]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/in6.c
xnu-2782.30.5.tar.gz
[apple/xnu.git] / bsd / netinet6 / in6.c
1 /*
2 * Copyright (c) 2003-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Copyright (c) 1982, 1986, 1991, 1993
60 * The Regents of the University of California. All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in.c 8.2 (Berkeley) 11/15/93
91 */
92
93
94 #include <sys/param.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/malloc.h>
98 #include <sys/socket.h>
99 #include <sys/socketvar.h>
100 #include <sys/sockio.h>
101 #include <sys/systm.h>
102 #include <sys/time.h>
103 #include <sys/kernel.h>
104 #include <sys/syslog.h>
105 #include <sys/kern_event.h>
106 #include <sys/mcache.h>
107 #include <sys/protosw.h>
108
109 #include <kern/locks.h>
110 #include <kern/zalloc.h>
111 #include <libkern/OSAtomic.h>
112 #include <machine/machine_routines.h>
113 #include <mach/boolean.h>
114
115 #include <net/if.h>
116 #include <net/if_types.h>
117 #include <net/if_var.h>
118 #include <net/route.h>
119 #include <net/if_dl.h>
120 #include <net/kpi_protocol.h>
121
122 #include <netinet/in.h>
123 #include <netinet/in_var.h>
124 #include <netinet/if_ether.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/in_pcb.h>
128 #include <netinet/icmp6.h>
129 #include <netinet/tcp.h>
130 #include <netinet/tcp_seq.h>
131 #include <netinet/tcp_var.h>
132
133 #include <netinet6/nd6.h>
134 #include <netinet/ip6.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet6/mld6_var.h>
137 #include <netinet6/in6_ifattach.h>
138 #include <netinet6/scope6_var.h>
139 #include <netinet6/in6_var.h>
140 #include <netinet6/in6_pcb.h>
141
142 #include <net/net_osdep.h>
143
144 #if PF
145 #include <net/pfvar.h>
146 #endif /* PF */
147
148 /*
149 * Definitions of some costant IP6 addresses.
150 */
151 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
152 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
153 const struct in6_addr in6addr_nodelocal_allnodes =
154 IN6ADDR_NODELOCAL_ALLNODES_INIT;
155 const struct in6_addr in6addr_linklocal_allnodes =
156 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
157 const struct in6_addr in6addr_linklocal_allrouters =
158 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
159 const struct in6_addr in6addr_linklocal_allv2routers =
160 IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT;
161
162 const struct in6_addr in6mask0 = IN6MASK0;
163 const struct in6_addr in6mask7 = IN6MASK7;
164 const struct in6_addr in6mask16 = IN6MASK16;
165 const struct in6_addr in6mask32 = IN6MASK32;
166 const struct in6_addr in6mask64 = IN6MASK64;
167 const struct in6_addr in6mask96 = IN6MASK96;
168 const struct in6_addr in6mask128 = IN6MASK128;
169
170 const struct sockaddr_in6 sa6_any = {
171 sizeof (sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0
172 };
173
174 static int in6ctl_associd(struct socket *, u_long, caddr_t);
175 static int in6ctl_connid(struct socket *, u_long, caddr_t);
176 static int in6ctl_conninfo(struct socket *, u_long, caddr_t);
177 static int in6ctl_llstart(struct ifnet *, u_long, caddr_t);
178 static int in6ctl_llstop(struct ifnet *);
179 static int in6ctl_cgastart(struct ifnet *, u_long, caddr_t);
180 static int in6ctl_gifaddr(struct ifnet *, struct in6_ifaddr *, u_long,
181 struct in6_ifreq *);
182 static int in6ctl_gifstat(struct ifnet *, u_long, struct in6_ifreq *);
183 static int in6ctl_alifetime(struct in6_ifaddr *, u_long, struct in6_ifreq *,
184 boolean_t);
185 static int in6ctl_aifaddr(struct ifnet *, struct in6_aliasreq *);
186 static void in6ctl_difaddr(struct ifnet *, struct in6_ifaddr *);
187 static int in6_autoconf(struct ifnet *, int);
188 static int in6_setrouter(struct ifnet *, int);
189 static int in6_ifinit(struct ifnet *, struct in6_ifaddr *, int);
190 static int in6_ifaupdate_aux(struct in6_ifaddr *, struct ifnet *, int);
191 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *);
192 static struct in6_ifaddr *in6_ifaddr_alloc(int);
193 static void in6_ifaddr_attached(struct ifaddr *);
194 static void in6_ifaddr_detached(struct ifaddr *);
195 static void in6_ifaddr_free(struct ifaddr *);
196 static void in6_ifaddr_trace(struct ifaddr *, int);
197 #if defined(__LP64__)
198 static void in6_llstartreq_32_to_64(struct in6_llstartreq_32 *,
199 struct in6_llstartreq_64 *);
200 #else
201 static void in6_llstartreq_64_to_32(struct in6_llstartreq_64 *,
202 struct in6_llstartreq_32 *);
203 #endif
204 static struct in6_aliasreq *in6_aliasreq_to_native(void *, int,
205 struct in6_aliasreq *);
206 static struct in6_llstartreq *in6_llstartreq_to_native(void *, int,
207 struct in6_llstartreq *);
208 static int in6_to_kamescope(struct sockaddr_in6 *, struct ifnet *);
209
210 static void in6_ifaddr_set_dadprogress(struct in6_ifaddr *);
211
212 static int in6_getassocids(struct socket *, uint32_t *, user_addr_t);
213 static int in6_getconnids(struct socket *, associd_t, uint32_t *, user_addr_t);
214 static int in6_getconninfo(struct socket *, connid_t, uint32_t *,
215 uint32_t *, int32_t *, user_addr_t, socklen_t *, user_addr_t, socklen_t *,
216 uint32_t *, user_addr_t, uint32_t *);
217
218 static void in6_if_up_dad_start(struct ifnet *);
219
220 extern lck_mtx_t *nd6_mutex;
221 extern int in6_init2done;
222
223 #define IN6IFA_TRACE_HIST_SIZE 32 /* size of trace history */
224
225 /* For gdb */
226 __private_extern__ unsigned int in6ifa_trace_hist_size = IN6IFA_TRACE_HIST_SIZE;
227
228 struct in6_ifaddr_dbg {
229 struct in6_ifaddr in6ifa; /* in6_ifaddr */
230 struct in6_ifaddr in6ifa_old; /* saved in6_ifaddr */
231 u_int16_t in6ifa_refhold_cnt; /* # of IFA_ADDREF */
232 u_int16_t in6ifa_refrele_cnt; /* # of IFA_REMREF */
233 /*
234 * Alloc and free callers.
235 */
236 ctrace_t in6ifa_alloc;
237 ctrace_t in6ifa_free;
238 /*
239 * Circular lists of IFA_ADDREF and IFA_REMREF callers.
240 */
241 ctrace_t in6ifa_refhold[IN6IFA_TRACE_HIST_SIZE];
242 ctrace_t in6ifa_refrele[IN6IFA_TRACE_HIST_SIZE];
243 /*
244 * Trash list linkage
245 */
246 TAILQ_ENTRY(in6_ifaddr_dbg) in6ifa_trash_link;
247 };
248
249 /* List of trash in6_ifaddr entries protected by in6ifa_trash_lock */
250 static TAILQ_HEAD(, in6_ifaddr_dbg) in6ifa_trash_head;
251 static decl_lck_mtx_data(, in6ifa_trash_lock);
252
253 #if DEBUG
254 static unsigned int in6ifa_debug = 1; /* debugging (enabled) */
255 #else
256 static unsigned int in6ifa_debug; /* debugging (disabled) */
257 #endif /* !DEBUG */
258 static unsigned int in6ifa_size; /* size of zone element */
259 static struct zone *in6ifa_zone; /* zone for in6_ifaddr */
260
261 #define IN6IFA_ZONE_MAX 64 /* maximum elements in zone */
262 #define IN6IFA_ZONE_NAME "in6_ifaddr" /* zone name */
263
264 /*
265 * Subroutine for in6_ifaddloop() and in6_ifremloop().
266 * This routine does actual work.
267 */
268 static void
269 in6_ifloop_request(int cmd, struct ifaddr *ifa)
270 {
271 struct sockaddr_in6 all1_sa;
272 struct rtentry *nrt = NULL;
273 int e;
274
275 bzero(&all1_sa, sizeof (all1_sa));
276 all1_sa.sin6_family = AF_INET6;
277 all1_sa.sin6_len = sizeof (struct sockaddr_in6);
278 all1_sa.sin6_addr = in6mask128;
279
280 /*
281 * We specify the address itself as the gateway, and set the
282 * RTF_LLINFO flag, so that the corresponding host route would have
283 * the flag, and thus applications that assume traditional behavior
284 * would be happy. Note that we assume the caller of the function
285 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
286 * which changes the outgoing interface to the loopback interface.
287 * ifa_addr for INET6 is set once during init; no need to hold lock.
288 */
289 lck_mtx_lock(rnh_lock);
290 e = rtrequest_locked(cmd, ifa->ifa_addr, ifa->ifa_addr,
291 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
292 if (e != 0) {
293 log(LOG_ERR, "in6_ifloop_request: "
294 "%s operation failed for %s (errno=%d)\n",
295 cmd == RTM_ADD ? "ADD" : "DELETE",
296 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
297 e);
298 }
299
300 if (nrt != NULL)
301 RT_LOCK(nrt);
302 /*
303 * Make sure rt_ifa be equal to IFA, the second argument of the
304 * function.
305 * We need this because when we refer to rt_ifa->ia6_flags in
306 * ip6_input, we assume that the rt_ifa points to the address instead
307 * of the loopback address.
308 */
309 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
310 rtsetifa(nrt, ifa);
311 }
312
313 /*
314 * Report the addition/removal of the address to the routing socket.
315 * XXX: since we called rtinit for a p2p interface with a destination,
316 * we end up reporting twice in such a case. Should we rather
317 * omit the second report?
318 */
319 if (nrt != NULL) {
320 rt_newaddrmsg(cmd, ifa, e, nrt);
321 if (cmd == RTM_DELETE) {
322 RT_UNLOCK(nrt);
323 rtfree_locked(nrt);
324 } else {
325 /* the cmd must be RTM_ADD here */
326 RT_REMREF_LOCKED(nrt);
327 RT_UNLOCK(nrt);
328 }
329 }
330 lck_mtx_unlock(rnh_lock);
331 }
332
333 /*
334 * Add ownaddr as loopback rtentry. We previously add the route only if
335 * necessary (ex. on a p2p link). However, since we now manage addresses
336 * separately from prefixes, we should always add the route. We can't
337 * rely on the cloning mechanism from the corresponding interface route
338 * any more.
339 */
340 static void
341 in6_ifaddloop(struct ifaddr *ifa)
342 {
343 struct rtentry *rt;
344
345 /*
346 * If there is no loopback entry, allocate one. ifa_addr for
347 * INET6 is set once during init; no need to hold lock.
348 */
349 rt = rtalloc1(ifa->ifa_addr, 0, 0);
350 if (rt != NULL)
351 RT_LOCK(rt);
352 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
353 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
354 if (rt != NULL) {
355 RT_REMREF_LOCKED(rt);
356 RT_UNLOCK(rt);
357 }
358 in6_ifloop_request(RTM_ADD, ifa);
359 } else if (rt != NULL) {
360 RT_REMREF_LOCKED(rt);
361 RT_UNLOCK(rt);
362 }
363 }
364
365 /*
366 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
367 * if it exists.
368 */
369 static void
370 in6_ifremloop(struct ifaddr *ifa)
371 {
372 struct in6_ifaddr *ia;
373 struct rtentry *rt;
374 int ia_count = 0;
375
376 /*
377 * Some of BSD variants do not remove cloned routes
378 * from an interface direct route, when removing the direct route
379 * (see comments in net/net_osdep.h). Even for variants that do remove
380 * cloned routes, they could fail to remove the cloned routes when
381 * we handle multple addresses that share a common prefix.
382 * So, we should remove the route corresponding to the deleted address
383 * regardless of the result of in6_is_ifloop_auto().
384 */
385
386 /*
387 * Delete the entry only if exact one ifa exists. More than one ifa
388 * can exist if we assign a same single address to multiple
389 * (probably p2p) interfaces.
390 * XXX: we should avoid such a configuration in IPv6...
391 */
392 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
393 for (ia = in6_ifaddrs; ia; ia = ia->ia_next) {
394 IFA_LOCK(&ia->ia_ifa);
395 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
396 ia_count++;
397 if (ia_count > 1) {
398 IFA_UNLOCK(&ia->ia_ifa);
399 break;
400 }
401 }
402 IFA_UNLOCK(&ia->ia_ifa);
403 }
404 lck_rw_done(&in6_ifaddr_rwlock);
405
406 if (ia_count == 1) {
407 /*
408 * Before deleting, check if a corresponding loopbacked host
409 * route surely exists. With this check, we can avoid to
410 * delete an interface direct route whose destination is same
411 * as the address being removed. This can happen when removing
412 * a subnet-router anycast address on an interface attahced
413 * to a shared medium. ifa_addr for INET6 is set once during
414 * init; no need to hold lock.
415 */
416 rt = rtalloc1(ifa->ifa_addr, 0, 0);
417 if (rt != NULL) {
418 RT_LOCK(rt);
419 if ((rt->rt_flags & RTF_HOST) != 0 &&
420 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
421 RT_REMREF_LOCKED(rt);
422 RT_UNLOCK(rt);
423 in6_ifloop_request(RTM_DELETE, ifa);
424 } else {
425 RT_UNLOCK(rt);
426 }
427 }
428 }
429 }
430
431
432 int
433 in6_mask2len(mask, lim0)
434 struct in6_addr *mask;
435 u_char *lim0;
436 {
437 int x = 0, y;
438 u_char *lim = lim0, *p;
439
440 /* ignore the scope_id part */
441 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof (*mask))
442 lim = (u_char *)mask + sizeof (*mask);
443 for (p = (u_char *)mask; p < lim; x++, p++) {
444 if (*p != 0xff)
445 break;
446 }
447 y = 0;
448 if (p < lim) {
449 for (y = 0; y < 8; y++) {
450 if ((*p & (0x80 >> y)) == 0)
451 break;
452 }
453 }
454
455 /*
456 * when the limit pointer is given, do a stricter check on the
457 * remaining bits.
458 */
459 if (p < lim) {
460 if (y != 0 && (*p & (0x00ff >> y)) != 0)
461 return (-1);
462 for (p = p + 1; p < lim; p++)
463 if (*p != 0)
464 return (-1);
465 }
466
467 return (x * 8 + y);
468 }
469
470 void
471 in6_len2mask(mask, len)
472 struct in6_addr *mask;
473 int len;
474 {
475 int i;
476
477 bzero(mask, sizeof (*mask));
478 for (i = 0; i < len / 8; i++)
479 mask->s6_addr8[i] = 0xff;
480 if (len % 8)
481 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
482 }
483
484 void
485 in6_aliasreq_64_to_32(struct in6_aliasreq_64 *src, struct in6_aliasreq_32 *dst)
486 {
487 bzero(dst, sizeof (*dst));
488 bcopy(src->ifra_name, dst->ifra_name, sizeof (dst->ifra_name));
489 dst->ifra_addr = src->ifra_addr;
490 dst->ifra_dstaddr = src->ifra_dstaddr;
491 dst->ifra_prefixmask = src->ifra_prefixmask;
492 dst->ifra_flags = src->ifra_flags;
493 dst->ifra_lifetime.ia6t_expire = src->ifra_lifetime.ia6t_expire;
494 dst->ifra_lifetime.ia6t_preferred = src->ifra_lifetime.ia6t_preferred;
495 dst->ifra_lifetime.ia6t_vltime = src->ifra_lifetime.ia6t_vltime;
496 dst->ifra_lifetime.ia6t_pltime = src->ifra_lifetime.ia6t_pltime;
497 }
498
499 void
500 in6_aliasreq_32_to_64(struct in6_aliasreq_32 *src, struct in6_aliasreq_64 *dst)
501 {
502 bzero(dst, sizeof (*dst));
503 bcopy(src->ifra_name, dst->ifra_name, sizeof (dst->ifra_name));
504 dst->ifra_addr = src->ifra_addr;
505 dst->ifra_dstaddr = src->ifra_dstaddr;
506 dst->ifra_prefixmask = src->ifra_prefixmask;
507 dst->ifra_flags = src->ifra_flags;
508 dst->ifra_lifetime.ia6t_expire = src->ifra_lifetime.ia6t_expire;
509 dst->ifra_lifetime.ia6t_preferred = src->ifra_lifetime.ia6t_preferred;
510 dst->ifra_lifetime.ia6t_vltime = src->ifra_lifetime.ia6t_vltime;
511 dst->ifra_lifetime.ia6t_pltime = src->ifra_lifetime.ia6t_pltime;
512 }
513
514 #if defined(__LP64__)
515 void
516 in6_llstartreq_32_to_64(struct in6_llstartreq_32 *src,
517 struct in6_llstartreq_64 *dst)
518 {
519 bzero(dst, sizeof (*dst));
520 bcopy(src->llsr_name, dst->llsr_name, sizeof (dst->llsr_name));
521 dst->llsr_flags = src->llsr_flags;
522 bcopy(src->llsr_cgaprep.cga_modifier.octets,
523 dst->llsr_cgaprep.cga_modifier.octets,
524 sizeof (dst->llsr_cgaprep.cga_modifier.octets));
525 dst->llsr_cgaprep.cga_security_level =
526 src->llsr_cgaprep.cga_security_level;
527 dst->llsr_lifetime.ia6t_expire = src->llsr_lifetime.ia6t_expire;
528 dst->llsr_lifetime.ia6t_preferred = src->llsr_lifetime.ia6t_preferred;
529 dst->llsr_lifetime.ia6t_vltime = src->llsr_lifetime.ia6t_vltime;
530 dst->llsr_lifetime.ia6t_pltime = src->llsr_lifetime.ia6t_pltime;
531 }
532 #endif
533
534 #if !defined(__LP64__)
535 void
536 in6_llstartreq_64_to_32(struct in6_llstartreq_64 *src,
537 struct in6_llstartreq_32 *dst)
538 {
539 bzero(dst, sizeof (*dst));
540 bcopy(src->llsr_name, dst->llsr_name, sizeof (dst->llsr_name));
541 dst->llsr_flags = src->llsr_flags;
542 bcopy(src->llsr_cgaprep.cga_modifier.octets,
543 dst->llsr_cgaprep.cga_modifier.octets,
544 sizeof (dst->llsr_cgaprep.cga_modifier.octets));
545 dst->llsr_cgaprep.cga_security_level =
546 src->llsr_cgaprep.cga_security_level;
547 dst->llsr_lifetime.ia6t_expire = src->llsr_lifetime.ia6t_expire;
548 dst->llsr_lifetime.ia6t_preferred = src->llsr_lifetime.ia6t_preferred;
549 dst->llsr_lifetime.ia6t_vltime = src->llsr_lifetime.ia6t_vltime;
550 dst->llsr_lifetime.ia6t_pltime = src->llsr_lifetime.ia6t_pltime;
551 }
552 #endif
553
554 static struct in6_aliasreq *
555 in6_aliasreq_to_native(void *data, int data_is_64, struct in6_aliasreq *dst)
556 {
557 #if defined(__LP64__)
558 if (data_is_64)
559 bcopy(data, dst, sizeof (*dst));
560 else
561 in6_aliasreq_32_to_64((struct in6_aliasreq_32 *)data,
562 (struct in6_aliasreq_64 *)dst);
563 #else
564 if (data_is_64)
565 in6_aliasreq_64_to_32((struct in6_aliasreq_64 *)data,
566 (struct in6_aliasreq_32 *)dst);
567 else
568 bcopy(data, dst, sizeof (*dst));
569 #endif /* __LP64__ */
570 return (dst);
571 }
572
573 static struct in6_llstartreq *
574 in6_llstartreq_to_native(void *data, int is64, struct in6_llstartreq *dst)
575 {
576 #if defined(__LP64__)
577 if (is64)
578 bcopy(data, dst, sizeof (*dst));
579 else
580 in6_llstartreq_32_to_64((struct in6_llstartreq_32 *)data,
581 (struct in6_llstartreq_64 *)dst);
582 #else
583 if (is64)
584 in6_llstartreq_64_to_32((struct in6_llstartreq_64 *)data,
585 (struct in6_llstartreq_32 *)dst);
586 else
587 bcopy(data, dst, sizeof (*dst));
588 #endif /* __LP64__ */
589 return (dst);
590 }
591
592 static __attribute__((noinline)) int
593 in6ctl_associd(struct socket *so, u_long cmd, caddr_t data)
594 {
595 int error = 0;
596 union {
597 struct so_aidreq32 a32;
598 struct so_aidreq64 a64;
599 } u;
600
601 VERIFY(so != NULL);
602
603 switch (cmd) {
604 case SIOCGASSOCIDS32: { /* struct so_aidreq32 */
605 bcopy(data, &u.a32, sizeof (u.a32));
606 error = in6_getassocids(so, &u.a32.sar_cnt, u.a32.sar_aidp);
607 if (error == 0)
608 bcopy(&u.a32, data, sizeof (u.a32));
609 break;
610 }
611
612 case SIOCGASSOCIDS64: { /* struct so_aidreq64 */
613 bcopy(data, &u.a64, sizeof (u.a64));
614 error = in6_getassocids(so, &u.a64.sar_cnt, u.a64.sar_aidp);
615 if (error == 0)
616 bcopy(&u.a64, data, sizeof (u.a64));
617 break;
618 }
619
620 default:
621 VERIFY(0);
622 /* NOTREACHED */
623 }
624
625 return (error);
626 }
627
628 static __attribute__((noinline)) int
629 in6ctl_connid(struct socket *so, u_long cmd, caddr_t data)
630 {
631 int error = 0;
632 union {
633 struct so_cidreq32 c32;
634 struct so_cidreq64 c64;
635 } u;
636
637 VERIFY(so != NULL);
638
639 switch (cmd) {
640 case SIOCGCONNIDS32: { /* struct so_cidreq32 */
641 bcopy(data, &u.c32, sizeof (u.c32));
642 error = in6_getconnids(so, u.c32.scr_aid, &u.c32.scr_cnt,
643 u.c32.scr_cidp);
644 if (error == 0)
645 bcopy(&u.c32, data, sizeof (u.c32));
646 break;
647 }
648
649 case SIOCGCONNIDS64: { /* struct so_cidreq64 */
650 bcopy(data, &u.c64, sizeof (u.c64));
651 error = in6_getconnids(so, u.c64.scr_aid, &u.c64.scr_cnt,
652 u.c64.scr_cidp);
653 if (error == 0)
654 bcopy(&u.c64, data, sizeof (u.c64));
655 break;
656 }
657
658 default:
659 VERIFY(0);
660 /* NOTREACHED */
661 }
662
663 return (error);
664 }
665
666 static __attribute__((noinline)) int
667 in6ctl_conninfo(struct socket *so, u_long cmd, caddr_t data)
668 {
669 int error = 0;
670 union {
671 struct so_cinforeq32 ci32;
672 struct so_cinforeq64 ci64;
673 } u;
674
675 VERIFY(so != NULL);
676
677 switch (cmd) {
678 case SIOCGCONNINFO32: { /* struct so_cinforeq32 */
679 bcopy(data, &u.ci32, sizeof (u.ci32));
680 error = in6_getconninfo(so, u.ci32.scir_cid, &u.ci32.scir_flags,
681 &u.ci32.scir_ifindex, &u.ci32.scir_error, u.ci32.scir_src,
682 &u.ci32.scir_src_len, u.ci32.scir_dst, &u.ci32.scir_dst_len,
683 &u.ci32.scir_aux_type, u.ci32.scir_aux_data,
684 &u.ci32.scir_aux_len);
685 if (error == 0)
686 bcopy(&u.ci32, data, sizeof (u.ci32));
687 break;
688 }
689
690 case SIOCGCONNINFO64: { /* struct so_cinforeq64 */
691 bcopy(data, &u.ci64, sizeof (u.ci64));
692 error = in6_getconninfo(so, u.ci64.scir_cid, &u.ci64.scir_flags,
693 &u.ci64.scir_ifindex, &u.ci64.scir_error, u.ci64.scir_src,
694 &u.ci64.scir_src_len, u.ci64.scir_dst, &u.ci64.scir_dst_len,
695 &u.ci64.scir_aux_type, u.ci64.scir_aux_data,
696 &u.ci64.scir_aux_len);
697 if (error == 0)
698 bcopy(&u.ci64, data, sizeof (u.ci64));
699 break;
700 }
701
702 default:
703 VERIFY(0);
704 /* NOTREACHED */
705 }
706
707 return (error);
708 }
709
710 static __attribute__((noinline)) int
711 in6ctl_llstart(struct ifnet *ifp, u_long cmd, caddr_t data)
712 {
713 struct in6_aliasreq sifra, *ifra = NULL;
714 boolean_t is64;
715 int error = 0;
716
717 VERIFY(ifp != NULL);
718
719 switch (cmd) {
720 case SIOCLL_START_32: /* struct in6_aliasreq_32 */
721 case SIOCLL_START_64: /* struct in6_aliasreq_64 */
722 is64 = (cmd == SIOCLL_START_64);
723 /*
724 * Convert user ifra to the kernel form, when appropriate.
725 * This allows the conversion between different data models
726 * to be centralized, so that it can be passed around to other
727 * routines that are expecting the kernel form.
728 */
729 ifra = in6_aliasreq_to_native(data, is64, &sifra);
730
731 /*
732 * NOTE: All the interface specific DLIL attachements should
733 * be done here. They are currently done in in6_ifattach_aux()
734 * for the interfaces that need it.
735 */
736 if ((ifp->if_eflags & IFEF_NOAUTOIPV6LL) != 0 &&
737 ifra->ifra_addr.sin6_family == AF_INET6 &&
738 /* Only check ifra_dstaddr if valid */
739 (ifra->ifra_dstaddr.sin6_len == 0 ||
740 ifra->ifra_dstaddr.sin6_family == AF_INET6)) {
741 /* some interfaces may provide LinkLocal addresses */
742 error = in6_ifattach_aliasreq(ifp, NULL, ifra);
743 } else {
744 error = in6_ifattach_aliasreq(ifp, NULL, NULL);
745 }
746 if (error == 0)
747 in6_if_up_dad_start(ifp);
748 break;
749
750 default:
751 VERIFY(0);
752 /* NOTREACHED */
753 }
754
755 return (error);
756 }
757
758 static __attribute__((noinline)) int
759 in6ctl_llstop(struct ifnet *ifp)
760 {
761 struct in6_ifaddr *ia;
762 struct nd_prefix pr0, *pr;
763
764 VERIFY(ifp != NULL);
765
766 /* Remove link local addresses from interface */
767 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
768 ia = in6_ifaddrs;
769 while (ia != NULL) {
770 if (ia->ia_ifa.ifa_ifp != ifp) {
771 ia = ia->ia_next;
772 continue;
773 }
774 IFA_LOCK(&ia->ia_ifa);
775 if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) {
776 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for us */
777 IFA_UNLOCK(&ia->ia_ifa);
778 lck_rw_done(&in6_ifaddr_rwlock);
779 in6_purgeaddr(&ia->ia_ifa);
780 IFA_REMREF(&ia->ia_ifa); /* for us */
781 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
782 /*
783 * Purging the address caused in6_ifaddr_rwlock
784 * to be dropped and reacquired;
785 * therefore search again from the beginning
786 * of in6_ifaddrs list.
787 */
788 ia = in6_ifaddrs;
789 continue;
790 }
791 IFA_UNLOCK(&ia->ia_ifa);
792 ia = ia->ia_next;
793 }
794 lck_rw_done(&in6_ifaddr_rwlock);
795
796 /* Delete the link local prefix */
797 bzero(&pr0, sizeof(pr0));
798 pr0.ndpr_plen = 64;
799 pr0.ndpr_ifp = ifp;
800 pr0.ndpr_prefix.sin6_addr.s6_addr16[0] = IPV6_ADDR_INT16_ULL;
801 in6_setscope(&pr0.ndpr_prefix.sin6_addr, ifp, NULL);
802 pr = nd6_prefix_lookup(&pr0);
803 if (pr) {
804 lck_mtx_lock(nd6_mutex);
805 NDPR_LOCK(pr);
806 prelist_remove(pr);
807 NDPR_UNLOCK(pr);
808 NDPR_REMREF(pr); /* Drop the reference from lookup */
809 lck_mtx_unlock(nd6_mutex);
810 }
811
812 return (0);
813 }
814
815 static __attribute__((noinline)) int
816 in6ctl_cgastart(struct ifnet *ifp, u_long cmd, caddr_t data)
817 {
818 struct in6_llstartreq llsr;
819 int is64, error = 0;
820
821 VERIFY(ifp != NULL);
822
823 switch (cmd) {
824 case SIOCLL_CGASTART_32: /* struct in6_llstartreq_32 */
825 case SIOCLL_CGASTART_64: /* struct in6_llstartreq_64 */
826 is64 = (cmd == SIOCLL_CGASTART_64);
827 /*
828 * Convert user llstartreq to the kernel form, when appropriate.
829 * This allows the conversion between different data models
830 * to be centralized, so that it can be passed around to other
831 * routines that are expecting the kernel form.
832 */
833 in6_llstartreq_to_native(data, is64, &llsr);
834
835 /*
836 * NOTE: All the interface specific DLIL attachements
837 * should be done here. They are currently done in
838 * in6_ifattach_llstartreq() for the interfaces that
839 * need it.
840 */
841 error = in6_ifattach_llstartreq(ifp, &llsr);
842 if (error == 0)
843 in6_if_up_dad_start(ifp);
844 break;
845
846 default:
847 VERIFY(0);
848 /* NOTREACHED */
849 }
850
851 return (error);
852 }
853
854 /*
855 * Caller passes in the ioctl data pointer directly via "ifr", with the
856 * expectation that this routine always uses bcopy() or other byte-aligned
857 * memory accesses.
858 */
859 static __attribute__((noinline)) int
860 in6ctl_gifaddr(struct ifnet *ifp, struct in6_ifaddr *ia, u_long cmd,
861 struct in6_ifreq *ifr)
862 {
863 struct sockaddr_in6 addr;
864 int error = 0;
865
866 VERIFY(ifp != NULL);
867
868 if (ia == NULL)
869 return (EADDRNOTAVAIL);
870
871 switch (cmd) {
872 case SIOCGIFADDR_IN6: /* struct in6_ifreq */
873 IFA_LOCK(&ia->ia_ifa);
874 bcopy(&ia->ia_addr, &addr, sizeof (addr));
875 IFA_UNLOCK(&ia->ia_ifa);
876 if ((error = sa6_recoverscope(&addr, TRUE)) != 0)
877 break;
878 bcopy(&addr, &ifr->ifr_addr, sizeof (addr));
879 break;
880
881 case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */
882 if (!(ifp->if_flags & IFF_POINTOPOINT)) {
883 error = EINVAL;
884 break;
885 }
886 /*
887 * XXX: should we check if ifa_dstaddr is NULL and return
888 * an error?
889 */
890 IFA_LOCK(&ia->ia_ifa);
891 bcopy(&ia->ia_dstaddr, &addr, sizeof (addr));
892 IFA_UNLOCK(&ia->ia_ifa);
893 if ((error = sa6_recoverscope(&addr, TRUE)) != 0)
894 break;
895 bcopy(&addr, &ifr->ifr_dstaddr, sizeof (addr));
896 break;
897
898 default:
899 VERIFY(0);
900 /* NOTREACHED */
901 }
902
903 return (error);
904 }
905
906 /*
907 * Caller passes in the ioctl data pointer directly via "ifr", with the
908 * expectation that this routine always uses bcopy() or other byte-aligned
909 * memory accesses.
910 */
911 static __attribute__((noinline)) int
912 in6ctl_gifstat(struct ifnet *ifp, u_long cmd, struct in6_ifreq *ifr)
913 {
914 int error = 0, index;
915
916 VERIFY(ifp != NULL);
917 index = ifp->if_index;
918
919 switch (cmd) {
920 case SIOCGIFSTAT_IN6: /* struct in6_ifreq */
921 /* N.B.: if_inet6data is never freed once set. */
922 if (IN6_IFEXTRA(ifp) == NULL) {
923 /* return (EAFNOSUPPORT)? */
924 bzero(&ifr->ifr_ifru.ifru_stat,
925 sizeof (ifr->ifr_ifru.ifru_stat));
926 } else {
927 bcopy(&IN6_IFEXTRA(ifp)->in6_ifstat,
928 &ifr->ifr_ifru.ifru_stat,
929 sizeof (ifr->ifr_ifru.ifru_stat));
930 }
931 break;
932
933 case SIOCGIFSTAT_ICMP6: /* struct in6_ifreq */
934 /* N.B.: if_inet6data is never freed once set. */
935 if (IN6_IFEXTRA(ifp) == NULL) {
936 /* return (EAFNOSUPPORT)? */
937 bzero(&ifr->ifr_ifru.ifru_stat,
938 sizeof (ifr->ifr_ifru.ifru_icmp6stat));
939 } else {
940 bcopy(&IN6_IFEXTRA(ifp)->icmp6_ifstat,
941 &ifr->ifr_ifru.ifru_icmp6stat,
942 sizeof (ifr->ifr_ifru.ifru_icmp6stat));
943 }
944 break;
945
946 default:
947 VERIFY(0);
948 /* NOTREACHED */
949 }
950
951 return (error);
952 }
953
954 /*
955 * Caller passes in the ioctl data pointer directly via "ifr", with the
956 * expectation that this routine always uses bcopy() or other byte-aligned
957 * memory accesses.
958 */
959 static __attribute__((noinline)) int
960 in6ctl_alifetime(struct in6_ifaddr *ia, u_long cmd, struct in6_ifreq *ifr,
961 boolean_t p64)
962 {
963 uint64_t timenow = net_uptime();
964 struct in6_addrlifetime ia6_lt;
965 struct timeval caltime;
966 int error = 0;
967
968 if (ia == NULL)
969 return (EADDRNOTAVAIL);
970
971 switch (cmd) {
972 case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */
973 IFA_LOCK(&ia->ia_ifa);
974 /* retrieve time as calendar time (last arg is 1) */
975 in6ifa_getlifetime(ia, &ia6_lt, 1);
976 if (p64) {
977 struct in6_addrlifetime_64 lt;
978
979 bzero(&lt, sizeof (lt));
980 lt.ia6t_expire = ia6_lt.ia6t_expire;
981 lt.ia6t_preferred = ia6_lt.ia6t_preferred;
982 lt.ia6t_vltime = ia6_lt.ia6t_vltime;
983 lt.ia6t_pltime = ia6_lt.ia6t_pltime;
984 bcopy(&lt, &ifr->ifr_ifru.ifru_lifetime, sizeof (lt));
985 } else {
986 struct in6_addrlifetime_32 lt;
987
988 bzero(&lt, sizeof (lt));
989 lt.ia6t_expire = (uint32_t)ia6_lt.ia6t_expire;
990 lt.ia6t_preferred = (uint32_t)ia6_lt.ia6t_preferred;
991 lt.ia6t_vltime = (uint32_t)ia6_lt.ia6t_vltime;
992 lt.ia6t_pltime = (uint32_t)ia6_lt.ia6t_pltime;
993 bcopy(&lt, &ifr->ifr_ifru.ifru_lifetime, sizeof (lt));
994 }
995 IFA_UNLOCK(&ia->ia_ifa);
996 break;
997
998 case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */
999 getmicrotime(&caltime);
1000
1001 /* sanity for overflow - beware unsigned */
1002 if (p64) {
1003 struct in6_addrlifetime_64 lt;
1004
1005 bcopy(&ifr->ifr_ifru.ifru_lifetime, &lt, sizeof (lt));
1006 if (lt.ia6t_vltime != ND6_INFINITE_LIFETIME &&
1007 lt.ia6t_vltime + caltime.tv_sec < caltime.tv_sec) {
1008 error = EINVAL;
1009 break;
1010 }
1011 if (lt.ia6t_pltime != ND6_INFINITE_LIFETIME &&
1012 lt.ia6t_pltime + caltime.tv_sec < caltime.tv_sec) {
1013 error = EINVAL;
1014 break;
1015 }
1016 } else {
1017 struct in6_addrlifetime_32 lt;
1018
1019 bcopy(&ifr->ifr_ifru.ifru_lifetime, &lt, sizeof (lt));
1020 if (lt.ia6t_vltime != ND6_INFINITE_LIFETIME &&
1021 lt.ia6t_vltime + caltime.tv_sec < caltime.tv_sec) {
1022 error = EINVAL;
1023 break;
1024 }
1025 if (lt.ia6t_pltime != ND6_INFINITE_LIFETIME &&
1026 lt.ia6t_pltime + caltime.tv_sec < caltime.tv_sec) {
1027 error = EINVAL;
1028 break;
1029 }
1030 }
1031
1032 IFA_LOCK(&ia->ia_ifa);
1033 if (p64) {
1034 struct in6_addrlifetime_64 lt;
1035
1036 bcopy(&ifr->ifr_ifru.ifru_lifetime, &lt, sizeof (lt));
1037 ia6_lt.ia6t_expire = lt.ia6t_expire;
1038 ia6_lt.ia6t_preferred = lt.ia6t_preferred;
1039 ia6_lt.ia6t_vltime = lt.ia6t_vltime;
1040 ia6_lt.ia6t_pltime = lt.ia6t_pltime;
1041 } else {
1042 struct in6_addrlifetime_32 lt;
1043
1044 bcopy(&ifr->ifr_ifru.ifru_lifetime, &lt, sizeof (lt));
1045 ia6_lt.ia6t_expire = (uint32_t)lt.ia6t_expire;
1046 ia6_lt.ia6t_preferred = (uint32_t)lt.ia6t_preferred;
1047 ia6_lt.ia6t_vltime = lt.ia6t_vltime;
1048 ia6_lt.ia6t_pltime = lt.ia6t_pltime;
1049 }
1050 /* for sanity */
1051 if (ia6_lt.ia6t_vltime != ND6_INFINITE_LIFETIME)
1052 ia6_lt.ia6t_expire = timenow + ia6_lt.ia6t_vltime;
1053 else
1054 ia6_lt.ia6t_expire = 0;
1055
1056 if (ia6_lt.ia6t_pltime != ND6_INFINITE_LIFETIME)
1057 ia6_lt.ia6t_preferred = timenow + ia6_lt.ia6t_pltime;
1058 else
1059 ia6_lt.ia6t_preferred = 0;
1060
1061 in6ifa_setlifetime(ia, &ia6_lt);
1062 IFA_UNLOCK(&ia->ia_ifa);
1063 break;
1064
1065 default:
1066 VERIFY(0);
1067 /* NOTREACHED */
1068 }
1069
1070 return (error);
1071 }
1072
1073 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(void *)(ifa))
1074
1075 /*
1076 * Generic INET6 control operations (ioctl's).
1077 *
1078 * ifp is NULL if not an interface-specific ioctl.
1079 *
1080 * Most of the routines called to handle the ioctls would end up being
1081 * tail-call optimized, which unfortunately causes this routine to
1082 * consume too much stack space; this is the reason for the "noinline"
1083 * attribute used on those routines.
1084 *
1085 * If called directly from within the networking stack (as opposed to via
1086 * pru_control), the socket parameter may be NULL.
1087 */
1088 int
1089 in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp,
1090 struct proc *p)
1091 {
1092 struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data;
1093 struct in6_aliasreq sifra, *ifra = NULL;
1094 struct in6_ifaddr *ia = NULL;
1095 struct sockaddr_in6 sin6, *sa6 = NULL;
1096 boolean_t privileged = (proc_suser(p) == 0);
1097 boolean_t p64 = proc_is64bit(p);
1098 boolean_t so_unlocked = FALSE;
1099 int intval, error = 0;
1100
1101 /* In case it's NULL, make sure it came from the kernel */
1102 VERIFY(so != NULL || p == kernproc);
1103
1104 /*
1105 * ioctls which don't require ifp, may require socket.
1106 */
1107 switch (cmd) {
1108 case SIOCAADDRCTL_POLICY: /* struct in6_addrpolicy */
1109 case SIOCDADDRCTL_POLICY: /* struct in6_addrpolicy */
1110 if (!privileged)
1111 return (EPERM);
1112 return (in6_src_ioctl(cmd, data));
1113 /* NOTREACHED */
1114
1115 case SIOCDRADD_IN6_32: /* struct in6_defrouter_32 */
1116 case SIOCDRADD_IN6_64: /* struct in6_defrouter_64 */
1117 case SIOCDRDEL_IN6_32: /* struct in6_defrouter_32 */
1118 case SIOCDRDEL_IN6_64: /* struct in6_defrouter_64 */
1119 if (!privileged)
1120 return (EPERM);
1121 return (defrtrlist_ioctl(cmd, data));
1122 /* NOTREACHED */
1123
1124 case SIOCGASSOCIDS32: /* struct so_aidreq32 */
1125 case SIOCGASSOCIDS64: /* struct so_aidreq64 */
1126 return (in6ctl_associd(so, cmd, data));
1127 /* NOTREACHED */
1128
1129 case SIOCGCONNIDS32: /* struct so_cidreq32 */
1130 case SIOCGCONNIDS64: /* struct so_cidreq64 */
1131 return (in6ctl_connid(so, cmd, data));
1132 /* NOTREACHED */
1133
1134 case SIOCGCONNINFO32: /* struct so_cinforeq32 */
1135 case SIOCGCONNINFO64: /* struct so_cinforeq64 */
1136 return (in6ctl_conninfo(so, cmd, data));
1137 /* NOTREACHED */
1138 }
1139
1140 /*
1141 * The rest of ioctls require ifp; reject if we don't have one;
1142 * return ENXIO to be consistent with ifioctl().
1143 */
1144 if (ifp == NULL)
1145 return (ENXIO);
1146
1147 /*
1148 * ioctls which require ifp but not interface address.
1149 */
1150 switch (cmd) {
1151 case SIOCAUTOCONF_START: /* struct in6_ifreq */
1152 if (!privileged)
1153 return (EPERM);
1154 return (in6_autoconf(ifp, TRUE));
1155 /* NOTREACHED */
1156
1157 case SIOCAUTOCONF_STOP: /* struct in6_ifreq */
1158 if (!privileged)
1159 return (EPERM);
1160 return (in6_autoconf(ifp, FALSE));
1161 /* NOTREACHED */
1162
1163 case SIOCLL_START_32: /* struct in6_aliasreq_32 */
1164 case SIOCLL_START_64: /* struct in6_aliasreq_64 */
1165 if (!privileged)
1166 return (EPERM);
1167 return (in6ctl_llstart(ifp, cmd, data));
1168 /* NOTREACHED */
1169
1170 case SIOCLL_STOP: /* struct in6_ifreq */
1171 if (!privileged)
1172 return (EPERM);
1173 return (in6ctl_llstop(ifp));
1174 /* NOTREACHED */
1175
1176 case SIOCSETROUTERMODE_IN6: /* struct in6_ifreq */
1177 if (!privileged)
1178 return (EPERM);
1179
1180 bcopy(&((struct in6_ifreq *)(void *)data)->ifr_intval,
1181 &intval, sizeof (intval));
1182
1183 return (in6_setrouter(ifp, intval));
1184 /* NOTREACHED */
1185
1186 case SIOCPROTOATTACH_IN6_32: /* struct in6_aliasreq_32 */
1187 case SIOCPROTOATTACH_IN6_64: /* struct in6_aliasreq_64 */
1188 if (!privileged)
1189 return (EPERM);
1190 return (in6_domifattach(ifp));
1191 /* NOTREACHED */
1192
1193 case SIOCPROTODETACH_IN6: /* struct in6_ifreq */
1194 if (!privileged)
1195 return (EPERM);
1196
1197 /* Cleanup interface routes and addresses */
1198 in6_purgeif(ifp);
1199
1200 if ((error = proto_unplumb(PF_INET6, ifp)))
1201 log(LOG_ERR, "SIOCPROTODETACH_IN6: %s error=%d\n",
1202 if_name(ifp), error);
1203 return (error);
1204 /* NOTREACHED */
1205
1206 case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */
1207 case SIOCSPFXFLUSH_IN6: /* struct in6_ifreq */
1208 case SIOCSRTRFLUSH_IN6: /* struct in6_ifreq */
1209 case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */
1210 case SIOCSDEFIFACE_IN6_64: /* struct in6_ndifreq_64 */
1211 case SIOCSIFINFO_FLAGS: /* struct in6_ndireq */
1212 if (!privileged)
1213 return (EPERM);
1214 /* FALLTHRU */
1215 case OSIOCGIFINFO_IN6: /* struct in6_ondireq */
1216 case SIOCGIFINFO_IN6: /* struct in6_ondireq */
1217 case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */
1218 case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */
1219 case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */
1220 case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */
1221 case SIOCGNBRINFO_IN6_32: /* struct in6_nbrinfo_32 */
1222 case SIOCGNBRINFO_IN6_64: /* struct in6_nbrinfo_64 */
1223 case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */
1224 case SIOCGDEFIFACE_IN6_64: /* struct in6_ndifreq_64 */
1225 return (nd6_ioctl(cmd, data, ifp));
1226 /* NOTREACHED */
1227
1228 case SIOCSIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */
1229 case SIOCDIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */
1230 case SIOCAIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */
1231 case SIOCCIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */
1232 case SIOCSGIFPREFIX_IN6: /* struct in6_rrenumreq (deprecated) */
1233 case SIOCGIFPREFIX_IN6: /* struct in6_prefixreq (deprecated) */
1234 log(LOG_NOTICE,
1235 "prefix ioctls are now invalidated. "
1236 "please use ifconfig.\n");
1237 return (EOPNOTSUPP);
1238 /* NOTREACHED */
1239
1240 case SIOCSSCOPE6: /* struct in6_ifreq (deprecated) */
1241 case SIOCGSCOPE6: /* struct in6_ifreq (deprecated) */
1242 case SIOCGSCOPE6DEF: /* struct in6_ifreq (deprecated) */
1243 return (EOPNOTSUPP);
1244 /* NOTREACHED */
1245
1246 case SIOCLL_CGASTART_32: /* struct in6_llstartreq_32 */
1247 case SIOCLL_CGASTART_64: /* struct in6_llstartreq_64 */
1248 if (!privileged)
1249 return (EPERM);
1250 return (in6ctl_cgastart(ifp, cmd, data));
1251 /* NOTREACHED */
1252
1253 case SIOCGIFSTAT_IN6: /* struct in6_ifreq */
1254 case SIOCGIFSTAT_ICMP6: /* struct in6_ifreq */
1255 return (in6ctl_gifstat(ifp, cmd, ifr));
1256 /* NOTREACHED */
1257 }
1258
1259 /*
1260 * ioctls which require interface address; obtain sockaddr_in6.
1261 */
1262 switch (cmd) {
1263 case SIOCSIFADDR_IN6: /* struct in6_ifreq (deprecated) */
1264 case SIOCSIFDSTADDR_IN6: /* struct in6_ifreq (deprecated) */
1265 case SIOCSIFNETMASK_IN6: /* struct in6_ifreq (deprecated) */
1266 /*
1267 * Since IPv6 allows a node to assign multiple addresses
1268 * on a single interface, SIOCSIFxxx ioctls are deprecated.
1269 */
1270 /* we decided to obsolete this command (20000704) */
1271 return (EOPNOTSUPP);
1272 /* NOTREACHED */
1273
1274 case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */
1275 case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */
1276 if (!privileged)
1277 return (EPERM);
1278 /*
1279 * Convert user ifra to the kernel form, when appropriate.
1280 * This allows the conversion between different data models
1281 * to be centralized, so that it can be passed around to other
1282 * routines that are expecting the kernel form.
1283 */
1284 ifra = in6_aliasreq_to_native(data,
1285 (cmd == SIOCAIFADDR_IN6_64), &sifra);
1286 bcopy(&ifra->ifra_addr, &sin6, sizeof (sin6));
1287 sa6 = &sin6;
1288 break;
1289
1290 case SIOCDIFADDR_IN6: /* struct in6_ifreq */
1291 case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */
1292 if (!privileged)
1293 return (EPERM);
1294 /* FALLTHRU */
1295 case SIOCGIFADDR_IN6: /* struct in6_ifreq */
1296 case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */
1297 case SIOCGIFNETMASK_IN6: /* struct in6_ifreq */
1298 case SIOCGIFAFLAG_IN6: /* struct in6_ifreq */
1299 case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */
1300 bcopy(&ifr->ifr_addr, &sin6, sizeof (sin6));
1301 sa6 = &sin6;
1302 break;
1303 }
1304
1305 /*
1306 * Find address for this interface, if it exists.
1307 *
1308 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
1309 * only, and used the first interface address as the target of other
1310 * operations (without checking ifra_addr). This was because netinet
1311 * code/API assumed at most 1 interface address per interface.
1312 * Since IPv6 allows a node to assign multiple addresses
1313 * on a single interface, we almost always look and check the
1314 * presence of ifra_addr, and reject invalid ones here.
1315 * It also decreases duplicated code among SIOC*_IN6 operations.
1316 */
1317 VERIFY(ia == NULL);
1318 if (sa6 != NULL && sa6->sin6_family == AF_INET6) {
1319 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
1320 if (sa6->sin6_addr.s6_addr16[1] == 0) {
1321 /* link ID is not embedded by the user */
1322 sa6->sin6_addr.s6_addr16[1] =
1323 htons(ifp->if_index);
1324 } else if (sa6->sin6_addr.s6_addr16[1] !=
1325 htons(ifp->if_index)) {
1326 return (EINVAL); /* link ID contradicts */
1327 }
1328 if (sa6->sin6_scope_id) {
1329 if (sa6->sin6_scope_id !=
1330 (u_int32_t)ifp->if_index)
1331 return (EINVAL);
1332 sa6->sin6_scope_id = 0; /* XXX: good way? */
1333 }
1334 }
1335 /*
1336 * Any failures from this point on must take into account
1337 * a non-NULL "ia" with an outstanding reference count, and
1338 * therefore requires IFA_REMREF. Jump to "done" label
1339 * instead of calling return if "ia" is valid.
1340 */
1341 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
1342 }
1343
1344 /*
1345 * SIOCDIFADDR_IN6/SIOCAIFADDR_IN6 specific tests.
1346 */
1347 switch (cmd) {
1348 case SIOCDIFADDR_IN6: /* struct in6_ifreq */
1349 if (ia == NULL)
1350 return (EADDRNOTAVAIL);
1351 /* FALLTHROUGH */
1352 case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */
1353 case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */
1354 VERIFY(sa6 != NULL);
1355 /*
1356 * We always require users to specify a valid IPv6 address for
1357 * the corresponding operation. Use "sa6" instead of "ifra"
1358 * since SIOCDIFADDR_IN6 falls thru above.
1359 */
1360 if (sa6->sin6_family != AF_INET6 ||
1361 sa6->sin6_len != sizeof (struct sockaddr_in6)) {
1362 error = EAFNOSUPPORT;
1363 goto done;
1364 }
1365 break;
1366 }
1367
1368 /*
1369 * Unlock the socket since ifnet_ioctl() may be invoked by
1370 * one of the ioctl handlers below. Socket will be re-locked
1371 * prior to returning.
1372 */
1373 if (so != NULL) {
1374 socket_unlock(so, 0);
1375 so_unlocked = TRUE;
1376 }
1377
1378 /*
1379 * And finally process address-related ioctls.
1380 */
1381 switch (cmd) {
1382 case SIOCGIFADDR_IN6: /* struct in6_ifreq */
1383 /* This interface is basically deprecated. use SIOCGIFCONF. */
1384 /* FALLTHRU */
1385 case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */
1386 error = in6ctl_gifaddr(ifp, ia, cmd, ifr);
1387 break;
1388
1389 case SIOCGIFNETMASK_IN6: /* struct in6_ifreq */
1390 if (ia != NULL) {
1391 IFA_LOCK(&ia->ia_ifa);
1392 bcopy(&ia->ia_prefixmask, &ifr->ifr_addr,
1393 sizeof (struct sockaddr_in6));
1394 IFA_UNLOCK(&ia->ia_ifa);
1395 } else {
1396 error = EADDRNOTAVAIL;
1397 }
1398 break;
1399
1400 case SIOCGIFAFLAG_IN6: /* struct in6_ifreq */
1401 if (ia != NULL) {
1402 IFA_LOCK(&ia->ia_ifa);
1403 bcopy(&ia->ia6_flags, &ifr->ifr_ifru.ifru_flags6,
1404 sizeof (ifr->ifr_ifru.ifru_flags6));
1405 IFA_UNLOCK(&ia->ia_ifa);
1406 } else {
1407 error = EADDRNOTAVAIL;
1408 }
1409 break;
1410
1411 case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */
1412 case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */
1413 error = in6ctl_alifetime(ia, cmd, ifr, p64);
1414 break;
1415
1416 case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */
1417 case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */
1418 error = in6ctl_aifaddr(ifp, ifra);
1419 break;
1420
1421 case SIOCDIFADDR_IN6:
1422 in6ctl_difaddr(ifp, ia);
1423 break;
1424
1425 default:
1426 error = ifnet_ioctl(ifp, PF_INET6, cmd, data);
1427 break;
1428 }
1429
1430 done:
1431 if (ia != NULL)
1432 IFA_REMREF(&ia->ia_ifa);
1433 if (so_unlocked)
1434 socket_lock(so, 0);
1435
1436 return (error);
1437 }
1438
1439 static __attribute__((noinline)) int
1440 in6ctl_aifaddr(struct ifnet *ifp, struct in6_aliasreq *ifra)
1441 {
1442 int i, error, addtmp, plen;
1443 struct nd_prefix pr0, *pr;
1444 struct in6_ifaddr *ia;
1445
1446 VERIFY(ifp != NULL && ifra != NULL);
1447 ia = NULL;
1448
1449 /* Attempt to attach the protocol, in case it isn't attached */
1450 error = in6_domifattach(ifp);
1451 if (error == 0) {
1452 /* PF_INET6 wasn't previously attached */
1453 error = in6_ifattach_aliasreq(ifp, NULL, NULL);
1454 if (error != 0)
1455 goto done;
1456
1457 in6_if_up_dad_start(ifp);
1458 } else if (error != EEXIST) {
1459 goto done;
1460 }
1461
1462 /*
1463 * First, make or update the interface address structure, and link it
1464 * to the list.
1465 */
1466 error = in6_update_ifa(ifp, ifra, 0, &ia);
1467 if (error != 0)
1468 goto done;
1469 VERIFY(ia != NULL);
1470
1471 /* Now, make the prefix on-link on the interface. */
1472 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, NULL);
1473 if (plen == 128)
1474 goto done;
1475
1476 /*
1477 * NOTE: We'd rather create the prefix before the address, but we need
1478 * at least one address to install the corresponding interface route,
1479 * so we configure the address first.
1480 */
1481
1482 /*
1483 * Convert mask to prefix length (prefixmask has already been validated
1484 * in in6_update_ifa().
1485 */
1486 bzero(&pr0, sizeof (pr0));
1487 pr0.ndpr_plen = plen;
1488 pr0.ndpr_ifp = ifp;
1489 pr0.ndpr_prefix = ifra->ifra_addr;
1490 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
1491
1492 /* apply the mask for safety. */
1493 for (i = 0; i < 4; i++) {
1494 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
1495 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
1496 }
1497
1498 /*
1499 * Since we don't have an API to set prefix (not address) lifetimes, we
1500 * just use the same lifetimes as addresses. The (temporarily)
1501 * installed lifetimes can be overridden by later advertised RAs (when
1502 * accept_rtadv is non 0), which is an intended behavior.
1503 */
1504 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
1505 pr0.ndpr_raf_auto = !!(ifra->ifra_flags & IN6_IFF_AUTOCONF);
1506 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
1507 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
1508 pr0.ndpr_stateflags |= NDPRF_STATIC;
1509 lck_mtx_init(&pr0.ndpr_lock, ifa_mtx_grp, ifa_mtx_attr);
1510
1511 /* add the prefix if there's one. */
1512 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
1513 /*
1514 * nd6_prelist_add will install the corresponding interface
1515 * route.
1516 */
1517 error = nd6_prelist_add(&pr0, NULL, &pr, FALSE);
1518 if (error != 0)
1519 goto done;
1520
1521 if (pr == NULL) {
1522 log(LOG_ERR, "%s: nd6_prelist_add okay, but"
1523 " no prefix.\n", __func__);
1524 error = EINVAL;
1525 goto done;
1526 }
1527 }
1528
1529 IFA_LOCK(&ia->ia_ifa);
1530
1531 /* if this is a new autoconfed addr */
1532 addtmp = FALSE;
1533 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && ia->ia6_ndpr == NULL) {
1534 NDPR_LOCK(pr);
1535 ++pr->ndpr_addrcnt;
1536 VERIFY(pr->ndpr_addrcnt != 0);
1537 ia->ia6_ndpr = pr;
1538 NDPR_ADDREF_LOCKED(pr); /* for addr reference */
1539
1540 /*
1541 * If this is the first autoconf address from the prefix,
1542 * create a temporary address as well (when specified).
1543 */
1544 addtmp = (ip6_use_tempaddr && pr->ndpr_addrcnt == 1);
1545 NDPR_UNLOCK(pr);
1546 }
1547
1548 IFA_UNLOCK(&ia->ia_ifa);
1549
1550 if (addtmp) {
1551 int e;
1552 e = in6_tmpifadd(ia, 1);
1553 if (e != 0)
1554 log(LOG_NOTICE, "%s: failed to create a"
1555 " temporary address, error=%d\n",
1556 __func__, e);
1557 }
1558
1559 /*
1560 * This might affect the status of autoconfigured addresses, that is,
1561 * this address might make other addresses detached.
1562 */
1563 lck_mtx_lock(nd6_mutex);
1564 pfxlist_onlink_check();
1565 lck_mtx_unlock(nd6_mutex);
1566
1567 /* Drop use count held above during lookup/add */
1568 NDPR_REMREF(pr);
1569
1570 done:
1571 if (ia != NULL)
1572 IFA_REMREF(&ia->ia_ifa);
1573 return (error);
1574 }
1575
1576 static __attribute__((noinline)) void
1577 in6ctl_difaddr(struct ifnet *ifp, struct in6_ifaddr *ia)
1578 {
1579 int i = 0;
1580 struct nd_prefix pr0, *pr;
1581
1582 VERIFY(ifp != NULL && ia != NULL);
1583
1584 /*
1585 * If the address being deleted is the only one that owns
1586 * the corresponding prefix, expire the prefix as well.
1587 * XXX: theoretically, we don't have to worry about such
1588 * relationship, since we separate the address management
1589 * and the prefix management. We do this, however, to provide
1590 * as much backward compatibility as possible in terms of
1591 * the ioctl operation.
1592 * Note that in6_purgeaddr() will decrement ndpr_addrcnt.
1593 */
1594 IFA_LOCK(&ia->ia_ifa);
1595 bzero(&pr0, sizeof (pr0));
1596 pr0.ndpr_ifp = ifp;
1597 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1598 if (pr0.ndpr_plen == 128) {
1599 IFA_UNLOCK(&ia->ia_ifa);
1600 goto purgeaddr;
1601 }
1602 pr0.ndpr_prefix = ia->ia_addr;
1603 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
1604 for (i = 0; i < 4; i++) {
1605 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
1606 ia->ia_prefixmask.sin6_addr.s6_addr32[i];
1607 }
1608 IFA_UNLOCK(&ia->ia_ifa);
1609 /*
1610 * The logic of the following condition is a bit complicated.
1611 * We expire the prefix when
1612 * 1. the address obeys autoconfiguration and it is the
1613 * only owner of the associated prefix, or
1614 * 2. the address does not obey autoconf and there is no
1615 * other owner of the prefix.
1616 */
1617 if ((pr = nd6_prefix_lookup(&pr0)) != NULL) {
1618 IFA_LOCK(&ia->ia_ifa);
1619 NDPR_LOCK(pr);
1620 if (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
1621 pr->ndpr_addrcnt == 1) ||
1622 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 &&
1623 pr->ndpr_addrcnt == 0)) {
1624 /* XXX: just for expiration */
1625 pr->ndpr_expire = 1;
1626 }
1627 NDPR_UNLOCK(pr);
1628 IFA_UNLOCK(&ia->ia_ifa);
1629
1630 /* Drop use count held above during lookup */
1631 NDPR_REMREF(pr);
1632 }
1633
1634 purgeaddr:
1635 in6_purgeaddr(&ia->ia_ifa);
1636 }
1637
1638 static __attribute__((noinline)) int
1639 in6_autoconf(struct ifnet *ifp, int enable)
1640 {
1641 int error = 0;
1642
1643 VERIFY(ifp != NULL);
1644
1645 if (ifp->if_flags & IFF_LOOPBACK)
1646 return (EINVAL);
1647
1648 if (enable) {
1649 /*
1650 * An interface in IPv6 router mode implies that it
1651 * is either configured with a static IP address or
1652 * autoconfigured via a locally-generated RA. Prevent
1653 * SIOCAUTOCONF_START from being set in that mode.
1654 */
1655 ifnet_lock_exclusive(ifp);
1656 if (ifp->if_eflags & IFEF_IPV6_ROUTER) {
1657 ifp->if_eflags &= ~IFEF_ACCEPT_RTADV;
1658 error = EBUSY;
1659 } else {
1660 ifp->if_eflags |= IFEF_ACCEPT_RTADV;
1661 }
1662 ifnet_lock_done(ifp);
1663 } else {
1664 struct in6_ifaddr *ia = NULL;
1665
1666 ifnet_lock_exclusive(ifp);
1667 ifp->if_eflags &= ~IFEF_ACCEPT_RTADV;
1668 ifnet_lock_done(ifp);
1669
1670 /* Remove autoconfigured address from interface */
1671 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
1672 ia = in6_ifaddrs;
1673 while (ia != NULL) {
1674 if (ia->ia_ifa.ifa_ifp != ifp) {
1675 ia = ia->ia_next;
1676 continue;
1677 }
1678 IFA_LOCK(&ia->ia_ifa);
1679 if (ia->ia6_flags & IN6_IFF_AUTOCONF) {
1680 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for us */
1681 IFA_UNLOCK(&ia->ia_ifa);
1682 lck_rw_done(&in6_ifaddr_rwlock);
1683 in6_purgeaddr(&ia->ia_ifa);
1684 IFA_REMREF(&ia->ia_ifa); /* for us */
1685 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
1686 /*
1687 * Purging the address caused in6_ifaddr_rwlock
1688 * to be dropped and reacquired;
1689 * therefore search again from the beginning
1690 * of in6_ifaddrs list.
1691 */
1692 ia = in6_ifaddrs;
1693 continue;
1694 }
1695 IFA_UNLOCK(&ia->ia_ifa);
1696 ia = ia->ia_next;
1697 }
1698 lck_rw_done(&in6_ifaddr_rwlock);
1699 }
1700 return (error);
1701 }
1702
1703 /*
1704 * Handle SIOCSETROUTERMODE_IN6 to set or clear the IPv6 router mode flag on
1705 * the interface. Entering or exiting this mode will result in the removal of
1706 * autoconfigured IPv6 addresses on the interface.
1707 */
1708 static __attribute__((noinline)) int
1709 in6_setrouter(struct ifnet *ifp, int enable)
1710 {
1711 VERIFY(ifp != NULL);
1712
1713 if (ifp->if_flags & IFF_LOOPBACK)
1714 return (ENODEV);
1715
1716 if (enable) {
1717 struct nd_ifinfo *ndi;
1718
1719 lck_rw_lock_shared(nd_if_rwlock);
1720 ndi = ND_IFINFO(ifp);
1721 if (ndi != NULL && ndi->initialized) {
1722 lck_mtx_lock(&ndi->lock);
1723 if (ndi->flags & ND6_IFF_PROXY_PREFIXES) {
1724 /* No proxy if we are an advertising router */
1725 ndi->flags &= ~ND6_IFF_PROXY_PREFIXES;
1726 lck_mtx_unlock(&ndi->lock);
1727 lck_rw_done(nd_if_rwlock);
1728 (void) nd6_if_prproxy(ifp, FALSE);
1729 } else {
1730 lck_mtx_unlock(&ndi->lock);
1731 lck_rw_done(nd_if_rwlock);
1732 }
1733 } else {
1734 lck_rw_done(nd_if_rwlock);
1735 }
1736 }
1737
1738 ifnet_lock_exclusive(ifp);
1739 if (enable) {
1740 ifp->if_eflags |= IFEF_IPV6_ROUTER;
1741 } else {
1742 ifp->if_eflags &= ~IFEF_IPV6_ROUTER;
1743 }
1744 ifnet_lock_done(ifp);
1745
1746 lck_mtx_lock(nd6_mutex);
1747 defrouter_select(ifp);
1748 lck_mtx_unlock(nd6_mutex);
1749
1750 if_allmulti(ifp, enable);
1751
1752 return (in6_autoconf(ifp, FALSE));
1753 }
1754
1755 static int
1756 in6_to_kamescope(struct sockaddr_in6 *sin6, struct ifnet *ifp)
1757 {
1758 struct sockaddr_in6 tmp;
1759 int error, id;
1760
1761 VERIFY(sin6 != NULL);
1762 tmp = *sin6;
1763
1764 error = in6_recoverscope(&tmp, &sin6->sin6_addr, ifp);
1765 if (error != 0)
1766 return (error);
1767
1768 id = in6_addr2scopeid(ifp, &tmp.sin6_addr);
1769 if (tmp.sin6_scope_id == 0)
1770 tmp.sin6_scope_id = id;
1771 else if (tmp.sin6_scope_id != id)
1772 return (EINVAL); /* scope ID mismatch. */
1773
1774 error = in6_embedscope(&tmp.sin6_addr, &tmp, NULL, NULL, NULL);
1775 if (error != 0)
1776 return (error);
1777
1778 tmp.sin6_scope_id = 0;
1779 *sin6 = tmp;
1780 return (0);
1781 }
1782
1783 static int
1784 in6_ifaupdate_aux(struct in6_ifaddr *ia, struct ifnet *ifp, int ifaupflags)
1785 {
1786 struct sockaddr_in6 mltaddr, mltmask;
1787 struct in6_addr llsol;
1788 struct ifaddr *ifa;
1789 struct in6_multi *in6m_sol;
1790 struct in6_multi_mship *imm;
1791 struct rtentry *rt;
1792 int delay, error;
1793
1794 VERIFY(ifp != NULL && ia != NULL);
1795 ifa = &ia->ia_ifa;
1796 in6m_sol = NULL;
1797
1798 nd6log2((LOG_DEBUG, "%s - %s ifp %s ia6_flags 0x%x ifaupflags 0x%x\n",
1799 __func__,
1800 ip6_sprintf(&ia->ia_addr.sin6_addr),
1801 if_name(ia->ia_ifp),
1802 ia->ia6_flags,
1803 ifaupflags));
1804
1805 /*
1806 * Mark the address as tentative before joining multicast addresses,
1807 * so that corresponding MLD responses would not have a tentative
1808 * source address.
1809 */
1810 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */
1811 if (in6if_do_dad(ifp))
1812 in6_ifaddr_set_dadprogress(ia);
1813
1814 /* Join necessary multicast groups */
1815 if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1816
1817 /* join solicited multicast addr for new host id */
1818 bzero(&llsol, sizeof (struct in6_addr));
1819 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1820 llsol.s6_addr32[1] = 0;
1821 llsol.s6_addr32[2] = htonl(1);
1822 llsol.s6_addr32[3] = ia->ia_addr.sin6_addr.s6_addr32[3];
1823 llsol.s6_addr8[12] = 0xff;
1824 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
1825 /* XXX: should not happen */
1826 log(LOG_ERR, "%s: in6_setscope failed\n", __func__);
1827 goto unwind;
1828 }
1829 delay = 0;
1830 if ((ifaupflags & IN6_IFAUPDATE_DADDELAY)) {
1831 /*
1832 * We need a random delay for DAD on the address
1833 * being configured. It also means delaying
1834 * transmission of the corresponding MLD report to
1835 * avoid report collision. [RFC 4862]
1836 */
1837 delay = random() % MAX_RTR_SOLICITATION_DELAY;
1838 }
1839 imm = in6_joingroup(ifp, &llsol, &error, delay);
1840 if (imm == NULL) {
1841 nd6log((LOG_WARNING,
1842 "%s: addmulti failed for %s on %s (errno=%d)\n",
1843 __func__, ip6_sprintf(&llsol), if_name(ifp),
1844 error));
1845 VERIFY(error != 0);
1846 goto unwind;
1847 }
1848 in6m_sol = imm->i6mm_maddr;
1849 /* take a refcount for this routine */
1850 IN6M_ADDREF(in6m_sol);
1851
1852 IFA_LOCK_SPIN(ifa);
1853 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1854 IFA_UNLOCK(ifa);
1855
1856 bzero(&mltmask, sizeof (mltmask));
1857 mltmask.sin6_len = sizeof (struct sockaddr_in6);
1858 mltmask.sin6_family = AF_INET6;
1859 mltmask.sin6_addr = in6mask32;
1860 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */
1861
1862 /*
1863 * join link-local all-nodes address
1864 */
1865 bzero(&mltaddr, sizeof (mltaddr));
1866 mltaddr.sin6_len = sizeof (struct sockaddr_in6);
1867 mltaddr.sin6_family = AF_INET6;
1868 mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1869 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
1870 goto unwind; /* XXX: should not fail */
1871
1872 /*
1873 * XXX: do we really need this automatic routes?
1874 * We should probably reconsider this stuff. Most applications
1875 * actually do not need the routes, since they usually specify
1876 * the outgoing interface.
1877 */
1878 rt = rtalloc1_scoped((struct sockaddr *)&mltaddr, 0, 0UL,
1879 ia->ia_ifp->if_index);
1880 if (rt) {
1881 if (memcmp(&mltaddr.sin6_addr, &((struct sockaddr_in6 *)
1882 (void *)rt_key(rt))->sin6_addr, MLTMASK_LEN)) {
1883 rtfree(rt);
1884 rt = NULL;
1885 }
1886 }
1887 if (!rt) {
1888 error = rtrequest_scoped(RTM_ADD,
1889 (struct sockaddr *)&mltaddr,
1890 (struct sockaddr *)&ia->ia_addr,
1891 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1892 NULL, ia->ia_ifp->if_index);
1893 if (error)
1894 goto unwind;
1895 } else {
1896 rtfree(rt);
1897 }
1898
1899 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1900 if (!imm) {
1901 nd6log((LOG_WARNING,
1902 "%s: addmulti failed for %s on %s (errno=%d)\n",
1903 __func__, ip6_sprintf(&mltaddr.sin6_addr),
1904 if_name(ifp), error));
1905 VERIFY(error != 0);
1906 goto unwind;
1907 }
1908 IFA_LOCK_SPIN(ifa);
1909 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1910 IFA_UNLOCK(ifa);
1911
1912 /*
1913 * join node information group address
1914 */
1915 #define hostnamelen strlen(hostname)
1916 delay = 0;
1917 if ((ifaupflags & IN6_IFAUPDATE_DADDELAY)) {
1918 /*
1919 * The spec doesn't say anything about delay for this
1920 * group, but the same logic should apply.
1921 */
1922 delay = random() % MAX_RTR_SOLICITATION_DELAY;
1923 }
1924 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1925 == 0) {
1926 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
1927 delay); /* XXX jinmei */
1928 if (!imm) {
1929 nd6log((LOG_WARNING,
1930 "%s: addmulti failed for %s on %s "
1931 "(errno=%d)\n",
1932 __func__, ip6_sprintf(&mltaddr.sin6_addr),
1933 if_name(ifp), error));
1934 /* XXX not very fatal, go on... */
1935 error = 0;
1936 } else {
1937 IFA_LOCK_SPIN(ifa);
1938 LIST_INSERT_HEAD(&ia->ia6_memberships,
1939 imm, i6mm_chain);
1940 IFA_UNLOCK(ifa);
1941 }
1942 }
1943 #undef hostnamelen
1944
1945 /*
1946 * join interface-local all-nodes address.
1947 * (ff01::1%ifN, and ff01::%ifN/32)
1948 */
1949 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1950 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
1951 goto unwind; /* XXX: should not fail */
1952 /* XXX: again, do we really need the route? */
1953 rt = rtalloc1_scoped((struct sockaddr *)&mltaddr, 0, 0UL,
1954 ia->ia_ifp->if_index);
1955 if (rt) {
1956 if (memcmp(&mltaddr.sin6_addr, &((struct sockaddr_in6 *)
1957 (void *)rt_key(rt))->sin6_addr, MLTMASK_LEN)) {
1958 rtfree(rt);
1959 rt = NULL;
1960 }
1961 }
1962 if (!rt) {
1963 error = rtrequest_scoped(RTM_ADD,
1964 (struct sockaddr *)&mltaddr,
1965 (struct sockaddr *)&ia->ia_addr,
1966 (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1967 NULL, ia->ia_ifp->if_index);
1968 if (error)
1969 goto unwind;
1970 } else
1971 rtfree(rt);
1972
1973 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1974 if (!imm) {
1975 nd6log((LOG_WARNING,
1976 "%s: addmulti failed for %s on %s (errno=%d)\n",
1977 __func__, ip6_sprintf(&mltaddr.sin6_addr),
1978 if_name(ifp), error));
1979 VERIFY(error != 0);
1980 goto unwind;
1981 }
1982 IFA_LOCK(ifa);
1983 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1984 IFA_UNLOCK(ifa);
1985 }
1986 #undef MLTMASK_LEN
1987
1988 /*
1989 * Make sure to initialize ND6 information. this is to workaround
1990 * issues with interfaces with IPv6 addresses, which have never brought
1991 * up. We are assuming that it is safe to nd6_ifattach multiple times.
1992 * NOTE: this is how stf0 gets initialized
1993 */
1994 if ((error = nd6_ifattach(ifp)) != 0)
1995 goto unwind;
1996
1997 /* Ensure nd6_service() is scheduled as soon as it's convenient */
1998 ++nd6_sched_timeout_want;
1999
2000 /*
2001 * Perform DAD, if needed.
2002 * XXX It may be of use, if we can administratively
2003 * disable DAD.
2004 */
2005 IFA_LOCK_SPIN(ifa);
2006 if (in6if_do_dad(ifp) && ((ifa->ifa_flags & IN6_IFF_NODAD) == 0) &&
2007 (ia->ia6_flags & IN6_IFF_DADPROGRESS)) {
2008 int mindelay, maxdelay;
2009 int *delayptr, delayval;
2010
2011 IFA_UNLOCK(ifa);
2012 delayptr = NULL;
2013 /*
2014 * Avoid the DAD delay if the caller wants us to skip it.
2015 * This is not compliant with RFC 2461, but it's only being
2016 * used for signalling and not for actual DAD.
2017 */
2018 if ((ifaupflags & IN6_IFAUPDATE_DADDELAY) &&
2019 !(ia->ia6_flags & IN6_IFF_SWIFTDAD)) {
2020 /*
2021 * We need to impose a delay before sending an NS
2022 * for DAD. Check if we also needed a delay for the
2023 * corresponding MLD message. If we did, the delay
2024 * should be larger than the MLD delay (this could be
2025 * relaxed a bit, but this simple logic is at least
2026 * safe).
2027 */
2028 mindelay = 0;
2029 if (in6m_sol != NULL) {
2030 IN6M_LOCK(in6m_sol);
2031 if (in6m_sol->in6m_state ==
2032 MLD_REPORTING_MEMBER)
2033 mindelay = in6m_sol->in6m_timer;
2034 IN6M_UNLOCK(in6m_sol);
2035 }
2036 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
2037 if (maxdelay - mindelay == 0)
2038 delayval = 0;
2039 else {
2040 delayval =
2041 (random() % (maxdelay - mindelay)) +
2042 mindelay;
2043 }
2044 delayptr = &delayval;
2045 }
2046
2047 nd6_dad_start((struct ifaddr *)ia, delayptr);
2048 } else {
2049 IFA_UNLOCK(ifa);
2050 }
2051
2052 goto done;
2053
2054 unwind:
2055 VERIFY(error != 0);
2056 in6_purgeaddr(&ia->ia_ifa);
2057
2058 done:
2059 /* release reference held for this routine */
2060 if (in6m_sol != NULL)
2061 IN6M_REMREF(in6m_sol);
2062 return (error);
2063 }
2064
2065 /*
2066 * Request an IPv6 interface address. If the address is new, then it will be
2067 * constructed and appended to the interface address chains. The interface
2068 * address structure is optionally returned with a reference for the caller.
2069 */
2070 int
2071 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int ifaupflags,
2072 struct in6_ifaddr **iar)
2073 {
2074 struct in6_addrlifetime ia6_lt;
2075 struct in6_ifaddr *ia;
2076 struct ifaddr *ifa;
2077 struct ifaddr *xifa;
2078 struct in6_addrlifetime *lt;
2079 uint64_t timenow;
2080 int plen, error;
2081
2082 /* Sanity check parameters and initialize locals */
2083 VERIFY(ifp != NULL && ifra != NULL && iar != NULL);
2084 ia = NULL;
2085 ifa = NULL;
2086 error = 0;
2087
2088 /*
2089 * We always require users to specify a valid IPv6 address for
2090 * the corresponding operation.
2091 */
2092 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
2093 ifra->ifra_addr.sin6_len != sizeof (struct sockaddr_in6)) {
2094 error = EAFNOSUPPORT;
2095 goto unwind;
2096 }
2097
2098 /* Validate ifra_prefixmask.sin6_len is properly bounded. */
2099 if (ifra->ifra_prefixmask.sin6_len == 0 ||
2100 ifra->ifra_prefixmask.sin6_len > sizeof (struct sockaddr_in6)) {
2101 error = EINVAL;
2102 goto unwind;
2103 }
2104
2105 /* Validate prefix length extracted from ifra_prefixmask structure. */
2106 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
2107 (u_char *)&ifra->ifra_prefixmask + ifra->ifra_prefixmask.sin6_len);
2108 if (plen <= 0) {
2109 error = EINVAL;
2110 goto unwind;
2111 }
2112
2113 /* Validate lifetimes */
2114 lt = &ifra->ifra_lifetime;
2115 if (lt->ia6t_pltime > lt->ia6t_vltime) {
2116 log(LOG_INFO,
2117 "%s: pltime 0x%x > vltime 0x%x for %s\n", __func__,
2118 lt->ia6t_pltime, lt->ia6t_vltime,
2119 ip6_sprintf(&ifra->ifra_addr.sin6_addr));
2120 error = EINVAL;
2121 goto unwind;
2122 }
2123 if (lt->ia6t_vltime == 0) {
2124 /*
2125 * the following log might be noisy, but this is a typical
2126 * configuration mistake or a tool's bug.
2127 */
2128 log(LOG_INFO, "%s: valid lifetime is 0 for %s\n", __func__,
2129 ip6_sprintf(&ifra->ifra_addr.sin6_addr));
2130 }
2131
2132 /*
2133 * Before we lock the ifnet structure, we first check to see if the
2134 * address already exists. If so, then we don't allocate and link a
2135 * new one here.
2136 */
2137 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
2138 if (ia != NULL)
2139 ifa = &ia->ia_ifa;
2140
2141 /*
2142 * Validate destination address on interface types that require it.
2143 */
2144 if ((ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT)) != 0) {
2145 switch (ifra->ifra_dstaddr.sin6_family) {
2146 case AF_INET6:
2147 if (plen != 128) {
2148 /* noisy message for diagnostic purposes */
2149 log(LOG_INFO,
2150 "%s: prefix length < 128 with"
2151 " explicit dstaddr.\n", __func__);
2152 error = EINVAL;
2153 goto unwind;
2154 }
2155 break;
2156
2157 case AF_UNSPEC:
2158 break;
2159
2160 default:
2161 error = EAFNOSUPPORT;
2162 goto unwind;
2163 }
2164 } else if (ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) {
2165 log(LOG_INFO,
2166 "%s: dstaddr valid only on p2p and loopback interfaces.\n",
2167 __func__);
2168 error = EINVAL;
2169 goto unwind;
2170 }
2171
2172 timenow = net_uptime();
2173
2174 if (ia == NULL) {
2175 int how;
2176
2177 /* Is this the first new IPv6 address for the interface? */
2178 ifaupflags |= IN6_IFAUPDATE_NEWADDR;
2179
2180 /* Allocate memory for IPv6 interface address structure. */
2181 how = !(ifaupflags & IN6_IFAUPDATE_NOWAIT) ? M_WAITOK : 0;
2182 ia = in6_ifaddr_alloc(how);
2183 if (ia == NULL) {
2184 error = ENOBUFS;
2185 goto unwind;
2186 }
2187
2188 ifa = &ia->ia_ifa;
2189
2190 /*
2191 * Initialize interface address structure.
2192 *
2193 * Note well: none of these sockaddr_in6 structures contain a
2194 * valid sin6_port, sin6_flowinfo or even a sin6_scope_id field.
2195 * We still embed link-local scope identifiers at the end of an
2196 * arbitrary fe80::/32 prefix, for historical reasons. Also, the
2197 * ifa_dstaddr field is always non-NULL on point-to-point and
2198 * loopback interfaces, and conventionally points to a socket
2199 * address of AF_UNSPEC family when there is no destination.
2200 *
2201 * Please enjoy the dancing sea turtle.
2202 */
2203 IFA_ADDREF(ifa); /* for this and optionally for caller */
2204 ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr;
2205 if (ifra->ifra_dstaddr.sin6_family == AF_INET6 ||
2206 (ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0)
2207 ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr;
2208 ifa->ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask;
2209 ifa->ifa_ifp = ifp;
2210 ifa->ifa_metric = ifp->if_metric;
2211 ifa->ifa_rtrequest = nd6_rtrequest;
2212
2213 LIST_INIT(&ia->ia6_memberships);
2214 ia->ia_addr.sin6_family = AF_INET6;
2215 ia->ia_addr.sin6_len = sizeof (ia->ia_addr);
2216 ia->ia_addr.sin6_addr = ifra->ifra_addr.sin6_addr;
2217 ia->ia_prefixmask.sin6_family = AF_INET6;
2218 ia->ia_prefixmask.sin6_len = sizeof (ia->ia_prefixmask);
2219 ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr;
2220 error = in6_to_kamescope(&ia->ia_addr, ifp);
2221 if (error != 0)
2222 goto unwind;
2223 if (ifa->ifa_dstaddr != NULL) {
2224 ia->ia_dstaddr = ifra->ifra_dstaddr;
2225 error = in6_to_kamescope(&ia->ia_dstaddr, ifp);
2226 if (error != 0)
2227 goto unwind;
2228 }
2229
2230 /* Append to address chains */
2231 ifnet_lock_exclusive(ifp);
2232 ifaupflags |= IN6_IFAUPDATE_1STADDR;
2233 TAILQ_FOREACH(xifa, &ifp->if_addrlist, ifa_list) {
2234 IFA_LOCK_SPIN(xifa);
2235 if (xifa->ifa_addr->sa_family != AF_INET6) {
2236 IFA_UNLOCK(xifa);
2237 ifaupflags &= ~IN6_IFAUPDATE_1STADDR;
2238 break;
2239 }
2240 IFA_UNLOCK(xifa);
2241 }
2242
2243 IFA_LOCK_SPIN(ifa);
2244 if_attach_ifa(ifp, ifa); /* holds reference for ifnet link */
2245 IFA_UNLOCK(ifa);
2246 ifnet_lock_done(ifp);
2247
2248 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
2249 if (in6_ifaddrs != NULL) {
2250 struct in6_ifaddr *iac;
2251 for (iac = in6_ifaddrs; iac->ia_next != NULL;
2252 iac = iac->ia_next)
2253 continue;
2254 iac->ia_next = ia;
2255 } else {
2256 in6_ifaddrs = ia;
2257 }
2258 IFA_ADDREF(ifa); /* hold for in6_ifaddrs link */
2259 lck_rw_done(&in6_ifaddr_rwlock);
2260 } else {
2261 ifa = &ia->ia_ifa;
2262 ifaupflags &= ~(IN6_IFAUPDATE_NEWADDR|IN6_IFAUPDATE_1STADDR);
2263 }
2264
2265 VERIFY(ia != NULL && ifa == &ia->ia_ifa);
2266 IFA_LOCK(ifa);
2267
2268 /*
2269 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
2270 * to see if the address is deprecated or invalidated, but initialize
2271 * these members for applications.
2272 */
2273 ia->ia6_updatetime = ia->ia6_createtime = timenow;
2274 ia6_lt = *lt;
2275 if (ia6_lt.ia6t_vltime != ND6_INFINITE_LIFETIME)
2276 ia6_lt.ia6t_expire = timenow + ia6_lt.ia6t_vltime;
2277 else
2278 ia6_lt.ia6t_expire = 0;
2279 if (ia6_lt.ia6t_pltime != ND6_INFINITE_LIFETIME)
2280 ia6_lt.ia6t_preferred = timenow + ia6_lt.ia6t_pltime;
2281 else
2282 ia6_lt.ia6t_preferred = 0;
2283 in6ifa_setlifetime(ia, &ia6_lt);
2284
2285 /*
2286 * Backward compatibility - if IN6_IFF_DEPRECATED is set from the
2287 * userland, make it deprecated.
2288 */
2289 if ((ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) {
2290 ia->ia6_lifetime.ia6ti_pltime = 0;
2291 ia->ia6_lifetime.ia6ti_preferred = timenow;
2292 }
2293
2294 /*
2295 * Do not delay sending neighbor solicitations when using optimistic
2296 * duplicate address detection, c.f. RFC 4429.
2297 */
2298 if ((ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0)
2299 ifaupflags |= IN6_IFAUPDATE_DADDELAY;
2300
2301 /*
2302 * Update flag or prefix length
2303 */
2304 ia->ia_plen = plen;
2305 ia->ia6_flags = ifra->ifra_flags;
2306
2307 /* Release locks (new address available to concurrent tasks) */
2308 IFA_UNLOCK(ifa);
2309
2310 /* Further initialization of the interface address */
2311 error = in6_ifinit(ifp, ia, ifaupflags);
2312 if (error != 0)
2313 goto unwind;
2314
2315 /* Finish updating the address while other tasks are working with it */
2316 error = in6_ifaupdate_aux(ia, ifp, ifaupflags);
2317 if (error != 0)
2318 goto unwind;
2319
2320 /* Return success (optionally w/ address for caller). */
2321 VERIFY(error == 0);
2322 (void) ifnet_notify_address(ifp, AF_INET6);
2323 goto done;
2324
2325 unwind:
2326 VERIFY(error != 0);
2327 if (ia != NULL) {
2328 VERIFY(ifa == &ia->ia_ifa);
2329 IFA_REMREF(ifa);
2330 ia = NULL;
2331 }
2332
2333 done:
2334 *iar = ia;
2335 return (error);
2336 }
2337
2338 void
2339 in6_purgeaddr(struct ifaddr *ifa)
2340 {
2341 struct ifnet *ifp = ifa->ifa_ifp;
2342 struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa;
2343 struct in6_multi_mship *imm;
2344
2345 lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
2346
2347 /* stop DAD processing */
2348 nd6_dad_stop(ifa);
2349
2350 /*
2351 * delete route to the destination of the address being purged.
2352 * The interface must be p2p or loopback in this case.
2353 */
2354 IFA_LOCK(ifa);
2355 if ((ia->ia_flags & IFA_ROUTE) && ia->ia_plen == 128) {
2356 int error, rtf;
2357
2358 IFA_UNLOCK(ifa);
2359 rtf = (ia->ia_dstaddr.sin6_family == AF_INET6) ? RTF_HOST : 0;
2360 error = rtinit(&(ia->ia_ifa), RTM_DELETE, rtf);
2361 if (error != 0) {
2362 log(LOG_ERR, "in6_purgeaddr: failed to remove "
2363 "a route to the p2p destination: %s on %s, "
2364 "errno=%d\n",
2365 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
2366 error);
2367 /* proceed anyway... */
2368 }
2369 IFA_LOCK_SPIN(ifa);
2370 ia->ia_flags &= ~IFA_ROUTE;
2371 }
2372 IFA_UNLOCK(ifa);
2373
2374 /* Remove ownaddr's loopback rtentry, if it exists. */
2375 in6_ifremloop(&(ia->ia_ifa));
2376
2377 /*
2378 * leave from multicast groups we have joined for the interface
2379 */
2380 IFA_LOCK(ifa);
2381 while ((imm = ia->ia6_memberships.lh_first) != NULL) {
2382 LIST_REMOVE(imm, i6mm_chain);
2383 IFA_UNLOCK(ifa);
2384 in6_leavegroup(imm);
2385 IFA_LOCK(ifa);
2386 }
2387 IFA_UNLOCK(ifa);
2388
2389 /* in6_unlink_ifa() will need exclusive access */
2390 in6_unlink_ifa(ia, ifp);
2391 in6_post_msg(ifp, KEV_INET6_ADDR_DELETED, ia, NULL);
2392
2393 (void) ifnet_notify_address(ifp, AF_INET6);
2394 }
2395
2396 static void
2397 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
2398 {
2399 struct in6_ifaddr *oia;
2400 struct ifaddr *ifa;
2401 int unlinked;
2402
2403 lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
2404
2405 ifa = &ia->ia_ifa;
2406 IFA_ADDREF(ifa);
2407
2408 ifnet_lock_exclusive(ifp);
2409 IFA_LOCK(ifa);
2410 if (ifa->ifa_debug & IFD_ATTACHED)
2411 if_detach_ifa(ifp, ifa);
2412 IFA_UNLOCK(ifa);
2413 ifnet_lock_done(ifp);
2414
2415 unlinked = 1;
2416 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
2417 oia = ia;
2418 if (oia == (ia = in6_ifaddrs)) {
2419 in6_ifaddrs = ia->ia_next;
2420 } else {
2421 while (ia->ia_next && (ia->ia_next != oia))
2422 ia = ia->ia_next;
2423 if (ia->ia_next) {
2424 ia->ia_next = oia->ia_next;
2425 } else {
2426 /* search failed */
2427 log(LOG_NOTICE, "%s: search failed.\n", __func__);
2428 unlinked = 0;
2429 }
2430 }
2431
2432 /*
2433 * When an autoconfigured address is being removed, release the
2434 * reference to the base prefix. Also, since the release might
2435 * affect the status of other (detached) addresses, call
2436 * pfxlist_onlink_check().
2437 */
2438 ifa = &oia->ia_ifa;
2439 IFA_LOCK(ifa);
2440 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
2441 if (oia->ia6_ndpr == NULL) {
2442 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
2443 "0x%llx has no prefix\n",
2444 (uint64_t)VM_KERNEL_ADDRPERM(oia));
2445 } else {
2446 struct nd_prefix *pr = oia->ia6_ndpr;
2447
2448 oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
2449 oia->ia6_ndpr = NULL;
2450 NDPR_LOCK(pr);
2451 VERIFY(pr->ndpr_addrcnt != 0);
2452 pr->ndpr_addrcnt--;
2453 NDPR_UNLOCK(pr);
2454 NDPR_REMREF(pr); /* release addr reference */
2455 }
2456 IFA_UNLOCK(ifa);
2457 lck_rw_done(&in6_ifaddr_rwlock);
2458 lck_mtx_lock(nd6_mutex);
2459 pfxlist_onlink_check();
2460 lck_mtx_unlock(nd6_mutex);
2461 } else {
2462 IFA_UNLOCK(ifa);
2463 lck_rw_done(&in6_ifaddr_rwlock);
2464 }
2465
2466 /*
2467 * release another refcnt for the link from in6_ifaddrs.
2468 * Do this only if it's not already unlinked in the event that we lost
2469 * the race, since in6_ifaddr_rwlock was momentarily dropped above.
2470 */
2471 if (unlinked)
2472 IFA_REMREF(ifa);
2473
2474 /* release reference held for this routine */
2475 IFA_REMREF(ifa);
2476
2477 /* invalidate route caches */
2478 routegenid_inet6_update();
2479 }
2480
2481 void
2482 in6_purgeif(struct ifnet *ifp)
2483 {
2484 struct in6_ifaddr *ia;
2485
2486 if (ifp == NULL)
2487 return;
2488
2489 lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
2490
2491 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
2492 ia = in6_ifaddrs;
2493 while (ia != NULL) {
2494 if (ia->ia_ifa.ifa_ifp != ifp) {
2495 ia = ia->ia_next;
2496 continue;
2497 }
2498 IFA_ADDREF(&ia->ia_ifa); /* for us */
2499 lck_rw_done(&in6_ifaddr_rwlock);
2500 in6_purgeaddr(&ia->ia_ifa);
2501 IFA_REMREF(&ia->ia_ifa); /* for us */
2502 lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
2503 /*
2504 * Purging the address would have caused
2505 * in6_ifaddr_rwlock to be dropped and reacquired;
2506 * therefore search again from the beginning
2507 * of in6_ifaddrs list.
2508 */
2509 ia = in6_ifaddrs;
2510 }
2511 lck_rw_done(&in6_ifaddr_rwlock);
2512
2513 in6_ifdetach(ifp);
2514 }
2515
2516 /*
2517 * Initialize an interface's internet6 address and routing table entry.
2518 */
2519 static int
2520 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, int ifaupflags)
2521 {
2522 int error;
2523 struct ifaddr *ifa;
2524
2525 error = 0;
2526 ifa = &ia->ia_ifa;
2527
2528 /*
2529 * NOTE: SIOCSIFADDR is defined with struct ifreq as parameter,
2530 * but here we are sending it down to the interface with a pointer
2531 * to struct ifaddr, for legacy reasons.
2532 */
2533 if ((ifaupflags & IN6_IFAUPDATE_1STADDR) != 0) {
2534 error = ifnet_ioctl(ifp, PF_INET6, SIOCSIFADDR, ia);
2535 if (error != 0) {
2536 if (error != EOPNOTSUPP)
2537 return (error);
2538 error = 0;
2539 }
2540 }
2541
2542 IFA_LOCK(ifa);
2543
2544 /*
2545 * Special case:
2546 * If the destination address is specified for a point-to-point
2547 * interface, install a route to the destination as an interface
2548 * direct route.
2549 */
2550 if (!(ia->ia_flags & IFA_ROUTE) && ia->ia_plen == 128 &&
2551 ia->ia_dstaddr.sin6_family == AF_INET6) {
2552 IFA_UNLOCK(ifa);
2553 error = rtinit(ifa, RTM_ADD, RTF_UP | RTF_HOST);
2554 if (error != 0)
2555 return (error);
2556 IFA_LOCK(ifa);
2557 ia->ia_flags |= IFA_ROUTE;
2558 }
2559 IFA_LOCK_ASSERT_HELD(ifa);
2560 if (ia->ia_plen < 128) {
2561 /*
2562 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
2563 */
2564 ia->ia_flags |= RTF_CLONING;
2565 }
2566
2567 IFA_UNLOCK(ifa);
2568
2569 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
2570 if ((ifaupflags & IN6_IFAUPDATE_NEWADDR) != 0)
2571 in6_ifaddloop(ifa);
2572
2573 /* invalidate route caches */
2574 routegenid_inet6_update();
2575
2576 VERIFY(error == 0);
2577 return (0);
2578 }
2579
2580 void
2581 in6_purgeaddrs(struct ifnet *ifp)
2582 {
2583 in6_purgeif(ifp);
2584 }
2585
2586 /*
2587 * Find an IPv6 interface link-local address specific to an interface.
2588 */
2589 struct in6_ifaddr *
2590 in6ifa_ifpforlinklocal(ifp, ignoreflags)
2591 struct ifnet *ifp;
2592 int ignoreflags;
2593 {
2594 struct ifaddr *ifa;
2595
2596 ifnet_lock_shared(ifp);
2597 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2598 {
2599 IFA_LOCK_SPIN(ifa);
2600 if (ifa->ifa_addr->sa_family != AF_INET6) {
2601 IFA_UNLOCK(ifa);
2602 continue;
2603 }
2604 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
2605 if ((((struct in6_ifaddr *)ifa)->ia6_flags &
2606 ignoreflags) != 0) {
2607 IFA_UNLOCK(ifa);
2608 continue;
2609 }
2610 IFA_ADDREF_LOCKED(ifa); /* for caller */
2611 IFA_UNLOCK(ifa);
2612 break;
2613 }
2614 IFA_UNLOCK(ifa);
2615 }
2616 ifnet_lock_done(ifp);
2617
2618 return ((struct in6_ifaddr *)ifa);
2619 }
2620
2621 /*
2622 * find the internet address corresponding to a given interface and address.
2623 */
2624 struct in6_ifaddr *
2625 in6ifa_ifpwithaddr(ifp, addr)
2626 struct ifnet *ifp;
2627 struct in6_addr *addr;
2628 {
2629 struct ifaddr *ifa;
2630
2631 ifnet_lock_shared(ifp);
2632 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2633 {
2634 IFA_LOCK_SPIN(ifa);
2635 if (ifa->ifa_addr->sa_family != AF_INET6) {
2636 IFA_UNLOCK(ifa);
2637 continue;
2638 }
2639 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) {
2640 IFA_ADDREF_LOCKED(ifa); /* for caller */
2641 IFA_UNLOCK(ifa);
2642 break;
2643 }
2644 IFA_UNLOCK(ifa);
2645 }
2646 ifnet_lock_done(ifp);
2647
2648 return ((struct in6_ifaddr *)ifa);
2649 }
2650
2651 struct in6_ifaddr *
2652 in6ifa_prproxyaddr(struct in6_addr *addr)
2653 {
2654 struct in6_ifaddr *ia;
2655
2656 lck_rw_lock_shared(&in6_ifaddr_rwlock);
2657 for (ia = in6_ifaddrs; ia; ia = ia->ia_next) {
2658 IFA_LOCK(&ia->ia_ifa);
2659 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(&ia->ia_ifa))) {
2660 IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for caller */
2661 IFA_UNLOCK(&ia->ia_ifa);
2662 break;
2663 }
2664 IFA_UNLOCK(&ia->ia_ifa);
2665 }
2666 lck_rw_done(&in6_ifaddr_rwlock);
2667
2668 if (ia != NULL && !nd6_prproxy_ifaddr(ia)) {
2669 IFA_REMREF(&ia->ia_ifa);
2670 ia = NULL;
2671 }
2672
2673 return (ia);
2674 }
2675
2676 void
2677 in6ifa_getlifetime(struct in6_ifaddr *ia6, struct in6_addrlifetime *t_dst,
2678 int iscalendar)
2679 {
2680 struct in6_addrlifetime_i *t_src = &ia6->ia6_lifetime;
2681 struct timeval caltime;
2682
2683 t_dst->ia6t_vltime = t_src->ia6ti_vltime;
2684 t_dst->ia6t_pltime = t_src->ia6ti_pltime;
2685 t_dst->ia6t_expire = 0;
2686 t_dst->ia6t_preferred = 0;
2687
2688 /* account for system time change */
2689 getmicrotime(&caltime);
2690 t_src->ia6ti_base_calendartime +=
2691 NET_CALCULATE_CLOCKSKEW(caltime,
2692 t_src->ia6ti_base_calendartime, net_uptime(),
2693 t_src->ia6ti_base_uptime);
2694
2695 if (iscalendar) {
2696 if (t_src->ia6ti_expire != 0 &&
2697 t_src->ia6ti_vltime != ND6_INFINITE_LIFETIME)
2698 t_dst->ia6t_expire = t_src->ia6ti_base_calendartime +
2699 t_src->ia6ti_expire - t_src->ia6ti_base_uptime;
2700
2701 if (t_src->ia6ti_preferred != 0 &&
2702 t_src->ia6ti_pltime != ND6_INFINITE_LIFETIME)
2703 t_dst->ia6t_preferred = t_src->ia6ti_base_calendartime +
2704 t_src->ia6ti_preferred - t_src->ia6ti_base_uptime;
2705 } else {
2706 if (t_src->ia6ti_expire != 0 &&
2707 t_src->ia6ti_vltime != ND6_INFINITE_LIFETIME)
2708 t_dst->ia6t_expire = t_src->ia6ti_expire;
2709
2710 if (t_src->ia6ti_preferred != 0 &&
2711 t_src->ia6ti_pltime != ND6_INFINITE_LIFETIME)
2712 t_dst->ia6t_preferred = t_src->ia6ti_preferred;
2713 }
2714 }
2715
2716 void
2717 in6ifa_setlifetime(struct in6_ifaddr *ia6, struct in6_addrlifetime *t_src)
2718 {
2719 struct in6_addrlifetime_i *t_dst = &ia6->ia6_lifetime;
2720 struct timeval caltime;
2721
2722 /* account for system time change */
2723 getmicrotime(&caltime);
2724 t_dst->ia6ti_base_calendartime +=
2725 NET_CALCULATE_CLOCKSKEW(caltime,
2726 t_dst->ia6ti_base_calendartime, net_uptime(),
2727 t_dst->ia6ti_base_uptime);
2728
2729 /* trust the caller for the values */
2730 t_dst->ia6ti_expire = t_src->ia6t_expire;
2731 t_dst->ia6ti_preferred = t_src->ia6t_preferred;
2732 t_dst->ia6ti_vltime = t_src->ia6t_vltime;
2733 t_dst->ia6ti_pltime = t_src->ia6t_pltime;
2734 }
2735
2736 /*
2737 * Convert IP6 address to printable (loggable) representation.
2738 */
2739 char *
2740 ip6_sprintf(const struct in6_addr *addr)
2741 {
2742 static const char digits[] = "0123456789abcdef";
2743 static int ip6round = 0;
2744 static char ip6buf[8][48];
2745
2746 int i;
2747 char *cp;
2748 const u_short *a = (const u_short *)addr;
2749 const u_char *d;
2750 u_char n;
2751 int dcolon = 0;
2752 int zpad = 0;
2753
2754 ip6round = (ip6round + 1) & 7;
2755 cp = ip6buf[ip6round];
2756
2757 for (i = 0; i < 8; i++) {
2758 if (dcolon == 1) {
2759 if (*a == 0) {
2760 if (i == 7)
2761 *cp++ = ':';
2762 a++;
2763 continue;
2764 } else
2765 dcolon = 2;
2766 }
2767 if (*a == 0) {
2768 if (dcolon == 0 && *(a + 1) == 0) {
2769 if (i == 0)
2770 *cp++ = ':';
2771 *cp++ = ':';
2772 dcolon = 1;
2773 } else {
2774 *cp++ = '0';
2775 *cp++ = ':';
2776 }
2777 a++;
2778 continue;
2779 }
2780 d = (const u_char *)a;
2781 zpad = 0;
2782 if ((n = *d >> 4) != 0) {
2783 *cp++ = digits[n];
2784 zpad = 1;
2785 }
2786 if ((n = *d++ & 0xf) != 0 || zpad) {
2787 *cp++ = digits[n];
2788 zpad = 1;
2789 }
2790 if ((n = *d >> 4) != 0 || zpad) {
2791 *cp++ = digits[n];
2792 zpad = 1;
2793 }
2794 if ((n = *d & 0xf) != 0 || zpad)
2795 *cp++ = digits[n];
2796 *cp++ = ':';
2797 a++;
2798 }
2799 *--cp = 0;
2800 return (ip6buf[ip6round]);
2801 }
2802
2803 int
2804 in6addr_local(struct in6_addr *in6)
2805 {
2806 struct rtentry *rt;
2807 struct sockaddr_in6 sin6;
2808 int local = 0;
2809
2810 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_SCOPE_LINKLOCAL(in6))
2811 return (1);
2812
2813 sin6.sin6_family = AF_INET6;
2814 sin6.sin6_len = sizeof (sin6);
2815 bcopy(in6, &sin6.sin6_addr, sizeof (*in6));
2816 rt = rtalloc1((struct sockaddr *)&sin6, 0, 0);
2817
2818 if (rt != NULL) {
2819 RT_LOCK_SPIN(rt);
2820 if (rt->rt_gateway->sa_family == AF_LINK)
2821 local = 1;
2822 RT_UNLOCK(rt);
2823 rtfree(rt);
2824 } else {
2825 local = in6_localaddr(in6);
2826 }
2827 return (local);
2828 }
2829
2830 int
2831 in6_localaddr(struct in6_addr *in6)
2832 {
2833 struct in6_ifaddr *ia;
2834
2835 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
2836 return (1);
2837
2838 lck_rw_lock_shared(&in6_ifaddr_rwlock);
2839 for (ia = in6_ifaddrs; ia; ia = ia->ia_next) {
2840 IFA_LOCK_SPIN(&ia->ia_ifa);
2841 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
2842 &ia->ia_prefixmask.sin6_addr)) {
2843 IFA_UNLOCK(&ia->ia_ifa);
2844 lck_rw_done(&in6_ifaddr_rwlock);
2845 return (1);
2846 }
2847 IFA_UNLOCK(&ia->ia_ifa);
2848 }
2849 lck_rw_done(&in6_ifaddr_rwlock);
2850 return (0);
2851 }
2852
2853 int
2854 in6_is_addr_deprecated(struct sockaddr_in6 *sa6)
2855 {
2856 struct in6_ifaddr *ia;
2857
2858 lck_rw_lock_shared(&in6_ifaddr_rwlock);
2859 for (ia = in6_ifaddrs; ia; ia = ia->ia_next) {
2860 IFA_LOCK_SPIN(&ia->ia_ifa);
2861 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
2862 &sa6->sin6_addr) &&
2863 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) {
2864 IFA_UNLOCK(&ia->ia_ifa);
2865 lck_rw_done(&in6_ifaddr_rwlock);
2866 return (1); /* true */
2867 }
2868 /* XXX: do we still have to go thru the rest of the list? */
2869 IFA_UNLOCK(&ia->ia_ifa);
2870 }
2871
2872 lck_rw_done(&in6_ifaddr_rwlock);
2873 return (0); /* false */
2874 }
2875
2876 /*
2877 * return length of part which dst and src are equal
2878 * hard coding...
2879 */
2880 int
2881 in6_matchlen(src, dst)
2882 struct in6_addr *src, *dst;
2883 {
2884 int match = 0;
2885 u_char *s = (u_char *)src, *d = (u_char *)dst;
2886 u_char *lim = s + 16, r;
2887
2888 while (s < lim)
2889 if ((r = (*d++ ^ *s++)) != 0) {
2890 while (r < 128) {
2891 match++;
2892 r <<= 1;
2893 }
2894 break;
2895 } else
2896 match += 8;
2897 return (match);
2898 }
2899
2900 /* XXX: to be scope conscious */
2901 int
2902 in6_are_prefix_equal(p1, p2, len)
2903 struct in6_addr *p1, *p2;
2904 int len;
2905 {
2906 int bytelen, bitlen;
2907
2908 /* sanity check */
2909 if (0 > len || len > 128) {
2910 log(LOG_ERR, "%s: invalid prefix length(%d)\n", __func__, len);
2911 return (0);
2912 }
2913
2914 bytelen = len / 8;
2915 bitlen = len % 8;
2916
2917 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2918 return (0);
2919 if (bitlen != 0 &&
2920 p1->s6_addr[bytelen] >> (8 - bitlen) !=
2921 p2->s6_addr[bytelen] >> (8 - bitlen))
2922 return (0);
2923
2924 return (1);
2925 }
2926
2927 void
2928 in6_prefixlen2mask(maskp, len)
2929 struct in6_addr *maskp;
2930 int len;
2931 {
2932 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2933 int bytelen, bitlen, i;
2934
2935 /* sanity check */
2936 if (0 > len || len > 128) {
2937 log(LOG_ERR, "%s: invalid prefix length(%d)\n", __func__, len);
2938 return;
2939 }
2940
2941 bzero(maskp, sizeof (*maskp));
2942 bytelen = len / 8;
2943 bitlen = len % 8;
2944 for (i = 0; i < bytelen; i++)
2945 maskp->s6_addr[i] = 0xff;
2946 if (bitlen)
2947 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2948 }
2949
2950 /*
2951 * return the best address out of the same scope
2952 */
2953 struct in6_ifaddr *
2954 in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst)
2955 {
2956 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
2957 int blen = -1;
2958 struct ifaddr *ifa;
2959 struct ifnet *ifp;
2960 struct in6_ifaddr *ifa_best = NULL;
2961
2962 if (oifp == NULL) {
2963 return (NULL);
2964 }
2965
2966 /*
2967 * We search for all addresses on all interfaces from the beginning.
2968 * Comparing an interface with the outgoing interface will be done
2969 * only at the final stage of tiebreaking.
2970 */
2971 ifnet_head_lock_shared();
2972 TAILQ_FOREACH(ifp, &ifnet_head, if_list) {
2973 /*
2974 * We can never take an address that breaks the scope zone
2975 * of the destination.
2976 */
2977 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
2978 continue;
2979
2980 ifnet_lock_shared(ifp);
2981 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2982 int tlen = -1, dscopecmp, bscopecmp, matchcmp;
2983
2984 IFA_LOCK(ifa);
2985 if (ifa->ifa_addr->sa_family != AF_INET6) {
2986 IFA_UNLOCK(ifa);
2987 continue;
2988 }
2989 src_scope = in6_addrscope(IFA_IN6(ifa));
2990
2991 /*
2992 * Don't use an address before completing DAD
2993 * nor a duplicated address.
2994 */
2995 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2996 IN6_IFF_NOTREADY) {
2997 IFA_UNLOCK(ifa);
2998 continue;
2999 }
3000 /* XXX: is there any case to allow anycasts? */
3001 if (((struct in6_ifaddr *)ifa)->ia6_flags &
3002 IN6_IFF_ANYCAST) {
3003 IFA_UNLOCK(ifa);
3004 continue;
3005 }
3006 if (((struct in6_ifaddr *)ifa)->ia6_flags &
3007 IN6_IFF_DETACHED) {
3008 IFA_UNLOCK(ifa);
3009 continue;
3010 }
3011 /*
3012 * If this is the first address we find,
3013 * keep it anyway.
3014 */
3015 if (ifa_best == NULL)
3016 goto replace;
3017
3018 /*
3019 * ifa_best is never NULL beyond this line except
3020 * within the block labeled "replace".
3021 */
3022
3023 /*
3024 * If ifa_best has a smaller scope than dst and
3025 * the current address has a larger one than
3026 * (or equal to) dst, always replace ifa_best.
3027 * Also, if the current address has a smaller scope
3028 * than dst, ignore it unless ifa_best also has a
3029 * smaller scope.
3030 * Consequently, after the two if-clause below,
3031 * the followings must be satisfied:
3032 * (scope(src) < scope(dst) &&
3033 * scope(best) < scope(dst))
3034 * OR
3035 * (scope(best) >= scope(dst) &&
3036 * scope(src) >= scope(dst))
3037 */
3038 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
3039 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
3040 goto replace; /* (A) */
3041 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
3042 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) {
3043 IFA_UNLOCK(ifa);
3044 continue; /* (B) */
3045 }
3046 /*
3047 * A deprecated address SHOULD NOT be used in new
3048 * communications if an alternate (non-deprecated)
3049 * address is available and has sufficient scope.
3050 * RFC 4862, Section 5.5.4.
3051 */
3052 if (((struct in6_ifaddr *)ifa)->ia6_flags &
3053 IN6_IFF_DEPRECATED) {
3054 /*
3055 * Ignore any deprecated addresses if
3056 * specified by configuration.
3057 */
3058 if (!ip6_use_deprecated) {
3059 IFA_UNLOCK(ifa);
3060 continue;
3061 }
3062 /*
3063 * If we have already found a non-deprecated
3064 * candidate, just ignore deprecated addresses.
3065 */
3066 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
3067 == 0) {
3068 IFA_UNLOCK(ifa);
3069 continue;
3070 }
3071 }
3072
3073 /*
3074 * A non-deprecated address is always preferred
3075 * to a deprecated one regardless of scopes and
3076 * address matching (Note invariants ensured by the
3077 * conditions (A) and (B) above.)
3078 */
3079 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
3080 (((struct in6_ifaddr *)ifa)->ia6_flags &
3081 IN6_IFF_DEPRECATED) == 0)
3082 goto replace;
3083
3084 /*
3085 * When we use temporary addresses described in
3086 * RFC 4941, we prefer temporary addresses to
3087 * public autoconf addresses. Again, note the
3088 * invariants from (A) and (B). Also note that we
3089 * don't have any preference between static addresses
3090 * and autoconf addresses (despite of whether or not
3091 * the latter is temporary or public.)
3092 */
3093 if (ip6_use_tempaddr) {
3094 struct in6_ifaddr *ifat;
3095
3096 ifat = (struct in6_ifaddr *)ifa;
3097 if ((ifa_best->ia6_flags &
3098 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
3099 == IN6_IFF_AUTOCONF &&
3100 (ifat->ia6_flags &
3101 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
3102 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) {
3103 goto replace;
3104 }
3105 if ((ifa_best->ia6_flags &
3106 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
3107 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) &&
3108 (ifat->ia6_flags &
3109 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
3110 == IN6_IFF_AUTOCONF) {
3111 IFA_UNLOCK(ifa);
3112 continue;
3113 }
3114 }
3115
3116 /*
3117 * At this point, we have two cases:
3118 * 1. we are looking at a non-deprecated address,
3119 * and ifa_best is also non-deprecated.
3120 * 2. we are looking at a deprecated address,
3121 * and ifa_best is also deprecated.
3122 * Also, we do not have to consider a case where
3123 * the scope of if_best is larger(smaller) than dst and
3124 * the scope of the current address is smaller(larger)
3125 * than dst. Such a case has already been covered.
3126 * Tiebreaking is done according to the following
3127 * items:
3128 * - the scope comparison between the address and
3129 * dst (dscopecmp)
3130 * - the scope comparison between the address and
3131 * ifa_best (bscopecmp)
3132 * - if the address match dst longer than ifa_best
3133 * (matchcmp)
3134 * - if the address is on the outgoing I/F (outI/F)
3135 *
3136 * Roughly speaking, the selection policy is
3137 * - the most important item is scope. The same scope
3138 * is best. Then search for a larger scope.
3139 * Smaller scopes are the last resort.
3140 * - A deprecated address is chosen only when we have
3141 * no address that has an enough scope, but is
3142 * prefered to any addresses of smaller scopes
3143 * (this must be already done above.)
3144 * - addresses on the outgoing I/F are preferred to
3145 * ones on other interfaces if none of above
3146 * tiebreaks. In the table below, the column "bI"
3147 * means if the best_ifa is on the outgoing
3148 * interface, and the column "sI" means if the ifa
3149 * is on the outgoing interface.
3150 * - If there is no other reasons to choose one,
3151 * longest address match against dst is considered.
3152 *
3153 * The precise decision table is as follows:
3154 * dscopecmp bscopecmp match bI oI | replace?
3155 * N/A equal N/A Y N | No (1)
3156 * N/A equal N/A N Y | Yes (2)
3157 * N/A equal larger N/A | Yes (3)
3158 * N/A equal !larger N/A | No (4)
3159 * larger larger N/A N/A | No (5)
3160 * larger smaller N/A N/A | Yes (6)
3161 * smaller larger N/A N/A | Yes (7)
3162 * smaller smaller N/A N/A | No (8)
3163 * equal smaller N/A N/A | Yes (9)
3164 * equal larger (already done at A above)
3165 */
3166 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
3167 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
3168
3169 if (bscopecmp == 0) {
3170 struct ifnet *bifp = ifa_best->ia_ifp;
3171
3172 if (bifp == oifp && ifp != oifp) { /* (1) */
3173 IFA_UNLOCK(ifa);
3174 continue;
3175 }
3176 if (bifp != oifp && ifp == oifp) /* (2) */
3177 goto replace;
3178
3179 /*
3180 * Both bifp and ifp are on the outgoing
3181 * interface, or both two are on a different
3182 * interface from the outgoing I/F.
3183 * now we need address matching against dst
3184 * for tiebreaking.
3185 */
3186 tlen = in6_matchlen(IFA_IN6(ifa), dst);
3187 matchcmp = tlen - blen;
3188 if (matchcmp > 0) /* (3) */
3189 goto replace;
3190 IFA_UNLOCK(ifa);
3191 continue; /* (4) */
3192 }
3193 if (dscopecmp > 0) {
3194 if (bscopecmp > 0) { /* (5) */
3195 IFA_UNLOCK(ifa);
3196 continue;
3197 }
3198 goto replace; /* (6) */
3199 }
3200 if (dscopecmp < 0) {
3201 if (bscopecmp > 0) /* (7) */
3202 goto replace;
3203 IFA_UNLOCK(ifa);
3204 continue; /* (8) */
3205 }
3206
3207 /* now dscopecmp must be 0 */
3208 if (bscopecmp < 0)
3209 goto replace; /* (9) */
3210
3211 replace:
3212 IFA_ADDREF_LOCKED(ifa); /* for ifa_best */
3213 blen = tlen >= 0 ? tlen :
3214 in6_matchlen(IFA_IN6(ifa), dst);
3215 best_scope =
3216 in6_addrscope(&ifa2ia6(ifa)->ia_addr.sin6_addr);
3217 IFA_UNLOCK(ifa);
3218 if (ifa_best)
3219 IFA_REMREF(&ifa_best->ia_ifa);
3220 ifa_best = (struct in6_ifaddr *)ifa;
3221 }
3222 ifnet_lock_done(ifp);
3223 }
3224 ifnet_head_done();
3225
3226 /* count statistics for future improvements */
3227 if (ifa_best == NULL)
3228 ip6stat.ip6s_sources_none++;
3229 else {
3230 IFA_LOCK_SPIN(&ifa_best->ia_ifa);
3231 if (oifp == ifa_best->ia_ifp)
3232 ip6stat.ip6s_sources_sameif[best_scope]++;
3233 else
3234 ip6stat.ip6s_sources_otherif[best_scope]++;
3235
3236 if (best_scope == dst_scope)
3237 ip6stat.ip6s_sources_samescope[best_scope]++;
3238 else
3239 ip6stat.ip6s_sources_otherscope[best_scope]++;
3240
3241 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
3242 ip6stat.ip6s_sources_deprecated[best_scope]++;
3243 IFA_UNLOCK(&ifa_best->ia_ifa);
3244 }
3245
3246 return (ifa_best);
3247 }
3248
3249 /*
3250 * return the best address out of the same scope. if no address was
3251 * found, return the first valid address from designated IF.
3252 */
3253 struct in6_ifaddr *
3254 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
3255 {
3256 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
3257 struct ifaddr *ifa;
3258 struct in6_ifaddr *besta = NULL;
3259 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
3260
3261 dep[0] = dep[1] = NULL;
3262
3263 /*
3264 * We first look for addresses in the same scope.
3265 * If there is one, return it.
3266 * If two or more, return one which matches the dst longest.
3267 * If none, return one of global addresses assigned other ifs.
3268 */
3269 ifnet_lock_shared(ifp);
3270 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
3271 IFA_LOCK(ifa);
3272 if (ifa->ifa_addr->sa_family != AF_INET6) {
3273 IFA_UNLOCK(ifa);
3274 continue;
3275 }
3276 if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_ANYCAST) {
3277 IFA_UNLOCK(ifa);
3278 continue; /* XXX: is there any case to allow anycast? */
3279 }
3280 if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_NOTREADY) {
3281 IFA_UNLOCK(ifa);
3282 continue; /* don't use this interface */
3283 }
3284 if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DETACHED) {
3285 IFA_UNLOCK(ifa);
3286 continue;
3287 }
3288 if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
3289 if (ip6_use_deprecated) {
3290 IFA_ADDREF_LOCKED(ifa); /* for dep[0] */
3291 IFA_UNLOCK(ifa);
3292 if (dep[0] != NULL)
3293 IFA_REMREF(&dep[0]->ia_ifa);
3294 dep[0] = (struct in6_ifaddr *)ifa;
3295 } else {
3296 IFA_UNLOCK(ifa);
3297 }
3298 continue;
3299 }
3300
3301 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
3302 /*
3303 * call in6_matchlen() as few as possible
3304 */
3305 if (besta) {
3306 if (blen == -1) {
3307 IFA_UNLOCK(ifa);
3308 IFA_LOCK(&besta->ia_ifa);
3309 blen = in6_matchlen(
3310 &besta->ia_addr.sin6_addr, dst);
3311 IFA_UNLOCK(&besta->ia_ifa);
3312 IFA_LOCK(ifa);
3313 }
3314 tlen = in6_matchlen(IFA_IN6(ifa), dst);
3315 if (tlen > blen) {
3316 blen = tlen;
3317 IFA_ADDREF_LOCKED(ifa); /* for besta */
3318 IFA_UNLOCK(ifa);
3319 IFA_REMREF(&besta->ia_ifa);
3320 besta = (struct in6_ifaddr *)ifa;
3321 } else {
3322 IFA_UNLOCK(ifa);
3323 }
3324 } else {
3325 besta = (struct in6_ifaddr *)ifa;
3326 IFA_ADDREF_LOCKED(ifa); /* for besta */
3327 IFA_UNLOCK(ifa);
3328 }
3329 } else {
3330 IFA_UNLOCK(ifa);
3331 }
3332 }
3333 if (besta) {
3334 ifnet_lock_done(ifp);
3335 if (dep[0] != NULL)
3336 IFA_REMREF(&dep[0]->ia_ifa);
3337 return (besta);
3338 }
3339
3340 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
3341 IFA_LOCK(ifa);
3342 if (ifa->ifa_addr->sa_family != AF_INET6) {
3343 IFA_UNLOCK(ifa);
3344 continue;
3345 }
3346 if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_ANYCAST) {
3347 IFA_UNLOCK(ifa);
3348 continue; /* XXX: is there any case to allow anycast? */
3349 }
3350 if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_NOTREADY) {
3351 IFA_UNLOCK(ifa);
3352 continue; /* don't use this interface */
3353 }
3354 if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DETACHED) {
3355 IFA_UNLOCK(ifa);
3356 continue;
3357 }
3358 if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
3359 if (ip6_use_deprecated) {
3360 IFA_ADDREF_LOCKED(ifa); /* for dep[1] */
3361 IFA_UNLOCK(ifa);
3362 if (dep[1] != NULL)
3363 IFA_REMREF(&dep[1]->ia_ifa);
3364 dep[1] = (struct in6_ifaddr *)ifa;
3365 } else {
3366 IFA_UNLOCK(ifa);
3367 }
3368 continue;
3369 }
3370 IFA_ADDREF_LOCKED(ifa); /* for caller */
3371 IFA_UNLOCK(ifa);
3372 ifnet_lock_done(ifp);
3373 if (dep[0] != NULL)
3374 IFA_REMREF(&dep[0]->ia_ifa);
3375 if (dep[1] != NULL)
3376 IFA_REMREF(&dep[1]->ia_ifa);
3377 return ((struct in6_ifaddr *)ifa);
3378 }
3379 ifnet_lock_done(ifp);
3380
3381 /* use the last-resort values, that are, deprecated addresses */
3382 if (dep[0]) {
3383 if (dep[1] != NULL)
3384 IFA_REMREF(&dep[1]->ia_ifa);
3385 return (dep[0]);
3386 }
3387 if (dep[1])
3388 return (dep[1]);
3389
3390 return (NULL);
3391 }
3392
3393 /*
3394 * perform DAD when interface becomes IFF_UP.
3395 */
3396 static void
3397 in6_if_up_dad_start(struct ifnet *ifp)
3398 {
3399 struct ifaddr *ifa;
3400
3401 /* start DAD on all the interface addresses */
3402 ifnet_lock_exclusive(ifp);
3403 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
3404 struct in6_ifaddr *ia6;
3405
3406 IFA_LOCK_SPIN(ifa);
3407 if (ifa->ifa_addr->sa_family != AF_INET6) {
3408 IFA_UNLOCK(ifa);
3409 continue;
3410 }
3411 ia6 = (struct in6_ifaddr *)ifa;
3412 if (ia6->ia6_flags & IN6_IFF_DADPROGRESS) {
3413 int delay = 0; /* delay ticks before DAD output */
3414 IFA_UNLOCK(ifa);
3415 nd6_dad_start(ifa, &delay);
3416 } else {
3417 IFA_UNLOCK(ifa);
3418 }
3419 }
3420 ifnet_lock_done(ifp);
3421 }
3422
3423 int
3424 in6if_do_dad(
3425 struct ifnet *ifp)
3426 {
3427 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3428 return (0);
3429
3430 /*
3431 * If we are using the alternative neighbor discovery
3432 * interface on this interface, then skip DAD.
3433 *
3434 * Also, skip it for interfaces marked "local private"
3435 * for now, even when not marked as using the alternative
3436 * interface. This is for historical reasons.
3437 */
3438 if (ifp->if_eflags &
3439 (IFEF_IPV6_ND6ALT|IFEF_LOCALNET_PRIVATE|IFEF_DIRECTLINK))
3440 return (0);
3441
3442 switch (ifp->if_type) {
3443 #if IFT_DUMMY
3444 case IFT_DUMMY:
3445 #endif
3446 case IFT_FAITH:
3447 /*
3448 * These interfaces do not have the IFF_LOOPBACK flag,
3449 * but loop packets back. We do not have to do DAD on such
3450 * interfaces. We should even omit it, because loop-backed
3451 * NS would confuse the DAD procedure.
3452 */
3453 return (0);
3454 default:
3455 /*
3456 * Our DAD routine requires the interface up and running.
3457 * However, some interfaces can be up before the RUNNING
3458 * status. Additionaly, users may try to assign addresses
3459 * before the interface becomes up (or running).
3460 * We simply skip DAD in such a case as a work around.
3461 * XXX: we should rather mark "tentative" on such addresses,
3462 * and do DAD after the interface becomes ready.
3463 */
3464 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3465 (IFF_UP|IFF_RUNNING))
3466 return (0);
3467
3468 return (1);
3469 }
3470 }
3471
3472 /*
3473 * Calculate max IPv6 MTU through all the interfaces and store it
3474 * to in6_maxmtu.
3475 */
3476 void
3477 in6_setmaxmtu(void)
3478 {
3479 u_int32_t maxmtu = 0;
3480 struct ifnet *ifp;
3481
3482 ifnet_head_lock_shared();
3483 TAILQ_FOREACH(ifp, &ifnet_head, if_list) {
3484 struct nd_ifinfo *ndi;
3485
3486 lck_rw_lock_shared(nd_if_rwlock);
3487 if ((ndi = ND_IFINFO(ifp)) != NULL && !ndi->initialized)
3488 ndi = NULL;
3489 if (ndi != NULL)
3490 lck_mtx_lock(&ndi->lock);
3491 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
3492 IN6_LINKMTU(ifp) > maxmtu)
3493 maxmtu = IN6_LINKMTU(ifp);
3494 if (ndi != NULL)
3495 lck_mtx_unlock(&ndi->lock);
3496 lck_rw_done(nd_if_rwlock);
3497 }
3498 ifnet_head_done();
3499 if (maxmtu) /* update only when maxmtu is positive */
3500 in6_maxmtu = maxmtu;
3501 }
3502 /*
3503 * Provide the length of interface identifiers to be used for the link attached
3504 * to the given interface. The length should be defined in "IPv6 over
3505 * xxx-link" document. Note that address architecture might also define
3506 * the length for a particular set of address prefixes, regardless of the
3507 * link type. Also see RFC 4862 for additional background.
3508 */
3509 int
3510 in6_if2idlen(struct ifnet *ifp)
3511 {
3512 switch (ifp->if_type) {
3513 case IFT_ETHER: /* RFC2464 */
3514 case IFT_IEEE8023ADLAG: /* IEEE802.3ad Link Aggregate */
3515 #ifdef IFT_PROPVIRTUAL
3516 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */
3517 #endif
3518 #ifdef IFT_L2VLAN
3519 case IFT_L2VLAN: /* ditto */
3520 #endif
3521 #ifdef IFT_IEEE80211
3522 case IFT_IEEE80211: /* ditto */
3523 #endif
3524 #ifdef IFT_MIP
3525 case IFT_MIP: /* ditto */
3526 #endif
3527 return (64);
3528 case IFT_FDDI: /* RFC2467 */
3529 return (64);
3530 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */
3531 return (64);
3532 case IFT_PPP: /* RFC2472 */
3533 return (64);
3534 case IFT_ARCNET: /* RFC2497 */
3535 return (64);
3536 case IFT_FRELAY: /* RFC2590 */
3537 return (64);
3538 case IFT_IEEE1394: /* RFC3146 */
3539 return (64);
3540 case IFT_GIF:
3541 return (64); /* draft-ietf-v6ops-mech-v2-07 */
3542 case IFT_LOOP:
3543 return (64); /* XXX: is this really correct? */
3544 case IFT_OTHER:
3545 return (64); /* for utun interfaces */
3546 case IFT_CELLULAR:
3547 return (64); /* Packet Data over Cellular */
3548 case IFT_BRIDGE:
3549 return (64); /* Transparent bridge interface */
3550 default:
3551 /*
3552 * Unknown link type:
3553 * It might be controversial to use the today's common constant
3554 * of 64 for these cases unconditionally. For full compliance,
3555 * we should return an error in this case. On the other hand,
3556 * if we simply miss the standard for the link type or a new
3557 * standard is defined for a new link type, the IFID length
3558 * is very likely to be the common constant. As a compromise,
3559 * we always use the constant, but make an explicit notice
3560 * indicating the "unknown" case.
3561 */
3562 log(LOG_NOTICE, "%s: unknown link type (%d)\n", __func__,
3563 ifp->if_type);
3564 return (64);
3565 }
3566 }
3567 /*
3568 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
3569 * v4 mapped addr or v4 compat addr
3570 */
3571 void
3572 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
3573 {
3574 bzero(sin, sizeof (*sin));
3575 sin->sin_len = sizeof (struct sockaddr_in);
3576 sin->sin_family = AF_INET;
3577 sin->sin_port = sin6->sin6_port;
3578 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
3579 }
3580
3581 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
3582 void
3583 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
3584 {
3585 bzero(sin6, sizeof (*sin6));
3586 sin6->sin6_len = sizeof (struct sockaddr_in6);
3587 sin6->sin6_family = AF_INET6;
3588 sin6->sin6_port = sin->sin_port;
3589 sin6->sin6_addr.s6_addr32[0] = 0;
3590 sin6->sin6_addr.s6_addr32[1] = 0;
3591 if (sin->sin_addr.s_addr) {
3592 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
3593 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
3594 } else {
3595 sin6->sin6_addr.s6_addr32[2] = 0;
3596 sin6->sin6_addr.s6_addr32[3] = 0;
3597 }
3598 }
3599
3600 /* Convert sockaddr_in6 into sockaddr_in. */
3601 void
3602 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
3603 {
3604 struct sockaddr_in *sin_p;
3605 struct sockaddr_in6 sin6;
3606
3607 /*
3608 * Save original sockaddr_in6 addr and convert it
3609 * to sockaddr_in.
3610 */
3611 sin6 = *(struct sockaddr_in6 *)(void *)nam;
3612 sin_p = (struct sockaddr_in *)(void *)nam;
3613 in6_sin6_2_sin(sin_p, &sin6);
3614 }
3615
3616 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
3617 int
3618 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
3619 {
3620 struct sockaddr_in *sin_p;
3621 struct sockaddr_in6 *sin6_p;
3622
3623 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof (*sin6_p), M_SONAME,
3624 M_WAITOK);
3625 if (sin6_p == NULL)
3626 return (ENOBUFS);
3627 sin_p = (struct sockaddr_in *)(void *)*nam;
3628 in6_sin_2_v4mapsin6(sin_p, sin6_p);
3629 FREE(*nam, M_SONAME);
3630 *nam = (struct sockaddr *)sin6_p;
3631
3632 return (0);
3633 }
3634
3635 /*
3636 * Posts in6_event_data message kernel events.
3637 *
3638 * To get the same size of kev_in6_data between ILP32 and LP64 data models
3639 * we are using a special version of the in6_addrlifetime structure that
3640 * uses only 32 bits fields to be compatible with Leopard, and that
3641 * are large enough to span 68 years.
3642 */
3643 void
3644 in6_post_msg(struct ifnet *ifp, u_int32_t event_code, struct in6_ifaddr *ifa,
3645 uint8_t *mac)
3646 {
3647 struct kev_msg ev_msg;
3648 struct kev_in6_data in6_event_data;
3649 struct in6_addrlifetime ia6_lt;
3650
3651 bzero(&in6_event_data, sizeof (struct kev_in6_data));
3652 bzero(&ev_msg, sizeof (struct kev_msg));
3653 ev_msg.vendor_code = KEV_VENDOR_APPLE;
3654 ev_msg.kev_class = KEV_NETWORK_CLASS;
3655 ev_msg.kev_subclass = KEV_INET6_SUBCLASS;
3656 ev_msg.event_code = event_code;
3657
3658 IFA_LOCK(&ifa->ia_ifa);
3659 in6_event_data.ia_addr = ifa->ia_addr;
3660 in6_event_data.ia_net = ifa->ia_net;
3661 in6_event_data.ia_dstaddr = ifa->ia_dstaddr;
3662 in6_event_data.ia_prefixmask = ifa->ia_prefixmask;
3663 in6_event_data.ia_plen = ifa->ia_plen;
3664 in6_event_data.ia6_flags = (u_int32_t)ifa->ia6_flags;
3665
3666 /* retrieve time as calendar time (last arg is 1) */
3667 in6ifa_getlifetime(ifa, &ia6_lt, 1);
3668 in6_event_data.ia_lifetime.ia6t_expire = ia6_lt.ia6t_expire;
3669 in6_event_data.ia_lifetime.ia6t_preferred = ia6_lt.ia6t_preferred;
3670 in6_event_data.ia_lifetime.ia6t_vltime = ia6_lt.ia6t_vltime;
3671 in6_event_data.ia_lifetime.ia6t_pltime = ia6_lt.ia6t_pltime;
3672 IFA_UNLOCK(&ifa->ia_ifa);
3673
3674 if (ifp != NULL) {
3675 (void) strlcpy(&in6_event_data.link_data.if_name[0],
3676 ifp->if_name, IFNAMSIZ);
3677 in6_event_data.link_data.if_family = ifp->if_family;
3678 in6_event_data.link_data.if_unit = (u_int32_t)ifp->if_unit;
3679 }
3680
3681 if (mac != NULL)
3682 memcpy(&in6_event_data.ia_mac, mac,
3683 sizeof(in6_event_data.ia_mac));
3684
3685 ev_msg.dv[0].data_ptr = &in6_event_data;
3686 ev_msg.dv[0].data_length = sizeof (in6_event_data);
3687 ev_msg.dv[1].data_length = 0;
3688
3689 kev_post_msg(&ev_msg);
3690 }
3691
3692 /*
3693 * Called as part of ip6_init
3694 */
3695 void
3696 in6_ifaddr_init(void)
3697 {
3698 in6_cga_init();
3699 in6_multi_init();
3700
3701 PE_parse_boot_argn("ifa_debug", &in6ifa_debug, sizeof (in6ifa_debug));
3702
3703 in6ifa_size = (in6ifa_debug == 0) ? sizeof (struct in6_ifaddr) :
3704 sizeof (struct in6_ifaddr_dbg);
3705
3706 in6ifa_zone = zinit(in6ifa_size, IN6IFA_ZONE_MAX * in6ifa_size,
3707 0, IN6IFA_ZONE_NAME);
3708 if (in6ifa_zone == NULL) {
3709 panic("%s: failed allocating %s", __func__, IN6IFA_ZONE_NAME);
3710 /* NOTREACHED */
3711 }
3712 zone_change(in6ifa_zone, Z_EXPAND, TRUE);
3713 zone_change(in6ifa_zone, Z_CALLERACCT, FALSE);
3714
3715 lck_mtx_init(&in6ifa_trash_lock, ifa_mtx_grp, ifa_mtx_attr);
3716 TAILQ_INIT(&in6ifa_trash_head);
3717 }
3718
3719 static struct in6_ifaddr *
3720 in6_ifaddr_alloc(int how)
3721 {
3722 struct in6_ifaddr *in6ifa;
3723
3724 in6ifa = (how == M_WAITOK) ? zalloc(in6ifa_zone) :
3725 zalloc_noblock(in6ifa_zone);
3726 if (in6ifa != NULL) {
3727 bzero(in6ifa, in6ifa_size);
3728 in6ifa->ia_ifa.ifa_free = in6_ifaddr_free;
3729 in6ifa->ia_ifa.ifa_debug |= IFD_ALLOC;
3730 ifa_lock_init(&in6ifa->ia_ifa);
3731 if (in6ifa_debug != 0) {
3732 struct in6_ifaddr_dbg *in6ifa_dbg =
3733 (struct in6_ifaddr_dbg *)in6ifa;
3734 in6ifa->ia_ifa.ifa_debug |= IFD_DEBUG;
3735 in6ifa->ia_ifa.ifa_trace = in6_ifaddr_trace;
3736 in6ifa->ia_ifa.ifa_attached = in6_ifaddr_attached;
3737 in6ifa->ia_ifa.ifa_detached = in6_ifaddr_detached;
3738 ctrace_record(&in6ifa_dbg->in6ifa_alloc);
3739 }
3740 }
3741
3742 return (in6ifa);
3743 }
3744
3745 static void
3746 in6_ifaddr_free(struct ifaddr *ifa)
3747 {
3748 IFA_LOCK_ASSERT_HELD(ifa);
3749
3750 if (ifa->ifa_refcnt != 0) {
3751 panic("%s: ifa %p bad ref cnt", __func__, ifa);
3752 /* NOTREACHED */
3753 } else if (!(ifa->ifa_debug & IFD_ALLOC)) {
3754 panic("%s: ifa %p cannot be freed", __func__, ifa);
3755 /* NOTREACHED */
3756 }
3757 if (ifa->ifa_debug & IFD_DEBUG) {
3758 struct in6_ifaddr_dbg *in6ifa_dbg =
3759 (struct in6_ifaddr_dbg *)ifa;
3760 ctrace_record(&in6ifa_dbg->in6ifa_free);
3761 bcopy(&in6ifa_dbg->in6ifa, &in6ifa_dbg->in6ifa_old,
3762 sizeof (struct in6_ifaddr));
3763 if (ifa->ifa_debug & IFD_TRASHED) {
3764 /* Become a regular mutex, just in case */
3765 IFA_CONVERT_LOCK(ifa);
3766 lck_mtx_lock(&in6ifa_trash_lock);
3767 TAILQ_REMOVE(&in6ifa_trash_head, in6ifa_dbg,
3768 in6ifa_trash_link);
3769 lck_mtx_unlock(&in6ifa_trash_lock);
3770 ifa->ifa_debug &= ~IFD_TRASHED;
3771 }
3772 }
3773 IFA_UNLOCK(ifa);
3774 ifa_lock_destroy(ifa);
3775 bzero(ifa, sizeof (struct in6_ifaddr));
3776 zfree(in6ifa_zone, ifa);
3777 }
3778
3779 static void
3780 in6_ifaddr_attached(struct ifaddr *ifa)
3781 {
3782 struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa;
3783
3784 IFA_LOCK_ASSERT_HELD(ifa);
3785
3786 if (!(ifa->ifa_debug & IFD_DEBUG)) {
3787 panic("%s: ifa %p has no debug structure", __func__, ifa);
3788 /* NOTREACHED */
3789 }
3790 if (ifa->ifa_debug & IFD_TRASHED) {
3791 /* Become a regular mutex, just in case */
3792 IFA_CONVERT_LOCK(ifa);
3793 lck_mtx_lock(&in6ifa_trash_lock);
3794 TAILQ_REMOVE(&in6ifa_trash_head, in6ifa_dbg, in6ifa_trash_link);
3795 lck_mtx_unlock(&in6ifa_trash_lock);
3796 ifa->ifa_debug &= ~IFD_TRASHED;
3797 }
3798 }
3799
3800 static void
3801 in6_ifaddr_detached(struct ifaddr *ifa)
3802 {
3803 struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa;
3804
3805 IFA_LOCK_ASSERT_HELD(ifa);
3806
3807 if (!(ifa->ifa_debug & IFD_DEBUG)) {
3808 panic("%s: ifa %p has no debug structure", __func__, ifa);
3809 /* NOTREACHED */
3810 } else if (ifa->ifa_debug & IFD_TRASHED) {
3811 panic("%s: ifa %p is already in trash list", __func__, ifa);
3812 /* NOTREACHED */
3813 }
3814 ifa->ifa_debug |= IFD_TRASHED;
3815 /* Become a regular mutex, just in case */
3816 IFA_CONVERT_LOCK(ifa);
3817 lck_mtx_lock(&in6ifa_trash_lock);
3818 TAILQ_INSERT_TAIL(&in6ifa_trash_head, in6ifa_dbg, in6ifa_trash_link);
3819 lck_mtx_unlock(&in6ifa_trash_lock);
3820 }
3821
3822 static void
3823 in6_ifaddr_trace(struct ifaddr *ifa, int refhold)
3824 {
3825 struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa;
3826 ctrace_t *tr;
3827 u_int32_t idx;
3828 u_int16_t *cnt;
3829
3830 if (!(ifa->ifa_debug & IFD_DEBUG)) {
3831 panic("%s: ifa %p has no debug structure", __func__, ifa);
3832 /* NOTREACHED */
3833 }
3834 if (refhold) {
3835 cnt = &in6ifa_dbg->in6ifa_refhold_cnt;
3836 tr = in6ifa_dbg->in6ifa_refhold;
3837 } else {
3838 cnt = &in6ifa_dbg->in6ifa_refrele_cnt;
3839 tr = in6ifa_dbg->in6ifa_refrele;
3840 }
3841
3842 idx = atomic_add_16_ov(cnt, 1) % IN6IFA_TRACE_HIST_SIZE;
3843 ctrace_record(&tr[idx]);
3844 }
3845
3846 static void
3847 in6_ifaddr_set_dadprogress(struct in6_ifaddr *ia)
3848 {
3849 struct ifnet* ifp = ia->ia_ifp;
3850 uint32_t flags = IN6_IFF_TENTATIVE;
3851 uint32_t optdad = nd6_optimistic_dad;
3852
3853 if (optdad) {
3854 if ((ifp->if_eflags & IFEF_IPV6_ROUTER) != 0) {
3855 optdad = 0;
3856 } else {
3857 struct nd_ifinfo *ndi;
3858
3859 lck_rw_lock_shared(nd_if_rwlock);
3860 ndi = ND_IFINFO(ifp);
3861 VERIFY (ndi != NULL && ndi->initialized);
3862 lck_mtx_lock(&ndi->lock);
3863 if ((ndi->flags & ND6_IFF_REPLICATED) != 0) {
3864 optdad = 0;
3865 }
3866 lck_mtx_unlock(&ndi->lock);
3867 lck_rw_done(nd_if_rwlock);
3868 }
3869 }
3870
3871 if (optdad) {
3872 if ((optdad & ND6_OPTIMISTIC_DAD_LINKLOCAL) &&
3873 IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
3874 flags = IN6_IFF_OPTIMISTIC;
3875 else if ((optdad & ND6_OPTIMISTIC_DAD_AUTOCONF) &&
3876 (ia->ia6_flags & IN6_IFF_AUTOCONF)) {
3877 if (ia->ia6_flags & IN6_IFF_TEMPORARY) {
3878 if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY)
3879 flags = IN6_IFF_OPTIMISTIC;
3880 } else if (ia->ia6_flags & IN6_IFF_SECURED) {
3881 if (optdad & ND6_OPTIMISTIC_DAD_SECURED)
3882 flags = IN6_IFF_OPTIMISTIC;
3883 }
3884 } else if ((optdad & ND6_OPTIMISTIC_DAD_DYNAMIC) &&
3885 (ia->ia6_flags & IN6_IFF_DYNAMIC)) {
3886 if (ia->ia6_flags & IN6_IFF_TEMPORARY) {
3887 if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY)
3888 flags = IN6_IFF_OPTIMISTIC;
3889 } else {
3890 flags = IN6_IFF_OPTIMISTIC;
3891 }
3892 } else if ((optdad & ND6_OPTIMISTIC_DAD_MANUAL) &&
3893 (ia->ia6_flags & IN6_IFF_OPTIMISTIC)) {
3894 /*
3895 * rdar://17483438
3896 * Bypass tentative for address assignments
3897 * not covered above (e.g. manual) upon request
3898 */
3899 if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr) &&
3900 !(ia->ia6_flags & IN6_IFF_AUTOCONF) &&
3901 !(ia->ia6_flags & IN6_IFF_DYNAMIC))
3902 flags = IN6_IFF_OPTIMISTIC;
3903 }
3904 }
3905
3906 ia->ia6_flags &= ~(IN6_IFF_DUPLICATED | IN6_IFF_DADPROGRESS);
3907 ia->ia6_flags |= flags;
3908
3909 nd6log2((LOG_DEBUG, "%s - %s ifp %s ia6_flags 0x%x\n",
3910 __func__,
3911 ip6_sprintf(&ia->ia_addr.sin6_addr),
3912 if_name(ia->ia_ifp),
3913 ia->ia6_flags));
3914 }
3915
3916 /*
3917 * Handle SIOCGASSOCIDS ioctl for PF_INET6 domain.
3918 */
3919 static int
3920 in6_getassocids(struct socket *so, uint32_t *cnt, user_addr_t aidp)
3921 {
3922 struct in6pcb *in6p = sotoin6pcb(so);
3923 associd_t aid;
3924
3925 if (in6p == NULL || in6p->inp_state == INPCB_STATE_DEAD)
3926 return (EINVAL);
3927
3928 /* IN6PCB has no concept of association */
3929 aid = ASSOCID_ANY;
3930 *cnt = 0;
3931
3932 /* just asking how many there are? */
3933 if (aidp == USER_ADDR_NULL)
3934 return (0);
3935
3936 return (copyout(&aid, aidp, sizeof (aid)));
3937 }
3938
3939 /*
3940 * Handle SIOCGCONNIDS ioctl for PF_INET6 domain.
3941 */
3942 static int
3943 in6_getconnids(struct socket *so, associd_t aid, uint32_t *cnt,
3944 user_addr_t cidp)
3945 {
3946 struct in6pcb *in6p = sotoin6pcb(so);
3947 connid_t cid;
3948
3949 if (in6p == NULL || in6p->inp_state == INPCB_STATE_DEAD)
3950 return (EINVAL);
3951
3952 if (aid != ASSOCID_ANY && aid != ASSOCID_ALL)
3953 return (EINVAL);
3954
3955 /* if connected, return 1 connection count */
3956 *cnt = ((so->so_state & SS_ISCONNECTED) ? 1 : 0);
3957
3958 /* just asking how many there are? */
3959 if (cidp == USER_ADDR_NULL)
3960 return (0);
3961
3962 /* if IN6PCB is connected, assign it connid 1 */
3963 cid = ((*cnt != 0) ? 1 : CONNID_ANY);
3964
3965 return (copyout(&cid, cidp, sizeof (cid)));
3966 }
3967
3968 /*
3969 * Handle SIOCGCONNINFO ioctl for PF_INET6 domain.
3970 */
3971 static int
3972 in6_getconninfo(struct socket *so, connid_t cid, uint32_t *flags,
3973 uint32_t *ifindex, int32_t *soerror, user_addr_t src, socklen_t *src_len,
3974 user_addr_t dst, socklen_t *dst_len, uint32_t *aux_type,
3975 user_addr_t aux_data, uint32_t *aux_len)
3976 {
3977 #pragma unused(aux_data)
3978 struct in6pcb *in6p = sotoin6pcb(so);
3979 struct sockaddr_in6 sin6;
3980 struct ifnet *ifp = NULL;
3981 int error = 0;
3982 u_int32_t copy_len = 0;
3983
3984 /*
3985 * Don't test for INPCB_STATE_DEAD since this may be called
3986 * after SOF_PCBCLEARING is set, e.g. after tcp_close().
3987 */
3988 if (in6p == NULL) {
3989 error = EINVAL;
3990 goto out;
3991 }
3992
3993 if (cid != CONNID_ANY && cid != CONNID_ALL && cid != 1) {
3994 error = EINVAL;
3995 goto out;
3996 }
3997
3998 ifp = in6p->in6p_last_outifp;
3999 *ifindex = ((ifp != NULL) ? ifp->if_index : 0);
4000 *soerror = so->so_error;
4001 *flags = 0;
4002 if (so->so_state & SS_ISCONNECTED)
4003 *flags |= (CIF_CONNECTED | CIF_PREFERRED);
4004 if (in6p->in6p_flags & INP_BOUND_IF)
4005 *flags |= CIF_BOUND_IF;
4006 if (!(in6p->in6p_flags & INP_IN6ADDR_ANY))
4007 *flags |= CIF_BOUND_IP;
4008 if (!(in6p->in6p_flags & INP_ANONPORT))
4009 *flags |= CIF_BOUND_PORT;
4010
4011 bzero(&sin6, sizeof (sin6));
4012 sin6.sin6_len = sizeof (sin6);
4013 sin6.sin6_family = AF_INET6;
4014
4015 /* source address and port */
4016 sin6.sin6_port = in6p->in6p_lport;
4017 in6_recoverscope(&sin6, &in6p->in6p_laddr, NULL);
4018 if (*src_len == 0) {
4019 *src_len = sin6.sin6_len;
4020 } else {
4021 if (src != USER_ADDR_NULL) {
4022 copy_len = min(*src_len, sizeof (sin6));
4023 error = copyout(&sin6, src, copy_len);
4024 if (error != 0)
4025 goto out;
4026 *src_len = copy_len;
4027 }
4028 }
4029
4030 /* destination address and port */
4031 sin6.sin6_port = in6p->in6p_fport;
4032 in6_recoverscope(&sin6, &in6p->in6p_faddr, NULL);
4033 if (*dst_len == 0) {
4034 *dst_len = sin6.sin6_len;
4035 } else {
4036 if (dst != USER_ADDR_NULL) {
4037 copy_len = min(*dst_len, sizeof (sin6));
4038 error = copyout(&sin6, dst, copy_len);
4039 if (error != 0)
4040 goto out;
4041 *dst_len = copy_len;
4042 }
4043 }
4044
4045 *aux_type = 0;
4046 *aux_len = 0;
4047 if (SOCK_PROTO(so) == IPPROTO_TCP) {
4048 struct conninfo_tcp tcp_ci;
4049
4050 *aux_type = CIAUX_TCP;
4051 if (*aux_len == 0) {
4052 *aux_len = sizeof (tcp_ci);
4053 } else {
4054 if (aux_data != USER_ADDR_NULL) {
4055 copy_len = min(*aux_len, sizeof (tcp_ci));
4056 bzero(&tcp_ci, sizeof (tcp_ci));
4057 tcp_getconninfo(so, &tcp_ci);
4058 error = copyout(&tcp_ci, aux_data, copy_len);
4059 if (error != 0)
4060 goto out;
4061 *aux_len = copy_len;
4062 }
4063 }
4064 }
4065
4066 out:
4067 return (error);
4068 }
4069
4070 /*
4071 * 'u' group ioctls.
4072 *
4073 * The switch statement below does nothing at runtime, as it serves as a
4074 * compile time check to ensure that all of the socket 'u' ioctls (those
4075 * in the 'u' group going thru soo_ioctl) that are made available by the
4076 * networking stack is unique. This works as long as this routine gets
4077 * updated each time a new interface ioctl gets added.
4078 *
4079 * Any failures at compile time indicates duplicated ioctl values.
4080 */
4081 static __attribute__((unused)) void
4082 in6ioctl_cassert(void)
4083 {
4084 /*
4085 * This is equivalent to _CASSERT() and the compiler wouldn't
4086 * generate any instructions, thus for compile time only.
4087 */
4088 switch ((u_long)0) {
4089 case 0:
4090
4091 /* bsd/netinet6/in6_var.h */
4092 case SIOCAADDRCTL_POLICY:
4093 case SIOCDADDRCTL_POLICY:
4094 case SIOCDRADD_IN6_32:
4095 case SIOCDRADD_IN6_64:
4096 case SIOCDRDEL_IN6_32:
4097 case SIOCDRDEL_IN6_64:
4098 ;
4099 }
4100 }