2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
22 /*-----------------------------------------------------------------------
25 ** C routines that we are adding to the MacOS X kernel.
27 ** Weird Apple PSL stuff goes here...
29 ** Until then, Copyright 2000, Connectix
30 -----------------------------------------------------------------------*/
32 #include <mach/mach_types.h>
33 #include <mach/kern_return.h>
34 #include <mach/host_info.h>
35 #include <kern/kern_types.h>
36 #include <kern/host.h>
37 #include <kern/task.h>
38 #include <kern/thread.h>
39 #include <kern/thread_act.h>
40 #include <ppc/exception.h>
41 #include <ppc/mappings.h>
42 #include <ppc/thread_act.h>
43 #include <ppc/pmap_internals.h>
44 #include <vm/vm_kern.h>
46 #include <ppc/vmachmon.h>
48 extern struct Saveanchor saveanchor
; /* Aligned savearea anchor */
49 extern double FloatInit
;
50 extern unsigned long QNaNbarbarian
[4];
52 /*************************************************************************************
53 Virtual Machine Monitor Internal Routines
54 **************************************************************************************/
56 /*-----------------------------------------------------------------------
59 ** This function verifies and return a vmm context entry index
62 ** act - pointer to current thread activation
63 ** index - index into vmm control table (this is a "one based" value)
66 ** address of a vmmCntrlEntry or 0 if not found
67 -----------------------------------------------------------------------*/
69 vmmCntrlEntry
*vmm_get_entry(
71 vmm_thread_index_t index
)
73 vmmCntrlTable
*CTable
;
74 vmmCntrlEntry
*CEntry
;
76 if (act
->mact
.vmmControl
== 0) return NULL
; /* No control table means no vmm */
77 if ((index
- 1) >= kVmmMaxContextsPerThread
) return NULL
; /* Index not in range */
79 CTable
= act
->mact
.vmmControl
; /* Make the address a bit more convienient */
80 CEntry
= &CTable
->vmmc
[index
- 1]; /* Point to the entry */
82 if (!(CEntry
->vmmFlags
& vmmInUse
)) return NULL
; /* See if the slot is actually in use */
89 /*************************************************************************************
90 Virtual Machine Monitor Exported Functionality
92 The following routines are used to implement a quick-switch mechanism for
93 virtual machines that need to execute within their own processor envinroment
94 (including register and MMU state).
95 **************************************************************************************/
97 /*-----------------------------------------------------------------------
100 ** This function returns the current version of the virtual machine
101 ** interface. It is divided into two portions. The top 16 bits
102 ** represent the major version number, and the bottom 16 bits
103 ** represent the minor version number. Clients using the Vmm
104 ** functionality should make sure they are using a verison new
111 ** 32-bit number representing major/minor version of
113 -----------------------------------------------------------------------*/
115 int vmm_get_version(struct savearea
*save
)
117 save
->save_r3
= kVmmCurrentVersion
; /* Return the version */
122 /*-----------------------------------------------------------------------
125 ** This function returns a set of flags that represents the functionality
126 ** supported by the current verison of the Vmm interface. Clients should
127 ** use this to determine whether they can run on this system.
133 ** 32-bit number representing functionality supported by this
134 ** version of the Vmm module
135 -----------------------------------------------------------------------*/
137 int vmm_get_features(struct savearea
*save
)
139 save
->save_r3
= kVmmCurrentFeatures
; /* Return the features */
144 /*-----------------------------------------------------------------------
147 ** This function initializes an emulation context. It allocates
148 ** a new pmap (address space) and fills in the initial processor
149 ** state within the specified structure. The structure, mapped
150 ** into the client's logical address space, must be page-aligned.
153 ** act - pointer to current thread activation
154 ** version - requested version of the Vmm interface (allowing
155 ** future versions of the interface to change, but still
156 ** support older clients)
157 ** vmm_user_state - pointer to a logical page within the
158 ** client's address space
161 ** kernel return code indicating success or failure
162 -----------------------------------------------------------------------*/
164 int vmm_init_context(struct savearea
*save
)
168 vmm_version_t version
;
169 vmm_state_page_t
* vmm_user_state
;
170 vmmCntrlTable
*CTable
;
172 vmm_state_page_t
* vks
;
178 thread_act_t fact
, gact
;
180 vmm_user_state
= (vmm_state_page_t
*)save
->save_r4
; /* Get the user address of the comm area */
181 if ((unsigned int)vmm_user_state
& (PAGE_SIZE
- 1)) { /* Make sure the comm area is page aligned */
182 save
->save_r3
= KERN_FAILURE
; /* Return failure */
186 /* Make sure that the version requested is supported */
187 version
= save
->save_r3
; /* Pick up passed in version */
188 if (((version
>> 16) < kVmmMinMajorVersion
) || ((version
>> 16) > (kVmmCurrentVersion
>> 16))) {
189 save
->save_r3
= KERN_FAILURE
; /* Return failure */
193 if((version
& 0xFFFF) > kVmmCurMinorVersion
) { /* Check for valid minor */
194 save
->save_r3
= KERN_FAILURE
; /* Return failure */
198 act
= current_act(); /* Pick up our activation */
200 ml_set_interrupts_enabled(TRUE
); /* This can take a bit of time so pass interruptions */
202 task
= current_task(); /* Figure out who we are */
204 task_lock(task
); /* Lock our task */
206 fact
= (thread_act_t
)task
->thr_acts
.next
; /* Get the first activation on task */
207 gact
= 0; /* Pretend we didn't find it yet */
209 for(i
= 0; i
< task
->thr_act_count
; i
++) { /* All of the activations */
210 if(fact
->mact
.vmmControl
) { /* Is this a virtual machine monitor? */
211 gact
= fact
; /* Yeah... */
212 break; /* Bail the loop... */
214 fact
= (thread_act_t
)fact
->thr_acts
.next
; /* Go to the next one */
219 * We only allow one thread per task to be a virtual machine monitor right now. This solves
220 * a number of potential problems that I can't put my finger on right now.
222 * Utlimately, I think we want to move the controls and make all this task based instead of
223 * thread based. That would allow an emulator architecture to spawn a kernel thread for each
224 * VM (if they want) rather than hand dispatch contexts.
227 if(gact
&& (gact
!= act
)) { /* Check if another thread is a vmm or trying to be */
228 task_unlock(task
); /* Release task lock */
229 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
230 save
->save_r3
= KERN_FAILURE
; /* We must play alone... */
234 if(!gact
) act
->mact
.vmmControl
= (vmmCntrlTable
*)1; /* Temporarily mark that we are the vmm thread */
236 task_unlock(task
); /* Safe to release now (because we've marked ourselves) */
238 CTable
= act
->mact
.vmmControl
; /* Get the control table address */
239 if ((unsigned int)CTable
== 1) { /* If we are marked, try to allocate a new table, otherwise we have one */
240 if(!(CTable
= (vmmCntrlTable
*)kalloc(sizeof(vmmCntrlTable
)))) { /* Get a fresh emulation control table */
241 act
->mact
.vmmControl
= 0; /* Unmark us as vmm 'cause we failed */
242 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
243 save
->save_r3
= KERN_RESOURCE_SHORTAGE
; /* No storage... */
247 bzero((void *)CTable
, sizeof(vmmCntrlTable
)); /* Clean it up */
248 act
->mact
.vmmControl
= CTable
; /* Initialize the table anchor */
251 for(cvi
= 0; cvi
< kVmmMaxContextsPerThread
; cvi
++) { /* Search to find a free slot */
252 if(!(CTable
->vmmc
[cvi
].vmmFlags
& vmmInUse
)) break; /* Bail if we find an unused slot */
255 if(cvi
>= kVmmMaxContextsPerThread
) { /* Did we find one? */
256 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
257 save
->save_r3
= KERN_RESOURCE_SHORTAGE
; /* No empty slots... */
261 ret
= vm_map_wire( /* Wire the virtual machine monitor's context area */
263 (vm_offset_t
)vmm_user_state
,
264 (vm_offset_t
)vmm_user_state
+ PAGE_SIZE
,
265 VM_PROT_READ
| VM_PROT_WRITE
,
268 if (ret
!= KERN_SUCCESS
) /* The wire failed, return the code */
269 goto return_in_shame
;
271 /* Map the vmm state into the kernel's address space. */
272 conphys
= pmap_extract(act
->map
->pmap
, (vm_offset_t
)vmm_user_state
);
274 /* Find a virtual address to use. */
275 ret
= kmem_alloc_pageable(kernel_map
, &conkern
, PAGE_SIZE
);
276 if (ret
!= KERN_SUCCESS
) { /* Did we find an address? */
277 (void) vm_map_unwire(act
->map
, /* No, unwire the context area */
278 (vm_offset_t
)vmm_user_state
,
279 (vm_offset_t
)vmm_user_state
+ PAGE_SIZE
,
281 goto return_in_shame
;
284 /* Map it into the kernel's address space. */
285 pmap_enter(kernel_pmap
, conkern
, conphys
,
286 VM_PROT_READ
| VM_PROT_WRITE
,
287 VM_WIMG_USE_DEFAULT
, TRUE
);
289 /* Clear the vmm state structure. */
290 vks
= (vmm_state_page_t
*)conkern
;
291 bzero((char *)vks
, PAGE_SIZE
);
293 /* Allocate a new pmap for the new vmm context. */
294 new_pmap
= pmap_create(0);
295 if (new_pmap
== PMAP_NULL
) {
296 (void) vm_map_unwire(act
->map
, /* Couldn't get a pmap, unwire the user page */
297 (vm_offset_t
)vmm_user_state
,
298 (vm_offset_t
)vmm_user_state
+ PAGE_SIZE
,
301 kmem_free(kernel_map
, conkern
, PAGE_SIZE
); /* Release the kernel address */
302 goto return_in_shame
;
305 /* We're home free now. Simply fill in the necessary info and return. */
307 vks
->interface_version
= version
; /* Set our version code */
308 vks
->thread_index
= cvi
+ 1; /* Tell the user the index for this virtual machine */
310 CTable
->vmmc
[cvi
].vmmFlags
= vmmInUse
; /* Mark the slot in use and make sure the rest are clear */
311 CTable
->vmmc
[cvi
].vmmPmap
= new_pmap
; /* Remember the pmap for this guy */
312 CTable
->vmmc
[cvi
].vmmContextKern
= vks
; /* Remember the kernel address of comm area */
313 CTable
->vmmc
[cvi
].vmmContextUser
= vmm_user_state
; /* Remember user address of comm area */
315 CTable
->vmmc
[cvi
].vmmFacCtx
.FPUsave
= 0; /* Clear facility context control */
316 CTable
->vmmc
[cvi
].vmmFacCtx
.FPUlevel
= 0; /* Clear facility context control */
317 CTable
->vmmc
[cvi
].vmmFacCtx
.FPUcpu
= 0; /* Clear facility context control */
318 CTable
->vmmc
[cvi
].vmmFacCtx
.VMXsave
= 0; /* Clear facility context control */
319 CTable
->vmmc
[cvi
].vmmFacCtx
.VMXlevel
= 0; /* Clear facility context control */
320 CTable
->vmmc
[cvi
].vmmFacCtx
.VMXcpu
= 0; /* Clear facility context control */
321 CTable
->vmmc
[cvi
].vmmFacCtx
.facAct
= act
; /* Point back to the activation */
323 hw_atomic_add((int *)&saveanchor
.savetarget
, 2); /* Account for the number of extra saveareas we think we might "need" */
325 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
326 save
->save_r3
= KERN_SUCCESS
; /* Hip, hip, horay... */
330 if(!gact
) kfree((vm_offset_t
)CTable
, sizeof(vmmCntrlTable
)); /* Toss the table if we just allocated it */
331 act
->mact
.vmmControl
= 0; /* Unmark us as vmm 'cause we failed */
332 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
333 save
->save_r3
= ret
; /* Pass back return code... */
339 /*-----------------------------------------------------------------------
340 ** vmm_tear_down_context
342 ** This function uninitializes an emulation context. It deallocates
343 ** internal resources associated with the context block.
346 ** act - pointer to current thread activation structure
347 ** index - index returned by vmm_init_context
350 ** kernel return code indicating success or failure
351 -----------------------------------------------------------------------*/
353 kern_return_t
vmm_tear_down_context(
355 vmm_thread_index_t index
)
357 vmmCntrlEntry
*CEntry
;
358 vmmCntrlTable
*CTable
;
360 register savearea
*sv
;
362 CEntry
= vmm_get_entry(act
, index
); /* Convert index to entry */
363 if (CEntry
== NULL
) return KERN_FAILURE
; /* Either this isn't vmm thread or the index is bogus */
365 ml_set_interrupts_enabled(TRUE
); /* This can take a bit of time so pass interruptions */
367 hw_atomic_sub((int *)&saveanchor
.savetarget
, 2); /* We don't need these extra saveareas anymore */
369 if(CEntry
->vmmFacCtx
.FPUsave
) { /* Is there any floating point context? */
370 toss_live_fpu(&CEntry
->vmmFacCtx
); /* Get rid of any live context here */
371 save_release((savearea
*)CEntry
->vmmFacCtx
.FPUsave
); /* Release it */
374 if(CEntry
->vmmFacCtx
.VMXsave
) { /* Is there any vector context? */
375 toss_live_vec(&CEntry
->vmmFacCtx
); /* Get rid of any live context here */
376 save_release((savearea
*)CEntry
->vmmFacCtx
.VMXsave
); /* Release it */
379 mapping_remove(CEntry
->vmmPmap
, 0xFFFFF000); /* Remove final page explicitly because we might have mapped it */
380 pmap_remove(CEntry
->vmmPmap
, 0, 0xFFFFF000); /* Remove all entries from this map */
381 pmap_destroy(CEntry
->vmmPmap
); /* Toss the pmap for this context */
382 CEntry
->vmmPmap
= NULL
; /* Clean it up */
384 (void) vm_map_unwire( /* Unwire the user comm page */
386 (vm_offset_t
)CEntry
->vmmContextUser
,
387 (vm_offset_t
)CEntry
->vmmContextUser
+ PAGE_SIZE
,
390 kmem_free(kernel_map
, (vm_offset_t
)CEntry
->vmmContextKern
, PAGE_SIZE
); /* Remove kernel's view of the comm page */
392 CEntry
->vmmFlags
= 0; /* Clear out all of the flags for this entry including in use */
393 CEntry
->vmmPmap
= 0; /* Clear pmap pointer */
394 CEntry
->vmmContextKern
= 0; /* Clear the kernel address of comm area */
395 CEntry
->vmmContextUser
= 0; /* Clear the user address of comm area */
397 CEntry
->vmmFacCtx
.FPUsave
= 0; /* Clear facility context control */
398 CEntry
->vmmFacCtx
.FPUlevel
= 0; /* Clear facility context control */
399 CEntry
->vmmFacCtx
.FPUcpu
= 0; /* Clear facility context control */
400 CEntry
->vmmFacCtx
.VMXsave
= 0; /* Clear facility context control */
401 CEntry
->vmmFacCtx
.VMXlevel
= 0; /* Clear facility context control */
402 CEntry
->vmmFacCtx
.VMXcpu
= 0; /* Clear facility context control */
403 CEntry
->vmmFacCtx
.facAct
= 0; /* Clear facility context control */
405 CTable
= act
->mact
.vmmControl
; /* Get the control table address */
406 for(cvi
= 0; cvi
< kVmmMaxContextsPerThread
; cvi
++) { /* Search to find a free slot */
407 if(CTable
->vmmc
[cvi
].vmmFlags
& vmmInUse
) { /* Return if there are still some in use */
408 ml_set_interrupts_enabled(FALSE
); /* No more interruptions */
409 return KERN_SUCCESS
; /* Leave... */
413 kfree((vm_offset_t
)CTable
, sizeof(vmmCntrlTable
)); /* Toss the table because to tossed the last context */
414 act
->mact
.vmmControl
= 0; /* Unmark us as vmm */
416 ml_set_interrupts_enabled(FALSE
); /* No more interruptions */
421 /*-----------------------------------------------------------------------
424 ** This function uninitializes all emulation contexts. If there are
425 ** any vmm contexts, it calls vmm_tear_down_context for each one.
427 ** Note: this can also be called from normal thread termination. Because of
428 ** that, we will context switch out of an alternate if we are currenty in it.
429 ** It will be terminated with no valid return code set because we don't expect
430 ** the activation to ever run again.
433 ** activation to tear down
436 ** All vmm contexts released and VMM shut down
437 -----------------------------------------------------------------------*/
438 void vmm_tear_down_all(thread_act_t act
) {
440 vmmCntrlTable
*CTable
;
446 if(act
->mact
.specFlags
& runningVM
) { /* Are we actually in a context right now? */
447 save
= find_user_regs(act
); /* Find the user state context */
448 if(!save
) { /* Did we find it? */
449 panic("vmm_tear_down_all: runningVM marked but no user state context\n");
453 save
->save_exception
= kVmmBogusContext
*4; /* Indicate that this context is bogus now */
454 s
= splhigh(); /* Make sure interrupts are off */
455 vmm_force_exit(act
, save
); /* Force and exit from VM state */
456 splx(s
); /* Restore interrupts */
459 if(CTable
= act
->mact
.vmmControl
) { /* Do we have a vmm control block? */
461 for(cvi
= 1; cvi
<= kVmmMaxContextsPerThread
; cvi
++) { /* Look at all slots */
462 if(CTable
->vmmc
[cvi
- 1].vmmFlags
& vmmInUse
) { /* Is this one in use */
463 ret
= vmm_tear_down_context(act
, cvi
); /* Take down the found context */
464 if(ret
!= KERN_SUCCESS
) { /* Did it go away? */
465 panic("vmm_tear_down_all: vmm_tear_down_context failed; ret=%08X, act = %08X, cvi = %d\n",
470 if(act
->mact
.vmmControl
) { /* Did we find one? */
471 panic("vmm_tear_down_all: control table did not get deallocated\n"); /* Table did not go away */
478 /*-----------------------------------------------------------------------
481 ** This function maps a page from within the client's logical
482 ** address space into the alternate address space of the
483 ** Virtual Machine Monitor context.
485 ** The page need not be locked or resident. If not resident, it will be faulted
486 ** in by this code, which may take some time. Also, if the page is not locked,
487 ** it, and this mapping may disappear at any time, even before it gets used. Note also
488 ** that reference and change information is NOT preserved when a page is unmapped, either
489 ** explicitly or implicitly (e.g., a pageout, being unmapped in the non-alternate address
490 ** space). This means that if RC is needed, the page MUST be wired.
492 ** Note that if there is already a mapping at the address, it is removed and all
493 ** information (including RC) is lost BEFORE an attempt is made to map it. Also,
494 ** if the map call fails, the old address is still unmapped..
497 ** act - pointer to current thread activation
498 ** index - index of vmm state for this page
499 ** va - virtual address within the client's address
501 ** ava - virtual address within the alternate address
503 ** prot - protection flags
505 ** Note that attempted mapping of areas in nested pmaps (shared libraries) or block mapped
506 ** areas are not allowed and will fail. Same with directly mapped I/O areas.
509 ** Interrupts disabled (from fast trap)
512 ** kernel return code indicating success or failure
513 ** if success, va resident and alternate mapping made
514 -----------------------------------------------------------------------*/
516 kern_return_t
vmm_map_page(
518 vmm_thread_index_t index
,
524 vmmCntrlEntry
*CEntry
;
525 vm_offset_t phys_addr
;
526 register mapping
*mpv
, *mp
, *nmpv
, *nmp
;
527 struct phys_entry
*pp
;
531 CEntry
= vmm_get_entry(act
, index
); /* Get and validate the index */
532 if (CEntry
== NULL
)return KERN_FAILURE
; /* No good, failure... */
535 * Find out if we have already mapped the address and toss it out if so.
537 mp
= hw_lock_phys_vir(CEntry
->vmmPmap
->space
, ava
); /* See if there is already a mapping */
538 if((unsigned int)mp
& 1) { /* Did we timeout? */
539 panic("vmm_map_page: timeout locking physical entry for alternate virtual address (%08X)\n", ava
); /* Yeah, scream about it! */
540 return KERN_FAILURE
; /* Bad hair day, return FALSE... */
542 if(mp
) { /* If it was there, toss it */
543 mpv
= hw_cpv(mp
); /* Convert mapping block to virtual */
544 hw_unlock_bit((unsigned int *)&mpv
->physent
->phys_link
, PHYS_LOCK
); /* We're done, unlock the physical entry */
545 (void)mapping_remove(CEntry
->vmmPmap
, ava
); /* Throw away the mapping. we're about to replace it */
547 map
= current_act()->map
; /* Get the current map */
549 while(1) { /* Keep trying until we get it or until we fail */
550 if(hw_cvp_blk(map
->pmap
, cva
)) return KERN_FAILURE
; /* Make sure that there is no block map at this address */
552 mp
= hw_lock_phys_vir(map
->pmap
->space
, cva
); /* Lock the physical entry for emulator's page */
553 if((unsigned int)mp
&1) { /* Did we timeout? */
554 panic("vmm_map_page: timeout locking physical entry for emulator virtual address (%08X)\n", cva
); /* Yeah, scream about it! */
555 return KERN_FAILURE
; /* Bad hair day, return FALSE... */
558 if(mp
) { /* We found it... */
559 mpv
= hw_cpv(mp
); /* Convert mapping block to virtual */
561 if(!mpv
->physent
) return KERN_FAILURE
; /* If there is no physical entry (e.g., I/O area), we won't map it */
563 if(!(mpv
->PTEr
& 1)) break; /* If we are writable go ahead and map it... */
565 hw_unlock_bit((unsigned int *)&mpv
->physent
->phys_link
, PHYS_LOCK
); /* Unlock the map before we try to fault the write bit on */
568 ml_set_interrupts_enabled(TRUE
); /* Enable interruptions */
569 ret
= vm_fault(map
, trunc_page(cva
), VM_PROT_READ
| VM_PROT_WRITE
, FALSE
, NULL
, 0); /* Didn't find it, try to fault it in read/write... */
570 ml_set_interrupts_enabled(FALSE
); /* Disable interruptions */
571 if (ret
!= KERN_SUCCESS
) return KERN_FAILURE
; /* There isn't a page there, return... */
575 * Now we make a mapping using all of the attributes of the source page except for protection.
576 * Also specify that the physical entry is locked.
578 nmpv
= mapping_make(CEntry
->vmmPmap
, mpv
->physent
, (ava
& -PAGE_SIZE
),
579 (mpv
->physent
->pte1
& -PAGE_SIZE
), prot
, ((mpv
->physent
->pte1
>> 3) & 0xF), 1);
581 hw_unlock_bit((unsigned int *)&mpv
->physent
->phys_link
, PHYS_LOCK
); /* Unlock the physical entry now, we're done with it */
583 CEntry
->vmmLastMap
= ava
& -PAGE_SIZE
; /* Remember the last mapping we made */
584 CEntry
->vmmFlags
|= vmmMapDone
; /* Set that we did a map operation */
590 /*-----------------------------------------------------------------------
593 ** This function maps a page from within the client's logical
594 ** address space into the alternate address space of the
595 ** Virtual Machine Monitor context and then directly starts executing.
597 ** See description of vmm_map_page for details.
600 ** Normal exit is to run the VM. Abnormal exit is triggered via a
601 ** non-KERN_SUCCESS return from vmm_map_page or later during the
602 ** attempt to transition into the VM.
603 -----------------------------------------------------------------------*/
605 vmm_return_code_t
vmm_map_execute(
607 vmm_thread_index_t index
,
613 vmmCntrlEntry
*CEntry
;
615 CEntry
= vmm_get_entry(act
, index
); /* Get and validate the index */
617 if (CEntry
== NULL
) return kVmmBogusContext
; /* Return bogus context */
619 ret
= vmm_map_page(act
, index
, cva
, ava
, prot
); /* Go try to map the page on in */
621 if(ret
== KERN_SUCCESS
) vmm_execute_vm(act
, index
); /* Return was ok, launch the VM */
623 return kVmmInvalidAddress
; /* We had trouble mapping in the page */
627 /*-----------------------------------------------------------------------
630 ** This function maps a list of pages into the alternate's logical
634 ** act - pointer to current thread activation
635 ** index - index of vmm state for this page
636 ** count - number of pages to release
637 ** vmcpComm in the comm page contains up to kVmmMaxMapPages to map
640 ** kernel return code indicating success or failure
641 ** KERN_FAILURE is returned if kVmmMaxUnmapPages is exceeded
642 ** or the vmm_map_page call fails.
643 -----------------------------------------------------------------------*/
645 kern_return_t
vmm_map_list(
647 vmm_thread_index_t index
,
650 vmmCntrlEntry
*CEntry
;
658 CEntry
= vmm_get_entry(act
, index
); /* Get and validate the index */
659 if (CEntry
== NULL
)return -1; /* No good, failure... */
661 if(cnt
> kVmmMaxMapPages
) return KERN_FAILURE
; /* They tried to map too many */
662 if(!cnt
) return KERN_SUCCESS
; /* If they said none, we're done... */
664 lst
= &((vmm_comm_page_t
*)CEntry
->vmmContextKern
)->vmcpComm
[0]; /* Point to the first entry */
666 for(i
= 0; i
< cnt
; i
++) { /* Step and release all pages in list */
667 cva
= lst
[i
].vmlva
; /* Get the actual address */
668 ava
= lst
[i
].vmlava
& -vmlFlgs
; /* Get the alternate address */
669 prot
= lst
[i
].vmlava
& vmlProt
; /* Get the protection bits */
670 ret
= vmm_map_page(act
, index
, cva
, ava
, prot
); /* Go try to map the page on in */
671 if(ret
!= KERN_SUCCESS
) return KERN_FAILURE
; /* Bail if any error */
674 return KERN_SUCCESS
; /* Return... */
677 /*-----------------------------------------------------------------------
678 ** vmm_get_page_mapping
680 ** This function determines whether the specified VMM
681 ** virtual address is mapped.
684 ** act - pointer to current thread activation
685 ** index - index of vmm state for this page
686 ** va - virtual address within the alternate's address
690 ** Non-alternate's virtual address (page aligned) or -1 if not mapped or any failure
693 ** If there are aliases to the page in the non-alternate address space,
694 ** this call could return the wrong one. Moral of the story: no aliases.
695 -----------------------------------------------------------------------*/
697 vm_offset_t
vmm_get_page_mapping(
699 vmm_thread_index_t index
,
702 vmmCntrlEntry
*CEntry
;
704 register mapping
*mpv
, *mp
, *nmpv
, *nmp
;
707 CEntry
= vmm_get_entry(act
, index
); /* Get and validate the index */
708 if (CEntry
== NULL
)return -1; /* No good, failure... */
710 mp
= hw_lock_phys_vir(CEntry
->vmmPmap
->space
, va
); /* Look up the mapping */
711 if((unsigned int)mp
& 1) { /* Did we timeout? */
712 panic("vmm_get_page_mapping: timeout locking physical entry for alternate virtual address (%08X)\n", va
); /* Yeah, scream about it! */
713 return -1; /* Bad hair day, return FALSE... */
715 if(!mp
) return -1; /* Not mapped, return -1 */
717 mpv
= hw_cpv(mp
); /* Convert mapping block to virtual */
718 pmap
= current_act()->map
->pmap
; /* Get the current pmap */
719 ova
= -1; /* Assume failure for now */
721 for(nmpv
= hw_cpv(mpv
->physent
->phys_link
); nmpv
; nmpv
= hw_cpv(nmpv
->next
)) { /* Scan 'em all */
723 if(nmpv
->pmap
!= pmap
) continue; /* Skip all the rest if this is not the right pmap... */
725 ova
= ((((unsigned int)nmpv
->PTEhash
& -64) << 6) ^ (pmap
->space
<< 12)) & 0x003FF000; /* Backward hash to the wrapped VADDR */
726 ova
= ova
| ((nmpv
->PTEv
<< 1) & 0xF0000000); /* Move in the segment number */
727 ova
= ova
| ((nmpv
->PTEv
<< 22) & 0x0FC00000); /* Add in the API for the top of the address */
728 break; /* We're done now, pass virtual address back */
731 hw_unlock_bit((unsigned int *)&mpv
->physent
->phys_link
, PHYS_LOCK
); /* We're done, unlock the physical entry */
733 if(ova
== -1) panic("vmm_get_page_mapping: could not back-map alternate va (%08X)\n", va
); /* We are bad wrong if we can't find it */
738 /*-----------------------------------------------------------------------
741 ** This function unmaps a page from the alternate's logical
745 ** act - pointer to current thread activation
746 ** index - index of vmm state for this page
747 ** va - virtual address within the vmm's address
751 ** kernel return code indicating success or failure
752 -----------------------------------------------------------------------*/
754 kern_return_t
vmm_unmap_page(
756 vmm_thread_index_t index
,
759 vmmCntrlEntry
*CEntry
;
761 kern_return_t kern_result
= KERN_SUCCESS
;
763 CEntry
= vmm_get_entry(act
, index
); /* Get and validate the index */
764 if (CEntry
== NULL
)return -1; /* No good, failure... */
766 ret
= mapping_remove(CEntry
->vmmPmap
, va
); /* Toss the mapping */
768 return (ret
? KERN_SUCCESS
: KERN_FAILURE
); /* Return... */
771 /*-----------------------------------------------------------------------
774 ** This function unmaps a list of pages from the alternate's logical
778 ** act - pointer to current thread activation
779 ** index - index of vmm state for this page
780 ** count - number of pages to release
781 ** vmcpComm in the comm page contains up to kVmmMaxUnmapPages to unmap
784 ** kernel return code indicating success or failure
785 ** KERN_FAILURE is returned if kVmmMaxUnmapPages is exceeded
786 -----------------------------------------------------------------------*/
788 kern_return_t
vmm_unmap_list(
790 vmm_thread_index_t index
,
793 vmmCntrlEntry
*CEntry
;
795 kern_return_t kern_result
= KERN_SUCCESS
;
796 unsigned int *pgaddr
, i
;
798 CEntry
= vmm_get_entry(act
, index
); /* Get and validate the index */
799 if (CEntry
== NULL
)return -1; /* No good, failure... */
801 if(cnt
> kVmmMaxUnmapPages
) return KERN_FAILURE
; /* They tried to unmap too many */
802 if(!cnt
) return KERN_SUCCESS
; /* If they said none, we're done... */
804 pgaddr
= &((vmm_comm_page_t
*)CEntry
->vmmContextKern
)->vmcpComm
[0]; /* Point to the first entry */
806 for(i
= 0; i
< cnt
; i
++) { /* Step and release all pages in list */
808 (void)mapping_remove(CEntry
->vmmPmap
, pgaddr
[i
]); /* Toss the mapping */
811 return KERN_SUCCESS
; /* Return... */
814 /*-----------------------------------------------------------------------
815 ** vmm_unmap_all_pages
817 ** This function unmaps all pages from the alternates's logical
821 ** act - pointer to current thread activation
822 ** index - index of context state
828 ** All pages are unmapped, but the address space (i.e., pmap) is still alive
829 -----------------------------------------------------------------------*/
831 void vmm_unmap_all_pages(
833 vmm_thread_index_t index
)
835 vmmCntrlEntry
*CEntry
;
837 CEntry
= vmm_get_entry(act
, index
); /* Convert index to entry */
838 if (CEntry
== NULL
) return; /* Either this isn't vmm thread or the index is bogus */
841 * Note: the pmap code won't deal with the last page in the address space, so handle it explicitly
843 mapping_remove(CEntry
->vmmPmap
, 0xFFFFF000); /* Remove final page explicitly because we might have mapped it */
844 pmap_remove(CEntry
->vmmPmap
, 0, 0xFFFFF000); /* Remove all entries from this map */
849 /*-----------------------------------------------------------------------
850 ** vmm_get_page_dirty_flag
852 ** This function returns the changed flag of the page
853 ** and optionally clears clears the flag.
856 ** act - pointer to current thread activation
857 ** index - index of vmm state for this page
858 ** va - virtual address within the vmm's address
860 ** reset - Clears dirty if true, untouched if not
864 ** clears the dirty bit in the pte if requested
867 ** The RC bits are merged into the global physical entry
868 -----------------------------------------------------------------------*/
870 boolean_t
vmm_get_page_dirty_flag(
872 vmm_thread_index_t index
,
876 vmmCntrlEntry
*CEntry
;
877 register mapping
*mpv
, *mp
;
880 CEntry
= vmm_get_entry(act
, index
); /* Convert index to entry */
881 if (CEntry
== NULL
) return 1; /* Either this isn't vmm thread or the index is bogus */
883 mp
= hw_lock_phys_vir(CEntry
->vmmPmap
->space
, va
); /* Look up the mapping */
884 if((unsigned int)mp
& 1) { /* Did we timeout? */
885 panic("vmm_get_page_dirty_flag: timeout locking physical entry for alternate virtual address (%08X)\n", va
); /* Yeah, scream about it! */
886 return 1; /* Bad hair day, return dirty... */
888 if(!mp
) return 1; /* Not mapped, return dirty... */
890 RC
= hw_test_rc(mp
, reset
); /* Fetch the RC bits and clear if requested */
892 mpv
= hw_cpv(mp
); /* Convert mapping block to virtual */
893 hw_unlock_bit((unsigned int *)&mpv
->physent
->phys_link
, PHYS_LOCK
); /* We're done, unlock the physical entry */
895 return (RC
& 1); /* Return the change bit */
899 /*-----------------------------------------------------------------------
902 ** This function sets the protection bits of a mapped page
905 ** act - pointer to current thread activation
906 ** index - index of vmm state for this page
907 ** va - virtual address within the vmm's address
909 ** prot - Protection flags
913 ** Protection bits of the mapping are modifed
915 -----------------------------------------------------------------------*/
917 kern_return_t
vmm_protect_page(
919 vmm_thread_index_t index
,
923 vmmCntrlEntry
*CEntry
;
924 register mapping
*mpv
, *mp
;
927 CEntry
= vmm_get_entry(act
, index
); /* Convert index to entry */
928 if (CEntry
== NULL
) return KERN_FAILURE
; /* Either this isn't vmm thread or the index is bogus */
930 mp
= hw_lock_phys_vir(CEntry
->vmmPmap
->space
, va
); /* Look up the mapping */
931 if((unsigned int)mp
& 1) { /* Did we timeout? */
932 panic("vmm_protect_page: timeout locking physical entry for virtual address (%08X)\n", va
); /* Yeah, scream about it! */
933 return 1; /* Bad hair day, return dirty... */
935 if(!mp
) return KERN_SUCCESS
; /* Not mapped, just return... */
937 hw_prot_virt(mp
, prot
); /* Set the protection */
939 mpv
= hw_cpv(mp
); /* Convert mapping block to virtual */
940 hw_unlock_bit((unsigned int *)&mpv
->physent
->phys_link
, PHYS_LOCK
); /* We're done, unlock the physical entry */
942 CEntry
->vmmLastMap
= va
& -PAGE_SIZE
; /* Remember the last mapping we changed */
943 CEntry
->vmmFlags
|= vmmMapDone
; /* Set that we did a map operation */
945 return KERN_SUCCESS
; /* Return */
949 /*-----------------------------------------------------------------------
950 ** vmm_protect_execute
952 ** This function sets the protection bits of a mapped page
953 ** and then directly starts executing.
955 ** See description of vmm_protect_page for details.
958 ** Normal exit is to run the VM. Abnormal exit is triggered via a
959 ** non-KERN_SUCCESS return from vmm_map_page or later during the
960 ** attempt to transition into the VM.
961 -----------------------------------------------------------------------*/
963 vmm_return_code_t
vmm_protect_execute(
965 vmm_thread_index_t index
,
970 vmmCntrlEntry
*CEntry
;
972 CEntry
= vmm_get_entry(act
, index
); /* Get and validate the index */
974 if (CEntry
== NULL
) return kVmmBogusContext
; /* Return bogus context */
976 ret
= vmm_protect_page(act
, index
, va
, prot
); /* Go try to change access */
978 if(ret
== KERN_SUCCESS
) vmm_execute_vm(act
, index
); /* Return was ok, launch the VM */
980 return kVmmInvalidAddress
; /* We had trouble of some kind (shouldn't happen) */
985 /*-----------------------------------------------------------------------
986 ** vmm_get_float_state
988 ** This function causes the current floating point state to
989 ** be saved into the shared context area. It also clears the
990 ** vmmFloatCngd changed flag.
993 ** act - pointer to current thread activation structure
994 ** index - index returned by vmm_init_context
998 -----------------------------------------------------------------------*/
1000 kern_return_t
vmm_get_float_state(
1002 vmm_thread_index_t index
)
1004 vmmCntrlEntry
*CEntry
;
1005 vmmCntrlTable
*CTable
;
1007 register struct savearea_fpu
*sv
;
1009 CEntry
= vmm_get_entry(act
, index
); /* Convert index to entry */
1010 if (CEntry
== NULL
) return KERN_FAILURE
; /* Either this isn't vmm thread or the index is bogus */
1012 act
->mact
.specFlags
&= ~floatCng
; /* Clear the special flag */
1013 CEntry
->vmmContextKern
->vmmStat
&= ~vmmFloatCngd
; /* Clear the change indication */
1015 fpu_save(&CEntry
->vmmFacCtx
); /* Save context if live */
1017 CEntry
->vmmContextKern
->vmm_proc_state
.ppcFPSCRshadow
.i
[0] = CEntry
->vmmContextKern
->vmm_proc_state
.ppcFPSCR
.i
[0]; /* Copy FPSCR */
1018 CEntry
->vmmContextKern
->vmm_proc_state
.ppcFPSCRshadow
.i
[1] = CEntry
->vmmContextKern
->vmm_proc_state
.ppcFPSCR
.i
[1]; /* Copy FPSCR */
1020 if(sv
= CEntry
->vmmFacCtx
.FPUsave
) { /* Is there context yet? */
1021 bcopy((char *)&sv
->save_fp0
, (char *)&(CEntry
->vmmContextKern
->vmm_proc_state
.ppcFPRs
), 32 * 8); /* 32 registers */
1022 return KERN_SUCCESS
;
1026 for(i
= 0; i
< 32; i
++) { /* Initialize floating points */
1027 CEntry
->vmmContextKern
->vmm_proc_state
.ppcFPRs
[i
].d
= FloatInit
; /* Initial value */
1030 return KERN_SUCCESS
;
1033 /*-----------------------------------------------------------------------
1034 ** vmm_get_vector_state
1036 ** This function causes the current vector state to
1037 ** be saved into the shared context area. It also clears the
1038 ** vmmVectorCngd changed flag.
1041 ** act - pointer to current thread activation structure
1042 ** index - index returned by vmm_init_context
1046 -----------------------------------------------------------------------*/
1048 kern_return_t
vmm_get_vector_state(
1050 vmm_thread_index_t index
)
1052 vmmCntrlEntry
*CEntry
;
1053 vmmCntrlTable
*CTable
;
1055 unsigned int vrvalidwrk
;
1056 register struct savearea_vec
*sv
;
1058 CEntry
= vmm_get_entry(act
, index
); /* Convert index to entry */
1059 if (CEntry
== NULL
) return KERN_FAILURE
; /* Either this isn't vmm thread or the index is bogus */
1061 vec_save(&CEntry
->vmmFacCtx
); /* Save context if live */
1063 act
->mact
.specFlags
&= ~vectorCng
; /* Clear the special flag */
1064 CEntry
->vmmContextKern
->vmmStat
&= ~vmmVectCngd
; /* Clear the change indication */
1066 for(j
=0; j
< 4; j
++) { /* Set value for vscr */
1067 CEntry
->vmmContextKern
->vmm_proc_state
.ppcVSCRshadow
.i
[j
] = CEntry
->vmmContextKern
->vmm_proc_state
.ppcVSCR
.i
[j
];
1070 if(sv
= CEntry
->vmmFacCtx
.VMXsave
) { /* Is there context yet? */
1072 vrvalidwrk
= sv
->save_vrvalid
; /* Get the valid flags */
1074 for(i
= 0; i
< 32; i
++) { /* Copy the saved registers and invalidate the others */
1075 if(vrvalidwrk
& 0x80000000) { /* Do we have a valid value here? */
1076 for(j
= 0; j
< 4; j
++) { /* If so, copy it over */
1077 CEntry
->vmmContextKern
->vmm_proc_state
.ppcVRs
[i
].i
[j
] = ((unsigned int *)&(sv
->save_vr0
))[(i
* 4) + j
];
1081 for(j
= 0; j
< 4; j
++) { /* Otherwise set to empty value */
1082 CEntry
->vmmContextKern
->vmm_proc_state
.ppcVRs
[i
].i
[j
] = QNaNbarbarian
[j
];
1086 vrvalidwrk
= vrvalidwrk
<< 1; /* Shift over to the next */
1090 return KERN_SUCCESS
;
1093 for(i
= 0; i
< 32; i
++) { /* Initialize vector registers */
1094 for(j
=0; j
< 4; j
++) { /* Do words */
1095 CEntry
->vmmContextKern
->vmm_proc_state
.ppcVRs
[i
].i
[j
] = QNaNbarbarian
[j
]; /* Initial value */
1099 return KERN_SUCCESS
;
1102 /*-----------------------------------------------------------------------
1105 ** This function causes a timer (in AbsoluteTime) for a specific time
1106 ** to be set It also clears the vmmTimerPop flag if the timer is actually
1107 ** set, it is cleared otherwise.
1109 ** A timer is cleared by setting setting the time to 0. This will clear
1110 ** the vmmTimerPop bit. Simply setting the timer to earlier than the
1111 ** current time clears the internal timer request, but leaves the
1112 ** vmmTimerPop flag set.
1116 ** act - pointer to current thread activation structure
1117 ** index - index returned by vmm_init_context
1118 ** timerhi - high order word of AbsoluteTime to pop
1119 ** timerlo - low order word of AbsoluteTime to pop
1122 ** timer set, vmmTimerPop cleared
1123 -----------------------------------------------------------------------*/
1125 kern_return_t
vmm_set_timer(
1127 vmm_thread_index_t index
,
1128 unsigned int timerhi
,
1129 unsigned int timerlo
)
1131 vmmCntrlEntry
*CEntry
;
1133 CEntry
= vmm_get_entry(act
, index
); /* Convert index to entry */
1134 if (CEntry
== NULL
) return KERN_FAILURE
; /* Either this isn't vmm thread or the index is bogus */
1136 CEntry
->vmmTimer
= ((uint64_t)timerhi
<< 32) | timerlo
;
1138 vmm_timer_pop(act
); /* Go adjust all of the timer stuff */
1139 return KERN_SUCCESS
; /* Leave now... */
1143 /*-----------------------------------------------------------------------
1146 ** This function causes the timer for a specified VM to be
1147 ** returned in return_params[0] and return_params[1].
1151 ** act - pointer to current thread activation structure
1152 ** index - index returned by vmm_init_context
1155 ** Timer value set in return_params[0] and return_params[1].
1156 ** Set to 0 if timer is not set.
1157 -----------------------------------------------------------------------*/
1159 kern_return_t
vmm_get_timer(
1161 vmm_thread_index_t index
)
1163 vmmCntrlEntry
*CEntry
;
1164 vmmCntrlTable
*CTable
;
1166 CEntry
= vmm_get_entry(act
, index
); /* Convert index to entry */
1167 if (CEntry
== NULL
) return KERN_FAILURE
; /* Either this isn't vmm thread or the index is bogus */
1169 CEntry
->vmmContextKern
->return_params
[0] = (CEntry
->vmmTimer
>> 32); /* Return the last timer value */
1170 CEntry
->vmmContextKern
->return_params
[1] = (uint32_t)CEntry
->vmmTimer
; /* Return the last timer value */
1172 return KERN_SUCCESS
;
1177 /*-----------------------------------------------------------------------
1180 ** This function causes all timers in the array of VMs to be updated.
1181 ** All appropriate flags are set or reset. If a VM is currently
1182 ** running and its timer expired, it is intercepted.
1184 ** The qactTimer value is set to the lowest unexpired timer. It is
1185 ** zeroed if all timers are expired or have been reset.
1188 ** act - pointer to current thread activation structure
1191 ** timers set, vmmTimerPop cleared or set
1192 -----------------------------------------------------------------------*/
1197 vmmCntrlEntry
*CEntry
;
1198 vmmCntrlTable
*CTable
;
1200 uint64_t now
, soonest
;
1203 if(!((unsigned int)act
->mact
.vmmControl
& 0xFFFFFFFE)) { /* Are there any virtual machines? */
1204 panic("vmm_timer_pop: No virtual machines defined; act = %08X\n", act
);
1207 soonest
= 0xFFFFFFFFFFFFFFFFULL
; /* Max time */
1209 clock_get_uptime(&now
); /* What time is it? */
1211 CTable
= act
->mact
.vmmControl
; /* Make this easier */
1212 any
= 0; /* Haven't found a running unexpired timer yet */
1214 for(cvi
= 0; cvi
< kVmmMaxContextsPerThread
; cvi
++) { /* Cycle through all and check time now */
1216 if(!(CTable
->vmmc
[cvi
].vmmFlags
& vmmInUse
)) continue; /* Do not check if the entry is empty */
1218 if(CTable
->vmmc
[cvi
].vmmTimer
== 0) { /* Is the timer reset? */
1219 CTable
->vmmc
[cvi
].vmmFlags
&= ~vmmTimerPop
; /* Clear timer popped */
1220 CTable
->vmmc
[cvi
].vmmContextKern
->vmmStat
&= ~vmmTimerPop
; /* Clear timer popped */
1221 continue; /* Check next */
1224 if (CTable
->vmmc
[cvi
].vmmTimer
<= now
) {
1225 CTable
->vmmc
[cvi
].vmmFlags
|= vmmTimerPop
; /* Set timer popped here */
1226 CTable
->vmmc
[cvi
].vmmContextKern
->vmmStat
|= vmmTimerPop
; /* Set timer popped here */
1227 if((unsigned int)&CTable
->vmmc
[cvi
] == (unsigned int)act
->mact
.vmmCEntry
) { /* Is this the running VM? */
1228 sv
= find_user_regs(act
); /* Get the user state registers */
1229 if(!sv
) { /* Did we find something? */
1230 panic("vmm_timer_pop: no user context; act = %08X\n", act
);
1232 sv
->save_exception
= kVmmReturnNull
*4; /* Indicate that this is a null exception */
1233 vmm_force_exit(act
, sv
); /* Intercept a running VM */
1235 continue; /* Check the rest */
1237 else { /* It hasn't popped yet */
1238 CTable
->vmmc
[cvi
].vmmFlags
&= ~vmmTimerPop
; /* Set timer not popped here */
1239 CTable
->vmmc
[cvi
].vmmContextKern
->vmmStat
&= ~vmmTimerPop
; /* Set timer not popped here */
1242 any
= 1; /* Show we found an active unexpired timer */
1244 if (CTable
->vmmc
[cvi
].vmmTimer
< soonest
)
1245 soonest
= CTable
->vmmc
[cvi
].vmmTimer
;
1249 if (act
->mact
.qactTimer
== 0 || soonest
<= act
->mact
.qactTimer
)
1250 act
->mact
.qactTimer
= soonest
; /* Set lowest timer */
1258 /*-----------------------------------------------------------------------
1261 ** This function prevents the specified VM(s) to from running.
1262 ** If any is currently executing, the execution is intercepted
1263 ** with a code of kVmmStopped. Note that execution of the VM is
1264 ** blocked until a vmmExecuteVM is called with the start flag set to 1.
1265 ** This provides the ability for a thread to stop execution of a VM and
1266 ** insure that it will not be run until the emulator has processed the
1267 ** "virtual" interruption.
1270 ** vmmask - 32 bit mask corresponding to the VMs to put in stop state
1271 ** NOTE: if this mask is all 0s, any executing VM is intercepted with
1272 * a kVmmStopped (but not marked stopped), otherwise this is a no-op. Also note that there
1273 ** note that there is a potential race here and the VM may not stop.
1276 ** kernel return code indicating success
1277 ** or if no VMs are enabled, an invalid syscall exception.
1278 -----------------------------------------------------------------------*/
1280 int vmm_stop_vm(struct savearea
*save
)
1284 vmmCntrlTable
*CTable
;
1288 unsigned int vmmask
;
1289 ReturnHandler
*stopapc
;
1291 ml_set_interrupts_enabled(TRUE
); /* This can take a bit of time so pass interruptions */
1293 task
= current_task(); /* Figure out who we are */
1295 task_lock(task
); /* Lock our task */
1297 fact
= (thread_act_t
)task
->thr_acts
.next
; /* Get the first activation on task */
1298 act
= 0; /* Pretend we didn't find it yet */
1300 for(i
= 0; i
< task
->thr_act_count
; i
++) { /* All of the activations */
1301 if(fact
->mact
.vmmControl
) { /* Is this a virtual machine monitor? */
1302 act
= fact
; /* Yeah... */
1303 break; /* Bail the loop... */
1305 fact
= (thread_act_t
)fact
->thr_acts
.next
; /* Go to the next one */
1308 if(!((unsigned int)act
)) { /* See if we have VMMs yet */
1309 task_unlock(task
); /* No, unlock the task */
1310 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
1311 return 0; /* Go generate a syscall exception */
1314 act_lock_thread(act
); /* Make sure this stays 'round */
1315 task_unlock(task
); /* Safe to release now */
1317 CTable
= act
->mact
.vmmControl
; /* Get the pointer to the table */
1319 if(!((unsigned int)CTable
& -2)) { /* Are there any all the way up yet? */
1320 act_unlock_thread(act
); /* Unlock the activation */
1321 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
1322 return 0; /* Go generate a syscall exception */
1325 if(!(vmmask
= save
->save_r3
)) { /* Get the stop mask and check if all zeros */
1326 act_unlock_thread(act
); /* Unlock the activation */
1327 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
1328 save
->save_r3
= KERN_SUCCESS
; /* Set success */
1329 return 1; /* Return... */
1332 for(cvi
= 0; cvi
< kVmmMaxContextsPerThread
; cvi
++) { /* Search slots */
1333 if((0x80000000 & vmmask
) && (CTable
->vmmc
[cvi
].vmmFlags
& vmmInUse
)) { /* See if we need to stop and if it is in use */
1334 hw_atomic_or(&CTable
->vmmc
[cvi
].vmmFlags
, vmmXStop
); /* Set this one to stop */
1336 vmmask
= vmmask
<< 1; /* Slide mask over */
1339 if(hw_compare_and_store(0, 1, &act
->mact
.emPendRupts
)) { /* See if there is already a stop pending and lock out others if not */
1340 act_unlock_thread(act
); /* Already one pending, unlock the activation */
1341 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
1342 save
->save_r3
= KERN_SUCCESS
; /* Say we did it... */
1343 return 1; /* Leave */
1346 if(!(stopapc
= (ReturnHandler
*)kalloc(sizeof(ReturnHandler
)))) { /* Get a return handler control block */
1347 act
->mact
.emPendRupts
= 0; /* No memory, say we have given up request */
1348 act_unlock_thread(act
); /* Unlock the activation */
1349 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
1350 save
->save_r3
= KERN_RESOURCE_SHORTAGE
; /* No storage... */
1351 return 1; /* Return... */
1354 ml_set_interrupts_enabled(FALSE
); /* Disable interruptions for now */
1356 stopapc
->handler
= vmm_interrupt
; /* Set interruption routine */
1358 stopapc
->next
= act
->handlers
; /* Put our interrupt at the start of the list */
1359 act
->handlers
= stopapc
; /* Point to us */
1361 act_set_apc(act
); /* Set an APC AST */
1362 ml_set_interrupts_enabled(TRUE
); /* Enable interruptions now */
1364 act_unlock_thread(act
); /* Unlock the activation */
1366 ml_set_interrupts_enabled(FALSE
); /* Set back interruptions */
1367 save
->save_r3
= KERN_SUCCESS
; /* Hip, hip, horay... */
1371 /*-----------------------------------------------------------------------
1374 ** This function is executed asynchronously from an APC AST.
1375 ** It is to be used for anything that needs to interrupt a running VM.
1376 ** This include any kind of interruption generation (other than timer pop)
1377 ** or entering the stopped state.
1380 ** ReturnHandler *rh - the return handler control block as required by the APC.
1381 ** thread_act_t act - the activation
1384 ** Whatever needed to be done is done.
1385 -----------------------------------------------------------------------*/
1387 void vmm_interrupt(ReturnHandler
*rh
, thread_act_t act
) {
1389 vmmCntrlTable
*CTable
;
1395 kfree((vm_offset_t
)rh
, sizeof(ReturnHandler
)); /* Release the return handler block */
1397 inter
= ml_set_interrupts_enabled(FALSE
); /* Disable interruptions for now */
1399 act
->mact
.emPendRupts
= 0; /* Say that there are no more interrupts pending */
1400 CTable
= act
->mact
.vmmControl
; /* Get the pointer to the table */
1402 if(!((unsigned int)CTable
& -2)) return; /* Leave if we aren't doing VMs any more... */
1404 if(act
->mact
.vmmCEntry
&& (act
->mact
.vmmCEntry
->vmmFlags
& vmmXStop
)) { /* Do we need to stop the running guy? */
1405 sv
= find_user_regs(act
); /* Get the user state registers */
1406 if(!sv
) { /* Did we find something? */
1407 panic("vmm_interrupt: no user context; act = %08X\n", act
);
1409 sv
->save_exception
= kVmmStopped
*4; /* Set a "stopped" exception */
1410 vmm_force_exit(act
, sv
); /* Intercept a running VM */
1412 ml_set_interrupts_enabled(inter
); /* Put interrupts back to what they were */