2 * Copyright (c) 2006 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <machine/cpu_capabilities.h>
30 #include <machine/commpage.h>
32 /* The common path for nonzero memset and the memset_pattern routines,
33 * tuned for Pentium-M class processors with SSE2 and 64-byte cache lines.
34 * This is the 64-bit bersion. It is used by the following functions:
36 * void *memset(void *b, int c, size_t len); // when c!=0
37 * void memset_pattern4(void *b, const void *c4, size_t len);
38 * void memset_pattern8(void *b, const void *c8, size_t len);
39 * void memset_pattern16(void *b, const void *c16, size_t len);
41 * Note bzero() and memset() of 0 are handled separately.
45 #define kVeryLong (1024*1024)
47 // Initial entry from Libc with parameters passed in registers. Although we
48 // correctly handle misaligned ptrs and short operands, they are inefficient.
49 // Therefore our caller should filter out short operands and exploit local
50 // knowledge (ie, original pattern length) to align the ptr if possible.
51 // When called, we expect:
52 // %rdi = ptr to memory to set (not necessarily aligned)
53 // %rdx = length (may be short or even 0)
54 // %xmm0 = the pattern to store
56 // %rax, %rdi, %rsi, %rcx, and %rdx all trashed
57 // we preserve %r8, %r9, %r10, and %r11
59 COMMPAGE_FUNCTION_START(memset_pattern_sse2_64, 64, 5)
60 cmpq $(kShort),%rdx // long enough to bother aligning?
64 // Here for short operands or the end of long ones.
65 // %rdx = length (<= kShort)
66 // %rdi = ptr (may not be not aligned)
70 movdqu %xmm0,(%rdi) // stuff in another 16 bytes
74 cmpl $16,%edx // room for another vector?
75 jge LUnalignedStore16 // yes
76 LLessThan16: // here at end of copy with < 16 bytes remaining
77 test $8,%dl // 8-byte store required?
79 movq %xmm0,(%rdi) // pack in 8 low bytes
80 psrldq $8,%xmm0 // then shift vector down 8 bytes
83 test $4,%dl // 4-byte store required?
85 movd %xmm0,(%rdi) // pack in 4 low bytes
86 psrldq $4,%xmm0 // then shift vector down 4 bytes
89 andl $3,%edx // more to go?
91 movd %xmm0,%eax // move remainders out into %eax
92 4: // loop on up to three bytes
93 movb %al,(%rdi) // pack in next byte
94 shrl $8,%eax // shift next byte into position
100 // Long enough to justify aligning ptr. Note that we have to rotate the
101 // pattern to account for any alignment. We do this by doing two unaligned
102 // stores, and then an aligned load from the middle of the two stores.
103 // This will stall on store forwarding alignment mismatch, and the unaligned
104 // stores can be pretty slow too, but the alternatives aren't any better.
105 // Fortunately, in most cases our caller has already aligned the ptr.
106 // %rdx = length (> kShort)
107 // %rdi = ptr (may not be aligned)
111 movl %edi,%ecx // copy low bits of dest ptr
113 andl $15,%ecx // mask down to #bytes to 16-byte align
114 jz LAligned // skip if already aligned
115 movdqu %xmm0,(%rdi) // store 16 unaligned bytes
116 movdqu %xmm0,16(%rdi) // and 16 more, to be sure we have an aligned chunk
117 addq %rcx,%rdi // now point to the aligned chunk
118 subq %rcx,%rdx // adjust remaining count
119 movdqa (%rdi),%xmm0 // get the rotated pattern (probably stalling)
120 addq $16,%rdi // skip past the aligned chunk
123 // Set up for 64-byte loops.
124 // %rdx = length remaining
125 // %rdi = ptr (aligned)
126 // %xmm0 = rotated pattern
129 movq %rdx,%rcx // copy length remaining
130 andl $63,%edx // mask down to residual length (0..63)
131 andq $-64,%rcx // %ecx <- #bytes we will zero in by-64 loop
132 jz LNoMoreChunks // no 64-byte chunks
133 addq %rcx,%rdi // increment ptr by length to move
134 cmpq $(kVeryLong),%rcx // long enough to justify non-temporal stores?
136 negq %rcx // negate length to move
139 // Loop over 64-byte chunks, storing into cache.
141 .align 4,0x90 // keep inner loops 16-byte aligned
143 movdqa %xmm0,(%rdi,%rcx)
144 movdqa %xmm0,16(%rdi,%rcx)
145 movdqa %xmm0,32(%rdi,%rcx)
146 movdqa %xmm0,48(%rdi,%rcx)
152 // Very long operands: use non-temporal stores to bypass cache.
155 negq %rcx // negate length to move
158 .align 4,0x90 // keep inner loops 16-byte aligned
160 movntdq %xmm0,(%rdi,%rcx)
161 movntdq %xmm0,16(%rdi,%rcx)
162 movntdq %xmm0,32(%rdi,%rcx)
163 movntdq %xmm0,48(%rdi,%rcx)
167 sfence // required by non-temporal stores
170 // Handle leftovers: loop by 16.
171 // %edx = length remaining (<64)
172 // %edi = ptr (aligned)
173 // %xmm0 = rotated pattern
176 movdqa %xmm0,(%rdi) // pack in 16 more bytes
177 subl $16,%edx // decrement count
178 addq $16,%rdi // increment ptr
180 cmpl $16,%edx // more to go?
182 jmp LLessThan16 // handle up to 15 remaining bytes
184 COMMPAGE_DESCRIPTOR(memset_pattern_sse2_64,_COMM_PAGE_MEMSET_PATTERN,kHasSSE2,0)