]>
git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_dummynet.c
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
24 * Portions Copyright (c) 2000 Akamba Corp.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
48 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
51 #define DUMMYNET_DEBUG
54 * This module implements IP dummynet, a bandwidth limiter/delay emulator
55 * used in conjunction with the ipfw package.
56 * Description of the data structures used is in ip_dummynet.h
57 * Here you mainly find the following blocks of code:
58 * + variable declarations;
59 * + heap management functions;
60 * + scheduler and dummynet functions;
61 * + configuration and initialization.
63 * NOTA BENE: critical sections are protected by the "dummynet lock".
65 * Most important Changes:
67 * 010124: Fixed WF2Q behaviour
68 * 010122: Fixed spl protection.
69 * 000601: WF2Q support
70 * 000106: large rewrite, use heaps to handle very many pipes.
71 * 980513: initial release
73 * include files marked with XXX are probably not needed
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/malloc.h>
80 #include <sys/queue.h> /* XXX */
81 #include <sys/kernel.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
85 #include <sys/sysctl.h>
87 #include <net/route.h>
88 #include <net/kpi_protocol.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/in_var.h>
92 #include <netinet/ip.h>
93 #include <netinet/ip_fw.h>
94 #include <netinet/ip_dummynet.h>
95 #include <netinet/ip_var.h>
98 #include <netinet/if_ether.h> /* for struct arpcom */
99 #include <net/bridge.h>
103 * We keep a private variable for the simulation time, but we could
104 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
106 static dn_key curr_time
= 0 ; /* current simulation time */
108 static int dn_hash_size
= 64 ; /* default hash size */
110 /* statistics on number of queue searches and search steps */
111 static int searches
, search_steps
;
112 static int pipe_expire
= 1 ; /* expire queue if empty */
113 static int dn_max_ratio
= 16 ; /* max queues/buckets ratio */
115 static int red_lookup_depth
= 256; /* RED - default lookup table depth */
116 static int red_avg_pkt_size
= 512; /* RED - default medium packet size */
117 static int red_max_pkt_size
= 1500; /* RED - default max packet size */
120 * Three heaps contain queues and pipes that the scheduler handles:
122 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
124 * wfq_ready_heap contains the pipes associated with WF2Q flows
126 * extract_heap contains pipes associated with delay lines.
129 static struct dn_heap ready_heap
, extract_heap
, wfq_ready_heap
;
131 static int heap_init(struct dn_heap
*h
, int size
) ;
132 static int heap_insert (struct dn_heap
*h
, dn_key key1
, void *p
);
133 static void heap_extract(struct dn_heap
*h
, void *obj
);
135 static void transmit_event(struct dn_pipe
*pipe
);
136 static void ready_event(struct dn_flow_queue
*q
);
138 static struct dn_pipe
*all_pipes
= NULL
; /* list of all pipes */
139 static struct dn_flow_set
*all_flow_sets
= NULL
;/* list of all flow_sets */
142 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, dummynet
,
143 CTLFLAG_RW
, 0, "Dummynet");
144 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, hash_size
,
145 CTLFLAG_RW
, &dn_hash_size
, 0, "Default hash table size");
146 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, curr_time
,
147 CTLFLAG_RD
, &curr_time
, 0, "Current tick");
148 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, ready_heap
,
149 CTLFLAG_RD
, &ready_heap
.size
, 0, "Size of ready heap");
150 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, extract_heap
,
151 CTLFLAG_RD
, &extract_heap
.size
, 0, "Size of extract heap");
152 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, searches
,
153 CTLFLAG_RD
, &searches
, 0, "Number of queue searches");
154 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, search_steps
,
155 CTLFLAG_RD
, &search_steps
, 0, "Number of queue search steps");
156 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, expire
,
157 CTLFLAG_RW
, &pipe_expire
, 0, "Expire queue if empty");
158 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, max_chain_len
,
159 CTLFLAG_RW
, &dn_max_ratio
, 0,
160 "Max ratio between dynamic queues and buckets");
161 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_lookup_depth
,
162 CTLFLAG_RD
, &red_lookup_depth
, 0, "Depth of RED lookup table");
163 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_avg_pkt_size
,
164 CTLFLAG_RD
, &red_avg_pkt_size
, 0, "RED Medium packet size");
165 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_max_pkt_size
,
166 CTLFLAG_RD
, &red_max_pkt_size
, 0, "RED Max packet size");
169 #ifdef DUMMYNET_DEBUG
170 int dummynet_debug
= 0;
172 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, debug
, CTLFLAG_RW
, &dummynet_debug
,
173 0, "control debugging printfs");
175 #define DPRINTF(X) if (dummynet_debug) printf X
181 lck_grp_t
*dn_mutex_grp
;
182 lck_grp_attr_t
*dn_mutex_grp_attr
;
183 lck_attr_t
*dn_mutex_attr
;
186 static int config_pipe(struct dn_pipe
*p
);
187 static int ip_dn_ctl(struct sockopt
*sopt
);
189 static void dummynet(void *);
190 static void dummynet_flush(void);
191 void dummynet_drain(void);
192 static ip_dn_io_t dummynet_io
;
193 static void dn_rule_delete(void *);
195 int if_tx_rdy(struct ifnet
*ifp
);
197 extern lck_mtx_t
*rt_mtx
; /* route global lock */
200 * Heap management functions.
202 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
203 * Some macros help finding parent/children so we can optimize them.
205 * heap_init() is called to expand the heap when needed.
206 * Increment size in blocks of 16 entries.
207 * XXX failure to allocate a new element is a pretty bad failure
208 * as we basically stall a whole queue forever!!
209 * Returns 1 on error, 0 on success
211 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
212 #define HEAP_LEFT(x) ( 2*(x) + 1 )
213 #define HEAP_IS_LEFT(x) ( (x) & 1 )
214 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
215 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
216 #define HEAP_INCREMENT 15
219 heap_init(struct dn_heap
*h
, int new_size
)
221 struct dn_heap_entry
*p
;
223 if (h
->size
>= new_size
) {
224 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
228 new_size
= (new_size
+ HEAP_INCREMENT
) & ~HEAP_INCREMENT
;
229 p
= _MALLOC(new_size
* sizeof(*p
), M_DUMMYNET
, M_DONTWAIT
);
231 printf("dummynet: heap_init, resize %d failed\n", new_size
);
232 return 1 ; /* error */
235 bcopy(h
->p
, p
, h
->size
* sizeof(*p
) );
236 FREE(h
->p
, M_DUMMYNET
);
244 * Insert element in heap. Normally, p != NULL, we insert p in
245 * a new position and bubble up. If p == NULL, then the element is
246 * already in place, and key is the position where to start the
248 * Returns 1 on failure (cannot allocate new heap entry)
250 * If offset > 0 the position (index, int) of the element in the heap is
251 * also stored in the element itself at the given offset in bytes.
253 #define SET_OFFSET(heap, node) \
254 if (heap->offset > 0) \
255 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
257 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
259 #define RESET_OFFSET(heap, node) \
260 if (heap->offset > 0) \
261 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
263 heap_insert(struct dn_heap
*h
, dn_key key1
, void *p
)
265 int son
= h
->elements
;
267 if (p
== NULL
) /* data already there, set starting point */
269 else { /* insert new element at the end, possibly resize */
271 if (son
== h
->size
) /* need resize... */
272 if (heap_init(h
, h
->elements
+1) )
273 return 1 ; /* failure... */
274 h
->p
[son
].object
= p
;
275 h
->p
[son
].key
= key1
;
278 while (son
> 0) { /* bubble up */
279 int father
= HEAP_FATHER(son
) ;
280 struct dn_heap_entry tmp
;
282 if (DN_KEY_LT( h
->p
[father
].key
, h
->p
[son
].key
) )
283 break ; /* found right position */
284 /* son smaller than father, swap and repeat */
285 HEAP_SWAP(h
->p
[son
], h
->p
[father
], tmp
) ;
294 * remove top element from heap, or obj if obj != NULL
297 heap_extract(struct dn_heap
*h
, void *obj
)
299 int child
, father
, max
= h
->elements
- 1 ;
302 printf("dummynet: warning, extract from empty heap 0x%p\n", h
);
305 father
= 0 ; /* default: move up smallest child */
306 if (obj
!= NULL
) { /* extract specific element, index is at offset */
308 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
309 father
= *((int *)((char *)obj
+ h
->offset
)) ;
310 if (father
< 0 || father
>= h
->elements
) {
311 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
312 father
, h
->elements
);
313 panic("dummynet: heap_extract");
316 RESET_OFFSET(h
, father
);
317 child
= HEAP_LEFT(father
) ; /* left child */
318 while (child
<= max
) { /* valid entry */
319 if (child
!= max
&& DN_KEY_LT(h
->p
[child
+1].key
, h
->p
[child
].key
) )
320 child
= child
+1 ; /* take right child, otherwise left */
321 h
->p
[father
] = h
->p
[child
] ;
322 SET_OFFSET(h
, father
);
324 child
= HEAP_LEFT(child
) ; /* left child for next loop */
329 * Fill hole with last entry and bubble up, reusing the insert code
331 h
->p
[father
] = h
->p
[max
] ;
332 heap_insert(h
, father
, NULL
); /* this one cannot fail */
338 * change object position and update references
339 * XXX this one is never used!
342 heap_move(struct dn_heap
*h
, dn_key new_key
, void *object
)
346 int max
= h
->elements
-1 ;
347 struct dn_heap_entry buf
;
350 panic("cannot move items on this heap");
352 i
= *((int *)((char *)object
+ h
->offset
));
353 if (DN_KEY_LT(new_key
, h
->p
[i
].key
) ) { /* must move up */
354 h
->p
[i
].key
= new_key
;
355 for (; i
>0 && DN_KEY_LT(new_key
, h
->p
[(temp
= HEAP_FATHER(i
))].key
) ;
356 i
= temp
) { /* bubble up */
357 HEAP_SWAP(h
->p
[i
], h
->p
[temp
], buf
) ;
360 } else { /* must move down */
361 h
->p
[i
].key
= new_key
;
362 while ( (temp
= HEAP_LEFT(i
)) <= max
) { /* found left child */
363 if ((temp
!= max
) && DN_KEY_GT(h
->p
[temp
].key
, h
->p
[temp
+1].key
))
364 temp
++ ; /* select child with min key */
365 if (DN_KEY_GT(new_key
, h
->p
[temp
].key
)) { /* go down */
366 HEAP_SWAP(h
->p
[i
], h
->p
[temp
], buf
) ;
375 #endif /* heap_move, unused */
378 * heapify() will reorganize data inside an array to maintain the
379 * heap property. It is needed when we delete a bunch of entries.
382 heapify(struct dn_heap
*h
)
386 for (i
= 0 ; i
< h
->elements
; i
++ )
387 heap_insert(h
, i
, NULL
) ;
391 * cleanup the heap and free data structure
394 heap_free(struct dn_heap
*h
)
397 FREE(h
->p
, M_DUMMYNET
);
398 bzero(h
, sizeof(*h
) );
402 * --- end of heap management functions ---
406 * Return the mbuf tag holding the dummynet state. As an optimization
407 * this is assumed to be the first tag on the list. If this turns out
408 * wrong we'll need to search the list.
410 static struct dn_pkt_tag
*
411 dn_tag_get(struct mbuf
*m
)
413 struct m_tag
*mtag
= m_tag_first(m
);
414 /* KASSERT(mtag != NULL &&
415 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
416 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET,
417 ("packet on dummynet queue w/o dummynet tag!"));
419 return (struct dn_pkt_tag
*)(mtag
+1);
423 * Scheduler functions:
425 * transmit_event() is called when the delay-line needs to enter
426 * the scheduler, either because of existing pkts getting ready,
427 * or new packets entering the queue. The event handled is the delivery
428 * time of the packet.
430 * ready_event() does something similar with fixed-rate queues, and the
431 * event handled is the finish time of the head pkt.
433 * wfq_ready_event() does something similar with WF2Q queues, and the
434 * event handled is the start time of the head pkt.
436 * In all cases, we make sure that the data structures are consistent
437 * before passing pkts out, because this might trigger recursive
438 * invocations of the procedures.
441 transmit_event(struct dn_pipe
*pipe
)
444 struct dn_pkt_tag
*pkt
;
447 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
449 while ( (m
= pipe
->head
) ) {
451 if ( !DN_KEY_LEQ(pkt
->output_time
, curr_time
) )
454 * first unlink, then call procedures, since ip_input() can invoke
455 * ip_output() and viceversa, thus causing nested calls
457 pipe
->head
= m
->m_nextpkt
;
460 /* XXX: drop the lock for now to avoid LOR's */
461 lck_mtx_unlock(dn_mutex
);
462 switch (pkt
->dn_dir
) {
464 struct route tmp_rt
= pkt
->ro
;
465 (void)ip_output(m
, NULL
, NULL
, pkt
->flags
, NULL
);
467 rtfree(tmp_rt
.ro_rt
);
472 ip
= mtod(m
, struct ip
*);
473 ip
->ip_len
= htons(ip
->ip_len
);
474 ip
->ip_off
= htons(ip
->ip_off
);
475 proto_inject(PF_INET
, m
);
481 * The bridge requires/assumes the Ethernet header is
482 * contiguous in the first mbuf header. Insure this is true.
485 if (m
->m_len
< ETHER_HDR_LEN
&&
486 (m
= m_pullup(m
, ETHER_HDR_LEN
)) == NULL
) {
487 printf("dummynet/bridge: pullup fail, dropping pkt\n");
490 m
= bdg_forward_ptr(m
, pkt
->ifp
);
492 /* somebody unloaded the bridge module. Drop pkt */
494 printf("dummynet: dropping bridged packet trapped in pipe\n");
501 printf("dummynet: bad switch %d!\n", pkt
->dn_dir
);
505 lck_mtx_lock(dn_mutex
);
507 /* if there are leftover packets, put into the heap for next event */
508 if ( (m
= pipe
->head
) ) {
510 /* XXX should check errors on heap_insert, by draining the
511 * whole pipe p and hoping in the future we are more successful
513 heap_insert(&extract_heap
, pkt
->output_time
, pipe
);
518 * the following macro computes how many ticks we have to wait
519 * before being able to transmit a packet. The credit is taken from
520 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
522 #define SET_TICKS(_m, q, p) \
523 ((_m)->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
527 * extract pkt from queue, compute output time (could be now)
528 * and put into delay line (p_queue)
531 move_pkt(struct mbuf
*pkt
, struct dn_flow_queue
*q
,
532 struct dn_pipe
*p
, int len
)
534 struct dn_pkt_tag
*dt
= dn_tag_get(pkt
);
536 q
->head
= pkt
->m_nextpkt
;
538 q
->len_bytes
-= len
;
540 dt
->output_time
= curr_time
+ p
->delay
;
545 p
->tail
->m_nextpkt
= pkt
;
547 p
->tail
->m_nextpkt
= NULL
;
551 * ready_event() is invoked every time the queue must enter the
552 * scheduler, either because the first packet arrives, or because
553 * a previously scheduled event fired.
554 * On invokation, drain as many pkts as possible (could be 0) and then
555 * if there are leftover packets reinsert the pkt in the scheduler.
558 ready_event(struct dn_flow_queue
*q
)
561 struct dn_pipe
*p
= q
->fs
->pipe
;
564 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
567 printf("dummynet: ready_event- pipe is gone\n");
570 p_was_empty
= (p
->head
== NULL
) ;
573 * schedule fixed-rate queues linked to this pipe:
574 * Account for the bw accumulated since last scheduling, then
575 * drain as many pkts as allowed by q->numbytes and move to
576 * the delay line (in p) computing output time.
577 * bandwidth==0 (no limit) means we can drain the whole queue,
578 * setting len_scaled = 0 does the job.
580 q
->numbytes
+= ( curr_time
- q
->sched_time
) * p
->bandwidth
;
581 while ( (pkt
= q
->head
) != NULL
) {
582 int len
= pkt
->m_pkthdr
.len
;
583 int len_scaled
= p
->bandwidth
? len
*8*hz
: 0 ;
584 if (len_scaled
> q
->numbytes
)
586 q
->numbytes
-= len_scaled
;
587 move_pkt(pkt
, q
, p
, len
);
590 * If we have more packets queued, schedule next ready event
591 * (can only occur when bandwidth != 0, otherwise we would have
592 * flushed the whole queue in the previous loop).
593 * To this purpose we record the current time and compute how many
594 * ticks to go for the finish time of the packet.
596 if ( (pkt
= q
->head
) != NULL
) { /* this implies bandwidth != 0 */
597 dn_key t
= SET_TICKS(pkt
, q
, p
); /* ticks i have to wait */
598 q
->sched_time
= curr_time
;
599 heap_insert(&ready_heap
, curr_time
+ t
, (void *)q
);
600 /* XXX should check errors on heap_insert, and drain the whole
601 * queue on error hoping next time we are luckier.
603 } else { /* RED needs to know when the queue becomes empty */
604 q
->q_time
= curr_time
;
608 * If the delay line was empty call transmit_event(p) now.
609 * Otherwise, the scheduler will take care of it.
616 * Called when we can transmit packets on WF2Q queues. Take pkts out of
617 * the queues at their start time, and enqueue into the delay line.
618 * Packets are drained until p->numbytes < 0. As long as
619 * len_scaled >= p->numbytes, the packet goes into the delay line
620 * with a deadline p->delay. For the last packet, if p->numbytes<0,
621 * there is an additional delay.
624 ready_event_wfq(struct dn_pipe
*p
)
626 int p_was_empty
= (p
->head
== NULL
) ;
627 struct dn_heap
*sch
= &(p
->scheduler_heap
);
628 struct dn_heap
*neh
= &(p
->not_eligible_heap
) ;
630 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
632 if (p
->if_name
[0] == 0) /* tx clock is simulated */
633 p
->numbytes
+= ( curr_time
- p
->sched_time
) * p
->bandwidth
;
634 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
635 if (p
->ifp
&& p
->ifp
->if_snd
.ifq_head
!= NULL
)
638 DPRINTF(("dummynet: pipe %d ready from %s --\n",
639 p
->pipe_nr
, p
->if_name
));
644 * While we have backlogged traffic AND credit, we need to do
645 * something on the queue.
647 while ( p
->numbytes
>=0 && (sch
->elements
>0 || neh
->elements
>0) ) {
648 if (sch
->elements
> 0) { /* have some eligible pkts to send out */
649 struct dn_flow_queue
*q
= sch
->p
[0].object
;
650 struct mbuf
*pkt
= q
->head
;
651 struct dn_flow_set
*fs
= q
->fs
;
652 u_int64_t len
= pkt
->m_pkthdr
.len
;
653 int len_scaled
= p
->bandwidth
? len
*8*hz
: 0 ;
655 heap_extract(sch
, NULL
); /* remove queue from heap */
656 p
->numbytes
-= len_scaled
;
657 move_pkt(pkt
, q
, p
, len
);
659 p
->V
+= (len
<<MY_M
) / p
->sum
; /* update V */
660 q
->S
= q
->F
; /* update start time */
661 if (q
->len
== 0) { /* Flow not backlogged any more */
663 heap_insert(&(p
->idle_heap
), q
->F
, q
);
664 } else { /* still backlogged */
666 * update F and position in backlogged queue, then
667 * put flow in not_eligible_heap (we will fix this later).
669 len
= (q
->head
)->m_pkthdr
.len
;
670 q
->F
+= (len
<<MY_M
)/(u_int64_t
) fs
->weight
;
671 if (DN_KEY_LEQ(q
->S
, p
->V
))
672 heap_insert(neh
, q
->S
, q
);
674 heap_insert(sch
, q
->F
, q
);
678 * now compute V = max(V, min(S_i)). Remember that all elements in sch
679 * have by definition S_i <= V so if sch is not empty, V is surely
680 * the max and we must not update it. Conversely, if sch is empty
681 * we only need to look at neh.
683 if (sch
->elements
== 0 && neh
->elements
> 0)
684 p
->V
= MAX64 ( p
->V
, neh
->p
[0].key
);
685 /* move from neh to sch any packets that have become eligible */
686 while (neh
->elements
> 0 && DN_KEY_LEQ(neh
->p
[0].key
, p
->V
) ) {
687 struct dn_flow_queue
*q
= neh
->p
[0].object
;
688 heap_extract(neh
, NULL
);
689 heap_insert(sch
, q
->F
, q
);
692 if (p
->if_name
[0] != '\0') {/* tx clock is from a real thing */
693 p
->numbytes
= -1 ; /* mark not ready for I/O */
697 if (sch
->elements
== 0 && neh
->elements
== 0 && p
->numbytes
>= 0
698 && p
->idle_heap
.elements
> 0) {
700 * no traffic and no events scheduled. We can get rid of idle-heap.
704 for (i
= 0 ; i
< p
->idle_heap
.elements
; i
++) {
705 struct dn_flow_queue
*q
= p
->idle_heap
.p
[i
].object
;
712 p
->idle_heap
.elements
= 0 ;
715 * If we are getting clocks from dummynet (not a real interface) and
716 * If we are under credit, schedule the next ready event.
717 * Also fix the delivery time of the last packet.
719 if (p
->if_name
[0]==0 && p
->numbytes
< 0) { /* this implies bandwidth >0 */
720 dn_key t
=0 ; /* number of ticks i have to wait */
722 if (p
->bandwidth
> 0)
723 t
= ( p
->bandwidth
-1 - p
->numbytes
) / p
->bandwidth
;
724 dn_tag_get(p
->tail
)->output_time
+= t
;
725 p
->sched_time
= curr_time
;
726 heap_insert(&wfq_ready_heap
, curr_time
+ t
, (void *)p
);
727 /* XXX should check errors on heap_insert, and drain the whole
728 * queue on error hoping next time we are luckier.
732 * If the delay line was empty call transmit_event(p) now.
733 * Otherwise, the scheduler will take care of it.
740 * This is called once per tick, or HZ times per second. It is used to
741 * increment the current tick counter and schedule expired events.
744 dummynet(void * __unused unused
)
746 void *p
; /* generic parameter to handler */
748 struct dn_heap
*heaps
[3];
752 heaps
[0] = &ready_heap
; /* fixed-rate queues */
753 heaps
[1] = &wfq_ready_heap
; /* wfq queues */
754 heaps
[2] = &extract_heap
; /* delay line */
756 lck_mtx_lock(dn_mutex
);
759 for (i
=0; i
< 3 ; i
++) {
761 while (h
->elements
> 0 && DN_KEY_LEQ(h
->p
[0].key
, curr_time
) ) {
762 if (h
->p
[0].key
> curr_time
)
763 printf("dummynet: warning, heap %d is %d ticks late\n",
764 i
, (int)(curr_time
- h
->p
[0].key
));
765 p
= h
->p
[0].object
; /* store a copy before heap_extract */
766 heap_extract(h
, NULL
); /* need to extract before processing */
770 struct dn_pipe
*pipe
= p
;
771 if (pipe
->if_name
[0] != '\0')
772 printf("dummynet: bad ready_event_wfq for pipe %s\n",
780 /* sweep pipes trying to expire idle flow_queues */
781 for (pe
= all_pipes
; pe
; pe
= pe
->next
)
782 if (pe
->idle_heap
.elements
> 0 &&
783 DN_KEY_LT(pe
->idle_heap
.p
[0].key
, pe
->V
) ) {
784 struct dn_flow_queue
*q
= pe
->idle_heap
.p
[0].object
;
786 heap_extract(&(pe
->idle_heap
), NULL
);
787 q
->S
= q
->F
+ 1 ; /* mark timestamp as invalid */
788 pe
->sum
-= q
->fs
->weight
;
791 lck_mtx_unlock(dn_mutex
);
793 timeout(dummynet
, NULL
, 1);
797 * called by an interface when tx_rdy occurs.
800 if_tx_rdy(struct ifnet
*ifp
)
804 lck_mtx_lock(dn_mutex
);
805 for (p
= all_pipes
; p
; p
= p
->next
)
810 sprintf(buf
, "%s%d",ifp
->if_name
, ifp
->if_unit
);
811 for (p
= all_pipes
; p
; p
= p
->next
)
812 if (!strcmp(p
->if_name
, buf
) ) {
814 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf
));
819 DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp
->if_name
,
820 ifp
->if_unit
, ifp
->if_snd
.ifq_len
));
821 p
->numbytes
= 0 ; /* mark ready for I/O */
824 lck_mtx_lock(dn_mutex
);
830 * Unconditionally expire empty queues in case of shortage.
831 * Returns the number of queues freed.
834 expire_queues(struct dn_flow_set
*fs
)
836 struct dn_flow_queue
*q
, *prev
;
837 int i
, initial_elements
= fs
->rq_elements
;
838 struct timeval timenow
;
840 getmicrotime(&timenow
);
842 if (fs
->last_expired
== timenow
.tv_sec
)
844 fs
->last_expired
= timenow
.tv_sec
;
845 for (i
= 0 ; i
<= fs
->rq_size
; i
++) /* last one is overflow */
846 for (prev
=NULL
, q
= fs
->rq
[i
] ; q
!= NULL
; )
847 if (q
->head
!= NULL
|| q
->S
!= q
->F
+1) {
850 } else { /* entry is idle, expire it */
851 struct dn_flow_queue
*old_q
= q
;
854 prev
->next
= q
= q
->next
;
856 fs
->rq
[i
] = q
= q
->next
;
858 FREE(old_q
, M_DUMMYNET
);
860 return initial_elements
- fs
->rq_elements
;
864 * If room, create a new queue and put at head of slot i;
865 * otherwise, create or use the default queue.
867 static struct dn_flow_queue
*
868 create_queue(struct dn_flow_set
*fs
, int i
)
870 struct dn_flow_queue
*q
;
872 if (fs
->rq_elements
> fs
->rq_size
* dn_max_ratio
&&
873 expire_queues(fs
) == 0) {
875 * No way to get room, use or create overflow queue.
878 if ( fs
->rq
[i
] != NULL
)
881 q
= _MALLOC(sizeof(*q
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
883 printf("dummynet: sorry, cannot allocate queue for new flow\n");
888 q
->next
= fs
->rq
[i
] ;
889 q
->S
= q
->F
+ 1; /* hack - mark timestamp as invalid */
896 * Given a flow_set and a pkt in last_pkt, find a matching queue
897 * after appropriate masking. The queue is moved to front
898 * so that further searches take less time.
900 static struct dn_flow_queue
*
901 find_queue(struct dn_flow_set
*fs
, struct ipfw_flow_id
*id
)
903 int i
= 0 ; /* we need i and q for new allocations */
904 struct dn_flow_queue
*q
, *prev
;
906 if ( !(fs
->flags_fs
& DN_HAVE_FLOW_MASK
) )
909 /* first, do the masking */
910 id
->dst_ip
&= fs
->flow_mask
.dst_ip
;
911 id
->src_ip
&= fs
->flow_mask
.src_ip
;
912 id
->dst_port
&= fs
->flow_mask
.dst_port
;
913 id
->src_port
&= fs
->flow_mask
.src_port
;
914 id
->proto
&= fs
->flow_mask
.proto
;
915 id
->flags
= 0 ; /* we don't care about this one */
916 /* then, hash function */
917 i
= ( (id
->dst_ip
) & 0xffff ) ^
918 ( (id
->dst_ip
>> 15) & 0xffff ) ^
919 ( (id
->src_ip
<< 1) & 0xffff ) ^
920 ( (id
->src_ip
>> 16 ) & 0xffff ) ^
921 (id
->dst_port
<< 1) ^ (id
->src_port
) ^
923 i
= i
% fs
->rq_size
;
924 /* finally, scan the current list for a match */
926 for (prev
=NULL
, q
= fs
->rq
[i
] ; q
; ) {
928 if (id
->dst_ip
== q
->id
.dst_ip
&&
929 id
->src_ip
== q
->id
.src_ip
&&
930 id
->dst_port
== q
->id
.dst_port
&&
931 id
->src_port
== q
->id
.src_port
&&
932 id
->proto
== q
->id
.proto
&&
933 id
->flags
== q
->id
.flags
)
935 else if (pipe_expire
&& q
->head
== NULL
&& q
->S
== q
->F
+1 ) {
936 /* entry is idle and not in any heap, expire it */
937 struct dn_flow_queue
*old_q
= q
;
940 prev
->next
= q
= q
->next
;
942 fs
->rq
[i
] = q
= q
->next
;
944 FREE(old_q
, M_DUMMYNET
);
950 if (q
&& prev
!= NULL
) { /* found and not in front */
951 prev
->next
= q
->next
;
952 q
->next
= fs
->rq
[i
] ;
956 if (q
== NULL
) { /* no match, need to allocate a new entry */
957 q
= create_queue(fs
, i
);
965 red_drops(struct dn_flow_set
*fs
, struct dn_flow_queue
*q
, int len
)
970 * RED calculates the average queue size (avg) using a low-pass filter
971 * with an exponential weighted (w_q) moving average:
972 * avg <- (1-w_q) * avg + w_q * q_size
973 * where q_size is the queue length (measured in bytes or * packets).
975 * If q_size == 0, we compute the idle time for the link, and set
976 * avg = (1 - w_q)^(idle/s)
977 * where s is the time needed for transmitting a medium-sized packet.
979 * Now, if avg < min_th the packet is enqueued.
980 * If avg > max_th the packet is dropped. Otherwise, the packet is
981 * dropped with probability P function of avg.
986 /* queue in bytes or packets ? */
987 u_int q_size
= (fs
->flags_fs
& DN_QSIZE_IS_BYTES
) ? q
->len_bytes
: q
->len
;
989 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time
, q_size
));
991 /* average queue size estimation */
994 * queue is not empty, avg <- avg + (q_size - avg) * w_q
996 int diff
= SCALE(q_size
) - q
->avg
;
997 int64_t v
= SCALE_MUL((int64_t) diff
, (int64_t) fs
->w_q
);
1002 * queue is empty, find for how long the queue has been
1003 * empty and use a lookup table for computing
1004 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1006 * XXX check wraps...
1009 u_int t
= (curr_time
- q
->q_time
) / fs
->lookup_step
;
1011 q
->avg
= (t
< fs
->lookup_depth
) ?
1012 SCALE_MUL(q
->avg
, fs
->w_q_lookup
[t
]) : 0;
1015 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q
->avg
)));
1017 /* should i drop ? */
1019 if (q
->avg
< fs
->min_th
) {
1021 return 0; /* accept packet ; */
1023 if (q
->avg
>= fs
->max_th
) { /* average queue >= max threshold */
1024 if (fs
->flags_fs
& DN_IS_GENTLE_RED
) {
1026 * According to Gentle-RED, if avg is greater than max_th the
1027 * packet is dropped with a probability
1028 * p_b = c_3 * avg - c_4
1029 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1031 p_b
= SCALE_MUL((int64_t) fs
->c_3
, (int64_t) q
->avg
) - fs
->c_4
;
1034 DPRINTF(("dummynet: - drop"));
1037 } else if (q
->avg
> fs
->min_th
) {
1039 * we compute p_b using the linear dropping function p_b = c_1 *
1040 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1041 * max_p * min_th / (max_th - min_th)
1043 p_b
= SCALE_MUL((int64_t) fs
->c_1
, (int64_t) q
->avg
) - fs
->c_2
;
1045 if (fs
->flags_fs
& DN_QSIZE_IS_BYTES
)
1046 p_b
= (p_b
* len
) / fs
->max_pkt_size
;
1047 if (++q
->count
== 0)
1048 q
->random
= random() & 0xffff;
1051 * q->count counts packets arrived since last drop, so a greater
1052 * value of q->count means a greater packet drop probability.
1054 if (SCALE_MUL(p_b
, SCALE((int64_t) q
->count
)) > q
->random
) {
1056 DPRINTF(("dummynet: - red drop"));
1057 /* after a drop we calculate a new random value */
1058 q
->random
= random() & 0xffff;
1059 return 1; /* drop */
1062 /* end of RED algorithm */
1063 return 0 ; /* accept */
1067 struct dn_flow_set
*
1068 locate_flowset(int pipe_nr
, struct ip_fw
*rule
)
1070 struct dn_flow_set
*fs
;
1071 ipfw_insn
*cmd
= rule
->cmd
+ rule
->act_ofs
;
1073 if (cmd
->opcode
== O_LOG
)
1076 bcopy(& ((ipfw_insn_pipe
*)cmd
)->pipe_ptr
, &fs
, sizeof(fs
));
1081 if (cmd
->opcode
== O_QUEUE
) {
1082 for (fs
=all_flow_sets
; fs
&& fs
->fs_nr
!= pipe_nr
; fs
=fs
->next
)
1087 for (p1
= all_pipes
; p1
&& p1
->pipe_nr
!= pipe_nr
; p1
= p1
->next
)
1092 /* record for the future */
1093 bcopy(&fs
, & ((ipfw_insn_pipe
*)cmd
)->pipe_ptr
, sizeof(fs
));
1099 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1100 * depending on whether WF2Q or fixed bw is used.
1102 * pipe_nr pipe or queue the packet is destined for.
1103 * dir where shall we send the packet after dummynet.
1104 * m the mbuf with the packet
1105 * ifp the 'ifp' parameter from the caller.
1106 * NULL in ip_input, destination interface in ip_output,
1107 * real_dst in bdg_forward
1108 * ro route parameter (only used in ip_output, NULL otherwise)
1109 * dst destination address, only used by ip_output
1110 * rule matching rule, in case of multiple passes
1111 * flags flags from the caller, only used in ip_output
1115 dummynet_io(struct mbuf
*m
, int pipe_nr
, int dir
, struct ip_fw_args
*fwa
)
1117 struct dn_pkt_tag
*pkt
;
1119 struct dn_flow_set
*fs
;
1120 struct dn_pipe
*pipe
;
1121 u_int64_t len
= m
->m_pkthdr
.len
;
1122 struct dn_flow_queue
*q
= NULL
;
1126 ipfw_insn
*cmd
= fwa
->rule
->cmd
+ fwa
->rule
->act_ofs
;
1128 if (cmd
->opcode
== O_LOG
)
1130 is_pipe
= (cmd
->opcode
== O_PIPE
);
1132 is_pipe
= (fwa
->rule
->fw_flg
& IP_FW_F_COMMAND
) == IP_FW_F_PIPE
;
1137 lck_mtx_lock(dn_mutex
);
1140 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1142 fs
= locate_flowset(pipe_nr
, fwa
->rule
);
1144 goto dropit
; /* this queue/pipe does not exist! */
1146 if (pipe
== NULL
) { /* must be a queue, try find a matching pipe */
1147 for (pipe
= all_pipes
; pipe
&& pipe
->pipe_nr
!= fs
->parent_nr
;
1153 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1154 fs
->parent_nr
, fs
->fs_nr
);
1158 q
= find_queue(fs
, &(fwa
->f_id
));
1160 goto dropit
; /* cannot allocate queue */
1162 * update statistics, then check reasons to drop pkt
1164 q
->tot_bytes
+= len
;
1166 if ( fs
->plr
&& random() < fs
->plr
)
1167 goto dropit
; /* random pkt drop */
1168 if ( fs
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1169 if (q
->len_bytes
> fs
->qsize
)
1170 goto dropit
; /* queue size overflow */
1172 if (q
->len
>= fs
->qsize
)
1173 goto dropit
; /* queue count overflow */
1175 if ( fs
->flags_fs
& DN_IS_RED
&& red_drops(fs
, q
, len
) )
1178 /* XXX expensive to zero, see if we can remove it*/
1179 mtag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DUMMYNET
,
1180 sizeof(struct dn_pkt_tag
), M_NOWAIT
|M_ZERO
);
1182 goto dropit
; /* cannot allocate packet header */
1183 m_tag_prepend(m
, mtag
); /* attach to mbuf chain */
1185 pkt
= (struct dn_pkt_tag
*)(mtag
+1);
1186 /* ok, i can handle the pkt now... */
1187 /* build and enqueue packet + parameters */
1188 pkt
->rule
= fwa
->rule
;
1191 pkt
->ifp
= fwa
->oif
;
1192 if (dir
== DN_TO_IP_OUT
) {
1194 * We need to copy *ro because for ICMP pkts (and maybe others)
1195 * the caller passed a pointer into the stack; dst might also be
1196 * a pointer into *ro so it needs to be updated.
1198 lck_mtx_lock(rt_mtx
);
1199 pkt
->ro
= *(fwa
->ro
);
1201 fwa
->ro
->ro_rt
->rt_refcnt
++ ;
1202 if (fwa
->dst
== (struct sockaddr_in
*)&fwa
->ro
->ro_dst
) /* dst points into ro */
1203 fwa
->dst
= (struct sockaddr_in
*)&(pkt
->ro
.ro_dst
) ;
1204 lck_mtx_unlock(rt_mtx
);
1206 pkt
->dn_dst
= fwa
->dst
;
1207 pkt
->flags
= fwa
->flags
;
1209 if (q
->head
== NULL
)
1212 q
->tail
->m_nextpkt
= m
;
1215 q
->len_bytes
+= len
;
1217 if ( q
->head
!= m
) /* flow was not idle, we are done */
1220 * If we reach this point the flow was previously idle, so we need
1221 * to schedule it. This involves different actions for fixed-rate or
1226 * Fixed-rate queue: just insert into the ready_heap.
1229 if (pipe
->bandwidth
)
1230 t
= SET_TICKS(m
, q
, pipe
);
1231 q
->sched_time
= curr_time
;
1232 if (t
== 0) /* must process it now */
1235 heap_insert(&ready_heap
, curr_time
+ t
, q
);
1238 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1239 * set S to the virtual time V for the controlling pipe, and update
1240 * the sum of weights for the pipe; otherwise, remove flow from
1241 * idle_heap and set S to max(F,V).
1242 * Second, compute finish time F = S + len/weight.
1243 * Third, if pipe was idle, update V=max(S, V).
1244 * Fourth, count one more backlogged flow.
1246 if (DN_KEY_GT(q
->S
, q
->F
)) { /* means timestamps are invalid */
1248 pipe
->sum
+= fs
->weight
; /* add weight of new queue */
1250 heap_extract(&(pipe
->idle_heap
), q
);
1251 q
->S
= MAX64(q
->F
, pipe
->V
) ;
1253 q
->F
= q
->S
+ ( len
<<MY_M
)/(u_int64_t
) fs
->weight
;
1255 if (pipe
->not_eligible_heap
.elements
== 0 &&
1256 pipe
->scheduler_heap
.elements
== 0)
1257 pipe
->V
= MAX64 ( q
->S
, pipe
->V
);
1260 * Look at eligibility. A flow is not eligibile if S>V (when
1261 * this happens, it means that there is some other flow already
1262 * scheduled for the same pipe, so the scheduler_heap cannot be
1263 * empty). If the flow is not eligible we just store it in the
1264 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1265 * and possibly invoke ready_event_wfq() right now if there is
1267 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1268 * and for all flows in not_eligible_heap (NEH), S_i > V .
1269 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1270 * we only need to look into NEH.
1272 if (DN_KEY_GT(q
->S
, pipe
->V
) ) { /* not eligible */
1273 if (pipe
->scheduler_heap
.elements
== 0)
1274 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1275 heap_insert(&(pipe
->not_eligible_heap
), q
->S
, q
);
1277 heap_insert(&(pipe
->scheduler_heap
), q
->F
, q
);
1278 if (pipe
->numbytes
>= 0) { /* pipe is idle */
1279 if (pipe
->scheduler_heap
.elements
!= 1)
1280 printf("dummynet: OUCH! pipe should have been idle!\n");
1281 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1282 pipe
->pipe_nr
, (int)(q
->F
>> MY_M
)));
1283 pipe
->sched_time
= curr_time
;
1284 ready_event_wfq(pipe
);
1289 lck_mtx_unlock(dn_mutex
);
1295 lck_mtx_unlock(dn_mutex
);
1297 return ( (fs
&& (fs
->flags_fs
& DN_NOERROR
)) ? 0 : ENOBUFS
);
1301 * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1302 * Doing this would probably save us the initial bzero of dn_pkt
1304 #define DN_FREE_PKT(_m) do { \
1305 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1307 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1309 rtfree(n->ro.ro_rt); \
1311 m_tag_delete(_m, tag); \
1316 * Dispose all packets and flow_queues on a flow_set.
1317 * If all=1, also remove red lookup table and other storage,
1318 * including the descriptor itself.
1319 * For the one in dn_pipe MUST also cleanup ready_heap...
1322 purge_flow_set(struct dn_flow_set
*fs
, int all
)
1324 struct dn_flow_queue
*q
, *qn
;
1327 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1329 for (i
= 0 ; i
<= fs
->rq_size
; i
++ ) {
1330 for (q
= fs
->rq
[i
] ; q
; q
= qn
) {
1331 struct mbuf
*m
, *mnext
;
1334 while ((m
= mnext
) != NULL
) {
1335 mnext
= m
->m_nextpkt
;
1339 FREE(q
, M_DUMMYNET
);
1343 fs
->rq_elements
= 0 ;
1345 /* RED - free lookup table */
1347 FREE(fs
->w_q_lookup
, M_DUMMYNET
);
1349 FREE(fs
->rq
, M_DUMMYNET
);
1350 /* if this fs is not part of a pipe, free it */
1351 if (fs
->pipe
&& fs
!= &(fs
->pipe
->fs
) )
1352 FREE(fs
, M_DUMMYNET
);
1357 * Dispose all packets queued on a pipe (not a flow_set).
1358 * Also free all resources associated to a pipe, which is about
1362 purge_pipe(struct dn_pipe
*pipe
)
1364 struct mbuf
*m
, *mnext
;
1366 purge_flow_set( &(pipe
->fs
), 1 );
1369 while ((m
= mnext
) != NULL
) {
1370 mnext
= m
->m_nextpkt
;
1374 heap_free( &(pipe
->scheduler_heap
) );
1375 heap_free( &(pipe
->not_eligible_heap
) );
1376 heap_free( &(pipe
->idle_heap
) );
1380 * Delete all pipes and heaps returning memory. Must also
1381 * remove references from all ipfw rules to all pipes.
1386 struct dn_pipe
*curr_p
, *p
;
1387 struct dn_flow_set
*fs
, *curr_fs
;
1389 lck_mtx_lock(dn_mutex
);
1391 /* remove all references to pipes ...*/
1392 flush_pipe_ptrs(NULL
);
1393 /* prevent future matches... */
1396 fs
= all_flow_sets
;
1397 all_flow_sets
= NULL
;
1398 /* and free heaps so we don't have unwanted events */
1399 heap_free(&ready_heap
);
1400 heap_free(&wfq_ready_heap
);
1401 heap_free(&extract_heap
);
1404 * Now purge all queued pkts and delete all pipes
1406 /* scan and purge all flow_sets. */
1410 purge_flow_set(curr_fs
, 1);
1416 FREE(curr_p
, M_DUMMYNET
);
1418 lck_mtx_unlock(dn_mutex
);
1422 extern struct ip_fw
*ip_fw_default_rule
;
1424 dn_rule_delete_fs(struct dn_flow_set
*fs
, void *r
)
1427 struct dn_flow_queue
*q
;
1430 for (i
= 0 ; i
<= fs
->rq_size
; i
++) /* last one is ovflow */
1431 for (q
= fs
->rq
[i
] ; q
; q
= q
->next
)
1432 for (m
= q
->head
; m
; m
= m
->m_nextpkt
) {
1433 struct dn_pkt_tag
*pkt
= dn_tag_get(m
) ;
1435 pkt
->rule
= ip_fw_default_rule
;
1439 * when a firewall rule is deleted, scan all queues and remove the flow-id
1440 * from packets matching this rule.
1443 dn_rule_delete(void *r
)
1446 struct dn_flow_set
*fs
;
1447 struct dn_pkt_tag
*pkt
;
1450 lck_mtx_lock(dn_mutex
);
1453 * If the rule references a queue (dn_flow_set), then scan
1454 * the flow set, otherwise scan pipes. Should do either, but doing
1455 * both does not harm.
1457 for ( fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1458 dn_rule_delete_fs(fs
, r
);
1459 for ( p
= all_pipes
; p
; p
= p
->next
) {
1461 dn_rule_delete_fs(fs
, r
);
1462 for (m
= p
->head
; m
; m
= m
->m_nextpkt
) {
1463 pkt
= dn_tag_get(m
) ;
1465 pkt
->rule
= ip_fw_default_rule
;
1468 lck_mtx_unlock(dn_mutex
);
1472 * setup RED parameters
1475 config_red(struct dn_flow_set
*p
, struct dn_flow_set
* x
)
1480 x
->min_th
= SCALE(p
->min_th
);
1481 x
->max_th
= SCALE(p
->max_th
);
1482 x
->max_p
= p
->max_p
;
1484 x
->c_1
= p
->max_p
/ (p
->max_th
- p
->min_th
);
1485 x
->c_2
= SCALE_MUL(x
->c_1
, SCALE(p
->min_th
));
1486 if (x
->flags_fs
& DN_IS_GENTLE_RED
) {
1487 x
->c_3
= (SCALE(1) - p
->max_p
) / p
->max_th
;
1488 x
->c_4
= (SCALE(1) - 2 * p
->max_p
);
1491 /* if the lookup table already exist, free and create it again */
1492 if (x
->w_q_lookup
) {
1493 FREE(x
->w_q_lookup
, M_DUMMYNET
);
1494 x
->w_q_lookup
= NULL
;
1496 if (red_lookup_depth
== 0) {
1497 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1498 FREE(x
, M_DUMMYNET
);
1501 x
->lookup_depth
= red_lookup_depth
;
1502 x
->w_q_lookup
= (u_int
*) _MALLOC(x
->lookup_depth
* sizeof(int),
1503 M_DUMMYNET
, M_DONTWAIT
);
1504 if (x
->w_q_lookup
== NULL
) {
1505 printf("dummynet: sorry, cannot allocate red lookup table\n");
1506 FREE(x
, M_DUMMYNET
);
1510 /* fill the lookup table with (1 - w_q)^x */
1511 x
->lookup_step
= p
->lookup_step
;
1512 x
->lookup_weight
= p
->lookup_weight
;
1513 x
->w_q_lookup
[0] = SCALE(1) - x
->w_q
;
1514 for (i
= 1; i
< x
->lookup_depth
; i
++)
1515 x
->w_q_lookup
[i
] = SCALE_MUL(x
->w_q_lookup
[i
- 1], x
->lookup_weight
);
1516 if (red_avg_pkt_size
< 1)
1517 red_avg_pkt_size
= 512 ;
1518 x
->avg_pkt_size
= red_avg_pkt_size
;
1519 if (red_max_pkt_size
< 1)
1520 red_max_pkt_size
= 1500 ;
1521 x
->max_pkt_size
= red_max_pkt_size
;
1526 alloc_hash(struct dn_flow_set
*x
, struct dn_flow_set
*pfs
)
1528 if (x
->flags_fs
& DN_HAVE_FLOW_MASK
) { /* allocate some slots */
1529 int l
= pfs
->rq_size
;
1535 else if (l
> DN_MAX_HASH_SIZE
)
1536 l
= DN_MAX_HASH_SIZE
;
1538 } else /* one is enough for null mask */
1540 x
->rq
= _MALLOC((1 + x
->rq_size
) * sizeof(struct dn_flow_queue
*),
1541 M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
1542 if (x
->rq
== NULL
) {
1543 printf("dummynet: sorry, cannot allocate queue\n");
1551 set_fs_parms(struct dn_flow_set
*x
, struct dn_flow_set
*src
)
1553 x
->flags_fs
= src
->flags_fs
;
1554 x
->qsize
= src
->qsize
;
1556 x
->flow_mask
= src
->flow_mask
;
1557 if (x
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1558 if (x
->qsize
> 1024*1024)
1559 x
->qsize
= 1024*1024 ;
1566 /* configuring RED */
1567 if ( x
->flags_fs
& DN_IS_RED
)
1568 config_red(src
, x
) ; /* XXX should check errors */
1572 * setup pipe or queue parameters.
1576 config_pipe(struct dn_pipe
*p
)
1579 struct dn_flow_set
*pfs
= &(p
->fs
);
1580 struct dn_flow_queue
*q
;
1583 * The config program passes parameters as follows:
1584 * bw = bits/second (0 means no limits),
1585 * delay = ms, must be translated into ticks.
1586 * qsize = slots/bytes
1588 p
->delay
= ( p
->delay
* hz
) / 1000 ;
1589 /* We need either a pipe number or a flow_set number */
1590 if (p
->pipe_nr
== 0 && pfs
->fs_nr
== 0)
1592 if (p
->pipe_nr
!= 0 && pfs
->fs_nr
!= 0)
1594 if (p
->pipe_nr
!= 0) { /* this is a pipe */
1595 struct dn_pipe
*x
, *a
, *b
;
1597 lck_mtx_lock(dn_mutex
);
1599 for (a
= NULL
, b
= all_pipes
; b
&& b
->pipe_nr
< p
->pipe_nr
;
1600 a
= b
, b
= b
->next
) ;
1602 if (b
== NULL
|| b
->pipe_nr
!= p
->pipe_nr
) { /* new pipe */
1603 x
= _MALLOC(sizeof(struct dn_pipe
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
) ;
1605 lck_mtx_unlock(dn_mutex
);
1606 printf("dummynet: no memory for new pipe\n");
1609 x
->pipe_nr
= p
->pipe_nr
;
1611 /* idle_heap is the only one from which we extract from the middle.
1613 x
->idle_heap
.size
= x
->idle_heap
.elements
= 0 ;
1614 x
->idle_heap
.offset
=OFFSET_OF(struct dn_flow_queue
, heap_pos
);
1617 /* Flush accumulated credit for all queues */
1618 for (i
= 0; i
<= x
->fs
.rq_size
; i
++)
1619 for (q
= x
->fs
.rq
[i
]; q
; q
= q
->next
)
1623 x
->bandwidth
= p
->bandwidth
;
1624 x
->numbytes
= 0; /* just in case... */
1625 bcopy(p
->if_name
, x
->if_name
, sizeof(p
->if_name
) );
1626 x
->ifp
= NULL
; /* reset interface ptr */
1627 x
->delay
= p
->delay
;
1628 set_fs_parms(&(x
->fs
), pfs
);
1631 if ( x
->fs
.rq
== NULL
) { /* a new pipe */
1632 r
= alloc_hash(&(x
->fs
), pfs
) ;
1634 lck_mtx_unlock(dn_mutex
);
1635 FREE(x
, M_DUMMYNET
);
1644 lck_mtx_unlock(dn_mutex
);
1645 } else { /* config queue */
1646 struct dn_flow_set
*x
, *a
, *b
;
1648 lck_mtx_lock(dn_mutex
);
1649 /* locate flow_set */
1650 for (a
=NULL
, b
=all_flow_sets
; b
&& b
->fs_nr
< pfs
->fs_nr
;
1651 a
= b
, b
= b
->next
) ;
1653 if (b
== NULL
|| b
->fs_nr
!= pfs
->fs_nr
) { /* new */
1654 if (pfs
->parent_nr
== 0) { /* need link to a pipe */
1655 lck_mtx_unlock(dn_mutex
);
1658 x
= _MALLOC(sizeof(struct dn_flow_set
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
1660 lck_mtx_unlock(dn_mutex
);
1661 printf("dummynet: no memory for new flow_set\n");
1664 x
->fs_nr
= pfs
->fs_nr
;
1665 x
->parent_nr
= pfs
->parent_nr
;
1666 x
->weight
= pfs
->weight
;
1669 else if (x
->weight
> 100)
1672 /* Change parent pipe not allowed; must delete and recreate */
1673 if (pfs
->parent_nr
!= 0 && b
->parent_nr
!= pfs
->parent_nr
) {
1674 lck_mtx_unlock(dn_mutex
);
1679 set_fs_parms(x
, pfs
);
1681 if ( x
->rq
== NULL
) { /* a new flow_set */
1682 r
= alloc_hash(x
, pfs
) ;
1684 lck_mtx_unlock(dn_mutex
);
1685 FREE(x
, M_DUMMYNET
);
1694 lck_mtx_unlock(dn_mutex
);
1700 * Helper function to remove from a heap queues which are linked to
1701 * a flow_set about to be deleted.
1704 fs_remove_from_heap(struct dn_heap
*h
, struct dn_flow_set
*fs
)
1706 int i
= 0, found
= 0 ;
1707 for (; i
< h
->elements
;)
1708 if ( ((struct dn_flow_queue
*)h
->p
[i
].object
)->fs
== fs
) {
1710 h
->p
[i
] = h
->p
[h
->elements
] ;
1719 * helper function to remove a pipe from a heap (can be there at most once)
1722 pipe_remove_from_heap(struct dn_heap
*h
, struct dn_pipe
*p
)
1724 if (h
->elements
> 0) {
1726 for (i
=0; i
< h
->elements
; i
++ ) {
1727 if (h
->p
[i
].object
== p
) { /* found it */
1729 h
->p
[i
] = h
->p
[h
->elements
] ;
1738 * drain all queues. Called in case of severe mbuf shortage.
1743 struct dn_flow_set
*fs
;
1745 struct mbuf
*m
, *mnext
;
1747 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1749 heap_free(&ready_heap
);
1750 heap_free(&wfq_ready_heap
);
1751 heap_free(&extract_heap
);
1752 /* remove all references to this pipe from flow_sets */
1753 for (fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1754 purge_flow_set(fs
, 0);
1756 for (p
= all_pipes
; p
; p
= p
->next
) {
1757 purge_flow_set(&(p
->fs
), 0);
1760 while ((m
= mnext
) != NULL
) {
1761 mnext
= m
->m_nextpkt
;
1764 p
->head
= p
->tail
= NULL
;
1769 * Fully delete a pipe or a queue, cleaning up associated info.
1772 delete_pipe(struct dn_pipe
*p
)
1774 if (p
->pipe_nr
== 0 && p
->fs
.fs_nr
== 0)
1776 if (p
->pipe_nr
!= 0 && p
->fs
.fs_nr
!= 0)
1778 if (p
->pipe_nr
!= 0) { /* this is an old-style pipe */
1779 struct dn_pipe
*a
, *b
;
1780 struct dn_flow_set
*fs
;
1782 lck_mtx_lock(dn_mutex
);
1784 for (a
= NULL
, b
= all_pipes
; b
&& b
->pipe_nr
< p
->pipe_nr
;
1785 a
= b
, b
= b
->next
) ;
1786 if (b
== NULL
|| (b
->pipe_nr
!= p
->pipe_nr
) ) {
1787 lck_mtx_unlock(dn_mutex
);
1788 return EINVAL
; /* not found */
1791 /* unlink from list of pipes */
1793 all_pipes
= b
->next
;
1796 /* remove references to this pipe from the ip_fw rules. */
1797 flush_pipe_ptrs(&(b
->fs
));
1799 /* remove all references to this pipe from flow_sets */
1800 for (fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1801 if (fs
->pipe
== b
) {
1802 printf("dummynet: ++ ref to pipe %d from fs %d\n",
1803 p
->pipe_nr
, fs
->fs_nr
);
1805 purge_flow_set(fs
, 0);
1807 fs_remove_from_heap(&ready_heap
, &(b
->fs
));
1808 purge_pipe(b
); /* remove all data associated to this pipe */
1809 /* remove reference to here from extract_heap and wfq_ready_heap */
1810 pipe_remove_from_heap(&extract_heap
, b
);
1811 pipe_remove_from_heap(&wfq_ready_heap
, b
);
1812 lck_mtx_unlock(dn_mutex
);
1814 FREE(b
, M_DUMMYNET
);
1815 } else { /* this is a WF2Q queue (dn_flow_set) */
1816 struct dn_flow_set
*a
, *b
;
1818 lck_mtx_lock(dn_mutex
);
1820 for (a
= NULL
, b
= all_flow_sets
; b
&& b
->fs_nr
< p
->fs
.fs_nr
;
1821 a
= b
, b
= b
->next
) ;
1822 if (b
== NULL
|| (b
->fs_nr
!= p
->fs
.fs_nr
) ) {
1823 lck_mtx_unlock(dn_mutex
);
1824 return EINVAL
; /* not found */
1828 all_flow_sets
= b
->next
;
1831 /* remove references to this flow_set from the ip_fw rules. */
1834 if (b
->pipe
!= NULL
) {
1835 /* Update total weight on parent pipe and cleanup parent heaps */
1836 b
->pipe
->sum
-= b
->weight
* b
->backlogged
;
1837 fs_remove_from_heap(&(b
->pipe
->not_eligible_heap
), b
);
1838 fs_remove_from_heap(&(b
->pipe
->scheduler_heap
), b
);
1839 #if 1 /* XXX should i remove from idle_heap as well ? */
1840 fs_remove_from_heap(&(b
->pipe
->idle_heap
), b
);
1843 purge_flow_set(b
, 1);
1844 lck_mtx_unlock(dn_mutex
);
1850 * helper function used to copy data from kernel in DUMMYNET_GET
1853 dn_copy_set(struct dn_flow_set
*set
, char *bp
)
1856 struct dn_flow_queue
*q
, *qp
= (struct dn_flow_queue
*)bp
;
1858 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1860 for (i
= 0 ; i
<= set
->rq_size
; i
++)
1861 for (q
= set
->rq
[i
] ; q
; q
= q
->next
, qp
++ ) {
1862 if (q
->hash_slot
!= i
)
1863 printf("dummynet: ++ at %d: wrong slot (have %d, "
1864 "should be %d)\n", copied
, q
->hash_slot
, i
);
1866 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
1869 bcopy(q
, qp
, sizeof( *q
) );
1870 /* cleanup pointers */
1872 qp
->head
= qp
->tail
= NULL
;
1875 if (copied
!= set
->rq_elements
)
1876 printf("dummynet: ++ wrong count, have %d should be %d\n",
1877 copied
, set
->rq_elements
);
1884 struct dn_flow_set
*set
;
1888 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1891 * compute size of data structures: list of pipes and flow_sets.
1893 for (p
= all_pipes
, size
= 0 ; p
; p
= p
->next
)
1894 size
+= sizeof( *p
) +
1895 p
->fs
.rq_elements
* sizeof(struct dn_flow_queue
);
1896 for (set
= all_flow_sets
; set
; set
= set
->next
)
1897 size
+= sizeof ( *set
) +
1898 set
->rq_elements
* sizeof(struct dn_flow_queue
);
1903 dummynet_get(struct sockopt
*sopt
)
1905 char *buf
, *bp
; /* bp is the "copy-pointer" */
1907 struct dn_flow_set
*set
;
1911 /* XXX lock held too long */
1912 lck_mtx_lock(dn_mutex
);
1914 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
1915 * cannot use this flag while holding a mutex.
1917 for (i
= 0; i
< 10; i
++) {
1918 size
= dn_calc_size();
1919 lck_mtx_unlock(dn_mutex
);
1920 buf
= _MALLOC(size
, M_TEMP
, M_WAITOK
);
1921 lck_mtx_lock(dn_mutex
);
1922 if (size
== dn_calc_size())
1928 lck_mtx_unlock(dn_mutex
);
1931 for (p
= all_pipes
, bp
= buf
; p
; p
= p
->next
) {
1932 struct dn_pipe
*pipe_bp
= (struct dn_pipe
*)bp
;
1935 * copy pipe descriptor into *bp, convert delay back to ms,
1936 * then copy the flow_set descriptor(s) one at a time.
1937 * After each flow_set, copy the queue descriptor it owns.
1939 bcopy(p
, bp
, sizeof( *p
) );
1940 pipe_bp
->delay
= (pipe_bp
->delay
* 1000) / hz
;
1942 * XXX the following is a hack based on ->next being the
1943 * first field in dn_pipe and dn_flow_set. The correct
1944 * solution would be to move the dn_flow_set to the beginning
1945 * of struct dn_pipe.
1947 pipe_bp
->next
= (struct dn_pipe
*)DN_IS_PIPE
;
1948 /* clean pointers */
1949 pipe_bp
->head
= pipe_bp
->tail
= NULL
;
1950 pipe_bp
->fs
.next
= NULL
;
1951 pipe_bp
->fs
.pipe
= NULL
;
1952 pipe_bp
->fs
.rq
= NULL
;
1954 bp
+= sizeof( *p
) ;
1955 bp
= dn_copy_set( &(p
->fs
), bp
);
1957 for (set
= all_flow_sets
; set
; set
= set
->next
) {
1958 struct dn_flow_set
*fs_bp
= (struct dn_flow_set
*)bp
;
1959 bcopy(set
, bp
, sizeof( *set
) );
1960 /* XXX same hack as above */
1961 fs_bp
->next
= (struct dn_flow_set
*)DN_IS_QUEUE
;
1962 fs_bp
->pipe
= NULL
;
1964 bp
+= sizeof( *set
) ;
1965 bp
= dn_copy_set( set
, bp
);
1967 lck_mtx_unlock(dn_mutex
);
1969 error
= sooptcopyout(sopt
, buf
, size
);
1975 * Handler for the various dummynet socket options (get, flush, config, del)
1978 ip_dn_ctl(struct sockopt
*sopt
)
1981 struct dn_pipe
*p
, tmp_pipe
;
1983 /* Disallow sets in really-really secure mode. */
1984 if (sopt
->sopt_dir
== SOPT_SET
&& securelevel
>= 3)
1987 switch (sopt
->sopt_name
) {
1989 printf("dummynet: -- unknown option %d", sopt
->sopt_name
);
1992 case IP_DUMMYNET_GET
:
1993 error
= dummynet_get(sopt
);
1996 case IP_DUMMYNET_FLUSH
:
2000 case IP_DUMMYNET_CONFIGURE
:
2002 error
= sooptcopyin(sopt
, p
, sizeof *p
, sizeof *p
);
2005 error
= config_pipe(p
);
2008 case IP_DUMMYNET_DEL
: /* remove a pipe or queue */
2010 error
= sooptcopyin(sopt
, p
, sizeof *p
, sizeof *p
);
2014 error
= delete_pipe(p
);
2024 dn_mutex_grp_attr
= lck_grp_attr_alloc_init();
2025 dn_mutex_grp
= lck_grp_alloc_init("dn", dn_mutex_grp_attr
);
2026 dn_mutex_attr
= lck_attr_alloc_init();
2027 lck_attr_setdefault(dn_mutex_attr
);
2029 if ((dn_mutex
= lck_mtx_alloc_init(dn_mutex_grp
, dn_mutex_attr
)) == NULL
) {
2030 printf("ip_dn_init: can't alloc dn_mutex\n");
2035 all_flow_sets
= NULL
;
2036 ready_heap
.size
= ready_heap
.elements
= 0 ;
2037 ready_heap
.offset
= 0 ;
2039 wfq_ready_heap
.size
= wfq_ready_heap
.elements
= 0 ;
2040 wfq_ready_heap
.offset
= 0 ;
2042 extract_heap
.size
= extract_heap
.elements
= 0 ;
2043 extract_heap
.offset
= 0 ;
2044 ip_dn_ctl_ptr
= ip_dn_ctl
;
2045 ip_dn_io_ptr
= dummynet_io
;
2046 ip_dn_ruledel_ptr
= dn_rule_delete
;
2048 timeout(dummynet
, NULL
, 1);