2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
22 /* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
23 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
25 * Copyright (c) 1982, 1986, 1988, 1990, 1993
26 * The Regents of the University of California. All rights reserved.
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 * 3. All advertising materials mentioning features or use of this software
37 * must display the following acknowledgement:
38 * This product includes software developed by the University of
39 * California, Berkeley and its contributors.
40 * 4. Neither the name of the University nor the names of its contributors
41 * may be used to endorse or promote products derived from this software
42 * without specific prior written permission.
44 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
45 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
47 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
48 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
57 * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.16 2001/06/14 20:46:06 ume Exp $
60 #include <sys/param.h>
61 #include <sys/systm.h>
63 #include <sys/fcntl.h>
64 #include <sys/malloc.h>
66 #include <sys/domain.h>
67 #include <sys/kernel.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/resourcevar.h>
73 #include <sys/signalvar.h>
74 #include <sys/sysctl.h>
77 #include <sys/kdebug.h>
78 #include <net/route.h>
79 #include <netinet/in.h>
80 #include <netinet/in_pcb.h>
81 #include <kern/zalloc.h>
82 #include <machine/limits.h>
85 int so_cache_timeouts
= 0;
86 int so_cache_max_freed
= 0;
87 int cached_sock_count
= 0;
88 struct socket
*socket_cache_head
= 0;
89 struct socket
*socket_cache_tail
= 0;
90 u_long so_cache_time
= 0;
91 int so_cache_init_done
= 0;
92 struct zone
*so_cache_zone
;
93 extern int get_inpcb_str_size();
94 extern int get_tcp_str_size();
96 #include <machine/limits.h>
99 int socket_zone
= M_SOCKET
;
100 so_gen_t so_gencnt
; /* generation count for sockets */
102 MALLOC_DEFINE(M_SONAME
, "soname", "socket name");
103 MALLOC_DEFINE(M_PCB
, "pcb", "protocol control block");
105 #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETSOCK, 0)
106 #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETSOCK, 2)
107 #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETSOCK, 1)
108 #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETSOCK, 3)
109 #define DBG_FNC_SOSEND NETDBG_CODE(DBG_NETSOCK, (4 << 8) | 1)
110 #define DBG_FNC_SORECEIVE NETDBG_CODE(DBG_NETSOCK, (8 << 8))
111 #define DBG_FNC_SOSHUTDOWN NETDBG_CODE(DBG_NETSOCK, (9 << 8))
114 SYSCTL_DECL(_kern_ipc
);
116 static int somaxconn
= SOMAXCONN
;
117 SYSCTL_INT(_kern_ipc
, KIPC_SOMAXCONN
, somaxconn
, CTLFLAG_RW
, &somaxconn
,
120 /* Should we get a maximum also ??? */
121 static int sosendmaxchain
= 65536;
122 static int sosendminchain
= 16384;
123 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sosendminchain
, CTLFLAG_RW
, &sosendminchain
,
126 void so_cache_timer();
127 struct mbuf
*m_getpackets(int, int, int);
131 * Socket operation routines.
132 * These routines are called by the routines in
133 * sys_socket.c or from a system process, and
134 * implement the semantics of socket operations by
135 * switching out to the protocol specific routines.
143 so_cache_init_done
= 1;
145 timeout(so_cache_timer
, NULL
, (SO_CACHE_FLUSH_INTERVAL
* hz
));
146 str_size
= (vm_size_t
)( sizeof(struct socket
) + 4 +
147 get_inpcb_str_size() + 4 +
149 so_cache_zone
= zinit (str_size
, 120000*str_size
, 8192, "socache zone");
151 kprintf("cached_sock_alloc -- so_cache_zone size is %x\n", str_size
);
156 void cached_sock_alloc(so
, waitok
)
163 register u_long offset
;
167 if (cached_sock_count
) {
169 *so
= socket_cache_head
;
171 panic("cached_sock_alloc: cached sock is null");
173 socket_cache_head
= socket_cache_head
->cache_next
;
174 if (socket_cache_head
)
175 socket_cache_head
->cache_prev
= 0;
177 socket_cache_tail
= 0;
180 temp
= (*so
)->so_saved_pcb
;
181 bzero((caddr_t
)*so
, sizeof(struct socket
));
183 kprintf("cached_sock_alloc - retreiving cached sock %x - count == %d\n", *so
,
186 (*so
)->so_saved_pcb
= temp
;
190 kprintf("Allocating cached sock %x from memory\n", *so
);
195 *so
= (struct socket
*) zalloc(so_cache_zone
);
197 *so
= (struct socket
*) zalloc_noblock(so_cache_zone
);
202 bzero((caddr_t
)*so
, sizeof(struct socket
));
205 * Define offsets for extra structures into our single block of
206 * memory. Align extra structures on longword boundaries.
210 offset
= (u_long
) *so
;
211 offset
+= sizeof(struct socket
);
214 offset
&= 0xfffffffc;
216 (*so
)->so_saved_pcb
= (caddr_t
) offset
;
217 offset
+= get_inpcb_str_size();
220 offset
&= 0xfffffffc;
223 ((struct inpcb
*) (*so
)->so_saved_pcb
)->inp_saved_ppcb
= (caddr_t
) offset
;
225 kprintf("Allocating cached socket - %x, pcb=%x tcpcb=%x\n", *so
,
227 ((struct inpcb
*)(*so
)->so_saved_pcb
)->inp_saved_ppcb
);
231 (*so
)->cached_in_sock_layer
= 1;
235 void cached_sock_free(so
)
242 if (++cached_sock_count
> MAX_CACHED_SOCKETS
) {
246 kprintf("Freeing overflowed cached socket %x\n", so
);
248 zfree(so_cache_zone
, (vm_offset_t
) so
);
252 kprintf("Freeing socket %x into cache\n", so
);
254 if (so_cache_hw
< cached_sock_count
)
255 so_cache_hw
= cached_sock_count
;
257 so
->cache_next
= socket_cache_head
;
259 if (socket_cache_head
)
260 socket_cache_head
->cache_prev
= so
;
262 socket_cache_tail
= so
;
264 so
->cache_timestamp
= so_cache_time
;
265 socket_cache_head
= so
;
270 kprintf("Freed cached sock %x into cache - count is %d\n", so
, cached_sock_count
);
277 void so_cache_timer()
279 register struct socket
*p
;
281 register int n_freed
= 0;
282 boolean_t funnel_state
;
284 funnel_state
= thread_funnel_set(network_flock
, TRUE
);
290 while (p
= socket_cache_tail
)
292 if ((so_cache_time
- p
->cache_timestamp
) < SO_CACHE_TIME_LIMIT
)
297 if (socket_cache_tail
= p
->cache_prev
)
298 p
->cache_prev
->cache_next
= 0;
299 if (--cached_sock_count
== 0)
300 socket_cache_head
= 0;
304 zfree(so_cache_zone
, (vm_offset_t
) p
);
307 if (++n_freed
>= SO_CACHE_MAX_FREE_BATCH
)
309 so_cache_max_freed
++;
315 timeout(so_cache_timer
, NULL
, (SO_CACHE_FLUSH_INTERVAL
* hz
));
317 (void) thread_funnel_set(network_flock
, FALSE
);
320 #endif /* __APPLE__ */
323 * Get a socket structure from our zone, and initialize it.
324 * We don't implement `waitok' yet (see comments in uipc_domain.c).
325 * Note that it would probably be better to allocate socket
326 * and PCB at the same time, but I'm not convinced that all
327 * the protocols can be easily modified to do this.
330 soalloc(waitok
, dom
, type
)
337 if ((dom
== PF_INET
) && (type
== SOCK_STREAM
))
338 cached_sock_alloc(&so
, waitok
);
341 so
= _MALLOC_ZONE(sizeof(*so
), socket_zone
, M_WAITOK
);
343 bzero(so
, sizeof *so
);
345 /* XXX race condition for reentrant kernel */
348 so
->so_gencnt
= ++so_gencnt
;
349 so
->so_zone
= socket_zone
;
356 socreate(dom
, aso
, type
, proto
)
362 struct proc
*p
= current_proc();
363 register struct protosw
*prp
;
364 register struct socket
*so
;
365 register int error
= 0;
368 prp
= pffindproto(dom
, proto
, type
);
370 prp
= pffindtype(dom
, type
);
372 if (prp
== 0 || prp
->pr_usrreqs
->pru_attach
== 0)
373 return (EPROTONOSUPPORT
);
376 if (p
->p_prison
&& jail_socket_unixiproute_only
&&
377 prp
->pr_domain
->dom_family
!= PF_LOCAL
&&
378 prp
->pr_domain
->dom_family
!= PF_INET
&&
379 prp
->pr_domain
->dom_family
!= PF_ROUTE
) {
380 return (EPROTONOSUPPORT
);
384 if (prp
->pr_type
!= type
)
386 so
= soalloc(p
!= 0, dom
, type
);
390 TAILQ_INIT(&so
->so_incomp
);
391 TAILQ_INIT(&so
->so_comp
);
396 if (p
->p_ucred
->cr_uid
== 0)
397 so
->so_state
= SS_PRIV
;
399 so
->so_uid
= p
->p_ucred
->cr_uid
;
402 so
->so_cred
= p
->p_ucred
;
407 so
->so_rcv
.sb_flags
|= SB_RECV
; /* XXX */
408 if (prp
->pr_sfilter
.tqh_first
)
409 error
= sfilter_init(so
);
412 error
= (*prp
->pr_usrreqs
->pru_attach
)(so
, proto
, p
);
414 so
->so_state
|= SS_NOFDREF
;
419 prp
->pr_domain
->dom_refs
++;
420 so
->so_rcv
.sb_so
= so
->so_snd
.sb_so
= so
;
421 TAILQ_INIT(&so
->so_evlist
);
430 struct sockaddr
*nam
;
433 struct proc
*p
= current_proc();
438 error
= (*so
->so_proto
->pr_usrreqs
->pru_bind
)(so
, nam
, p
);
442 if (kp
->e_soif
&& kp
->e_soif
->sf_sobind
) {
443 error
= (*kp
->e_soif
->sf_sobind
)(so
, nam
, kp
);
445 if (error
== EJUSTRETURN
) {
464 so
->so_gencnt
= ++so_gencnt
;
467 if (so
->so_rcv
.sb_hiwat
)
468 (void)chgsbsize(so
->so_cred
->cr_uidinfo
,
469 &so
->so_rcv
.sb_hiwat
, 0, RLIM_INFINITY
);
470 if (so
->so_snd
.sb_hiwat
)
471 (void)chgsbsize(so
->so_cred
->cr_uidinfo
,
472 &so
->so_snd
.sb_hiwat
, 0, RLIM_INFINITY
);
474 if (so
->so_accf
!= NULL
) {
475 if (so
->so_accf
->so_accept_filter
!= NULL
&&
476 so
->so_accf
->so_accept_filter
->accf_destroy
!= NULL
) {
477 so
->so_accf
->so_accept_filter
->accf_destroy(so
);
479 if (so
->so_accf
->so_accept_filter_str
!= NULL
)
480 FREE(so
->so_accf
->so_accept_filter_str
, M_ACCF
);
481 FREE(so
->so_accf
, M_ACCF
);
485 zfreei(so
->so_zone
, so
);
487 if (so
->cached_in_sock_layer
== 1)
488 cached_sock_free(so
);
490 _FREE_ZONE(so
, sizeof(*so
), so
->so_zone
);
491 #endif /* __APPLE__ */
495 solisten(so
, backlog
)
496 register struct socket
*so
;
501 struct proc
*p
= current_proc();
505 error
= (*so
->so_proto
->pr_usrreqs
->pru_listen
)(so
, p
);
510 if (TAILQ_EMPTY(&so
->so_comp
))
511 so
->so_options
|= SO_ACCEPTCONN
;
512 if (backlog
< 0 || backlog
> somaxconn
)
514 so
->so_qlimit
= backlog
;
517 if (kp
->e_soif
&& kp
->e_soif
->sf_solisten
) {
518 error
= (*kp
->e_soif
->sf_solisten
)(so
, kp
);
520 if (error
== EJUSTRETURN
) {
538 register struct socket
*so
;
542 struct socket
*head
= so
->so_head
;
546 if (kp
->e_soif
&& kp
->e_soif
->sf_sofree
) {
547 error
= (*kp
->e_soif
->sf_sofree
)(so
, kp
);
549 selthreadclear(&so
->so_snd
.sb_sel
);
550 selthreadclear(&so
->so_rcv
.sb_sel
);
551 return; /* void fn */
557 if (so
->so_pcb
|| (so
->so_state
& SS_NOFDREF
) == 0) {
559 selthreadclear(&so
->so_snd
.sb_sel
);
560 selthreadclear(&so
->so_rcv
.sb_sel
);
565 if (so
->so_state
& SS_INCOMP
) {
566 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
568 } else if (so
->so_state
& SS_COMP
) {
570 * We must not decommission a socket that's
571 * on the accept(2) queue. If we do, then
572 * accept(2) may hang after select(2) indicated
573 * that the listening socket was ready.
576 selthreadclear(&so
->so_snd
.sb_sel
);
577 selthreadclear(&so
->so_rcv
.sb_sel
);
581 panic("sofree: not queued");
584 so
->so_state
&= ~SS_INCOMP
;
588 selthreadclear(&so
->so_snd
.sb_sel
);
589 sbrelease(&so
->so_snd
);
597 * Close a socket on last file table reference removal.
598 * Initiate disconnect if connected.
599 * Free socket when disconnect complete.
603 register struct socket
*so
;
605 int s
= splnet(); /* conservative */
610 funsetown(so
->so_sigio
);
614 if (kp
->e_soif
&& kp
->e_soif
->sf_soclose
) {
615 error
= (*kp
->e_soif
->sf_soclose
)(so
, kp
);
618 return((error
== EJUSTRETURN
) ? 0 : error
);
624 if (so
->so_options
& SO_ACCEPTCONN
) {
625 struct socket
*sp
, *sonext
;
627 sp
= TAILQ_FIRST(&so
->so_incomp
);
628 for (; sp
!= NULL
; sp
= sonext
) {
629 sonext
= TAILQ_NEXT(sp
, so_list
);
632 for (sp
= TAILQ_FIRST(&so
->so_comp
); sp
!= NULL
; sp
= sonext
) {
633 sonext
= TAILQ_NEXT(sp
, so_list
);
634 /* Dequeue from so_comp since sofree() won't do it */
635 TAILQ_REMOVE(&so
->so_comp
, sp
, so_list
);
637 sp
->so_state
&= ~SS_COMP
;
645 if (so
->so_state
& SS_ISCONNECTED
) {
646 if ((so
->so_state
& SS_ISDISCONNECTING
) == 0) {
647 error
= sodisconnect(so
);
651 if (so
->so_options
& SO_LINGER
) {
652 if ((so
->so_state
& SS_ISDISCONNECTING
) &&
653 (so
->so_state
& SS_NBIO
))
655 while (so
->so_state
& SS_ISCONNECTED
) {
656 error
= tsleep((caddr_t
)&so
->so_timeo
,
657 PSOCK
| PCATCH
, "soclos", so
->so_linger
);
665 int error2
= (*so
->so_proto
->pr_usrreqs
->pru_detach
)(so
);
670 if (so
->so_pcb
&& so
->so_state
& SS_NOFDREF
)
671 panic("soclose: NOFDREF");
672 so
->so_state
|= SS_NOFDREF
;
674 so
->so_proto
->pr_domain
->dom_refs
--;
683 * Must be called at splnet...
691 error
= (*so
->so_proto
->pr_usrreqs
->pru_abort
)(so
);
701 register struct socket
*so
;
702 struct sockaddr
**nam
;
708 if ((so
->so_state
& SS_NOFDREF
) == 0)
709 panic("soaccept: !NOFDREF");
710 so
->so_state
&= ~SS_NOFDREF
;
711 error
= (*so
->so_proto
->pr_usrreqs
->pru_accept
)(so
, nam
);
715 if (kp
->e_soif
&& kp
->e_soif
->sf_soaccept
) {
716 error
= (*kp
->e_soif
->sf_soaccept
)(so
, nam
, kp
);
718 if (error
== EJUSTRETURN
) {
737 register struct socket
*so
;
738 struct sockaddr
*nam
;
743 struct proc
*p
= current_proc();
746 if (so
->so_options
& SO_ACCEPTCONN
)
750 * If protocol is connection-based, can only connect once.
751 * Otherwise, if connected, try to disconnect first.
752 * This allows user to disconnect by connecting to, e.g.,
755 if (so
->so_state
& (SS_ISCONNECTED
|SS_ISCONNECTING
) &&
756 ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) ||
757 (error
= sodisconnect(so
))))
761 * Run connect filter before calling protocol:
762 * - non-blocking connect returns before completion;
763 * - allows filters to modify address.
767 if (kp
->e_soif
&& kp
->e_soif
->sf_soconnect
) {
768 error
= (*kp
->e_soif
->sf_soconnect
)(so
, nam
, kp
);
770 if (error
== EJUSTRETURN
) {
779 error
= (*so
->so_proto
->pr_usrreqs
->pru_connect
)(so
, nam
, p
);
787 register struct socket
*so1
;
794 error
= (*so1
->so_proto
->pr_usrreqs
->pru_connect2
)(so1
, so2
);
796 kp
= sotokextcb(so1
);
798 if (kp
->e_soif
&& kp
->e_soif
->sf_soconnect2
) {
799 error
= (*kp
->e_soif
->sf_soconnect2
)(so1
, so2
, kp
);
801 if (error
== EJUSTRETURN
) {
818 register struct socket
*so
;
824 if ((so
->so_state
& SS_ISCONNECTED
) == 0) {
828 if (so
->so_state
& SS_ISDISCONNECTING
) {
832 error
= (*so
->so_proto
->pr_usrreqs
->pru_disconnect
)(so
);
836 if (kp
->e_soif
&& kp
->e_soif
->sf_sodisconnect
) {
837 error
= (*kp
->e_soif
->sf_sodisconnect
)(so
, kp
);
839 if (error
== EJUSTRETURN
) {
856 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_DONTWAIT : M_WAIT)
859 * If send must go all at once and message is larger than
860 * send buffering, then hard error.
861 * Lock against other senders.
862 * If must go all at once and not enough room now, then
863 * inform user that this would block and do nothing.
864 * Otherwise, if nonblocking, send as much as possible.
865 * The data to be sent is described by "uio" if nonzero,
866 * otherwise by the mbuf chain "top" (which must be null
867 * if uio is not). Data provided in mbuf chain must be small
868 * enough to send all at once.
870 * Returns nonzero on error, timeout or signal; callers
871 * must check for short counts if EINTR/ERESTART are returned.
872 * Data and control buffers are freed on return.
874 * MSG_HOLD: go thru most of sosend(), but just enqueue the mbuf
875 * MSG_SEND: go thru as for MSG_HOLD on current fragment, then
876 * point at the mbuf chain being constructed and go from there.
879 sosend(so
, addr
, uio
, top
, control
, flags
)
880 register struct socket
*so
;
881 struct sockaddr
*addr
;
884 struct mbuf
*control
;
889 register struct mbuf
*m
, *freelist
= NULL
;
890 register long space
, len
, resid
;
891 int clen
= 0, error
, s
, dontroute
, mlen
, sendflags
;
892 int atomic
= sosendallatonce(so
) || top
;
893 struct proc
*p
= current_proc();
897 resid
= uio
->uio_resid
;
899 resid
= top
->m_pkthdr
.len
;
901 KERNEL_DEBUG((DBG_FNC_SOSEND
| DBG_FUNC_START
),
906 so
->so_snd
.sb_hiwat
);
909 * In theory resid should be unsigned.
910 * However, space must be signed, as it might be less than 0
911 * if we over-committed, and we must use a signed comparison
912 * of space and resid. On the other hand, a negative resid
913 * causes us to loop sending 0-length segments to the protocol.
915 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
916 * type sockets since that's an error.
918 if (resid
< 0 || so
->so_type
== SOCK_STREAM
&& (flags
& MSG_EOR
)) {
924 (flags
& MSG_DONTROUTE
) && (so
->so_options
& SO_DONTROUTE
) == 0 &&
925 (so
->so_proto
->pr_flags
& PR_ATOMIC
);
927 p
->p_stats
->p_ru
.ru_msgsnd
++;
929 clen
= control
->m_len
;
930 #define snderr(errno) { error = errno; splx(s); goto release; }
933 error
= sblock(&so
->so_snd
, SBLOCKWAIT(flags
));
938 if (so
->so_state
& SS_CANTSENDMORE
)
941 error
= so
->so_error
;
946 if ((so
->so_state
& SS_ISCONNECTED
) == 0) {
948 * `sendto' and `sendmsg' is allowed on a connection-
949 * based socket if it supports implied connect.
950 * Return ENOTCONN if not connected and no address is
953 if ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) &&
954 (so
->so_proto
->pr_flags
& PR_IMPLOPCL
) == 0) {
955 if ((so
->so_state
& SS_ISCONFIRMING
) == 0 &&
956 !(resid
== 0 && clen
!= 0))
958 } else if (addr
== 0 && !(flags
&MSG_HOLD
))
959 snderr(so
->so_proto
->pr_flags
& PR_CONNREQUIRED
?
960 ENOTCONN
: EDESTADDRREQ
);
962 space
= sbspace(&so
->so_snd
);
965 if ((atomic
&& resid
> so
->so_snd
.sb_hiwat
) ||
966 clen
> so
->so_snd
.sb_hiwat
)
968 if (space
< resid
+ clen
&& uio
&&
969 (atomic
|| space
< so
->so_snd
.sb_lowat
|| space
< clen
)) {
970 if (so
->so_state
& SS_NBIO
)
972 sbunlock(&so
->so_snd
);
973 error
= sbwait(&so
->so_snd
);
986 * Data is prepackaged in "top".
990 top
->m_flags
|= M_EOR
;
992 boolean_t dropped_funnel
= FALSE
;
996 bytes_to_copy
= min(resid
, space
);
998 if (sosendminchain
> 0) {
999 if (bytes_to_copy
>= sosendminchain
) {
1000 dropped_funnel
= TRUE
;
1001 (void)thread_funnel_set(network_flock
, FALSE
);
1005 chainlength
= sosendmaxchain
;
1009 if (bytes_to_copy
>= MINCLSIZE
) {
1011 * try to maintain a local cache of mbuf clusters needed to complete this write
1012 * the list is further limited to the number that are currently needed to fill the socket
1013 * this mechanism allows a large number of mbufs/clusters to be grabbed under a single
1014 * mbuf lock... if we can't get any clusters, than fall back to trying for mbufs
1015 * if we fail early (or miscalcluate the number needed) make sure to release any clusters
1016 * we haven't yet consumed.
1018 if ((m
= freelist
) == NULL
) {
1020 int hdrs_needed
= 0;
1024 num_needed
= bytes_to_copy
/ MCLBYTES
;
1026 if ((bytes_to_copy
- (num_needed
* MCLBYTES
)) >= MINCLSIZE
)
1029 if ((freelist
= m_getpackets(num_needed
, hdrs_needed
, M_WAIT
)) == NULL
)
1030 goto getpackets_failed
;
1033 freelist
= m
->m_next
;
1037 len
= min(mlen
, bytes_to_copy
);
1041 MGETHDR(m
, M_WAIT
, MT_DATA
);
1043 m
->m_pkthdr
.len
= 0;
1044 m
->m_pkthdr
.rcvif
= (struct ifnet
*)0;
1046 MGET(m
, M_WAIT
, MT_DATA
);
1049 len
= min(mlen
, bytes_to_copy
);
1051 * For datagram protocols, leave room
1052 * for protocol headers in first mbuf.
1054 if (atomic
&& top
== 0 && len
< mlen
)
1061 error
= uiomove(mtod(m
, caddr_t
), (int)len
, uio
);
1063 resid
= uio
->uio_resid
;
1067 top
->m_pkthdr
.len
+= len
;
1072 if (flags
& MSG_EOR
)
1073 top
->m_flags
|= M_EOR
;
1076 bytes_to_copy
= min(resid
, space
);
1078 } while (space
> 0 && (chainlength
< sosendmaxchain
|| atomic
|| resid
< MINCLSIZE
));
1080 if (dropped_funnel
== TRUE
)
1081 (void)thread_funnel_set(network_flock
, TRUE
);
1086 if (flags
& (MSG_HOLD
|MSG_SEND
))
1087 { /* Enqueue for later, go away if HOLD */
1088 register struct mbuf
*mb1
;
1089 if (so
->so_temp
&& (flags
& MSG_FLUSH
))
1090 { m_freem(so
->so_temp
);
1094 so
->so_tail
->m_next
= top
;
1108 so
->so_options
|= SO_DONTROUTE
;
1109 s
= splnet(); /* XXX */
1110 /* Compute flags here, for pru_send and NKEs */
1111 sendflags
= (flags
& MSG_OOB
) ? PRUS_OOB
:
1113 * If the user set MSG_EOF, the protocol
1114 * understands this flag and nothing left to
1115 * send then use PRU_SEND_EOF instead of PRU_SEND.
1117 ((flags
& MSG_EOF
) &&
1118 (so
->so_proto
->pr_flags
& PR_IMPLOPCL
) &&
1121 /* If there is more to send set PRUS_MORETOCOME */
1122 (resid
> 0 && space
> 0) ? PRUS_MORETOCOME
: 0;
1123 kp
= sotokextcb(so
);
1125 { if (kp
->e_soif
&& kp
->e_soif
->sf_sosend
) {
1126 error
= (*kp
->e_soif
->sf_sosend
)(so
, &addr
,
1133 if (error
== EJUSTRETURN
) {
1134 sbunlock(&so
->so_snd
);
1137 m_freem_list(freelist
);
1146 error
= (*so
->so_proto
->pr_usrreqs
->pru_send
)(so
,
1147 sendflags
, top
, addr
, control
, p
);
1150 if (flags
& MSG_SEND
)
1154 so
->so_options
&= ~SO_DONTROUTE
;
1161 } while (resid
&& space
> 0);
1165 sbunlock(&so
->so_snd
);
1172 m_freem_list(freelist
);
1174 KERNEL_DEBUG(DBG_FNC_SOSEND
| DBG_FUNC_END
,
1185 * Implement receive operations on a socket.
1186 * We depend on the way that records are added to the sockbuf
1187 * by sbappend*. In particular, each record (mbufs linked through m_next)
1188 * must begin with an address if the protocol so specifies,
1189 * followed by an optional mbuf or mbufs containing ancillary data,
1190 * and then zero or more mbufs of data.
1191 * In order to avoid blocking network interrupts for the entire time here,
1192 * we splx() while doing the actual copy to user space.
1193 * Although the sockbuf is locked, new data may still be appended,
1194 * and thus we must maintain consistency of the sockbuf during that time.
1196 * The caller may receive the data as a single mbuf chain by supplying
1197 * an mbuf **mp0 for use in returning the chain. The uio is then used
1198 * only for the count in uio_resid.
1201 soreceive(so
, psa
, uio
, mp0
, controlp
, flagsp
)
1202 register struct socket
*so
;
1203 struct sockaddr
**psa
;
1206 struct mbuf
**controlp
;
1209 register struct mbuf
*m
, **mp
;
1210 register struct mbuf
*free_list
, *ml
;
1211 register int flags
, len
, error
, s
, offset
;
1212 struct protosw
*pr
= so
->so_proto
;
1213 struct mbuf
*nextrecord
;
1215 int orig_resid
= uio
->uio_resid
;
1218 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_START
,
1222 so
->so_rcv
.sb_lowat
,
1223 so
->so_rcv
.sb_hiwat
);
1225 kp
= sotokextcb(so
);
1227 if (kp
->e_soif
&& kp
->e_soif
->sf_soreceive
) {
1228 error
= (*kp
->e_soif
->sf_soreceive
)(so
, psa
, &uio
,
1232 return((error
== EJUSTRETURN
) ? 0 : error
);
1243 flags
= *flagsp
&~ MSG_EOR
;
1247 * When SO_WANTOOBFLAG is set we try to get out-of-band data
1248 * regardless of the flags argument. Here is the case were
1249 * out-of-band data is not inline.
1251 if ((flags
& MSG_OOB
) ||
1252 ((so
->so_options
& SO_WANTOOBFLAG
) != 0 &&
1253 (so
->so_options
& SO_OOBINLINE
) == 0 &&
1254 (so
->so_oobmark
|| (so
->so_state
& SS_RCVATMARK
)))) {
1255 m
= m_get(M_WAIT
, MT_DATA
);
1258 error
= (*pr
->pr_usrreqs
->pru_rcvoob
)(so
, m
, flags
& MSG_PEEK
);
1262 error
= uiomove(mtod(m
, caddr_t
),
1263 (int) min(uio
->uio_resid
, m
->m_len
), uio
);
1265 } while (uio
->uio_resid
&& error
== 0 && m
);
1270 if ((so
->so_options
& SO_WANTOOBFLAG
) != 0) {
1271 if (error
== EWOULDBLOCK
|| error
== EINVAL
) {
1273 * Let's try to get normal data:
1274 * EWOULDBLOCK: out-of-band data not receive yet;
1275 * EINVAL: out-of-band data already read.
1279 } else if (error
== 0 && flagsp
)
1282 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
, error
,0,0,0,0);
1288 *mp
= (struct mbuf
*)0;
1289 if (so
->so_state
& SS_ISCONFIRMING
&& uio
->uio_resid
)
1290 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, 0);
1293 error
= sblock(&so
->so_rcv
, SBLOCKWAIT(flags
));
1295 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
, error
,0,0,0,0);
1300 m
= so
->so_rcv
.sb_mb
;
1302 * If we have less data than requested, block awaiting more
1303 * (subject to any timeout) if:
1304 * 1. the current count is less than the low water mark, or
1305 * 2. MSG_WAITALL is set, and it is possible to do the entire
1306 * receive operation at once if we block (resid <= hiwat).
1307 * 3. MSG_DONTWAIT is not set
1308 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1309 * we have to do the receive in sections, and thus risk returning
1310 * a short count if a timeout or signal occurs after we start.
1312 if (m
== 0 || (((flags
& MSG_DONTWAIT
) == 0 &&
1313 so
->so_rcv
.sb_cc
< uio
->uio_resid
) &&
1314 (so
->so_rcv
.sb_cc
< so
->so_rcv
.sb_lowat
||
1315 ((flags
& MSG_WAITALL
) && uio
->uio_resid
<= so
->so_rcv
.sb_hiwat
)) &&
1316 m
->m_nextpkt
== 0 && (pr
->pr_flags
& PR_ATOMIC
) == 0)) {
1317 KASSERT(m
!= 0 || !so
->so_rcv
.sb_cc
, ("receive 1"));
1321 error
= so
->so_error
;
1322 if ((flags
& MSG_PEEK
) == 0)
1326 if (so
->so_state
& SS_CANTRCVMORE
) {
1332 for (; m
; m
= m
->m_next
)
1333 if (m
->m_type
== MT_OOBDATA
|| (m
->m_flags
& M_EOR
)) {
1334 m
= so
->so_rcv
.sb_mb
;
1337 if ((so
->so_state
& (SS_ISCONNECTED
|SS_ISCONNECTING
)) == 0 &&
1338 (so
->so_proto
->pr_flags
& PR_CONNREQUIRED
)) {
1342 if (uio
->uio_resid
== 0)
1344 if ((so
->so_state
& SS_NBIO
) || (flags
& MSG_DONTWAIT
)) {
1345 error
= EWOULDBLOCK
;
1348 sbunlock(&so
->so_rcv
);
1350 printf("Waiting for socket data\n");
1351 error
= sbwait(&so
->so_rcv
);
1353 printf("SORECEIVE - sbwait returned %d\n", error
);
1356 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
, error
,0,0,0,0);
1364 uio
->uio_procp
->p_stats
->p_ru
.ru_msgrcv
++;
1366 nextrecord
= m
->m_nextpkt
;
1367 if ((pr
->pr_flags
& PR_ADDR
) && m
->m_type
== MT_SONAME
) {
1368 KASSERT(m
->m_type
== MT_SONAME
, ("receive 1a"));
1371 *psa
= dup_sockaddr(mtod(m
, struct sockaddr
*),
1373 if (flags
& MSG_PEEK
) {
1376 sbfree(&so
->so_rcv
, m
);
1377 MFREE(m
, so
->so_rcv
.sb_mb
);
1378 m
= so
->so_rcv
.sb_mb
;
1381 while (m
&& m
->m_type
== MT_CONTROL
&& error
== 0) {
1382 if (flags
& MSG_PEEK
) {
1384 *controlp
= m_copy(m
, 0, m
->m_len
);
1387 sbfree(&so
->so_rcv
, m
);
1389 if (pr
->pr_domain
->dom_externalize
&&
1390 mtod(m
, struct cmsghdr
*)->cmsg_type
==
1392 error
= (*pr
->pr_domain
->dom_externalize
)(m
);
1394 so
->so_rcv
.sb_mb
= m
->m_next
;
1396 m
= so
->so_rcv
.sb_mb
;
1398 MFREE(m
, so
->so_rcv
.sb_mb
);
1399 m
= so
->so_rcv
.sb_mb
;
1404 controlp
= &(*controlp
)->m_next
;
1408 if ((flags
& MSG_PEEK
) == 0)
1409 m
->m_nextpkt
= nextrecord
;
1411 if (type
== MT_OOBDATA
)
1418 ml
= (struct mbuf
*)0;
1420 while (m
&& uio
->uio_resid
> 0 && error
== 0) {
1421 if (m
->m_type
== MT_OOBDATA
) {
1422 if (type
!= MT_OOBDATA
)
1424 } else if (type
== MT_OOBDATA
)
1428 * This assertion needs rework. The trouble is Appletalk is uses many
1429 * mbuf types (NOT listed in mbuf.h!) which will trigger this panic.
1430 * For now just remove the assertion... CSM 9/98
1433 KASSERT(m
->m_type
== MT_DATA
|| m
->m_type
== MT_HEADER
,
1437 * Make sure to allways set MSG_OOB event when getting
1438 * out of band data inline.
1440 if ((so
->so_options
& SO_WANTOOBFLAG
) != 0 &&
1441 (so
->so_options
& SO_OOBINLINE
) != 0 &&
1442 (so
->so_state
& SS_RCVATMARK
) != 0) {
1446 so
->so_state
&= ~SS_RCVATMARK
;
1447 len
= uio
->uio_resid
;
1448 if (so
->so_oobmark
&& len
> so
->so_oobmark
- offset
)
1449 len
= so
->so_oobmark
- offset
;
1450 if (len
> m
->m_len
- moff
)
1451 len
= m
->m_len
- moff
;
1453 * If mp is set, just pass back the mbufs.
1454 * Otherwise copy them out via the uio, then free.
1455 * Sockbuf must be consistent here (points to current mbuf,
1456 * it points to next record) when we drop priority;
1457 * we must note any additions to the sockbuf when we
1458 * block interrupts again.
1462 error
= uiomove(mtod(m
, caddr_t
) + moff
, (int)len
, uio
);
1467 uio
->uio_resid
-= len
;
1468 if (len
== m
->m_len
- moff
) {
1469 if (m
->m_flags
& M_EOR
)
1471 if (flags
& MSG_PEEK
) {
1475 nextrecord
= m
->m_nextpkt
;
1476 sbfree(&so
->so_rcv
, m
);
1480 so
->so_rcv
.sb_mb
= m
= m
->m_next
;
1481 *mp
= (struct mbuf
*)0;
1487 so
->so_rcv
.sb_mb
= m
= m
->m_next
;
1491 m
->m_nextpkt
= nextrecord
;
1494 if (flags
& MSG_PEEK
)
1498 *mp
= m_copym(m
, 0, len
, M_WAIT
);
1501 so
->so_rcv
.sb_cc
-= len
;
1504 if (so
->so_oobmark
) {
1505 if ((flags
& MSG_PEEK
) == 0) {
1506 so
->so_oobmark
-= len
;
1507 if (so
->so_oobmark
== 0) {
1508 so
->so_state
|= SS_RCVATMARK
;
1509 postevent(so
, 0, EV_OOB
);
1514 if (offset
== so
->so_oobmark
)
1518 if (flags
& MSG_EOR
)
1521 * If the MSG_WAITALL flag is set (for non-atomic socket),
1522 * we must not quit until "uio->uio_resid == 0" or an error
1523 * termination. If a signal/timeout occurs, return
1524 * with a short count but without error.
1525 * Keep sockbuf locked against other readers.
1527 while (flags
& MSG_WAITALL
&& m
== 0 && uio
->uio_resid
> 0 &&
1528 !sosendallatonce(so
) && !nextrecord
) {
1529 if (so
->so_error
|| so
->so_state
& SS_CANTRCVMORE
)
1533 m_freem_list(free_list
);
1535 error
= sbwait(&so
->so_rcv
);
1537 sbunlock(&so
->so_rcv
);
1539 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
, 0,0,0,0,0);
1542 m
= so
->so_rcv
.sb_mb
;
1544 nextrecord
= m
->m_nextpkt
;
1547 ml
= (struct mbuf
*)0;
1551 m_freem_list(free_list
);
1554 if (m
&& pr
->pr_flags
& PR_ATOMIC
) {
1556 if (so
->so_options
& SO_DONTTRUNC
)
1557 flags
|= MSG_RCVMORE
;
1561 if ((flags
& MSG_PEEK
) == 0)
1562 (void) sbdroprecord(&so
->so_rcv
);
1567 if ((flags
& MSG_PEEK
) == 0) {
1569 so
->so_rcv
.sb_mb
= nextrecord
;
1570 if (pr
->pr_flags
& PR_WANTRCVD
&& so
->so_pcb
)
1571 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, flags
);
1574 if ((so
->so_options
& SO_WANTMORE
) && so
->so_rcv
.sb_cc
> 0)
1575 flags
|= MSG_HAVEMORE
;
1577 if (orig_resid
== uio
->uio_resid
&& orig_resid
&&
1578 (flags
& MSG_EOR
) == 0 && (so
->so_state
& SS_CANTRCVMORE
) == 0) {
1579 sbunlock(&so
->so_rcv
);
1587 sbunlock(&so
->so_rcv
);
1590 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
,
1602 register struct socket
*so
;
1605 register struct protosw
*pr
= so
->so_proto
;
1610 KERNEL_DEBUG(DBG_FNC_SOSHUTDOWN
| DBG_FUNC_START
, 0,0,0,0,0);
1611 kp
= sotokextcb(so
);
1613 if (kp
->e_soif
&& kp
->e_soif
->sf_soshutdown
) {
1614 ret
= (*kp
->e_soif
->sf_soshutdown
)(so
, how
, kp
);
1616 return((ret
== EJUSTRETURN
) ? 0 : ret
);
1621 if (how
!= SHUT_WR
) {
1623 postevent(so
, 0, EV_RCLOSED
);
1625 if (how
!= SHUT_RD
) {
1626 ret
= ((*pr
->pr_usrreqs
->pru_shutdown
)(so
));
1627 postevent(so
, 0, EV_WCLOSED
);
1628 KERNEL_DEBUG(DBG_FNC_SOSHUTDOWN
| DBG_FUNC_END
, 0,0,0,0,0);
1632 KERNEL_DEBUG(DBG_FNC_SOSHUTDOWN
| DBG_FUNC_END
, 0,0,0,0,0);
1638 register struct socket
*so
;
1640 register struct sockbuf
*sb
= &so
->so_rcv
;
1641 register struct protosw
*pr
= so
->so_proto
;
1642 register int s
, error
;
1646 kp
= sotokextcb(so
);
1648 if (kp
->e_soif
&& kp
->e_soif
->sf_sorflush
) {
1649 if ((*kp
->e_soif
->sf_sorflush
)(so
, kp
))
1655 sb
->sb_flags
|= SB_NOINTR
;
1656 (void) sblock(sb
, M_WAIT
);
1661 selthreadclear(&sb
->sb_sel
);
1664 bzero((caddr_t
)sb
, sizeof (*sb
));
1666 if (asb
.sb_flags
& SB_KNOTE
) {
1667 sb
->sb_sel
.si_note
= asb
.sb_sel
.si_note
;
1668 sb
->sb_flags
= SB_KNOTE
;
1672 if (pr
->pr_flags
& PR_RIGHTS
&& pr
->pr_domain
->dom_dispose
)
1673 (*pr
->pr_domain
->dom_dispose
)(asb
.sb_mb
);
1679 * Perhaps this routine, and sooptcopyout(), below, ought to come in
1680 * an additional variant to handle the case where the option value needs
1681 * to be some kind of integer, but not a specific size.
1682 * In addition to their use here, these functions are also called by the
1683 * protocol-level pr_ctloutput() routines.
1686 sooptcopyin(sopt
, buf
, len
, minlen
)
1687 struct sockopt
*sopt
;
1695 * If the user gives us more than we wanted, we ignore it,
1696 * but if we don't get the minimum length the caller
1697 * wants, we return EINVAL. On success, sopt->sopt_valsize
1698 * is set to however much we actually retrieved.
1700 if ((valsize
= sopt
->sopt_valsize
) < minlen
)
1703 sopt
->sopt_valsize
= valsize
= len
;
1705 if (sopt
->sopt_p
!= 0)
1706 return (copyin(sopt
->sopt_val
, buf
, valsize
));
1708 bcopy(sopt
->sopt_val
, buf
, valsize
);
1715 struct sockopt
*sopt
;
1723 if (sopt
->sopt_dir
!= SOPT_SET
) {
1724 sopt
->sopt_dir
= SOPT_SET
;
1727 kp
= sotokextcb(so
);
1729 if (kp
->e_soif
&& kp
->e_soif
->sf_socontrol
) {
1730 error
= (*kp
->e_soif
->sf_socontrol
)(so
, sopt
, kp
);
1732 return((error
== EJUSTRETURN
) ? 0 : error
);
1738 if (sopt
->sopt_level
!= SOL_SOCKET
) {
1739 if (so
->so_proto
&& so
->so_proto
->pr_ctloutput
)
1740 return ((*so
->so_proto
->pr_ctloutput
)
1742 error
= ENOPROTOOPT
;
1744 switch (sopt
->sopt_name
) {
1746 error
= sooptcopyin(sopt
, &l
, sizeof l
, sizeof l
);
1750 so
->so_linger
= l
.l_linger
;
1752 so
->so_options
|= SO_LINGER
;
1754 so
->so_options
&= ~SO_LINGER
;
1760 case SO_USELOOPBACK
:
1769 case SO_WANTOOBFLAG
:
1771 error
= sooptcopyin(sopt
, &optval
, sizeof optval
,
1776 so
->so_options
|= sopt
->sopt_name
;
1778 so
->so_options
&= ~sopt
->sopt_name
;
1785 error
= sooptcopyin(sopt
, &optval
, sizeof optval
,
1791 * Values < 1 make no sense for any of these
1792 * options, so disallow them.
1799 switch (sopt
->sopt_name
) {
1802 if (sbreserve(sopt
->sopt_name
== SO_SNDBUF
?
1803 &so
->so_snd
: &so
->so_rcv
,
1804 (u_long
) optval
) == 0) {
1811 * Make sure the low-water is never greater than
1815 so
->so_snd
.sb_lowat
=
1816 (optval
> so
->so_snd
.sb_hiwat
) ?
1817 so
->so_snd
.sb_hiwat
: optval
;
1820 so
->so_rcv
.sb_lowat
=
1821 (optval
> so
->so_rcv
.sb_hiwat
) ?
1822 so
->so_rcv
.sb_hiwat
: optval
;
1829 error
= sooptcopyin(sopt
, &tv
, sizeof tv
,
1834 /* assert(hz > 0); */
1835 if (tv
.tv_sec
< 0 || tv
.tv_sec
> SHRT_MAX
/ hz
||
1836 tv
.tv_usec
< 0 || tv
.tv_usec
>= 1000000) {
1840 /* assert(tick > 0); */
1841 /* assert(ULONG_MAX - SHRT_MAX >= 1000000); */
1843 long tmp
= (u_long
)(tv
.tv_sec
* hz
) + tv
.tv_usec
/ tick
;
1844 if (tmp
> SHRT_MAX
) {
1851 switch (sopt
->sopt_name
) {
1853 so
->so_snd
.sb_timeo
= val
;
1856 so
->so_rcv
.sb_timeo
= val
;
1864 struct NFDescriptor
*nf1
, *nf2
= NULL
;
1866 error
= sooptcopyin(sopt
, &nke
,
1867 sizeof nke
, sizeof nke
);
1871 error
= nke_insert(so
, &nke
);
1876 error
= sooptcopyin(sopt
, &optval
, sizeof optval
,
1881 so
->so_flags
|= SOF_NOSIGPIPE
;
1883 so
->so_flags
&= ~SOF_NOSIGPIPE
;
1888 error
= ENOPROTOOPT
;
1891 if (error
== 0 && so
->so_proto
&& so
->so_proto
->pr_ctloutput
) {
1892 (void) ((*so
->so_proto
->pr_ctloutput
)
1900 /* Helper routine for getsockopt */
1902 sooptcopyout(sopt
, buf
, len
)
1903 struct sockopt
*sopt
;
1913 * Documented get behavior is that we always return a value,
1914 * possibly truncated to fit in the user's buffer.
1915 * Traditional behavior is that we always tell the user
1916 * precisely how much we copied, rather than something useful
1917 * like the total amount we had available for her.
1918 * Note that this interface is not idempotent; the entire answer must
1919 * generated ahead of time.
1921 valsize
= min(len
, sopt
->sopt_valsize
);
1922 sopt
->sopt_valsize
= valsize
;
1923 if (sopt
->sopt_val
!= 0) {
1924 if (sopt
->sopt_p
!= 0)
1925 error
= copyout(buf
, sopt
->sopt_val
, valsize
);
1927 bcopy(buf
, sopt
->sopt_val
, valsize
);
1935 struct sockopt
*sopt
;
1943 if (sopt
->sopt_dir
!= SOPT_GET
) {
1944 sopt
->sopt_dir
= SOPT_GET
;
1947 kp
= sotokextcb(so
);
1949 if (kp
->e_soif
&& kp
->e_soif
->sf_socontrol
) {
1950 error
= (*kp
->e_soif
->sf_socontrol
)(so
, sopt
, kp
);
1952 return((error
== EJUSTRETURN
) ? 0 : error
);
1958 if (sopt
->sopt_level
!= SOL_SOCKET
) {
1959 if (so
->so_proto
&& so
->so_proto
->pr_ctloutput
) {
1960 return ((*so
->so_proto
->pr_ctloutput
)
1963 return (ENOPROTOOPT
);
1965 switch (sopt
->sopt_name
) {
1967 l
.l_onoff
= so
->so_options
& SO_LINGER
;
1968 l
.l_linger
= so
->so_linger
;
1969 error
= sooptcopyout(sopt
, &l
, sizeof l
);
1972 case SO_USELOOPBACK
:
1984 case SO_WANTOOBFLAG
:
1986 optval
= so
->so_options
& sopt
->sopt_name
;
1988 error
= sooptcopyout(sopt
, &optval
, sizeof optval
);
1992 optval
= so
->so_type
;
2002 m1
= so
->so_rcv
.sb_mb
;
2003 if (so
->so_proto
->pr_flags
& PR_ATOMIC
)
2006 kprintf("SKT CC: %d\n", so
->so_rcv
.sb_cc
);
2009 if (m1
->m_type
== MT_DATA
)
2010 pkt_total
+= m1
->m_len
;
2012 kprintf("CNT: %d/%d\n", m1
->m_len
, pkt_total
);
2018 optval
= so
->so_rcv
.sb_cc
;
2020 kprintf("RTN: %d\n", optval
);
2026 optval
= so
->so_error
;
2031 optval
= so
->so_snd
.sb_hiwat
;
2035 optval
= so
->so_rcv
.sb_hiwat
;
2039 optval
= so
->so_snd
.sb_lowat
;
2043 optval
= so
->so_rcv
.sb_lowat
;
2048 optval
= (sopt
->sopt_name
== SO_SNDTIMEO
?
2049 so
->so_snd
.sb_timeo
: so
->so_rcv
.sb_timeo
);
2051 tv
.tv_sec
= optval
/ hz
;
2052 tv
.tv_usec
= (optval
% hz
) * tick
;
2053 error
= sooptcopyout(sopt
, &tv
, sizeof tv
);
2057 optval
= (so
->so_flags
& SOF_NOSIGPIPE
);
2061 error
= ENOPROTOOPT
;
2070 * Network filter support
2072 /* Run the list of filters, creating extension control blocks */
2073 sfilter_init(register struct socket
*so
)
2074 { struct kextcb
*kp
, **kpp
;
2075 struct protosw
*prp
;
2076 struct NFDescriptor
*nfp
;
2079 nfp
= prp
->pr_sfilter
.tqh_first
; /* non-null */
2083 { MALLOC(kp
, struct kextcb
*, sizeof(*kp
),
2086 return(ENOBUFS
); /* so_free will clean up */
2092 kp
->e_soif
= nfp
->nf_soif
;
2093 kp
->e_sout
= nfp
->nf_soutil
;
2095 * Ignore return value for create
2096 * Everyone gets a chance at startup
2098 if (kp
->e_soif
&& kp
->e_soif
->sf_socreate
)
2099 (*kp
->e_soif
->sf_socreate
)(so
, prp
, kp
);
2100 nfp
= nfp
->nf_next
.tqe_next
;
2106 * Run the list of filters, freeing extension control blocks
2107 * Assumes the soif/soutil blocks have been handled.
2109 sfilter_term(struct socket
*so
)
2110 { struct kextcb
*kp
, *kp1
;
2116 * Ignore return code on termination; everyone must
2119 if (kp
->e_soif
&& kp
->e_soif
->sf_sofree
)
2120 kp
->e_soif
->sf_sofree(so
, kp
);
2128 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2130 soopt_getm(struct sockopt
*sopt
, struct mbuf
**mp
)
2132 struct mbuf
*m
, *m_prev
;
2133 int sopt_size
= sopt
->sopt_valsize
;
2135 MGET(m
, sopt
->sopt_p
? M_WAIT
: M_DONTWAIT
, MT_DATA
);
2138 if (sopt_size
> MLEN
) {
2139 MCLGET(m
, sopt
->sopt_p
? M_WAIT
: M_DONTWAIT
);
2140 if ((m
->m_flags
& M_EXT
) == 0) {
2144 m
->m_len
= min(MCLBYTES
, sopt_size
);
2146 m
->m_len
= min(MLEN
, sopt_size
);
2148 sopt_size
-= m
->m_len
;
2153 MGET(m
, sopt
->sopt_p
? M_WAIT
: M_DONTWAIT
, MT_DATA
);
2158 if (sopt_size
> MLEN
) {
2159 MCLGET(m
, sopt
->sopt_p
? M_WAIT
: M_DONTWAIT
);
2160 if ((m
->m_flags
& M_EXT
) == 0) {
2164 m
->m_len
= min(MCLBYTES
, sopt_size
);
2166 m
->m_len
= min(MLEN
, sopt_size
);
2168 sopt_size
-= m
->m_len
;
2175 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2177 soopt_mcopyin(struct sockopt
*sopt
, struct mbuf
*m
)
2179 struct mbuf
*m0
= m
;
2181 if (sopt
->sopt_val
== NULL
)
2183 while (m
!= NULL
&& sopt
->sopt_valsize
>= m
->m_len
) {
2184 if (sopt
->sopt_p
!= NULL
) {
2187 error
= copyin(sopt
->sopt_val
, mtod(m
, char *),
2194 bcopy(sopt
->sopt_val
, mtod(m
, char *), m
->m_len
);
2195 sopt
->sopt_valsize
-= m
->m_len
;
2196 (caddr_t
)sopt
->sopt_val
+= m
->m_len
;
2199 if (m
!= NULL
) /* should be allocated enoughly at ip6_sooptmcopyin() */
2200 panic("soopt_mcopyin");
2204 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2206 soopt_mcopyout(struct sockopt
*sopt
, struct mbuf
*m
)
2208 struct mbuf
*m0
= m
;
2211 if (sopt
->sopt_val
== NULL
)
2213 while (m
!= NULL
&& sopt
->sopt_valsize
>= m
->m_len
) {
2214 if (sopt
->sopt_p
!= NULL
) {
2217 error
= copyout(mtod(m
, char *), sopt
->sopt_val
,
2224 bcopy(mtod(m
, char *), sopt
->sopt_val
, m
->m_len
);
2225 sopt
->sopt_valsize
-= m
->m_len
;
2226 (caddr_t
)sopt
->sopt_val
+= m
->m_len
;
2227 valsize
+= m
->m_len
;
2231 /* enough soopt buffer should be given from user-land */
2235 sopt
->sopt_valsize
= valsize
;
2241 register struct socket
*so
;
2246 kp
= sotokextcb(so
);
2248 if (kp
->e_soif
&& kp
->e_soif
->sf_sohasoutofband
) {
2249 if ((*kp
->e_soif
->sf_sohasoutofband
)(so
, kp
))
2254 if (so
->so_pgid
< 0)
2255 gsignal(-so
->so_pgid
, SIGURG
);
2256 else if (so
->so_pgid
> 0 && (p
= pfind(so
->so_pgid
)) != 0)
2258 selwakeup(&so
->so_rcv
.sb_sel
);
2262 sopoll(struct socket
*so
, int events
, struct ucred
*cred
, void * wql
)
2264 struct proc
*p
= current_proc();
2268 if (events
& (POLLIN
| POLLRDNORM
))
2270 revents
|= events
& (POLLIN
| POLLRDNORM
);
2272 if (events
& (POLLOUT
| POLLWRNORM
))
2273 if (sowriteable(so
))
2274 revents
|= events
& (POLLOUT
| POLLWRNORM
);
2276 if (events
& (POLLPRI
| POLLRDBAND
))
2277 if (so
->so_oobmark
|| (so
->so_state
& SS_RCVATMARK
))
2278 revents
|= events
& (POLLPRI
| POLLRDBAND
);
2281 if (events
& (POLLIN
| POLLPRI
| POLLRDNORM
| POLLRDBAND
)) {
2282 /* Darwin sets the flag first, BSD calls selrecord first */
2283 so
->so_rcv
.sb_flags
|= SB_SEL
;
2284 selrecord(p
, &so
->so_rcv
.sb_sel
, wql
);
2287 if (events
& (POLLOUT
| POLLWRNORM
)) {
2288 /* Darwin sets the flag first, BSD calls selrecord first */
2289 so
->so_snd
.sb_flags
|= SB_SEL
;
2290 selrecord(p
, &so
->so_snd
.sb_sel
, wql
);