]> git.saurik.com Git - apple/xnu.git/blob - iokit/Kernel/IOBufferMemoryDescriptor.cpp
xnu-1504.3.12.tar.gz
[apple/xnu.git] / iokit / Kernel / IOBufferMemoryDescriptor.cpp
1 /*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #define _IOMEMORYDESCRIPTOR_INTERNAL_
30
31 #include <IOKit/assert.h>
32 #include <IOKit/system.h>
33
34 #include <IOKit/IOLib.h>
35 #include <IOKit/IOMapper.h>
36 #include <IOKit/IOBufferMemoryDescriptor.h>
37 #include <libkern/OSDebug.h>
38
39 #include "IOKitKernelInternal.h"
40 #include "IOCopyMapper.h"
41
42 __BEGIN_DECLS
43 void ipc_port_release_send(ipc_port_t port);
44 #include <vm/pmap.h>
45
46 __END_DECLS
47
48 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
49
50 enum
51 {
52 kInternalFlagRealloc = 0x00000001,
53 };
54
55 volatile ppnum_t gIOHighestAllocatedPage;
56
57 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
58
59 #define super IOGeneralMemoryDescriptor
60 OSDefineMetaClassAndStructors(IOBufferMemoryDescriptor,
61 IOGeneralMemoryDescriptor);
62
63 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
64
65 #ifndef __LP64__
66 bool IOBufferMemoryDescriptor::initWithOptions(
67 IOOptionBits options,
68 vm_size_t capacity,
69 vm_offset_t alignment,
70 task_t inTask)
71 {
72 mach_vm_address_t physicalMask = 0;
73 return (initWithPhysicalMask(inTask, options, capacity, alignment, physicalMask));
74 }
75 #endif /* !__LP64__ */
76
77 bool IOBufferMemoryDescriptor::initWithPhysicalMask(
78 task_t inTask,
79 IOOptionBits options,
80 mach_vm_size_t capacity,
81 mach_vm_address_t alignment,
82 mach_vm_address_t physicalMask)
83 {
84 kern_return_t kr;
85 task_t mapTask = NULL;
86 vm_map_t vmmap = NULL;
87 addr64_t lastIOAddr;
88 mach_vm_address_t highestMask = 0;
89 bool usePhys;
90 IOOptionBits iomdOptions = kIOMemoryTypeVirtual64 | kIOMemoryAsReference;
91
92 if (!capacity)
93 return false;
94
95 _options = options;
96 _capacity = capacity;
97 _internalFlags = 0;
98 _internalReserved = 0;
99 _buffer = 0;
100
101 _ranges.v64 = IONew(IOAddressRange, 1);
102 if (!_ranges.v64)
103 return (false);
104 _ranges.v64->address = 0;
105 _ranges.v64->length = 0;
106
107 // Grab IOMD bits from the Buffer MD options
108 iomdOptions |= (options & kIOBufferDescriptorMemoryFlags);
109
110 if (physicalMask && (alignment <= 1))
111 {
112 alignment = ((physicalMask ^ (-1ULL)) & (physicalMask - 1));
113 highestMask = (physicalMask | alignment);
114 alignment++;
115 }
116
117 if ((options & (kIOMemorySharingTypeMask | kIOMapCacheMask)) && (alignment < page_size))
118 alignment = page_size;
119
120 if (alignment >= page_size)
121 capacity = round_page(capacity);
122
123 if (alignment > page_size)
124 options |= kIOMemoryPhysicallyContiguous;
125
126 _alignment = alignment;
127
128 if ((inTask != kernel_task) && !(options & kIOMemoryPageable))
129 return false;
130
131 if ((options & kIOMemoryPhysicallyContiguous) && !physicalMask)
132 physicalMask = 0xFFFFFFFF;
133
134 // set flags for entry + object create
135 vm_prot_t memEntryCacheMode = VM_PROT_READ | VM_PROT_WRITE;
136
137 // set memory entry cache mode
138 switch (options & kIOMapCacheMask)
139 {
140 case kIOMapInhibitCache:
141 SET_MAP_MEM(MAP_MEM_IO, memEntryCacheMode);
142 break;
143
144 case kIOMapWriteThruCache:
145 SET_MAP_MEM(MAP_MEM_WTHRU, memEntryCacheMode);
146 break;
147
148 case kIOMapWriteCombineCache:
149 SET_MAP_MEM(MAP_MEM_WCOMB, memEntryCacheMode);
150 break;
151
152 case kIOMapCopybackCache:
153 SET_MAP_MEM(MAP_MEM_COPYBACK, memEntryCacheMode);
154 break;
155
156 case kIOMapDefaultCache:
157 default:
158 SET_MAP_MEM(MAP_MEM_NOOP, memEntryCacheMode);
159 break;
160 }
161
162 if (options & kIOMemoryPageable)
163 {
164 iomdOptions |= kIOMemoryBufferPageable;
165
166 // must create the entry before any pages are allocated
167
168 // set flags for entry + object create
169 memEntryCacheMode |= MAP_MEM_NAMED_CREATE;
170
171 if (options & kIOMemoryPurgeable)
172 memEntryCacheMode |= MAP_MEM_PURGABLE;
173 }
174 else
175 {
176 memEntryCacheMode |= MAP_MEM_NAMED_REUSE;
177
178 if (IOMapper::gSystem)
179 // assuming mapped space is 2G
180 lastIOAddr = (1UL << 31) - PAGE_SIZE;
181 else
182 lastIOAddr = ptoa_64(gIOHighestAllocatedPage);
183
184 usePhys = (highestMask && (lastIOAddr != (lastIOAddr & highestMask))
185 && (alignment <= page_size));
186
187 if (!usePhys && (options & kIOMemoryPhysicallyContiguous))
188 {
189 _buffer = (void *) IOKernelAllocateContiguous(capacity, highestMask, alignment);
190 usePhys = (NULL == _buffer);
191 }
192 if (usePhys)
193 {
194 mach_vm_address_t address;
195 iomdOptions &= ~kIOMemoryTypeVirtual64;
196 iomdOptions |= kIOMemoryTypePhysical64;
197
198 address = IOMallocPhysical(capacity, highestMask);
199 _buffer = (void *) address;
200 if (!_buffer)
201 return false;
202
203 mapTask = inTask;
204 inTask = 0;
205 }
206 else
207 {
208 vmmap = kernel_map;
209
210 // Buffer shouldn't auto prepare they should be prepared explicitly
211 // But it never was enforced so what are you going to do?
212 iomdOptions |= kIOMemoryAutoPrepare;
213
214 /* Allocate a wired-down buffer inside kernel space. */
215 if (options & kIOMemoryPhysicallyContiguous)
216 {
217 // attempted allocate already
218 }
219 else if (alignment > 1)
220 {
221 _buffer = IOMallocAligned(capacity, alignment);
222 }
223 else
224 {
225 _buffer = IOMalloc(capacity);
226 }
227 if (!_buffer)
228 return false;
229 }
230 }
231
232 if( (kIOMemoryTypePhysical64 != (kIOMemoryTypeMask & iomdOptions))
233 && (options & (kIOMemoryPageable | kIOMapCacheMask))) {
234 ipc_port_t sharedMem;
235 vm_size_t size = round_page(capacity);
236
237 kr = mach_make_memory_entry(vmmap,
238 &size, (vm_offset_t)_buffer,
239 memEntryCacheMode, &sharedMem,
240 NULL );
241
242 if( (KERN_SUCCESS == kr) && (size != round_page(capacity))) {
243 ipc_port_release_send( sharedMem );
244 kr = kIOReturnVMError;
245 }
246 if( KERN_SUCCESS != kr)
247 return( false );
248
249 _memEntry = (void *) sharedMem;
250
251 if( options & kIOMemoryPageable) {
252 #if IOALLOCDEBUG
253 debug_iomallocpageable_size += size;
254 #endif
255 mapTask = inTask;
256 if (NULL == inTask)
257 inTask = kernel_task;
258 }
259 else if (options & kIOMapCacheMask)
260 {
261 // Prefetch each page to put entries into the pmap
262 volatile UInt8 * startAddr = (UInt8 *)_buffer;
263 volatile UInt8 * endAddr = (UInt8 *)_buffer + capacity;
264
265 while (startAddr < endAddr)
266 {
267 *startAddr;
268 startAddr += page_size;
269 }
270 }
271 }
272
273 _ranges.v64->address = (mach_vm_address_t) _buffer;;
274 _ranges.v64->length = _capacity;
275
276 if (!super::initWithOptions(_ranges.v64, 1, 0,
277 inTask, iomdOptions, /* System mapper */ 0))
278 return false;
279
280 if (highestMask && !IOMapper::gSystem)
281 {
282 IOMDDMACharacteristics mdSummary;
283
284 bzero(&mdSummary, sizeof(mdSummary));
285 IOReturn rtn = dmaCommandOperation(
286 kIOMDGetCharacteristics,
287 &mdSummary, sizeof(mdSummary));
288 if (rtn)
289 return false;
290
291 if (mdSummary.fHighestPage)
292 {
293 ppnum_t highest;
294 while (mdSummary.fHighestPage > (highest = gIOHighestAllocatedPage))
295 {
296 if (OSCompareAndSwap(highest, mdSummary.fHighestPage,
297 (UInt32 *) &gIOHighestAllocatedPage))
298 break;
299 }
300 lastIOAddr = ptoa_64(mdSummary.fHighestPage);
301 }
302 else
303 lastIOAddr = ptoa_64(gIOLastPage);
304
305 if (lastIOAddr != (lastIOAddr & highestMask))
306 {
307 if (kIOMemoryTypePhysical64 != (_flags & kIOMemoryTypeMask))
308 {
309 // flag a retry
310 _internalFlags |= kInternalFlagRealloc;
311 }
312 return false;
313 }
314 }
315
316 if (mapTask)
317 {
318 if (!reserved) {
319 reserved = IONew( ExpansionData, 1 );
320 if( !reserved)
321 return( false );
322 }
323 reserved->map = createMappingInTask(mapTask, 0,
324 kIOMapAnywhere | (options & kIOMapCacheMask), 0, 0);
325 if (!reserved->map)
326 {
327 _buffer = 0;
328 return( false );
329 }
330 release(); // map took a retain on this
331 reserved->map->retain();
332 removeMapping(reserved->map);
333 mach_vm_address_t buffer = reserved->map->getAddress();
334 _buffer = (void *) buffer;
335 if (kIOMemoryTypeVirtual64 == (kIOMemoryTypeMask & iomdOptions))
336 _ranges.v64->address = buffer;
337 }
338
339 setLength(_capacity);
340
341 return true;
342 }
343
344 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::inTaskWithOptions(
345 task_t inTask,
346 IOOptionBits options,
347 vm_size_t capacity,
348 vm_offset_t alignment)
349 {
350 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
351
352 if (me && !me->initWithPhysicalMask(inTask, options, capacity, alignment, 0)) {
353 bool retry = (0 != (kInternalFlagRealloc & me->_internalFlags));
354 me->release();
355 me = 0;
356 if (retry)
357 {
358 me = new IOBufferMemoryDescriptor;
359 if (me && !me->initWithPhysicalMask(inTask, options, capacity, alignment, 0))
360 {
361 me->release();
362 me = 0;
363 }
364 }
365 }
366 return me;
367 }
368
369 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::inTaskWithPhysicalMask(
370 task_t inTask,
371 IOOptionBits options,
372 mach_vm_size_t capacity,
373 mach_vm_address_t physicalMask)
374 {
375 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
376
377 if (me && !me->initWithPhysicalMask(inTask, options, capacity, 1, physicalMask))
378 {
379 bool retry = (0 != (kInternalFlagRealloc & me->_internalFlags));
380 me->release();
381 me = 0;
382 if (retry)
383 {
384 me = new IOBufferMemoryDescriptor;
385 if (me && !me->initWithPhysicalMask(inTask, options, capacity, 1, physicalMask))
386 {
387 me->release();
388 me = 0;
389 }
390 }
391 }
392 return me;
393 }
394
395 #ifndef __LP64__
396 bool IOBufferMemoryDescriptor::initWithOptions(
397 IOOptionBits options,
398 vm_size_t capacity,
399 vm_offset_t alignment)
400 {
401 return (initWithPhysicalMask(kernel_task, options, capacity, alignment, (mach_vm_address_t)0));
402 }
403 #endif /* !__LP64__ */
404
405 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withOptions(
406 IOOptionBits options,
407 vm_size_t capacity,
408 vm_offset_t alignment)
409 {
410 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
411
412 if (me && !me->initWithPhysicalMask(kernel_task, options, capacity, alignment, 0)) {
413 bool retry = (0 != (kInternalFlagRealloc & me->_internalFlags));
414 me->release();
415 me = 0;
416 if (retry)
417 {
418 me = new IOBufferMemoryDescriptor;
419 if (me && !me->initWithPhysicalMask(kernel_task, options, capacity, alignment, 0))
420 {
421 me->release();
422 me = 0;
423 }
424 }
425 }
426 return me;
427 }
428
429
430 /*
431 * withCapacity:
432 *
433 * Returns a new IOBufferMemoryDescriptor with a buffer large enough to
434 * hold capacity bytes. The descriptor's length is initially set to the capacity.
435 */
436 IOBufferMemoryDescriptor *
437 IOBufferMemoryDescriptor::withCapacity(vm_size_t inCapacity,
438 IODirection inDirection,
439 bool inContiguous)
440 {
441 return( IOBufferMemoryDescriptor::withOptions(
442 inDirection | kIOMemoryUnshared
443 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
444 inCapacity, inContiguous ? inCapacity : 1 ));
445 }
446
447 #ifndef __LP64__
448 /*
449 * initWithBytes:
450 *
451 * Initialize a new IOBufferMemoryDescriptor preloaded with bytes (copied).
452 * The descriptor's length and capacity are set to the input buffer's size.
453 */
454 bool IOBufferMemoryDescriptor::initWithBytes(const void * inBytes,
455 vm_size_t inLength,
456 IODirection inDirection,
457 bool inContiguous)
458 {
459 if (!initWithPhysicalMask(kernel_task, inDirection | kIOMemoryUnshared
460 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
461 inLength, inLength, (mach_vm_address_t)0))
462 return false;
463
464 // start out with no data
465 setLength(0);
466
467 if (!appendBytes(inBytes, inLength))
468 return false;
469
470 return true;
471 }
472 #endif /* !__LP64__ */
473
474 /*
475 * withBytes:
476 *
477 * Returns a new IOBufferMemoryDescriptor preloaded with bytes (copied).
478 * The descriptor's length and capacity are set to the input buffer's size.
479 */
480 IOBufferMemoryDescriptor *
481 IOBufferMemoryDescriptor::withBytes(const void * inBytes,
482 vm_size_t inLength,
483 IODirection inDirection,
484 bool inContiguous)
485 {
486 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
487
488 if (me && !me->initWithPhysicalMask(
489 kernel_task, inDirection | kIOMemoryUnshared
490 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
491 inLength, inLength, 0 ))
492 {
493 bool retry = (0 != (kInternalFlagRealloc & me->_internalFlags));
494 me->release();
495 me = 0;
496 if (retry)
497 {
498 me = new IOBufferMemoryDescriptor;
499 if (me && !me->initWithPhysicalMask(
500 kernel_task, inDirection | kIOMemoryUnshared
501 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
502 inLength, inLength, 0 ))
503 {
504 me->release();
505 me = 0;
506 }
507 }
508
509 }
510
511 if (me)
512 {
513 // start out with no data
514 me->setLength(0);
515
516 if (!me->appendBytes(inBytes, inLength))
517 {
518 me->release();
519 me = 0;
520 }
521 }
522 return me;
523 }
524
525 /*
526 * free:
527 *
528 * Free resources
529 */
530 void IOBufferMemoryDescriptor::free()
531 {
532 // Cache all of the relevant information on the stack for use
533 // after we call super::free()!
534 IOOptionBits flags = _flags;
535 IOOptionBits options = _options;
536 vm_size_t size = _capacity;
537 void * buffer = _buffer;
538 IOMemoryMap * map = 0;
539 IOAddressRange * range = _ranges.v64;
540 mach_vm_address_t source = range ? range->address : 0;
541 vm_offset_t alignment = _alignment;
542
543 if (alignment >= page_size)
544 size = round_page(size);
545
546 if (reserved)
547 {
548 map = reserved->map;
549 IODelete( reserved, ExpansionData, 1 );
550 if (map)
551 map->release();
552 }
553
554 /* super::free may unwire - deallocate buffer afterwards */
555 super::free();
556
557 if (options & kIOMemoryPageable)
558 {
559 #if IOALLOCDEBUG
560 debug_iomallocpageable_size -= round_page(size);
561 #endif
562 }
563 else if (buffer)
564 {
565 if (kIOMemoryTypePhysical64 == (flags & kIOMemoryTypeMask))
566 IOFreePhysical(source, size);
567 else if (options & kIOMemoryPhysicallyContiguous)
568 IOKernelFreeContiguous((mach_vm_address_t) buffer, size);
569 else if (alignment > 1)
570 IOFreeAligned(buffer, size);
571 else
572 IOFree(buffer, size);
573 }
574 if (range && (kIOMemoryAsReference & flags))
575 IODelete(range, IOAddressRange, 1);
576 }
577
578 /*
579 * getCapacity:
580 *
581 * Get the buffer capacity
582 */
583 vm_size_t IOBufferMemoryDescriptor::getCapacity() const
584 {
585 return _capacity;
586 }
587
588 /*
589 * setLength:
590 *
591 * Change the buffer length of the memory descriptor. When a new buffer
592 * is created, the initial length of the buffer is set to be the same as
593 * the capacity. The length can be adjusted via setLength for a shorter
594 * transfer (there is no need to create more buffer descriptors when you
595 * can reuse an existing one, even for different transfer sizes). Note
596 * that the specified length must not exceed the capacity of the buffer.
597 */
598 void IOBufferMemoryDescriptor::setLength(vm_size_t length)
599 {
600 assert(length <= _capacity);
601
602 _length = length;
603 _ranges.v64->length = length;
604 }
605
606 /*
607 * setDirection:
608 *
609 * Change the direction of the transfer. This method allows one to redirect
610 * the descriptor's transfer direction. This eliminates the need to destroy
611 * and create new buffers when different transfer directions are needed.
612 */
613 void IOBufferMemoryDescriptor::setDirection(IODirection direction)
614 {
615 _flags = (_flags & ~kIOMemoryDirectionMask) | direction;
616 #ifndef __LP64__
617 _direction = (IODirection) (_flags & kIOMemoryDirectionMask);
618 #endif /* !__LP64__ */
619 }
620
621 /*
622 * appendBytes:
623 *
624 * Add some data to the end of the buffer. This method automatically
625 * maintains the memory descriptor buffer length. Note that appendBytes
626 * will not copy past the end of the memory descriptor's current capacity.
627 */
628 bool
629 IOBufferMemoryDescriptor::appendBytes(const void * bytes, vm_size_t withLength)
630 {
631 vm_size_t actualBytesToCopy = min(withLength, _capacity - _length);
632 IOByteCount offset;
633
634 assert(_length <= _capacity);
635
636 offset = _length;
637 _length += actualBytesToCopy;
638 _ranges.v64->length += actualBytesToCopy;
639
640 if (_task == kernel_task)
641 bcopy(/* from */ bytes, (void *)(_ranges.v64->address + offset),
642 actualBytesToCopy);
643 else
644 writeBytes(offset, bytes, actualBytesToCopy);
645
646 return true;
647 }
648
649 /*
650 * getBytesNoCopy:
651 *
652 * Return the virtual address of the beginning of the buffer
653 */
654 void * IOBufferMemoryDescriptor::getBytesNoCopy()
655 {
656 if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask))
657 return _buffer;
658 else
659 return (void *)_ranges.v64->address;
660 }
661
662
663 /*
664 * getBytesNoCopy:
665 *
666 * Return the virtual address of an offset from the beginning of the buffer
667 */
668 void *
669 IOBufferMemoryDescriptor::getBytesNoCopy(vm_size_t start, vm_size_t withLength)
670 {
671 IOVirtualAddress address;
672 if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask))
673 address = (IOVirtualAddress) _buffer;
674 else
675 address = _ranges.v64->address;
676
677 if (start < _length && (start + withLength) <= _length)
678 return (void *)(address + start);
679 return 0;
680 }
681
682 #ifndef __LP64__
683 void * IOBufferMemoryDescriptor::getVirtualSegment(IOByteCount offset,
684 IOByteCount * lengthOfSegment)
685 {
686 void * bytes = getBytesNoCopy(offset, 0);
687
688 if (bytes && lengthOfSegment)
689 *lengthOfSegment = _length - offset;
690
691 return bytes;
692 }
693 #endif /* !__LP64__ */
694
695 #ifdef __LP64__
696 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 0);
697 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 1);
698 #else /* !__LP64__ */
699 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 0);
700 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 1);
701 #endif /* !__LP64__ */
702 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 2);
703 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 3);
704 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 4);
705 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 5);
706 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 6);
707 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 7);
708 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 8);
709 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 9);
710 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 10);
711 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 11);
712 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 12);
713 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 13);
714 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 14);
715 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 15);