]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_subr.c
xnu-2782.30.5.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_subr.c
1 /*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/domain.h>
78 #include <sys/proc.h>
79 #include <sys/kauth.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/protosw.h>
83 #include <sys/random.h>
84 #include <sys/syslog.h>
85 #include <sys/mcache.h>
86 #include <kern/locks.h>
87 #include <kern/zalloc.h>
88
89 #include <dev/random/randomdev.h>
90
91 #include <net/route.h>
92 #include <net/if.h>
93 #include <net/content_filter.h>
94
95 #define tcp_minmssoverload fring
96 #define _IP_VHL
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>
101 #if INET6
102 #include <netinet/ip6.h>
103 #endif
104 #include <netinet/in_pcb.h>
105 #if INET6
106 #include <netinet6/in6_pcb.h>
107 #endif
108 #include <netinet/in_var.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/icmp_var.h>
111 #if INET6
112 #include <netinet6/ip6_var.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_var.h>
119 #include <netinet/tcp_cc.h>
120 #include <kern/thread_call.h>
121
122 #if INET6
123 #include <netinet6/tcp6_var.h>
124 #endif
125 #include <netinet/tcpip.h>
126 #if TCPDEBUG
127 #include <netinet/tcp_debug.h>
128 #endif
129 #include <netinet6/ip6protosw.h>
130
131 #if IPSEC
132 #include <netinet6/ipsec.h>
133 #if INET6
134 #include <netinet6/ipsec6.h>
135 #endif
136 #endif /*IPSEC*/
137
138 #if NECP
139 #include <net/necp.h>
140 #endif /* NECP */
141
142 #undef tcp_minmssoverload
143
144 #if CONFIG_MACF_NET
145 #include <security/mac_framework.h>
146 #endif /* MAC_NET */
147
148 #include <libkern/crypto/md5.h>
149 #include <sys/kdebug.h>
150 #include <mach/sdt.h>
151
152 #include <netinet/lro_ext.h>
153
154 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
155
156 extern int tcp_lq_overflow;
157
158 extern struct tcptimerlist tcp_timer_list;
159 extern struct tcptailq tcp_tw_tailq;
160
161 int tcp_mssdflt = TCP_MSS;
162 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW | CTLFLAG_LOCKED,
163 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
164
165 #if INET6
166 int tcp_v6mssdflt = TCP6_MSS;
167 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
168 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_v6mssdflt , 0,
169 "Default TCP Maximum Segment Size for IPv6");
170 #endif
171
172 extern int tcp_do_autorcvbuf;
173
174 /*
175 * Minimum MSS we accept and use. This prevents DoS attacks where
176 * we are forced to a ridiculous low MSS like 20 and send hundreds
177 * of packets instead of one. The effect scales with the available
178 * bandwidth and quickly saturates the CPU and network interface
179 * with packet generation and sending. Set to zero to disable MINMSS
180 * checking. This setting prevents us from sending too small packets.
181 */
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW | CTLFLAG_LOCKED,
184 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185
186 static int tcp_do_rfc1323 = 1;
187 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW | CTLFLAG_LOCKED,
188 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
189
190 // Not used
191 static int tcp_do_rfc1644 = 0;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW | CTLFLAG_LOCKED,
193 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
194
195 static int do_tcpdrain = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW | CTLFLAG_LOCKED, &do_tcpdrain, 0,
197 "Enable tcp_drain routine for extra help when low on mbufs");
198
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
200 &tcbinfo.ipi_count, 0, "Number of active PCBs");
201
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tw_pcbcount,
203 CTLFLAG_RD | CTLFLAG_LOCKED,
204 &tcbinfo.ipi_twcount, 0, "Number of pcbs in time-wait state");
205
206 static int icmp_may_rst = 1;
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW | CTLFLAG_LOCKED, &icmp_may_rst, 0,
208 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
209
210 static int tcp_strict_rfc1948 = 0;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW | CTLFLAG_LOCKED,
212 &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
213
214 static int tcp_isn_reseed_interval = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW | CTLFLAG_LOCKED,
216 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
217 static int tcp_background_io_enabled = 1;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, background_io_enabled, CTLFLAG_RW | CTLFLAG_LOCKED,
219 &tcp_background_io_enabled, 0, "Background IO Enabled");
220
221 int tcp_TCPTV_MIN = 100; /* 100ms minimum RTT */
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rtt_min, CTLFLAG_RW | CTLFLAG_LOCKED,
223 &tcp_TCPTV_MIN, 0, "min rtt value allowed");
224
225 int tcp_rexmt_slop = TCPTV_REXMTSLOP;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rexmt_slop, CTLFLAG_RW,
227 &tcp_rexmt_slop, 0, "Slop added to retransmit timeout");
228
229 __private_extern__ int tcp_use_randomport = 0;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED,
231 &tcp_use_randomport, 0, "Randomize TCP port numbers");
232
233 __private_extern__ int tcp_win_scale = 3;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, win_scale_factor, CTLFLAG_RW | CTLFLAG_LOCKED,
235 &tcp_win_scale, 0, "Window scaling factor");
236
237 static void tcp_cleartaocache(void);
238 static void tcp_notify(struct inpcb *, int);
239
240 struct zone *sack_hole_zone;
241 struct zone *tcp_reass_zone;
242 struct zone *tcp_bwmeas_zone;
243
244 extern int slowlink_wsize; /* window correction for slow links */
245 extern int path_mtu_discovery;
246
247 extern u_int32_t tcp_autorcvbuf_max;
248 extern u_int32_t tcp_autorcvbuf_inc_shift;
249 static void tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb);
250
251 #define TCP_BWMEAS_BURST_MINSIZE 6
252 #define TCP_BWMEAS_BURST_MAXSIZE 25
253
254 static uint32_t bwmeas_elm_size;
255
256 /*
257 * Target size of TCP PCB hash tables. Must be a power of two.
258 *
259 * Note that this can be overridden by the kernel environment
260 * variable net.inet.tcp.tcbhashsize
261 */
262 #ifndef TCBHASHSIZE
263 #define TCBHASHSIZE CONFIG_TCBHASHSIZE
264 #endif
265
266 __private_extern__ int tcp_tcbhashsize = TCBHASHSIZE;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD | CTLFLAG_LOCKED,
268 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
269
270 /*
271 * This is the actual shape of what we allocate using the zone
272 * allocator. Doing it this way allows us to protect both structures
273 * using the same generation count, and also eliminates the overhead
274 * of allocating tcpcbs separately. By hiding the structure here,
275 * we avoid changing most of the rest of the code (although it needs
276 * to be changed, eventually, for greater efficiency).
277 */
278 #define ALIGNMENT 32
279 struct inp_tp {
280 struct inpcb inp;
281 struct tcpcb tcb __attribute__((aligned(ALIGNMENT)));
282 };
283 #undef ALIGNMENT
284
285 int get_inpcb_str_size(void);
286 int get_tcp_str_size(void);
287
288 static void tcpcb_to_otcpcb(struct tcpcb *, struct otcpcb *);
289
290 static lck_attr_t *tcp_uptime_mtx_attr = NULL; /* mutex attributes */
291 static lck_grp_t *tcp_uptime_mtx_grp = NULL; /* mutex group definition */
292 static lck_grp_attr_t *tcp_uptime_mtx_grp_attr = NULL; /* mutex group attributes */
293 int tcp_notsent_lowat_check(struct socket *so);
294
295 int get_inpcb_str_size(void)
296 {
297 return sizeof(struct inpcb);
298 }
299
300 int get_tcp_str_size(void)
301 {
302 return sizeof(struct tcpcb);
303 }
304
305 int tcp_freeq(struct tcpcb *tp);
306
307 static int scale_to_powerof2(int size);
308
309 /*
310 * This helper routine returns one of the following scaled value of size:
311 * 1. Rounded down power of two value of size if the size value passed as
312 * argument is not a power of two and the rounded up value overflows.
313 * OR
314 * 2. Rounded up power of two value of size if the size value passed as
315 * argument is not a power of two and the rounded up value does not overflow
316 * OR
317 * 3. Same value as argument size if it is already a power of two.
318 */
319 static int scale_to_powerof2(int size) {
320 /* Handle special case of size = 0 */
321 int ret = size ? size : 1;
322
323 if (!powerof2(ret)) {
324 while(!powerof2(size)) {
325 /*
326 * Clear out least significant
327 * set bit till size is left with
328 * its highest set bit at which point
329 * it is rounded down power of two.
330 */
331 size = size & (size -1);
332 }
333
334 /* Check for overflow when rounding up */
335 if (0 == (size << 1)) {
336 ret = size;
337 } else {
338 ret = size << 1;
339 }
340 }
341
342 return ret;
343 }
344
345 /*
346 * Tcp initialization
347 */
348 void
349 tcp_init(struct protosw *pp, struct domain *dp)
350 {
351 #pragma unused(dp)
352 static int tcp_initialized = 0;
353 vm_size_t str_size;
354 struct inpcbinfo *pcbinfo;
355
356 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
357
358 if (tcp_initialized)
359 return;
360 tcp_initialized = 1;
361
362 tcp_ccgen = 1;
363 tcp_cleartaocache();
364
365 tcp_keepinit = TCPTV_KEEP_INIT;
366 tcp_keepidle = TCPTV_KEEP_IDLE;
367 tcp_keepintvl = TCPTV_KEEPINTVL;
368 tcp_keepcnt = TCPTV_KEEPCNT;
369 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
370 tcp_msl = TCPTV_MSL;
371
372 microuptime(&tcp_uptime);
373 read_random(&tcp_now, sizeof(tcp_now));
374 tcp_now = tcp_now & 0x3fffffff; /* Starts tcp internal clock at a random value */
375
376 LIST_INIT(&tcb);
377 tcbinfo.ipi_listhead = &tcb;
378
379 pcbinfo = &tcbinfo;
380 /*
381 * allocate lock group attribute and group for tcp pcb mutexes
382 */
383 pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init();
384 pcbinfo->ipi_lock_grp = lck_grp_alloc_init("tcppcb", pcbinfo->ipi_lock_grp_attr);
385
386 /*
387 * allocate the lock attribute for tcp pcb mutexes
388 */
389 pcbinfo->ipi_lock_attr = lck_attr_alloc_init();
390
391 if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp,
392 pcbinfo->ipi_lock_attr)) == NULL) {
393 panic("%s: unable to allocate PCB lock\n", __func__);
394 /* NOTREACHED */
395 }
396
397 if (tcp_tcbhashsize == 0) {
398 /* Set to default */
399 tcp_tcbhashsize = 512;
400 }
401
402 if (!powerof2(tcp_tcbhashsize)) {
403 int old_hash_size = tcp_tcbhashsize;
404 tcp_tcbhashsize = scale_to_powerof2(tcp_tcbhashsize);
405 /* Lower limit of 16 */
406 if (tcp_tcbhashsize < 16) {
407 tcp_tcbhashsize = 16;
408 }
409 printf("WARNING: TCB hash size not a power of 2, "
410 "scaled from %d to %d.\n",
411 old_hash_size,
412 tcp_tcbhashsize);
413 }
414
415 tcbinfo.ipi_hashbase = hashinit(tcp_tcbhashsize, M_PCB, &tcbinfo.ipi_hashmask);
416 tcbinfo.ipi_porthashbase = hashinit(tcp_tcbhashsize, M_PCB,
417 &tcbinfo.ipi_porthashmask);
418 str_size = P2ROUNDUP(sizeof(struct inp_tp), sizeof(u_int64_t));
419 tcbinfo.ipi_zone = zinit(str_size, 120000*str_size, 8192, "tcpcb");
420 zone_change(tcbinfo.ipi_zone, Z_CALLERACCT, FALSE);
421 zone_change(tcbinfo.ipi_zone, Z_EXPAND, TRUE);
422
423 tcbinfo.ipi_gc = tcp_gc;
424 in_pcbinfo_attach(&tcbinfo);
425
426 str_size = P2ROUNDUP(sizeof(struct sackhole), sizeof(u_int64_t));
427 sack_hole_zone = zinit(str_size, 120000*str_size, 8192, "sack_hole zone");
428 zone_change(sack_hole_zone, Z_CALLERACCT, FALSE);
429 zone_change(sack_hole_zone, Z_EXPAND, TRUE);
430
431 str_size = P2ROUNDUP(sizeof(struct tseg_qent), sizeof(u_int64_t));
432 tcp_reass_zone = zinit(str_size, (nmbclusters >> 4) * str_size,
433 0, "tcp_reass_zone");
434 if (tcp_reass_zone == NULL) {
435 panic("%s: failed allocating tcp_reass_zone", __func__);
436 /* NOTREACHED */
437 }
438 zone_change(tcp_reass_zone, Z_CALLERACCT, FALSE);
439 zone_change(tcp_reass_zone, Z_EXPAND, TRUE);
440
441 bwmeas_elm_size = P2ROUNDUP(sizeof(struct bwmeas), sizeof(u_int64_t));
442 tcp_bwmeas_zone = zinit(bwmeas_elm_size, (100 * bwmeas_elm_size), 0, "tcp_bwmeas_zone");
443 if (tcp_bwmeas_zone == NULL) {
444 panic("%s: failed allocating tcp_bwmeas_zone", __func__);
445 /* NOTREACHED */
446 }
447 zone_change(tcp_bwmeas_zone, Z_CALLERACCT, FALSE);
448 zone_change(tcp_bwmeas_zone, Z_EXPAND, TRUE);
449
450 str_size = P2ROUNDUP(sizeof(struct tcp_ccstate), sizeof(u_int64_t));
451 tcp_cc_zone = zinit(str_size, 20000 * str_size, 0, "tcp_cc_zone");
452 zone_change(tcp_cc_zone, Z_CALLERACCT, FALSE);
453 zone_change(tcp_cc_zone, Z_EXPAND, TRUE);
454
455 #if INET6
456 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
457 #else /* INET6 */
458 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
459 #endif /* INET6 */
460 if (max_protohdr < TCP_MINPROTOHDR) {
461 _max_protohdr = TCP_MINPROTOHDR;
462 _max_protohdr = max_protohdr; /* round it up */
463 }
464 if (max_linkhdr + max_protohdr > MCLBYTES)
465 panic("tcp_init");
466 #undef TCP_MINPROTOHDR
467
468 /* Initialize time wait and timer lists */
469 TAILQ_INIT(&tcp_tw_tailq);
470
471 bzero(&tcp_timer_list, sizeof(tcp_timer_list));
472 LIST_INIT(&tcp_timer_list.lhead);
473 /*
474 * allocate lock group attribute, group and attribute for the tcp timer list
475 */
476 tcp_timer_list.mtx_grp_attr = lck_grp_attr_alloc_init();
477 tcp_timer_list.mtx_grp = lck_grp_alloc_init("tcptimerlist", tcp_timer_list.mtx_grp_attr);
478 tcp_timer_list.mtx_attr = lck_attr_alloc_init();
479 if ((tcp_timer_list.mtx = lck_mtx_alloc_init(tcp_timer_list.mtx_grp, tcp_timer_list.mtx_attr)) == NULL) {
480 panic("failed to allocate memory for tcp_timer_list.mtx\n");
481 };
482 if ((tcp_timer_list.call = thread_call_allocate(tcp_run_timerlist, NULL)) == NULL) {
483 panic("failed to allocate call entry 1 in tcp_init\n");
484 }
485
486 /*
487 * allocate lock group attribute, group and attribute for tcp_uptime_lock
488 */
489 tcp_uptime_mtx_grp_attr = lck_grp_attr_alloc_init();
490 tcp_uptime_mtx_grp = lck_grp_alloc_init("tcpuptime", tcp_uptime_mtx_grp_attr);
491 tcp_uptime_mtx_attr = lck_attr_alloc_init();
492 tcp_uptime_lock = lck_spin_alloc_init(tcp_uptime_mtx_grp, tcp_uptime_mtx_attr);
493
494 /* Initialize TCP LRO data structures */
495 tcp_lro_init();
496
497 /*
498 * If more than 60 MB of mbuf pool is available, increase the
499 * maximum allowed receive and send socket buffer size.
500 */
501 if (nmbclusters > 30720) {
502 tcp_autorcvbuf_max = 1024 * 1024;
503 tcp_autosndbuf_max = 1024 * 1024;
504 }
505 }
506
507 /*
508 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
509 * tcp_template used to store this data in mbufs, but we now recopy it out
510 * of the tcpcb each time to conserve mbufs.
511 */
512 void
513 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
514 struct tcpcb *tp;
515 void *ip_ptr;
516 void *tcp_ptr;
517 {
518 struct inpcb *inp = tp->t_inpcb;
519 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
520
521 #if INET6
522 if ((inp->inp_vflag & INP_IPV6) != 0) {
523 struct ip6_hdr *ip6;
524
525 ip6 = (struct ip6_hdr *)ip_ptr;
526 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
527 (inp->inp_flow & IPV6_FLOWINFO_MASK);
528 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
529 (IPV6_VERSION & IPV6_VERSION_MASK);
530 ip6->ip6_nxt = IPPROTO_TCP;
531 ip6->ip6_plen = sizeof(struct tcphdr);
532 ip6->ip6_src = inp->in6p_laddr;
533 ip6->ip6_dst = inp->in6p_faddr;
534 tcp_hdr->th_sum = in6_pseudo(&inp->in6p_laddr, &inp->in6p_faddr,
535 htonl(sizeof (struct tcphdr) + IPPROTO_TCP));
536 } else
537 #endif
538 {
539 struct ip *ip = (struct ip *) ip_ptr;
540
541 ip->ip_vhl = IP_VHL_BORING;
542 ip->ip_tos = 0;
543 ip->ip_len = 0;
544 ip->ip_id = 0;
545 ip->ip_off = 0;
546 ip->ip_ttl = 0;
547 ip->ip_sum = 0;
548 ip->ip_p = IPPROTO_TCP;
549 ip->ip_src = inp->inp_laddr;
550 ip->ip_dst = inp->inp_faddr;
551 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
552 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
553 }
554
555 tcp_hdr->th_sport = inp->inp_lport;
556 tcp_hdr->th_dport = inp->inp_fport;
557 tcp_hdr->th_seq = 0;
558 tcp_hdr->th_ack = 0;
559 tcp_hdr->th_x2 = 0;
560 tcp_hdr->th_off = 5;
561 tcp_hdr->th_flags = 0;
562 tcp_hdr->th_win = 0;
563 tcp_hdr->th_urp = 0;
564 }
565
566 /*
567 * Create template to be used to send tcp packets on a connection.
568 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
569 * use for this function is in keepalives, which use tcp_respond.
570 */
571 struct tcptemp *
572 tcp_maketemplate(tp)
573 struct tcpcb *tp;
574 {
575 struct mbuf *m;
576 struct tcptemp *n;
577
578 m = m_get(M_DONTWAIT, MT_HEADER);
579 if (m == NULL)
580 return (0);
581 m->m_len = sizeof(struct tcptemp);
582 n = mtod(m, struct tcptemp *);
583
584 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
585 return (n);
586 }
587
588 /*
589 * Send a single message to the TCP at address specified by
590 * the given TCP/IP header. If m == 0, then we make a copy
591 * of the tcpiphdr at ti and send directly to the addressed host.
592 * This is used to force keep alive messages out using the TCP
593 * template for a connection. If flags are given then we send
594 * a message back to the TCP which originated the * segment ti,
595 * and discard the mbuf containing it and any other attached mbufs.
596 *
597 * In any case the ack and sequence number of the transmitted
598 * segment are as specified by the parameters.
599 *
600 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
601 */
602 void
603 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
604 tcp_seq ack, tcp_seq seq, int flags, struct tcp_respond_args *tra)
605 {
606 int tlen;
607 int win = 0;
608 struct route *ro = 0;
609 struct route sro;
610 struct ip *ip;
611 struct tcphdr *nth;
612 #if INET6
613 struct route_in6 *ro6 = 0;
614 struct route_in6 sro6;
615 struct ip6_hdr *ip6;
616 int isipv6;
617 #endif /* INET6 */
618 struct ifnet *outif;
619
620 #if INET6
621 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
622 ip6 = ipgen;
623 #endif /* INET6 */
624 ip = ipgen;
625
626 if (tp) {
627 if (!(flags & TH_RST)) {
628 win = tcp_sbspace(tp);
629 if (win > (int32_t)TCP_MAXWIN << tp->rcv_scale)
630 win = (int32_t)TCP_MAXWIN << tp->rcv_scale;
631 }
632 #if INET6
633 if (isipv6)
634 ro6 = &tp->t_inpcb->in6p_route;
635 else
636 #endif /* INET6 */
637 ro = &tp->t_inpcb->inp_route;
638 } else {
639 #if INET6
640 if (isipv6) {
641 ro6 = &sro6;
642 bzero(ro6, sizeof *ro6);
643 } else
644 #endif /* INET6 */
645 {
646 ro = &sro;
647 bzero(ro, sizeof *ro);
648 }
649 }
650 if (m == 0) {
651 m = m_gethdr(M_DONTWAIT, MT_HEADER); /* MAC-OK */
652 if (m == NULL)
653 return;
654 tlen = 0;
655 m->m_data += max_linkhdr;
656 #if INET6
657 if (isipv6) {
658 VERIFY((MHLEN - max_linkhdr) >=
659 (sizeof (*ip6) + sizeof (*nth)));
660 bcopy((caddr_t)ip6, mtod(m, caddr_t),
661 sizeof(struct ip6_hdr));
662 ip6 = mtod(m, struct ip6_hdr *);
663 nth = (struct tcphdr *)(void *)(ip6 + 1);
664 } else
665 #endif /* INET6 */
666 {
667 VERIFY((MHLEN - max_linkhdr) >=
668 (sizeof (*ip) + sizeof (*nth)));
669 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
670 ip = mtod(m, struct ip *);
671 nth = (struct tcphdr *)(void *)(ip + 1);
672 }
673 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
674 #if MPTCP
675 if ((tp) && (tp->t_mpflags & TMPF_RESET))
676 flags = (TH_RST | TH_ACK);
677 else
678 #endif
679 flags = TH_ACK;
680 } else {
681 m_freem(m->m_next);
682 m->m_next = 0;
683 m->m_data = (caddr_t)ipgen;
684 /* m_len is set later */
685 tlen = 0;
686 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
687 #if INET6
688 if (isipv6) {
689 /* Expect 32-bit aligned IP on strict-align platforms */
690 IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6);
691 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
692 nth = (struct tcphdr *)(void *)(ip6 + 1);
693 } else
694 #endif /* INET6 */
695 {
696 /* Expect 32-bit aligned IP on strict-align platforms */
697 IP_HDR_STRICT_ALIGNMENT_CHECK(ip);
698 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
699 nth = (struct tcphdr *)(void *)(ip + 1);
700 }
701 if (th != nth) {
702 /*
703 * this is usually a case when an extension header
704 * exists between the IPv6 header and the
705 * TCP header.
706 */
707 nth->th_sport = th->th_sport;
708 nth->th_dport = th->th_dport;
709 }
710 xchg(nth->th_dport, nth->th_sport, n_short);
711 #undef xchg
712 }
713 #if INET6
714 if (isipv6) {
715 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
716 tlen));
717 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
718 } else
719 #endif
720 {
721 tlen += sizeof (struct tcpiphdr);
722 ip->ip_len = tlen;
723 ip->ip_ttl = ip_defttl;
724 }
725 m->m_len = tlen;
726 m->m_pkthdr.len = tlen;
727 m->m_pkthdr.rcvif = 0;
728 #if CONFIG_MACF_NET
729 if (tp != NULL && tp->t_inpcb != NULL) {
730 /*
731 * Packet is associated with a socket, so allow the
732 * label of the response to reflect the socket label.
733 */
734 mac_mbuf_label_associate_inpcb(tp->t_inpcb, m);
735 } else {
736 /*
737 * Packet is not associated with a socket, so possibly
738 * update the label in place.
739 */
740 mac_netinet_tcp_reply(m);
741 }
742 #endif
743
744 nth->th_seq = htonl(seq);
745 nth->th_ack = htonl(ack);
746 nth->th_x2 = 0;
747 nth->th_off = sizeof (struct tcphdr) >> 2;
748 nth->th_flags = flags;
749 if (tp)
750 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
751 else
752 nth->th_win = htons((u_short)win);
753 nth->th_urp = 0;
754 #if INET6
755 if (isipv6) {
756 nth->th_sum = 0;
757 nth->th_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst,
758 htonl((tlen - sizeof (struct ip6_hdr)) + IPPROTO_TCP));
759 m->m_pkthdr.csum_flags = CSUM_TCPIPV6;
760 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
761 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
762 ro6 && ro6->ro_rt ?
763 ro6->ro_rt->rt_ifp :
764 NULL);
765 } else
766 #endif /* INET6 */
767 {
768 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
769 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
770 m->m_pkthdr.csum_flags = CSUM_TCP;
771 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
772 }
773 #if TCPDEBUG
774 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
775 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
776 #endif
777
778 #if NECP
779 necp_mark_packet_from_socket(m, tp ? tp->t_inpcb : NULL, 0);
780 #endif /* NECP */
781
782 #if IPSEC
783 if (tp != NULL && tp->t_inpcb->inp_sp != NULL &&
784 ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
785 m_freem(m);
786 return;
787 }
788 #endif
789
790 if (tp != NULL) {
791 u_int32_t svc_flags = 0;
792 if (isipv6) {
793 svc_flags |= PKT_SCF_IPV6;
794 }
795 set_packet_service_class(m, tp->t_inpcb->inp_socket,
796 MBUF_SC_UNSPEC, svc_flags);
797
798 /* Embed flowhash and flow control flags */
799 m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
800 m->m_pkthdr.pkt_flowid = tp->t_inpcb->inp_flowhash;
801 m->m_pkthdr.pkt_flags |= PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC;
802 #if MPTCP
803 /* Disable flow advisory when using MPTCP. */
804 if (!(tp->t_mpflags & TMPF_MPTCP_TRUE))
805 #endif /* MPTCP */
806 m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV;
807 m->m_pkthdr.pkt_proto = IPPROTO_TCP;
808 }
809
810 #if INET6
811 if (isipv6) {
812 struct ip6_out_args ip6oa = { tra->ifscope, { 0 },
813 IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR, 0 };
814
815 if (tra->ifscope != IFSCOPE_NONE)
816 ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
817 if (tra->nocell)
818 ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
819 if (tra->noexpensive)
820 ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE;
821 if (tra->awdl_unrestricted)
822 ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED;
823
824 (void) ip6_output(m, NULL, ro6, IPV6_OUTARGS, NULL,
825 NULL, &ip6oa);
826
827 if (tp != NULL && ro6 != NULL && ro6->ro_rt != NULL &&
828 (outif = ro6->ro_rt->rt_ifp) !=
829 tp->t_inpcb->in6p_last_outifp)
830 tp->t_inpcb->in6p_last_outifp = outif;
831
832 if (ro6 == &sro6)
833 ROUTE_RELEASE(ro6);
834 } else
835 #endif /* INET6 */
836 {
837 struct ip_out_args ipoa = { tra->ifscope, { 0 },
838 IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR, 0 };
839
840 if (tra->ifscope != IFSCOPE_NONE)
841 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
842 if (tra->nocell)
843 ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
844 if (tra->noexpensive)
845 ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE;
846 if (tra->awdl_unrestricted)
847 ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED;
848
849 if (ro != &sro) {
850 /* Copy the cached route and take an extra reference */
851 inp_route_copyout(tp->t_inpcb, &sro);
852 }
853 /*
854 * For consistency, pass a local route copy.
855 */
856 (void) ip_output(m, NULL, &sro, IP_OUTARGS, NULL, &ipoa);
857
858 if (tp != NULL && sro.ro_rt != NULL &&
859 (outif = sro.ro_rt->rt_ifp) !=
860 tp->t_inpcb->inp_last_outifp)
861 tp->t_inpcb->inp_last_outifp = outif;
862
863 if (ro != &sro) {
864 /* Synchronize cached PCB route */
865 inp_route_copyin(tp->t_inpcb, &sro);
866 } else {
867 ROUTE_RELEASE(&sro);
868 }
869 }
870 }
871
872 /*
873 * Create a new TCP control block, making an
874 * empty reassembly queue and hooking it to the argument
875 * protocol control block. The `inp' parameter must have
876 * come from the zone allocator set up in tcp_init().
877 */
878 struct tcpcb *
879 tcp_newtcpcb(inp)
880 struct inpcb *inp;
881 {
882 struct inp_tp *it;
883 register struct tcpcb *tp;
884 register struct socket *so = inp->inp_socket;
885 #if INET6
886 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
887 #endif /* INET6 */
888
889 calculate_tcp_clock();
890
891 if (!so->cached_in_sock_layer) {
892 it = (struct inp_tp *)(void *)inp;
893 tp = &it->tcb;
894 } else {
895 tp = (struct tcpcb *)(void *)inp->inp_saved_ppcb;
896 }
897
898 bzero((char *) tp, sizeof(struct tcpcb));
899 LIST_INIT(&tp->t_segq);
900 tp->t_maxseg = tp->t_maxopd =
901 #if INET6
902 isipv6 ? tcp_v6mssdflt :
903 #endif /* INET6 */
904 tcp_mssdflt;
905
906 if (tcp_do_rfc1323)
907 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
908 if (tcp_do_sack)
909 tp->t_flagsext |= TF_SACK_ENABLE;
910
911 TAILQ_INIT(&tp->snd_holes);
912 tp->t_inpcb = inp; /* XXX */
913 /*
914 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
915 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
916 * reasonable initial retransmit time.
917 */
918 tp->t_srtt = TCPTV_SRTTBASE;
919 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
920 tp->t_rttmin = tcp_TCPTV_MIN;
921 tp->t_rxtcur = TCPTV_RTOBASE;
922
923 if (tcp_use_newreno)
924 /* use newreno by default */
925 tp->tcp_cc_index = TCP_CC_ALGO_NEWRENO_INDEX;
926 else
927 tp->tcp_cc_index = TCP_CC_ALGO_CUBIC_INDEX;
928
929 tcp_cc_allocate_state(tp);
930
931 if (CC_ALGO(tp)->init != NULL)
932 CC_ALGO(tp)->init(tp);
933
934 tp->snd_cwnd = TCP_CC_CWND_INIT_BYTES;
935 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
936 tp->snd_ssthresh_prev = TCP_MAXWIN << TCP_MAX_WINSHIFT;
937 tp->t_rcvtime = tcp_now;
938 tp->tentry.timer_start = tcp_now;
939 tp->t_persist_timeout = tcp_max_persist_timeout;
940 tp->t_persist_stop = 0;
941 tp->t_flagsext |= TF_RCVUNACK_WAITSS;
942 tp->t_rexmtthresh = tcprexmtthresh;
943
944 /* Clear time wait tailq entry */
945 tp->t_twentry.tqe_next = NULL;
946 tp->t_twentry.tqe_prev = NULL;
947
948 /*
949 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
950 * because the socket may be bound to an IPv6 wildcard address,
951 * which may match an IPv4-mapped IPv6 address.
952 */
953 inp->inp_ip_ttl = ip_defttl;
954 inp->inp_ppcb = (caddr_t)tp;
955 return (tp); /* XXX */
956 }
957
958 /*
959 * Drop a TCP connection, reporting
960 * the specified error. If connection is synchronized,
961 * then send a RST to peer.
962 */
963 struct tcpcb *
964 tcp_drop(tp, errno)
965 register struct tcpcb *tp;
966 int errno;
967 {
968 struct socket *so = tp->t_inpcb->inp_socket;
969 #if CONFIG_DTRACE
970 struct inpcb *inp = tp->t_inpcb;
971 #endif
972
973 if (TCPS_HAVERCVDSYN(tp->t_state)) {
974 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
975 struct tcpcb *, tp, int32_t, TCPS_CLOSED);
976 tp->t_state = TCPS_CLOSED;
977 (void) tcp_output(tp);
978 tcpstat.tcps_drops++;
979 } else
980 tcpstat.tcps_conndrops++;
981 if (errno == ETIMEDOUT && tp->t_softerror)
982 errno = tp->t_softerror;
983 so->so_error = errno;
984 return (tcp_close(tp));
985 }
986
987 void
988 tcp_getrt_rtt(struct tcpcb *tp, struct rtentry *rt)
989 {
990 u_int32_t rtt = rt->rt_rmx.rmx_rtt;
991 int isnetlocal = (tp->t_flags & TF_LOCAL);
992
993 if (rtt != 0) {
994 /*
995 * XXX the lock bit for RTT indicates that the value
996 * is also a minimum value; this is subject to time.
997 */
998 if (rt->rt_rmx.rmx_locks & RTV_RTT)
999 tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ);
1000 else
1001 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
1002 tp->t_srtt = rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
1003 tcpstat.tcps_usedrtt++;
1004 if (rt->rt_rmx.rmx_rttvar) {
1005 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1006 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
1007 tcpstat.tcps_usedrttvar++;
1008 } else {
1009 /* default variation is +- 1 rtt */
1010 tp->t_rttvar =
1011 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1012 }
1013 TCPT_RANGESET(tp->t_rxtcur,
1014 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1015 tp->t_rttmin, TCPTV_REXMTMAX,
1016 TCP_ADD_REXMTSLOP(tp));
1017 }
1018 }
1019
1020 /*
1021 * Close a TCP control block:
1022 * discard all space held by the tcp
1023 * discard internet protocol block
1024 * wake up any sleepers
1025 */
1026 struct tcpcb *
1027 tcp_close(tp)
1028 register struct tcpcb *tp;
1029 {
1030 struct inpcb *inp = tp->t_inpcb;
1031 struct socket *so = inp->inp_socket;
1032 #if INET6
1033 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1034 #endif /* INET6 */
1035 struct route *ro;
1036 struct rtentry *rt;
1037 int dosavessthresh;
1038
1039 /* tcp_close was called previously, bail */
1040 if (inp->inp_ppcb == NULL)
1041 return(NULL);
1042
1043 tcp_canceltimers(tp);
1044 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp,0,0,0,0);
1045
1046 /*
1047 * If another thread for this tcp is currently in ip (indicated by
1048 * the TF_SENDINPROG flag), defer the cleanup until after it returns
1049 * back to tcp. This is done to serialize the close until after all
1050 * pending output is finished, in order to avoid having the PCB be
1051 * detached and the cached route cleaned, only for ip to cache the
1052 * route back into the PCB again. Note that we've cleared all the
1053 * timers at this point. Set TF_CLOSING to indicate to tcp_output()
1054 * that is should call us again once it returns from ip; at that
1055 * point both flags should be cleared and we can proceed further
1056 * with the cleanup.
1057 */
1058 if ((tp->t_flags & TF_CLOSING) ||
1059 inp->inp_sndinprog_cnt > 0) {
1060 tp->t_flags |= TF_CLOSING;
1061 return (NULL);
1062 }
1063
1064 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
1065 struct tcpcb *, tp, int32_t, TCPS_CLOSED);
1066
1067 #if INET6
1068 ro = (isipv6 ? (struct route *)&inp->in6p_route : &inp->inp_route);
1069 #else
1070 ro = &inp->inp_route;
1071 #endif
1072 rt = ro->ro_rt;
1073 if (rt != NULL)
1074 RT_LOCK_SPIN(rt);
1075
1076 /*
1077 * If we got enough samples through the srtt filter,
1078 * save the rtt and rttvar in the routing entry.
1079 * 'Enough' is arbitrarily defined as the 16 samples.
1080 * 16 samples is enough for the srtt filter to converge
1081 * to within 5% of the correct value; fewer samples and
1082 * we could save a very bogus rtt.
1083 *
1084 * Don't update the default route's characteristics and don't
1085 * update anything that the user "locked".
1086 */
1087 if (tp->t_rttupdated >= 16) {
1088 register u_int32_t i = 0;
1089
1090 #if INET6
1091 if (isipv6) {
1092 struct sockaddr_in6 *sin6;
1093
1094 if (rt == NULL)
1095 goto no_valid_rt;
1096 sin6 = (struct sockaddr_in6 *)(void *)rt_key(rt);
1097 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
1098 goto no_valid_rt;
1099 }
1100 else
1101 #endif /* INET6 */
1102 if (ROUTE_UNUSABLE(ro) ||
1103 SIN(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) {
1104 DTRACE_TCP4(state__change, void, NULL,
1105 struct inpcb *, inp, struct tcpcb *, tp,
1106 int32_t, TCPS_CLOSED);
1107 tp->t_state = TCPS_CLOSED;
1108 goto no_valid_rt;
1109 }
1110
1111 RT_LOCK_ASSERT_HELD(rt);
1112 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1113 i = tp->t_srtt *
1114 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
1115 if (rt->rt_rmx.rmx_rtt && i)
1116 /*
1117 * filter this update to half the old & half
1118 * the new values, converting scale.
1119 * See route.h and tcp_var.h for a
1120 * description of the scaling constants.
1121 */
1122 rt->rt_rmx.rmx_rtt =
1123 (rt->rt_rmx.rmx_rtt + i) / 2;
1124 else
1125 rt->rt_rmx.rmx_rtt = i;
1126 tcpstat.tcps_cachedrtt++;
1127 }
1128 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1129 i = tp->t_rttvar *
1130 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
1131 if (rt->rt_rmx.rmx_rttvar && i)
1132 rt->rt_rmx.rmx_rttvar =
1133 (rt->rt_rmx.rmx_rttvar + i) / 2;
1134 else
1135 rt->rt_rmx.rmx_rttvar = i;
1136 tcpstat.tcps_cachedrttvar++;
1137 }
1138 /*
1139 * The old comment here said:
1140 * update the pipelimit (ssthresh) if it has been updated
1141 * already or if a pipesize was specified & the threshhold
1142 * got below half the pipesize. I.e., wait for bad news
1143 * before we start updating, then update on both good
1144 * and bad news.
1145 *
1146 * But we want to save the ssthresh even if no pipesize is
1147 * specified explicitly in the route, because such
1148 * connections still have an implicit pipesize specified
1149 * by the global tcp_sendspace. In the absence of a reliable
1150 * way to calculate the pipesize, it will have to do.
1151 */
1152 i = tp->snd_ssthresh;
1153 if (rt->rt_rmx.rmx_sendpipe != 0)
1154 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
1155 else
1156 dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
1157 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1158 i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
1159 || dosavessthresh) {
1160 /*
1161 * convert the limit from user data bytes to
1162 * packets then to packet data bytes.
1163 */
1164 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1165 if (i < 2)
1166 i = 2;
1167 i *= (u_int32_t)(tp->t_maxseg +
1168 #if INET6
1169 (isipv6 ? sizeof (struct ip6_hdr) +
1170 sizeof (struct tcphdr) :
1171 #endif
1172 sizeof (struct tcpiphdr)
1173 #if INET6
1174 )
1175 #endif
1176 );
1177 if (rt->rt_rmx.rmx_ssthresh)
1178 rt->rt_rmx.rmx_ssthresh =
1179 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1180 else
1181 rt->rt_rmx.rmx_ssthresh = i;
1182 tcpstat.tcps_cachedssthresh++;
1183 }
1184 }
1185
1186 /*
1187 * Mark route for deletion if no information is cached.
1188 */
1189 if (rt != NULL && (so->so_flags & SOF_OVERFLOW) && tcp_lq_overflow) {
1190 if (!(rt->rt_rmx.rmx_locks & RTV_RTT) &&
1191 rt->rt_rmx.rmx_rtt == 0) {
1192 rt->rt_flags |= RTF_DELCLONE;
1193 }
1194 }
1195
1196 no_valid_rt:
1197 if (rt != NULL)
1198 RT_UNLOCK(rt);
1199
1200 /* free the reassembly queue, if any */
1201 (void) tcp_freeq(tp);
1202
1203 tcp_free_sackholes(tp);
1204 if (tp->t_bwmeas != NULL) {
1205 tcp_bwmeas_free(tp);
1206 }
1207
1208 /* Free the packet list */
1209 if (tp->t_pktlist_head != NULL)
1210 m_freem_list(tp->t_pktlist_head);
1211 TCP_PKTLIST_CLEAR(tp);
1212
1213 #if MPTCP
1214 /* Clear MPTCP state */
1215 if ((so->so_flags & SOF_MPTCP_TRUE) ||
1216 (so->so_flags & SOF_MP_SUBFLOW)) {
1217 soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_DELETEOK));
1218 }
1219 tp->t_mpflags = 0;
1220 tp->t_mptcb = NULL;
1221 #endif /* MPTCP */
1222
1223 if (so->cached_in_sock_layer)
1224 inp->inp_saved_ppcb = (caddr_t) tp;
1225
1226 tp->t_state = TCPS_CLOSED;
1227
1228 /* Issue a wakeup before detach so that we don't miss
1229 * a wakeup
1230 */
1231 sodisconnectwakeup(so);
1232
1233 /*
1234 * Clean up any LRO state
1235 */
1236 if (tp->t_flagsext & TF_LRO_OFFLOADED) {
1237 tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr,
1238 inp->inp_lport, inp->inp_fport);
1239 tp->t_flagsext &= ~TF_LRO_OFFLOADED;
1240 }
1241
1242 /*
1243 * If this is a socket that does not want to wakeup the device
1244 * for it's traffic, the application might need to know that the
1245 * socket is closed, send a notification.
1246 */
1247 if ((so->so_options & SO_NOWAKEFROMSLEEP) &&
1248 inp->inp_state != INPCB_STATE_DEAD &&
1249 !(inp->inp_flags2 & INP2_TIMEWAIT))
1250 socket_post_kev_msg_closed(so);
1251
1252 if (CC_ALGO(tp)->cleanup != NULL) {
1253 CC_ALGO(tp)->cleanup(tp);
1254 }
1255
1256 if (tp->t_ccstate != NULL) {
1257 zfree(tcp_cc_zone, tp->t_ccstate);
1258 tp->t_ccstate = NULL;
1259 }
1260 tp->tcp_cc_index = TCP_CC_ALGO_NONE;
1261
1262 #if INET6
1263 if (SOCK_CHECK_DOM(so, PF_INET6))
1264 in6_pcbdetach(inp);
1265 else
1266 #endif /* INET6 */
1267 in_pcbdetach(inp);
1268
1269 /* Call soisdisconnected after detach because it might unlock the socket */
1270 soisdisconnected(so);
1271 tcpstat.tcps_closed++;
1272 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END,
1273 tcpstat.tcps_closed, 0, 0, 0, 0);
1274 return(NULL);
1275 }
1276
1277 int
1278 tcp_freeq(tp)
1279 struct tcpcb *tp;
1280 {
1281
1282 register struct tseg_qent *q;
1283 int rv = 0;
1284
1285 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
1286 LIST_REMOVE(q, tqe_q);
1287 m_freem(q->tqe_m);
1288 zfree(tcp_reass_zone, q);
1289 rv = 1;
1290 }
1291 tp->t_reassqlen = 0;
1292 return (rv);
1293 }
1294
1295 void
1296 tcp_drain()
1297 {
1298 if (do_tcpdrain)
1299 {
1300 struct inpcb *inp;
1301 struct tcpcb *tp;
1302 /*
1303 * Walk the tcpbs, if existing, and flush the reassembly queue,
1304 * if there is one...
1305 * Do it next time if the pcbinfo lock is in use
1306 */
1307 if (!lck_rw_try_lock_exclusive(tcbinfo.ipi_lock))
1308 return;
1309
1310 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1311 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
1312 WNT_STOPUSING) {
1313 tcp_lock(inp->inp_socket, 1, 0);
1314 if (in_pcb_checkstate(inp, WNT_RELEASE, 1)
1315 == WNT_STOPUSING) {
1316 /* lost a race, try the next one */
1317 tcp_unlock(inp->inp_socket, 1, 0);
1318 continue;
1319 }
1320 tp = intotcpcb(inp);
1321 tcp_freeq(tp);
1322 tcp_unlock(inp->inp_socket, 1, 0);
1323 }
1324 }
1325 lck_rw_done(tcbinfo.ipi_lock);
1326
1327 }
1328 }
1329
1330 /*
1331 * Notify a tcp user of an asynchronous error;
1332 * store error as soft error, but wake up user
1333 * (for now, won't do anything until can select for soft error).
1334 *
1335 * Do not wake up user since there currently is no mechanism for
1336 * reporting soft errors (yet - a kqueue filter may be added).
1337 */
1338 static void
1339 tcp_notify(inp, error)
1340 struct inpcb *inp;
1341 int error;
1342 {
1343 struct tcpcb *tp;
1344
1345 if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD))
1346 return; /* pcb is gone already */
1347
1348 tp = (struct tcpcb *)inp->inp_ppcb;
1349
1350 /*
1351 * Ignore some errors if we are hooked up.
1352 * If connection hasn't completed, has retransmitted several times,
1353 * and receives a second error, give up now. This is better
1354 * than waiting a long time to establish a connection that
1355 * can never complete.
1356 */
1357 if (tp->t_state == TCPS_ESTABLISHED &&
1358 (error == EHOSTUNREACH || error == ENETUNREACH ||
1359 error == EHOSTDOWN)) {
1360 return;
1361 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1362 tp->t_softerror)
1363 tcp_drop(tp, error);
1364 else
1365 tp->t_softerror = error;
1366 #if 0
1367 wakeup((caddr_t) &so->so_timeo);
1368 sorwakeup(so);
1369 sowwakeup(so);
1370 #endif
1371 }
1372
1373 struct bwmeas*
1374 tcp_bwmeas_alloc(struct tcpcb *tp)
1375 {
1376 struct bwmeas *elm;
1377 elm = zalloc(tcp_bwmeas_zone);
1378 if (elm == NULL)
1379 return(elm);
1380
1381 bzero(elm, bwmeas_elm_size);
1382 elm->bw_minsizepkts = TCP_BWMEAS_BURST_MINSIZE;
1383 elm->bw_maxsizepkts = TCP_BWMEAS_BURST_MAXSIZE;
1384 elm->bw_minsize = elm->bw_minsizepkts * tp->t_maxseg;
1385 elm->bw_maxsize = elm->bw_maxsizepkts * tp->t_maxseg;
1386 return(elm);
1387 }
1388
1389 void
1390 tcp_bwmeas_free(struct tcpcb* tp)
1391 {
1392 zfree(tcp_bwmeas_zone, tp->t_bwmeas);
1393 tp->t_bwmeas = NULL;
1394 tp->t_flagsext &= ~(TF_MEASURESNDBW);
1395 }
1396
1397 /*
1398 * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
1399 * The otcpcb data structure is passed to user space and must not change.
1400 */
1401 static void
1402 tcpcb_to_otcpcb(struct tcpcb *tp, struct otcpcb *otp)
1403 {
1404 otp->t_segq = (uint32_t)VM_KERNEL_ADDRPERM(tp->t_segq.lh_first);
1405 otp->t_dupacks = tp->t_dupacks;
1406 otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT];
1407 otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST];
1408 otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP];
1409 otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL];
1410 otp->t_inpcb = (_TCPCB_PTR(struct inpcb *))VM_KERNEL_ADDRPERM(tp->t_inpcb);
1411 otp->t_state = tp->t_state;
1412 otp->t_flags = tp->t_flags;
1413 otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0;
1414 otp->snd_una = tp->snd_una;
1415 otp->snd_max = tp->snd_max;
1416 otp->snd_nxt = tp->snd_nxt;
1417 otp->snd_up = tp->snd_up;
1418 otp->snd_wl1 = tp->snd_wl1;
1419 otp->snd_wl2 = tp->snd_wl2;
1420 otp->iss = tp->iss;
1421 otp->irs = tp->irs;
1422 otp->rcv_nxt = tp->rcv_nxt;
1423 otp->rcv_adv = tp->rcv_adv;
1424 otp->rcv_wnd = tp->rcv_wnd;
1425 otp->rcv_up = tp->rcv_up;
1426 otp->snd_wnd = tp->snd_wnd;
1427 otp->snd_cwnd = tp->snd_cwnd;
1428 otp->snd_ssthresh = tp->snd_ssthresh;
1429 otp->t_maxopd = tp->t_maxopd;
1430 otp->t_rcvtime = tp->t_rcvtime;
1431 otp->t_starttime = tp->t_starttime;
1432 otp->t_rtttime = tp->t_rtttime;
1433 otp->t_rtseq = tp->t_rtseq;
1434 otp->t_rxtcur = tp->t_rxtcur;
1435 otp->t_maxseg = tp->t_maxseg;
1436 otp->t_srtt = tp->t_srtt;
1437 otp->t_rttvar = tp->t_rttvar;
1438 otp->t_rxtshift = tp->t_rxtshift;
1439 otp->t_rttmin = tp->t_rttmin;
1440 otp->t_rttupdated = tp->t_rttupdated;
1441 otp->max_sndwnd = tp->max_sndwnd;
1442 otp->t_softerror = tp->t_softerror;
1443 otp->t_oobflags = tp->t_oobflags;
1444 otp->t_iobc = tp->t_iobc;
1445 otp->snd_scale = tp->snd_scale;
1446 otp->rcv_scale = tp->rcv_scale;
1447 otp->request_r_scale = tp->request_r_scale;
1448 otp->requested_s_scale = tp->requested_s_scale;
1449 otp->ts_recent = tp->ts_recent;
1450 otp->ts_recent_age = tp->ts_recent_age;
1451 otp->last_ack_sent = tp->last_ack_sent;
1452 otp->cc_send = tp->cc_send;
1453 otp->cc_recv = tp->cc_recv;
1454 otp->snd_recover = tp->snd_recover;
1455 otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1456 otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1457 otp->t_badrxtwin = 0;
1458 }
1459
1460 static int
1461 tcp_pcblist SYSCTL_HANDLER_ARGS
1462 {
1463 #pragma unused(oidp, arg1, arg2)
1464 int error, i = 0, n;
1465 struct inpcb *inp, **inp_list;
1466 struct tcpcb *tp;
1467 inp_gen_t gencnt;
1468 struct xinpgen xig;
1469
1470 /*
1471 * The process of preparing the TCB list is too time-consuming and
1472 * resource-intensive to repeat twice on every request.
1473 */
1474 lck_rw_lock_shared(tcbinfo.ipi_lock);
1475 if (req->oldptr == USER_ADDR_NULL) {
1476 n = tcbinfo.ipi_count;
1477 req->oldidx = 2 * (sizeof xig)
1478 + (n + n/8) * sizeof(struct xtcpcb);
1479 lck_rw_done(tcbinfo.ipi_lock);
1480 return 0;
1481 }
1482
1483 if (req->newptr != USER_ADDR_NULL) {
1484 lck_rw_done(tcbinfo.ipi_lock);
1485 return EPERM;
1486 }
1487
1488 /*
1489 * OK, now we're committed to doing something.
1490 */
1491 gencnt = tcbinfo.ipi_gencnt;
1492 n = tcbinfo.ipi_count;
1493
1494 bzero(&xig, sizeof(xig));
1495 xig.xig_len = sizeof xig;
1496 xig.xig_count = n;
1497 xig.xig_gen = gencnt;
1498 xig.xig_sogen = so_gencnt;
1499 error = SYSCTL_OUT(req, &xig, sizeof xig);
1500 if (error) {
1501 lck_rw_done(tcbinfo.ipi_lock);
1502 return error;
1503 }
1504 /*
1505 * We are done if there is no pcb
1506 */
1507 if (n == 0) {
1508 lck_rw_done(tcbinfo.ipi_lock);
1509 return 0;
1510 }
1511
1512 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1513 if (inp_list == 0) {
1514 lck_rw_done(tcbinfo.ipi_lock);
1515 return ENOMEM;
1516 }
1517
1518 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1519 if (inp->inp_gencnt <= gencnt &&
1520 inp->inp_state != INPCB_STATE_DEAD)
1521 inp_list[i++] = inp;
1522 if (i >= n) break;
1523 }
1524
1525 TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1526 inp = tp->t_inpcb;
1527 if (inp->inp_gencnt <= gencnt &&
1528 inp->inp_state != INPCB_STATE_DEAD)
1529 inp_list[i++] = inp;
1530 if (i >= n) break;
1531 }
1532
1533 n = i;
1534
1535 error = 0;
1536 for (i = 0; i < n; i++) {
1537 inp = inp_list[i];
1538 if (inp->inp_gencnt <= gencnt &&
1539 inp->inp_state != INPCB_STATE_DEAD) {
1540 struct xtcpcb xt;
1541 caddr_t inp_ppcb;
1542
1543 bzero(&xt, sizeof(xt));
1544 xt.xt_len = sizeof xt;
1545 /* XXX should avoid extra copy */
1546 inpcb_to_compat(inp, &xt.xt_inp);
1547 inp_ppcb = inp->inp_ppcb;
1548 if (inp_ppcb != NULL) {
1549 tcpcb_to_otcpcb(
1550 (struct tcpcb *)(void *)inp_ppcb,
1551 &xt.xt_tp);
1552 } else {
1553 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1554 }
1555 if (inp->inp_socket)
1556 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1557 error = SYSCTL_OUT(req, &xt, sizeof xt);
1558 }
1559 }
1560 if (!error) {
1561 /*
1562 * Give the user an updated idea of our state.
1563 * If the generation differs from what we told
1564 * her before, she knows that something happened
1565 * while we were processing this request, and it
1566 * might be necessary to retry.
1567 */
1568 bzero(&xig, sizeof(xig));
1569 xig.xig_len = sizeof xig;
1570 xig.xig_gen = tcbinfo.ipi_gencnt;
1571 xig.xig_sogen = so_gencnt;
1572 xig.xig_count = tcbinfo.ipi_count;
1573 error = SYSCTL_OUT(req, &xig, sizeof xig);
1574 }
1575 FREE(inp_list, M_TEMP);
1576 lck_rw_done(tcbinfo.ipi_lock);
1577 return error;
1578 }
1579
1580 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1581 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1582 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1583
1584
1585 static void
1586 tcpcb_to_xtcpcb64(struct tcpcb *tp, struct xtcpcb64 *otp)
1587 {
1588 otp->t_segq = (uint32_t)VM_KERNEL_ADDRPERM(tp->t_segq.lh_first);
1589 otp->t_dupacks = tp->t_dupacks;
1590 otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT];
1591 otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST];
1592 otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP];
1593 otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL];
1594 otp->t_state = tp->t_state;
1595 otp->t_flags = tp->t_flags;
1596 otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0;
1597 otp->snd_una = tp->snd_una;
1598 otp->snd_max = tp->snd_max;
1599 otp->snd_nxt = tp->snd_nxt;
1600 otp->snd_up = tp->snd_up;
1601 otp->snd_wl1 = tp->snd_wl1;
1602 otp->snd_wl2 = tp->snd_wl2;
1603 otp->iss = tp->iss;
1604 otp->irs = tp->irs;
1605 otp->rcv_nxt = tp->rcv_nxt;
1606 otp->rcv_adv = tp->rcv_adv;
1607 otp->rcv_wnd = tp->rcv_wnd;
1608 otp->rcv_up = tp->rcv_up;
1609 otp->snd_wnd = tp->snd_wnd;
1610 otp->snd_cwnd = tp->snd_cwnd;
1611 otp->snd_ssthresh = tp->snd_ssthresh;
1612 otp->t_maxopd = tp->t_maxopd;
1613 otp->t_rcvtime = tp->t_rcvtime;
1614 otp->t_starttime = tp->t_starttime;
1615 otp->t_rtttime = tp->t_rtttime;
1616 otp->t_rtseq = tp->t_rtseq;
1617 otp->t_rxtcur = tp->t_rxtcur;
1618 otp->t_maxseg = tp->t_maxseg;
1619 otp->t_srtt = tp->t_srtt;
1620 otp->t_rttvar = tp->t_rttvar;
1621 otp->t_rxtshift = tp->t_rxtshift;
1622 otp->t_rttmin = tp->t_rttmin;
1623 otp->t_rttupdated = tp->t_rttupdated;
1624 otp->max_sndwnd = tp->max_sndwnd;
1625 otp->t_softerror = tp->t_softerror;
1626 otp->t_oobflags = tp->t_oobflags;
1627 otp->t_iobc = tp->t_iobc;
1628 otp->snd_scale = tp->snd_scale;
1629 otp->rcv_scale = tp->rcv_scale;
1630 otp->request_r_scale = tp->request_r_scale;
1631 otp->requested_s_scale = tp->requested_s_scale;
1632 otp->ts_recent = tp->ts_recent;
1633 otp->ts_recent_age = tp->ts_recent_age;
1634 otp->last_ack_sent = tp->last_ack_sent;
1635 otp->cc_send = tp->cc_send;
1636 otp->cc_recv = tp->cc_recv;
1637 otp->snd_recover = tp->snd_recover;
1638 otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1639 otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1640 otp->t_badrxtwin = 0;
1641 }
1642
1643
1644 static int
1645 tcp_pcblist64 SYSCTL_HANDLER_ARGS
1646 {
1647 #pragma unused(oidp, arg1, arg2)
1648 int error, i = 0, n;
1649 struct inpcb *inp, **inp_list;
1650 struct tcpcb *tp;
1651 inp_gen_t gencnt;
1652 struct xinpgen xig;
1653
1654 /*
1655 * The process of preparing the TCB list is too time-consuming and
1656 * resource-intensive to repeat twice on every request.
1657 */
1658 lck_rw_lock_shared(tcbinfo.ipi_lock);
1659 if (req->oldptr == USER_ADDR_NULL) {
1660 n = tcbinfo.ipi_count;
1661 req->oldidx = 2 * (sizeof xig)
1662 + (n + n/8) * sizeof(struct xtcpcb64);
1663 lck_rw_done(tcbinfo.ipi_lock);
1664 return 0;
1665 }
1666
1667 if (req->newptr != USER_ADDR_NULL) {
1668 lck_rw_done(tcbinfo.ipi_lock);
1669 return EPERM;
1670 }
1671
1672 /*
1673 * OK, now we're committed to doing something.
1674 */
1675 gencnt = tcbinfo.ipi_gencnt;
1676 n = tcbinfo.ipi_count;
1677
1678 bzero(&xig, sizeof(xig));
1679 xig.xig_len = sizeof xig;
1680 xig.xig_count = n;
1681 xig.xig_gen = gencnt;
1682 xig.xig_sogen = so_gencnt;
1683 error = SYSCTL_OUT(req, &xig, sizeof xig);
1684 if (error) {
1685 lck_rw_done(tcbinfo.ipi_lock);
1686 return error;
1687 }
1688 /*
1689 * We are done if there is no pcb
1690 */
1691 if (n == 0) {
1692 lck_rw_done(tcbinfo.ipi_lock);
1693 return 0;
1694 }
1695
1696 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1697 if (inp_list == 0) {
1698 lck_rw_done(tcbinfo.ipi_lock);
1699 return ENOMEM;
1700 }
1701
1702 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1703 if (inp->inp_gencnt <= gencnt &&
1704 inp->inp_state != INPCB_STATE_DEAD)
1705 inp_list[i++] = inp;
1706 if (i >= n) break;
1707 }
1708
1709 TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1710 inp = tp->t_inpcb;
1711 if (inp->inp_gencnt <= gencnt &&
1712 inp->inp_state != INPCB_STATE_DEAD)
1713 inp_list[i++] = inp;
1714 if (i >= n) break;
1715 }
1716
1717 n = i;
1718
1719 error = 0;
1720 for (i = 0; i < n; i++) {
1721 inp = inp_list[i];
1722 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1723 struct xtcpcb64 xt;
1724
1725 bzero(&xt, sizeof(xt));
1726 xt.xt_len = sizeof xt;
1727 inpcb_to_xinpcb64(inp, &xt.xt_inpcb);
1728 xt.xt_inpcb.inp_ppcb = (uint64_t)VM_KERNEL_ADDRPERM(inp->inp_ppcb);
1729 if (inp->inp_ppcb != NULL)
1730 tcpcb_to_xtcpcb64((struct tcpcb *)inp->inp_ppcb, &xt);
1731 if (inp->inp_socket)
1732 sotoxsocket64(inp->inp_socket, &xt.xt_inpcb.xi_socket);
1733 error = SYSCTL_OUT(req, &xt, sizeof xt);
1734 }
1735 }
1736 if (!error) {
1737 /*
1738 * Give the user an updated idea of our state.
1739 * If the generation differs from what we told
1740 * her before, she knows that something happened
1741 * while we were processing this request, and it
1742 * might be necessary to retry.
1743 */
1744 bzero(&xig, sizeof(xig));
1745 xig.xig_len = sizeof xig;
1746 xig.xig_gen = tcbinfo.ipi_gencnt;
1747 xig.xig_sogen = so_gencnt;
1748 xig.xig_count = tcbinfo.ipi_count;
1749 error = SYSCTL_OUT(req, &xig, sizeof xig);
1750 }
1751 FREE(inp_list, M_TEMP);
1752 lck_rw_done(tcbinfo.ipi_lock);
1753 return error;
1754 }
1755
1756 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist64,
1757 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1758 tcp_pcblist64, "S,xtcpcb64", "List of active TCP connections");
1759
1760
1761 static int
1762 tcp_pcblist_n SYSCTL_HANDLER_ARGS
1763 {
1764 #pragma unused(oidp, arg1, arg2)
1765 int error = 0;
1766
1767 error = get_pcblist_n(IPPROTO_TCP, req, &tcbinfo);
1768
1769 return error;
1770 }
1771
1772
1773 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist_n,
1774 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1775 tcp_pcblist_n, "S,xtcpcb_n", "List of active TCP connections");
1776
1777
1778 __private_extern__ void
1779 tcp_get_ports_used(uint32_t ifindex, int protocol, uint32_t flags,
1780 bitstr_t *bitfield)
1781 {
1782 inpcb_get_ports_used(ifindex, protocol, flags,
1783 bitfield, &tcbinfo);
1784 }
1785
1786 __private_extern__ uint32_t
1787 tcp_count_opportunistic(unsigned int ifindex, u_int32_t flags)
1788 {
1789 return inpcb_count_opportunistic(ifindex, &tcbinfo, flags);
1790 }
1791
1792 __private_extern__ uint32_t
1793 tcp_find_anypcb_byaddr(struct ifaddr *ifa)
1794 {
1795 return inpcb_find_anypcb_byaddr(ifa, &tcbinfo);
1796 }
1797
1798 void
1799 tcp_ctlinput(cmd, sa, vip)
1800 int cmd;
1801 struct sockaddr *sa;
1802 void *vip;
1803 {
1804 tcp_seq icmp_tcp_seq;
1805 struct ip *ip = vip;
1806 struct in_addr faddr;
1807 struct inpcb *inp;
1808 struct tcpcb *tp;
1809
1810 void (*notify)(struct inpcb *, int) = tcp_notify;
1811
1812 faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr;
1813 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1814 return;
1815
1816 if (cmd == PRC_MSGSIZE)
1817 notify = tcp_mtudisc;
1818 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1819 cmd == PRC_UNREACH_PORT) && ip)
1820 notify = tcp_drop_syn_sent;
1821 else if (PRC_IS_REDIRECT(cmd)) {
1822 ip = 0;
1823 notify = in_rtchange;
1824 } else if (cmd == PRC_HOSTDEAD)
1825 ip = 0;
1826 /* Source quench is deprecated */
1827 else if (cmd == PRC_QUENCH)
1828 return;
1829 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1830 return;
1831 if (ip) {
1832 struct tcphdr th;
1833 struct icmp *icp;
1834
1835 icp = (struct icmp *)(void *)
1836 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1837 bcopy(((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2)),
1838 &th, sizeof (th));
1839 inp = in_pcblookup_hash(&tcbinfo, faddr, th.th_dport,
1840 ip->ip_src, th.th_sport, 0, NULL);
1841 if (inp != NULL && inp->inp_socket != NULL) {
1842 tcp_lock(inp->inp_socket, 1, 0);
1843 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
1844 tcp_unlock(inp->inp_socket, 1, 0);
1845 return;
1846 }
1847 icmp_tcp_seq = htonl(th.th_seq);
1848 tp = intotcpcb(inp);
1849 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1850 SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1851 if (cmd == PRC_MSGSIZE) {
1852
1853 /*
1854 * MTU discovery:
1855 * If we got a needfrag and there is a host route to the
1856 * original destination, and the MTU is not locked, then
1857 * set the MTU in the route to the suggested new value
1858 * (if given) and then notify as usual. The ULPs will
1859 * notice that the MTU has changed and adapt accordingly.
1860 * If no new MTU was suggested, then we guess a new one
1861 * less than the current value. If the new MTU is
1862 * unreasonably small (defined by sysctl tcp_minmss), then
1863 * we reset the MTU to the interface value and enable the
1864 * lock bit, indicating that we are no longer doing MTU
1865 * discovery.
1866 */
1867 struct rtentry *rt;
1868 int mtu;
1869 struct sockaddr_in icmpsrc = { sizeof (struct sockaddr_in), AF_INET,
1870 0 , { 0 }, { 0,0,0,0,0,0,0,0 } };
1871 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
1872
1873 rt = rtalloc1((struct sockaddr *)&icmpsrc, 0,
1874 RTF_CLONING | RTF_PRCLONING);
1875 if (rt != NULL) {
1876 RT_LOCK(rt);
1877 if ((rt->rt_flags & RTF_HOST) &&
1878 !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
1879 mtu = ntohs(icp->icmp_nextmtu);
1880 if (!mtu)
1881 mtu = ip_next_mtu(rt->rt_rmx.
1882 rmx_mtu, 1);
1883 #if DEBUG_MTUDISC
1884 printf("MTU for %s reduced to %d\n",
1885 inet_ntop(AF_INET,
1886 &icmpsrc.sin_addr, ipv4str,
1887 sizeof (ipv4str)), mtu);
1888 #endif
1889 if (mtu < max(296, (tcp_minmss +
1890 sizeof (struct tcpiphdr)))) {
1891 /* rt->rt_rmx.rmx_mtu =
1892 rt->rt_ifp->if_mtu; */
1893 rt->rt_rmx.rmx_locks |= RTV_MTU;
1894 } else if (rt->rt_rmx.rmx_mtu > mtu) {
1895 rt->rt_rmx.rmx_mtu = mtu;
1896 }
1897 }
1898 RT_UNLOCK(rt);
1899 rtfree(rt);
1900 }
1901 }
1902
1903 (*notify)(inp, inetctlerrmap[cmd]);
1904 }
1905 tcp_unlock(inp->inp_socket, 1, 0);
1906 }
1907 } else
1908 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1909 }
1910
1911 #if INET6
1912 void
1913 tcp6_ctlinput(cmd, sa, d)
1914 int cmd;
1915 struct sockaddr *sa;
1916 void *d;
1917 {
1918 struct tcphdr th;
1919 void (*notify)(struct inpcb *, int) = tcp_notify;
1920 struct ip6_hdr *ip6;
1921 struct mbuf *m;
1922 struct ip6ctlparam *ip6cp = NULL;
1923 const struct sockaddr_in6 *sa6_src = NULL;
1924 int off;
1925 struct tcp_portonly {
1926 u_int16_t th_sport;
1927 u_int16_t th_dport;
1928 } *thp;
1929
1930 if (sa->sa_family != AF_INET6 ||
1931 sa->sa_len != sizeof(struct sockaddr_in6))
1932 return;
1933
1934 if (cmd == PRC_MSGSIZE)
1935 notify = tcp_mtudisc;
1936 else if (!PRC_IS_REDIRECT(cmd) &&
1937 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1938 return;
1939 /* Source quench is deprecated */
1940 else if (cmd == PRC_QUENCH)
1941 return;
1942
1943 /* if the parameter is from icmp6, decode it. */
1944 if (d != NULL) {
1945 ip6cp = (struct ip6ctlparam *)d;
1946 m = ip6cp->ip6c_m;
1947 ip6 = ip6cp->ip6c_ip6;
1948 off = ip6cp->ip6c_off;
1949 sa6_src = ip6cp->ip6c_src;
1950 } else {
1951 m = NULL;
1952 ip6 = NULL;
1953 off = 0; /* fool gcc */
1954 sa6_src = &sa6_any;
1955 }
1956
1957 if (ip6) {
1958 /*
1959 * XXX: We assume that when IPV6 is non NULL,
1960 * M and OFF are valid.
1961 */
1962
1963 /* check if we can safely examine src and dst ports */
1964 if (m->m_pkthdr.len < off + sizeof(*thp))
1965 return;
1966
1967 bzero(&th, sizeof(th));
1968 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1969
1970 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1971 (struct sockaddr *)ip6cp->ip6c_src,
1972 th.th_sport, cmd, NULL, notify);
1973 } else {
1974 in6_pcbnotify(&tcbinfo, sa, 0,
1975 (struct sockaddr *)(size_t)sa6_src, 0, cmd, NULL, notify);
1976 }
1977 }
1978 #endif /* INET6 */
1979
1980
1981 /*
1982 * Following is where TCP initial sequence number generation occurs.
1983 *
1984 * There are two places where we must use initial sequence numbers:
1985 * 1. In SYN-ACK packets.
1986 * 2. In SYN packets.
1987 *
1988 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1989 * and should be as unpredictable as possible to avoid the possibility
1990 * of spoofing and/or connection hijacking. To satisfy this
1991 * requirement, SYN-ACK ISNs are generated via the arc4random()
1992 * function. If exact RFC 1948 compliance is requested via sysctl,
1993 * these ISNs will be generated just like those in SYN packets.
1994 *
1995 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1996 * depends on this property. In addition, these ISNs should be
1997 * unguessable so as to prevent connection hijacking. To satisfy
1998 * the requirements of this situation, the algorithm outlined in
1999 * RFC 1948 is used to generate sequence numbers.
2000 *
2001 * For more information on the theory of operation, please see
2002 * RFC 1948.
2003 *
2004 * Implementation details:
2005 *
2006 * Time is based off the system timer, and is corrected so that it
2007 * increases by one megabyte per second. This allows for proper
2008 * recycling on high speed LANs while still leaving over an hour
2009 * before rollover.
2010 *
2011 * Two sysctls control the generation of ISNs:
2012 *
2013 * net.inet.tcp.isn_reseed_interval controls the number of seconds
2014 * between seeding of isn_secret. This is normally set to zero,
2015 * as reseeding should not be necessary.
2016 *
2017 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
2018 * strictly. When strict compliance is requested, reseeding is
2019 * disabled and SYN-ACKs will be generated in the same manner as
2020 * SYNs. Strict mode is disabled by default.
2021 *
2022 */
2023
2024 #define ISN_BYTES_PER_SECOND 1048576
2025
2026 tcp_seq
2027 tcp_new_isn(tp)
2028 struct tcpcb *tp;
2029 {
2030 u_int32_t md5_buffer[4];
2031 tcp_seq new_isn;
2032 struct timeval timenow;
2033 u_char isn_secret[32];
2034 int isn_last_reseed = 0;
2035 MD5_CTX isn_ctx;
2036
2037 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
2038 if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
2039 && tcp_strict_rfc1948 == 0)
2040 #ifdef __APPLE__
2041 return RandomULong();
2042 #else
2043 return arc4random();
2044 #endif
2045 getmicrotime(&timenow);
2046
2047 /* Seed if this is the first use, reseed if requested. */
2048 if ((isn_last_reseed == 0) ||
2049 ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
2050 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
2051 < (u_int)timenow.tv_sec))) {
2052 #ifdef __APPLE__
2053 read_random(&isn_secret, sizeof(isn_secret));
2054 #else
2055 read_random_unlimited(&isn_secret, sizeof(isn_secret));
2056 #endif
2057 isn_last_reseed = timenow.tv_sec;
2058 }
2059
2060 /* Compute the md5 hash and return the ISN. */
2061 MD5Init(&isn_ctx);
2062 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2063 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2064 #if INET6
2065 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2066 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2067 sizeof(struct in6_addr));
2068 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2069 sizeof(struct in6_addr));
2070 } else
2071 #endif
2072 {
2073 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2074 sizeof(struct in_addr));
2075 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2076 sizeof(struct in_addr));
2077 }
2078 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
2079 MD5Final((u_char *) &md5_buffer, &isn_ctx);
2080 new_isn = (tcp_seq) md5_buffer[0];
2081 new_isn += timenow.tv_sec * (ISN_BYTES_PER_SECOND / hz);
2082 return new_isn;
2083 }
2084
2085
2086 /*
2087 * When a specific ICMP unreachable message is received and the
2088 * connection state is SYN-SENT, drop the connection. This behavior
2089 * is controlled by the icmp_may_rst sysctl.
2090 */
2091 void
2092 tcp_drop_syn_sent(inp, errno)
2093 struct inpcb *inp;
2094 int errno;
2095 {
2096 struct tcpcb *tp = intotcpcb(inp);
2097
2098 if (tp && tp->t_state == TCPS_SYN_SENT)
2099 tcp_drop(tp, errno);
2100 }
2101
2102 /*
2103 * When `need fragmentation' ICMP is received, update our idea of the MSS
2104 * based on the new value in the route. Also nudge TCP to send something,
2105 * since we know the packet we just sent was dropped.
2106 * This duplicates some code in the tcp_mss() function in tcp_input.c.
2107 */
2108 void
2109 tcp_mtudisc(
2110 struct inpcb *inp,
2111 __unused int errno
2112 )
2113 {
2114 struct tcpcb *tp = intotcpcb(inp);
2115 struct rtentry *rt;
2116 struct rmxp_tao *taop;
2117 struct socket *so = inp->inp_socket;
2118 int offered;
2119 int mss;
2120 #if INET6
2121 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
2122 #endif /* INET6 */
2123
2124 if (tp) {
2125 #if INET6
2126 if (isipv6)
2127 rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2128 else
2129 #endif /* INET6 */
2130 rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2131 if (!rt || !rt->rt_rmx.rmx_mtu) {
2132 tp->t_maxopd = tp->t_maxseg =
2133 #if INET6
2134 isipv6 ? tcp_v6mssdflt :
2135 #endif /* INET6 */
2136 tcp_mssdflt;
2137
2138 /* Route locked during lookup above */
2139 if (rt != NULL)
2140 RT_UNLOCK(rt);
2141 return;
2142 }
2143 taop = rmx_taop(rt->rt_rmx);
2144 offered = taop->tao_mssopt;
2145 mss = rt->rt_rmx.rmx_mtu -
2146 #if INET6
2147 (isipv6 ?
2148 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2149 #endif /* INET6 */
2150 sizeof(struct tcpiphdr)
2151 #if INET6
2152 )
2153 #endif /* INET6 */
2154 ;
2155
2156 /* Route locked during lookup above */
2157 RT_UNLOCK(rt);
2158
2159 if (offered)
2160 mss = min(mss, offered);
2161 /*
2162 * XXX - The above conditional probably violates the TCP
2163 * spec. The problem is that, since we don't know the
2164 * other end's MSS, we are supposed to use a conservative
2165 * default. But, if we do that, then MTU discovery will
2166 * never actually take place, because the conservative
2167 * default is much less than the MTUs typically seen
2168 * on the Internet today. For the moment, we'll sweep
2169 * this under the carpet.
2170 *
2171 * The conservative default might not actually be a problem
2172 * if the only case this occurs is when sending an initial
2173 * SYN with options and data to a host we've never talked
2174 * to before. Then, they will reply with an MSS value which
2175 * will get recorded and the new parameters should get
2176 * recomputed. For Further Study.
2177 */
2178 if (tp->t_maxopd <= mss)
2179 return;
2180 tp->t_maxopd = mss;
2181
2182 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2183 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2184 mss -= TCPOLEN_TSTAMP_APPA;
2185
2186 #if MPTCP
2187 mss -= mptcp_adj_mss(tp, TRUE);
2188 #endif
2189 if (so->so_snd.sb_hiwat < mss)
2190 mss = so->so_snd.sb_hiwat;
2191
2192 tp->t_maxseg = mss;
2193
2194 /*
2195 * Reset the slow-start flight size as it may depends on the new MSS
2196 */
2197 if (CC_ALGO(tp)->cwnd_init != NULL)
2198 CC_ALGO(tp)->cwnd_init(tp);
2199 tcpstat.tcps_mturesent++;
2200 tp->t_rtttime = 0;
2201 tp->snd_nxt = tp->snd_una;
2202 tcp_output(tp);
2203 }
2204 }
2205
2206 /*
2207 * Look-up the routing entry to the peer of this inpcb. If no route
2208 * is found and it cannot be allocated the return NULL. This routine
2209 * is called by TCP routines that access the rmx structure and by tcp_mss
2210 * to get the interface MTU. If a route is found, this routine will
2211 * hold the rtentry lock; the caller is responsible for unlocking.
2212 */
2213 struct rtentry *
2214 tcp_rtlookup(inp, input_ifscope)
2215 struct inpcb *inp;
2216 unsigned int input_ifscope;
2217 {
2218 struct route *ro;
2219 struct rtentry *rt;
2220 struct tcpcb *tp;
2221
2222 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2223
2224 ro = &inp->inp_route;
2225 if ((rt = ro->ro_rt) != NULL)
2226 RT_LOCK(rt);
2227
2228 if (ROUTE_UNUSABLE(ro)) {
2229 if (rt != NULL) {
2230 RT_UNLOCK(rt);
2231 rt = NULL;
2232 }
2233 ROUTE_RELEASE(ro);
2234 /* No route yet, so try to acquire one */
2235 if (inp->inp_faddr.s_addr != INADDR_ANY) {
2236 unsigned int ifscope;
2237
2238 ro->ro_dst.sa_family = AF_INET;
2239 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
2240 ((struct sockaddr_in *)(void *)&ro->ro_dst)->sin_addr =
2241 inp->inp_faddr;
2242
2243 /*
2244 * If the socket was bound to an interface, then
2245 * the bound-to-interface takes precedence over
2246 * the inbound interface passed in by the caller
2247 * (if we get here as part of the output path then
2248 * input_ifscope is IFSCOPE_NONE).
2249 */
2250 ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2251 inp->inp_boundifp->if_index : input_ifscope;
2252
2253 rtalloc_scoped(ro, ifscope);
2254 if ((rt = ro->ro_rt) != NULL)
2255 RT_LOCK(rt);
2256 }
2257 }
2258 if (rt != NULL)
2259 RT_LOCK_ASSERT_HELD(rt);
2260
2261 /*
2262 * Update MTU discovery determination. Don't do it if:
2263 * 1) it is disabled via the sysctl
2264 * 2) the route isn't up
2265 * 3) the MTU is locked (if it is, then discovery has been
2266 * disabled)
2267 */
2268
2269 tp = intotcpcb(inp);
2270
2271 if (!path_mtu_discovery || ((rt != NULL) &&
2272 (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2273 tp->t_flags &= ~TF_PMTUD;
2274 else
2275 tp->t_flags |= TF_PMTUD;
2276
2277 #if CONFIG_IFEF_NOWINDOWSCALE
2278 if (tcp_obey_ifef_nowindowscale &&
2279 tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2280 (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2281 /* Window scaling is enabled on this interface */
2282 tp->t_flags &= ~TF_REQ_SCALE;
2283 }
2284 #endif
2285
2286 if (rt != NULL && rt->rt_ifp != NULL) {
2287 somultipages(inp->inp_socket,
2288 (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2289 tcp_set_tso(tp, rt->rt_ifp);
2290 soif2kcl(inp->inp_socket,
2291 (rt->rt_ifp->if_eflags & IFEF_2KCL));
2292 }
2293
2294 /* Note if the peer is local */
2295 if (rt != NULL && !(rt->rt_ifp->if_flags & IFF_POINTOPOINT) &&
2296 (rt->rt_gateway->sa_family == AF_LINK ||
2297 rt->rt_ifp->if_flags & IFF_LOOPBACK ||
2298 in_localaddr(inp->inp_faddr))) {
2299 tp->t_flags |= TF_LOCAL;
2300 }
2301
2302 /*
2303 * Caller needs to call RT_UNLOCK(rt).
2304 */
2305 return rt;
2306 }
2307
2308 #if INET6
2309 struct rtentry *
2310 tcp_rtlookup6(inp, input_ifscope)
2311 struct inpcb *inp;
2312 unsigned int input_ifscope;
2313 {
2314 struct route_in6 *ro6;
2315 struct rtentry *rt;
2316 struct tcpcb *tp;
2317
2318 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2319
2320 ro6 = &inp->in6p_route;
2321 if ((rt = ro6->ro_rt) != NULL)
2322 RT_LOCK(rt);
2323
2324 if (ROUTE_UNUSABLE(ro6)) {
2325 if (rt != NULL) {
2326 RT_UNLOCK(rt);
2327 rt = NULL;
2328 }
2329 ROUTE_RELEASE(ro6);
2330 /* No route yet, so try to acquire one */
2331 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
2332 struct sockaddr_in6 *dst6;
2333 unsigned int ifscope;
2334
2335 dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
2336 dst6->sin6_family = AF_INET6;
2337 dst6->sin6_len = sizeof(*dst6);
2338 dst6->sin6_addr = inp->in6p_faddr;
2339
2340 /*
2341 * If the socket was bound to an interface, then
2342 * the bound-to-interface takes precedence over
2343 * the inbound interface passed in by the caller
2344 * (if we get here as part of the output path then
2345 * input_ifscope is IFSCOPE_NONE).
2346 */
2347 ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2348 inp->inp_boundifp->if_index : input_ifscope;
2349
2350 rtalloc_scoped((struct route *)ro6, ifscope);
2351 if ((rt = ro6->ro_rt) != NULL)
2352 RT_LOCK(rt);
2353 }
2354 }
2355 if (rt != NULL)
2356 RT_LOCK_ASSERT_HELD(rt);
2357
2358 /*
2359 * Update path MTU Discovery determination
2360 * while looking up the route:
2361 * 1) we have a valid route to the destination
2362 * 2) the MTU is not locked (if it is, then discovery has been
2363 * disabled)
2364 */
2365
2366
2367 tp = intotcpcb(inp);
2368
2369 /*
2370 * Update MTU discovery determination. Don't do it if:
2371 * 1) it is disabled via the sysctl
2372 * 2) the route isn't up
2373 * 3) the MTU is locked (if it is, then discovery has been
2374 * disabled)
2375 */
2376
2377 if (!path_mtu_discovery || ((rt != NULL) &&
2378 (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2379 tp->t_flags &= ~TF_PMTUD;
2380 else
2381 tp->t_flags |= TF_PMTUD;
2382
2383 #if CONFIG_IFEF_NOWINDOWSCALE
2384 if (tcp_obey_ifef_nowindowscale &&
2385 tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2386 (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2387 /* Window scaling is not enabled on this interface */
2388 tp->t_flags &= ~TF_REQ_SCALE;
2389 }
2390 #endif
2391
2392 if (rt != NULL && rt->rt_ifp != NULL) {
2393 somultipages(inp->inp_socket,
2394 (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2395 tcp_set_tso(tp, rt->rt_ifp);
2396 soif2kcl(inp->inp_socket,
2397 (rt->rt_ifp->if_eflags & IFEF_2KCL));
2398 }
2399
2400 /* Note if the peer is local */
2401 if (rt != NULL && !(rt->rt_ifp->if_flags & IFF_POINTOPOINT) &&
2402 (IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) ||
2403 IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) ||
2404 rt->rt_gateway->sa_family == AF_LINK ||
2405 in6_localaddr(&inp->in6p_faddr))) {
2406 tp->t_flags |= TF_LOCAL;
2407 }
2408
2409 /*
2410 * Caller needs to call RT_UNLOCK(rt).
2411 */
2412 return rt;
2413 }
2414 #endif /* INET6 */
2415
2416 #if IPSEC
2417 /* compute ESP/AH header size for TCP, including outer IP header. */
2418 size_t
2419 ipsec_hdrsiz_tcp(tp)
2420 struct tcpcb *tp;
2421 {
2422 struct inpcb *inp;
2423 struct mbuf *m;
2424 size_t hdrsiz;
2425 struct ip *ip;
2426 #if INET6
2427 struct ip6_hdr *ip6 = NULL;
2428 #endif /* INET6 */
2429 struct tcphdr *th;
2430
2431 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
2432 return 0;
2433 MGETHDR(m, M_DONTWAIT, MT_DATA); /* MAC-OK */
2434 if (!m)
2435 return 0;
2436
2437 #if INET6
2438 if ((inp->inp_vflag & INP_IPV6) != 0) {
2439 ip6 = mtod(m, struct ip6_hdr *);
2440 th = (struct tcphdr *)(void *)(ip6 + 1);
2441 m->m_pkthdr.len = m->m_len =
2442 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2443 tcp_fillheaders(tp, ip6, th);
2444 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2445 } else
2446 #endif /* INET6 */
2447 {
2448 ip = mtod(m, struct ip *);
2449 th = (struct tcphdr *)(ip + 1);
2450 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2451 tcp_fillheaders(tp, ip, th);
2452 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2453 }
2454 m_free(m);
2455 return hdrsiz;
2456 }
2457 #endif /*IPSEC*/
2458
2459 /*
2460 * Return a pointer to the cached information about the remote host.
2461 * The cached information is stored in the protocol specific part of
2462 * the route metrics.
2463 */
2464 struct rmxp_tao *
2465 tcp_gettaocache(inp)
2466 struct inpcb *inp;
2467 {
2468 struct rtentry *rt;
2469 struct rmxp_tao *taop;
2470
2471 #if INET6
2472 if ((inp->inp_vflag & INP_IPV6) != 0)
2473 rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2474 else
2475 #endif /* INET6 */
2476 rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2477
2478 /* Make sure this is a host route and is up. */
2479 if (rt == NULL ||
2480 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) {
2481 /* Route locked during lookup above */
2482 if (rt != NULL)
2483 RT_UNLOCK(rt);
2484 return NULL;
2485 }
2486
2487 taop = rmx_taop(rt->rt_rmx);
2488 /* Route locked during lookup above */
2489 RT_UNLOCK(rt);
2490 return (taop);
2491 }
2492
2493 /*
2494 * Clear all the TAO cache entries, called from tcp_init.
2495 *
2496 * XXX
2497 * This routine is just an empty one, because we assume that the routing
2498 * routing tables are initialized at the same time when TCP, so there is
2499 * nothing in the cache left over.
2500 */
2501 static void
2502 tcp_cleartaocache()
2503 {
2504 }
2505
2506 int
2507 tcp_lock(struct socket *so, int refcount, void *lr)
2508 {
2509 void *lr_saved;
2510
2511 if (lr == NULL)
2512 lr_saved = __builtin_return_address(0);
2513 else
2514 lr_saved = lr;
2515
2516 if (so->so_pcb != NULL) {
2517 lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2518 } else {
2519 panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n",
2520 so, lr_saved, solockhistory_nr(so));
2521 /* NOTREACHED */
2522 }
2523
2524 if (so->so_usecount < 0) {
2525 panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
2526 so, so->so_pcb, lr_saved, so->so_usecount, solockhistory_nr(so));
2527 /* NOTREACHED */
2528 }
2529 if (refcount)
2530 so->so_usecount++;
2531 so->lock_lr[so->next_lock_lr] = lr_saved;
2532 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2533 return (0);
2534 }
2535
2536 int
2537 tcp_unlock(struct socket *so, int refcount, void *lr)
2538 {
2539 void *lr_saved;
2540
2541 if (lr == NULL)
2542 lr_saved = __builtin_return_address(0);
2543 else
2544 lr_saved = lr;
2545
2546 #ifdef MORE_TCPLOCK_DEBUG
2547 printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x "
2548 "lr=0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(so),
2549 (uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb),
2550 (uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so)->inpcb_mtx)),
2551 so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved));
2552 #endif
2553 if (refcount)
2554 so->so_usecount--;
2555
2556 if (so->so_usecount < 0) {
2557 panic("tcp_unlock: so=%p usecount=%x lrh= %s\n",
2558 so, so->so_usecount, solockhistory_nr(so));
2559 /* NOTREACHED */
2560 }
2561 if (so->so_pcb == NULL) {
2562 panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
2563 so, so->so_usecount, lr_saved, solockhistory_nr(so));
2564 /* NOTREACHED */
2565 } else {
2566 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2567 LCK_MTX_ASSERT_OWNED);
2568 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2569 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
2570 lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2571 }
2572 return (0);
2573 }
2574
2575 lck_mtx_t *
2576 tcp_getlock(
2577 struct socket *so,
2578 __unused int locktype)
2579 {
2580 struct inpcb *inp = sotoinpcb(so);
2581
2582 if (so->so_pcb) {
2583 if (so->so_usecount < 0)
2584 panic("tcp_getlock: so=%p usecount=%x lrh= %s\n",
2585 so, so->so_usecount, solockhistory_nr(so));
2586 return(&inp->inpcb_mtx);
2587 }
2588 else {
2589 panic("tcp_getlock: so=%p NULL so_pcb %s\n",
2590 so, solockhistory_nr(so));
2591 return (so->so_proto->pr_domain->dom_mtx);
2592 }
2593 }
2594
2595 /* Determine if we can grow the recieve socket buffer to avoid sending
2596 * a zero window update to the peer. We allow even socket buffers that
2597 * have fixed size (set by the application) to grow if the resource
2598 * constraints are met. They will also be trimmed after the application
2599 * reads data.
2600 */
2601 static void
2602 tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb) {
2603 u_int32_t rcvbufinc = tp->t_maxseg << 4;
2604 u_int32_t rcvbuf = sb->sb_hiwat;
2605 struct socket *so = tp->t_inpcb->inp_socket;
2606
2607 /*
2608 * If message delivery is enabled, do not count
2609 * unordered bytes in receive buffer towards hiwat
2610 */
2611 if (so->so_flags & SOF_ENABLE_MSGS)
2612 rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2613
2614 if (tcp_do_autorcvbuf == 1 &&
2615 tcp_cansbgrow(sb) &&
2616 (tp->t_flags & TF_SLOWLINK) == 0 &&
2617 (rcvbuf - sb->sb_cc) < rcvbufinc &&
2618 rcvbuf < tcp_autorcvbuf_max &&
2619 (sb->sb_idealsize > 0 &&
2620 sb->sb_hiwat <= (sb->sb_idealsize + rcvbufinc))) {
2621 sbreserve(sb,
2622 min((sb->sb_hiwat + rcvbufinc), tcp_autorcvbuf_max));
2623 }
2624 }
2625
2626 int32_t
2627 tcp_sbspace(struct tcpcb *tp)
2628 {
2629 struct sockbuf *sb = &tp->t_inpcb->inp_socket->so_rcv;
2630 u_int32_t rcvbuf = sb->sb_hiwat;
2631 int32_t space;
2632 struct socket *so = tp->t_inpcb->inp_socket;
2633 int32_t pending = 0;
2634
2635 /*
2636 * If message delivery is enabled, do not count
2637 * unordered bytes in receive buffer towards hiwat mark.
2638 * This value is used to return correct rwnd that does
2639 * not reflect the extra unordered bytes added to the
2640 * receive socket buffer.
2641 */
2642 if (so->so_flags & SOF_ENABLE_MSGS)
2643 rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2644
2645 tcp_sbrcv_grow_rwin(tp, sb);
2646
2647 space = ((int32_t) imin((rcvbuf - sb->sb_cc),
2648 (sb->sb_mbmax - sb->sb_mbcnt)));
2649 if (space < 0)
2650 space = 0;
2651
2652 #if CONTENT_FILTER
2653 /* Compensate for data being processed by content filters */
2654 pending = cfil_sock_data_space(sb);
2655 #endif /* CONTENT_FILTER */
2656 if (pending > space)
2657 space = 0;
2658 else
2659 space -= pending;
2660
2661 /* Avoid increasing window size if the current window
2662 * is already very low, we could be in "persist" mode and
2663 * we could break some apps (see rdar://5409343)
2664 */
2665
2666 if (space < tp->t_maxseg)
2667 return space;
2668
2669 /* Clip window size for slower link */
2670
2671 if (((tp->t_flags & TF_SLOWLINK) != 0) && slowlink_wsize > 0 )
2672 return imin(space, slowlink_wsize);
2673
2674 return space;
2675 }
2676 /*
2677 * Checks TCP Segment Offloading capability for a given connection
2678 * and interface pair.
2679 */
2680 void
2681 tcp_set_tso(struct tcpcb *tp, struct ifnet *ifp)
2682 {
2683 #if INET6
2684 struct inpcb *inp;
2685 int isipv6;
2686 #endif /* INET6 */
2687 #if MPTCP
2688 /*
2689 * We can't use TSO if this tcpcb belongs to an MPTCP session.
2690 */
2691 if (tp->t_mpflags & TMPF_MPTCP_TRUE) {
2692 tp->t_flags &= ~TF_TSO;
2693 return;
2694 }
2695 #endif
2696 #if INET6
2697 inp = tp->t_inpcb;
2698 isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2699
2700 if (isipv6) {
2701 if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV6)) {
2702 tp->t_flags |= TF_TSO;
2703 if (ifp->if_tso_v6_mtu != 0)
2704 tp->tso_max_segment_size = ifp->if_tso_v6_mtu;
2705 else
2706 tp->tso_max_segment_size = TCP_MAXWIN;
2707 } else
2708 tp->t_flags &= ~TF_TSO;
2709
2710 } else
2711 #endif /* INET6 */
2712
2713 {
2714 if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV4)) {
2715 tp->t_flags |= TF_TSO;
2716 if (ifp->if_tso_v4_mtu != 0)
2717 tp->tso_max_segment_size = ifp->if_tso_v4_mtu;
2718 else
2719 tp->tso_max_segment_size = TCP_MAXWIN;
2720 } else
2721 tp->t_flags &= ~TF_TSO;
2722 }
2723 }
2724
2725 #define TIMEVAL_TO_TCPHZ(_tv_) ((_tv_).tv_sec * TCP_RETRANSHZ + (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC)
2726
2727 /* Function to calculate the tcp clock. The tcp clock will get updated
2728 * at the boundaries of the tcp layer. This is done at 3 places:
2729 * 1. Right before processing an input tcp packet
2730 * 2. Whenever a connection wants to access the network using tcp_usrreqs
2731 * 3. When a tcp timer fires or before tcp slow timeout
2732 *
2733 */
2734
2735 void
2736 calculate_tcp_clock()
2737 {
2738 struct timeval tv = tcp_uptime;
2739 struct timeval interval = {0, TCP_RETRANSHZ_TO_USEC};
2740 struct timeval now, hold_now;
2741 uint32_t incr = 0;
2742
2743 microuptime(&now);
2744
2745 /*
2746 * Update coarse-grained networking timestamp (in sec.); the idea
2747 * is to update the counter returnable via net_uptime() when
2748 * we read time.
2749 */
2750 net_update_uptime_secs(now.tv_sec);
2751
2752 timevaladd(&tv, &interval);
2753 if (timevalcmp(&now, &tv, >)) {
2754 /* time to update the clock */
2755 lck_spin_lock(tcp_uptime_lock);
2756 if (timevalcmp(&tcp_uptime, &now, >=)) {
2757 /* clock got updated while waiting for the lock */
2758 lck_spin_unlock(tcp_uptime_lock);
2759 return;
2760 }
2761
2762 microuptime(&now);
2763 hold_now = now;
2764 tv = tcp_uptime;
2765 timevalsub(&now, &tv);
2766
2767 incr = TIMEVAL_TO_TCPHZ(now);
2768 if (incr > 0) {
2769 tcp_uptime = hold_now;
2770 tcp_now += incr;
2771 }
2772
2773 lck_spin_unlock(tcp_uptime_lock);
2774 }
2775 return;
2776 }
2777
2778 /* Compute receive window scaling that we are going to request
2779 * for this connection based on sb_hiwat. Try to leave some
2780 * room to potentially increase the window size upto a maximum
2781 * defined by the constant tcp_autorcvbuf_max.
2782 */
2783 void
2784 tcp_set_max_rwinscale(struct tcpcb *tp, struct socket *so) {
2785 u_int32_t maxsockbufsize;
2786
2787 tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale);
2788 maxsockbufsize = ((so->so_rcv.sb_flags & SB_USRSIZE) != 0) ?
2789 so->so_rcv.sb_hiwat : tcp_autorcvbuf_max;
2790
2791 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
2792 (TCP_MAXWIN << tp->request_r_scale) < maxsockbufsize)
2793 tp->request_r_scale++;
2794 tp->request_r_scale = min(tp->request_r_scale, TCP_MAX_WINSHIFT);
2795
2796 }
2797
2798 int
2799 tcp_notsent_lowat_check(struct socket *so) {
2800 struct inpcb *inp = sotoinpcb(so);
2801 struct tcpcb *tp = NULL;
2802 int notsent = 0;
2803 if (inp != NULL) {
2804 tp = intotcpcb(inp);
2805 }
2806
2807 notsent = so->so_snd.sb_cc -
2808 (tp->snd_nxt - tp->snd_una);
2809
2810 /* When we send a FIN or SYN, not_sent can be negative.
2811 * In that case also we need to send a write event to the
2812 * process if it is waiting. In the FIN case, it will
2813 * get an error from send because cantsendmore will be set.
2814 */
2815 if (notsent <= tp->t_notsent_lowat) {
2816 return(1);
2817 }
2818
2819 /* When Nagle's algorithm is not disabled, it is better
2820 * to wakeup the client until there is atleast one
2821 * maxseg of data to write.
2822 */
2823 if ((tp->t_flags & TF_NODELAY) == 0 &&
2824 notsent > 0 && notsent < tp->t_maxseg) {
2825 return(1);
2826 }
2827 return(0);
2828 }
2829
2830
2831 /* DSEP Review Done pl-20051213-v02 @3253,@3391,@3400 */