]>
git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_fork.c
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/resourcevar.h>
91 #include <sys/vnode_internal.h>
92 #include <sys/file_internal.h>
94 #include <sys/codesign.h>
95 #include <sys/sysproto.h>
97 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
98 extern void dtrace_fasttrap_fork(proc_t
, proc_t
);
99 extern void (*dtrace_helpers_fork
)(proc_t
, proc_t
);
100 extern void dtrace_lazy_dofs_duplicate(proc_t
, proc_t
);
102 #include <sys/dtrace_ptss.h>
105 #include <security/audit/audit.h>
107 #include <mach/mach_types.h>
108 #include <kern/kern_types.h>
109 #include <kern/kalloc.h>
110 #include <kern/mach_param.h>
111 #include <kern/task.h>
112 #include <kern/thread_call.h>
113 #include <kern/zalloc.h>
115 #include <machine/spl.h>
118 #include <security/mac.h>
119 #include <security/mac_mach_internal.h>
122 #include <vm/vm_map.h>
123 #include <vm/vm_protos.h>
124 #include <vm/vm_shared_region.h>
126 #include <sys/shm_internal.h> /* for shmfork() */
127 #include <mach/task.h> /* for thread_create() */
128 #include <mach/thread_act.h> /* for thread_resume() */
133 /* XXX routines which should have Mach prototypes, but don't */
134 void thread_set_parent(thread_t parent
, int pid
);
135 extern void act_thread_catt(void *ctx
);
136 void thread_set_child(thread_t child
, int pid
);
137 void *act_thread_csave(void);
140 thread_t
cloneproc(task_t
, proc_t
, int);
141 proc_t
forkproc(proc_t
);
142 void forkproc_free(proc_t
);
143 thread_t
fork_create_child(task_t parent_task
, proc_t child
, int inherit_memory
, int is64bit
);
144 void proc_vfork_begin(proc_t parent_proc
);
145 void proc_vfork_end(proc_t parent_proc
);
147 #define DOFORK 0x1 /* fork() system call */
148 #define DOVFORK 0x2 /* vfork() system call */
153 * Description: start a vfork on a process
155 * Parameters: parent_proc process (re)entering vfork state
159 * Notes: Although this function increments a count, a count in
160 * excess of 1 is not currently supported. According to the
161 * POSIX standard, calling anything other than execve() or
162 * _exit() fillowing a vfork(), including calling vfork()
163 * itself again, will result in undefned behaviour
166 proc_vfork_begin(proc_t parent_proc
)
168 proc_lock(parent_proc
);
169 parent_proc
->p_lflag
|= P_LVFORK
;
170 parent_proc
->p_vforkcnt
++;
171 proc_unlock(parent_proc
);
177 * Description: stop a vfork on a process
179 * Parameters: parent_proc process leaving vfork state
183 * Notes: Decerements the count; currently, reentrancy of vfork()
184 * is unsupported on the current process
187 proc_vfork_end(proc_t parent_proc
)
189 proc_lock(parent_proc
);
190 parent_proc
->p_vforkcnt
--;
191 if (parent_proc
->p_vforkcnt
< 0)
192 panic("vfork cnt is -ve");
193 /* resude the vfork count; clear the flag when it goes to 0 */
194 if (parent_proc
->p_vforkcnt
== 0)
195 parent_proc
->p_lflag
&= ~P_LVFORK
;
196 proc_unlock(parent_proc
);
203 * Description: vfork system call
205 * Parameters: void [no arguments]
207 * Retval: 0 (to child process)
208 * !0 pid of child (to parent process)
209 * -1 error (see "Returns:")
211 * Returns: EAGAIN Administrative limit reached
212 * EINVAL vfork() called during vfork()
213 * ENOMEM Failed to allocate new process
215 * Note: After a successful call to this function, the parent process
216 * has its task, thread, and uthread lent to the child process,
217 * and control is returned to the caller; if this function is
218 * invoked as a system call, the return is to user space, and
219 * is effectively running on the child process.
221 * Subsequent calls that operate on process state are permitted,
222 * though discouraged, and will operate on the child process; any
223 * operations on the task, thread, or uthread will result in
224 * changes in the parent state, and, if inheritable, the child
225 * state, when a task, thread, and uthread are realized for the
226 * child process at execve() time, will also be effected. Given
227 * this, it's recemmended that people use the posix_spawn() call
230 * BLOCK DIAGRAM OF VFORK
234 * ,----------------. ,-------------.
236 * | parent_thread | ------> | parent_task |
238 * `----------------' `-------------'
239 * uthread | ^ bsd_info | ^
240 * v | vc_thread v | task
241 * ,----------------. ,-------------.
243 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
245 * `----------------' `-------------'
252 * ,----------------. ,-------------.
254 * ,----> | parent_thread | ------> | parent_task |
256 * | `----------------' `-------------'
257 * | uthread | ^ bsd_info | ^
258 * | v | vc_thread v | task
259 * | ,----------------. ,-------------.
261 * | | parent_uthread | <.list. | parent_proc |
263 * | `----------------' `-------------'
266 * | ,----------------.
268 * p_vforkact | child_proc | <-- current_proc()
273 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
275 thread_t child_thread
;
278 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
)) != 0) {
282 * kludge: rely on uu_proc being set in the vfork case,
283 * rather than returning the actual thread. We can remove
284 * this when we remove the uu_proc/current_proc() kludge.
286 proc_t child_proc
= current_proc();
288 retval
[0] = child_proc
->p_pid
;
289 retval
[1] = 1; /* flag child return for user space */
292 * Drop the signal lock on the child which was taken on our
293 * behalf by forkproc()/cloneproc() to prevent signals being
294 * received by the child in a partially constructed state.
296 proc_signalend(child_proc
, 0);
297 proc_transend(child_proc
, 0);
299 /* flag the fork has occurred */
300 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
301 DTRACE_PROC1(create
, proc_t
, child_proc
);
311 * Description: common code used by all new process creation other than the
312 * bootstrap of the initial process on the system
314 * Parameters: parent_proc parent process of the process being
315 * child_threadp pointer to location to receive the
316 * Mach thread_t of the child process
318 * kind kind of creation being requested
320 * Notes: Permissable values for 'kind':
322 * PROC_CREATE_FORK Create a complete process which will
323 * return actively running in both the
324 * parent and the child; the child copies
325 * the parent address space.
326 * PROC_CREATE_SPAWN Create a complete process which will
327 * return actively running in the parent
328 * only after returning actively running
329 * in the child; the child address space
330 * is newly created by an image activator,
331 * after which the child is run.
332 * PROC_CREATE_VFORK Creates a partial process which will
333 * borrow the parent task, thread, and
334 * uthread to return running in the child;
335 * the child address space and other parts
336 * are lazily created at execve() time, or
337 * the child is terminated, and the parent
338 * does not actively run until that
341 * At first it may seem strange that we return the child thread
342 * address rather than process structure, since the process is
343 * the only part guaranteed to be "new"; however, since we do
344 * not actualy adjust other references between Mach and BSD (see
345 * the block diagram above the implementation of vfork()), this
346 * is the only method which guarantees us the ability to get
347 * back to the other information.
350 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
)
352 thread_t parent_thread
= (thread_t
)current_thread();
353 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
354 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
355 thread_t child_thread
= NULL
;
362 * Although process entries are dynamically created, we still keep
363 * a global limit on the maximum number we will create. Don't allow
364 * a nonprivileged user to use the last process; don't let root
365 * exceed the limit. The variable nprocs is the current number of
366 * processes, maxproc is the limit.
368 uid
= kauth_cred_get()->cr_ruid
;
370 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
378 * Increment the count of procs running with this uid. Don't allow
379 * a nonprivileged user to exceed their current limit, which is
380 * always less than what an rlim_t can hold.
381 * (locking protection is provided by list lock held in chgproccnt)
383 count
= chgproccnt(uid
, 1);
385 (rlim_t
)count
> parent_proc
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
) {
392 * Determine if MAC policies applied to the process will allow
393 * it to fork. This is an advisory-only check.
395 err
= mac_proc_check_fork(parent_proc
);
402 case PROC_CREATE_VFORK
:
404 * Prevent a vfork while we are in vfork(); we should
405 * also likely preventing a fork here as well, and this
406 * check should then be outside the switch statement,
407 * since the proc struct contents will copy from the
408 * child and the tash/thread/uthread from the parent in
409 * that case. We do not support vfork() in vfork()
410 * because we don't have to; the same non-requirement
411 * is true of both fork() and posix_spawn() and any
412 * call other than execve() amd _exit(), but we've
413 * been historically lenient, so we continue to be so
416 * <rdar://6640521> Probably a source of random panics
418 if (parent_uthread
->uu_flag
& UT_VFORK
) {
419 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
425 * Flag us in progress; if we chose to support vfork() in
426 * vfork(), we would chain our parent at this point (in
427 * effect, a stack push). We don't, since we actually want
428 * to disallow everything not specified in the standard
430 proc_vfork_begin(parent_proc
);
432 /* The newly created process comes with signal lock held */
433 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
434 /* Failed to allocate new process */
435 proc_vfork_end(parent_proc
);
440 // XXX BEGIN: wants to move to be common code (and safe)
443 * allow policies to associate the credential/label that
444 * we referenced from the parent ... with the child
445 * JMM - this really isn't safe, as we can drop that
446 * association without informing the policy in other
447 * situations (keep long enough to get policies changed)
449 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
453 * Propogate change of PID - may get new cred if auditing.
455 * NOTE: This has no effect in the vfork case, since
456 * child_proc->task != current_task(), but we duplicate it
457 * because this is probably, ultimately, wrong, since we
458 * will be running in the "child" which is the parent task
459 * with the wrong token until we get to the execve() or
460 * _exit() call; a lot of "undefined" can happen before
463 * <rdar://6640530> disallow everything but exeve()/_exit()?
465 set_security_token(child_proc
);
467 AUDIT_ARG(pid
, child_proc
->p_pid
);
469 AUDIT_SESSION_PROCNEW(child_proc
->p_ucred
);
470 // XXX END: wants to move to be common code (and safe)
473 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
475 * Note: this is where we would "push" state instead of setting
476 * it for nested vfork() support (see proc_vfork_end() for
477 * description if issues here).
479 child_proc
->task
= parent_proc
->task
;
481 child_proc
->p_lflag
|= P_LINVFORK
;
482 child_proc
->p_vforkact
= parent_thread
;
483 child_proc
->p_stat
= SRUN
;
485 parent_uthread
->uu_flag
|= UT_VFORK
;
486 parent_uthread
->uu_proc
= child_proc
;
487 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
488 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
490 /* temporarily drop thread-set-id state */
491 if (parent_uthread
->uu_flag
& UT_SETUID
) {
492 parent_uthread
->uu_flag
|= UT_WASSETUID
;
493 parent_uthread
->uu_flag
&= ~UT_SETUID
;
496 /* blow thread state information */
497 /* XXX is this actually necessary, given syscall return? */
498 thread_set_child(parent_thread
, child_proc
->p_pid
);
500 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
503 * Preserve synchronization semantics of vfork. If
504 * waiting for child to exec or exit, set P_PPWAIT
505 * on child, and sleep on our proc (in case of exit).
507 child_proc
->p_lflag
|= P_LPPWAIT
;
508 pinsertchild(parent_proc
, child_proc
); /* set visible */
512 case PROC_CREATE_SPAWN
:
514 * A spawned process differs from a forked process in that
515 * the spawned process does not carry around the parents
516 * baggage with regard to address space copying, dtrace,
523 case PROC_CREATE_FORK
:
525 * When we clone the parent process, we are going to inherit
526 * its task attributes and memory, since when we fork, we
527 * will, in effect, create a duplicate of it, with only minor
528 * differences. Contrarily, spawned processes do not inherit.
530 if ((child_thread
= cloneproc(parent_proc
->task
, parent_proc
, spawn
? FALSE
: TRUE
)) == NULL
) {
531 /* Failed to create thread */
536 /* copy current thread state into the child thread (only for fork) */
538 thread_dup(child_thread
);
541 /* child_proc = child_thread->task->proc; */
542 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
544 // XXX BEGIN: wants to move to be common code (and safe)
547 * allow policies to associate the credential/label that
548 * we referenced from the parent ... with the child
549 * JMM - this really isn't safe, as we can drop that
550 * association without informing the policy in other
551 * situations (keep long enough to get policies changed)
553 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
557 * Propogate change of PID - may get new cred if auditing.
559 * NOTE: This has no effect in the vfork case, since
560 * child_proc->task != current_task(), but we duplicate it
561 * because this is probably, ultimately, wrong, since we
562 * will be running in the "child" which is the parent task
563 * with the wrong token until we get to the execve() or
564 * _exit() call; a lot of "undefined" can happen before
567 * <rdar://6640530> disallow everything but exeve()/_exit()?
569 set_security_token(child_proc
);
571 AUDIT_ARG(pid
, child_proc
->p_pid
);
573 AUDIT_SESSION_PROCNEW(child_proc
->p_ucred
);
574 // XXX END: wants to move to be common code (and safe)
577 * Blow thread state information; this is what gives the child
578 * process its "return" value from a fork() call.
580 * Note: this should probably move to fork() proper, since it
581 * is not relevent to spawn, and the value won't matter
582 * until we resume the child there. If you are in here
583 * refactoring code, consider doing this at the same time.
585 thread_set_child(child_thread
, child_proc
->p_pid
);
587 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
589 // <rdar://6598155> dtrace code cleanup needed
592 * This code applies to new processes who are copying the task
593 * and thread state and address spaces of their parent process.
596 // <rdar://6598155> call dtrace specific function here instead of all this...
598 * APPLE NOTE: Solaris does a sprlock() and drops the
599 * proc_lock here. We're cheating a bit and only taking
600 * the p_dtrace_sprlock lock. A full sprlock would
601 * task_suspend the parent.
603 lck_mtx_lock(&parent_proc
->p_dtrace_sprlock
);
606 * Remove all DTrace tracepoints from the child process. We
607 * need to do this _before_ duplicating USDT providers since
608 * any associated probes may be immediately enabled.
610 if (parent_proc
->p_dtrace_count
> 0) {
611 dtrace_fasttrap_fork(parent_proc
, child_proc
);
614 lck_mtx_unlock(&parent_proc
->p_dtrace_sprlock
);
617 * Duplicate any lazy dof(s). This must be done while NOT
618 * holding the parent sprlock! Lock ordering is
619 * dtrace_dof_mode_lock, then sprlock. It is imperative we
620 * always call dtrace_lazy_dofs_duplicate, rather than null
621 * check and call if !NULL. If we NULL test, during lazy dof
622 * faulting we can race with the faulting code and proceed
623 * from here to beyond the helpers copy. The lazy dof
624 * faulting will then fail to copy the helpers to the child
627 dtrace_lazy_dofs_duplicate(parent_proc
, child_proc
);
630 * Duplicate any helper actions and providers. The SFORKING
631 * we set above informs the code to enable USDT probes that
632 * sprlock() may fail because the child is being forked.
635 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
636 * never fails to find the child. We do not set SFORKING.
638 if (parent_proc
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_fork
) {
639 (*dtrace_helpers_fork
)(parent_proc
, child_proc
);
643 #endif /* CONFIG_DTRACE */
648 panic("fork1 called with unknown kind %d", kind
);
653 /* return the thread pointer to the caller */
654 *child_threadp
= child_thread
;
658 * In the error case, we return a 0 value for the returned pid (but
659 * it is ignored in the trampoline due to the error return); this
660 * is probably not necessary.
663 (void)chgproccnt(uid
, -1);
673 * Description: "Return" to parent vfork thread() following execve/_exit;
674 * this is done by reassociating the parent process structure
675 * with the task, thread, and uthread.
677 * Parameters: child_proc Child process
678 * retval System call return value array
679 * rval Return value to present to parent
683 * Note: The caller resumes or exits the parent, as appropriate, after
684 * callling this function.
687 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
689 proc_t parent_proc
= child_proc
->p_pptr
;
690 thread_t parent_thread
= (thread_t
)current_thread();
691 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
694 act_thread_catt(parent_uthread
->uu_userstate
);
696 /* end vfork in parent */
697 proc_vfork_end(parent_proc
);
699 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
700 parent_uthread
->uu_userstate
= 0;
701 parent_uthread
->uu_flag
&= ~UT_VFORK
;
702 /* restore thread-set-id state */
703 if (parent_uthread
->uu_flag
& UT_WASSETUID
) {
704 parent_uthread
->uu_flag
|= UT_SETUID
;
705 parent_uthread
->uu_flag
&= UT_WASSETUID
;
707 parent_uthread
->uu_proc
= 0;
708 parent_uthread
->uu_sigmask
= parent_uthread
->uu_vforkmask
;
709 child_proc
->p_lflag
&= ~P_LINVFORK
;
710 child_proc
->p_vforkact
= (void *)0;
712 thread_set_parent(parent_thread
, rval
);
716 retval
[1] = 0; /* mark parent */
726 * Description: Common operations associated with the creation of a child
729 * Parameters: parent_task parent task
730 * child_proc child process
731 * inherit_memory TRUE, if the parents address space is
732 * to be inherited by the child
733 * is64bit TRUE, if the child being created will
734 * be associated with a 64 bit process
735 * rather than a 32 bit process
737 * Note: This code is called in the fork() case, from the execve() call
738 * graph, if implementing an execve() following a vfork(), from
739 * the posix_spawn() call graph (which implicitly includes a
740 * vfork() equivalent call, and in the system bootstrap case.
742 * It creates a new task and thread (and as a side effect of the
743 * thread creation, a uthread), which is then associated with the
744 * process 'child'. If the parent process address space is to
745 * be inherited, then a flag indicates that the newly created
746 * task should inherit this from the child task.
748 * As a special concession to bootstrapping the initial process
749 * in the system, it's possible for 'parent_task' to be TASK_NULL;
750 * in this case, 'inherit_memory' MUST be FALSE.
753 fork_create_child(task_t parent_task
, proc_t child_proc
, int inherit_memory
, int is64bit
)
755 thread_t child_thread
= NULL
;
757 kern_return_t result
;
759 /* Create a new task for the child process */
760 result
= task_create_internal(parent_task
,
764 if (result
!= KERN_SUCCESS
) {
765 printf("execve: task_create_internal failed. Code: %d\n", result
);
769 /* Set the child process task to the new task */
770 child_proc
->task
= child_task
;
772 /* Set child task process to child proc */
773 set_bsdtask_info(child_task
, child_proc
);
775 /* Propagate CPU limit timer from parent */
776 if (timerisset(&child_proc
->p_rlim_cpu
))
777 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
779 /* Set/clear 64 bit vm_map flag */
781 vm_map_set_64bit(get_task_map(child_task
));
783 vm_map_set_32bit(get_task_map(child_task
));
786 /* Update task for MAC framework */
787 /* valid to use p_ucred as child is still not running ... */
788 mac_task_label_update_cred(child_proc
->p_ucred
, child_task
);
792 * Set child process BSD visible scheduler priority if nice value
793 * inherited from parent
795 if (child_proc
->p_nice
!= 0)
796 resetpriority(child_proc
);
798 /* Create a new thread for the child process */
799 result
= thread_create(child_task
, &child_thread
);
800 if (result
!= KERN_SUCCESS
) {
801 printf("execve: thread_create failed. Code: %d\n", result
);
802 task_deallocate(child_task
);
806 thread_yield_internal(1);
808 return(child_thread
);
815 * Description: fork system call.
817 * Parameters: parent Parent process to fork
818 * uap (void) [unused]
819 * retval Return value
822 * EAGAIN Resource unavailable, try again
824 * Notes: Attempts to create a new child process which inherits state
825 * from the parent process. If successful, the call returns
826 * having created an initially suspended child process with an
827 * extra Mach task and thread reference, for which the thread
828 * is initially suspended. Until we resume the child process,
829 * it is not yet running.
831 * The return information to the child is contained in the
832 * thread state structure of the new child, and does not
833 * become visible to the child through a normal return process,
834 * since it never made the call into the kernel itself in the
837 * After resuming the thread, this function returns directly to
838 * the parent process which invoked the fork() system call.
840 * Important: The child thread_resume occurs before the parent returns;
841 * depending on scheduling latency, this means that it is not
842 * deterministic as to whether the parent or child is scheduled
843 * to run first. It is entirely possible that the child could
844 * run to completion prior to the parent running.
847 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
849 thread_t child_thread
;
852 retval
[1] = 0; /* flag parent return for user space */
854 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
)) == 0) {
858 /* Return to the parent */
859 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
860 retval
[0] = child_proc
->p_pid
;
863 * Drop the signal lock on the child which was taken on our
864 * behalf by forkproc()/cloneproc() to prevent signals being
865 * received by the child in a partially constructed state.
867 proc_signalend(child_proc
, 0);
868 proc_transend(child_proc
, 0);
870 /* flag the fork has occurred */
871 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
872 DTRACE_PROC1(create
, proc_t
, child_proc
);
874 /* "Return" to the child */
875 (void)thread_resume(child_thread
);
877 /* drop the extra references we got during the creation */
878 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
879 task_deallocate(child_task
);
881 thread_deallocate(child_thread
);
891 * Description: Create a new process from a specified process.
893 * Parameters: parent_task The parent task to be cloned, or
894 * TASK_NULL is task characteristics
895 * are not to be inherited
896 * be cloned, or TASK_NULL if the new
897 * task is not to inherit the VM
898 * characteristics of the parent
899 * parent_proc The parent process to be cloned
900 * inherit_memory True if the child is to inherit
901 * memory from the parent; if this is
902 * non-NULL, then the parent_task must
905 * Returns: !NULL pointer to new child thread
906 * NULL Failure (unspecified)
908 * Note: On return newly created child process has signal lock held
909 * to block delivery of signal to it if called with lock set.
910 * fork() code needs to explicity remove this lock before
911 * signals can be delivered
913 * In the case of bootstrap, this function can be called from
914 * bsd_utaskbootstrap() in order to bootstrap the first process;
915 * the net effect is to provide a uthread structure for the
916 * kernel process associated with the kernel task.
918 * XXX: Tristating using the value parent_task as the major key
919 * and inherit_memory as the minor key is something we should
920 * refactor later; we owe the current semantics, ultimately,
921 * to the semantics of task_create_internal. For now, we will
922 * live with this being somewhat awkward.
925 cloneproc(task_t parent_task
, proc_t parent_proc
, int inherit_memory
)
929 thread_t child_thread
= NULL
;
931 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
932 /* Failed to allocate new process */
936 child_thread
= fork_create_child(parent_task
, child_proc
, inherit_memory
, (parent_task
== TASK_NULL
) ? FALSE
: (parent_proc
->p_flag
& P_LP64
));
938 if (child_thread
== NULL
) {
940 * Failed to create thread; now we must deconstruct the new
941 * process previously obtained from forkproc().
943 forkproc_free(child_proc
);
947 child_task
= get_threadtask(child_thread
);
948 if (parent_proc
->p_flag
& P_LP64
) {
949 task_set_64bit(child_task
, TRUE
);
950 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
953 * PPC51: ppc64 is limited to 51-bit addresses.
954 * Memory above that limit is handled specially at
957 pmap_map_sharedpage(child_task
, get_map_pmap(get_task_map(child_task
)));
960 task_set_64bit(child_task
, FALSE
);
961 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
964 /* make child visible */
965 pinsertchild(parent_proc
, child_proc
);
968 * Make child runnable, set start time.
970 child_proc
->p_stat
= SRUN
;
972 return(child_thread
);
977 * Destroy a process structure that resulted from a call to forkproc(), but
978 * which must be returned to the system because of a subsequent failure
979 * preventing it from becoming active.
981 * Parameters: p The incomplete process from forkproc()
985 * Note: This function should only be used in an error handler following
986 * a call to forkproc().
988 * Operations occur in reverse order of those in forkproc().
991 forkproc_free(proc_t p
)
994 /* We held signal and a transition locks; drop them */
995 proc_signalend(p
, 0);
999 * If we have our own copy of the resource limits structure, we
1000 * need to free it. If it's a shared copy, we need to drop our
1003 proc_limitdrop(p
, 0);
1007 /* Need to drop references to the shared memory segment(s), if any */
1010 * Use shmexec(): we have no address space, so no mappings
1012 * XXX Yes, the routine is badly named.
1018 /* Need to undo the effects of the fdcopy(), if any */
1022 * Drop the reference on a text vnode pointer, if any
1023 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1024 * XXX if anyone ever uses this field, we will be extremely unhappy.
1027 vnode_rele(p
->p_textvp
);
1031 /* Stop the profiling clock */
1034 /* Release the credential reference */
1035 kauth_cred_unref(&p
->p_ucred
);
1038 /* Decrement the count of processes in the system */
1042 thread_call_free(p
->p_rcall
);
1044 /* Free allocated memory */
1045 FREE_ZONE(p
->p_sigacts
, sizeof *p
->p_sigacts
, M_SIGACTS
);
1046 FREE_ZONE(p
->p_stats
, sizeof *p
->p_stats
, M_PSTATS
);
1047 proc_checkdeadrefs(p
);
1048 FREE_ZONE(p
, sizeof *p
, M_PROC
);
1055 * Description: Create a new process structure, given a parent process
1058 * Parameters: parent_proc The parent process
1060 * Returns: !NULL The new process structure
1061 * NULL Error (insufficient free memory)
1063 * Note: When successful, the newly created process structure is
1064 * partially initialized; if a caller needs to deconstruct the
1065 * returned structure, they must call forkproc_free() to do so.
1068 forkproc(proc_t parent_proc
)
1070 proc_t child_proc
; /* Our new process */
1071 static int nextpid
= 0, pidwrap
= 0, nextpidversion
= 0;
1073 struct session
*sessp
;
1074 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1076 MALLOC_ZONE(child_proc
, proc_t
, sizeof *child_proc
, M_PROC
, M_WAITOK
);
1077 if (child_proc
== NULL
) {
1078 printf("forkproc: M_PROC zone exhausted\n");
1081 /* zero it out as we need to insert in hash */
1082 bzero(child_proc
, sizeof *child_proc
);
1084 MALLOC_ZONE(child_proc
->p_stats
, struct pstats
*,
1085 sizeof *child_proc
->p_stats
, M_PSTATS
, M_WAITOK
);
1086 if (child_proc
->p_stats
== NULL
) {
1087 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1088 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1092 MALLOC_ZONE(child_proc
->p_sigacts
, struct sigacts
*,
1093 sizeof *child_proc
->p_sigacts
, M_SIGACTS
, M_WAITOK
);
1094 if (child_proc
->p_sigacts
== NULL
) {
1095 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1096 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1097 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1102 /* allocate a callout for use by interval timers */
1103 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1104 if (child_proc
->p_rcall
== NULL
) {
1105 FREE_ZONE(child_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
, M_SIGACTS
);
1106 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1107 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1114 * Find an unused PID.
1122 * If the process ID prototype has wrapped around,
1123 * restart somewhat above 0, as the low-numbered procs
1124 * tend to include daemons that don't exit.
1126 if (nextpid
>= PID_MAX
) {
1132 /* if the pid stays in hash both for zombie and runniing state */
1133 if (pfind_locked(nextpid
) != PROC_NULL
) {
1138 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1142 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1148 child_proc
->p_pid
= nextpid
;
1149 child_proc
->p_idversion
= nextpidversion
++;
1151 if (child_proc
->p_pid
!= 0) {
1152 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
)
1153 panic("proc in the list already\n");
1156 /* Insert in the hash */
1157 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1158 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1163 * We've identified the PID we are going to use; initialize the new
1164 * process structure.
1166 child_proc
->p_stat
= SIDL
;
1167 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1170 * The zero'ing of the proc was at the allocation time due to need
1171 * for insertion to hash. Copy the section that is to be copied
1172 * directly from the parent.
1174 bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1175 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1178 * Some flags are inherited from the parent.
1179 * Duplicate sub-structures as needed.
1180 * Increase reference counts on shared objects.
1181 * The p_stats and p_sigacts substructs are set in vm_fork.
1183 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_TRANSLATED
| P_AFFINITY
));
1184 if (parent_proc
->p_flag
& P_PROFIL
)
1185 startprofclock(child_proc
);
1187 * Note that if the current thread has an assumed identity, this
1188 * credential will be granted to the new process.
1190 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1192 #ifdef CONFIG_EMBEDDED
1193 lck_mtx_init(&child_proc
->p_mlock
, proc_lck_grp
, proc_lck_attr
);
1194 lck_mtx_init(&child_proc
->p_fdmlock
, proc_lck_grp
, proc_lck_attr
);
1196 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1198 lck_spin_init(&child_proc
->p_slock
, proc_lck_grp
, proc_lck_attr
);
1199 #else /* !CONFIG_EMBEDDED */
1200 lck_mtx_init(&child_proc
->p_mlock
, proc_mlock_grp
, proc_lck_attr
);
1201 lck_mtx_init(&child_proc
->p_fdmlock
, proc_fdmlock_grp
, proc_lck_attr
);
1203 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1205 lck_spin_init(&child_proc
->p_slock
, proc_slock_grp
, proc_lck_attr
);
1206 #endif /* !CONFIG_EMBEDDED */
1207 klist_init(&child_proc
->p_klist
);
1209 if (child_proc
->p_textvp
!= NULLVP
) {
1210 /* bump references to the text vnode */
1211 /* Need to hold iocount across the ref call */
1212 if (vnode_getwithref(child_proc
->p_textvp
) == 0) {
1213 error
= vnode_ref(child_proc
->p_textvp
);
1214 vnode_put(child_proc
->p_textvp
);
1216 child_proc
->p_textvp
= NULLVP
;
1221 * Copy the parents per process open file table to the child; if
1222 * there is a per-thread current working directory, set the childs
1223 * per-process current working directory to that instead of the
1226 * XXX may fail to copy descriptors to child
1228 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1231 if (parent_proc
->vm_shm
) {
1232 /* XXX may fail to attach shm to child */
1233 (void)shmfork(parent_proc
, child_proc
);
1237 * inherit the limit structure to child
1239 proc_limitfork(parent_proc
, child_proc
);
1241 if (child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1242 uint64_t rlim_cur
= child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
;
1243 child_proc
->p_rlim_cpu
.tv_sec
= (rlim_cur
> __INT_MAX__
) ? __INT_MAX__
: rlim_cur
;
1246 /* Intialize new process stats, including start time */
1247 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1248 bzero(&child_proc
->p_stats
->pstat_startzero
,
1249 (unsigned) ((caddr_t
)&child_proc
->p_stats
->pstat_endzero
-
1250 (caddr_t
)&child_proc
->p_stats
->pstat_startzero
));
1251 bzero(&child_proc
->p_stats
->user_p_prof
, sizeof(struct user_uprof
));
1252 microtime(&child_proc
->p_start
);
1253 child_proc
->p_stats
->p_start
= child_proc
->p_start
; /* for compat */
1255 if (parent_proc
->p_sigacts
!= NULL
)
1256 (void)memcpy(child_proc
->p_sigacts
,
1257 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1259 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1261 sessp
= proc_session(parent_proc
);
1262 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
)
1263 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1264 session_rele(sessp
);
1267 * block all signals to reach the process.
1268 * no transition race should be occuring with the child yet,
1269 * but indicate that the process is in (the creation) transition.
1271 proc_signalstart(child_proc
, 0);
1272 proc_transstart(child_proc
, 0);
1274 child_proc
->p_pcaction
= (parent_proc
->p_pcaction
) & P_PCMAX
;
1275 TAILQ_INIT(&child_proc
->p_uthlist
);
1276 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1277 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1279 /* Inherit the parent flags for code sign */
1280 child_proc
->p_csflags
= parent_proc
->p_csflags
;
1283 * All processes have work queue locks; cleaned up by
1284 * reap_child_locked()
1286 workqueue_init_lock(child_proc
);
1289 * Copy work queue information
1291 * Note: This should probably only happen in the case where we are
1292 * creating a child that is a copy of the parent; since this
1293 * routine is called in the non-duplication case of vfork()
1294 * or posix_spawn(), then this information should likely not
1297 * <rdar://6640553> Work queue pointers that no longer point to code
1299 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1300 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1301 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1302 child_proc
->p_targconc
= parent_proc
->p_targconc
;
1303 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1304 child_proc
->p_lflag
|= P_LREGISTER
;
1306 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1308 pth_proc_hashinit(child_proc
);
1312 child_proc
->p_lctx
= NULL
;
1313 /* Add new process to login context (if any). */
1314 if (parent_proc
->p_lctx
!= NULL
) {
1316 * <rdar://6640564> This should probably be delayed in the
1317 * vfork() or posix_spawn() cases.
1319 LCTX_LOCK(parent_proc
->p_lctx
);
1320 enterlctx(child_proc
, parent_proc
->p_lctx
, 0);
1331 lck_mtx_lock(&p
->p_mlock
);
1335 proc_unlock(proc_t p
)
1337 lck_mtx_unlock(&p
->p_mlock
);
1341 proc_spinlock(proc_t p
)
1343 lck_spin_lock(&p
->p_slock
);
1347 proc_spinunlock(proc_t p
)
1349 lck_spin_unlock(&p
->p_slock
);
1353 proc_list_lock(void)
1355 lck_mtx_lock(proc_list_mlock
);
1359 proc_list_unlock(void)
1361 lck_mtx_unlock(proc_list_mlock
);
1364 #include <kern/zalloc.h>
1366 struct zone
*uthread_zone
;
1367 static int uthread_zone_inited
= 0;
1370 uthread_zone_init(void)
1372 if (!uthread_zone_inited
) {
1373 uthread_zone
= zinit(sizeof(struct uthread
),
1374 thread_max
* sizeof(struct uthread
),
1375 THREAD_CHUNK
* sizeof(struct uthread
),
1377 uthread_zone_inited
= 1;
1382 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1386 uthread_t uth_parent
;
1389 if (!uthread_zone_inited
)
1390 uthread_zone_init();
1392 ut
= (void *)zalloc(uthread_zone
);
1393 bzero(ut
, sizeof(struct uthread
));
1395 p
= (proc_t
) get_bsdtask_info(task
);
1396 uth
= (uthread_t
)ut
;
1399 * Thread inherits credential from the creating thread, if both
1400 * are in the same task.
1402 * If the creating thread has no credential or is from another
1403 * task we can leave the new thread credential NULL. If it needs
1404 * one later, it will be lazily assigned from the task's process.
1406 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1407 if ((noinherit
== 0) && task
== current_task() &&
1408 uth_parent
!= NULL
&&
1409 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1411 * XXX The new thread is, in theory, being created in context
1412 * XXX of parent thread, so a direct reference to the parent
1415 kauth_cred_ref(uth_parent
->uu_ucred
);
1416 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1417 /* the credential we just inherited is an assumed credential */
1418 if (uth_parent
->uu_flag
& UT_SETUID
)
1419 uth
->uu_flag
|= UT_SETUID
;
1421 /* sometimes workqueue threads are created out task context */
1422 if ((task
!= kernel_task
) && (p
!= PROC_NULL
))
1423 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1425 uth
->uu_ucred
= NOCRED
;
1429 if ((task
!= kernel_task
) && p
) {
1432 if (noinherit
!= 0) {
1433 /* workq threads will not inherit masks */
1434 uth
->uu_sigmask
= ~workq_threadmask
;
1435 } else if (uth_parent
) {
1436 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
)
1437 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1439 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1441 uth
->uu_context
.vc_thread
= thread
;
1442 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1446 if (p
->p_dtrace_ptss_pages
!= NULL
) {
1447 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1457 * This routine frees all the BSD context in uthread except the credential.
1458 * It does not free the uthread structure as well
1461 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
)
1463 struct _select
*sel
;
1464 uthread_t uth
= (uthread_t
)uthread
;
1465 proc_t p
= (proc_t
)bsd_info
;
1468 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1470 * task is marked as a low priority I/O type
1471 * and we've somehow managed to not dismiss the throttle
1472 * through the normal exit paths back to user space...
1473 * no need to throttle this thread since its going away
1474 * but we do need to update our bookeeping w/r to throttled threads
1476 * Calling this routine will clean up any throttle info reference
1477 * still inuse by the thread.
1479 throttle_lowpri_io(FALSE
);
1482 * Per-thread audit state should never last beyond system
1483 * call return. Since we don't audit the thread creation/
1484 * removal, the thread state pointer should never be
1485 * non-NULL when we get here.
1487 assert(uth
->uu_ar
== NULL
);
1489 sel
= &uth
->uu_select
;
1490 /* cleanup the select bit space */
1492 FREE(sel
->ibits
, M_TEMP
);
1493 FREE(sel
->obits
, M_TEMP
);
1498 vnode_rele(uth
->uu_cdir
);
1499 uth
->uu_cdir
= NULLVP
;
1502 if (uth
->uu_allocsize
&& uth
->uu_wqset
){
1503 kfree(uth
->uu_wqset
, uth
->uu_allocsize
);
1505 uth
->uu_allocsize
= 0;
1510 if(uth
->pth_name
!= NULL
)
1512 kfree(uth
->pth_name
, MAXTHREADNAMESIZE
);
1515 if ((task
!= kernel_task
) && p
) {
1517 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1518 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1521 * Remove the thread from the process list and
1522 * transfer [appropriate] pending signals to the process.
1524 if (get_bsdtask_info(task
) == p
) {
1526 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1527 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1531 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1532 uth
->t_dtrace_scratch
= NULL
;
1533 if (tmpptr
!= NULL
) {
1534 dtrace_ptss_release_entry(p
, tmpptr
);
1540 /* This routine releases the credential stored in uthread */
1542 uthread_cred_free(void *uthread
)
1544 uthread_t uth
= (uthread_t
)uthread
;
1546 /* and free the uthread itself */
1547 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1548 kauth_cred_t oldcred
= uth
->uu_ucred
;
1549 uth
->uu_ucred
= NOCRED
;
1550 kauth_cred_unref(&oldcred
);
1554 /* This routine frees the uthread structure held in thread structure */
1556 uthread_zone_free(void *uthread
)
1558 /* and free the uthread itself */
1559 zfree(uthread_zone
, uthread
);