2 * Copyright (c) 1998-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
62 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $
65 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
66 * support for mandatory and extensible security protections. This notice
67 * is included in support of clause 2.2 (b) of the Apple Public License,
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/domain.h>
74 #include <sys/kernel.h>
75 #include <sys/proc_internal.h>
76 #include <sys/kauth.h>
77 #include <sys/malloc.h>
79 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
86 #include <kern/locks.h>
87 #include <net/route.h>
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <sys/kdebug.h>
91 #include <libkern/OSAtomic.h>
94 #include <security/mac_framework.h>
97 /* TODO: this should be in a header file somewhere */
98 extern void postevent(struct socket
*, struct sockbuf
*, int);
100 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
101 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
103 static inline void sbcompress(struct sockbuf
*, struct mbuf
*, struct mbuf
*);
104 static struct socket
*sonewconn_internal(struct socket
*, int);
105 static int sbappendaddr_internal(struct sockbuf
*, struct sockaddr
*,
106 struct mbuf
*, struct mbuf
*);
107 static int sbappendcontrol_internal(struct sockbuf
*, struct mbuf
*,
111 * Primitive routines for operating on sockets and socket buffers
113 static int soqlimitcompat
= 1;
114 static int soqlencomp
= 0;
116 /* Based on the number of mbuf clusters configured, high_sb_max and sb_max can get
117 * scaled up or down to suit that memory configuration. high_sb_max is a higher
118 * limit on sb_max that is checked when sb_max gets set through sysctl.
121 u_int32_t sb_max
= SB_MAX
; /* XXX should be static */
122 u_int32_t high_sb_max
= SB_MAX
;
124 static u_int32_t sb_efficiency
= 8; /* parameter for sbreserve() */
125 __private_extern__
unsigned int total_mb_cnt
= 0;
126 __private_extern__
unsigned int total_cl_cnt
= 0;
127 __private_extern__
int sbspace_factor
= 8;
130 * Procedures to manipulate state flags of socket
131 * and do appropriate wakeups. Normal sequence from the
132 * active (originating) side is that soisconnecting() is
133 * called during processing of connect() call,
134 * resulting in an eventual call to soisconnected() if/when the
135 * connection is established. When the connection is torn down
136 * soisdisconnecting() is called during processing of disconnect() call,
137 * and soisdisconnected() is called when the connection to the peer
138 * is totally severed. The semantics of these routines are such that
139 * connectionless protocols can call soisconnected() and soisdisconnected()
140 * only, bypassing the in-progress calls when setting up a ``connection''
143 * From the passive side, a socket is created with
144 * two queues of sockets: so_incomp for connections in progress
145 * and so_comp for connections already made and awaiting user acceptance.
146 * As a protocol is preparing incoming connections, it creates a socket
147 * structure queued on so_incomp by calling sonewconn(). When the connection
148 * is established, soisconnected() is called, and transfers the
149 * socket structure to so_comp, making it available to accept().
151 * If a socket is closed with sockets on either
152 * so_incomp or so_comp, these sockets are dropped.
154 * If higher level protocols are implemented in
155 * the kernel, the wakeups done here will sometimes
156 * cause software-interrupt process scheduling.
159 soisconnecting(struct socket
*so
)
162 so
->so_state
&= ~(SS_ISCONNECTED
|SS_ISDISCONNECTING
);
163 so
->so_state
|= SS_ISCONNECTING
;
165 sflt_notify(so
, sock_evt_connecting
, NULL
);
169 soisconnected(struct socket
*so
)
171 struct socket
*head
= so
->so_head
;
173 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISDISCONNECTING
|SS_ISCONFIRMING
);
174 so
->so_state
|= SS_ISCONNECTED
;
176 sflt_notify(so
, sock_evt_connected
, NULL
);
178 if (head
&& (so
->so_state
& SS_INCOMP
)) {
179 so
->so_state
&= ~SS_INCOMP
;
180 so
->so_state
|= SS_COMP
;
181 if (head
->so_proto
->pr_getlock
!= NULL
) {
182 socket_unlock(so
, 0);
183 socket_lock(head
, 1);
185 postevent(head
, 0, EV_RCONN
);
186 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
188 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
190 wakeup_one((caddr_t
)&head
->so_timeo
);
191 if (head
->so_proto
->pr_getlock
!= NULL
) {
192 socket_unlock(head
, 1);
196 postevent(so
, 0, EV_WCONN
);
197 wakeup((caddr_t
)&so
->so_timeo
);
204 soisdisconnecting(struct socket
*so
)
206 so
->so_state
&= ~SS_ISCONNECTING
;
207 so
->so_state
|= (SS_ISDISCONNECTING
|SS_CANTRCVMORE
|SS_CANTSENDMORE
);
208 sflt_notify(so
, sock_evt_disconnecting
, NULL
);
209 wakeup((caddr_t
)&so
->so_timeo
);
215 soisdisconnected(struct socket
*so
)
217 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
218 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
219 sflt_notify(so
, sock_evt_disconnected
, NULL
);
220 wakeup((caddr_t
)&so
->so_timeo
);
226 * When an attempt at a new connection is noted on a socket
227 * which accepts connections, sonewconn is called. If the
228 * connection is possible (subject to space constraints, etc.)
229 * then we allocate a new structure, propoerly linked into the
230 * data structure of the original socket, and return this.
231 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
233 static struct socket
*
234 sonewconn_internal(struct socket
*head
, int connstatus
)
236 int so_qlen
, error
= 0;
238 lck_mtx_t
*mutex_held
;
240 if (head
->so_proto
->pr_getlock
!= NULL
)
241 mutex_held
= (*head
->so_proto
->pr_getlock
)(head
, 0);
243 mutex_held
= head
->so_proto
->pr_domain
->dom_mtx
;
244 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
248 * This is the default case; so_qlen represents the
249 * sum of both incomplete and completed queues.
251 so_qlen
= head
->so_qlen
;
254 * When kern.ipc.soqlencomp is set to 1, so_qlen
255 * represents only the completed queue. Since we
256 * cannot let the incomplete queue goes unbounded
257 * (in case of SYN flood), we cap the incomplete
258 * queue length to at most somaxconn, and use that
259 * as so_qlen so that we fail immediately below.
261 so_qlen
= head
->so_qlen
- head
->so_incqlen
;
262 if (head
->so_incqlen
> somaxconn
)
267 (soqlimitcompat
? head
->so_qlimit
: (3 * head
->so_qlimit
/ 2)))
268 return ((struct socket
*)0);
269 so
= soalloc(1, head
->so_proto
->pr_domain
->dom_family
,
272 return ((struct socket
*)0);
273 /* check if head was closed during the soalloc */
274 if (head
->so_proto
== NULL
) {
276 return ((struct socket
*)0);
280 so
->so_type
= head
->so_type
;
281 so
->so_options
= head
->so_options
&~ SO_ACCEPTCONN
;
282 so
->so_linger
= head
->so_linger
;
283 so
->so_state
= head
->so_state
| SS_NOFDREF
;
284 so
->so_proto
= head
->so_proto
;
285 so
->so_timeo
= head
->so_timeo
;
286 so
->so_pgid
= head
->so_pgid
;
287 so
->so_uid
= head
->so_uid
;
288 /* inherit socket options stored in so_flags */
289 so
->so_flags
= head
->so_flags
& (SOF_NOSIGPIPE
|
296 so
->next_lock_lr
= 0;
297 so
->next_unlock_lr
= 0;
300 so
->so_rcv
.sb_flags
|= SB_RECV
; /* XXX */
301 so
->so_rcv
.sb_so
= so
->so_snd
.sb_so
= so
;
302 TAILQ_INIT(&so
->so_evlist
);
305 #if CONFIG_MACF_SOCKET
306 mac_socket_label_associate_accept(head
, so
);
309 if (soreserve(so
, head
->so_snd
.sb_hiwat
, head
->so_rcv
.sb_hiwat
)) {
312 return ((struct socket
*)0);
316 * Must be done with head unlocked to avoid deadlock
317 * for protocol with per socket mutexes.
319 if (head
->so_proto
->pr_unlock
)
320 socket_unlock(head
, 0);
321 if (((*so
->so_proto
->pr_usrreqs
->pru_attach
)(so
, 0, NULL
) != 0) ||
325 if (head
->so_proto
->pr_unlock
)
326 socket_lock(head
, 0);
327 return ((struct socket
*)0);
329 if (head
->so_proto
->pr_unlock
)
330 socket_lock(head
, 0);
332 so
->so_proto
->pr_domain
->dom_refs
++;
336 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
337 so
->so_state
|= SS_COMP
;
339 TAILQ_INSERT_TAIL(&head
->so_incomp
, so
, so_list
);
340 so
->so_state
|= SS_INCOMP
;
346 /* Attach socket filters for this protocol */
351 so
->so_state
|= connstatus
;
353 wakeup((caddr_t
)&head
->so_timeo
);
360 sonewconn(struct socket
*head
, int connstatus
, const struct sockaddr
*from
)
363 struct socket_filter_entry
*filter
;
366 for (filter
= head
->so_filt
; filter
&& (error
== 0);
367 filter
= filter
->sfe_next_onsocket
) {
368 if (filter
->sfe_filter
->sf_filter
.sf_connect_in
) {
372 socket_unlock(head
, 0);
374 error
= filter
->sfe_filter
->sf_filter
.
375 sf_connect_in(filter
->sfe_cookie
, head
, from
);
379 socket_lock(head
, 0);
387 return (sonewconn_internal(head
, connstatus
));
391 * Socantsendmore indicates that no more data will be sent on the
392 * socket; it would normally be applied to a socket when the user
393 * informs the system that no more data is to be sent, by the protocol
394 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
395 * will be received, and will normally be applied to the socket by a
396 * protocol when it detects that the peer will send no more data.
397 * Data queued for reading in the socket may yet be read.
401 socantsendmore(struct socket
*so
)
403 so
->so_state
|= SS_CANTSENDMORE
;
404 sflt_notify(so
, sock_evt_cantsendmore
, NULL
);
409 socantrcvmore(struct socket
*so
)
411 so
->so_state
|= SS_CANTRCVMORE
;
412 sflt_notify(so
, sock_evt_cantrecvmore
, NULL
);
417 * Wait for data to arrive at/drain from a socket buffer.
424 sbwait(struct sockbuf
*sb
)
428 struct socket
*so
= sb
->sb_so
;
429 lck_mtx_t
*mutex_held
;
432 lr_saved
= (uintptr_t) __builtin_return_address(0);
434 if (so
->so_proto
->pr_getlock
!= NULL
)
435 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
437 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
439 sb
->sb_flags
|= SB_WAIT
;
441 if (so
->so_usecount
< 1)
442 panic("sbwait: so=%p refcount=%d\n", so
, so
->so_usecount
);
443 ts
.tv_sec
= sb
->sb_timeo
.tv_sec
;
444 ts
.tv_nsec
= sb
->sb_timeo
.tv_usec
* 1000;
445 error
= msleep((caddr_t
)&sb
->sb_cc
, mutex_held
,
446 (sb
->sb_flags
& SB_NOINTR
) ? PSOCK
: PSOCK
| PCATCH
, "sbwait", &ts
);
448 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
450 if (so
->so_usecount
< 1)
451 panic("sbwait: so=%p refcount=%d\n", so
, so
->so_usecount
);
453 if ((so
->so_state
& SS_DRAINING
)) {
461 * Lock a sockbuf already known to be locked;
462 * return any error returned from sleep (EINTR).
468 sb_lock(struct sockbuf
*sb
)
470 struct socket
*so
= sb
->sb_so
;
471 lck_mtx_t
*mutex_held
;
475 panic("sb_lock: null so back pointer sb=%p\n", sb
);
477 while (sb
->sb_flags
& SB_LOCK
) {
478 sb
->sb_flags
|= SB_WANT
;
479 if (so
->so_proto
->pr_getlock
!= NULL
)
480 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
482 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
483 if (so
->so_usecount
< 1)
484 panic("sb_lock: so=%p refcount=%d\n", so
,
487 error
= msleep((caddr_t
)&sb
->sb_flags
, mutex_held
,
488 (sb
->sb_flags
& SB_NOINTR
) ? PSOCK
: PSOCK
| PCATCH
,
490 if (so
->so_usecount
< 1)
491 panic("sb_lock: 2 so=%p refcount=%d\n", so
,
496 sb
->sb_flags
|= SB_LOCK
;
501 * Wakeup processes waiting on a socket buffer.
502 * Do asynchronous notification via SIGIO
503 * if the socket has the SS_ASYNC flag set.
506 sowakeup(struct socket
*so
, struct sockbuf
*sb
)
508 sb
->sb_flags
&= ~SB_SEL
;
509 selwakeup(&sb
->sb_sel
);
510 if (sb
->sb_flags
& SB_WAIT
) {
511 sb
->sb_flags
&= ~SB_WAIT
;
512 wakeup((caddr_t
)&sb
->sb_cc
);
514 if (so
->so_state
& SS_ASYNC
) {
516 gsignal(-so
->so_pgid
, SIGIO
);
517 else if (so
->so_pgid
> 0)
518 proc_signal(so
->so_pgid
, SIGIO
);
520 if (sb
->sb_flags
& SB_KNOTE
) {
521 KNOTE(&sb
->sb_sel
.si_note
, SO_FILT_HINT_LOCKED
);
523 if (sb
->sb_flags
& SB_UPCALL
) {
524 void (*so_upcall
)(struct socket
*, caddr_t
, int);
525 caddr_t so_upcallarg
;
527 so_upcall
= so
->so_upcall
;
528 so_upcallarg
= so
->so_upcallarg
;
529 /* Let close know that we're about to do an upcall */
530 so
->so_flags
|= SOF_UPCALLINUSE
;
532 socket_unlock(so
, 0);
533 (*so_upcall
)(so
, so_upcallarg
, M_DONTWAIT
);
536 so
->so_flags
&= ~SOF_UPCALLINUSE
;
537 /* Tell close that it's safe to proceed */
538 if (so
->so_flags
& SOF_CLOSEWAIT
)
539 wakeup((caddr_t
)&so
->so_upcall
);
544 * Socket buffer (struct sockbuf) utility routines.
546 * Each socket contains two socket buffers: one for sending data and
547 * one for receiving data. Each buffer contains a queue of mbufs,
548 * information about the number of mbufs and amount of data in the
549 * queue, and other fields allowing select() statements and notification
550 * on data availability to be implemented.
552 * Data stored in a socket buffer is maintained as a list of records.
553 * Each record is a list of mbufs chained together with the m_next
554 * field. Records are chained together with the m_nextpkt field. The upper
555 * level routine soreceive() expects the following conventions to be
556 * observed when placing information in the receive buffer:
558 * 1. If the protocol requires each message be preceded by the sender's
559 * name, then a record containing that name must be present before
560 * any associated data (mbuf's must be of type MT_SONAME).
561 * 2. If the protocol supports the exchange of ``access rights'' (really
562 * just additional data associated with the message), and there are
563 * ``rights'' to be received, then a record containing this data
564 * should be present (mbuf's must be of type MT_RIGHTS).
565 * 3. If a name or rights record exists, then it must be followed by
566 * a data record, perhaps of zero length.
568 * Before using a new socket structure it is first necessary to reserve
569 * buffer space to the socket, by calling sbreserve(). This should commit
570 * some of the available buffer space in the system buffer pool for the
571 * socket (currently, it does nothing but enforce limits). The space
572 * should be released by calling sbrelease() when the socket is destroyed.
580 soreserve(struct socket
*so
, u_int32_t sndcc
, u_int32_t rcvcc
)
583 if (sbreserve(&so
->so_snd
, sndcc
) == 0)
585 if (sbreserve(&so
->so_rcv
, rcvcc
) == 0)
587 if (so
->so_rcv
.sb_lowat
== 0)
588 so
->so_rcv
.sb_lowat
= 1;
589 if (so
->so_snd
.sb_lowat
== 0)
590 so
->so_snd
.sb_lowat
= MCLBYTES
;
591 if (so
->so_snd
.sb_lowat
> so
->so_snd
.sb_hiwat
)
592 so
->so_snd
.sb_lowat
= so
->so_snd
.sb_hiwat
;
596 selthreadclear(&so
->so_snd
.sb_sel
);
598 sbrelease(&so
->so_snd
);
604 * Allot mbufs to a sockbuf.
605 * Attempt to scale mbmax so that mbcnt doesn't become limiting
606 * if buffering efficiency is near the normal case.
609 sbreserve(struct sockbuf
*sb
, u_int32_t cc
)
611 if ((u_quad_t
)cc
> (u_quad_t
)sb_max
* MCLBYTES
/ (MSIZE
+ MCLBYTES
))
614 sb
->sb_mbmax
= min(cc
* sb_efficiency
, sb_max
);
615 if (sb
->sb_lowat
> sb
->sb_hiwat
)
616 sb
->sb_lowat
= sb
->sb_hiwat
;
621 * Free mbufs held by a socket, and reserved mbuf space.
623 /* WARNING needs to do selthreadclear() before calling this */
625 sbrelease(struct sockbuf
*sb
)
633 * Routines to add and remove
634 * data from an mbuf queue.
636 * The routines sbappend() or sbappendrecord() are normally called to
637 * append new mbufs to a socket buffer, after checking that adequate
638 * space is available, comparing the function sbspace() with the amount
639 * of data to be added. sbappendrecord() differs from sbappend() in
640 * that data supplied is treated as the beginning of a new record.
641 * To place a sender's address, optional access rights, and data in a
642 * socket receive buffer, sbappendaddr() should be used. To place
643 * access rights and data in a socket receive buffer, sbappendrights()
644 * should be used. In either case, the new data begins a new record.
645 * Note that unlike sbappend() and sbappendrecord(), these routines check
646 * for the caller that there will be enough space to store the data.
647 * Each fails if there is not enough space, or if it cannot find mbufs
648 * to store additional information in.
650 * Reliable protocols may use the socket send buffer to hold data
651 * awaiting acknowledgement. Data is normally copied from a socket
652 * send buffer in a protocol with m_copy for output to a peer,
653 * and then removing the data from the socket buffer with sbdrop()
654 * or sbdroprecord() when the data is acknowledged by the peer.
658 * Append mbuf chain m to the last record in the
659 * socket buffer sb. The additional space associated
660 * the mbuf chain is recorded in sb. Empty mbufs are
661 * discarded and mbufs are compacted where possible.
664 sbappend(struct sockbuf
*sb
, struct mbuf
*m
)
666 struct socket
*so
= sb
->sb_so
;
668 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
674 SBLASTRECORDCHK(sb
, "sbappend 1");
676 if (sb
->sb_lastrecord
!= NULL
&& (sb
->sb_mbtail
->m_flags
& M_EOR
))
677 return (sbappendrecord(sb
, m
));
679 if (sb
->sb_flags
& SB_RECV
) {
680 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0, NULL
);
681 SBLASTRECORDCHK(sb
, "sbappend 2");
683 if (error
!= EJUSTRETURN
)
689 /* If this is the first record, it's also the last record */
690 if (sb
->sb_lastrecord
== NULL
)
691 sb
->sb_lastrecord
= m
;
693 sbcompress(sb
, m
, sb
->sb_mbtail
);
694 SBLASTRECORDCHK(sb
, "sbappend 3");
699 * Similar to sbappend, except that this is optimized for stream sockets.
702 sbappendstream(struct sockbuf
*sb
, struct mbuf
*m
)
704 struct socket
*so
= sb
->sb_so
;
706 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
))
707 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
708 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
710 SBLASTMBUFCHK(sb
, __func__
);
712 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
718 if (sb
->sb_flags
& SB_RECV
) {
719 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0, NULL
);
720 SBLASTRECORDCHK(sb
, "sbappendstream 1");
722 if (error
!= EJUSTRETURN
)
728 sbcompress(sb
, m
, sb
->sb_mbtail
);
729 sb
->sb_lastrecord
= sb
->sb_mb
;
730 SBLASTRECORDCHK(sb
, "sbappendstream 2");
736 sbcheck(struct sockbuf
*sb
)
740 u_int32_t len
= 0, mbcnt
= 0;
741 lck_mtx_t
*mutex_held
;
743 if (sb
->sb_so
->so_proto
->pr_getlock
!= NULL
)
744 mutex_held
= (*sb
->sb_so
->so_proto
->pr_getlock
)(sb
->sb_so
, 0);
746 mutex_held
= sb
->sb_so
->so_proto
->pr_domain
->dom_mtx
;
748 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
753 for (m
= sb
->sb_mb
; m
; m
= n
) {
755 for (; m
; m
= m
->m_next
) {
758 /* XXX pretty sure this is bogus */
759 if (m
->m_flags
& M_EXT
)
760 mbcnt
+= m
->m_ext
.ext_size
;
763 if (len
!= sb
->sb_cc
|| mbcnt
!= sb
->sb_mbcnt
) {
764 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len
, sb
->sb_cc
,
765 mbcnt
, sb
->sb_mbcnt
);
771 sblastrecordchk(struct sockbuf
*sb
, const char *where
)
773 struct mbuf
*m
= sb
->sb_mb
;
775 while (m
&& m
->m_nextpkt
)
778 if (m
!= sb
->sb_lastrecord
) {
779 printf("sblastrecordchk: mb %p lastrecord %p last %p\n",
780 sb
->sb_mb
, sb
->sb_lastrecord
, m
);
781 printf("packet chain:\n");
782 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
)
784 panic("sblastrecordchk from %s", where
);
789 sblastmbufchk(struct sockbuf
*sb
, const char *where
)
791 struct mbuf
*m
= sb
->sb_mb
;
794 while (m
&& m
->m_nextpkt
)
797 while (m
&& m
->m_next
)
800 if (m
!= sb
->sb_mbtail
) {
801 printf("sblastmbufchk: mb %p mbtail %p last %p\n",
802 sb
->sb_mb
, sb
->sb_mbtail
, m
);
803 printf("packet tree:\n");
804 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
) {
806 for (n
= m
; n
!= NULL
; n
= n
->m_next
)
810 panic("sblastmbufchk from %s", where
);
815 * Similar to sbappend, except the mbuf chain begins a new record.
818 sbappendrecord(struct sockbuf
*sb
, struct mbuf
*m0
)
823 if (m0
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
829 for (m
= m0
; m
!= NULL
; m
= m
->m_next
)
832 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
)) {
837 if (sb
->sb_flags
& SB_RECV
) {
838 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
839 sock_data_filt_flag_record
, NULL
);
841 SBLASTRECORDCHK(sb
, "sbappendrecord 1");
842 if (error
!= EJUSTRETURN
)
849 * Note this permits zero length records.
852 SBLASTRECORDCHK(sb
, "sbappendrecord 2");
853 if (sb
->sb_lastrecord
!= NULL
) {
854 sb
->sb_lastrecord
->m_nextpkt
= m0
;
858 sb
->sb_lastrecord
= m0
;
863 if (m
&& (m0
->m_flags
& M_EOR
)) {
864 m0
->m_flags
&= ~M_EOR
;
867 sbcompress(sb
, m
, m0
);
868 SBLASTRECORDCHK(sb
, "sbappendrecord 3");
873 * As above except that OOB data
874 * is inserted at the beginning of the sockbuf,
875 * but after any other OOB data.
878 sbinsertoob(struct sockbuf
*sb
, struct mbuf
*m0
)
886 SBLASTRECORDCHK(sb
, "sbinsertoob 1");
888 if ((sb
->sb_flags
& SB_RECV
) != 0) {
889 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
890 sock_data_filt_flag_oob
, NULL
);
892 SBLASTRECORDCHK(sb
, "sbinsertoob 2");
894 if (error
!= EJUSTRETURN
) {
901 for (mp
= &sb
->sb_mb
; *mp
; mp
= &((*mp
)->m_nextpkt
)) {
907 continue; /* WANT next train */
912 goto again
; /* inspect THIS train further */
917 * Put the first mbuf on the queue.
918 * Note this permits zero length records.
923 /* m0 is actually the new tail */
924 sb
->sb_lastrecord
= m0
;
929 if (m
&& (m0
->m_flags
& M_EOR
)) {
930 m0
->m_flags
&= ~M_EOR
;
933 sbcompress(sb
, m
, m0
);
934 SBLASTRECORDCHK(sb
, "sbinsertoob 3");
939 * Append address and data, and optionally, control (ancillary) data
940 * to the receive queue of a socket. If present,
941 * m0 must include a packet header with total length.
942 * Returns 0 if no space in sockbuf or insufficient mbufs.
944 * Returns: 0 No space/out of mbufs
948 sbappendaddr_internal(struct sockbuf
*sb
, struct sockaddr
*asa
,
949 struct mbuf
*m0
, struct mbuf
*control
)
951 struct mbuf
*m
, *n
, *nlast
;
952 int space
= asa
->sa_len
;
954 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
955 panic("sbappendaddr");
958 space
+= m0
->m_pkthdr
.len
;
959 for (n
= control
; n
; n
= n
->m_next
) {
961 if (n
->m_next
== 0) /* keep pointer to last control buf */
964 if (space
> sbspace(sb
))
966 if (asa
->sa_len
> MLEN
)
968 MGET(m
, M_DONTWAIT
, MT_SONAME
);
971 m
->m_len
= asa
->sa_len
;
972 bcopy((caddr_t
)asa
, mtod(m
, caddr_t
), asa
->sa_len
);
974 n
->m_next
= m0
; /* concatenate data to control */
979 SBLASTRECORDCHK(sb
, "sbappendadddr 1");
981 for (n
= m
; n
->m_next
!= NULL
; n
= n
->m_next
)
986 if (sb
->sb_lastrecord
!= NULL
) {
987 sb
->sb_lastrecord
->m_nextpkt
= m
;
991 sb
->sb_lastrecord
= m
;
992 sb
->sb_mbtail
= nlast
;
994 SBLASTMBUFCHK(sb
, __func__
);
995 SBLASTRECORDCHK(sb
, "sbappendadddr 2");
997 postevent(0, sb
, EV_RWBYTES
);
1002 * Returns: 0 Error: No space/out of mbufs/etc.
1005 * Imputed: (*error_out) errno for error
1007 * sflt_data_in:??? [whatever a filter author chooses]
1010 sbappendaddr(struct sockbuf
*sb
, struct sockaddr
*asa
, struct mbuf
*m0
,
1011 struct mbuf
*control
, int *error_out
)
1014 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1019 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
1020 panic("sbappendaddrorfree");
1022 if (sb
->sb_flags
& SB_DROP
) {
1025 if (control
!= NULL
&& !sb_unix
)
1027 if (error_out
!= NULL
)
1028 *error_out
= EINVAL
;
1032 /* Call socket data in filters */
1033 if ((sb
->sb_flags
& SB_RECV
) != 0) {
1035 error
= sflt_data_in(sb
->sb_so
, asa
, &m0
, &control
, 0, NULL
);
1036 SBLASTRECORDCHK(sb
, __func__
);
1038 if (error
!= EJUSTRETURN
) {
1041 if (control
!= NULL
&& !sb_unix
)
1050 result
= sbappendaddr_internal(sb
, asa
, m0
, control
);
1054 if (control
!= NULL
&& !sb_unix
)
1057 *error_out
= ENOBUFS
;
1064 sbappendcontrol_internal(struct sockbuf
*sb
, struct mbuf
*m0
,
1065 struct mbuf
*control
)
1067 struct mbuf
*m
, *mlast
, *n
;
1071 panic("sbappendcontrol");
1073 for (m
= control
; ; m
= m
->m_next
) {
1078 n
= m
; /* save pointer to last control buffer */
1079 for (m
= m0
; m
; m
= m
->m_next
)
1081 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
))
1083 n
->m_next
= m0
; /* concatenate data to control */
1085 SBLASTRECORDCHK(sb
, "sbappendcontrol 1");
1087 for (m
= control
; m
->m_next
!= NULL
; m
= m
->m_next
)
1092 if (sb
->sb_lastrecord
!= NULL
) {
1093 sb
->sb_lastrecord
->m_nextpkt
= control
;
1095 sb
->sb_mb
= control
;
1097 sb
->sb_lastrecord
= control
;
1098 sb
->sb_mbtail
= mlast
;
1100 SBLASTMBUFCHK(sb
, __func__
);
1101 SBLASTRECORDCHK(sb
, "sbappendcontrol 2");
1103 postevent(0, sb
, EV_RWBYTES
);
1108 sbappendcontrol(struct sockbuf
*sb
, struct mbuf
*m0
, struct mbuf
*control
,
1112 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1117 if (sb
->sb_flags
& SB_DROP
) {
1120 if (control
!= NULL
&& !sb_unix
)
1122 if (error_out
!= NULL
)
1123 *error_out
= EINVAL
;
1127 if (sb
->sb_flags
& SB_RECV
) {
1130 error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, &control
, 0, NULL
);
1131 SBLASTRECORDCHK(sb
, __func__
);
1133 if (error
!= EJUSTRETURN
) {
1136 if (control
!= NULL
&& !sb_unix
)
1145 result
= sbappendcontrol_internal(sb
, m0
, control
);
1149 if (control
!= NULL
&& !sb_unix
)
1152 *error_out
= ENOBUFS
;
1159 * Compress mbuf chain m into the socket
1160 * buffer sb following mbuf n. If n
1161 * is null, the buffer is presumed empty.
1164 sbcompress(struct sockbuf
*sb
, struct mbuf
*m
, struct mbuf
*n
)
1170 /* There is nothing to compress; just update the tail */
1171 for (; n
->m_next
!= NULL
; n
= n
->m_next
)
1178 eor
|= m
->m_flags
& M_EOR
;
1179 if (m
->m_len
== 0 && (eor
== 0 ||
1180 (((o
= m
->m_next
) || (o
= n
)) && o
->m_type
== m
->m_type
))) {
1181 if (sb
->sb_lastrecord
== m
)
1182 sb
->sb_lastrecord
= m
->m_next
;
1186 if (n
&& (n
->m_flags
& M_EOR
) == 0 &&
1190 m
->m_len
<= MCLBYTES
/ 4 && /* XXX: Don't copy too much */
1191 m
->m_len
<= M_TRAILINGSPACE(n
) &&
1192 n
->m_type
== m
->m_type
) {
1193 bcopy(mtod(m
, caddr_t
), mtod(n
, caddr_t
) + n
->m_len
,
1194 (unsigned)m
->m_len
);
1195 n
->m_len
+= m
->m_len
;
1196 sb
->sb_cc
+= m
->m_len
;
1197 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1198 m
->m_type
!= MT_OOBDATA
)
1199 /* XXX: Probably don't need.*/
1200 sb
->sb_ctl
+= m
->m_len
;
1211 m
->m_flags
&= ~M_EOR
;
1219 printf("semi-panic: sbcompress\n");
1222 SBLASTMBUFCHK(sb
, __func__
);
1223 postevent(0, sb
, EV_RWBYTES
);
1227 sb_empty_assert(struct sockbuf
*sb
, const char *where
)
1229 if (!(sb
->sb_cc
== 0 && sb
->sb_mb
== NULL
&& sb
->sb_mbcnt
== 0 &&
1230 sb
->sb_mbtail
== NULL
&& sb
->sb_lastrecord
== NULL
)) {
1231 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1232 "lastrecord %p\n", where
, sb
, sb
->sb_so
, sb
->sb_cc
,
1233 sb
->sb_mbcnt
, sb
->sb_mb
, sb
->sb_mbtail
, sb
->sb_lastrecord
);
1239 * Free all mbufs in a sockbuf.
1240 * Check that all resources are reclaimed.
1243 sbflush(struct sockbuf
*sb
)
1245 if (sb
->sb_so
== NULL
)
1246 panic("sbflush sb->sb_so already null sb=%p\n", sb
);
1247 (void) sblock(sb
, M_WAIT
);
1248 while (sb
->sb_mbcnt
) {
1250 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1251 * we would loop forever. Panic instead.
1253 if (!sb
->sb_cc
&& (sb
->sb_mb
== NULL
|| sb
->sb_mb
->m_len
))
1255 sbdrop(sb
, (int)sb
->sb_cc
);
1257 sb_empty_assert(sb
, __func__
);
1258 postevent(0, sb
, EV_RWBYTES
);
1259 sbunlock(sb
, 1); /* keep socket locked */
1264 * Drop data from (the front of) a sockbuf.
1265 * use m_freem_list to free the mbuf structures
1266 * under a single lock... this is done by pruning
1267 * the top of the tree from the body by keeping track
1268 * of where we get to in the tree and then zeroing the
1269 * two pertinent pointers m_nextpkt and m_next
1270 * the socket buffer is then updated to point at the new
1271 * top of the tree and the pruned area is released via
1275 sbdrop(struct sockbuf
*sb
, int len
)
1277 struct mbuf
*m
, *free_list
, *ml
;
1278 struct mbuf
*next
, *last
;
1280 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_START
), sb
, len
, 0, 0, 0);
1282 next
= (m
= sb
->sb_mb
) ? m
->m_nextpkt
: 0;
1283 free_list
= last
= m
;
1284 ml
= (struct mbuf
*)0;
1290 * temporarily replacing this panic with printf
1291 * because it occurs occasionally when closing
1292 * a socket when there is no harm in ignoring
1293 * it. This problem will be investigated
1296 /* panic("sbdrop"); */
1297 printf("sbdrop - count not zero\n");
1300 * zero the counts. if we have no mbufs,
1301 * we have no data (PR-2986815)
1308 next
= m
->m_nextpkt
;
1311 if (m
->m_len
> len
) {
1315 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1316 m
->m_type
!= MT_OOBDATA
)
1326 while (m
&& m
->m_len
== 0) {
1333 ml
->m_next
= (struct mbuf
*)0;
1334 last
->m_nextpkt
= (struct mbuf
*)0;
1335 m_freem_list(free_list
);
1339 m
->m_nextpkt
= next
;
1345 * First part is an inline SB_EMPTY_FIXUP(). Second part
1346 * makes sure sb_lastrecord is up-to-date if we dropped
1347 * part of the last record.
1351 sb
->sb_mbtail
= NULL
;
1352 sb
->sb_lastrecord
= NULL
;
1353 } else if (m
->m_nextpkt
== NULL
) {
1354 sb
->sb_lastrecord
= m
;
1357 postevent(0, sb
, EV_RWBYTES
);
1359 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_END
), sb
, 0, 0, 0, 0);
1363 * Drop a record off the front of a sockbuf
1364 * and move the next record to the front.
1367 sbdroprecord(struct sockbuf
*sb
)
1369 struct mbuf
*m
, *mn
;
1373 sb
->sb_mb
= m
->m_nextpkt
;
1381 postevent(0, sb
, EV_RWBYTES
);
1385 * Create a "control" mbuf containing the specified data
1386 * with the specified type for presentation on a socket buffer.
1389 sbcreatecontrol(caddr_t p
, int size
, int type
, int level
)
1394 if (CMSG_SPACE((u_int
)size
) > MLEN
)
1395 return ((struct mbuf
*)NULL
);
1396 if ((m
= m_get(M_DONTWAIT
, MT_CONTROL
)) == NULL
)
1397 return ((struct mbuf
*)NULL
);
1398 cp
= mtod(m
, struct cmsghdr
*);
1399 /* XXX check size? */
1400 (void) memcpy(CMSG_DATA(cp
), p
, size
);
1401 m
->m_len
= CMSG_SPACE(size
);
1402 cp
->cmsg_len
= CMSG_LEN(size
);
1403 cp
->cmsg_level
= level
;
1404 cp
->cmsg_type
= type
;
1409 * Some routines that return EOPNOTSUPP for entry points that are not
1410 * supported by a protocol. Fill in as needed.
1413 pru_abort_notsupp(__unused
struct socket
*so
)
1415 return (EOPNOTSUPP
);
1419 pru_accept_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
**nam
)
1421 return (EOPNOTSUPP
);
1425 pru_attach_notsupp(__unused
struct socket
*so
, __unused
int proto
,
1426 __unused
struct proc
*p
)
1428 return (EOPNOTSUPP
);
1432 pru_bind_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
*nam
,
1433 __unused
struct proc
*p
)
1435 return (EOPNOTSUPP
);
1439 pru_connect_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
*nam
,
1440 __unused
struct proc
*p
)
1442 return (EOPNOTSUPP
);
1446 pru_connect2_notsupp(__unused
struct socket
*so1
, __unused
struct socket
*so2
)
1448 return (EOPNOTSUPP
);
1452 pru_control_notsupp(__unused
struct socket
*so
, __unused u_long cmd
,
1453 __unused caddr_t data
, __unused
struct ifnet
*ifp
, __unused
struct proc
*p
)
1455 return (EOPNOTSUPP
);
1459 pru_detach_notsupp(__unused
struct socket
*so
)
1461 return (EOPNOTSUPP
);
1465 pru_disconnect_notsupp(__unused
struct socket
*so
)
1467 return (EOPNOTSUPP
);
1471 pru_listen_notsupp(__unused
struct socket
*so
, __unused
struct proc
*p
)
1473 return (EOPNOTSUPP
);
1477 pru_peeraddr_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
**nam
)
1479 return (EOPNOTSUPP
);
1483 pru_rcvd_notsupp(__unused
struct socket
*so
, __unused
int flags
)
1485 return (EOPNOTSUPP
);
1489 pru_rcvoob_notsupp(__unused
struct socket
*so
, __unused
struct mbuf
*m
,
1492 return (EOPNOTSUPP
);
1496 pru_send_notsupp(__unused
struct socket
*so
, __unused
int flags
,
1497 __unused
struct mbuf
*m
, __unused
struct sockaddr
*addr
,
1498 __unused
struct mbuf
*control
, __unused
struct proc
*p
)
1501 return (EOPNOTSUPP
);
1506 * This isn't really a ``null'' operation, but it's the default one
1507 * and doesn't do anything destructive.
1510 pru_sense_null(struct socket
*so
, void *ub
, int isstat64
)
1512 if (isstat64
!= 0) {
1513 struct stat64
*sb64
;
1515 sb64
= (struct stat64
*)ub
;
1516 sb64
->st_blksize
= so
->so_snd
.sb_hiwat
;
1520 sb
= (struct stat
*)ub
;
1521 sb
->st_blksize
= so
->so_snd
.sb_hiwat
;
1529 pru_sosend_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
*addr
,
1530 __unused
struct uio
*uio
, __unused
struct mbuf
*top
,
1531 __unused
struct mbuf
*control
, __unused
int flags
)
1534 return (EOPNOTSUPP
);
1538 pru_soreceive_notsupp(__unused
struct socket
*so
,
1539 __unused
struct sockaddr
**paddr
,
1540 __unused
struct uio
*uio
, __unused
struct mbuf
**mp0
,
1541 __unused
struct mbuf
**controlp
, __unused
int *flagsp
)
1543 return (EOPNOTSUPP
);
1547 pru_shutdown_notsupp(__unused
struct socket
*so
)
1549 return (EOPNOTSUPP
);
1553 pru_sockaddr_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
**nam
)
1555 return (EOPNOTSUPP
);
1559 pru_sopoll_notsupp(__unused
struct socket
*so
, __unused
int events
,
1560 __unused kauth_cred_t cred
, __unused
void *wql
)
1562 return (EOPNOTSUPP
);
1568 * The following are macros on BSD and functions on Darwin
1572 * Do we need to notify the other side when I/O is possible?
1576 sb_notify(struct sockbuf
*sb
)
1578 return ((sb
->sb_flags
&
1579 (SB_WAIT
|SB_SEL
|SB_ASYNC
|SB_UPCALL
|SB_KNOTE
)) != 0);
1583 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1584 * This is problematical if the fields are unsigned, as the space might
1585 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1586 * overflow and return 0.
1589 sbspace(struct sockbuf
*sb
)
1592 imin((int)(sb
->sb_hiwat
- sb
->sb_cc
),
1593 (int)(sb
->sb_mbmax
- sb
->sb_mbcnt
));
1600 /* do we have to send all at once on a socket? */
1602 sosendallatonce(struct socket
*so
)
1604 return (so
->so_proto
->pr_flags
& PR_ATOMIC
);
1607 /* can we read something from so? */
1609 soreadable(struct socket
*so
)
1611 return (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
||
1612 (so
->so_state
& SS_CANTRCVMORE
) ||
1613 so
->so_comp
.tqh_first
|| so
->so_error
);
1616 /* can we write something to so? */
1619 sowriteable(struct socket
*so
)
1621 return ((sbspace(&(so
)->so_snd
) >= (so
)->so_snd
.sb_lowat
&&
1622 ((so
->so_state
&SS_ISCONNECTED
) ||
1623 (so
->so_proto
->pr_flags
&PR_CONNREQUIRED
) == 0)) ||
1624 (so
->so_state
& SS_CANTSENDMORE
) ||
1628 /* adjust counters in sb reflecting allocation of m */
1631 sballoc(struct sockbuf
*sb
, struct mbuf
*m
)
1634 sb
->sb_cc
+= m
->m_len
;
1635 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1636 m
->m_type
!= MT_OOBDATA
)
1637 sb
->sb_ctl
+= m
->m_len
;
1638 sb
->sb_mbcnt
+= MSIZE
;
1640 if (m
->m_flags
& M_EXT
) {
1641 sb
->sb_mbcnt
+= m
->m_ext
.ext_size
;
1642 cnt
+= m
->m_ext
.ext_size
/ MSIZE
;
1644 OSAddAtomic(cnt
, &total_mb_cnt
);
1647 /* adjust counters in sb reflecting freeing of m */
1649 sbfree(struct sockbuf
*sb
, struct mbuf
*m
)
1652 sb
->sb_cc
-= m
->m_len
;
1653 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1654 m
->m_type
!= MT_OOBDATA
)
1655 sb
->sb_ctl
-= m
->m_len
;
1656 sb
->sb_mbcnt
-= MSIZE
;
1657 if (m
->m_flags
& M_EXT
) {
1658 sb
->sb_mbcnt
-= m
->m_ext
.ext_size
;
1659 cnt
-= m
->m_ext
.ext_size
/ MSIZE
;
1661 OSAddAtomic(cnt
, &total_mb_cnt
);
1665 * Set lock on sockbuf sb; sleep if lock is already held.
1666 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1667 * Returns error without lock if sleep is interrupted.
1669 * Returns: 0 Success
1674 sblock(struct sockbuf
*sb
, int wf
)
1678 if (sb
->sb_flags
& SB_LOCK
)
1679 error
= (wf
== M_WAIT
) ? sb_lock(sb
) : EWOULDBLOCK
;
1681 sb
->sb_flags
|= SB_LOCK
;
1686 /* release lock on sockbuf sb */
1688 sbunlock(struct sockbuf
*sb
, int keeplocked
)
1690 struct socket
*so
= sb
->sb_so
;
1692 lck_mtx_t
*mutex_held
;
1694 lr_saved
= __builtin_return_address(0);
1696 sb
->sb_flags
&= ~SB_LOCK
;
1698 if (sb
->sb_flags
& SB_WANT
) {
1699 sb
->sb_flags
&= ~SB_WANT
;
1700 if (so
->so_usecount
< 0) {
1701 panic("sbunlock: b4 wakeup so=%p ref=%d lr=%p "
1702 "sb_flags=%x lrh= %s\n", sb
->sb_so
, so
->so_usecount
,
1703 lr_saved
, sb
->sb_flags
, solockhistory_nr(so
));
1706 wakeup((caddr_t
)&(sb
)->sb_flags
);
1708 if (keeplocked
== 0) { /* unlock on exit */
1709 if (so
->so_proto
->pr_getlock
!= NULL
)
1710 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
1712 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
1714 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1717 if (so
->so_usecount
< 0)
1718 panic("sbunlock: unlock on exit so=%p ref=%d lr=%p "
1719 "sb_flags=%x lrh= %s\n", so
, so
->so_usecount
, lr_saved
,
1720 sb
->sb_flags
, solockhistory_nr(so
));
1721 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
1722 so
->next_unlock_lr
= (so
->next_unlock_lr
+1) % SO_LCKDBG_MAX
;
1723 lck_mtx_unlock(mutex_held
);
1728 sorwakeup(struct socket
*so
)
1730 if (sb_notify(&so
->so_rcv
))
1731 sowakeup(so
, &so
->so_rcv
);
1735 sowwakeup(struct socket
*so
)
1737 if (sb_notify(&so
->so_snd
))
1738 sowakeup(so
, &so
->so_snd
);
1740 #endif /* __APPLE__ */
1743 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1746 dup_sockaddr(struct sockaddr
*sa
, int canwait
)
1748 struct sockaddr
*sa2
;
1750 MALLOC(sa2
, struct sockaddr
*, sa
->sa_len
, M_SONAME
,
1751 canwait
? M_WAITOK
: M_NOWAIT
);
1753 bcopy(sa
, sa2
, sa
->sa_len
);
1758 * Create an external-format (``xsocket'') structure using the information
1759 * in the kernel-format socket structure pointed to by so. This is done
1760 * to reduce the spew of irrelevant information over this interface,
1761 * to isolate user code from changes in the kernel structure, and
1762 * potentially to provide information-hiding if we decide that
1763 * some of this information should be hidden from users.
1766 sotoxsocket(struct socket
*so
, struct xsocket
*xso
)
1768 xso
->xso_len
= sizeof (*xso
);
1769 xso
->xso_so
= (_XSOCKET_PTR(struct socket
*))(uintptr_t)so
;
1770 xso
->so_type
= so
->so_type
;
1771 xso
->so_options
= so
->so_options
;
1772 xso
->so_linger
= so
->so_linger
;
1773 xso
->so_state
= so
->so_state
;
1774 xso
->so_pcb
= (_XSOCKET_PTR(caddr_t
))(uintptr_t)so
->so_pcb
;
1776 xso
->xso_protocol
= so
->so_proto
->pr_protocol
;
1777 xso
->xso_family
= so
->so_proto
->pr_domain
->dom_family
;
1779 xso
->xso_protocol
= xso
->xso_family
= 0;
1781 xso
->so_qlen
= so
->so_qlen
;
1782 xso
->so_incqlen
= so
->so_incqlen
;
1783 xso
->so_qlimit
= so
->so_qlimit
;
1784 xso
->so_timeo
= so
->so_timeo
;
1785 xso
->so_error
= so
->so_error
;
1786 xso
->so_pgid
= so
->so_pgid
;
1787 xso
->so_oobmark
= so
->so_oobmark
;
1788 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
1789 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
1790 xso
->so_uid
= so
->so_uid
;
1794 #if !CONFIG_EMBEDDED
1797 sotoxsocket64(struct socket
*so
, struct xsocket64
*xso
)
1799 xso
->xso_len
= sizeof (*xso
);
1800 xso
->xso_so
= (u_int64_t
)(uintptr_t)so
;
1801 xso
->so_type
= so
->so_type
;
1802 xso
->so_options
= so
->so_options
;
1803 xso
->so_linger
= so
->so_linger
;
1804 xso
->so_state
= so
->so_state
;
1805 xso
->so_pcb
= (u_int64_t
)(uintptr_t)so
->so_pcb
;
1807 xso
->xso_protocol
= so
->so_proto
->pr_protocol
;
1808 xso
->xso_family
= so
->so_proto
->pr_domain
->dom_family
;
1810 xso
->xso_protocol
= xso
->xso_family
= 0;
1812 xso
->so_qlen
= so
->so_qlen
;
1813 xso
->so_incqlen
= so
->so_incqlen
;
1814 xso
->so_qlimit
= so
->so_qlimit
;
1815 xso
->so_timeo
= so
->so_timeo
;
1816 xso
->so_error
= so
->so_error
;
1817 xso
->so_pgid
= so
->so_pgid
;
1818 xso
->so_oobmark
= so
->so_oobmark
;
1819 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
1820 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
1821 xso
->so_uid
= so
->so_uid
;
1824 #endif /* !CONFIG_EMBEDDED */
1827 * This does the same for sockbufs. Note that the xsockbuf structure,
1828 * since it is always embedded in a socket, does not include a self
1829 * pointer nor a length. We make this entry point public in case
1830 * some other mechanism needs it.
1833 sbtoxsockbuf(struct sockbuf
*sb
, struct xsockbuf
*xsb
)
1835 xsb
->sb_cc
= sb
->sb_cc
;
1836 xsb
->sb_hiwat
= sb
->sb_hiwat
;
1837 xsb
->sb_mbcnt
= sb
->sb_mbcnt
;
1838 xsb
->sb_mbmax
= sb
->sb_mbmax
;
1839 xsb
->sb_lowat
= sb
->sb_lowat
;
1840 xsb
->sb_flags
= sb
->sb_flags
;
1841 xsb
->sb_timeo
= (short)
1842 (sb
->sb_timeo
.tv_sec
* hz
) + sb
->sb_timeo
.tv_usec
/ tick
;
1843 if (xsb
->sb_timeo
== 0 && sb
->sb_timeo
.tv_usec
!= 0)
1848 * Here is the definition of some of the basic objects in the kern.ipc
1849 * branch of the MIB.
1851 SYSCTL_NODE(_kern
, KERN_IPC
, ipc
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "IPC");
1853 /* Check that the maximum socket buffer size is within a range */
1856 sysctl_sb_max(__unused
struct sysctl_oid
*oidp
, __unused
void *arg1
,
1857 __unused
int arg2
, struct sysctl_req
*req
)
1859 u_int32_t new_value
;
1861 int error
= sysctl_io_number(req
, sb_max
, sizeof(u_int32_t
), &new_value
,
1863 if (!error
&& changed
) {
1864 if (new_value
> LOW_SB_MAX
&&
1865 new_value
<= high_sb_max
) {
1874 SYSCTL_PROC(_kern_ipc
, KIPC_MAXSOCKBUF
, maxsockbuf
, CTLTYPE_INT
| CTLFLAG_RW
,
1875 &sb_max
, 0, &sysctl_sb_max
, "IU", "Maximum socket buffer size");
1877 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxsockets
, CTLFLAG_RD
,
1878 &maxsockets
, 0, "Maximum number of sockets avaliable");
1879 SYSCTL_INT(_kern_ipc
, KIPC_SOCKBUF_WASTE
, sockbuf_waste_factor
, CTLFLAG_RW
,
1880 &sb_efficiency
, 0, "");
1881 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbspace_factor
, CTLFLAG_RW
,
1882 &sbspace_factor
, 0, "Ratio of mbuf/cluster use for socket layers");
1883 SYSCTL_INT(_kern_ipc
, KIPC_NMBCLUSTERS
, nmbclusters
, CTLFLAG_RD
,
1884 &nmbclusters
, 0, "");
1885 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njcl
, CTLFLAG_RD
, &njcl
, 0, "");
1886 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njclbytes
, CTLFLAG_RD
, &njclbytes
, 0, "");
1887 SYSCTL_INT(_kern_ipc
, KIPC_SOQLIMITCOMPAT
, soqlimitcompat
, CTLFLAG_RW
,
1888 &soqlimitcompat
, 1, "Enable socket queue limit compatibility");
1889 SYSCTL_INT(_kern_ipc
, OID_AUTO
, soqlencomp
, CTLFLAG_RW
,
1890 &soqlencomp
, 0, "Listen backlog represents only complete queue");