2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <kern/locks.h>
80 #include <sys/sysctl.h>
81 #include <sys/mcache.h>
82 #include <sys/kdebug.h>
84 #include <machine/endian.h>
85 #include <pexpert/pexpert.h>
88 #include <libkern/OSAtomic.h>
89 #include <libkern/OSByteOrder.h>
92 #include <net/if_dl.h>
93 #include <net/if_types.h>
94 #include <net/route.h>
95 #include <net/ntstat.h>
96 #include <net/net_osdep.h>
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/kpi_ipfilter_var.h>
108 #include <security/mac_framework.h>
109 #endif /* CONFIG_MACF_NET */
111 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
112 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
113 #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
114 #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
117 #include <netinet6/ipsec.h>
118 #include <netkey/key.h>
120 #include <netkey/key_debug.h>
122 #define KEYDEBUG(lev, arg)
127 #include <net/necp.h>
131 #include <netinet/ip_fw.h>
133 #include <netinet/ip_divert.h>
134 #endif /* IPDIVERT */
135 #endif /* IPFIREWALL */
138 #include <netinet/ip_dummynet.h>
142 #include <net/pfvar.h>
145 #if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG
146 #define print_ip(a) \
147 printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \
148 (ntohl(a.s_addr) >> 16) & 0xFF, \
149 (ntohl(a.s_addr) >> 8) & 0xFF, \
150 (ntohl(a.s_addr)) & 0xFF);
151 #endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */
155 static void ip_out_cksum_stats(int, u_int32_t
);
156 static struct mbuf
*ip_insertoptions(struct mbuf
*, struct mbuf
*, int *);
157 static int ip_optcopy(struct ip
*, struct ip
*);
158 static int ip_pcbopts(int, struct mbuf
**, struct mbuf
*);
159 static void imo_trace(struct ip_moptions
*, int);
160 static void ip_mloopback(struct ifnet
*, struct ifnet
*, struct mbuf
*,
161 struct sockaddr_in
*, int);
162 static struct ifaddr
*in_selectsrcif(struct ip
*, struct route
*, unsigned int);
164 extern struct ip_linklocal_stat ip_linklocal_stat
;
166 /* temporary: for testing */
168 extern int ipsec_bypass
;
171 static int ip_maxchainsent
= 0;
172 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxchainsent
,
173 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_maxchainsent
, 0,
174 "use dlil_output_list");
176 static int forge_ce
= 0;
177 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, forge_ce
,
178 CTLFLAG_RW
| CTLFLAG_LOCKED
, &forge_ce
, 0,
182 static int ip_select_srcif_debug
= 0;
183 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, select_srcif_debug
,
184 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_select_srcif_debug
, 0,
185 "log source interface selection debug info");
187 #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
190 __private_extern__
unsigned int imo_trace_hist_size
= IMO_TRACE_HIST_SIZE
;
192 struct ip_moptions_dbg
{
193 struct ip_moptions imo
; /* ip_moptions */
194 u_int16_t imo_refhold_cnt
; /* # of IMO_ADDREF */
195 u_int16_t imo_refrele_cnt
; /* # of IMO_REMREF */
197 * Alloc and free callers.
202 * Circular lists of IMO_ADDREF and IMO_REMREF callers.
204 ctrace_t imo_refhold
[IMO_TRACE_HIST_SIZE
];
205 ctrace_t imo_refrele
[IMO_TRACE_HIST_SIZE
];
209 static unsigned int imo_debug
= 1; /* debugging (enabled) */
211 static unsigned int imo_debug
; /* debugging (disabled) */
213 static unsigned int imo_size
; /* size of zone element */
214 static struct zone
*imo_zone
; /* zone for ip_moptions */
216 #define IMO_ZONE_MAX 64 /* maximum elements in zone */
217 #define IMO_ZONE_NAME "ip_moptions" /* zone name */
220 * IP output. The packet in mbuf chain m contains a skeletal IP
221 * header (with len, off, ttl, proto, tos, src, dst).
222 * The mbuf chain containing the packet will be freed.
223 * The mbuf opt, if present, will not be freed.
226 ip_output(struct mbuf
*m0
, struct mbuf
*opt
, struct route
*ro
, int flags
,
227 struct ip_moptions
*imo
, struct ip_out_args
*ipoa
)
229 return (ip_output_list(m0
, 0, opt
, ro
, flags
, imo
, ipoa
));
233 * IP output. The packet in mbuf chain m contains a skeletal IP
234 * header (with len, off, ttl, proto, tos, src, dst).
235 * The mbuf chain containing the packet will be freed.
236 * The mbuf opt, if present, will not be freed.
238 * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
239 * skipped and ro->ro_rt would be used. Otherwise the result of route
240 * lookup is stored in ro->ro_rt.
242 * In the IP forwarding case, the packet will arrive with options already
243 * inserted, so must have a NULL opt pointer.
246 ip_output_list(struct mbuf
*m0
, int packetchain
, struct mbuf
*opt
,
247 struct route
*ro
, int flags
, struct ip_moptions
*imo
,
248 struct ip_out_args
*ipoa
)
251 struct ifnet
*ifp
= NULL
; /* not refcnt'd */
252 struct mbuf
*m
= m0
, *prevnxt
= NULL
, **mppn
= &prevnxt
;
253 int hlen
= sizeof (struct ip
);
254 int len
= 0, error
= 0;
255 struct sockaddr_in
*dst
= NULL
;
256 struct in_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
257 struct in_addr pkt_dst
;
258 struct ipf_pktopts
*ippo
= NULL
;
259 ipfilter_t inject_filter_ref
= NULL
;
260 struct mbuf
*packetlist
;
261 uint32_t sw_csum
, pktcnt
= 0, scnt
= 0, bytecnt
= 0;
262 unsigned int ifscope
= IFSCOPE_NONE
;
263 struct flowadv
*adv
= NULL
;
265 struct socket
*so
= NULL
;
266 struct secpolicy
*sp
= NULL
;
269 necp_kernel_policy_result necp_result
= 0;
270 necp_kernel_policy_result_parameter necp_result_parameter
;
271 necp_kernel_policy_id necp_matched_policy_id
= 0;
275 struct sockaddr_in
*next_hop_from_ipfwd_tag
= NULL
;
276 #endif /* IPFIREWALL */
277 #if IPFIREWALL || DUMMYNET
279 #endif /* IPFIREWALL || DUMMYNET */
281 struct ip_out_args saved_ipoa
;
282 struct sockaddr_in dst_buf
;
283 #endif /* DUMMYNET */
286 struct ipsec_output_state ipsec_state
;
289 struct route necp_route
;
291 #if IPFIREWALL || DUMMYNET
292 struct ip_fw_args args
;
293 #endif /* IPFIREWALL || DUMMYNET */
294 #if IPFIREWALL_FORWARD
295 struct route sro_fwd
;
296 #endif /* IPFIREWALL_FORWARD */
298 struct route saved_route
;
299 #endif /* DUMMYNET */
300 struct ipf_pktopts ipf_pktopts
;
302 #define ipsec_state ipobz.ipsec_state
303 #define necp_route ipobz.necp_route
304 #define args ipobz.args
305 #define sro_fwd ipobz.sro_fwd
306 #define saved_route ipobz.saved_route
307 #define ipf_pktopts ipobz.ipf_pktopts
310 boolean_t select_srcif
: 1; /* set once */
311 boolean_t srcbound
: 1; /* set once */
312 boolean_t nocell
: 1; /* set once */
313 boolean_t isbroadcast
: 1;
314 boolean_t didfilter
: 1;
315 boolean_t noexpensive
: 1; /* set once */
316 boolean_t awdl_unrestricted
: 1; /* set once */
317 #if IPFIREWALL_FORWARD
318 boolean_t fwd_rewrite_src
: 1;
319 #endif /* IPFIREWALL_FORWARD */
322 } ipobf
= { .raw
= 0 };
324 #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \
325 (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \
326 ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \
327 (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp)))
329 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
331 VERIFY(m0
->m_flags
& M_PKTHDR
);
334 /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
335 bzero(&ipobz
, sizeof (ipobz
));
338 #if IPFIREWALL || DUMMYNET
339 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
))
342 /* Grab info from mtags prepended to the chain */
344 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
345 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
346 struct dn_pkt_tag
*dn_tag
;
348 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
349 args
.fwa_ipfw_rule
= dn_tag
->dn_ipfw_rule
;
350 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
352 saved_route
= dn_tag
->dn_ro
;
356 bcopy(&dn_tag
->dn_dst
, &dst_buf
, sizeof (dst_buf
));
358 ifp
= dn_tag
->dn_ifp
;
359 flags
= dn_tag
->dn_flags
;
360 if ((dn_tag
->dn_flags
& IP_OUTARGS
)) {
361 saved_ipoa
= dn_tag
->dn_ipoa
;
365 m_tag_delete(m0
, tag
);
367 #endif /* DUMMYNET */
370 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
371 KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
372 struct divert_tag
*div_tag
;
374 div_tag
= (struct divert_tag
*)(tag
+1);
375 args
.fwa_divert_rule
= div_tag
->cookie
;
377 m_tag_delete(m0
, tag
);
379 #endif /* IPDIVERT */
382 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
383 KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
384 struct ip_fwd_tag
*ipfwd_tag
;
386 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
387 next_hop_from_ipfwd_tag
= ipfwd_tag
->next_hop
;
389 m_tag_delete(m0
, tag
);
391 #endif /* IPFIREWALL */
394 #endif /* IPFIREWALL || DUMMYNET */
397 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
|PKTF_IFAINFO
);
400 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
401 /* If packet is bound to an interface, check bound policies */
402 if ((flags
& IP_OUTARGS
) && (ipoa
!= NULL
) &&
403 (ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
404 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
405 if (ipsec4_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
406 &flags
, ipoa
, &sp
) != 0)
414 if (ip_doscopedroute
&& (flags
& IP_OUTARGS
)) {
416 * In the forwarding case, only the ifscope value is used,
417 * as source interface selection doesn't take place.
419 if ((ipobf
.select_srcif
= (!(flags
& IP_FORWARDING
) &&
420 (ipoa
->ipoa_flags
& IPOAF_SELECT_SRCIF
)))) {
421 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
424 if ((ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
425 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
426 ifscope
= ipoa
->ipoa_boundif
;
427 ipf_pktopts
.ippo_flags
|=
428 (IPPOF_BOUND_IF
| (ifscope
<< IPPOF_SHIFT_IFSCOPE
));
431 /* double negation needed for bool bit field */
432 ipobf
.srcbound
= !!(ipoa
->ipoa_flags
& IPOAF_BOUND_SRCADDR
);
434 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
436 ipobf
.select_srcif
= FALSE
;
437 ipobf
.srcbound
= FALSE
;
438 ifscope
= IFSCOPE_NONE
;
439 if (flags
& IP_OUTARGS
) {
440 ipoa
->ipoa_boundif
= IFSCOPE_NONE
;
441 ipoa
->ipoa_flags
&= ~(IPOAF_SELECT_SRCIF
|
442 IPOAF_BOUND_IF
| IPOAF_BOUND_SRCADDR
);
446 if (flags
& IP_OUTARGS
) {
447 if (ipoa
->ipoa_flags
& IPOAF_NO_CELLULAR
) {
449 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
451 if (ipoa
->ipoa_flags
& IPOAF_NO_EXPENSIVE
) {
452 ipobf
.noexpensive
= TRUE
;
453 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
455 if (ipoa
->ipoa_flags
& IPOAF_AWDL_UNRESTRICTED
)
456 ipobf
.awdl_unrestricted
= TRUE
;
457 adv
= &ipoa
->ipoa_flowadv
;
458 adv
->code
= FADV_SUCCESS
;
459 ipoa
->ipoa_retflags
= 0;
463 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
464 so
= ipsec_getsocket(m
);
466 (void) ipsec_setsocket(m
, NULL
);
472 if (args
.fwa_ipfw_rule
!= NULL
|| args
.fwa_pf_rule
!= NULL
) {
473 /* dummynet already saw us */
474 ip
= mtod(m
, struct ip
*);
475 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
476 pkt_dst
= ip
->ip_dst
;
477 if (ro
->ro_rt
!= NULL
) {
478 RT_LOCK_SPIN(ro
->ro_rt
);
479 ia
= (struct in_ifaddr
*)ro
->ro_rt
->rt_ifa
;
481 /* Become a regular mutex */
482 RT_CONVERT_LOCK(ro
->ro_rt
);
483 IFA_ADDREF(&ia
->ia_ifa
);
485 RT_UNLOCK(ro
->ro_rt
);
489 if (args
.fwa_ipfw_rule
!= NULL
)
491 #endif /* IPFIREWALL */
492 if (args
.fwa_pf_rule
!= NULL
)
495 #endif /* DUMMYNET */
498 ipobf
.isbroadcast
= FALSE
;
499 ipobf
.didfilter
= FALSE
;
500 #if IPFIREWALL_FORWARD
501 ipobf
.fwd_rewrite_src
= FALSE
;
502 #endif /* IPFIREWALL_FORWARD */
504 VERIFY(m
->m_flags
& M_PKTHDR
);
506 * No need to proccess packet twice if we've already seen it.
508 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
))
509 inject_filter_ref
= ipf_get_inject_filter(m
);
511 inject_filter_ref
= NULL
;
514 m
= ip_insertoptions(m
, opt
, &len
);
516 /* Update the chain */
518 if (m0
== packetlist
)
523 ip
= mtod(m
, struct ip
*);
529 * When dealing with a packet chain, we need to reset "next_hop"
530 * because "dst" may have been changed to the gateway address below
531 * for the previous packet of the chain. This could cause the route
532 * to be inavertandly changed to the route to the gateway address
533 * (instead of the route to the destination).
535 args
.fwa_next_hop
= next_hop_from_ipfwd_tag
;
536 pkt_dst
= args
.fwa_next_hop
? args
.fwa_next_hop
->sin_addr
: ip
->ip_dst
;
537 #else /* !IPFIREWALL */
538 pkt_dst
= ip
->ip_dst
;
539 #endif /* !IPFIREWALL */
542 * We must not send if the packet is destined to network zero.
543 * RFC1122 3.2.1.3 (a) and (b).
545 if (IN_ZERONET(ntohl(pkt_dst
.s_addr
))) {
546 error
= EHOSTUNREACH
;
553 if (!(flags
& (IP_FORWARDING
|IP_RAWOUTPUT
))) {
554 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, hlen
>> 2);
556 ip
->ip_id
= ip_randomid();
557 OSAddAtomic(1, &ipstat
.ips_localout
);
559 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
563 /* For debugging, we let the stack forge congestion */
565 ((ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT1
||
566 (ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT0
)) {
567 ip
->ip_tos
= (ip
->ip_tos
& ~IPTOS_ECN_MASK
) | IPTOS_ECN_CE
;
572 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
,
573 ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
575 dst
= SIN(&ro
->ro_dst
);
578 * If there is a cached route,
579 * check that it is to the same destination
580 * and is still up. If not, free it and try again.
581 * The address family should also be checked in case of sharing the
585 if (ro
->ro_rt
!= NULL
) {
586 if (ROUTE_UNUSABLE(ro
) && ip
->ip_src
.s_addr
!= INADDR_ANY
&&
587 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
))) {
588 src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
);
589 if (src_ia
== NULL
) {
590 error
= EADDRNOTAVAIL
;
593 IFA_REMREF(&src_ia
->ia_ifa
);
597 * Test rt_flags without holding rt_lock for performance
598 * reasons; if the route is down it will hopefully be
599 * caught by the layer below (since it uses this route
600 * as a hint) or during the next transmit.
602 if (ROUTE_UNUSABLE(ro
) || dst
->sin_family
!= AF_INET
||
603 dst
->sin_addr
.s_addr
!= pkt_dst
.s_addr
)
607 * If we're doing source interface selection, we may not
608 * want to use this route; only synch up the generation
611 if (!ipobf
.select_srcif
&& ro
->ro_rt
!= NULL
&&
612 RT_GENID_OUTOFSYNC(ro
->ro_rt
))
613 RT_GENID_SYNC(ro
->ro_rt
);
615 if (ro
->ro_rt
== NULL
) {
616 bzero(dst
, sizeof (*dst
));
617 dst
->sin_family
= AF_INET
;
618 dst
->sin_len
= sizeof (*dst
);
619 dst
->sin_addr
= pkt_dst
;
622 * If routing to interface only,
623 * short circuit routing lookup.
625 if (flags
& IP_ROUTETOIF
) {
627 IFA_REMREF(&ia
->ia_ifa
);
628 if ((ia
= ifatoia(ifa_ifwithdstaddr(sintosa(dst
)))) == NULL
) {
629 ia
= ifatoia(ifa_ifwithnet(sintosa(dst
)));
631 OSAddAtomic(1, &ipstat
.ips_noroute
);
638 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
640 * For consistency with other cases below. Loopback
641 * multicast case is handled separately by ip_mloopback().
643 if ((ifp
->if_flags
& IFF_LOOPBACK
) &&
644 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
645 m
->m_pkthdr
.rcvif
= ifp
;
646 ip_setsrcifaddr_info(m
, ifp
->if_index
, NULL
);
647 ip_setdstifaddr_info(m
, ifp
->if_index
, NULL
);
649 } else if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
)) &&
650 imo
!= NULL
&& (ifp
= imo
->imo_multicast_ifp
) != NULL
) {
652 * Bypass the normal routing lookup for multicast
653 * packets if the interface is specified.
655 ipobf
.isbroadcast
= FALSE
;
657 IFA_REMREF(&ia
->ia_ifa
);
659 /* Macro takes reference on ia */
662 struct ifaddr
*ia0
= NULL
;
663 boolean_t cloneok
= FALSE
;
665 * Perform source interface selection; the source IP address
666 * must belong to one of the addresses of the interface used
667 * by the route. For performance reasons, do this only if
668 * there is no route, or if the routing table has changed,
669 * or if we haven't done source interface selection on this
670 * route (for this PCB instance) before.
672 if (ipobf
.select_srcif
&&
673 ip
->ip_src
.s_addr
!= INADDR_ANY
&& (ROUTE_UNUSABLE(ro
) ||
674 !(ro
->ro_flags
& ROF_SRCIF_SELECTED
))) {
675 /* Find the source interface */
676 ia0
= in_selectsrcif(ip
, ro
, ifscope
);
679 * If the source address belongs to a restricted
680 * interface and the caller forbids our using
681 * interfaces of such type, pretend that there is no
685 IP_CHECK_RESTRICTIONS(ia0
->ifa_ifp
, ipobf
)) {
688 error
= EHOSTUNREACH
;
689 if (flags
& IP_OUTARGS
)
690 ipoa
->ipoa_retflags
|= IPOARF_IFDENIED
;
695 * If the source address is spoofed (in the case of
696 * IP_RAWOUTPUT on an unbounded socket), or if this
697 * is destined for local/loopback, just let it go out
698 * using the interface of the route. Otherwise,
699 * there's no interface having such an address,
702 if (ia0
== NULL
&& (!(flags
& IP_RAWOUTPUT
) ||
703 ipobf
.srcbound
) && ifscope
!= lo_ifp
->if_index
) {
704 error
= EADDRNOTAVAIL
;
709 * If the caller didn't explicitly specify the scope,
710 * pick it up from the source interface. If the cached
711 * route was wrong and was blown away as part of source
712 * interface selection, don't mask out RTF_PRCLONING
713 * since that route may have been allocated by the ULP,
714 * unless the IP header was created by the caller or
715 * the destination is IPv4 LLA. The check for the
716 * latter is needed because IPv4 LLAs are never scoped
717 * in the current implementation, and we don't want to
718 * replace the resolved IPv4 LLA route with one whose
719 * gateway points to that of the default gateway on
720 * the primary interface of the system.
723 if (ifscope
== IFSCOPE_NONE
)
724 ifscope
= ia0
->ifa_ifp
->if_index
;
725 cloneok
= (!(flags
& IP_RAWOUTPUT
) &&
726 !(IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))));
731 * If this is the case, we probably don't want to allocate
732 * a protocol-cloned route since we didn't get one from the
733 * ULP. This lets TCP do its thing, while not burdening
734 * forwarding or ICMP with the overhead of cloning a route.
735 * Of course, we still want to do any cloning requested by
736 * the link layer, as this is probably required in all cases
737 * for correct operation (as it is for ARP).
739 if (ro
->ro_rt
== NULL
) {
740 unsigned long ign
= RTF_PRCLONING
;
742 * We make an exception here: if the destination
743 * address is INADDR_BROADCAST, allocate a protocol-
744 * cloned host route so that we end up with a route
745 * marked with the RTF_BROADCAST flag. Otherwise,
746 * we would end up referring to the default route,
747 * instead of creating a cloned host route entry.
748 * That would introduce inconsistencies between ULPs
749 * that allocate a route and those that don't. The
750 * RTF_BROADCAST route is important since we'd want
751 * to send out undirected IP broadcast packets using
752 * link-level broadcast address. Another exception
753 * is for ULP-created routes that got blown away by
754 * source interface selection (see above).
756 * These exceptions will no longer be necessary when
757 * the RTF_PRCLONING scheme is no longer present.
759 if (cloneok
|| dst
->sin_addr
.s_addr
== INADDR_BROADCAST
)
760 ign
&= ~RTF_PRCLONING
;
763 * Loosen the route lookup criteria if the ifscope
764 * corresponds to the loopback interface; this is
765 * needed to support Application Layer Gateways
766 * listening on loopback, in conjunction with packet
767 * filter redirection rules. The final source IP
768 * address will be rewritten by the packet filter
769 * prior to the RFC1122 loopback check below.
771 if (ifscope
== lo_ifp
->if_index
)
772 rtalloc_ign(ro
, ign
);
774 rtalloc_scoped_ign(ro
, ign
, ifscope
);
777 * If the route points to a cellular/expensive interface
778 * and the caller forbids our using interfaces of such type,
779 * pretend that there is no route.
781 if (ro
->ro_rt
!= NULL
) {
782 RT_LOCK_SPIN(ro
->ro_rt
);
783 if (IP_CHECK_RESTRICTIONS(ro
->ro_rt
->rt_ifp
,
785 RT_UNLOCK(ro
->ro_rt
);
787 if (flags
& IP_OUTARGS
) {
788 ipoa
->ipoa_retflags
|=
792 RT_UNLOCK(ro
->ro_rt
);
797 if (ro
->ro_rt
== NULL
) {
798 OSAddAtomic(1, &ipstat
.ips_noroute
);
799 error
= EHOSTUNREACH
;
808 IFA_REMREF(&ia
->ia_ifa
);
809 RT_LOCK_SPIN(ro
->ro_rt
);
810 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
812 /* Become a regular mutex */
813 RT_CONVERT_LOCK(ro
->ro_rt
);
814 IFA_ADDREF(&ia
->ia_ifa
);
817 * Note: ia_ifp may not be the same as rt_ifp; the latter
818 * is what we use for determining outbound i/f, mtu, etc.
820 ifp
= ro
->ro_rt
->rt_ifp
;
822 if (ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) {
823 dst
= SIN(ro
->ro_rt
->rt_gateway
);
825 if (ro
->ro_rt
->rt_flags
& RTF_HOST
) {
826 /* double negation needed for bool bit field */
828 !!(ro
->ro_rt
->rt_flags
& RTF_BROADCAST
);
830 /* Become a regular mutex */
831 RT_CONVERT_LOCK(ro
->ro_rt
);
832 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
835 * For consistency with IPv6, as well as to ensure that
836 * IP_RECVIF is set correctly for packets that are sent
837 * to one of the local addresses. ia (rt_ifa) would have
838 * been fixed up by rt_setif for local routes. This
839 * would make it appear as if the packet arrives on the
840 * interface which owns the local address. Loopback
841 * multicast case is handled separately by ip_mloopback().
843 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
) &&
844 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
847 m
->m_pkthdr
.rcvif
= ia
->ia_ifa
.ifa_ifp
;
850 srcidx
= ia0
->ifa_ifp
->if_index
;
851 else if ((ro
->ro_flags
& ROF_SRCIF_SELECTED
) &&
852 ro
->ro_srcia
!= NULL
)
853 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
857 ip_setsrcifaddr_info(m
, srcidx
, NULL
);
858 ip_setdstifaddr_info(m
, 0, ia
);
860 RT_UNLOCK(ro
->ro_rt
);
867 if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
868 struct ifnet
*srcifp
= NULL
;
869 struct in_multi
*inm
;
871 u_int8_t ttl
= IP_DEFAULT_MULTICAST_TTL
;
872 u_int8_t loop
= IP_DEFAULT_MULTICAST_LOOP
;
874 m
->m_flags
|= M_MCAST
;
876 * IP destination address is multicast. Make sure "dst"
877 * still points to the address in "ro". (It may have been
878 * changed to point to a gateway address, above.)
880 dst
= SIN(&ro
->ro_dst
);
882 * See if the caller provided any multicast options
886 vif
= imo
->imo_multicast_vif
;
887 ttl
= imo
->imo_multicast_ttl
;
888 loop
= imo
->imo_multicast_loop
;
889 if (!(flags
& IP_RAWOUTPUT
))
891 if (imo
->imo_multicast_ifp
!= NULL
)
892 ifp
= imo
->imo_multicast_ifp
;
894 } else if (!(flags
& IP_RAWOUTPUT
)) {
899 * Confirm that the outgoing interface supports multicast.
901 if (imo
== NULL
|| vif
== -1) {
902 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
903 OSAddAtomic(1, &ipstat
.ips_noroute
);
909 * If source address not specified yet, use address
910 * of outgoing interface.
912 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
913 struct in_ifaddr
*ia1
;
914 lck_rw_lock_shared(in_ifaddr_rwlock
);
915 TAILQ_FOREACH(ia1
, &in_ifaddrhead
, ia_link
) {
916 IFA_LOCK_SPIN(&ia1
->ia_ifa
);
917 if (ia1
->ia_ifp
== ifp
) {
918 ip
->ip_src
= IA_SIN(ia1
)->sin_addr
;
920 IFA_UNLOCK(&ia1
->ia_ifa
);
923 IFA_UNLOCK(&ia1
->ia_ifa
);
925 lck_rw_done(in_ifaddr_rwlock
);
926 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
932 in_multihead_lock_shared();
933 IN_LOOKUP_MULTI(&pkt_dst
, ifp
, inm
);
934 in_multihead_lock_done();
935 if (inm
!= NULL
&& (imo
== NULL
|| loop
)) {
937 * If we belong to the destination multicast group
938 * on the outgoing interface, and the caller did not
939 * forbid loopback, loop back a copy.
941 if (!TAILQ_EMPTY(&ipv4_filters
)) {
942 struct ipfilter
*filter
;
943 int seen
= (inject_filter_ref
== NULL
);
946 ipf_pktopts
.ippo_flags
|=
948 ipf_pktopts
.ippo_mcast_ifnet
= ifp
;
949 ipf_pktopts
.ippo_mcast_ttl
= ttl
;
950 ipf_pktopts
.ippo_mcast_loop
= loop
;
956 * 4135317 - always pass network byte
959 #if BYTE_ORDER != BIG_ENDIAN
963 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
965 if ((struct ipfilter
*)
966 inject_filter_ref
== filter
)
968 } else if (filter
->ipf_filter
.
969 ipf_output
!= NULL
) {
971 result
= filter
->ipf_filter
.
975 if (result
== EJUSTRETURN
) {
988 /* set back to host byte order */
989 ip
= mtod(m
, struct ip
*);
990 #if BYTE_ORDER != BIG_ENDIAN
995 ipobf
.didfilter
= TRUE
;
997 ip_mloopback(srcifp
, ifp
, m
, dst
, hlen
);
1002 * Multicasts with a time-to-live of zero may be looped-
1003 * back, above, but must not be transmitted on a network.
1004 * Also, multicasts addressed to the loopback interface
1005 * are not sent -- the above call to ip_mloopback() will
1006 * loop back a copy if this host actually belongs to the
1007 * destination group on the loopback interface.
1009 if (ip
->ip_ttl
== 0 || ifp
->if_flags
& IFF_LOOPBACK
) {
1017 * If source address not specified yet, use address
1018 * of outgoing interface.
1020 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
1021 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1022 ip
->ip_src
= IA_SIN(ia
)->sin_addr
;
1023 IFA_UNLOCK(&ia
->ia_ifa
);
1024 #if IPFIREWALL_FORWARD
1026 * Keep note that we did this - if the firewall changes
1027 * the next-hop, our interface may change, changing the
1028 * default source IP. It's a shame so much effort happens
1031 ipobf
.fwd_rewrite_src
= TRUE
;
1032 #endif /* IPFIREWALL_FORWARD */
1036 * Look for broadcast address and
1037 * and verify user is allowed to send
1040 if (ipobf
.isbroadcast
) {
1041 if (!(ifp
->if_flags
& IFF_BROADCAST
)) {
1042 error
= EADDRNOTAVAIL
;
1045 if (!(flags
& IP_ALLOWBROADCAST
)) {
1049 /* don't allow broadcast messages to be fragmented */
1050 if ((u_short
)ip
->ip_len
> ifp
->if_mtu
) {
1054 m
->m_flags
|= M_BCAST
;
1056 m
->m_flags
&= ~M_BCAST
;
1061 /* Invoke outbound packet filter */
1062 if (PF_IS_ENABLED
) {
1065 m0
= m
; /* Save for later */
1068 args
.fwa_next_hop
= dst
;
1072 args
.fwa_oflags
= flags
;
1073 if (flags
& IP_OUTARGS
)
1074 args
.fwa_ipoa
= ipoa
;
1075 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, &args
);
1076 #else /* DUMMYNET */
1077 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, NULL
);
1078 #endif /* DUMMYNET */
1079 if (rc
!= 0 || m
== NULL
) {
1080 /* Move to the next packet */
1083 /* Skip ahead if first packet in list got dropped */
1084 if (packetlist
== m0
)
1089 /* Next packet in the chain */
1091 } else if (packetlist
!= NULL
) {
1092 /* No more packet; send down the chain */
1095 /* Nothing left; we're done */
1099 ip
= mtod(m
, struct ip
*);
1100 pkt_dst
= ip
->ip_dst
;
1101 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1105 * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
1107 if (IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)) ||
1108 IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))) {
1109 ip_linklocal_stat
.iplls_out_total
++;
1110 if (ip
->ip_ttl
!= MAXTTL
) {
1111 ip_linklocal_stat
.iplls_out_badttl
++;
1112 ip
->ip_ttl
= MAXTTL
;
1116 if (!ipobf
.didfilter
&& !TAILQ_EMPTY(&ipv4_filters
)) {
1117 struct ipfilter
*filter
;
1118 int seen
= (inject_filter_ref
== NULL
);
1119 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1122 * Check that a TSO frame isn't passed to a filter.
1123 * This could happen if a filter is inserted while
1124 * TCP is sending the TSO packet.
1126 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1133 /* 4135317 - always pass network byte order to filter */
1134 #if BYTE_ORDER != BIG_ENDIAN
1138 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1140 if ((struct ipfilter
*)inject_filter_ref
==
1143 } else if (filter
->ipf_filter
.ipf_output
) {
1145 result
= filter
->ipf_filter
.
1146 ipf_output(filter
->ipf_filter
.cookie
,
1147 (mbuf_t
*)&m
, ippo
);
1148 if (result
== EJUSTRETURN
) {
1158 /* set back to host byte order */
1159 ip
= mtod(m
, struct ip
*);
1160 #if BYTE_ORDER != BIG_ENDIAN
1168 /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */
1169 necp_matched_policy_id
= necp_ip_output_find_policy_match (m
,
1170 flags
, (flags
& IP_OUTARGS
) ? ipoa
: NULL
, &necp_result
, &necp_result_parameter
);
1171 if (necp_matched_policy_id
) {
1172 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
1173 switch (necp_result
) {
1174 case NECP_KERNEL_POLICY_RESULT_PASS
:
1176 case NECP_KERNEL_POLICY_RESULT_DROP
:
1177 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
1178 /* Flow divert packets should be blocked at the IP layer */
1179 error
= EHOSTUNREACH
;
1181 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
1182 /* Verify that the packet is being routed to the tunnel */
1183 struct ifnet
*policy_ifp
= necp_get_ifnet_from_result_parameter(&necp_result_parameter
);
1184 if (policy_ifp
== ifp
) {
1187 if (necp_packet_can_rebind_to_ifnet(m
, policy_ifp
, &necp_route
, AF_INET
)) {
1188 /* Set ifp to the tunnel interface, since it is compatible with the packet */
1193 error
= ENETUNREACH
;
1206 if (ipsec_bypass
!= 0 || (flags
& IP_NOIPSEC
))
1209 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1212 /* get SP for this packet */
1214 sp
= ipsec4_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
1217 sp
= ipsec4_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
1221 IPSEC_STAT_INCREMENT(ipsecstat
.out_inval
);
1222 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1231 switch (sp
->policy
) {
1232 case IPSEC_POLICY_DISCARD
:
1233 case IPSEC_POLICY_GENERATE
:
1235 * This packet is just discarded.
1237 IPSEC_STAT_INCREMENT(ipsecstat
.out_polvio
);
1238 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1242 case IPSEC_POLICY_BYPASS
:
1243 case IPSEC_POLICY_NONE
:
1244 /* no need to do IPsec. */
1245 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1249 case IPSEC_POLICY_IPSEC
:
1250 if (sp
->req
== NULL
) {
1251 /* acquire a policy */
1252 error
= key_spdacquire(sp
);
1253 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1258 /* Verify the redirect to ipsec interface */
1259 if (sp
->ipsec_if
== ifp
) {
1266 case IPSEC_POLICY_ENTRUST
:
1268 printf("ip_output: Invalid policy found. %d\n", sp
->policy
);
1272 if (flags
& IP_ROUTETOIF
) {
1273 bzero(&ipsec_state
.ro
, sizeof (ipsec_state
.ro
));
1275 route_copyout(&ipsec_state
.ro
, ro
, sizeof (ipsec_state
.ro
));
1277 ipsec_state
.dst
= SA(dst
);
1283 * delayed checksums are not currently compatible with IPsec
1285 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
)
1286 in_delayed_cksum(m
);
1288 #if BYTE_ORDER != BIG_ENDIAN
1293 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1294 struct ip
*, ip
, struct ifnet
*, ifp
,
1295 struct ip
*, ip
, struct ip6_hdr
*, NULL
);
1297 error
= ipsec4_output(&ipsec_state
, sp
, flags
);
1299 m0
= m
= ipsec_state
.m
;
1303 * If we're about to use the route in ipsec_state
1304 * and this came from dummynet, cleaup now.
1306 if (ro
== &saved_route
&&
1307 (!(flags
& IP_ROUTETOIF
) || ipsec_state
.tunneled
))
1309 #endif /* DUMMYNET */
1311 if (flags
& IP_ROUTETOIF
) {
1313 * if we have tunnel mode SA, we may need to ignore
1316 if (ipsec_state
.tunneled
) {
1317 flags
&= ~IP_ROUTETOIF
;
1318 ro
= &ipsec_state
.ro
;
1321 ro
= &ipsec_state
.ro
;
1323 dst
= SIN(ipsec_state
.dst
);
1325 /* mbuf is already reclaimed in ipsec4_output. */
1335 printf("ip4_output (ipsec): error code %d\n", error
);
1338 /* don't show these error codes to the user */
1342 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1348 /* be sure to update variables that are affected by ipsec4_output() */
1349 ip
= mtod(m
, struct ip
*);
1352 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1353 #else /* !_IP_VHL */
1354 hlen
= ip
->ip_hl
<< 2;
1355 #endif /* !_IP_VHL */
1356 /* Check that there wasn't a route change and src is still valid */
1357 if (ROUTE_UNUSABLE(ro
)) {
1359 VERIFY(src_ia
== NULL
);
1360 if (ip
->ip_src
.s_addr
!= INADDR_ANY
&&
1361 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
)) &&
1362 (src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
)) == NULL
) {
1363 error
= EADDRNOTAVAIL
;
1364 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1368 if (src_ia
!= NULL
) {
1369 IFA_REMREF(&src_ia
->ia_ifa
);
1374 if (ro
->ro_rt
== NULL
) {
1375 if (!(flags
& IP_ROUTETOIF
)) {
1376 printf("%s: can't update route after "
1377 "IPsec processing\n", __func__
);
1378 error
= EHOSTUNREACH
; /* XXX */
1379 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1385 IFA_REMREF(&ia
->ia_ifa
);
1386 RT_LOCK_SPIN(ro
->ro_rt
);
1387 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1389 /* Become a regular mutex */
1390 RT_CONVERT_LOCK(ro
->ro_rt
);
1391 IFA_ADDREF(&ia
->ia_ifa
);
1393 ifp
= ro
->ro_rt
->rt_ifp
;
1394 RT_UNLOCK(ro
->ro_rt
);
1397 /* make it flipped, again. */
1398 #if BYTE_ORDER != BIG_ENDIAN
1402 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1403 7, 0xff, 0xff, 0xff, 0xff);
1405 /* Pass to filters again */
1406 if (!TAILQ_EMPTY(&ipv4_filters
)) {
1407 struct ipfilter
*filter
;
1409 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1412 * Check that a TSO frame isn't passed to a filter.
1413 * This could happen if a filter is inserted while
1414 * TCP is sending the TSO packet.
1416 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1423 /* 4135317 - always pass network byte order to filter */
1424 #if BYTE_ORDER != BIG_ENDIAN
1428 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1429 if (filter
->ipf_filter
.ipf_output
) {
1431 result
= filter
->ipf_filter
.
1432 ipf_output(filter
->ipf_filter
.cookie
,
1433 (mbuf_t
*)&m
, ippo
);
1434 if (result
== EJUSTRETURN
) {
1444 /* set back to host byte order */
1445 ip
= mtod(m
, struct ip
*);
1446 #if BYTE_ORDER != BIG_ENDIAN
1457 * Check with the firewall...
1458 * but not if we are already being fwd'd from a firewall.
1460 if (fw_enable
&& IPFW_LOADED
&& !args
.fwa_next_hop
) {
1461 struct sockaddr_in
*old
= dst
;
1464 args
.fwa_next_hop
= dst
;
1466 ipfwoff
= ip_fw_chk_ptr(&args
);
1468 dst
= args
.fwa_next_hop
;
1471 * On return we must do the following:
1472 * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new)
1473 * 1<=off<= 0xffff -> DIVERT
1474 * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
1475 * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
1476 * dst != old -> IPFIREWALL_FORWARD
1477 * off==0, dst==old -> accept
1478 * If some of the above modules is not compiled in, then
1479 * we should't have to check the corresponding condition
1480 * (because the ipfw control socket should not accept
1481 * unsupported rules), but better play safe and drop
1482 * packets in case of doubt.
1485 if ((ipfwoff
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) {
1491 ip
= mtod(m
, struct ip
*);
1493 if (ipfwoff
== 0 && dst
== old
) { /* common case */
1497 if (DUMMYNET_LOADED
&& (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) != 0) {
1499 * pass the pkt to dummynet. Need to include
1500 * pipe number, m, ifp, ro, dst because these are
1501 * not recomputed in the next pass.
1502 * All other parameters have been already used and
1503 * so they are not needed anymore.
1504 * XXX note: if the ifp or ro entry are deleted
1505 * while a pkt is in dummynet, we are in trouble!
1509 args
.fwa_oflags
= flags
;
1510 if (flags
& IP_OUTARGS
)
1511 args
.fwa_ipoa
= ipoa
;
1513 error
= ip_dn_io_ptr(m
, ipfwoff
& 0xffff, DN_TO_IP_OUT
,
1514 &args
, DN_CLIENT_IPFW
);
1517 #endif /* DUMMYNET */
1519 if (ipfwoff
!= 0 && (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) == 0) {
1520 struct mbuf
*clone
= NULL
;
1522 /* Clone packet if we're doing a 'tee' */
1523 if ((ipfwoff
& IP_FW_PORT_TEE_FLAG
) != 0)
1524 clone
= m_dup(m
, M_DONTWAIT
);
1527 * delayed checksums are not currently compatible
1528 * with divert sockets.
1530 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
)
1531 in_delayed_cksum(m
);
1533 /* Restore packet header fields to original values */
1535 #if BYTE_ORDER != BIG_ENDIAN
1540 /* Deliver packet to divert input routine */
1541 divert_packet(m
, 0, ipfwoff
& 0xffff,
1542 args
.fwa_divert_rule
);
1544 /* If 'tee', continue with original packet */
1545 if (clone
!= NULL
) {
1547 ip
= mtod(m
, struct ip
*);
1552 #endif /* IPDIVERT */
1553 #if IPFIREWALL_FORWARD
1555 * Here we check dst to make sure it's directly reachable on
1556 * the interface we previously thought it was.
1557 * If it isn't (which may be likely in some situations) we have
1558 * to re-route it (ie, find a route for the next-hop and the
1559 * associated interface) and set them here. This is nested
1560 * forwarding which in most cases is undesirable, except where
1561 * such control is nigh impossible. So we do it here.
1564 if (ipfwoff
== 0 && old
!= dst
) {
1565 struct in_ifaddr
*ia_fw
;
1566 struct route
*ro_fwd
= &sro_fwd
;
1568 #if IPFIREWALL_FORWARD_DEBUG
1569 printf("IPFIREWALL_FORWARD: New dst ip: ");
1570 print_ip(dst
->sin_addr
);
1572 #endif /* IPFIREWALL_FORWARD_DEBUG */
1574 * We need to figure out if we have been forwarded
1575 * to a local socket. If so then we should somehow
1576 * "loop back" to ip_input, and get directed to the
1577 * PCB as if we had received this packet. This is
1578 * because it may be dificult to identify the packets
1579 * you want to forward until they are being output
1580 * and have selected an interface. (e.g. locally
1581 * initiated packets) If we used the loopback inteface,
1582 * we would not be able to control what happens
1583 * as the packet runs through ip_input() as
1584 * it is done through a ISR.
1586 lck_rw_lock_shared(in_ifaddr_rwlock
);
1587 TAILQ_FOREACH(ia_fw
, &in_ifaddrhead
, ia_link
) {
1589 * If the addr to forward to is one
1590 * of ours, we pretend to
1591 * be the destination for this packet.
1593 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1594 if (IA_SIN(ia_fw
)->sin_addr
.s_addr
==
1595 dst
->sin_addr
.s_addr
) {
1596 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1599 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1601 lck_rw_done(in_ifaddr_rwlock
);
1603 /* tell ip_input "dont filter" */
1604 struct m_tag
*fwd_tag
;
1605 struct ip_fwd_tag
*ipfwd_tag
;
1607 fwd_tag
= m_tag_create(KERNEL_MODULE_TAG_ID
,
1608 KERNEL_TAG_TYPE_IPFORWARD
,
1609 sizeof (*ipfwd_tag
), M_NOWAIT
, m
);
1610 if (fwd_tag
== NULL
) {
1615 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+1);
1616 ipfwd_tag
->next_hop
= args
.fwa_next_hop
;
1618 m_tag_prepend(m
, fwd_tag
);
1620 if (m
->m_pkthdr
.rcvif
== NULL
)
1621 m
->m_pkthdr
.rcvif
= lo_ifp
;
1623 #if BYTE_ORDER != BIG_ENDIAN
1627 mbuf_outbound_finalize(m
, PF_INET
, 0);
1630 * we need to call dlil_output to run filters
1631 * and resync to avoid recursion loops.
1634 dlil_output(lo_ifp
, PF_INET
, m
, NULL
,
1637 printf("%s: no loopback ifp for "
1638 "forwarding!!!\n", __func__
);
1643 * Some of the logic for this was nicked from above.
1645 * This rewrites the cached route in a local PCB.
1646 * Is this what we want to do?
1648 ROUTE_RELEASE(ro_fwd
);
1649 bcopy(dst
, &ro_fwd
->ro_dst
, sizeof (*dst
));
1651 rtalloc_ign(ro_fwd
, RTF_PRCLONING
);
1653 if (ro_fwd
->ro_rt
== NULL
) {
1654 OSAddAtomic(1, &ipstat
.ips_noroute
);
1655 error
= EHOSTUNREACH
;
1659 RT_LOCK_SPIN(ro_fwd
->ro_rt
);
1660 ia_fw
= ifatoia(ro_fwd
->ro_rt
->rt_ifa
);
1661 if (ia_fw
!= NULL
) {
1662 /* Become a regular mutex */
1663 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1664 IFA_ADDREF(&ia_fw
->ia_ifa
);
1666 ifp
= ro_fwd
->ro_rt
->rt_ifp
;
1667 ro_fwd
->ro_rt
->rt_use
++;
1668 if (ro_fwd
->ro_rt
->rt_flags
& RTF_GATEWAY
)
1669 dst
= SIN(ro_fwd
->ro_rt
->rt_gateway
);
1670 if (ro_fwd
->ro_rt
->rt_flags
& RTF_HOST
) {
1671 /* double negation needed for bool bit field */
1673 !!(ro_fwd
->ro_rt
->rt_flags
& RTF_BROADCAST
);
1675 /* Become a regular mutex */
1676 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1678 in_broadcast(dst
->sin_addr
, ifp
);
1680 RT_UNLOCK(ro_fwd
->ro_rt
);
1682 ro
->ro_rt
= ro_fwd
->ro_rt
;
1683 ro_fwd
->ro_rt
= NULL
;
1684 dst
= SIN(&ro_fwd
->ro_dst
);
1687 * If we added a default src ip earlier,
1688 * which would have been gotten from the-then
1689 * interface, do it again, from the new one.
1691 if (ia_fw
!= NULL
) {
1692 if (ipobf
.fwd_rewrite_src
) {
1693 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1694 ip
->ip_src
= IA_SIN(ia_fw
)->sin_addr
;
1695 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1697 IFA_REMREF(&ia_fw
->ia_ifa
);
1701 #endif /* IPFIREWALL_FORWARD */
1703 * if we get here, none of the above matches, and
1704 * we have to drop the pkt
1707 error
= EACCES
; /* not sure this is the right error msg */
1712 #endif /* IPFIREWALL */
1714 /* 127/8 must not appear on wire - RFC1122 */
1715 if (!(ifp
->if_flags
& IFF_LOOPBACK
) &&
1716 ((ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
1717 (ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
)) {
1718 OSAddAtomic(1, &ipstat
.ips_badaddr
);
1719 error
= EADDRNOTAVAIL
;
1723 ip_output_checksum(ifp
, m
, (IP_VHL_HL(ip
->ip_vhl
) << 2),
1724 ip
->ip_len
, &sw_csum
);
1727 * If small enough for interface, or the interface will take
1728 * care of the fragmentation for us, can just send directly.
1730 if ((u_short
)ip
->ip_len
<= ifp
->if_mtu
|| TSO_IPV4_OK(ifp
, m
) ||
1731 (!(ip
->ip_off
& IP_DF
) && (ifp
->if_hwassist
& CSUM_FRAGMENT
))) {
1732 #if BYTE_ORDER != BIG_ENDIAN
1738 if (sw_csum
& CSUM_DELAY_IP
) {
1739 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
1740 sw_csum
&= ~CSUM_DELAY_IP
;
1741 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
1745 /* clean ipsec history once it goes out of the node */
1746 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
))
1749 if ((m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) &&
1750 (m
->m_pkthdr
.tso_segsz
> 0))
1751 scnt
+= m
->m_pkthdr
.len
/ m
->m_pkthdr
.tso_segsz
;
1755 if (packetchain
== 0) {
1756 if (ro
->ro_rt
!= NULL
&& nstat_collect
)
1757 nstat_route_tx(ro
->ro_rt
, scnt
,
1758 m
->m_pkthdr
.len
, 0);
1760 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
1762 if (dlil_verbose
&& error
) {
1763 printf("dlil_output error on interface %s: %d\n",
1764 ifp
->if_xname
, error
);
1770 * packet chaining allows us to reuse the
1771 * route for all packets
1773 bytecnt
+= m
->m_pkthdr
.len
;
1774 mppn
= &m
->m_nextpkt
;
1780 if (pktcnt
> ip_maxchainsent
)
1781 ip_maxchainsent
= pktcnt
;
1782 if (ro
->ro_rt
!= NULL
&& nstat_collect
)
1783 nstat_route_tx(ro
->ro_rt
, scnt
,
1786 error
= dlil_output(ifp
, PF_INET
, packetlist
,
1787 ro
->ro_rt
, SA(dst
), 0, adv
);
1788 if (dlil_verbose
&& error
) {
1789 printf("dlil_output error on interface %s: %d\n",
1790 ifp
->if_xname
, error
);
1804 * Too large for interface; fragment if possible.
1805 * Must be able to put at least 8 bytes per fragment.
1806 * Balk when DF bit is set or the interface didn't support TSO.
1808 if ((ip
->ip_off
& IP_DF
) || pktcnt
> 0 ||
1809 (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
)) {
1812 * This case can happen if the user changed the MTU
1813 * of an interface after enabling IP on it. Because
1814 * most netifs don't keep track of routes pointing to
1815 * them, there is no way for one to update all its
1816 * routes when the MTU is changed.
1819 RT_LOCK_SPIN(ro
->ro_rt
);
1820 if ((ro
->ro_rt
->rt_flags
& (RTF_UP
| RTF_HOST
)) &&
1821 !(ro
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
) &&
1822 (ro
->ro_rt
->rt_rmx
.rmx_mtu
> ifp
->if_mtu
)) {
1823 ro
->ro_rt
->rt_rmx
.rmx_mtu
= ifp
->if_mtu
;
1825 RT_UNLOCK(ro
->ro_rt
);
1830 OSAddAtomic(1, &ipstat
.ips_cantfrag
);
1834 error
= ip_fragment(m
, ifp
, ifp
->if_mtu
, sw_csum
);
1840 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1841 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1843 for (m
= m0
; m
; m
= m0
) {
1847 /* clean ipsec history once it goes out of the node */
1848 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
))
1852 if ((packetchain
!= 0) && (pktcnt
> 0)) {
1853 panic("%s: mix of packet in packetlist is "
1854 "wrong=%p", __func__
, packetlist
);
1857 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
1858 nstat_route_tx(ro
->ro_rt
, 1,
1859 m
->m_pkthdr
.len
, 0);
1861 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
1863 if (dlil_verbose
&& error
) {
1864 printf("dlil_output error on interface %s: %d\n",
1865 ifp
->if_xname
, error
);
1873 OSAddAtomic(1, &ipstat
.ips_fragmented
);
1877 IFA_REMREF(&ia
->ia_ifa
);
1881 ROUTE_RELEASE(&ipsec_state
.ro
);
1883 KEYDEBUG(KEYDEBUG_IPSEC_STAMP
,
1884 printf("DP ip_output call free SP:%x\n", sp
));
1885 key_freesp(sp
, KEY_SADB_UNLOCKED
);
1889 ROUTE_RELEASE(&necp_route
);
1892 ROUTE_RELEASE(&saved_route
);
1893 #endif /* DUMMYNET */
1894 #if IPFIREWALL_FORWARD
1895 ROUTE_RELEASE(&sro_fwd
);
1896 #endif /* IPFIREWALL_FORWARD */
1898 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
1911 #undef IP_CHECK_RESTRICTIONS
1915 ip_fragment(struct mbuf
*m
, struct ifnet
*ifp
, unsigned long mtu
, int sw_csum
)
1917 struct ip
*ip
, *mhip
;
1918 int len
, hlen
, mhlen
, firstlen
, off
, error
= 0;
1919 struct mbuf
**mnext
= &m
->m_nextpkt
, *m0
;
1922 ip
= mtod(m
, struct ip
*);
1924 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1925 #else /* !_IP_VHL */
1926 hlen
= ip
->ip_hl
<< 2;
1927 #endif /* !_IP_VHL */
1929 firstlen
= len
= (mtu
- hlen
) &~ 7;
1936 * if the interface will not calculate checksums on
1937 * fragmented packets, then do it here.
1939 if ((m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) &&
1940 !(ifp
->if_hwassist
& CSUM_IP_FRAGS
))
1941 in_delayed_cksum(m
);
1944 * Loop through length of segment after first fragment,
1945 * make new header and copy data of each part and link onto chain.
1948 mhlen
= sizeof (struct ip
);
1949 for (off
= hlen
+ len
; off
< (u_short
)ip
->ip_len
; off
+= len
) {
1950 MGETHDR(m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
1953 OSAddAtomic(1, &ipstat
.ips_odropped
);
1956 m
->m_flags
|= (m0
->m_flags
& M_MCAST
) | M_FRAG
;
1957 m
->m_data
+= max_linkhdr
;
1958 mhip
= mtod(m
, struct ip
*);
1960 if (hlen
> sizeof (struct ip
)) {
1961 mhlen
= ip_optcopy(ip
, mhip
) + sizeof (struct ip
);
1962 mhip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, mhlen
>> 2);
1965 mhip
->ip_off
= ((off
- hlen
) >> 3) + (ip
->ip_off
& ~IP_MF
);
1966 if (ip
->ip_off
& IP_MF
)
1967 mhip
->ip_off
|= IP_MF
;
1968 if (off
+ len
>= (u_short
)ip
->ip_len
)
1969 len
= (u_short
)ip
->ip_len
- off
;
1971 mhip
->ip_off
|= IP_MF
;
1972 mhip
->ip_len
= htons((u_short
)(len
+ mhlen
));
1973 m
->m_next
= m_copy(m0
, off
, len
);
1974 if (m
->m_next
== NULL
) {
1976 error
= ENOBUFS
; /* ??? */
1977 OSAddAtomic(1, &ipstat
.ips_odropped
);
1980 m
->m_pkthdr
.len
= mhlen
+ len
;
1981 m
->m_pkthdr
.rcvif
= NULL
;
1982 m
->m_pkthdr
.csum_flags
= m0
->m_pkthdr
.csum_flags
;
1984 M_COPY_CLASSIFIER(m
, m0
);
1985 M_COPY_PFTAG(m
, m0
);
1988 mac_netinet_fragment(m0
, m
);
1989 #endif /* CONFIG_MACF_NET */
1991 #if BYTE_ORDER != BIG_ENDIAN
1992 HTONS(mhip
->ip_off
);
1996 if (sw_csum
& CSUM_DELAY_IP
) {
1997 mhip
->ip_sum
= ip_cksum_hdr_out(m
, mhlen
);
1998 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2001 mnext
= &m
->m_nextpkt
;
2004 OSAddAtomic(nfrags
, &ipstat
.ips_ofragments
);
2006 /* set first/last markers for fragment chain */
2007 m
->m_flags
|= M_LASTFRAG
;
2008 m0
->m_flags
|= M_FIRSTFRAG
| M_FRAG
;
2009 m0
->m_pkthdr
.csum_data
= nfrags
;
2012 * Update first fragment by trimming what's been copied out
2013 * and updating header, then send each fragment (in order).
2016 m_adj(m
, hlen
+ firstlen
- (u_short
)ip
->ip_len
);
2017 m
->m_pkthdr
.len
= hlen
+ firstlen
;
2018 ip
->ip_len
= htons((u_short
)m
->m_pkthdr
.len
);
2019 ip
->ip_off
|= IP_MF
;
2021 #if BYTE_ORDER != BIG_ENDIAN
2026 if (sw_csum
& CSUM_DELAY_IP
) {
2027 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
2028 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2038 ip_out_cksum_stats(int proto
, u_int32_t len
)
2042 tcp_out_cksum_stats(len
);
2045 udp_out_cksum_stats(len
);
2048 /* keep only TCP or UDP stats for now */
2054 * Process a delayed payload checksum calculation (outbound path.)
2056 * hoff is the number of bytes beyond the mbuf data pointer which
2057 * points to the IP header.
2059 * Returns a bitmask representing all the work done in software.
2062 in_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, uint32_t csum_flags
)
2064 unsigned char buf
[15 << 2] __attribute__((aligned(8)));
2066 uint32_t offset
, _hlen
, mlen
, hlen
, len
, sw_csum
;
2067 uint16_t csum
, ip_len
;
2069 _CASSERT(sizeof (csum
) == sizeof (uint16_t));
2070 VERIFY(m
->m_flags
& M_PKTHDR
);
2072 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
2074 if ((sw_csum
&= (CSUM_DELAY_IP
| CSUM_DELAY_DATA
)) == 0)
2077 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
2079 /* sanity check (need at least simple IP header) */
2080 if (mlen
< (hoff
+ sizeof (*ip
))) {
2081 panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
2082 "(%u+%u)\n", __func__
, m
, mlen
, hoff
,
2083 (uint32_t)sizeof (*ip
));
2088 * In case the IP header is not contiguous, or not 32-bit aligned,
2089 * or if we're computing the IP header checksum, copy it to a local
2090 * buffer. Copy only the simple IP header here (IP options case
2091 * is handled below.)
2093 if ((sw_csum
& CSUM_DELAY_IP
) || (hoff
+ sizeof (*ip
)) > m
->m_len
||
2094 !IP_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
2095 m_copydata(m
, hoff
, sizeof (*ip
), (caddr_t
)buf
);
2096 ip
= (struct ip
*)(void *)buf
;
2097 _hlen
= sizeof (*ip
);
2099 ip
= (struct ip
*)(void *)(m
->m_data
+ hoff
);
2103 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2; /* IP header len */
2106 if (mlen
< (hoff
+ hlen
)) {
2107 panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
2108 "hoff %u", __func__
, m
, mlen
, hlen
, hoff
);
2113 * We could be in the context of an IP or interface filter; in the
2114 * former case, ip_len would be in host (correct) order while for
2115 * the latter it would be in network order. Because of this, we
2116 * attempt to interpret the length field by comparing it against
2117 * the actual packet length. If the comparison fails, byte swap
2118 * the length and check again. If it still fails, use the actual
2119 * packet length. This also covers the trailing bytes case.
2121 ip_len
= ip
->ip_len
;
2122 if (ip_len
!= (mlen
- hoff
)) {
2123 ip_len
= OSSwapInt16(ip_len
);
2124 if (ip_len
!= (mlen
- hoff
)) {
2125 printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
2126 "[swapped %d (%x)] doesn't match actual packet "
2127 "length; %d is used instead\n", __func__
,
2128 (uint64_t)VM_KERNEL_ADDRPERM(m
), ip
->ip_p
,
2129 ip
->ip_len
, ip
->ip_len
, ip_len
, ip_len
,
2131 ip_len
= mlen
- hoff
;
2135 len
= ip_len
- hlen
; /* csum span */
2137 if (sw_csum
& CSUM_DELAY_DATA
) {
2141 * offset is added to the lower 16-bit value of csum_data,
2142 * which is expected to contain the ULP offset; therefore
2143 * CSUM_PARTIAL offset adjustment must be undone.
2145 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
|CSUM_DATA_VALID
)) ==
2146 (CSUM_PARTIAL
|CSUM_DATA_VALID
)) {
2148 * Get back the original ULP offset (this will
2149 * undo the CSUM_PARTIAL logic in ip_output.)
2151 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2152 m
->m_pkthdr
.csum_tx_start
);
2155 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2156 offset
= hoff
+ hlen
; /* ULP header */
2158 if (mlen
< (ulpoff
+ sizeof (csum
))) {
2159 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2160 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2161 m
, mlen
, ip
->ip_p
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2165 csum
= inet_cksum(m
, 0, offset
, len
);
2168 ip_out_cksum_stats(ip
->ip_p
, len
);
2170 /* RFC1122 4.1.3.4 */
2171 if (csum
== 0 && (m
->m_pkthdr
.csum_flags
& CSUM_UDP
))
2174 /* Insert the checksum in the ULP csum field */
2176 if (offset
+ sizeof (csum
) > m
->m_len
) {
2177 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2178 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2179 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2181 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2183 m
->m_pkthdr
.csum_flags
&=
2184 ~(CSUM_DELAY_DATA
| CSUM_DATA_VALID
| CSUM_PARTIAL
);
2187 if (sw_csum
& CSUM_DELAY_IP
) {
2188 /* IP header must be in the local buffer */
2189 VERIFY(_hlen
== sizeof (*ip
));
2190 if (_hlen
!= hlen
) {
2191 VERIFY(hlen
<= sizeof (buf
));
2192 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
2193 ip
= (struct ip
*)(void *)buf
;
2198 * Compute the IP header checksum as if the IP length
2199 * is the length which we believe is "correct"; see
2200 * how ip_len gets calculated above. Note that this
2201 * is done on the local copy and not on the real one.
2203 ip
->ip_len
= htons(ip_len
);
2205 csum
= in_cksum_hdr_opt(ip
);
2208 ipstat
.ips_snd_swcsum
++;
2209 ipstat
.ips_snd_swcsum_bytes
+= hlen
;
2212 * Insert only the checksum in the existing IP header
2213 * csum field; all other fields are left unchanged.
2215 offset
= hoff
+ offsetof(struct ip
, ip_sum
);
2216 if (offset
+ sizeof (csum
) > m
->m_len
) {
2217 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2218 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2219 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2221 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2223 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2231 * Insert IP options into preformed packet.
2232 * Adjust IP destination as required for IP source routing,
2233 * as indicated by a non-zero in_addr at the start of the options.
2235 * XXX This routine assumes that the packet has no options in place.
2237 static struct mbuf
*
2238 ip_insertoptions(struct mbuf
*m
, struct mbuf
*opt
, int *phlen
)
2240 struct ipoption
*p
= mtod(opt
, struct ipoption
*);
2242 struct ip
*ip
= mtod(m
, struct ip
*);
2245 optlen
= opt
->m_len
- sizeof (p
->ipopt_dst
);
2246 if (optlen
+ (u_short
)ip
->ip_len
> IP_MAXPACKET
)
2247 return (m
); /* XXX should fail */
2248 if (p
->ipopt_dst
.s_addr
)
2249 ip
->ip_dst
= p
->ipopt_dst
;
2250 if (m
->m_flags
& M_EXT
|| m
->m_data
- optlen
< m
->m_pktdat
) {
2251 MGETHDR(n
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2254 n
->m_pkthdr
.rcvif
= 0;
2256 mac_mbuf_label_copy(m
, n
);
2257 #endif /* CONFIG_MACF_NET */
2258 n
->m_pkthdr
.len
= m
->m_pkthdr
.len
+ optlen
;
2259 m
->m_len
-= sizeof (struct ip
);
2260 m
->m_data
+= sizeof (struct ip
);
2263 m
->m_len
= optlen
+ sizeof (struct ip
);
2264 m
->m_data
+= max_linkhdr
;
2265 (void) memcpy(mtod(m
, void *), ip
, sizeof (struct ip
));
2267 m
->m_data
-= optlen
;
2269 m
->m_pkthdr
.len
+= optlen
;
2270 ovbcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof (struct ip
));
2272 ip
= mtod(m
, struct ip
*);
2273 bcopy(p
->ipopt_list
, ip
+ 1, optlen
);
2274 *phlen
= sizeof (struct ip
) + optlen
;
2275 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, *phlen
>> 2);
2276 ip
->ip_len
+= optlen
;
2281 * Copy options from ip to jp,
2282 * omitting those not copied during fragmentation.
2285 ip_optcopy(struct ip
*ip
, struct ip
*jp
)
2288 int opt
, optlen
, cnt
;
2290 cp
= (u_char
*)(ip
+ 1);
2291 dp
= (u_char
*)(jp
+ 1);
2292 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
2293 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2295 if (opt
== IPOPT_EOL
)
2297 if (opt
== IPOPT_NOP
) {
2298 /* Preserve for IP mcast tunnel's LSRR alignment. */
2304 if (cnt
< IPOPT_OLEN
+ sizeof (*cp
)) {
2305 panic("malformed IPv4 option passed to ip_optcopy");
2309 optlen
= cp
[IPOPT_OLEN
];
2311 if (optlen
< IPOPT_OLEN
+ sizeof (*cp
) || optlen
> cnt
) {
2312 panic("malformed IPv4 option passed to ip_optcopy");
2316 /* bogus lengths should have been caught by ip_dooptions */
2319 if (IPOPT_COPIED(opt
)) {
2320 bcopy(cp
, dp
, optlen
);
2324 for (optlen
= dp
- (u_char
*)(jp
+1); optlen
& 0x3; optlen
++)
2330 * IP socket option processing.
2333 ip_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2335 struct inpcb
*inp
= sotoinpcb(so
);
2339 if (sopt
->sopt_level
!= IPPROTO_IP
)
2342 switch (sopt
->sopt_dir
) {
2344 switch (sopt
->sopt_name
) {
2351 if (sopt
->sopt_valsize
> MLEN
) {
2355 MGET(m
, sopt
->sopt_p
!= kernproc
? M_WAIT
: M_DONTWAIT
,
2361 m
->m_len
= sopt
->sopt_valsize
;
2362 error
= sooptcopyin(sopt
, mtod(m
, char *),
2363 m
->m_len
, m
->m_len
);
2367 return (ip_pcbopts(sopt
->sopt_name
,
2368 &inp
->inp_options
, m
));
2374 case IP_RECVRETOPTS
:
2375 case IP_RECVDSTADDR
:
2378 case IP_RECVPKTINFO
:
2379 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2384 switch (sopt
->sopt_name
) {
2386 inp
->inp_ip_tos
= optval
;
2390 inp
->inp_ip_ttl
= optval
;
2392 #define OPTSET(bit) \
2394 inp->inp_flags |= bit; \
2396 inp->inp_flags &= ~bit;
2399 OPTSET(INP_RECVOPTS
);
2402 case IP_RECVRETOPTS
:
2403 OPTSET(INP_RECVRETOPTS
);
2406 case IP_RECVDSTADDR
:
2407 OPTSET(INP_RECVDSTADDR
);
2415 OPTSET(INP_RECVTTL
);
2418 case IP_RECVPKTINFO
:
2419 OPTSET(INP_PKTINFO
);
2425 #if CONFIG_FORCE_OUT_IFP
2427 * Apple private interface, similar to IP_BOUND_IF, except
2428 * that the parameter is a NULL-terminated string containing
2429 * the name of the network interface; an emptry string means
2430 * unbind. Applications are encouraged to use IP_BOUND_IF
2431 * instead, as that is the current "official" API.
2433 case IP_FORCE_OUT_IFP
: {
2434 char ifname
[IFNAMSIZ
];
2435 unsigned int ifscope
;
2437 /* This option is settable only for IPv4 */
2438 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2443 /* Verify interface name parameter is sane */
2444 if (sopt
->sopt_valsize
> sizeof (ifname
)) {
2449 /* Copy the interface name */
2450 if (sopt
->sopt_valsize
!= 0) {
2451 error
= sooptcopyin(sopt
, ifname
,
2452 sizeof (ifname
), sopt
->sopt_valsize
);
2457 if (sopt
->sopt_valsize
== 0 || ifname
[0] == '\0') {
2458 /* Unbind this socket from any interface */
2459 ifscope
= IFSCOPE_NONE
;
2463 /* Verify name is NULL terminated */
2464 if (ifname
[sopt
->sopt_valsize
- 1] != '\0') {
2469 /* Bail out if given bogus interface name */
2470 if (ifnet_find_by_name(ifname
, &ifp
) != 0) {
2475 /* Bind this socket to this interface */
2476 ifscope
= ifp
->if_index
;
2479 * Won't actually free; since we don't release
2480 * this later, we should do it now.
2484 error
= inp_bindif(inp
, ifscope
, NULL
);
2487 #endif /* CONFIG_FORCE_OUT_IFP */
2489 * Multicast socket options are processed by the in_mcast
2492 case IP_MULTICAST_IF
:
2493 case IP_MULTICAST_IFINDEX
:
2494 case IP_MULTICAST_VIF
:
2495 case IP_MULTICAST_TTL
:
2496 case IP_MULTICAST_LOOP
:
2497 case IP_ADD_MEMBERSHIP
:
2498 case IP_DROP_MEMBERSHIP
:
2499 case IP_ADD_SOURCE_MEMBERSHIP
:
2500 case IP_DROP_SOURCE_MEMBERSHIP
:
2501 case IP_BLOCK_SOURCE
:
2502 case IP_UNBLOCK_SOURCE
:
2504 case MCAST_JOIN_GROUP
:
2505 case MCAST_LEAVE_GROUP
:
2506 case MCAST_JOIN_SOURCE_GROUP
:
2507 case MCAST_LEAVE_SOURCE_GROUP
:
2508 case MCAST_BLOCK_SOURCE
:
2509 case MCAST_UNBLOCK_SOURCE
:
2510 error
= inp_setmoptions(inp
, sopt
);
2514 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2520 case IP_PORTRANGE_DEFAULT
:
2521 inp
->inp_flags
&= ~(INP_LOWPORT
);
2522 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2525 case IP_PORTRANGE_HIGH
:
2526 inp
->inp_flags
&= ~(INP_LOWPORT
);
2527 inp
->inp_flags
|= INP_HIGHPORT
;
2530 case IP_PORTRANGE_LOW
:
2531 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2532 inp
->inp_flags
|= INP_LOWPORT
;
2542 case IP_IPSEC_POLICY
: {
2549 if ((error
= soopt_getm(sopt
, &m
)) != 0) /* XXX */
2551 if ((error
= soopt_mcopyin(sopt
, m
)) != 0) /* XXX */
2553 priv
= (proc_suser(sopt
->sopt_p
) == 0);
2555 req
= mtod(m
, caddr_t
);
2558 optname
= sopt
->sopt_name
;
2559 error
= ipsec4_set_policy(inp
, optname
, req
, len
, priv
);
2566 case IP_TRAFFIC_MGT_BACKGROUND
: {
2567 unsigned background
= 0;
2569 error
= sooptcopyin(sopt
, &background
,
2570 sizeof (background
), sizeof (background
));
2575 socket_set_traffic_mgt_flags_locked(so
,
2576 TRAFFIC_MGT_SO_BACKGROUND
);
2578 socket_clear_traffic_mgt_flags_locked(so
,
2579 TRAFFIC_MGT_SO_BACKGROUND
);
2584 #endif /* TRAFFIC_MGT */
2587 * On a multihomed system, scoped routing can be used to
2588 * restrict the source interface used for sending packets.
2589 * The socket option IP_BOUND_IF binds a particular AF_INET
2590 * socket to an interface such that data sent on the socket
2591 * is restricted to that interface. This is unlike the
2592 * SO_DONTROUTE option where the routing table is bypassed;
2593 * therefore it allows for a greater flexibility and control
2594 * over the system behavior, and does not place any restriction
2595 * on the destination address type (e.g. unicast, multicast,
2596 * or broadcast if applicable) or whether or not the host is
2597 * directly reachable. Note that in the multicast transmit
2598 * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
2599 * IP_BOUND_IF, since the former practically bypasses the
2600 * routing table; in this case, IP_BOUND_IF sets the default
2601 * interface used for sending multicast packets in the absence
2602 * of an explicit multicast transmit interface.
2605 /* This option is settable only for IPv4 */
2606 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2611 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2617 error
= inp_bindif(inp
, optval
, NULL
);
2620 case IP_NO_IFT_CELLULAR
:
2621 /* This option is settable only for IPv4 */
2622 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2627 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2633 /* once set, it cannot be unset */
2634 if (!optval
&& INP_NO_CELLULAR(inp
)) {
2639 error
= so_set_restrictions(so
,
2640 SO_RESTRICT_DENY_CELLULAR
);
2644 /* This option is not settable */
2649 error
= ENOPROTOOPT
;
2655 switch (sopt
->sopt_name
) {
2658 if (inp
->inp_options
) {
2659 error
= sooptcopyout(sopt
,
2660 mtod(inp
->inp_options
, char *),
2661 inp
->inp_options
->m_len
);
2663 sopt
->sopt_valsize
= 0;
2670 case IP_RECVRETOPTS
:
2671 case IP_RECVDSTADDR
:
2675 case IP_RECVPKTINFO
:
2676 switch (sopt
->sopt_name
) {
2679 optval
= inp
->inp_ip_tos
;
2683 optval
= inp
->inp_ip_ttl
;
2686 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
2689 optval
= OPTBIT(INP_RECVOPTS
);
2692 case IP_RECVRETOPTS
:
2693 optval
= OPTBIT(INP_RECVRETOPTS
);
2696 case IP_RECVDSTADDR
:
2697 optval
= OPTBIT(INP_RECVDSTADDR
);
2701 optval
= OPTBIT(INP_RECVIF
);
2705 optval
= OPTBIT(INP_RECVTTL
);
2709 if (inp
->inp_flags
& INP_HIGHPORT
)
2710 optval
= IP_PORTRANGE_HIGH
;
2711 else if (inp
->inp_flags
& INP_LOWPORT
)
2712 optval
= IP_PORTRANGE_LOW
;
2717 case IP_RECVPKTINFO
:
2718 optval
= OPTBIT(INP_PKTINFO
);
2721 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2724 case IP_MULTICAST_IF
:
2725 case IP_MULTICAST_IFINDEX
:
2726 case IP_MULTICAST_VIF
:
2727 case IP_MULTICAST_TTL
:
2728 case IP_MULTICAST_LOOP
:
2730 error
= inp_getmoptions(inp
, sopt
);
2734 case IP_IPSEC_POLICY
: {
2735 error
= 0; /* This option is no longer supported */
2741 case IP_TRAFFIC_MGT_BACKGROUND
: {
2742 unsigned background
= (so
->so_traffic_mgt_flags
&
2743 TRAFFIC_MGT_SO_BACKGROUND
) ? 1 : 0;
2744 return (sooptcopyout(sopt
, &background
,
2745 sizeof (background
)));
2748 #endif /* TRAFFIC_MGT */
2751 if (inp
->inp_flags
& INP_BOUND_IF
)
2752 optval
= inp
->inp_boundifp
->if_index
;
2753 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2756 case IP_NO_IFT_CELLULAR
:
2757 optval
= INP_NO_CELLULAR(inp
) ? 1 : 0;
2758 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2762 optval
= (inp
->inp_last_outifp
!= NULL
) ?
2763 inp
->inp_last_outifp
->if_index
: 0;
2764 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2768 error
= ENOPROTOOPT
;
2777 * Set up IP options in pcb for insertion in output packets.
2778 * Store in mbuf with pointer in pcbopt, adding pseudo-option
2779 * with destination address if source routed.
2782 ip_pcbopts(int optname
, struct mbuf
**pcbopt
, struct mbuf
*m
)
2784 #pragma unused(optname)
2789 /* turn off any old options */
2791 (void) m_free(*pcbopt
);
2793 if (m
== (struct mbuf
*)0 || m
->m_len
== 0) {
2795 * Only turning off any previous options.
2802 if (m
->m_len
% sizeof (int32_t))
2806 * IP first-hop destination address will be stored before
2807 * actual options; move other options back
2808 * and clear it when none present.
2810 if (m
->m_data
+ m
->m_len
+ sizeof (struct in_addr
) >= &m
->m_dat
[MLEN
])
2813 m
->m_len
+= sizeof (struct in_addr
);
2814 cp
= mtod(m
, u_char
*) + sizeof (struct in_addr
);
2815 ovbcopy(mtod(m
, caddr_t
), (caddr_t
)cp
, (unsigned)cnt
);
2816 bzero(mtod(m
, caddr_t
), sizeof (struct in_addr
));
2818 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2819 opt
= cp
[IPOPT_OPTVAL
];
2820 if (opt
== IPOPT_EOL
)
2822 if (opt
== IPOPT_NOP
)
2825 if (cnt
< IPOPT_OLEN
+ sizeof (*cp
))
2827 optlen
= cp
[IPOPT_OLEN
];
2828 if (optlen
< IPOPT_OLEN
+ sizeof (*cp
) || optlen
> cnt
)
2839 * user process specifies route as:
2841 * D must be our final destination (but we can't
2842 * check that since we may not have connected yet).
2843 * A is first hop destination, which doesn't appear in
2844 * actual IP option, but is stored before the options.
2846 if (optlen
< IPOPT_MINOFF
- 1 + sizeof (struct in_addr
))
2848 m
->m_len
-= sizeof (struct in_addr
);
2849 cnt
-= sizeof (struct in_addr
);
2850 optlen
-= sizeof (struct in_addr
);
2851 cp
[IPOPT_OLEN
] = optlen
;
2853 * Move first hop before start of options.
2855 bcopy((caddr_t
)&cp
[IPOPT_OFFSET
+1], mtod(m
, caddr_t
),
2856 sizeof (struct in_addr
));
2858 * Then copy rest of options back
2859 * to close up the deleted entry.
2861 ovbcopy((caddr_t
)(&cp
[IPOPT_OFFSET
+1] +
2862 sizeof (struct in_addr
)),
2863 (caddr_t
)&cp
[IPOPT_OFFSET
+1],
2864 (unsigned)cnt
+ sizeof (struct in_addr
));
2868 if (m
->m_len
> MAX_IPOPTLEN
+ sizeof (struct in_addr
))
2879 ip_moptions_init(void)
2881 PE_parse_boot_argn("ifa_debug", &imo_debug
, sizeof (imo_debug
));
2883 imo_size
= (imo_debug
== 0) ? sizeof (struct ip_moptions
) :
2884 sizeof (struct ip_moptions_dbg
);
2886 imo_zone
= zinit(imo_size
, IMO_ZONE_MAX
* imo_size
, 0,
2888 if (imo_zone
== NULL
) {
2889 panic("%s: failed allocating %s", __func__
, IMO_ZONE_NAME
);
2892 zone_change(imo_zone
, Z_EXPAND
, TRUE
);
2896 imo_addref(struct ip_moptions
*imo
, int locked
)
2901 IMO_LOCK_ASSERT_HELD(imo
);
2903 if (++imo
->imo_refcnt
== 0) {
2904 panic("%s: imo %p wraparound refcnt\n", __func__
, imo
);
2906 } else if (imo
->imo_trace
!= NULL
) {
2907 (*imo
->imo_trace
)(imo
, TRUE
);
2915 imo_remref(struct ip_moptions
*imo
)
2920 if (imo
->imo_refcnt
== 0) {
2921 panic("%s: imo %p negative refcnt", __func__
, imo
);
2923 } else if (imo
->imo_trace
!= NULL
) {
2924 (*imo
->imo_trace
)(imo
, FALSE
);
2928 if (imo
->imo_refcnt
> 0) {
2933 for (i
= 0; i
< imo
->imo_num_memberships
; ++i
) {
2934 struct in_mfilter
*imf
;
2936 imf
= imo
->imo_mfilters
? &imo
->imo_mfilters
[i
] : NULL
;
2940 (void) in_leavegroup(imo
->imo_membership
[i
], imf
);
2945 INM_REMREF(imo
->imo_membership
[i
]);
2946 imo
->imo_membership
[i
] = NULL
;
2948 imo
->imo_num_memberships
= 0;
2949 if (imo
->imo_mfilters
!= NULL
) {
2950 FREE(imo
->imo_mfilters
, M_INMFILTER
);
2951 imo
->imo_mfilters
= NULL
;
2953 if (imo
->imo_membership
!= NULL
) {
2954 FREE(imo
->imo_membership
, M_IPMOPTS
);
2955 imo
->imo_membership
= NULL
;
2959 lck_mtx_destroy(&imo
->imo_lock
, ifa_mtx_grp
);
2961 if (!(imo
->imo_debug
& IFD_ALLOC
)) {
2962 panic("%s: imo %p cannot be freed", __func__
, imo
);
2965 zfree(imo_zone
, imo
);
2969 imo_trace(struct ip_moptions
*imo
, int refhold
)
2971 struct ip_moptions_dbg
*imo_dbg
= (struct ip_moptions_dbg
*)imo
;
2976 if (!(imo
->imo_debug
& IFD_DEBUG
)) {
2977 panic("%s: imo %p has no debug structure", __func__
, imo
);
2981 cnt
= &imo_dbg
->imo_refhold_cnt
;
2982 tr
= imo_dbg
->imo_refhold
;
2984 cnt
= &imo_dbg
->imo_refrele_cnt
;
2985 tr
= imo_dbg
->imo_refrele
;
2988 idx
= atomic_add_16_ov(cnt
, 1) % IMO_TRACE_HIST_SIZE
;
2989 ctrace_record(&tr
[idx
]);
2992 struct ip_moptions
*
2993 ip_allocmoptions(int how
)
2995 struct ip_moptions
*imo
;
2997 imo
= (how
== M_WAITOK
) ? zalloc(imo_zone
) : zalloc_noblock(imo_zone
);
2999 bzero(imo
, imo_size
);
3000 lck_mtx_init(&imo
->imo_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3001 imo
->imo_debug
|= IFD_ALLOC
;
3002 if (imo_debug
!= 0) {
3003 imo
->imo_debug
|= IFD_DEBUG
;
3004 imo
->imo_trace
= imo_trace
;
3013 * Routine called from ip_output() to loop back a copy of an IP multicast
3014 * packet to the input queue of a specified interface. Note that this
3015 * calls the output routine of the loopback "driver", but with an interface
3016 * pointer that might NOT be a loopback interface -- evil, but easier than
3017 * replicating that code here.
3020 ip_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
3021 struct sockaddr_in
*dst
, int hlen
)
3030 * Copy the packet header as it's needed for the checksum
3031 * Make sure to deep-copy IP header portion in case the data
3032 * is in an mbuf cluster, so that we can safely override the IP
3033 * header portion later.
3035 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
3036 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) || copym
->m_len
< hlen
))
3037 copym
= m_pullup(copym
, hlen
);
3043 * We don't bother to fragment if the IP length is greater
3044 * than the interface's MTU. Can this possibly matter?
3046 ip
= mtod(copym
, struct ip
*);
3047 #if BYTE_ORDER != BIG_ENDIAN
3052 ip
->ip_sum
= ip_cksum_hdr_out(copym
, hlen
);
3055 * Mark checksum as valid unless receive checksum offload is
3056 * disabled; if so, compute checksum in software. If the
3057 * interface itself is lo0, this will be overridden by if_loop.
3060 copym
->m_pkthdr
.csum_flags
&= ~CSUM_PARTIAL
;
3061 copym
->m_pkthdr
.csum_flags
|=
3062 CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
;
3063 copym
->m_pkthdr
.csum_data
= 0xffff;
3064 } else if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
3065 #if BYTE_ORDER != BIG_ENDIAN
3068 in_delayed_cksum(copym
);
3069 #if BYTE_ORDER != BIG_ENDIAN
3075 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3076 * in ip_input(); we need the loopback ifp/dl_tag passed as args
3077 * to make the loopback driver compliant with the data link
3080 copym
->m_pkthdr
.rcvif
= origifp
;
3083 * Also record the source interface (which owns the source address).
3084 * This is basically a stripped down version of ifa_foraddr().
3086 if (srcifp
== NULL
) {
3087 struct in_ifaddr
*ia
;
3089 lck_rw_lock_shared(in_ifaddr_rwlock
);
3090 TAILQ_FOREACH(ia
, INADDR_HASH(ip
->ip_src
.s_addr
), ia_hash
) {
3091 IFA_LOCK_SPIN(&ia
->ia_ifa
);
3092 if (IA_SIN(ia
)->sin_addr
.s_addr
== ip
->ip_src
.s_addr
) {
3093 srcifp
= ia
->ia_ifp
;
3094 IFA_UNLOCK(&ia
->ia_ifa
);
3097 IFA_UNLOCK(&ia
->ia_ifa
);
3099 lck_rw_done(in_ifaddr_rwlock
);
3102 ip_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
3103 ip_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
3105 dlil_output(lo_ifp
, PF_INET
, copym
, NULL
, SA(dst
), 0, NULL
);
3109 * Given a source IP address (and route, if available), determine the best
3110 * interface to send the packet from. Checking for (and updating) the
3111 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
3112 * without any locks based on the assumption that ip_output() is single-
3113 * threaded per-pcb, i.e. for any given pcb there can only be one thread
3114 * performing output at the IP layer.
3116 * This routine is analogous to in6_selectroute() for IPv6.
3118 static struct ifaddr
*
3119 in_selectsrcif(struct ip
*ip
, struct route
*ro
, unsigned int ifscope
)
3121 struct ifaddr
*ifa
= NULL
;
3122 struct in_addr src
= ip
->ip_src
;
3123 struct in_addr dst
= ip
->ip_dst
;
3124 struct ifnet
*rt_ifp
;
3125 char s_src
[MAX_IPv4_STR_LEN
], s_dst
[MAX_IPv4_STR_LEN
];
3127 VERIFY(src
.s_addr
!= INADDR_ANY
);
3129 if (ip_select_srcif_debug
) {
3130 (void) inet_ntop(AF_INET
, &src
.s_addr
, s_src
, sizeof (s_src
));
3131 (void) inet_ntop(AF_INET
, &dst
.s_addr
, s_dst
, sizeof (s_dst
));
3134 if (ro
->ro_rt
!= NULL
)
3137 rt_ifp
= (ro
->ro_rt
!= NULL
) ? ro
->ro_rt
->rt_ifp
: NULL
;
3140 * Given the source IP address, find a suitable source interface
3141 * to use for transmission; if the caller has specified a scope,
3142 * optimize the search by looking at the addresses only for that
3143 * interface. This is still suboptimal, however, as we need to
3144 * traverse the per-interface list.
3146 if (ifscope
!= IFSCOPE_NONE
|| ro
->ro_rt
!= NULL
) {
3147 unsigned int scope
= ifscope
;
3150 * If no scope is specified and the route is stale (pointing
3151 * to a defunct interface) use the current primary interface;
3152 * this happens when switching between interfaces configured
3153 * with the same IP address. Otherwise pick up the scope
3154 * information from the route; the ULP may have looked up a
3155 * correct route and we just need to verify it here and mark
3156 * it with the ROF_SRCIF_SELECTED flag below.
3158 if (scope
== IFSCOPE_NONE
) {
3159 scope
= rt_ifp
->if_index
;
3160 if (scope
!= get_primary_ifscope(AF_INET
) &&
3162 scope
= get_primary_ifscope(AF_INET
);
3165 ifa
= (struct ifaddr
*)ifa_foraddr_scoped(src
.s_addr
, scope
);
3167 if (ifa
== NULL
&& ip
->ip_p
!= IPPROTO_UDP
&&
3168 ip
->ip_p
!= IPPROTO_TCP
&& ipforwarding
) {
3170 * If forwarding is enabled, and if the packet isn't
3171 * TCP or UDP, check if the source address belongs
3172 * to one of our own interfaces; if so, demote the
3173 * interface scope and do a route lookup right below.
3175 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3179 ifscope
= IFSCOPE_NONE
;
3183 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3184 if (ro
->ro_rt
!= NULL
) {
3185 printf("%s->%s ifscope %d->%d ifa_if %s "
3186 "ro_if %s\n", s_src
, s_dst
, ifscope
,
3187 scope
, if_name(ifa
->ifa_ifp
),
3190 printf("%s->%s ifscope %d->%d ifa_if %s\n",
3191 s_src
, s_dst
, ifscope
, scope
,
3192 if_name(ifa
->ifa_ifp
));
3198 * Slow path; search for an interface having the corresponding source
3199 * IP address if the scope was not specified by the caller, and:
3201 * 1) There currently isn't any route, or,
3202 * 2) The interface used by the route does not own that source
3203 * IP address; in this case, the route will get blown away
3204 * and we'll do a more specific scoped search using the newly
3207 if (ifa
== NULL
&& ifscope
== IFSCOPE_NONE
) {
3208 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3211 * If we have the IP address, but not the route, we don't
3212 * really know whether or not it belongs to the correct
3213 * interface (it could be shared across multiple interfaces.)
3214 * The only way to find out is to do a route lookup.
3216 if (ifa
!= NULL
&& ro
->ro_rt
== NULL
) {
3218 struct sockaddr_in sin
;
3219 struct ifaddr
*oifa
= NULL
;
3221 bzero(&sin
, sizeof (sin
));
3222 sin
.sin_family
= AF_INET
;
3223 sin
.sin_len
= sizeof (sin
);
3226 lck_mtx_lock(rnh_lock
);
3227 if ((rt
= rt_lookup(TRUE
, SA(&sin
), NULL
,
3228 rt_tables
[AF_INET
], IFSCOPE_NONE
)) != NULL
) {
3231 * If the route uses a different interface,
3232 * use that one instead. The IP address of
3233 * the ifaddr that we pick up here is not
3236 if (ifa
->ifa_ifp
!= rt
->rt_ifp
) {
3246 lck_mtx_unlock(rnh_lock
);
3249 struct ifaddr
*iifa
;
3252 * See if the interface pointed to by the
3253 * route is configured with the source IP
3254 * address of the packet.
3256 iifa
= (struct ifaddr
*)ifa_foraddr_scoped(
3257 src
.s_addr
, ifa
->ifa_ifp
->if_index
);
3261 * Found it; drop the original one
3262 * as well as the route interface
3263 * address, and use this instead.
3268 } else if (!ipforwarding
||
3269 (rt
->rt_flags
& RTF_GATEWAY
)) {
3271 * This interface doesn't have that
3272 * source IP address; drop the route
3273 * interface address and just use the
3274 * original one, and let the caller
3275 * do a scoped route lookup.
3281 * Forwarding is enabled and the source
3282 * address belongs to one of our own
3283 * interfaces which isn't the outgoing
3284 * interface, and we have a route, and
3285 * the destination is on a network that
3286 * is directly attached (onlink); drop
3287 * the original one and use the route
3288 * interface address instead.
3293 } else if (ifa
!= NULL
&& ro
->ro_rt
!= NULL
&&
3294 !(ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) &&
3295 ifa
->ifa_ifp
!= ro
->ro_rt
->rt_ifp
&& ipforwarding
) {
3297 * Forwarding is enabled and the source address belongs
3298 * to one of our own interfaces which isn't the same
3299 * as the interface used by the known route; drop the
3300 * original one and use the route interface address.
3303 ifa
= ro
->ro_rt
->rt_ifa
;
3307 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3308 printf("%s->%s ifscope %d ifa_if %s\n",
3309 s_src
, s_dst
, ifscope
, if_name(ifa
->ifa_ifp
));
3313 if (ro
->ro_rt
!= NULL
)
3314 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
3316 * If there is a non-loopback route with the wrong interface, or if
3317 * there is no interface configured with such an address, blow it
3318 * away. Except for local/loopback, we look for one with a matching
3319 * interface scope/index.
3321 if (ro
->ro_rt
!= NULL
&&
3322 (ifa
== NULL
|| (ifa
->ifa_ifp
!= rt_ifp
&& rt_ifp
!= lo_ifp
) ||
3323 !(ro
->ro_rt
->rt_flags
& RTF_UP
))) {
3324 if (ip_select_srcif_debug
) {
3326 printf("%s->%s ifscope %d ro_if %s != "
3327 "ifa_if %s (cached route cleared)\n",
3328 s_src
, s_dst
, ifscope
, if_name(rt_ifp
),
3329 if_name(ifa
->ifa_ifp
));
3331 printf("%s->%s ifscope %d ro_if %s "
3332 "(no ifa_if found)\n",
3333 s_src
, s_dst
, ifscope
, if_name(rt_ifp
));
3337 RT_UNLOCK(ro
->ro_rt
);
3341 * If the destination is IPv4 LLA and the route's interface
3342 * doesn't match the source interface, then the source IP
3343 * address is wrong; it most likely belongs to the primary
3344 * interface associated with the IPv4 LL subnet. Drop the
3345 * packet rather than letting it go out and return an error
3346 * to the ULP. This actually applies not only to IPv4 LL
3347 * but other shared subnets; for now we explicitly test only
3348 * for the former case and save the latter for future.
3350 if (IN_LINKLOCAL(ntohl(dst
.s_addr
)) &&
3351 !IN_LINKLOCAL(ntohl(src
.s_addr
)) && ifa
!= NULL
) {
3357 if (ip_select_srcif_debug
&& ifa
== NULL
) {
3358 printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
3359 s_src
, s_dst
, ifscope
);
3363 * If there is a route, mark it accordingly. If there isn't one,
3364 * we'll get here again during the next transmit (possibly with a
3365 * route) and the flag will get set at that point. For IPv4 LLA
3366 * destination, mark it only if the route has been fully resolved;
3367 * otherwise we want to come back here again when the route points
3368 * to the interface over which the ARP reply arrives on.
3370 if (ro
->ro_rt
!= NULL
&& (!IN_LINKLOCAL(ntohl(dst
.s_addr
)) ||
3371 (ro
->ro_rt
->rt_gateway
->sa_family
== AF_LINK
&&
3372 SDL(ro
->ro_rt
->rt_gateway
)->sdl_alen
!= 0))) {
3374 IFA_ADDREF(ifa
); /* for route */
3375 if (ro
->ro_srcia
!= NULL
)
3376 IFA_REMREF(ro
->ro_srcia
);
3378 ro
->ro_flags
|= ROF_SRCIF_SELECTED
;
3379 RT_GENID_SYNC(ro
->ro_rt
);
3382 if (ro
->ro_rt
!= NULL
)
3383 RT_UNLOCK(ro
->ro_rt
);
3389 ip_output_checksum(struct ifnet
*ifp
, struct mbuf
*m
, int hlen
, int ip_len
,
3392 int tso
= TSO_IPV4_OK(ifp
, m
);
3393 uint32_t hwcap
= ifp
->if_hwassist
;
3395 m
->m_pkthdr
.csum_flags
|= CSUM_IP
;
3398 /* do all in software; hardware checksum offload is disabled */
3399 *sw_csum
= (CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3400 m
->m_pkthdr
.csum_flags
;
3402 /* do in software what the hardware cannot */
3403 *sw_csum
= m
->m_pkthdr
.csum_flags
&
3404 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
3407 if (hlen
!= sizeof (struct ip
)) {
3408 *sw_csum
|= ((CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3409 m
->m_pkthdr
.csum_flags
);
3410 } else if (!(*sw_csum
& CSUM_DELAY_DATA
) && (hwcap
& CSUM_PARTIAL
)) {
3412 * Partial checksum offload, if non-IP fragment, and TCP only
3413 * (no UDP support, as the hardware may not be able to convert
3414 * +0 to -0 (0xffff) per RFC1122 4.1.3.4.)
3416 if (hwcksum_tx
&& !tso
&&
3417 (m
->m_pkthdr
.csum_flags
& CSUM_TCP
) &&
3418 ip_len
<= ifp
->if_mtu
) {
3419 uint16_t start
= sizeof (struct ip
);
3420 uint16_t ulpoff
= m
->m_pkthdr
.csum_data
& 0xffff;
3421 m
->m_pkthdr
.csum_flags
|=
3422 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
3423 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
3424 m
->m_pkthdr
.csum_tx_start
= start
;
3425 /* do IP hdr chksum in software */
3426 *sw_csum
= CSUM_DELAY_IP
;
3428 *sw_csum
|= (CSUM_DELAY_DATA
& m
->m_pkthdr
.csum_flags
);
3432 if (*sw_csum
& CSUM_DELAY_DATA
) {
3433 in_delayed_cksum(m
);
3434 *sw_csum
&= ~CSUM_DELAY_DATA
;
3439 * Drop off bits that aren't supported by hardware;
3440 * also make sure to preserve non-checksum related bits.
3442 m
->m_pkthdr
.csum_flags
=
3443 ((m
->m_pkthdr
.csum_flags
&
3444 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
3445 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
3447 /* drop all bits; hardware checksum offload is disabled */
3448 m
->m_pkthdr
.csum_flags
= 0;
3453 * GRE protocol output for PPP/PPTP
3456 ip_gre_output(struct mbuf
*m
)
3461 bzero(&ro
, sizeof (ro
));
3463 error
= ip_output(m
, NULL
, &ro
, 0, NULL
, NULL
);