw_chk_ptr;
183 ip6_fw_ctl_t *ip6_fw_ctl_ptr;
184 int ip6_fw_enable = 1;
185 #endif /* IPFW2 */
186
187 struct ip6stat ip6stat;
188
189 decl_lck_mtx_data(, proxy6_lock);
190 decl_lck_mtx_data(static, dad6_mutex_data);
191 decl_lck_mtx_data(static, nd6_mutex_data);
192 decl_lck_mtx_data(static, prefix6_mutex_data);
193 lck_mtx_t *dad6_mutex = &dad6_mutex_data;
194 lck_mtx_t *nd6_mutex = &nd6_mutex_data;
195 lck_mtx_t *prefix6_mutex = &prefix6_mutex_data;
196 #ifdef ENABLE_ADDRSEL
197 decl_lck_mtx_data(static, addrsel_mutex_data);
198 lck_mtx_t *addrsel_mutex = &addrsel_mutex_data;
199 #endif
200 static lck_attr_t *ip6_mutex_attr;
201 static lck_grp_t *ip6_mutex_grp;
202 static lck_grp_attr_t *ip6_mutex_grp_attr;
203
204 extern int loopattach_done;
205 extern void addrsel_policy_init(void);
206
207 static void ip6_init_delayed(void);
208 static int ip6_hopopts_input(u_int32_t *, u_int32_t *, struct mbuf **, int *);
209
210 #if NSTF
211 extern void stfattach(void);
212 #endif /* NSTF */
213
214 SYSCTL_DECL(_net_inet6_ip6);
215
216 int ip6_doscopedroute = 1;
217 SYSCTL_INT(_net_inet6_ip6, OID_AUTO, scopedroute,
218 CTLFLAG_RD | CTLFLAG_LOCKED, &ip6_doscopedroute, 0,
219 "Enable IPv6 scoped routing");
220
221 static uint32_t ip6_adj_clear_hwcksum = 0;
222 SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, adj_clear_hwcksum,
223 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_adj_clear_hwcksum, 0,
224 "Invalidate hwcksum info when adjusting length");
225
226 /*
227 * On platforms which require strict alignment (currently for anything but
228 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
229 * copy the contents of the mbuf chain into a new chain, and free the original
230 * one. Create some head room in the first mbuf of the new chain, in case
231 * it's needed later on.
232 *
233 * RFC 2460 says that IPv6 headers are 64-bit aligned, but network interfaces
234 * mostly align to 32-bit boundaries. Care should be taken never to use 64-bit
235 * load/store operations on the fields in IPv6 headers.
236 */
237 #if defined(__i386__) || defined(__x86_64__)
238 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
239 #else /* !__i386__ && !__x86_64__ */
240 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
241 if (!IP6_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
242 struct mbuf *_n; \
243 struct ifnet *__ifp = (_ifp); \
244 atomic_add_64(&(__ifp)->if_alignerrs, 1); \
245 if (((_m)->m_flags & M_PKTHDR) && \
246 (_m)->m_pkthdr.pkt_hdr != NULL) \
247 (_m)->m_pkthdr.pkt_hdr = NULL; \
248 _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
249 if (_n == NULL) { \
250 ip6stat.ip6s_toosmall++; \
251 m_freem(_m); \
252 (_m) = NULL; \
253 _action; \
254 } else { \
255 VERIFY(_n != (_m)); \
256 (_m) = _n; \
257 } \
258 } \
259 } while (0)
260 #endif /* !__i386__ && !__x86_64__ */
261
262 static void
263 ip6_proto_input(protocol_family_t protocol, mbuf_t packet)
264 {
265 #pragma unused(protocol)
266 ip6_input(packet);
267 }
268
269 /*
270 * IP6 initialization: fill in IP6 protocol switch table.
271 * All protocols not implemented in kernel go to raw IP6 protocol handler.
272 */
273 void
274 ip6_init(struct ip6protosw *pp, struct domain *dp)
275 {
276 static int ip6_initialized = 0;
277 struct protosw *pr;
278 struct timeval tv;
279 int i;
280 domain_unguard_t unguard;
281
282 domain_proto_mtx_lock_assert_held();
283 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
284
285 _CASSERT((sizeof (struct ip6_hdr) +
286 sizeof (struct icmp6_hdr)) <= _MHLEN);
287
288 if (ip6_initialized)
289 return;
290 ip6_initialized = 1;
291
292 PE_parse_boot_argn("net.inet6.ip6.scopedroute", &ip6_doscopedroute,
293 sizeof (ip6_doscopedroute));
294
295 pr = pffindproto_locked(PF_INET6, IPPROTO_RAW, SOCK_RAW);
296 if (pr == NULL) {
297 panic("%s: Unable to find [PF_INET6,IPPROTO_RAW,SOCK_RAW]\n",
298 __func__);
299 /* NOTREACHED */
300 }
301
302 /* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */
303 for (i = 0; i < IPPROTO_MAX; i++)
304 ip6_protox[i] = (struct ip6protosw *)pr;
305 /*
306 * Cycle through IP protocols and put them into the appropriate place
307 * in ip6_protox[], skipping protocols IPPROTO_{IP,RAW}.
308 */
309 VERIFY(dp == inet6domain && dp->dom_family == PF_INET6);
310 TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
311 VERIFY(pr->pr_domain == dp);
312 if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
313 /* Be careful to only index valid IP protocols. */
314 if (pr->pr_protocol < IPPROTO_MAX)
315 ip6_protox[pr->pr_protocol] =
316 (struct ip6protosw *)pr;
317 }
318 }
319
320 ip6_mutex_grp_attr = lck_grp_attr_alloc_init();
321
322 ip6_mutex_grp = lck_grp_alloc_init("ip6", ip6_mutex_grp_attr);
323 ip6_mutex_attr = lck_attr_alloc_init();
324
325 lck_mtx_init(dad6_mutex, ip6_mutex_grp, ip6_mutex_attr);
326 lck_mtx_init(nd6_mutex, ip6_mutex_grp, ip6_mutex_attr);
327 lck_mtx_init(prefix6_mutex, ip6_mutex_grp, ip6_mutex_attr);
328 scope6_init(ip6_mutex_grp, ip6_mutex_attr);
329
330 #ifdef ENABLE_ADDRSEL
331 lck_mtx_init(addrsel_mutex, ip6_mutex_grp, ip6_mutex_attr);
332 #endif
333
334 lck_mtx_init(&proxy6_lock, ip6_mutex_grp, ip6_mutex_attr);
335
336 in6_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
337 in6_ifaddr_rwlock_grp = lck_grp_alloc_init("in6_ifaddr_rwlock",
338 in6_ifaddr_rwlock_grp_attr);
339 in6_ifaddr_rwlock_attr = lck_attr_alloc_init();
340 lck_rw_init(&in6_ifaddr_rwlock, in6_ifaddr_rwlock_grp,
341 in6_ifaddr_rwlock_attr);
342
343 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_receive);
344 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_hdrerr);
345 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_toobig);
346 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_noroute);
347 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_addrerr);
348 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_protounknown);
349 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_truncated);
350 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_discard);
351 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_deliver);
352 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_forward);
353 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_request);
354 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_discard);
355 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragok);
356 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragfail);
357 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragcreat);
358 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_reqd);
359 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_ok);
360 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_fail);
361 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mcast);
362 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mcast);
363
364 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_msg);
365 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_error);
366 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_dstunreach);
367 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_adminprohib);
368 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_timeexceed);
369 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_paramprob);
370 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_pkttoobig);
371 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echo);
372 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echoreply);
373 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routersolicit);
374 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routeradvert);
375 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighborsolicit);
376 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighboradvert);
377 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_redirect);
378 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldquery);
379 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldreport);
380 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mlddone);
381
382 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_msg);
383 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_error);
384 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_dstunreach);
385 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_adminprohib);
386 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_timeexceed);
387 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_paramprob);
388 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_pkttoobig);
389 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echo);
390 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echoreply);
391 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routersolicit);
392 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routeradvert);
393 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighborsolicit);
394 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighboradvert);
395 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_redirect);
396 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldquery);
397 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldreport);
398 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mlddone);
399
400 getmicrotime(&tv);
401 ip6_desync_factor =
402 (RandomULong() ^ tv.tv_usec) % MAX_TEMP_DESYNC_FACTOR;
403
404 in6_ifaddr_init();
405 ip6_moptions_init();
406 nd6_init();
407 frag6_init();
408 icmp6_init(NULL, dp);
409 addrsel_policy_init();
410
411 /*
412 * P2P interfaces often route the local address to the loopback
413 * interface. At this point, lo0 hasn't been initialized yet, which
414 * means that we need to delay the IPv6 configuration of lo0.
415 */
416 net_init_add(ip6_init_delayed);
417
418 unguard = domain_unguard_deploy();
419 i = proto_register_input(PF_INET6, ip6_proto_input, NULL, 0);
420 if (i != 0) {
421 panic("%s: failed to register PF_INET6 protocol: %d\n",
422 __func__, i);
423 /* NOTREACHED */
424 }
425 domain_unguard_release(unguard);
426 }
427
428 static void
429 ip6_init_delayed(void)
430 {
431 (void) in6_ifattach_prelim(lo_ifp);
432
433 /* timer for regeneranation of temporary addresses randomize ID */
434 timeout(in6_tmpaddrtimer, NULL,
435 (ip6_temp_preferred_lifetime - ip6_desync_factor -
436 ip6_temp_regen_advance) * hz);
437
438 #if NSTF
439 stfattach();
440 #endif /* NSTF */
441 }
442
443 void
444 ip6_input(struct mbuf *m)
445 {
446 struct ip6_hdr *ip6;
447 int off = sizeof (struct ip6_hdr), nest;
448 u_int32_t plen;
449 u_int32_t rtalert = ~0;
450 int nxt = 0, ours = 0;
451 struct ifnet *inifp, *deliverifp = NULL;
452 ipfilter_t inject_ipfref = NULL;
453 int seen;
454 struct in6_ifaddr *ia6 = NULL;
455 struct sockaddr_in6 *dst6;
456 #if DUMMYNET
457 struct m_tag *tag;
458 #endif /* DUMMYNET */
459 struct {
460 struct route_in6 rin6;
461 #if DUMMYNET
462 struct ip_fw_args args;
463 #endif /* DUMMYNET */
464 } ip6ibz;
465 #define rin6 ip6ibz.rin6
466 #define args ip6ibz.args
467
468 /* zero out {rin6, args} */
469 bzero(&ip6ibz, sizeof (ip6ibz));
470
471 /*
472 * Check if the packet we received is valid after interface filter
473 * processing
474 */
475 MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
476 inifp = m->m_pkthdr.rcvif;
477 VERIFY(inifp != NULL);
478
479 /* Perform IP header alignment fixup, if needed */
480 IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
481
482 m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
483 #if IPSEC
484 /*
485 * should the inner packet be considered authentic?
486 * see comment in ah4_input().
487 */
488 m->m_flags &= ~M_AUTHIPHDR;
489 m->m_flags &= ~M_AUTHIPDGM;
490 #endif /* IPSEC */
491
492 /*
493 * make sure we don't have onion peering information into m_aux.
494 */
495 ip6_delaux(m);
496
497 #if DUMMYNET
498 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
499 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
500 struct dn_pkt_tag *dn_tag;
501
502 dn_tag = (struct dn_pkt_tag *)(tag+1);
503
504 args.fwa_pf_rule = dn_tag->dn_pf_rule;
505
506 m_tag_delete(m, tag);
507 }
508
509 if (args.fwa_pf_rule) {
510 ip6 = mtod(m, struct ip6_hdr *); /* In case PF got disabled */
511
512 goto check_with_pf;
513 }
514 #endif /* DUMMYNET */
515
516 /*
517 * No need to proccess packet twice if we've already seen it.
518 */
519 inject_ipfref = ipf_get_inject_filter(m);
520 if (inject_ipfref != NULL) {
521 ip6 = mtod(m, struct ip6_hdr *);
522 nxt = ip6->ip6_nxt;
523 seen = 0;
524 goto injectit;
525 } else {
526 seen = 1;
527 }
528
529 /*
530 * mbuf statistics
531 */
532 if (m->m_flags & M_EXT) {
533 if (m->m_next != NULL)
534 ip6stat.ip6s_mext2m++;
535 else
536 ip6stat.ip6s_mext1++;
537 } else {
538 #define M2MMAX (sizeof (ip6stat.ip6s_m2m) / sizeof (ip6stat.ip6s_m2m[0]))
539 if (m->m_next != NULL) {
540 if (m->m_pkthdr.pkt_flags & PKTF_LOOP) {
541 /* XXX */
542 ip6stat.ip6s_m2m[ifnet_index(lo_ifp)]++;
543 } else if (inifp->if_index < M2MMAX) {
544 ip6stat.ip6s_m2m[inifp->if_index]++;
545 } else {
546 ip6stat.ip6s_m2m[0]++;
547 }
548 } else {
549 ip6stat.ip6s_m1++;
550 }
551 #undef M2MMAX
552 }
553
554 /*
555 * Drop the packet if IPv6 operation is disabled on the interface.
556 */
557 if (inifp->if_eflags & IFEF_IPV6_DISABLED)
558 goto bad;
559
560 in6_ifstat_inc_na(inifp, ifs6_in_receive);
561 ip6stat.ip6s_total++;
562
563 /*
564 * L2 bridge code and some other code can return mbuf chain
565 * that does not conform to KAME requirement. too bad.
566 * XXX: fails to join if interface MTU > MCLBYTES. jumbogram?
567 */
568 if (m->m_next != NULL && m->m_pkthdr.len < MCLBYTES) {
569 struct mbuf *n;
570
571 MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */
572 if (n)
573 M_COPY_PKTHDR(n, m);
574 if (n && m->m_pkthdr.len > MHLEN) {
575 MCLGET(n, M_DONTWAIT);
576 if ((n->m_flags & M_EXT) == 0) {
577 m_freem(n);
578 n = NULL;
579 }
580 }
581 if (n == NULL)
582 goto bad;
583
584 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
585 n->m_len = m->m_pkthdr.len;
586 m_freem(m);
587 m = n;
588 }
589 IP6_EXTHDR_CHECK(m, 0, sizeof (struct ip6_hdr), { goto done; });
590
591 if (m->m_len < sizeof (struct ip6_hdr)) {
592 if ((m = m_pullup(m, sizeof (struct ip6_hdr))) == 0) {
593 ip6stat.ip6s_toosmall++;
594 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
595 goto done;
596 }
597 }
598
599 ip6 = mtod(m, struct ip6_hdr *);
600
601 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
602 ip6stat.ip6s_badvers++;
603 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
604 goto bad;
605 }
606
607 ip6stat.ip6s_nxthist[ip6->ip6_nxt]++;
608 /*
609 * Check against address spoofing/corruption.
610 */
611 if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP) &&
612 IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src)) {
613 ip6stat.ip6s_badscope++;
614 in6_ifstat_inc(inifp, ifs6_in_addrerr);
615 goto bad;
616 }
617 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) ||
618 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) {
619 /*
620 * XXX: "badscope" is not very suitable for a multicast source.
621 */
622 ip6stat.ip6s_badscope++;
623 in6_ifstat_inc(inifp, ifs6_in_addrerr);
624 goto bad;
625 }
626 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst) &&
627 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
628 /*
629 * In this case, the packet should come from the loopback
630 * interface. However, we cannot just check the if_flags,
631 * because ip6_mloopback() passes the "actual" interface
632 * as the outgoing/incoming interface.
633 */
634 ip6stat.ip6s_badscope++;
635 in6_ifstat_inc(inifp, ifs6_in_addrerr);
636 goto bad;
637 }
638
639 /*
640 * The following check is not documented in specs. A malicious
641 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
642 * and bypass security checks (act as if it was from 127.0.0.1 by using
643 * IPv6 src ::ffff:127.0.0.1). Be cautious.
644 *
645 * This check chokes if we are in an SIIT cloud. As none of BSDs
646 * support IPv4-less kernel compilation, we cannot support SIIT
647 * environment at all. So, it makes more sense for us to reject any
648 * malicious packets for non-SIIT environment, than try to do a
649 * partial support for SIIT environment.
650 */
651 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
652 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
653 ip6stat.ip6s_badscope++;
654 in6_ifstat_inc(inifp, ifs6_in_addrerr);
655 goto bad;
656 }
657 #if 0
658 /*
659 * Reject packets with IPv4 compatible addresses (auto tunnel).
660 *
661 * The code forbids auto tunnel relay case in RFC1933 (the check is
662 * stronger than RFC1933). We may want to re-enable it if mech-xx
663 * is revised to forbid relaying case.
664 */
665 if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) ||
666 IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) {
667 ip6stat.ip6s_badscope++;
668 in6_ifstat_inc(inifp, ifs6_in_addrerr);
669 goto bad;
670 }
671 #endif
672 #if IPFW2
673 /*
674 * Check with the firewall...
675 */
676 if (ip6_fw_enable && ip6_fw_chk_ptr) {
677 u_short port = 0;
678 /* If ipfw says divert, we have to just drop packet */
679 /* use port as a dummy argument */
680 if ((*ip6_fw_chk_ptr)(&ip6, NULL, &port, &m)) {
681 m_freem(m);
682 m = NULL;
683 }
684 if (!m)
685 goto done;
686 }
687 #endif /* IPFW2 */
688
689 /*
690 * Naively assume we can attribute inbound data to the route we would
691 * use to send to this destination. Asymetric routing breaks this
692 * assumption, but it still allows us to account for traffic from
693 * a remote node in the routing table.
694 * this has a very significant performance impact so we bypass
695 * if nstat_collect is disabled. We may also bypass if the
696 * protocol is tcp in the future because tcp will have a route that
697 * we can use to attribute the data to. That does mean we would not
698 * account for forwarded tcp traffic.
699 */
700 if (nstat_collect) {
701 struct rtentry *rte =
702 ifnet_cached_rtlookup_inet6(inifp, &ip6->ip6_src);
703 if (rte != NULL) {
704 nstat_route_rx(rte, 1, m->m_pkthdr.len, 0);
705 rtfree(rte);
706 }
707 }
708
709 /* for consistency */
710 m->m_pkthdr.pkt_proto = ip6->ip6_nxt;
711
712 #if DUMMYNET
713 check_with_pf:
714 #endif /* DUMMYNET */
715 #if PF
716 /* Invoke inbound packet filter */
717 if (PF_IS_ENABLED) {
718 int error;
719 #if DUMMYNET
720 error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, &args);
721 #else /* !DUMMYNET */
722 error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, NULL);
723 #endif /* !DUMMYNET */
724 if (error != 0 || m == NULL) {
725 if (m != NULL) {
726 panic("%s: unexpected packet %p\n",
727 __func__, m);
728 /* NOTREACHED */
729 }
730 /* Already freed by callee */
731 goto done;
732 }
733 ip6 = mtod(m, struct ip6_hdr *);
734 }
735 #endif /* PF */
736
737 /* drop packets if interface ID portion is already filled */
738 if (!(inifp->if_flags & IFF_LOOPBACK) &&
739 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
740 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src) &&
741 ip6->ip6_src.s6_addr16[1]) {
742 ip6stat.ip6s_badscope++;
743 goto bad;
744 }
745 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst) &&
746 ip6->ip6_dst.s6_addr16[1]) {
747 ip6stat.ip6s_badscope++;
748 goto bad;
749 }
750 }
751
752 if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
753 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
754 ip6->ip6_src.s6_addr16[1] =
755 htons(m->m_pkthdr.src_ifindex);
756 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
757 ip6->ip6_dst.s6_addr16[1] =
758 htons(m->m_pkthdr.dst_ifindex);
759 } else {
760 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
761 ip6->ip6_src.s6_addr16[1] = htons(inifp->if_index);
762 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
763 ip6->ip6_dst.s6_addr16[1] = htons(inifp->if_index);
764 }
765
766 /*
767 * Multicast check
768 */
769 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
770 struct in6_multi *in6m = NULL;
771
772 in6_ifstat_inc_na(inifp, ifs6_in_mcast);
773 /*
774 * See if we belong to the destination multicast group on the
775 * arrival interface.
776 */
777 in6_multihead_lock_shared();
778 IN6_LOOKUP_MULTI(&ip6->ip6_dst, inifp, in6m);
779 in6_multihead_lock_done();
780 if (in6m != NULL) {
781 IN6M_REMREF(in6m);
782 ours = 1;
783 } else if (!nd6_prproxy) {
784 ip6stat.ip6s_notmember++;
785 ip6stat.ip6s_cantforward++;
786 in6_ifstat_inc(inifp, ifs6_in_discard);
787 goto bad;
788 }
789 deliverifp = inifp;
790 VERIFY(ia6 == NULL);
791 goto hbhcheck;
792 }
793
794 /*
795 * Unicast check
796 *
797 * Fast path: see if the target is ourselves.
798 */
799 lck_rw_lock_shared(&in6_ifaddr_rwlock);
800 for (ia6 = in6_ifaddrs; ia6 != NULL; ia6 = ia6->ia_next) {
801 /*
802 * No reference is held on the address, as we just need
803 * to test for a few things while holding the RW lock.
804 */
805 if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &ip6->ip6_dst))
806 break;
807 }
808
809 if (ia6 != NULL) {
810 /*
811 * For performance, test without acquiring the address lock;
812 * a lot of things in the address are set once and never
813 * changed (e.g. ia_ifp.)
814 */
815 if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
816 /* this address is ready */
817 ours = 1;
818 deliverifp = ia6->ia_ifp;
819 /*
820 * record dst address information into mbuf.
821 */
822 (void) ip6_setdstifaddr_info(m, 0, ia6);
823 lck_rw_done(&in6_ifaddr_rwlock);
824 goto hbhcheck;
825 }
826 lck_rw_done(&in6_ifaddr_rwlock);
827 ia6 = NULL;
828 /* address is not ready, so discard the packet. */
829 nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
830 __func__, ip6_sprintf(&ip6->ip6_src),
831 ip6_sprintf(&ip6->ip6_dst)));
832 goto bad;
833 }
834 lck_rw_done(&in6_ifaddr_rwlock);
835
836 /*
837 * Slow path: route lookup.
838 */
839 dst6 = SIN6(&rin6.ro_dst);
840 dst6->sin6_len = sizeof (struct sockaddr_in6);
841 dst6->sin6_family = AF_INET6;
842 dst6->sin6_addr = ip6->ip6_dst;
843
844 rtalloc_scoped_ign((struct route *)&rin6,
845 RTF_PRCLONING, IFSCOPE_NONE);
846 if (rin6.ro_rt != NULL)
847 RT_LOCK_SPIN(rin6.ro_rt);
848
849 #define rt6_key(r) (SIN6((r)->rt_nodes->rn_key))
850
851 /*
852 * Accept the packet if the forwarding interface to the destination
853 * according to the routing table is the loopback interface,
854 * unless the associated route has a gateway.
855 * Note that this approach causes to accept a packet if there is a
856 * route to the loopback interface for the destination of the packet.
857 * But we think it's even useful in some situations, e.g. when using
858 * a special daemon which wants to intercept the packet.
859 *
860 * XXX: some OSes automatically make a cloned route for the destination
861 * of an outgoing packet. If the outgoing interface of the packet
862 * is a loopback one, the kernel would consider the packet to be
863 * accepted, even if we have no such address assinged on the interface.
864 * We check the cloned flag of the route entry to reject such cases,
865 * assuming that route entries for our own addresses are not made by
866 * cloning (it should be true because in6_addloop explicitly installs
867 * the host route). However, we might have to do an explicit check
868 * while it would be less efficient. Or, should we rather install a
869 * reject route for such a case?
870 */
871 if (rin6.ro_rt != NULL &&
872 (rin6.ro_rt->rt_flags & (RTF_HOST|RTF_GATEWAY)) == RTF_HOST &&
873 #if RTF_WASCLONED
874 !(rin6.ro_rt->rt_flags & RTF_WASCLONED) &&
875 #endif
876 rin6.ro_rt->rt_ifp->if_type == IFT_LOOP) {
877 ia6 = (struct in6_ifaddr *)rin6.ro_rt->rt_ifa;
878 /*
879 * Packets to a tentative, duplicated, or somehow invalid
880 * address must not be accepted.
881 *
882 * For performance, test without acquiring the address lock;
883 * a lot of things in the address are set once and never
884 * changed (e.g. ia_ifp.)
885 */
886 if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
887 /* this address is ready */
888 ours = 1;
889 deliverifp = ia6->ia_ifp; /* correct? */
890 /*
891 * record dst address information into mbuf.
892 */
893 (void) ip6_setdstifaddr_info(m, 0, ia6);
894 RT_UNLOCK(rin6.ro_rt);
895 goto hbhcheck;
896 }
897 RT_UNLOCK(rin6.ro_rt);
898 ia6 = NULL;
899 /* address is not ready, so discard the packet. */
900 nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
901 __func__, ip6_sprintf(&ip6->ip6_src),
902 ip6_sprintf(&ip6->ip6_dst)));
903 goto bad;
904 }
905
906 if (rin6.ro_rt != NULL)
907 RT_UNLOCK(rin6.ro_rt);
908
909 /*
910 * Now there is no reason to process the packet if it's not our own
911 * and we're not a router.
912 */
913 if (!ip6_forwarding) {
914 ip6stat.ip6s_cantforward++;
915 in6_ifstat_inc(inifp, ifs6_in_discard);
916 goto bad;
917 }
918
919 hbhcheck:
920 /*
921 * record dst address information into mbuf, if we don't have one yet.
922 * note that we are unable to record it, if the address is not listed
923 * as our interface address (e.g. multicast addresses, etc.)
924 */
925 if (deliverifp != NULL && ia6 == NULL) {
926 ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
927 if (ia6 != NULL) {
928 (void) ip6_setdstifaddr_info(m, 0, ia6);
929 IFA_REMREF(&ia6->ia_ifa);
930 }
931 }
932
933 /*
934 * Process Hop-by-Hop options header if it's contained.
935 * m may be modified in ip6_hopopts_input().
936 * If a JumboPayload option is included, plen will also be modified.
937 */
938 plen = (u_int32_t)ntohs(ip6->ip6_plen);
939 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
940 struct ip6_hbh *hbh;
941
942 if (ip6_hopopts_input(&plen, &rtalert, &m, &off)) {
943 #if 0 /* touches NULL pointer */
944 in6_ifstat_inc(inifp, ifs6_in_discard);
945 #endif
946 goto done; /* m have already been freed */
947 }
948
949 /* adjust pointer */
950 ip6 = mtod(m, struct ip6_hdr *);
951
952 /*
953 * if the payload length field is 0 and the next header field
954 * indicates Hop-by-Hop Options header, then a Jumbo Payload
955 * option MUST be included.
956 */
957 if (ip6->ip6_plen == 0 && plen == 0) {
958 /*
959 * Note that if a valid jumbo payload option is
960 * contained, ip6_hopopts_input() must set a valid
961 * (non-zero) payload length to the variable plen.
962 */
963 ip6stat.ip6s_badoptions++;
964 in6_ifstat_inc(inifp, ifs6_in_discard);
965 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
966 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
967 (caddr_t)&ip6->ip6_plen - (caddr_t)ip6);
968 goto done;
969 }
970 /* ip6_hopopts_input() ensures that mbuf is contiguous */
971 hbh = (struct ip6_hbh *)(ip6 + 1);
972 nxt = hbh->ip6h_nxt;
973
974 /*
975 * If we are acting as a router and the packet contains a
976 * router alert option, see if we know the option value.
977 * Currently, we only support the option value for MLD, in which
978 * case we should pass the packet to the multicast routing
979 * daemon.
980 */
981 if (rtalert != ~0 && ip6_forwarding) {
982 switch (rtalert) {
983 case IP6OPT_RTALERT_MLD:
984 ours = 1;
985 break;
986 default:
987 /*
988 * RFC2711 requires unrecognized values must be
989 * silently ignored.
990 */
991 break;
992 }
993 }
994 } else
995 nxt = ip6->ip6_nxt;
996
997 /*
998 * Check that the amount of data in the buffers
999 * is as at least much as the IPv6 header would have us expect.
1000 * Trim mbufs if longer than we expect.
1001 * Drop packet if shorter than we expect.
1002 */
1003 if (m->m_pkthdr.len - sizeof (struct ip6_hdr) < plen) {
1004 ip6stat.ip6s_tooshort++;
1005 in6_ifstat_inc(inifp, ifs6_in_truncated);
1006 goto bad;
1007 }
1008 if (m->m_pkthdr.len > sizeof (struct ip6_hdr) + plen) {
1009 /*
1010 * Invalidate hardware checksum info if ip6_adj_clear_hwcksum
1011 * is set; useful to handle buggy drivers. Note that this
1012 * should not be enabled by default, as we may get here due
1013 * to link-layer padding.
1014 */
1015 if (ip6_adj_clear_hwcksum &&
1016 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
1017 !(inifp->if_flags & IFF_LOOPBACK) &&
1018 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1019 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
1020 m->m_pkthdr.csum_data = 0;
1021 ip6stat.ip6s_adj_hwcsum_clr++;
1022 }
1023
1024 ip6stat.ip6s_adj++;
1025 if (m->m_len == m->m_pkthdr.len) {
1026 m->m_len = sizeof (struct ip6_hdr) + plen;
1027 m->m_pkthdr.len = sizeof (struct ip6_hdr) + plen;
1028 } else {
1029 m_adj(m, sizeof (struct ip6_hdr) + plen -
1030 m->m_pkthdr.len);
1031 }
1032 }
1033
1034 /*
1035 * Forward if desirable.
1036 */
1037 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1038 if (!ours && nd6_prproxy) {
1039 /*
1040 * If this isn't for us, this might be a Neighbor
1041 * Solicitation (dst is solicited-node multicast)
1042 * against an address in one of the proxied prefixes;
1043 * if so, claim the packet and let icmp6_input()
1044 * handle the rest.
1045 */
1046 ours = nd6_prproxy_isours(m, ip6, NULL, IFSCOPE_NONE);
1047 VERIFY(!ours ||
1048 (m->m_pkthdr.pkt_flags & PKTF_PROXY_DST));
1049 }
1050 if (!ours)
1051 goto bad;
1052 } else if (!ours) {
1053 /*
1054 * The unicast forwarding function might return the packet
1055 * if we are proxying prefix(es), and if the packet is an
1056 * ICMPv6 packet that has failed the zone checks, but is
1057 * targetted towards a proxied address (this is optimized by
1058 * way of RTF_PROXY test.) If so, claim the packet as ours
1059 * and let icmp6_input() handle the rest. The packet's hop
1060 * limit value is kept intact (it's not decremented). This
1061 * is for supporting Neighbor Unreachability Detection between
1062 * proxied nodes on different links (src is link-local, dst
1063 * is target address.)
1064 */
1065 if ((m = ip6_forward(m, &rin6, 0)) == NULL)
1066 goto done;
1067 VERIFY(rin6.ro_rt != NULL);
1068 VERIFY(m->m_pkthdr.pkt_flags & PKTF_PROXY_DST);
1069 deliverifp = rin6.ro_rt->rt_ifp;
1070 ours = 1;
1071 }
1072
1073 ip6 = mtod(m, struct ip6_hdr *);
1074
1075 /*
1076 * Malicious party may be able to use IPv4 mapped addr to confuse
1077 * tcp/udp stack and bypass security checks (act as if it was from
1078 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious.
1079 *
1080 * For SIIT end node behavior, you may want to disable the check.
1081 * However, you will become vulnerable to attacks using IPv4 mapped
1082 * source.
1083 */
1084 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1085 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1086 ip6stat.ip6s_badscope++;
1087 in6_ifstat_inc(inifp, ifs6_in_addrerr);
1088 goto bad;
1089 }
1090
1091 /*
1092 * Tell launch routine the next header
1093 */
1094 ip6stat.ip6s_delivered++;
1095 in6_ifstat_inc_na(deliverifp, ifs6_in_deliver);
1096
1097 injectit:
1098 nest = 0;
1099
1100 /*
1101 * Perform IP header alignment fixup again, if needed. Note that
1102 * we do it once for the outermost protocol, and we assume each
1103 * protocol handler wouldn't mess with the alignment afterwards.
1104 */
1105 IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
1106
1107 while (nxt != IPPROTO_DONE) {
1108 struct ipfilter *filter;
1109 int (*pr_input)(struct mbuf **, int *, int);
1110
1111 if (ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) {
1112 ip6stat.ip6s_toomanyhdr++;
1113 goto bad;
1114 }
1115
1116 /*
1117 * protection against faulty packet - there should be
1118 * more sanity checks in header chain processing.
1119 */
1120 if (m->m_pkthdr.len < off) {
1121 ip6stat.ip6s_tooshort++;
1122 in6_ifstat_inc(inifp, ifs6_in_truncated);
1123 goto bad;
1124 }
1125
1126
1127 #if IPSEC
1128 /*
1129 * enforce IPsec policy checking if we are seeing last header.
1130 * note that we do not visit this with protocols with pcb layer
1131 * code - like udp/tcp/raw ip.
1132 */
1133 if ((ipsec_bypass == 0) &&
1134 (ip6_protox[nxt]->pr_flags & PR_LASTHDR) != 0) {
1135 if (ipsec6_in_reject(m, NULL)) {
1136 IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
1137 goto bad;
1138 }
1139 }
1140 #endif /* IPSEC */
1141
1142 /*
1143 * Call IP filter
1144 */
1145 if (!TAILQ_EMPTY(&ipv6_filters)) {
1146 ipf_ref();
1147 TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) {
1148 if (seen == 0) {
1149 if ((struct ipfilter *)inject_ipfref ==
1150 filter)
1151 seen = 1;
1152 } else if (filter->ipf_filter.ipf_input) {
1153 errno_t result;
1154
1155 result = filter->ipf_filter.ipf_input(
1156 filter->ipf_filter.cookie,
1157 (mbuf_t *)&m, off, nxt);
1158 if (result == EJUSTRETURN) {
1159 ipf_unref();
1160 goto done;
1161 }
1162 if (result != 0) {
1163 ipf_unref();
1164 goto bad;
1165 }
1166 }
1167 }
1168 ipf_unref();
1169 }
1170
1171 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1172 struct ip6_hdr *, ip6, struct ifnet *, inifp,
1173 struct ip *, NULL, struct ip6_hdr *, ip6);
1174
1175 if ((pr_input = ip6_protox[nxt]->pr_input) == NULL) {
1176 m_freem(m);
1177 m = NULL;
1178 nxt = IPPROTO_DONE;
1179 } else if (!(ip6_protox[nxt]->pr_flags & PR_PROTOLOCK)) {
1180 lck_mtx_lock(inet6_domain_mutex);
1181 nxt = pr_input(&m, &off, nxt);
1182 lck_mtx_unlock(inet6_domain_mutex);
1183 } else {
1184 nxt = pr_input(&m, &off, nxt);
1185 }
1186 }
1187 done:
1188 ROUTE_RELEASE(&rin6);
1189 return;
1190 bad:
1191 m_freem(m);
1192 goto done;
1193 }
1194
1195 void
1196 ip6_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in6_ifaddr *ia6)
1197 {
1198 VERIFY(m->m_flags & M_PKTHDR);
1199
1200 /*
1201 * If the source ifaddr is specified, pick up the information
1202 * from there; otherwise just grab the passed-in ifindex as the
1203 * caller may not have the ifaddr available.
1204 */
1205 if (ia6 != NULL) {
1206 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1207 m->m_pkthdr.src_ifindex = ia6->ia_ifp->if_index;
1208
1209 /* See IN6_IFF comments in in6_var.h */
1210 m->m_pkthdr.src_iff = (ia6->ia6_flags & 0xffff);
1211 } else {
1212 m->m_pkthdr.src_iff = 0;
1213 m->m_pkthdr.src_ifindex = src_idx;
1214 if (src_idx != 0)
1215 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1216 }
1217 }
1218
1219 void
1220 ip6_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in6_ifaddr *ia6)
1221 {
1222 VERIFY(m->m_flags & M_PKTHDR);
1223
1224 /*
1225 * If the destination ifaddr is specified, pick up the information
1226 * from there; otherwise just grab the passed-in ifindex as the
1227 * caller may not have the ifaddr available.
1228 */
1229 if (ia6 != NULL) {
1230 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1231 m->m_pkthdr.dst_ifindex = ia6->ia_ifp->if_index;
1232
1233 /* See IN6_IFF comments in in6_var.h */
1234 m->m_pkthdr.dst_iff = (ia6->ia6_flags & 0xffff);
1235 } else {
1236 m->m_pkthdr.dst_iff = 0;
1237 m->m_pkthdr.dst_ifindex = dst_idx;
1238 if (dst_idx != 0)
1239 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1240 }
1241 }
1242
1243 int
1244 ip6_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *ia6f)
1245 {
1246 VERIFY(m->m_flags & M_PKTHDR);
1247
1248 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1249 return (-1);
1250
1251 if (src_idx != NULL)
1252 *src_idx = m->m_pkthdr.src_ifindex;
1253
1254 if (ia6f != NULL)
1255 *ia6f = m->m_pkthdr.src_iff;
1256
1257 return (0);
1258 }
1259
1260 int
1261 ip6_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *ia6f)
1262 {
1263 VERIFY(m->m_flags & M_PKTHDR);
1264
1265 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1266 return (-1);
1267
1268 if (dst_idx != NULL)
1269 *dst_idx = m->m_pkthdr.dst_ifindex;
1270
1271 if (ia6f != NULL)
1272 *ia6f = m->m_pkthdr.dst_iff;
1273
1274 return (0);
1275 }
1276
1277 /*
1278 * Hop-by-Hop options header processing. If a valid jumbo payload option is
1279 * included, the real payload length will be stored in plenp.
1280 */
1281 static int
1282 ip6_hopopts_input(uint32_t *plenp, uint32_t *rtalertp, struct mbuf **mp,
1283 int *offp)
1284 {
1285 struct mbuf *m = *mp;
1286 int off = *offp, hbhlen;
1287 struct ip6_hbh *hbh;
1288 u_int8_t *opt;
1289
1290 /* validation of the length of the header */
1291 IP6_EXTHDR_CHECK(m, off, sizeof (*hbh), return (-1));
1292 hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1293 hbhlen = (hbh->ip6h_len + 1) << 3;
1294
1295 IP6_EXTHDR_CHECK(m, off, hbhlen, return (-1));
1296 hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1297 off += hbhlen;
1298 hbhlen -= sizeof (struct ip6_hbh);
1299 opt = (u_int8_t *)hbh + sizeof (struct ip6_hbh);
1300
1301 if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof (struct ip6_hbh),
1302 hbhlen, rtalertp, plenp) < 0)
1303 return (-1);
1304
1305 *offp = off;
1306 *mp = m;
1307 return (0);
1308 }
1309
1310 /*
1311 * Search header for all Hop-by-hop options and process each option.
1312 * This function is separate from ip6_hopopts_input() in order to
1313 * handle a case where the sending node itself process its hop-by-hop
1314 * options header. In such a case, the function is called from ip6_output().
1315 *
1316 * The function assumes that hbh header is located right after the IPv6 header
1317 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
1318 * opthead + hbhlen is located in continuous memory region.
1319 */
1320 int
1321 ip6_process_hopopts(m, opthead, hbhlen, rtalertp, plenp)
1322 struct mbuf *m;
1323 u_int8_t *opthead;
1324 int hbhlen;
1325 u_int32_t *rtalertp;
1326 u_int32_t *plenp;
1327 {
1328 struct ip6_hdr *ip6;
1329 int optlen = 0;
1330 u_int8_t *opt = opthead;
1331 u_int16_t rtalert_val;
1332 u_int32_t jumboplen;
1333 const int erroff = sizeof (struct ip6_hdr) + sizeof (struct ip6_hbh);
1334
1335 for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) {
1336 switch (*opt) {
1337 case IP6OPT_PAD1:
1338 optlen = 1;
1339 break;
1340 case IP6OPT_PADN:
1341 if (hbhlen < IP6OPT_MINLEN) {
1342 ip6stat.ip6s_toosmall++;
1343 goto bad;
1344 }
1345 optlen = *(opt + 1) + 2;
1346 break;
1347 case IP6OPT_ROUTER_ALERT:
1348 /* XXX may need check for alignment */
1349 if (hbhlen < IP6OPT_RTALERT_LEN) {
1350 ip6stat.ip6s_toosmall++;
1351 goto bad;
1352 }
1353 if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) {
1354 /* XXX stat */
1355 icmp6_error(m, ICMP6_PARAM_PROB,
1356 ICMP6_PARAMPROB_HEADER,
1357 erroff + opt + 1 - opthead);
1358 return (-1);
1359 }
1360 optlen = IP6OPT_RTALERT_LEN;
1361 bcopy((caddr_t)(opt + 2), (caddr_t)&rtalert_val, 2);
1362 *rtalertp = ntohs(rtalert_val);
1363 break;
1364 case IP6OPT_JUMBO:
1365 /* XXX may need check for alignment */
1366 if (hbhlen < IP6OPT_JUMBO_LEN) {
1367 ip6stat.ip6s_toosmall++;
1368 goto bad;
1369 }
1370 if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) {
1371 /* XXX stat */
1372 icmp6_error(m, ICMP6_PARAM_PROB,
1373 ICMP6_PARAMPROB_HEADER,
1374 erroff + opt + 1 - opthead);
1375 return (-1);
1376 }
1377 optlen = IP6OPT_JUMBO_LEN;
1378
1379 /*
1380 * IPv6 packets that have non 0 payload length
1381 * must not contain a jumbo payload option.
1382 */
1383 ip6 = mtod(m, struct ip6_hdr *);
1384 if (ip6->ip6_plen) {
1385 ip6stat.ip6s_badoptions++;
1386 icmp6_error(m, ICMP6_PARAM_PROB,
1387 ICMP6_PARAMPROB_HEADER,
1388 erroff + opt - opthead);
1389 return (-1);
1390 }
1391
1392 /*
1393 * We may see jumbolen in unaligned location, so
1394 * we'd need to perform bcopy().
1395 */
1396 bcopy(opt + 2, &jumboplen, sizeof (jumboplen));
1397 jumboplen = (u_int32_t)htonl(jumboplen);
1398
1399 #if 1
1400 /*
1401 * if there are multiple jumbo payload options,
1402 * *plenp will be non-zero and the packet will be
1403 * rejected.
1404 * the behavior may need some debate in ipngwg -
1405 * multiple options does not make sense, however,
1406 * there's no explicit mention in specification.
1407 */
1408 if (*plenp != 0) {
1409 ip6stat.ip6s_badoptions++;
1410 icmp6_error(m, ICMP6_PARAM_PROB,
1411 ICMP6_PARAMPROB_HEADER,
1412 erroff + opt + 2 - opthead);
1413 return (-1);
1414 }
1415 #endif
1416
1417 /*
1418 * jumbo payload length must be larger than 65535.
1419 */
1420 if (jumboplen <= IPV6_MAXPACKET) {
1421 ip6stat.ip6s_badoptions++;
1422 icmp6_error(m, ICMP6_PARAM_PROB,
1423 ICMP6_PARAMPROB_HEADER,
1424 erroff + opt + 2 - opthead);
1425 return (-1);
1426 }
1427 *plenp = jumboplen;
1428
1429 break;
1430 default: /* unknown option */
1431 if (hbhlen < IP6OPT_MINLEN) {
1432 ip6stat.ip6s_toosmall++;
1433 goto bad;
1434 }
1435 optlen = ip6_unknown_opt(opt, m,
1436 erroff + opt - opthead);
1437 if (optlen == -1) {
1438 return (-1);
1439 }
1440 optlen += 2;
1441 break;
1442 }
1443 }
1444
1445 return (0);
1446
1447 bad:
1448 m_freem(m);
1449 return (-1);
1450 }
1451
1452 /*
1453 * Unknown option processing.
1454 * The third argument `off' is the offset from the IPv6 header to the option,
1455 * which is necessary if the IPv6 header the and option header and IPv6 header
1456 * is not continuous in order to return an ICMPv6 error.
1457 */
1458 int
1459 ip6_unknown_opt(uint8_t *optp, struct mbuf *m, int off)
1460 {
1461 struct ip6_hdr *ip6;
1462
1463 switch (IP6OPT_TYPE(*optp)) {
1464 case IP6OPT_TYPE_SKIP: /* ignore the option */
1465 return ((int)*(optp + 1));
1466
1467 case IP6OPT_TYPE_DISCARD: /* silently discard */
1468 m_freem(m);
1469 return (-1);
1470
1471 case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */
1472 ip6stat.ip6s_badoptions++;
1473 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off);
1474 return (-1);
1475
1476 case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */
1477 ip6stat.ip6s_badoptions++;
1478 ip6 = mtod(m, struct ip6_hdr *);
1479 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1480 (m->m_flags & (M_BCAST|M_MCAST))) {
1481 m_freem(m);
1482 } else {
1483 icmp6_error(m, ICMP6_PARAM_PROB,
1484 ICMP6_PARAMPROB_OPTION, off);
1485 }
1486 return (-1);
1487 }
1488
1489 m_freem(m); /* XXX: NOTREACHED */
1490 return (-1);
1491 }
1492
1493 /*
1494 * Create the "control" list for this pcb.
1495 * These functions will not modify mbuf chain at all.
1496 *
1497 * With KAME mbuf chain restriction:
1498 * The routine will be called from upper layer handlers like tcp6_input().
1499 * Thus the routine assumes that the caller (tcp6_input) have already
1500 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1501 * very first mbuf on the mbuf chain.
1502 *
1503 * ip6_savecontrol_v4 will handle those options that are possible to be
1504 * set on a v4-mapped socket.
1505 * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those
1506 * options and handle the v6-only ones itself.
1507 */
1508 struct mbuf **
1509 ip6_savecontrol_v4(struct inpcb *inp, struct mbuf *m, struct mbuf **mp,
1510 int *v4only)
1511 {
1512 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1513
1514 if ((inp->inp_socket->so_options & SO_TIMESTAMP) != 0) {
1515 struct timeval tv;
1516
1517 getmicrotime(&tv);
1518 mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof (tv),
1519 SCM_TIMESTAMP, SOL_SOCKET, mp);
1520 if (*mp == NULL)
1521 return (NULL);
1522 }
1523 if ((inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
1524 uint64_t time;
1525
1526 time = mach_absolute_time();
1527 mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time),
1528 SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
1529 if (*mp == NULL)
1530 return (NULL);
1531 }
1532 if ((inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) != 0) {
1533 int tc = m_get_traffic_class(m);
1534
1535 mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof (tc),
1536 SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
1537 if (*mp == NULL)
1538 return (NULL);
1539 }
1540
1541 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
1542 if (v4only != NULL)
1543 *v4only = 1;
1544 return (mp);
1545 }
1546
1547 #define IS2292(inp, x, y) (((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y))
1548 /* RFC 2292 sec. 5 */
1549 if ((inp->inp_flags & IN6P_PKTINFO) != 0) {
1550 struct in6_pktinfo pi6;
1551
1552 bcopy(&ip6->ip6_dst, &pi6.ipi6_addr, sizeof (struct in6_addr));
1553 in6_clearscope(&pi6.ipi6_addr); /* XXX */
1554 pi6.ipi6_ifindex =
1555 (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0;
1556
1557 mp = sbcreatecontrol_mbuf((caddr_t)&pi6,
1558 sizeof (struct in6_pktinfo),
1559 IS2292(inp, IPV6_2292PKTINFO, IPV6_PKTINFO),
1560 IPPROTO_IPV6, mp);
1561 if (*mp == NULL)
1562 return (NULL);
1563 }
1564
1565 if ((inp->inp_flags & IN6P_HOPLIMIT) != 0) {
1566 int hlim = ip6->ip6_hlim & 0xff;
1567
1568 mp = sbcreatecontrol_mbuf((caddr_t)&hlim, sizeof (int),
1569 IS2292(inp, IPV6_2292HOPLIMIT, IPV6_HOPLIMIT),
1570 IPPROTO_IPV6, mp);
1571 if (*mp == NULL)
1572 return (NULL);
1573 }
1574
1575 if (v4only != NULL)
1576 *v4only = 0;
1577 return (mp);
1578 }
1579
1580 int
1581 ip6_savecontrol(struct inpcb *in6p, struct mbuf *m, struct mbuf **mp)
1582 {
1583 struct mbuf **np;
1584 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1585 int v4only = 0;
1586
1587 *mp = NULL;
1588 np = ip6_savecontrol_v4(in6p, m, mp, &v4only);
1589 if (np == NULL)
1590 goto no_mbufs;
1591
1592 mp = np;
1593 if (v4only)
1594 return (0);
1595
1596 if ((in6p->inp_flags & IN6P_TCLASS) != 0) {
1597 u_int32_t flowinfo;
1598 int tclass;
1599
1600 flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK);
1601 flowinfo >>= 20;
1602
1603 tclass = flowinfo & 0xff;
1604 mp = sbcreatecontrol_mbuf((caddr_t)&tclass, sizeof (tclass),
1605 IPV6_TCLASS, IPPROTO_IPV6, mp);
1606 if (*mp == NULL)
1607 goto no_mbufs;
1608 }
1609
1610 /*
1611 * IPV6_HOPOPTS socket option. Recall that we required super-user
1612 * privilege for the option (see ip6_ctloutput), but it might be too
1613 * strict, since there might be some hop-by-hop options which can be
1614 * returned to normal user.
1615 * See also RFC 2292 section 6 (or RFC 3542 section 8).
1616 */
1617 if ((in6p->inp_flags & IN6P_HOPOPTS) != 0) {
1618 /*
1619 * Check if a hop-by-hop options header is contatined in the
1620 * received packet, and if so, store the options as ancillary
1621 * data. Note that a hop-by-hop options header must be
1622 * just after the IPv6 header, which is assured through the
1623 * IPv6 input processing.
1624 */
1625 ip6 = mtod(m, struct ip6_hdr *);
1626 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
1627 struct ip6_hbh *hbh;
1628 int hbhlen = 0;
1629 hbh = (struct ip6_hbh *)(ip6 + 1);
1630 hbhlen = (hbh->ip6h_len + 1) << 3;
1631
1632 /*
1633 * XXX: We copy the whole header even if a
1634 * jumbo payload option is included, the option which
1635 * is to be removed before returning according to
1636 * RFC2292.
1637 * Note: this constraint is removed in RFC3542
1638 */
1639 mp = sbcreatecontrol_mbuf((caddr_t)hbh, hbhlen,
1640 IS2292(in6p, IPV6_2292HOPOPTS, IPV6_HOPOPTS),
1641 IPPROTO_IPV6, mp);
1642
1643 if (*mp == NULL) {
1644 goto no_mbufs;
1645 }
1646 }
1647 }
1648
1649 if ((in6p->inp_flags & (IN6P_RTHDR | IN6P_DSTOPTS)) != 0) {
1650 int nxt = ip6->ip6_nxt, off = sizeof (struct ip6_hdr);
1651
1652 /*
1653 * Search for destination options headers or routing
1654 * header(s) through the header chain, and stores each
1655 * header as ancillary data.
1656 * Note that the order of the headers remains in
1657 * the chain of ancillary data.
1658 */
1659 while (1) { /* is explicit loop prevention necessary? */
1660 struct ip6_ext *ip6e = NULL;
1661 int elen;
1662
1663 /*
1664 * if it is not an extension header, don't try to
1665 * pull it from the chain.
1666 */
1667 switch (nxt) {
1668 case IPPROTO_DSTOPTS:
1669 case IPPROTO_ROUTING:
1670 case IPPROTO_HOPOPTS:
1671 case IPPROTO_AH: /* is it possible? */
1672 break;
1673 default:
1674 goto loopend;
1675 }
1676
1677 if (off + sizeof (*ip6e) > m->m_len)
1678 goto loopend;
1679 ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + off);
1680 if (nxt == IPPROTO_AH)
1681 elen = (ip6e->ip6e_len + 2) << 2;
1682 else
1683 elen = (ip6e->ip6e_len + 1) << 3;
1684 if (off + elen > m->m_len)
1685 goto loopend;
1686
1687 switch (nxt) {
1688 case IPPROTO_DSTOPTS:
1689 if (!(in6p->inp_flags & IN6P_DSTOPTS))
1690 break;
1691
1692 mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1693 IS2292(in6p, IPV6_2292DSTOPTS,
1694 IPV6_DSTOPTS), IPPROTO_IPV6, mp);
1695 if (*mp == NULL) {
1696 goto no_mbufs;
1697 }
1698 break;
1699 case IPPROTO_ROUTING:
1700 if (!in6p->inp_flags & IN6P_RTHDR)
1701 break;
1702
1703 mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1704 IS2292(in6p, IPV6_2292RTHDR, IPV6_RTHDR),
1705 IPPROTO_IPV6, mp);
1706 if (*mp == NULL) {
1707 goto no_mbufs;
1708 }
1709 break;
1710 case IPPROTO_HOPOPTS:
1711 case IPPROTO_AH: /* is it possible? */
1712 break;
1713
1714 default:
1715 /*
1716 * other cases have been filtered in the above.
1717 * none will visit this case. here we supply
1718 * the code just in case (nxt overwritten or
1719 * other cases).
1720 */
1721 goto loopend;
1722
1723 }
1724
1725 /* proceed with the next header. */
1726 off += elen;
1727 nxt = ip6e->ip6e_nxt;
1728 ip6e = NULL;
1729 }
1730 loopend:
1731 ;
1732 }
1733 return (0);
1734 no_mbufs:
1735 ip6stat.ip6s_pktdropcntrl++;
1736 /* XXX increment a stat to show the failure */
1737 return (ENOBUFS);
1738 }
1739 #undef IS2292
1740
1741 void
1742 ip6_notify_pmtu(struct inpcb *in6p, struct sockaddr_in6 *dst, u_int32_t *mtu)
1743 {
1744 struct socket *so;
1745 struct mbuf *m_mtu;
1746 struct ip6_mtuinfo mtuctl;
1747
1748 so = in6p->inp_socket;
1749
1750 if (mtu == NULL)
1751 return;
1752
1753 #ifdef DIAGNOSTIC
1754 if (so == NULL) { /* I believe this is impossible */
1755 panic("ip6_notify_pmtu: socket is NULL");
1756 /* NOTREACHED */
1757 }
1758 #endif
1759
1760 bzero(&mtuctl, sizeof (mtuctl)); /* zero-clear for safety */
1761 mtuctl.ip6m_mtu = *mtu;
1762 mtuctl.ip6m_addr = *dst;
1763 if (sa6_recoverscope(&mtuctl.ip6m_addr, TRUE))
1764 return;
1765
1766 if ((m_mtu = sbcreatecontrol((caddr_t)&mtuctl, sizeof (mtuctl),
1767 IPV6_PATHMTU, IPPROTO_IPV6)) == NULL)
1768 return;
1769
1770 if (sbappendaddr(&so->so_rcv, SA(dst), NULL, m_mtu, NULL) == 0) {
1771 m_freem(m_mtu);
1772 /* XXX: should count statistics */
1773 } else {
1774 sorwakeup(so);
1775 }
1776 }
1777
1778 /*
1779 * Get pointer to the previous header followed by the header
1780 * currently processed.
1781 * XXX: This function supposes that
1782 * M includes all headers,
1783 * the next header field and the header length field of each header
1784 * are valid, and
1785 * the sum of each header length equals to OFF.
1786 * Because of these assumptions, this function must be called very
1787 * carefully. Moreover, it will not be used in the near future when
1788 * we develop `neater' mechanism to process extension headers.
1789 */
1790 char *
1791 ip6_get_prevhdr(m, off)
1792 struct mbuf *m;
1793 int off;
1794 {
1795 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1796
1797 if (off == sizeof (struct ip6_hdr)) {
1798 return ((char *)&ip6->ip6_nxt);
1799 } else {
1800 int len, nxt;
1801 struct ip6_ext *ip6e = NULL;
1802
1803 nxt = ip6->ip6_nxt;
1804 len = sizeof (struct ip6_hdr);
1805 while (len < off) {
1806 ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + len);
1807
1808 switch (nxt) {
1809 case IPPROTO_FRAGMENT:
1810 len += sizeof (struct ip6_frag);
1811 break;
1812 case IPPROTO_AH:
1813 len += (ip6e->ip6e_len + 2) << 2;
1814 break;
1815 default:
1816 len += (ip6e->ip6e_len + 1) << 3;
1817 break;
1818 }
1819 nxt = ip6e->ip6e_nxt;
1820 }
1821 if (ip6e)
1822 return ((char *)&ip6e->ip6e_nxt);
1823 else
1824 return (NULL);
1825 }
1826 }
1827
1828 /*
1829 * get next header offset. m will be retained.
1830 */
1831 int
1832 ip6_nexthdr(struct mbuf *m, int off, int proto, int *nxtp)
1833 {
1834 struct ip6_hdr ip6;
1835 struct ip6_ext ip6e;
1836 struct ip6_frag fh;
1837
1838 /* just in case */
1839 VERIFY(m != NULL);
1840 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off)
1841 return (-1);
1842
1843 switch (proto) {
1844 case IPPROTO_IPV6:
1845 if (m->m_pkthdr.len < off + sizeof (ip6))
1846 return (-1);
1847 m_copydata(m, off, sizeof (ip6), (caddr_t)&ip6);
1848 if (nxtp)
1849 *nxtp = ip6.ip6_nxt;
1850 off += sizeof (ip6);
1851 return (off);
1852
1853 case IPPROTO_FRAGMENT:
1854 /*
1855 * terminate parsing if it is not the first fragment,
1856 * it does not make sense to parse through it.
1857 */
1858 if (m->m_pkthdr.len < off + sizeof (fh))
1859 return (-1);
1860 m_copydata(m, off, sizeof (fh), (caddr_t)&fh);
1861 /* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */
1862 if (fh.ip6f_offlg & IP6F_OFF_MASK)
1863 return (-1);
1864 if (nxtp)
1865 *nxtp = fh.ip6f_nxt;
1866 off += sizeof (struct ip6_frag);
1867 return (off);
1868
1869 case IPPROTO_AH:
1870 if (m->m_pkthdr.len < off + sizeof (ip6e))
1871 return (-1);
1872 m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1873 if (nxtp)
1874 *nxtp = ip6e.ip6e_nxt;
1875 off += (ip6e.ip6e_len + 2) << 2;
1876 return (off);
1877
1878 case IPPROTO_HOPOPTS:
1879 case IPPROTO_ROUTING:
1880 case IPPROTO_DSTOPTS:
1881 if (m->m_pkthdr.len < off + sizeof (ip6e))
1882 return (-1);
1883 m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1884 if (nxtp)
1885 *nxtp = ip6e.ip6e_nxt;
1886 off += (ip6e.ip6e_len + 1) << 3;
1887 return (off);
1888
1889 case IPPROTO_NONE:
1890 case IPPROTO_ESP:
1891 case IPPROTO_IPCOMP:
1892 /* give up */
1893 return (-1);
1894
1895 default:
1896 return (-1);
1897 }
1898
1899 return (-1);
1900 }
1901
1902 /*
1903 * get offset for the last header in the chain. m will be kept untainted.
1904 */
1905 int
1906 ip6_lasthdr(struct mbuf *m, int off, int proto, int *nxtp)
1907 {
1908 int newoff;
1909 int nxt;
1910
1911 if (!nxtp) {
1912 nxt = -1;
1913 nxtp = &nxt;
1914 }
1915 while (1) {
1916 newoff = ip6_nexthdr(m, off, proto, nxtp);
1917 if (newoff < 0)
1918 return (off);
1919 else if (newoff < off)
1920 return (-1); /* invalid */
1921 else if (newoff == off)
1922 return (newoff);
1923
1924 off = newoff;
1925 proto = *nxtp;
1926 }
1927 }
1928
1929 struct ip6aux *
1930 ip6_addaux(struct mbuf *m)
1931 {
1932 struct m_tag *tag;
1933
1934 /* Check if one is already allocated */
1935 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1936 KERNEL_TAG_TYPE_INET6, NULL);
1937 if (tag == NULL) {
1938 /* Allocate a tag */
1939 tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_INET6,
1940 sizeof (struct ip6aux), M_DONTWAIT, m);
1941
1942 /* Attach it to the mbuf */
1943 if (tag) {
1944 m_tag_prepend(m, tag);
1945 }
1946 }
1947
1948 return (tag ? (struct ip6aux *)(tag + 1) : NULL);
1949 }
1950
1951 struct ip6aux *
1952 ip6_findaux(struct mbuf *m)
1953 {
1954 struct m_tag *tag;
1955
1956 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1957 KERNEL_TAG_TYPE_INET6, NULL);
1958
1959 return (tag ? (struct ip6aux *)(tag + 1) : NULL);
1960 }
1961
1962 void
1963 ip6_delaux(struct mbuf *m)
1964 {
1965 struct m_tag *tag;
1966
1967 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1968 KERNEL_TAG_TYPE_INET6, NULL);
1969 if (tag) {
1970 m_tag_delete(m, tag);
1971 }
1972 }
1973
1974 /*
1975 * Drain callback
1976 */
1977 void
1978 ip6_drain(void)
1979 {
1980 frag6_drain(); /* fragments */
1981 in6_rtqdrain(); /* protocol cloned routes */
1982 nd6_drain(NULL); /* cloned routes: ND6 */
1983 }
1984
1985 /*
1986 * System control for IP6
1987 */
1988
1989 u_char inet6ctlerrmap[PRC_NCMDS] = {
1990 0, 0, 0, 0,
1991 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1992 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1993 EMSGSIZE, EHOSTUNREACH, 0, 0,
1994 0, 0, 0, 0,
1995 ENOPROTOOPT
1996 };