]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_bio.c
xnu-4903.241.1.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_bio.c
1 /*
2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*-
30 * Copyright (c) 1994 Christopher G. Demetriou
31 * Copyright (c) 1982, 1986, 1989, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the University of
50 * California, Berkeley and its contributors.
51 * 4. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
68 */
69
70 /*
71 * Some references:
72 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
73 * Leffler, et al.: The Design and Implementation of the 4.3BSD
74 * UNIX Operating System (Addison Welley, 1989)
75 */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc_internal.h>
80 #include <sys/buf_internal.h>
81 #include <sys/vnode_internal.h>
82 #include <sys/mount_internal.h>
83 #include <sys/trace.h>
84 #include <sys/malloc.h>
85 #include <sys/resourcevar.h>
86 #include <miscfs/specfs/specdev.h>
87 #include <sys/ubc.h>
88 #include <sys/kauth.h>
89 #if DIAGNOSTIC
90 #include <kern/assert.h>
91 #endif /* DIAGNOSTIC */
92 #include <kern/task.h>
93 #include <kern/zalloc.h>
94 #include <kern/locks.h>
95 #include <kern/thread.h>
96
97 #include <sys/fslog.h> /* fslog_io_error() */
98 #include <sys/disk.h> /* dk_error_description_t */
99
100 #include <mach/mach_types.h>
101 #include <mach/memory_object_types.h>
102 #include <kern/sched_prim.h> /* thread_block() */
103
104 #include <vm/vm_kern.h>
105 #include <vm/vm_pageout.h>
106
107 #include <sys/kdebug.h>
108
109 #include <libkern/OSAtomic.h>
110 #include <libkern/OSDebug.h>
111 #include <sys/ubc_internal.h>
112
113 #include <sys/sdt.h>
114
115 int bcleanbuf(buf_t bp, boolean_t discard);
116 static int brecover_data(buf_t bp);
117 static boolean_t incore(vnode_t vp, daddr64_t blkno);
118 /* timeout is in msecs */
119 static buf_t getnewbuf(int slpflag, int slptimeo, int *queue);
120 static void bremfree_locked(buf_t bp);
121 static void buf_reassign(buf_t bp, vnode_t newvp);
122 static errno_t buf_acquire_locked(buf_t bp, int flags, int slpflag, int slptimeo);
123 static int buf_iterprepare(vnode_t vp, struct buflists *, int flags);
124 static void buf_itercomplete(vnode_t vp, struct buflists *, int flags);
125 static boolean_t buffer_cache_gc(int);
126 static buf_t buf_brelse_shadow(buf_t bp);
127 static void buf_free_meta_store(buf_t bp);
128
129 static buf_t buf_create_shadow_internal(buf_t bp, boolean_t force_copy,
130 uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg, int priv);
131
132
133 int bdwrite_internal(buf_t, int);
134
135 extern void disk_conditioner_delay(buf_t, int, int, uint64_t);
136
137 /* zone allocated buffer headers */
138 static void bufzoneinit(void);
139 static void bcleanbuf_thread_init(void);
140 static void bcleanbuf_thread(void);
141
142 static zone_t buf_hdr_zone;
143 static int buf_hdr_count;
144
145
146 /*
147 * Definitions for the buffer hash lists.
148 */
149 #define BUFHASH(dvp, lbn) \
150 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
151 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152 u_long bufhash;
153
154 static buf_t incore_locked(vnode_t vp, daddr64_t blkno, struct bufhashhdr *dp);
155
156 /* Definitions for the buffer stats. */
157 struct bufstats bufstats;
158
159 /* Number of delayed write buffers */
160 long nbdwrite = 0;
161 int blaundrycnt = 0;
162 static int boot_nbuf_headers = 0;
163
164 static TAILQ_HEAD(delayqueue, buf) delaybufqueue;
165
166 static TAILQ_HEAD(ioqueue, buf) iobufqueue;
167 static TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
168 static int needbuffer;
169 static int need_iobuffer;
170
171 static lck_grp_t *buf_mtx_grp;
172 static lck_attr_t *buf_mtx_attr;
173 static lck_grp_attr_t *buf_mtx_grp_attr;
174 static lck_mtx_t *iobuffer_mtxp;
175 static lck_mtx_t *buf_mtxp;
176 static lck_mtx_t *buf_gc_callout;
177
178 static int buf_busycount;
179
180 #define FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE 16
181 typedef struct {
182 void (* callout)(int, void *);
183 void *context;
184 } fs_buffer_cache_gc_callout_t;
185
186 fs_buffer_cache_gc_callout_t fs_callouts[FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE] = { {NULL, NULL} };
187
188 static __inline__ int
189 buf_timestamp(void)
190 {
191 struct timeval t;
192 microuptime(&t);
193 return (t.tv_sec);
194 }
195
196 /*
197 * Insq/Remq for the buffer free lists.
198 */
199 #define binsheadfree(bp, dp, whichq) do { \
200 TAILQ_INSERT_HEAD(dp, bp, b_freelist); \
201 } while (0)
202
203 #define binstailfree(bp, dp, whichq) do { \
204 TAILQ_INSERT_TAIL(dp, bp, b_freelist); \
205 } while (0)
206
207 #define BHASHENTCHECK(bp) \
208 if ((bp)->b_hash.le_prev != (struct buf **)0xdeadbeef) \
209 panic("%p: b_hash.le_prev is not deadbeef", (bp));
210
211 #define BLISTNONE(bp) \
212 (bp)->b_hash.le_next = (struct buf *)0; \
213 (bp)->b_hash.le_prev = (struct buf **)0xdeadbeef;
214
215 /*
216 * Insq/Remq for the vnode usage lists.
217 */
218 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)
219 #define bufremvn(bp) { \
220 LIST_REMOVE(bp, b_vnbufs); \
221 (bp)->b_vnbufs.le_next = NOLIST; \
222 }
223
224 /*
225 * Time in seconds before a buffer on a list is
226 * considered as a stale buffer
227 */
228 #define LRU_IS_STALE 120 /* default value for the LRU */
229 #define AGE_IS_STALE 60 /* default value for the AGE */
230 #define META_IS_STALE 180 /* default value for the BQ_META */
231
232 int lru_is_stale = LRU_IS_STALE;
233 int age_is_stale = AGE_IS_STALE;
234 int meta_is_stale = META_IS_STALE;
235
236 #define MAXLAUNDRY 10
237
238 /* LIST_INSERT_HEAD() with assertions */
239 static __inline__ void
240 blistenterhead(struct bufhashhdr * head, buf_t bp)
241 {
242 if ((bp->b_hash.le_next = (head)->lh_first) != NULL)
243 (head)->lh_first->b_hash.le_prev = &(bp)->b_hash.le_next;
244 (head)->lh_first = bp;
245 bp->b_hash.le_prev = &(head)->lh_first;
246 if (bp->b_hash.le_prev == (struct buf **)0xdeadbeef)
247 panic("blistenterhead: le_prev is deadbeef");
248 }
249
250 static __inline__ void
251 binshash(buf_t bp, struct bufhashhdr *dp)
252 {
253 #if DIAGNOSTIC
254 buf_t nbp;
255 #endif /* DIAGNOSTIC */
256
257 BHASHENTCHECK(bp);
258
259 #if DIAGNOSTIC
260 nbp = dp->lh_first;
261 for(; nbp != NULL; nbp = nbp->b_hash.le_next) {
262 if(nbp == bp)
263 panic("buf already in hashlist");
264 }
265 #endif /* DIAGNOSTIC */
266
267 blistenterhead(dp, bp);
268 }
269
270 static __inline__ void
271 bremhash(buf_t bp)
272 {
273 if (bp->b_hash.le_prev == (struct buf **)0xdeadbeef)
274 panic("bremhash le_prev is deadbeef");
275 if (bp->b_hash.le_next == bp)
276 panic("bremhash: next points to self");
277
278 if (bp->b_hash.le_next != NULL)
279 bp->b_hash.le_next->b_hash.le_prev = bp->b_hash.le_prev;
280 *bp->b_hash.le_prev = (bp)->b_hash.le_next;
281 }
282
283 /*
284 * buf_mtxp held.
285 */
286 static __inline__ void
287 bmovelaundry(buf_t bp)
288 {
289 bp->b_whichq = BQ_LAUNDRY;
290 bp->b_timestamp = buf_timestamp();
291 binstailfree(bp, &bufqueues[BQ_LAUNDRY], BQ_LAUNDRY);
292 blaundrycnt++;
293 }
294
295 static __inline__ void
296 buf_release_credentials(buf_t bp)
297 {
298 if (IS_VALID_CRED(bp->b_rcred)) {
299 kauth_cred_unref(&bp->b_rcred);
300 }
301 if (IS_VALID_CRED(bp->b_wcred)) {
302 kauth_cred_unref(&bp->b_wcred);
303 }
304 }
305
306
307 int
308 buf_valid(buf_t bp) {
309
310 if ( (bp->b_flags & (B_DONE | B_DELWRI)) )
311 return 1;
312 return 0;
313 }
314
315 int
316 buf_fromcache(buf_t bp) {
317
318 if ( (bp->b_flags & B_CACHE) )
319 return 1;
320 return 0;
321 }
322
323 void
324 buf_markinvalid(buf_t bp) {
325
326 SET(bp->b_flags, B_INVAL);
327 }
328
329 void
330 buf_markdelayed(buf_t bp) {
331
332 if (!ISSET(bp->b_flags, B_DELWRI)) {
333 SET(bp->b_flags, B_DELWRI);
334
335 OSAddAtomicLong(1, &nbdwrite);
336 buf_reassign(bp, bp->b_vp);
337 }
338 SET(bp->b_flags, B_DONE);
339 }
340
341 void
342 buf_markclean(buf_t bp) {
343
344 if (ISSET(bp->b_flags, B_DELWRI)) {
345 CLR(bp->b_flags, B_DELWRI);
346
347 OSAddAtomicLong(-1, &nbdwrite);
348 buf_reassign(bp, bp->b_vp);
349 }
350 }
351
352 void
353 buf_markeintr(buf_t bp) {
354
355 SET(bp->b_flags, B_EINTR);
356 }
357
358
359 void
360 buf_markaged(buf_t bp) {
361
362 SET(bp->b_flags, B_AGE);
363 }
364
365 int
366 buf_fua(buf_t bp) {
367
368 if ((bp->b_flags & B_FUA) == B_FUA)
369 return 1;
370 return 0;
371 }
372
373 void
374 buf_markfua(buf_t bp) {
375
376 SET(bp->b_flags, B_FUA);
377 }
378
379 #if CONFIG_PROTECT
380 cpx_t bufattr_cpx(bufattr_t bap)
381 {
382 return bap->ba_cpx;
383 }
384
385 void bufattr_setcpx(bufattr_t bap, cpx_t cpx)
386 {
387 bap->ba_cpx = cpx;
388 }
389
390 void
391 buf_setcpoff (buf_t bp, uint64_t foffset) {
392 bp->b_attr.ba_cp_file_off = foffset;
393 }
394
395 uint64_t
396 bufattr_cpoff(bufattr_t bap) {
397 return bap->ba_cp_file_off;
398 }
399
400 void
401 bufattr_setcpoff(bufattr_t bap, uint64_t foffset) {
402 bap->ba_cp_file_off = foffset;
403 }
404
405 #else // !CONTECT_PROTECT
406
407 uint64_t
408 bufattr_cpoff(bufattr_t bap __unused) {
409 return 0;
410 }
411
412 void
413 bufattr_setcpoff(__unused bufattr_t bap, __unused uint64_t foffset) {
414 return;
415 }
416
417 struct cpx *bufattr_cpx(__unused bufattr_t bap)
418 {
419 return NULL;
420 }
421
422 void bufattr_setcpx(__unused bufattr_t bap, __unused struct cpx *cpx)
423 {
424 }
425
426 #endif /* !CONFIG_PROTECT */
427
428 bufattr_t
429 bufattr_alloc() {
430 bufattr_t bap;
431 MALLOC(bap, bufattr_t, sizeof(struct bufattr), M_TEMP, M_WAITOK);
432 if (bap == NULL)
433 return NULL;
434
435 bzero(bap, sizeof(struct bufattr));
436 return bap;
437 }
438
439 void
440 bufattr_free(bufattr_t bap) {
441 if (bap)
442 FREE(bap, M_TEMP);
443 }
444
445 bufattr_t
446 bufattr_dup(bufattr_t bap) {
447 bufattr_t new_bufattr;
448 MALLOC(new_bufattr, bufattr_t, sizeof(struct bufattr), M_TEMP, M_WAITOK);
449 if (new_bufattr == NULL)
450 return NULL;
451
452 /* Copy the provided one into the new copy */
453 memcpy (new_bufattr, bap, sizeof(struct bufattr));
454 return new_bufattr;
455 }
456
457 int
458 bufattr_rawencrypted(bufattr_t bap) {
459 if ( (bap->ba_flags & BA_RAW_ENCRYPTED_IO) )
460 return 1;
461 return 0;
462 }
463
464 int
465 bufattr_throttled(bufattr_t bap) {
466 return (GET_BUFATTR_IO_TIER(bap));
467 }
468
469 int
470 bufattr_passive(bufattr_t bap) {
471 if ( (bap->ba_flags & BA_PASSIVE) )
472 return 1;
473 return 0;
474 }
475
476 int
477 bufattr_nocache(bufattr_t bap) {
478 if ( (bap->ba_flags & BA_NOCACHE) )
479 return 1;
480 return 0;
481 }
482
483 int
484 bufattr_meta(bufattr_t bap) {
485 if ( (bap->ba_flags & BA_META) )
486 return 1;
487 return 0;
488 }
489
490 void
491 bufattr_markmeta(bufattr_t bap) {
492 SET(bap->ba_flags, BA_META);
493 }
494
495 int
496 #if !CONFIG_EMBEDDED
497 bufattr_delayidlesleep(bufattr_t bap)
498 #else /* !CONFIG_EMBEDDED */
499 bufattr_delayidlesleep(__unused bufattr_t bap)
500 #endif /* !CONFIG_EMBEDDED */
501 {
502 #if !CONFIG_EMBEDDED
503 if ( (bap->ba_flags & BA_DELAYIDLESLEEP) )
504 return 1;
505 #endif /* !CONFIG_EMBEDDED */
506 return 0;
507 }
508
509 bufattr_t
510 buf_attr(buf_t bp) {
511 return &bp->b_attr;
512 }
513
514 void
515 buf_markstatic(buf_t bp __unused) {
516 SET(bp->b_flags, B_STATICCONTENT);
517 }
518
519 int
520 buf_static(buf_t bp) {
521 if ( (bp->b_flags & B_STATICCONTENT) )
522 return 1;
523 return 0;
524 }
525
526 void
527 bufattr_markgreedymode(bufattr_t bap) {
528 SET(bap->ba_flags, BA_GREEDY_MODE);
529 }
530
531 int
532 bufattr_greedymode(bufattr_t bap) {
533 if ( (bap->ba_flags & BA_GREEDY_MODE) )
534 return 1;
535 return 0;
536 }
537
538 void
539 bufattr_markisochronous(bufattr_t bap) {
540 SET(bap->ba_flags, BA_ISOCHRONOUS);
541 }
542
543 int
544 bufattr_isochronous(bufattr_t bap) {
545 if ( (bap->ba_flags & BA_ISOCHRONOUS) )
546 return 1;
547 return 0;
548 }
549
550 void
551 bufattr_markquickcomplete(bufattr_t bap) {
552 SET(bap->ba_flags, BA_QUICK_COMPLETE);
553 }
554
555 int
556 bufattr_quickcomplete(bufattr_t bap) {
557 if ( (bap->ba_flags & BA_QUICK_COMPLETE) )
558 return 1;
559 return 0;
560 }
561
562 errno_t
563 buf_error(buf_t bp) {
564
565 return (bp->b_error);
566 }
567
568 void
569 buf_seterror(buf_t bp, errno_t error) {
570
571 if ((bp->b_error = error))
572 SET(bp->b_flags, B_ERROR);
573 else
574 CLR(bp->b_flags, B_ERROR);
575 }
576
577 void
578 buf_setflags(buf_t bp, int32_t flags) {
579
580 SET(bp->b_flags, (flags & BUF_X_WRFLAGS));
581 }
582
583 void
584 buf_clearflags(buf_t bp, int32_t flags) {
585
586 CLR(bp->b_flags, (flags & BUF_X_WRFLAGS));
587 }
588
589 int32_t
590 buf_flags(buf_t bp) {
591
592 return ((bp->b_flags & BUF_X_RDFLAGS));
593 }
594
595 void
596 buf_reset(buf_t bp, int32_t io_flags) {
597
598 CLR(bp->b_flags, (B_READ | B_WRITE | B_ERROR | B_DONE | B_INVAL | B_ASYNC | B_NOCACHE | B_FUA));
599 SET(bp->b_flags, (io_flags & (B_ASYNC | B_READ | B_WRITE | B_NOCACHE)));
600
601 bp->b_error = 0;
602 }
603
604 uint32_t
605 buf_count(buf_t bp) {
606
607 return (bp->b_bcount);
608 }
609
610 void
611 buf_setcount(buf_t bp, uint32_t bcount) {
612
613 bp->b_bcount = bcount;
614 }
615
616 uint32_t
617 buf_size(buf_t bp) {
618
619 return (bp->b_bufsize);
620 }
621
622 void
623 buf_setsize(buf_t bp, uint32_t bufsize) {
624
625 bp->b_bufsize = bufsize;
626 }
627
628 uint32_t
629 buf_resid(buf_t bp) {
630
631 return (bp->b_resid);
632 }
633
634 void
635 buf_setresid(buf_t bp, uint32_t resid) {
636
637 bp->b_resid = resid;
638 }
639
640 uint32_t
641 buf_dirtyoff(buf_t bp) {
642
643 return (bp->b_dirtyoff);
644 }
645
646 uint32_t
647 buf_dirtyend(buf_t bp) {
648
649 return (bp->b_dirtyend);
650 }
651
652 void
653 buf_setdirtyoff(buf_t bp, uint32_t dirtyoff) {
654
655 bp->b_dirtyoff = dirtyoff;
656 }
657
658 void
659 buf_setdirtyend(buf_t bp, uint32_t dirtyend) {
660
661 bp->b_dirtyend = dirtyend;
662 }
663
664 uintptr_t
665 buf_dataptr(buf_t bp) {
666
667 return (bp->b_datap);
668 }
669
670 void
671 buf_setdataptr(buf_t bp, uintptr_t data) {
672
673 bp->b_datap = data;
674 }
675
676 vnode_t
677 buf_vnode(buf_t bp) {
678
679 return (bp->b_vp);
680 }
681
682 void
683 buf_setvnode(buf_t bp, vnode_t vp) {
684
685 bp->b_vp = vp;
686 }
687
688
689 void *
690 buf_callback(buf_t bp)
691 {
692 if ( !(bp->b_flags & B_CALL) )
693 return ((void *) NULL);
694
695 return ((void *)bp->b_iodone);
696 }
697
698
699 errno_t
700 buf_setcallback(buf_t bp, void (*callback)(buf_t, void *), void *transaction)
701 {
702 assert(!ISSET(bp->b_flags, B_FILTER) && ISSET(bp->b_lflags, BL_BUSY));
703
704 if (callback)
705 bp->b_flags |= (B_CALL | B_ASYNC);
706 else
707 bp->b_flags &= ~B_CALL;
708 bp->b_transaction = transaction;
709 bp->b_iodone = callback;
710
711 return (0);
712 }
713
714 errno_t
715 buf_setupl(buf_t bp, upl_t upl, uint32_t offset)
716 {
717
718 if ( !(bp->b_lflags & BL_IOBUF) )
719 return (EINVAL);
720
721 if (upl)
722 bp->b_flags |= B_CLUSTER;
723 else
724 bp->b_flags &= ~B_CLUSTER;
725 bp->b_upl = upl;
726 bp->b_uploffset = offset;
727
728 return (0);
729 }
730
731 buf_t
732 buf_clone(buf_t bp, int io_offset, int io_size, void (*iodone)(buf_t, void *), void *arg)
733 {
734 buf_t io_bp;
735
736 if (io_offset < 0 || io_size < 0)
737 return (NULL);
738
739 if ((unsigned)(io_offset + io_size) > (unsigned)bp->b_bcount)
740 return (NULL);
741
742 if (bp->b_flags & B_CLUSTER) {
743 if (io_offset && ((bp->b_uploffset + io_offset) & PAGE_MASK))
744 return (NULL);
745
746 if (((bp->b_uploffset + io_offset + io_size) & PAGE_MASK) && ((io_offset + io_size) < bp->b_bcount))
747 return (NULL);
748 }
749 io_bp = alloc_io_buf(bp->b_vp, 0);
750
751 io_bp->b_flags = bp->b_flags & (B_COMMIT_UPL | B_META | B_PAGEIO | B_CLUSTER | B_PHYS | B_RAW | B_ASYNC | B_READ | B_FUA);
752
753 if (iodone) {
754 io_bp->b_transaction = arg;
755 io_bp->b_iodone = iodone;
756 io_bp->b_flags |= B_CALL;
757 }
758 if (bp->b_flags & B_CLUSTER) {
759 io_bp->b_upl = bp->b_upl;
760 io_bp->b_uploffset = bp->b_uploffset + io_offset;
761 } else {
762 io_bp->b_datap = (uintptr_t)(((char *)bp->b_datap) + io_offset);
763 }
764 io_bp->b_bcount = io_size;
765
766 return (io_bp);
767 }
768
769
770 int
771 buf_shadow(buf_t bp)
772 {
773 if (bp->b_lflags & BL_SHADOW)
774 return 1;
775 return 0;
776 }
777
778
779 buf_t
780 buf_create_shadow_priv(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg)
781 {
782 return (buf_create_shadow_internal(bp, force_copy, external_storage, iodone, arg, 1));
783 }
784
785 buf_t
786 buf_create_shadow(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg)
787 {
788 return (buf_create_shadow_internal(bp, force_copy, external_storage, iodone, arg, 0));
789 }
790
791
792 static buf_t
793 buf_create_shadow_internal(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg, int priv)
794 {
795 buf_t io_bp;
796
797 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_START, bp, 0, 0, 0, 0);
798
799 if ( !(bp->b_flags & B_META) || (bp->b_lflags & BL_IOBUF)) {
800
801 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END, bp, 0, 0, 0, 0);
802 return (NULL);
803 }
804 #ifdef BUF_MAKE_PRIVATE
805 if (bp->b_shadow_ref && bp->b_data_ref == 0 && external_storage == 0)
806 panic("buf_create_shadow: %p is in the private state (%d, %d)", bp, bp->b_shadow_ref, bp->b_data_ref);
807 #endif
808 io_bp = alloc_io_buf(bp->b_vp, priv);
809
810 io_bp->b_flags = bp->b_flags & (B_META | B_ZALLOC | B_ASYNC | B_READ | B_FUA);
811 io_bp->b_blkno = bp->b_blkno;
812 io_bp->b_lblkno = bp->b_lblkno;
813
814 if (iodone) {
815 io_bp->b_transaction = arg;
816 io_bp->b_iodone = iodone;
817 io_bp->b_flags |= B_CALL;
818 }
819 if (force_copy == FALSE) {
820 io_bp->b_bcount = bp->b_bcount;
821 io_bp->b_bufsize = bp->b_bufsize;
822
823 if (external_storage) {
824 io_bp->b_datap = external_storage;
825 #ifdef BUF_MAKE_PRIVATE
826 io_bp->b_data_store = NULL;
827 #endif
828 } else {
829 io_bp->b_datap = bp->b_datap;
830 #ifdef BUF_MAKE_PRIVATE
831 io_bp->b_data_store = bp;
832 #endif
833 }
834 *(buf_t *)(&io_bp->b_orig) = bp;
835
836 lck_mtx_lock_spin(buf_mtxp);
837
838 io_bp->b_lflags |= BL_SHADOW;
839 io_bp->b_shadow = bp->b_shadow;
840 bp->b_shadow = io_bp;
841 bp->b_shadow_ref++;
842
843 #ifdef BUF_MAKE_PRIVATE
844 if (external_storage)
845 io_bp->b_lflags |= BL_EXTERNAL;
846 else
847 bp->b_data_ref++;
848 #endif
849 lck_mtx_unlock(buf_mtxp);
850 } else {
851 if (external_storage) {
852 #ifdef BUF_MAKE_PRIVATE
853 io_bp->b_lflags |= BL_EXTERNAL;
854 #endif
855 io_bp->b_bcount = bp->b_bcount;
856 io_bp->b_bufsize = bp->b_bufsize;
857 io_bp->b_datap = external_storage;
858 } else {
859 allocbuf(io_bp, bp->b_bcount);
860
861 io_bp->b_lflags |= BL_IOBUF_ALLOC;
862 }
863 bcopy((caddr_t)bp->b_datap, (caddr_t)io_bp->b_datap, bp->b_bcount);
864
865 #ifdef BUF_MAKE_PRIVATE
866 io_bp->b_data_store = NULL;
867 #endif
868 }
869 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, io_bp, 0);
870
871 return (io_bp);
872 }
873
874
875 #ifdef BUF_MAKE_PRIVATE
876 errno_t
877 buf_make_private(buf_t bp)
878 {
879 buf_t ds_bp;
880 buf_t t_bp;
881 struct buf my_buf;
882
883 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_START, bp, bp->b_shadow_ref, 0, 0, 0);
884
885 if (bp->b_shadow_ref == 0 || bp->b_data_ref == 0 || ISSET(bp->b_lflags, BL_SHADOW)) {
886
887 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, EINVAL, 0);
888 return (EINVAL);
889 }
890 my_buf.b_flags = B_META;
891 my_buf.b_datap = (uintptr_t)NULL;
892 allocbuf(&my_buf, bp->b_bcount);
893
894 bcopy((caddr_t)bp->b_datap, (caddr_t)my_buf.b_datap, bp->b_bcount);
895
896 lck_mtx_lock_spin(buf_mtxp);
897
898 for (t_bp = bp->b_shadow; t_bp; t_bp = t_bp->b_shadow) {
899 if ( !ISSET(bp->b_lflags, BL_EXTERNAL))
900 break;
901 }
902 ds_bp = t_bp;
903
904 if (ds_bp == NULL && bp->b_data_ref)
905 panic("buf_make_private: b_data_ref != 0 && ds_bp == NULL");
906
907 if (ds_bp && (bp->b_data_ref == 0 || bp->b_shadow_ref == 0))
908 panic("buf_make_private: ref_count == 0 && ds_bp != NULL");
909
910 if (ds_bp == NULL) {
911 lck_mtx_unlock(buf_mtxp);
912
913 buf_free_meta_store(&my_buf);
914
915 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, EINVAL, 0);
916 return (EINVAL);
917 }
918 for (t_bp = bp->b_shadow; t_bp; t_bp = t_bp->b_shadow) {
919 if ( !ISSET(t_bp->b_lflags, BL_EXTERNAL))
920 t_bp->b_data_store = ds_bp;
921 }
922 ds_bp->b_data_ref = bp->b_data_ref;
923
924 bp->b_data_ref = 0;
925 bp->b_datap = my_buf.b_datap;
926
927 lck_mtx_unlock(buf_mtxp);
928
929 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, 0, 0);
930 return (0);
931 }
932 #endif
933
934
935 void
936 buf_setfilter(buf_t bp, void (*filter)(buf_t, void *), void *transaction,
937 void (**old_iodone)(buf_t, void *), void **old_transaction)
938 {
939 assert(ISSET(bp->b_lflags, BL_BUSY));
940
941 if (old_iodone)
942 *old_iodone = bp->b_iodone;
943 if (old_transaction)
944 *old_transaction = bp->b_transaction;
945
946 bp->b_transaction = transaction;
947 bp->b_iodone = filter;
948 if (filter)
949 bp->b_flags |= B_FILTER;
950 else
951 bp->b_flags &= ~B_FILTER;
952 }
953
954
955 daddr64_t
956 buf_blkno(buf_t bp) {
957
958 return (bp->b_blkno);
959 }
960
961 daddr64_t
962 buf_lblkno(buf_t bp) {
963
964 return (bp->b_lblkno);
965 }
966
967 void
968 buf_setblkno(buf_t bp, daddr64_t blkno) {
969
970 bp->b_blkno = blkno;
971 }
972
973 void
974 buf_setlblkno(buf_t bp, daddr64_t lblkno) {
975
976 bp->b_lblkno = lblkno;
977 }
978
979 dev_t
980 buf_device(buf_t bp) {
981
982 return (bp->b_dev);
983 }
984
985 errno_t
986 buf_setdevice(buf_t bp, vnode_t vp) {
987
988 if ((vp->v_type != VBLK) && (vp->v_type != VCHR))
989 return EINVAL;
990 bp->b_dev = vp->v_rdev;
991
992 return 0;
993 }
994
995
996 void *
997 buf_drvdata(buf_t bp) {
998
999 return (bp->b_drvdata);
1000 }
1001
1002 void
1003 buf_setdrvdata(buf_t bp, void *drvdata) {
1004
1005 bp->b_drvdata = drvdata;
1006 }
1007
1008 void *
1009 buf_fsprivate(buf_t bp) {
1010
1011 return (bp->b_fsprivate);
1012 }
1013
1014 void
1015 buf_setfsprivate(buf_t bp, void *fsprivate) {
1016
1017 bp->b_fsprivate = fsprivate;
1018 }
1019
1020 kauth_cred_t
1021 buf_rcred(buf_t bp) {
1022
1023 return (bp->b_rcred);
1024 }
1025
1026 kauth_cred_t
1027 buf_wcred(buf_t bp) {
1028
1029 return (bp->b_wcred);
1030 }
1031
1032 void *
1033 buf_upl(buf_t bp) {
1034
1035 return (bp->b_upl);
1036 }
1037
1038 uint32_t
1039 buf_uploffset(buf_t bp) {
1040
1041 return ((uint32_t)(bp->b_uploffset));
1042 }
1043
1044 proc_t
1045 buf_proc(buf_t bp) {
1046
1047 return (bp->b_proc);
1048 }
1049
1050
1051 errno_t
1052 buf_map(buf_t bp, caddr_t *io_addr)
1053 {
1054 buf_t real_bp;
1055 vm_offset_t vaddr;
1056 kern_return_t kret;
1057
1058 if ( !(bp->b_flags & B_CLUSTER)) {
1059 *io_addr = (caddr_t)bp->b_datap;
1060 return (0);
1061 }
1062 real_bp = (buf_t)(bp->b_real_bp);
1063
1064 if (real_bp && real_bp->b_datap) {
1065 /*
1066 * b_real_bp is only valid if B_CLUSTER is SET
1067 * if it's non-zero, than someone did a cluster_bp call
1068 * if the backing physical pages were already mapped
1069 * in before the call to cluster_bp (non-zero b_datap),
1070 * than we just use that mapping
1071 */
1072 *io_addr = (caddr_t)real_bp->b_datap;
1073 return (0);
1074 }
1075 kret = ubc_upl_map(bp->b_upl, &vaddr); /* Map it in */
1076
1077 if (kret != KERN_SUCCESS) {
1078 *io_addr = NULL;
1079
1080 return(ENOMEM);
1081 }
1082 vaddr += bp->b_uploffset;
1083
1084 *io_addr = (caddr_t)vaddr;
1085
1086 return (0);
1087 }
1088
1089 errno_t
1090 buf_unmap(buf_t bp)
1091 {
1092 buf_t real_bp;
1093 kern_return_t kret;
1094
1095 if ( !(bp->b_flags & B_CLUSTER))
1096 return (0);
1097 /*
1098 * see buf_map for the explanation
1099 */
1100 real_bp = (buf_t)(bp->b_real_bp);
1101
1102 if (real_bp && real_bp->b_datap)
1103 return (0);
1104
1105 if ((bp->b_lflags & BL_IOBUF) &&
1106 ((bp->b_flags & (B_PAGEIO | B_READ)) != (B_PAGEIO | B_READ))) {
1107 /*
1108 * ignore pageins... the 'right' thing will
1109 * happen due to the way we handle speculative
1110 * clusters...
1111 *
1112 * when we commit these pages, we'll hit
1113 * it with UPL_COMMIT_INACTIVE which
1114 * will clear the reference bit that got
1115 * turned on when we touched the mapping
1116 */
1117 bp->b_flags |= B_AGE;
1118 }
1119 kret = ubc_upl_unmap(bp->b_upl);
1120
1121 if (kret != KERN_SUCCESS)
1122 return (EINVAL);
1123 return (0);
1124 }
1125
1126
1127 void
1128 buf_clear(buf_t bp) {
1129 caddr_t baddr;
1130
1131 if (buf_map(bp, &baddr) == 0) {
1132 bzero(baddr, bp->b_bcount);
1133 buf_unmap(bp);
1134 }
1135 bp->b_resid = 0;
1136 }
1137
1138 /*
1139 * Read or write a buffer that is not contiguous on disk.
1140 * buffer is marked done/error at the conclusion
1141 */
1142 static int
1143 buf_strategy_fragmented(vnode_t devvp, buf_t bp, off_t f_offset, size_t contig_bytes)
1144 {
1145 vnode_t vp = buf_vnode(bp);
1146 buf_t io_bp; /* For reading or writing a single block */
1147 int io_direction;
1148 int io_resid;
1149 size_t io_contig_bytes;
1150 daddr64_t io_blkno;
1151 int error = 0;
1152 int bmap_flags;
1153
1154 /*
1155 * save our starting point... the bp was already mapped
1156 * in buf_strategy before we got called
1157 * no sense doing it again.
1158 */
1159 io_blkno = bp->b_blkno;
1160 /*
1161 * Make sure we redo this mapping for the next I/O
1162 * i.e. this can never be a 'permanent' mapping
1163 */
1164 bp->b_blkno = bp->b_lblkno;
1165
1166 /*
1167 * Get an io buffer to do the deblocking
1168 */
1169 io_bp = alloc_io_buf(devvp, 0);
1170
1171 io_bp->b_lblkno = bp->b_lblkno;
1172 io_bp->b_datap = bp->b_datap;
1173 io_resid = bp->b_bcount;
1174 io_direction = bp->b_flags & B_READ;
1175 io_contig_bytes = contig_bytes;
1176
1177 if (bp->b_flags & B_READ)
1178 bmap_flags = VNODE_READ;
1179 else
1180 bmap_flags = VNODE_WRITE;
1181
1182 for (;;) {
1183 if (io_blkno == -1)
1184 /*
1185 * this is unexepected, but we'll allow for it
1186 */
1187 bzero((caddr_t)io_bp->b_datap, (int)io_contig_bytes);
1188 else {
1189 io_bp->b_bcount = io_contig_bytes;
1190 io_bp->b_bufsize = io_contig_bytes;
1191 io_bp->b_resid = io_contig_bytes;
1192 io_bp->b_blkno = io_blkno;
1193
1194 buf_reset(io_bp, io_direction);
1195
1196 /*
1197 * Call the device to do the I/O and wait for it. Make sure the appropriate party is charged for write
1198 */
1199
1200 if (!ISSET(bp->b_flags, B_READ))
1201 OSAddAtomic(1, &devvp->v_numoutput);
1202
1203 if ((error = VNOP_STRATEGY(io_bp)))
1204 break;
1205 if ((error = (int)buf_biowait(io_bp)))
1206 break;
1207 if (io_bp->b_resid) {
1208 io_resid -= (io_contig_bytes - io_bp->b_resid);
1209 break;
1210 }
1211 }
1212 if ((io_resid -= io_contig_bytes) == 0)
1213 break;
1214 f_offset += io_contig_bytes;
1215 io_bp->b_datap += io_contig_bytes;
1216
1217 /*
1218 * Map the current position to a physical block number
1219 */
1220 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_resid, &io_blkno, &io_contig_bytes, NULL, bmap_flags, NULL)))
1221 break;
1222 }
1223 buf_free(io_bp);
1224
1225 if (error)
1226 buf_seterror(bp, error);
1227 bp->b_resid = io_resid;
1228 /*
1229 * This I/O is now complete
1230 */
1231 buf_biodone(bp);
1232
1233 return error;
1234 }
1235
1236
1237 /*
1238 * struct vnop_strategy_args {
1239 * struct buf *a_bp;
1240 * } *ap;
1241 */
1242 errno_t
1243 buf_strategy(vnode_t devvp, void *ap)
1244 {
1245 buf_t bp = ((struct vnop_strategy_args *)ap)->a_bp;
1246 vnode_t vp = bp->b_vp;
1247 int bmap_flags;
1248 errno_t error;
1249 #if CONFIG_DTRACE
1250 int dtrace_io_start_flag = 0; /* We only want to trip the io:::start
1251 * probe once, with the true physical
1252 * block in place (b_blkno)
1253 */
1254
1255 #endif
1256
1257 if (vp == NULL || vp->v_type == VCHR || vp->v_type == VBLK)
1258 panic("buf_strategy: b_vp == NULL || vtype == VCHR | VBLK\n");
1259 /*
1260 * associate the physical device with
1261 * with this buf_t even if we don't
1262 * end up issuing the I/O...
1263 */
1264 bp->b_dev = devvp->v_rdev;
1265
1266 if (bp->b_flags & B_READ)
1267 bmap_flags = VNODE_READ;
1268 else
1269 bmap_flags = VNODE_WRITE;
1270
1271 if ( !(bp->b_flags & B_CLUSTER)) {
1272
1273 if ( (bp->b_upl) ) {
1274 /*
1275 * we have a UPL associated with this bp
1276 * go through cluster_bp which knows how
1277 * to deal with filesystem block sizes
1278 * that aren't equal to the page size
1279 */
1280 DTRACE_IO1(start, buf_t, bp);
1281 return (cluster_bp(bp));
1282 }
1283 if (bp->b_blkno == bp->b_lblkno) {
1284 off_t f_offset;
1285 size_t contig_bytes;
1286
1287 if ((error = VNOP_BLKTOOFF(vp, bp->b_lblkno, &f_offset))) {
1288 DTRACE_IO1(start, buf_t, bp);
1289 buf_seterror(bp, error);
1290 buf_biodone(bp);
1291
1292 return (error);
1293 }
1294
1295 if ((error = VNOP_BLOCKMAP(vp, f_offset, bp->b_bcount, &bp->b_blkno, &contig_bytes, NULL, bmap_flags, NULL))) {
1296 DTRACE_IO1(start, buf_t, bp);
1297 buf_seterror(bp, error);
1298 buf_biodone(bp);
1299
1300 return (error);
1301 }
1302
1303 DTRACE_IO1(start, buf_t, bp);
1304 #if CONFIG_DTRACE
1305 dtrace_io_start_flag = 1;
1306 #endif /* CONFIG_DTRACE */
1307
1308 if ((bp->b_blkno == -1) || (contig_bytes == 0)) {
1309 /* Set block number to force biodone later */
1310 bp->b_blkno = -1;
1311 buf_clear(bp);
1312 }
1313 else if ((long)contig_bytes < bp->b_bcount) {
1314 return (buf_strategy_fragmented(devvp, bp, f_offset, contig_bytes));
1315 }
1316 }
1317
1318 #if CONFIG_DTRACE
1319 if (dtrace_io_start_flag == 0) {
1320 DTRACE_IO1(start, buf_t, bp);
1321 dtrace_io_start_flag = 1;
1322 }
1323 #endif /* CONFIG_DTRACE */
1324
1325 if (bp->b_blkno == -1) {
1326 buf_biodone(bp);
1327 return (0);
1328 }
1329 }
1330
1331 #if CONFIG_DTRACE
1332 if (dtrace_io_start_flag == 0)
1333 DTRACE_IO1(start, buf_t, bp);
1334 #endif /* CONFIG_DTRACE */
1335
1336 #if CONFIG_PROTECT
1337 /* Capture f_offset in the bufattr*/
1338 cpx_t cpx = bufattr_cpx(buf_attr(bp));
1339 if (cpx) {
1340 /* No need to go here for older EAs */
1341 if(cpx_use_offset_for_iv(cpx) && !cpx_synthetic_offset_for_iv(cpx)) {
1342 off_t f_offset;
1343 if ((error = VNOP_BLKTOOFF(bp->b_vp, bp->b_lblkno, &f_offset)))
1344 return error;
1345
1346 /*
1347 * Attach the file offset to this buffer. The
1348 * bufattr attributes will be passed down the stack
1349 * until they reach the storage driver (whether
1350 * IOFlashStorage, ASP, or IONVMe). The driver
1351 * will retain the offset in a local variable when it
1352 * issues its I/Os to the NAND controller.
1353 *
1354 * Note that LwVM may end up splitting this I/O
1355 * into sub-I/Os if it crosses a chunk boundary. In this
1356 * case, LwVM will update this field when it dispatches
1357 * each I/O to IOFlashStorage. But from our perspective
1358 * we have only issued a single I/O.
1359 *
1360 * In the case of APFS we do not bounce through another
1361 * intermediate layer (such as CoreStorage). APFS will
1362 * issue the I/Os directly to the block device / IOMedia
1363 * via buf_strategy on the specfs node.
1364 */
1365 buf_setcpoff(bp, f_offset);
1366 CP_DEBUG((CPDBG_OFFSET_IO | DBG_FUNC_NONE), (uint32_t) f_offset, (uint32_t) bp->b_lblkno, (uint32_t) bp->b_blkno, (uint32_t) bp->b_bcount, 0);
1367 }
1368 }
1369 #endif
1370
1371 /*
1372 * we can issue the I/O because...
1373 * either B_CLUSTER is set which
1374 * means that the I/O is properly set
1375 * up to be a multiple of the page size, or
1376 * we were able to successfully set up the
1377 * physical block mapping
1378 */
1379 error = VOCALL(devvp->v_op, VOFFSET(vnop_strategy), ap);
1380 DTRACE_FSINFO(strategy, vnode_t, vp);
1381 return (error);
1382 }
1383
1384
1385
1386 buf_t
1387 buf_alloc(vnode_t vp)
1388 {
1389 return(alloc_io_buf(vp, is_vm_privileged()));
1390 }
1391
1392 void
1393 buf_free(buf_t bp) {
1394
1395 free_io_buf(bp);
1396 }
1397
1398
1399 /*
1400 * iterate buffers for the specified vp.
1401 * if BUF_SCAN_DIRTY is set, do the dirty list
1402 * if BUF_SCAN_CLEAN is set, do the clean list
1403 * if neither flag is set, default to BUF_SCAN_DIRTY
1404 * if BUF_NOTIFY_BUSY is set, call the callout function using a NULL bp for busy pages
1405 */
1406
1407 struct buf_iterate_info_t {
1408 int flag;
1409 struct buflists *listhead;
1410 };
1411
1412 void
1413 buf_iterate(vnode_t vp, int (*callout)(buf_t, void *), int flags, void *arg)
1414 {
1415 buf_t bp;
1416 int retval;
1417 struct buflists local_iterblkhd;
1418 int lock_flags = BAC_NOWAIT | BAC_REMOVE;
1419 int notify_busy = flags & BUF_NOTIFY_BUSY;
1420 struct buf_iterate_info_t list[2];
1421 int num_lists, i;
1422
1423 if (flags & BUF_SKIP_LOCKED)
1424 lock_flags |= BAC_SKIP_LOCKED;
1425 if (flags & BUF_SKIP_NONLOCKED)
1426 lock_flags |= BAC_SKIP_NONLOCKED;
1427
1428 if ( !(flags & (BUF_SCAN_DIRTY | BUF_SCAN_CLEAN)))
1429 flags |= BUF_SCAN_DIRTY;
1430
1431 num_lists = 0;
1432
1433 if (flags & BUF_SCAN_DIRTY) {
1434 list[num_lists].flag = VBI_DIRTY;
1435 list[num_lists].listhead = &vp->v_dirtyblkhd;
1436 num_lists++;
1437 }
1438 if (flags & BUF_SCAN_CLEAN) {
1439 list[num_lists].flag = VBI_CLEAN;
1440 list[num_lists].listhead = &vp->v_cleanblkhd;
1441 num_lists++;
1442 }
1443
1444 for (i = 0; i < num_lists; i++) {
1445 lck_mtx_lock(buf_mtxp);
1446
1447 if (buf_iterprepare(vp, &local_iterblkhd, list[i].flag)) {
1448 lck_mtx_unlock(buf_mtxp);
1449 continue;
1450 }
1451 while (!LIST_EMPTY(&local_iterblkhd)) {
1452 bp = LIST_FIRST(&local_iterblkhd);
1453 LIST_REMOVE(bp, b_vnbufs);
1454 LIST_INSERT_HEAD(list[i].listhead, bp, b_vnbufs);
1455
1456 if (buf_acquire_locked(bp, lock_flags, 0, 0)) {
1457 if (notify_busy) {
1458 bp = NULL;
1459 } else {
1460 continue;
1461 }
1462 }
1463
1464 lck_mtx_unlock(buf_mtxp);
1465
1466 retval = callout(bp, arg);
1467
1468 switch (retval) {
1469 case BUF_RETURNED:
1470 if (bp)
1471 buf_brelse(bp);
1472 break;
1473 case BUF_CLAIMED:
1474 break;
1475 case BUF_RETURNED_DONE:
1476 if (bp)
1477 buf_brelse(bp);
1478 lck_mtx_lock(buf_mtxp);
1479 goto out;
1480 case BUF_CLAIMED_DONE:
1481 lck_mtx_lock(buf_mtxp);
1482 goto out;
1483 }
1484 lck_mtx_lock(buf_mtxp);
1485 } /* while list has more nodes */
1486 out:
1487 buf_itercomplete(vp, &local_iterblkhd, list[i].flag);
1488 lck_mtx_unlock(buf_mtxp);
1489 } /* for each list */
1490 } /* buf_iterate */
1491
1492
1493 /*
1494 * Flush out and invalidate all buffers associated with a vnode.
1495 */
1496 int
1497 buf_invalidateblks(vnode_t vp, int flags, int slpflag, int slptimeo)
1498 {
1499 buf_t bp;
1500 int aflags;
1501 int error = 0;
1502 int must_rescan = 1;
1503 struct buflists local_iterblkhd;
1504
1505
1506 if (LIST_EMPTY(&vp->v_cleanblkhd) && LIST_EMPTY(&vp->v_dirtyblkhd))
1507 return (0);
1508
1509 lck_mtx_lock(buf_mtxp);
1510
1511 for (;;) {
1512 if (must_rescan == 0)
1513 /*
1514 * the lists may not be empty, but all that's left at this
1515 * point are metadata or B_LOCKED buffers which are being
1516 * skipped... we know this because we made it through both
1517 * the clean and dirty lists without dropping buf_mtxp...
1518 * each time we drop buf_mtxp we bump "must_rescan"
1519 */
1520 break;
1521 if (LIST_EMPTY(&vp->v_cleanblkhd) && LIST_EMPTY(&vp->v_dirtyblkhd))
1522 break;
1523 must_rescan = 0;
1524 /*
1525 * iterate the clean list
1526 */
1527 if (buf_iterprepare(vp, &local_iterblkhd, VBI_CLEAN)) {
1528 goto try_dirty_list;
1529 }
1530 while (!LIST_EMPTY(&local_iterblkhd)) {
1531
1532 bp = LIST_FIRST(&local_iterblkhd);
1533
1534 LIST_REMOVE(bp, b_vnbufs);
1535 LIST_INSERT_HEAD(&vp->v_cleanblkhd, bp, b_vnbufs);
1536
1537 /*
1538 * some filesystems distinguish meta data blocks with a negative logical block #
1539 */
1540 if ((flags & BUF_SKIP_META) && (bp->b_lblkno < 0 || ISSET(bp->b_flags, B_META)))
1541 continue;
1542
1543 aflags = BAC_REMOVE;
1544
1545 if ( !(flags & BUF_INVALIDATE_LOCKED) )
1546 aflags |= BAC_SKIP_LOCKED;
1547
1548 if ( (error = (int)buf_acquire_locked(bp, aflags, slpflag, slptimeo)) ) {
1549 if (error == EDEADLK)
1550 /*
1551 * this buffer was marked B_LOCKED...
1552 * we didn't drop buf_mtxp, so we
1553 * we don't need to rescan
1554 */
1555 continue;
1556 if (error == EAGAIN) {
1557 /*
1558 * found a busy buffer... we blocked and
1559 * dropped buf_mtxp, so we're going to
1560 * need to rescan after this pass is completed
1561 */
1562 must_rescan++;
1563 continue;
1564 }
1565 /*
1566 * got some kind of 'real' error out of the msleep
1567 * in buf_acquire_locked, terminate the scan and return the error
1568 */
1569 buf_itercomplete(vp, &local_iterblkhd, VBI_CLEAN);
1570
1571 lck_mtx_unlock(buf_mtxp);
1572 return (error);
1573 }
1574 lck_mtx_unlock(buf_mtxp);
1575
1576 if (bp->b_flags & B_LOCKED)
1577 KERNEL_DEBUG(0xbbbbc038, bp, 0, 0, 0, 0);
1578
1579 CLR(bp->b_flags, B_LOCKED);
1580 SET(bp->b_flags, B_INVAL);
1581 buf_brelse(bp);
1582
1583 lck_mtx_lock(buf_mtxp);
1584
1585 /*
1586 * by dropping buf_mtxp, we allow new
1587 * buffers to be added to the vnode list(s)
1588 * we'll have to rescan at least once more
1589 * if the queues aren't empty
1590 */
1591 must_rescan++;
1592 }
1593 buf_itercomplete(vp, &local_iterblkhd, VBI_CLEAN);
1594
1595 try_dirty_list:
1596 /*
1597 * Now iterate on dirty blks
1598 */
1599 if (buf_iterprepare(vp, &local_iterblkhd, VBI_DIRTY)) {
1600 continue;
1601 }
1602 while (!LIST_EMPTY(&local_iterblkhd)) {
1603 bp = LIST_FIRST(&local_iterblkhd);
1604
1605 LIST_REMOVE(bp, b_vnbufs);
1606 LIST_INSERT_HEAD(&vp->v_dirtyblkhd, bp, b_vnbufs);
1607
1608 /*
1609 * some filesystems distinguish meta data blocks with a negative logical block #
1610 */
1611 if ((flags & BUF_SKIP_META) && (bp->b_lblkno < 0 || ISSET(bp->b_flags, B_META)))
1612 continue;
1613
1614 aflags = BAC_REMOVE;
1615
1616 if ( !(flags & BUF_INVALIDATE_LOCKED) )
1617 aflags |= BAC_SKIP_LOCKED;
1618
1619 if ( (error = (int)buf_acquire_locked(bp, aflags, slpflag, slptimeo)) ) {
1620 if (error == EDEADLK)
1621 /*
1622 * this buffer was marked B_LOCKED...
1623 * we didn't drop buf_mtxp, so we
1624 * we don't need to rescan
1625 */
1626 continue;
1627 if (error == EAGAIN) {
1628 /*
1629 * found a busy buffer... we blocked and
1630 * dropped buf_mtxp, so we're going to
1631 * need to rescan after this pass is completed
1632 */
1633 must_rescan++;
1634 continue;
1635 }
1636 /*
1637 * got some kind of 'real' error out of the msleep
1638 * in buf_acquire_locked, terminate the scan and return the error
1639 */
1640 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1641
1642 lck_mtx_unlock(buf_mtxp);
1643 return (error);
1644 }
1645 lck_mtx_unlock(buf_mtxp);
1646
1647 if (bp->b_flags & B_LOCKED)
1648 KERNEL_DEBUG(0xbbbbc038, bp, 0, 0, 1, 0);
1649
1650 CLR(bp->b_flags, B_LOCKED);
1651 SET(bp->b_flags, B_INVAL);
1652
1653 if (ISSET(bp->b_flags, B_DELWRI) && (flags & BUF_WRITE_DATA))
1654 (void) VNOP_BWRITE(bp);
1655 else
1656 buf_brelse(bp);
1657
1658 lck_mtx_lock(buf_mtxp);
1659 /*
1660 * by dropping buf_mtxp, we allow new
1661 * buffers to be added to the vnode list(s)
1662 * we'll have to rescan at least once more
1663 * if the queues aren't empty
1664 */
1665 must_rescan++;
1666 }
1667 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1668 }
1669 lck_mtx_unlock(buf_mtxp);
1670
1671 return (0);
1672 }
1673
1674 void
1675 buf_flushdirtyblks(vnode_t vp, int wait, int flags, const char *msg) {
1676
1677 (void) buf_flushdirtyblks_skipinfo(vp, wait, flags, msg);
1678 return;
1679 }
1680
1681 int
1682 buf_flushdirtyblks_skipinfo(vnode_t vp, int wait, int flags, const char *msg) {
1683 buf_t bp;
1684 int writes_issued = 0;
1685 errno_t error;
1686 int busy = 0;
1687 struct buflists local_iterblkhd;
1688 int lock_flags = BAC_NOWAIT | BAC_REMOVE;
1689 int any_locked = 0;
1690
1691 if (flags & BUF_SKIP_LOCKED)
1692 lock_flags |= BAC_SKIP_LOCKED;
1693 if (flags & BUF_SKIP_NONLOCKED)
1694 lock_flags |= BAC_SKIP_NONLOCKED;
1695 loop:
1696 lck_mtx_lock(buf_mtxp);
1697
1698 if (buf_iterprepare(vp, &local_iterblkhd, VBI_DIRTY) == 0) {
1699 while (!LIST_EMPTY(&local_iterblkhd)) {
1700 bp = LIST_FIRST(&local_iterblkhd);
1701 LIST_REMOVE(bp, b_vnbufs);
1702 LIST_INSERT_HEAD(&vp->v_dirtyblkhd, bp, b_vnbufs);
1703
1704 if ((error = buf_acquire_locked(bp, lock_flags, 0, 0)) == EBUSY) {
1705 busy++;
1706 }
1707 if (error) {
1708 /*
1709 * If we passed in BUF_SKIP_LOCKED or BUF_SKIP_NONLOCKED,
1710 * we may want to do somethign differently if a locked or unlocked
1711 * buffer was encountered (depending on the arg specified).
1712 * In this case, we know that one of those two was set, and the
1713 * buf acquisition failed above.
1714 *
1715 * If it failed with EDEADLK, then save state which can be emitted
1716 * later on to the caller. Most callers should not care.
1717 */
1718 if (error == EDEADLK) {
1719 any_locked++;
1720 }
1721 continue;
1722 }
1723 lck_mtx_unlock(buf_mtxp);
1724
1725 bp->b_flags &= ~B_LOCKED;
1726
1727 /*
1728 * Wait for I/O associated with indirect blocks to complete,
1729 * since there is no way to quickly wait for them below.
1730 */
1731 if ((bp->b_vp == vp) || (wait == 0))
1732 (void) buf_bawrite(bp);
1733 else
1734 (void) VNOP_BWRITE(bp);
1735 writes_issued++;
1736
1737 lck_mtx_lock(buf_mtxp);
1738 }
1739 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1740 }
1741 lck_mtx_unlock(buf_mtxp);
1742
1743 if (wait) {
1744 (void)vnode_waitforwrites(vp, 0, 0, 0, msg);
1745
1746 if (vp->v_dirtyblkhd.lh_first && busy) {
1747 /*
1748 * we had one or more BUSY buffers on
1749 * the dirtyblock list... most likely
1750 * these are due to delayed writes that
1751 * were moved to the bclean queue but
1752 * have not yet been 'written'.
1753 * if we issued some writes on the
1754 * previous pass, we try again immediately
1755 * if we didn't, we'll sleep for some time
1756 * to allow the state to change...
1757 */
1758 if (writes_issued == 0) {
1759 (void)tsleep((caddr_t)&vp->v_numoutput,
1760 PRIBIO + 1, "vnode_flushdirtyblks", hz/20);
1761 }
1762 writes_issued = 0;
1763 busy = 0;
1764
1765 goto loop;
1766 }
1767 }
1768
1769 return any_locked;
1770 }
1771
1772
1773 /*
1774 * called with buf_mtxp held...
1775 * this lock protects the queue manipulation
1776 */
1777 static int
1778 buf_iterprepare(vnode_t vp, struct buflists *iterheadp, int flags)
1779 {
1780 struct buflists * listheadp;
1781
1782 if (flags & VBI_DIRTY)
1783 listheadp = &vp->v_dirtyblkhd;
1784 else
1785 listheadp = &vp->v_cleanblkhd;
1786
1787 while (vp->v_iterblkflags & VBI_ITER) {
1788 vp->v_iterblkflags |= VBI_ITERWANT;
1789 msleep(&vp->v_iterblkflags, buf_mtxp, 0, "buf_iterprepare", NULL);
1790 }
1791 if (LIST_EMPTY(listheadp)) {
1792 LIST_INIT(iterheadp);
1793 return(EINVAL);
1794 }
1795 vp->v_iterblkflags |= VBI_ITER;
1796
1797 iterheadp->lh_first = listheadp->lh_first;
1798 listheadp->lh_first->b_vnbufs.le_prev = &iterheadp->lh_first;
1799 LIST_INIT(listheadp);
1800
1801 return(0);
1802 }
1803
1804 /*
1805 * called with buf_mtxp held...
1806 * this lock protects the queue manipulation
1807 */
1808 static void
1809 buf_itercomplete(vnode_t vp, struct buflists *iterheadp, int flags)
1810 {
1811 struct buflists * listheadp;
1812 buf_t bp;
1813
1814 if (flags & VBI_DIRTY)
1815 listheadp = &vp->v_dirtyblkhd;
1816 else
1817 listheadp = &vp->v_cleanblkhd;
1818
1819 while (!LIST_EMPTY(iterheadp)) {
1820 bp = LIST_FIRST(iterheadp);
1821 LIST_REMOVE(bp, b_vnbufs);
1822 LIST_INSERT_HEAD(listheadp, bp, b_vnbufs);
1823 }
1824 vp->v_iterblkflags &= ~VBI_ITER;
1825
1826 if (vp->v_iterblkflags & VBI_ITERWANT) {
1827 vp->v_iterblkflags &= ~VBI_ITERWANT;
1828 wakeup(&vp->v_iterblkflags);
1829 }
1830 }
1831
1832
1833 static void
1834 bremfree_locked(buf_t bp)
1835 {
1836 struct bqueues *dp = NULL;
1837 int whichq;
1838
1839 whichq = bp->b_whichq;
1840
1841 if (whichq == -1) {
1842 if (bp->b_shadow_ref == 0)
1843 panic("bremfree_locked: %p not on freelist", bp);
1844 /*
1845 * there are clones pointing to 'bp'...
1846 * therefore, it was not put on a freelist
1847 * when buf_brelse was last called on 'bp'
1848 */
1849 return;
1850 }
1851 /*
1852 * We only calculate the head of the freelist when removing
1853 * the last element of the list as that is the only time that
1854 * it is needed (e.g. to reset the tail pointer).
1855 *
1856 * NB: This makes an assumption about how tailq's are implemented.
1857 */
1858 if (bp->b_freelist.tqe_next == NULL) {
1859 dp = &bufqueues[whichq];
1860
1861 if (dp->tqh_last != &bp->b_freelist.tqe_next)
1862 panic("bremfree: lost tail");
1863 }
1864 TAILQ_REMOVE(dp, bp, b_freelist);
1865
1866 if (whichq == BQ_LAUNDRY)
1867 blaundrycnt--;
1868
1869 bp->b_whichq = -1;
1870 bp->b_timestamp = 0;
1871 bp->b_shadow = 0;
1872 }
1873
1874 /*
1875 * Associate a buffer with a vnode.
1876 * buf_mtxp must be locked on entry
1877 */
1878 static void
1879 bgetvp_locked(vnode_t vp, buf_t bp)
1880 {
1881
1882 if (bp->b_vp != vp)
1883 panic("bgetvp_locked: not free");
1884
1885 if (vp->v_type == VBLK || vp->v_type == VCHR)
1886 bp->b_dev = vp->v_rdev;
1887 else
1888 bp->b_dev = NODEV;
1889 /*
1890 * Insert onto list for new vnode.
1891 */
1892 bufinsvn(bp, &vp->v_cleanblkhd);
1893 }
1894
1895 /*
1896 * Disassociate a buffer from a vnode.
1897 * buf_mtxp must be locked on entry
1898 */
1899 static void
1900 brelvp_locked(buf_t bp)
1901 {
1902 /*
1903 * Delete from old vnode list, if on one.
1904 */
1905 if (bp->b_vnbufs.le_next != NOLIST)
1906 bufremvn(bp);
1907
1908 bp->b_vp = (vnode_t)NULL;
1909 }
1910
1911 /*
1912 * Reassign a buffer from one vnode to another.
1913 * Used to assign file specific control information
1914 * (indirect blocks) to the vnode to which they belong.
1915 */
1916 static void
1917 buf_reassign(buf_t bp, vnode_t newvp)
1918 {
1919 struct buflists *listheadp;
1920
1921 if (newvp == NULL) {
1922 printf("buf_reassign: NULL");
1923 return;
1924 }
1925 lck_mtx_lock_spin(buf_mtxp);
1926
1927 /*
1928 * Delete from old vnode list, if on one.
1929 */
1930 if (bp->b_vnbufs.le_next != NOLIST)
1931 bufremvn(bp);
1932 /*
1933 * If dirty, put on list of dirty buffers;
1934 * otherwise insert onto list of clean buffers.
1935 */
1936 if (ISSET(bp->b_flags, B_DELWRI))
1937 listheadp = &newvp->v_dirtyblkhd;
1938 else
1939 listheadp = &newvp->v_cleanblkhd;
1940 bufinsvn(bp, listheadp);
1941
1942 lck_mtx_unlock(buf_mtxp);
1943 }
1944
1945 static __inline__ void
1946 bufhdrinit(buf_t bp)
1947 {
1948 bzero((char *)bp, sizeof *bp);
1949 bp->b_dev = NODEV;
1950 bp->b_rcred = NOCRED;
1951 bp->b_wcred = NOCRED;
1952 bp->b_vnbufs.le_next = NOLIST;
1953 bp->b_flags = B_INVAL;
1954
1955 return;
1956 }
1957
1958 /*
1959 * Initialize buffers and hash links for buffers.
1960 */
1961 __private_extern__ void
1962 bufinit(void)
1963 {
1964 buf_t bp;
1965 struct bqueues *dp;
1966 int i;
1967
1968 nbuf_headers = 0;
1969 /* Initialize the buffer queues ('freelists') and the hash table */
1970 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
1971 TAILQ_INIT(dp);
1972 bufhashtbl = hashinit(nbuf_hashelements, M_CACHE, &bufhash);
1973
1974 buf_busycount = 0;
1975
1976 /* Initialize the buffer headers */
1977 for (i = 0; i < max_nbuf_headers; i++) {
1978 nbuf_headers++;
1979 bp = &buf_headers[i];
1980 bufhdrinit(bp);
1981
1982 BLISTNONE(bp);
1983 dp = &bufqueues[BQ_EMPTY];
1984 bp->b_whichq = BQ_EMPTY;
1985 bp->b_timestamp = buf_timestamp();
1986 binsheadfree(bp, dp, BQ_EMPTY);
1987 binshash(bp, &invalhash);
1988 }
1989 boot_nbuf_headers = nbuf_headers;
1990
1991 TAILQ_INIT(&iobufqueue);
1992 TAILQ_INIT(&delaybufqueue);
1993
1994 for (; i < nbuf_headers + niobuf_headers; i++) {
1995 bp = &buf_headers[i];
1996 bufhdrinit(bp);
1997 bp->b_whichq = -1;
1998 binsheadfree(bp, &iobufqueue, -1);
1999 }
2000
2001 /*
2002 * allocate lock group attribute and group
2003 */
2004 buf_mtx_grp_attr = lck_grp_attr_alloc_init();
2005 buf_mtx_grp = lck_grp_alloc_init("buffer cache", buf_mtx_grp_attr);
2006
2007 /*
2008 * allocate the lock attribute
2009 */
2010 buf_mtx_attr = lck_attr_alloc_init();
2011
2012 /*
2013 * allocate and initialize mutex's for the buffer and iobuffer pools
2014 */
2015 buf_mtxp = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
2016 iobuffer_mtxp = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
2017 buf_gc_callout = lck_mtx_alloc_init(buf_mtx_grp, buf_mtx_attr);
2018
2019 if (iobuffer_mtxp == NULL)
2020 panic("couldn't create iobuffer mutex");
2021
2022 if (buf_mtxp == NULL)
2023 panic("couldn't create buf mutex");
2024
2025 if (buf_gc_callout == NULL)
2026 panic("couldn't create buf_gc_callout mutex");
2027
2028 /*
2029 * allocate and initialize cluster specific global locks...
2030 */
2031 cluster_init();
2032
2033 printf("using %d buffer headers and %d cluster IO buffer headers\n",
2034 nbuf_headers, niobuf_headers);
2035
2036 /* Set up zones used by the buffer cache */
2037 bufzoneinit();
2038
2039 /* start the bcleanbuf() thread */
2040 bcleanbuf_thread_init();
2041
2042 /* Register a callout for relieving vm pressure */
2043 if (vm_set_buffer_cleanup_callout(buffer_cache_gc) != KERN_SUCCESS) {
2044 panic("Couldn't register buffer cache callout for vm pressure!\n");
2045 }
2046
2047 }
2048
2049 /*
2050 * Zones for the meta data buffers
2051 */
2052
2053 #define MINMETA 512
2054 #define MAXMETA 16384
2055
2056 struct meta_zone_entry {
2057 zone_t mz_zone;
2058 vm_size_t mz_size;
2059 vm_size_t mz_max;
2060 const char *mz_name;
2061 };
2062
2063 struct meta_zone_entry meta_zones[] = {
2064 {NULL, (MINMETA * 1), 128 * (MINMETA * 1), "buf.512" },
2065 {NULL, (MINMETA * 2), 64 * (MINMETA * 2), "buf.1024" },
2066 {NULL, (MINMETA * 4), 16 * (MINMETA * 4), "buf.2048" },
2067 {NULL, (MINMETA * 8), 512 * (MINMETA * 8), "buf.4096" },
2068 {NULL, (MINMETA * 16), 512 * (MINMETA * 16), "buf.8192" },
2069 {NULL, (MINMETA * 32), 512 * (MINMETA * 32), "buf.16384" },
2070 {NULL, 0, 0, "" } /* End */
2071 };
2072
2073 /*
2074 * Initialize the meta data zones
2075 */
2076 static void
2077 bufzoneinit(void)
2078 {
2079 int i;
2080
2081 for (i = 0; meta_zones[i].mz_size != 0; i++) {
2082 meta_zones[i].mz_zone =
2083 zinit(meta_zones[i].mz_size,
2084 meta_zones[i].mz_max,
2085 PAGE_SIZE,
2086 meta_zones[i].mz_name);
2087 zone_change(meta_zones[i].mz_zone, Z_CALLERACCT, FALSE);
2088 }
2089 buf_hdr_zone = zinit(sizeof(struct buf), 32, PAGE_SIZE, "buf headers");
2090 zone_change(buf_hdr_zone, Z_CALLERACCT, FALSE);
2091 }
2092
2093 static __inline__ zone_t
2094 getbufzone(size_t size)
2095 {
2096 int i;
2097
2098 if ((size % 512) || (size < MINMETA) || (size > MAXMETA))
2099 panic("getbufzone: incorect size = %lu", size);
2100
2101 for (i = 0; meta_zones[i].mz_size != 0; i++) {
2102 if (meta_zones[i].mz_size >= size)
2103 break;
2104 }
2105
2106 return (meta_zones[i].mz_zone);
2107 }
2108
2109
2110
2111 static struct buf *
2112 bio_doread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, int async, int queuetype)
2113 {
2114 buf_t bp;
2115
2116 bp = buf_getblk(vp, blkno, size, 0, 0, queuetype);
2117
2118 /*
2119 * If buffer does not have data valid, start a read.
2120 * Note that if buffer is B_INVAL, buf_getblk() won't return it.
2121 * Therefore, it's valid if it's I/O has completed or been delayed.
2122 */
2123 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
2124 struct proc *p;
2125
2126 p = current_proc();
2127
2128 /* Start I/O for the buffer (keeping credentials). */
2129 SET(bp->b_flags, B_READ | async);
2130 if (IS_VALID_CRED(cred) && !IS_VALID_CRED(bp->b_rcred)) {
2131 kauth_cred_ref(cred);
2132 bp->b_rcred = cred;
2133 }
2134
2135 VNOP_STRATEGY(bp);
2136
2137 trace(TR_BREADMISS, pack(vp, size), blkno);
2138
2139 /* Pay for the read. */
2140 if (p && p->p_stats) {
2141 OSIncrementAtomicLong(&p->p_stats->p_ru.ru_inblock); /* XXX */
2142 }
2143
2144 if (async) {
2145 /*
2146 * since we asked for an ASYNC I/O
2147 * the biodone will do the brelse
2148 * we don't want to pass back a bp
2149 * that we don't 'own'
2150 */
2151 bp = NULL;
2152 }
2153 } else if (async) {
2154 buf_brelse(bp);
2155 bp = NULL;
2156 }
2157
2158 trace(TR_BREADHIT, pack(vp, size), blkno);
2159
2160 return (bp);
2161 }
2162
2163 /*
2164 * Perform the reads for buf_breadn() and buf_meta_breadn().
2165 * Trivial modification to the breada algorithm presented in Bach (p.55).
2166 */
2167 static errno_t
2168 do_breadn_for_type(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes,
2169 int nrablks, kauth_cred_t cred, buf_t *bpp, int queuetype)
2170 {
2171 buf_t bp;
2172 int i;
2173
2174 bp = *bpp = bio_doread(vp, blkno, size, cred, 0, queuetype);
2175
2176 /*
2177 * For each of the read-ahead blocks, start a read, if necessary.
2178 */
2179 for (i = 0; i < nrablks; i++) {
2180 /* If it's in the cache, just go on to next one. */
2181 if (incore(vp, rablks[i]))
2182 continue;
2183
2184 /* Get a buffer for the read-ahead block */
2185 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC, queuetype);
2186 }
2187
2188 /* Otherwise, we had to start a read for it; wait until it's valid. */
2189 return (buf_biowait(bp));
2190 }
2191
2192
2193 /*
2194 * Read a disk block.
2195 * This algorithm described in Bach (p.54).
2196 */
2197 errno_t
2198 buf_bread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, buf_t *bpp)
2199 {
2200 buf_t bp;
2201
2202 /* Get buffer for block. */
2203 bp = *bpp = bio_doread(vp, blkno, size, cred, 0, BLK_READ);
2204
2205 /* Wait for the read to complete, and return result. */
2206 return (buf_biowait(bp));
2207 }
2208
2209 /*
2210 * Read a disk block. [bread() for meta-data]
2211 * This algorithm described in Bach (p.54).
2212 */
2213 errno_t
2214 buf_meta_bread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, buf_t *bpp)
2215 {
2216 buf_t bp;
2217
2218 /* Get buffer for block. */
2219 bp = *bpp = bio_doread(vp, blkno, size, cred, 0, BLK_META);
2220
2221 /* Wait for the read to complete, and return result. */
2222 return (buf_biowait(bp));
2223 }
2224
2225 /*
2226 * Read-ahead multiple disk blocks. The first is sync, the rest async.
2227 */
2228 errno_t
2229 buf_breadn(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes, int nrablks, kauth_cred_t cred, buf_t *bpp)
2230 {
2231 return (do_breadn_for_type(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp, BLK_READ));
2232 }
2233
2234 /*
2235 * Read-ahead multiple disk blocks. The first is sync, the rest async.
2236 * [buf_breadn() for meta-data]
2237 */
2238 errno_t
2239 buf_meta_breadn(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes, int nrablks, kauth_cred_t cred, buf_t *bpp)
2240 {
2241 return (do_breadn_for_type(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp, BLK_META));
2242 }
2243
2244 /*
2245 * Block write. Described in Bach (p.56)
2246 */
2247 errno_t
2248 buf_bwrite(buf_t bp)
2249 {
2250 int sync, wasdelayed;
2251 errno_t rv;
2252 proc_t p = current_proc();
2253 vnode_t vp = bp->b_vp;
2254
2255 if (bp->b_datap == 0) {
2256 if (brecover_data(bp) == 0)
2257 return (0);
2258 }
2259 /* Remember buffer type, to switch on it later. */
2260 sync = !ISSET(bp->b_flags, B_ASYNC);
2261 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
2262 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
2263
2264 if (wasdelayed)
2265 OSAddAtomicLong(-1, &nbdwrite);
2266
2267 if (!sync) {
2268 /*
2269 * If not synchronous, pay for the I/O operation and make
2270 * sure the buf is on the correct vnode queue. We have
2271 * to do this now, because if we don't, the vnode may not
2272 * be properly notified that its I/O has completed.
2273 */
2274 if (wasdelayed)
2275 buf_reassign(bp, vp);
2276 else
2277 if (p && p->p_stats) {
2278 OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
2279 }
2280 }
2281 trace(TR_BUFWRITE, pack(vp, bp->b_bcount), bp->b_lblkno);
2282
2283 /* Initiate disk write. Make sure the appropriate party is charged. */
2284
2285 OSAddAtomic(1, &vp->v_numoutput);
2286
2287 VNOP_STRATEGY(bp);
2288
2289 if (sync) {
2290 /*
2291 * If I/O was synchronous, wait for it to complete.
2292 */
2293 rv = buf_biowait(bp);
2294
2295 /*
2296 * Pay for the I/O operation, if it's not been paid for, and
2297 * make sure it's on the correct vnode queue. (async operatings
2298 * were payed for above.)
2299 */
2300 if (wasdelayed)
2301 buf_reassign(bp, vp);
2302 else
2303 if (p && p->p_stats) {
2304 OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
2305 }
2306
2307 /* Release the buffer. */
2308 buf_brelse(bp);
2309
2310 return (rv);
2311 } else {
2312 return (0);
2313 }
2314 }
2315
2316 int
2317 vn_bwrite(struct vnop_bwrite_args *ap)
2318 {
2319 return (buf_bwrite(ap->a_bp));
2320 }
2321
2322 /*
2323 * Delayed write.
2324 *
2325 * The buffer is marked dirty, but is not queued for I/O.
2326 * This routine should be used when the buffer is expected
2327 * to be modified again soon, typically a small write that
2328 * partially fills a buffer.
2329 *
2330 * NB: magnetic tapes cannot be delayed; they must be
2331 * written in the order that the writes are requested.
2332 *
2333 * Described in Leffler, et al. (pp. 208-213).
2334 *
2335 * Note: With the ability to allocate additional buffer
2336 * headers, we can get in to the situation where "too" many
2337 * buf_bdwrite()s can create situation where the kernel can create
2338 * buffers faster than the disks can service. Doing a buf_bawrite() in
2339 * cases where we have "too many" outstanding buf_bdwrite()s avoids that.
2340 */
2341 int
2342 bdwrite_internal(buf_t bp, int return_error)
2343 {
2344 proc_t p = current_proc();
2345 vnode_t vp = bp->b_vp;
2346
2347 /*
2348 * If the block hasn't been seen before:
2349 * (1) Mark it as having been seen,
2350 * (2) Charge for the write.
2351 * (3) Make sure it's on its vnode's correct block list,
2352 */
2353 if (!ISSET(bp->b_flags, B_DELWRI)) {
2354 SET(bp->b_flags, B_DELWRI);
2355 if (p && p->p_stats) {
2356 OSIncrementAtomicLong(&p->p_stats->p_ru.ru_oublock); /* XXX */
2357 }
2358 OSAddAtomicLong(1, &nbdwrite);
2359 buf_reassign(bp, vp);
2360 }
2361
2362 /*
2363 * if we're not LOCKED, but the total number of delayed writes
2364 * has climbed above 75% of the total buffers in the system
2365 * return an error if the caller has indicated that it can
2366 * handle one in this case, otherwise schedule the I/O now
2367 * this is done to prevent us from allocating tons of extra
2368 * buffers when dealing with virtual disks (i.e. DiskImages),
2369 * because additional buffers are dynamically allocated to prevent
2370 * deadlocks from occurring
2371 *
2372 * however, can't do a buf_bawrite() if the LOCKED bit is set because the
2373 * buffer is part of a transaction and can't go to disk until
2374 * the LOCKED bit is cleared.
2375 */
2376 if (!ISSET(bp->b_flags, B_LOCKED) && nbdwrite > ((nbuf_headers/4)*3)) {
2377 if (return_error)
2378 return (EAGAIN);
2379 /*
2380 * If the vnode has "too many" write operations in progress
2381 * wait for them to finish the IO
2382 */
2383 (void)vnode_waitforwrites(vp, VNODE_ASYNC_THROTTLE, 0, 0, "buf_bdwrite");
2384
2385 return (buf_bawrite(bp));
2386 }
2387
2388 /* Otherwise, the "write" is done, so mark and release the buffer. */
2389 SET(bp->b_flags, B_DONE);
2390 buf_brelse(bp);
2391 return (0);
2392 }
2393
2394 errno_t
2395 buf_bdwrite(buf_t bp)
2396 {
2397 return (bdwrite_internal(bp, 0));
2398 }
2399
2400
2401 /*
2402 * Asynchronous block write; just an asynchronous buf_bwrite().
2403 *
2404 * Note: With the abilitty to allocate additional buffer
2405 * headers, we can get in to the situation where "too" many
2406 * buf_bawrite()s can create situation where the kernel can create
2407 * buffers faster than the disks can service.
2408 * We limit the number of "in flight" writes a vnode can have to
2409 * avoid this.
2410 */
2411 static int
2412 bawrite_internal(buf_t bp, int throttle)
2413 {
2414 vnode_t vp = bp->b_vp;
2415
2416 if (vp) {
2417 if (throttle)
2418 /*
2419 * If the vnode has "too many" write operations in progress
2420 * wait for them to finish the IO
2421 */
2422 (void)vnode_waitforwrites(vp, VNODE_ASYNC_THROTTLE, 0, 0, (const char *)"buf_bawrite");
2423 else if (vp->v_numoutput >= VNODE_ASYNC_THROTTLE)
2424 /*
2425 * return to the caller and
2426 * let him decide what to do
2427 */
2428 return (EWOULDBLOCK);
2429 }
2430 SET(bp->b_flags, B_ASYNC);
2431
2432 return (VNOP_BWRITE(bp));
2433 }
2434
2435 errno_t
2436 buf_bawrite(buf_t bp)
2437 {
2438 return (bawrite_internal(bp, 1));
2439 }
2440
2441
2442
2443 static void
2444 buf_free_meta_store(buf_t bp)
2445 {
2446 if (bp->b_bufsize) {
2447 if (ISSET(bp->b_flags, B_ZALLOC)) {
2448 zone_t z;
2449
2450 z = getbufzone(bp->b_bufsize);
2451 zfree(z, (void *)bp->b_datap);
2452 } else
2453 kmem_free(kernel_map, bp->b_datap, bp->b_bufsize);
2454
2455 bp->b_datap = (uintptr_t)NULL;
2456 bp->b_bufsize = 0;
2457 }
2458 }
2459
2460
2461 static buf_t
2462 buf_brelse_shadow(buf_t bp)
2463 {
2464 buf_t bp_head;
2465 buf_t bp_temp;
2466 buf_t bp_return = NULL;
2467 #ifdef BUF_MAKE_PRIVATE
2468 buf_t bp_data;
2469 int data_ref = 0;
2470 #endif
2471 int need_wakeup = 0;
2472
2473 lck_mtx_lock_spin(buf_mtxp);
2474
2475 __IGNORE_WCASTALIGN(bp_head = (buf_t)bp->b_orig);
2476
2477 if (bp_head->b_whichq != -1)
2478 panic("buf_brelse_shadow: bp_head on freelist %d\n", bp_head->b_whichq);
2479
2480 #ifdef BUF_MAKE_PRIVATE
2481 if (bp_data = bp->b_data_store) {
2482 bp_data->b_data_ref--;
2483 /*
2484 * snapshot the ref count so that we can check it
2485 * outside of the lock... we only want the guy going
2486 * from 1 -> 0 to try and release the storage
2487 */
2488 data_ref = bp_data->b_data_ref;
2489 }
2490 #endif
2491 KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_START, bp, bp_head, bp_head->b_shadow_ref, 0, 0);
2492
2493 bp_head->b_shadow_ref--;
2494
2495 for (bp_temp = bp_head; bp_temp && bp != bp_temp->b_shadow; bp_temp = bp_temp->b_shadow);
2496
2497 if (bp_temp == NULL)
2498 panic("buf_brelse_shadow: bp not on list %p", bp_head);
2499
2500 bp_temp->b_shadow = bp_temp->b_shadow->b_shadow;
2501
2502 #ifdef BUF_MAKE_PRIVATE
2503 /*
2504 * we're about to free the current 'owner' of the data buffer and
2505 * there is at least one other shadow buf_t still pointing at it
2506 * so transfer it to the first shadow buf left in the chain
2507 */
2508 if (bp == bp_data && data_ref) {
2509 if ((bp_data = bp_head->b_shadow) == NULL)
2510 panic("buf_brelse_shadow: data_ref mismatch bp(%p)", bp);
2511
2512 for (bp_temp = bp_data; bp_temp; bp_temp = bp_temp->b_shadow)
2513 bp_temp->b_data_store = bp_data;
2514 bp_data->b_data_ref = data_ref;
2515 }
2516 #endif
2517 if (bp_head->b_shadow_ref == 0 && bp_head->b_shadow)
2518 panic("buf_relse_shadow: b_shadow != NULL && b_shadow_ref == 0 bp(%p)", bp);
2519 if (bp_head->b_shadow_ref && bp_head->b_shadow == 0)
2520 panic("buf_relse_shadow: b_shadow == NULL && b_shadow_ref != 0 bp(%p)", bp);
2521
2522 if (bp_head->b_shadow_ref == 0) {
2523 if (!ISSET(bp_head->b_lflags, BL_BUSY)) {
2524
2525 CLR(bp_head->b_flags, B_AGE);
2526 bp_head->b_timestamp = buf_timestamp();
2527
2528 if (ISSET(bp_head->b_flags, B_LOCKED)) {
2529 bp_head->b_whichq = BQ_LOCKED;
2530 binstailfree(bp_head, &bufqueues[BQ_LOCKED], BQ_LOCKED);
2531 } else {
2532 bp_head->b_whichq = BQ_META;
2533 binstailfree(bp_head, &bufqueues[BQ_META], BQ_META);
2534 }
2535 } else if (ISSET(bp_head->b_lflags, BL_WAITSHADOW)) {
2536 CLR(bp_head->b_lflags, BL_WAITSHADOW);
2537
2538 bp_return = bp_head;
2539 }
2540 if (ISSET(bp_head->b_lflags, BL_WANTED_REF)) {
2541 CLR(bp_head->b_lflags, BL_WANTED_REF);
2542 need_wakeup = 1;
2543 }
2544 }
2545 lck_mtx_unlock(buf_mtxp);
2546
2547 if (need_wakeup)
2548 wakeup(bp_head);
2549
2550 #ifdef BUF_MAKE_PRIVATE
2551 if (bp == bp_data && data_ref == 0)
2552 buf_free_meta_store(bp);
2553
2554 bp->b_data_store = NULL;
2555 #endif
2556 KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_END, bp, 0, 0, 0, 0);
2557
2558 return (bp_return);
2559 }
2560
2561
2562 /*
2563 * Release a buffer on to the free lists.
2564 * Described in Bach (p. 46).
2565 */
2566 void
2567 buf_brelse(buf_t bp)
2568 {
2569 struct bqueues *bufq;
2570 long whichq;
2571 upl_t upl;
2572 int need_wakeup = 0;
2573 int need_bp_wakeup = 0;
2574
2575
2576 if (bp->b_whichq != -1 || !(bp->b_lflags & BL_BUSY))
2577 panic("buf_brelse: bad buffer = %p\n", bp);
2578
2579 #ifdef JOE_DEBUG
2580 (void) OSBacktrace(&bp->b_stackbrelse[0], 6);
2581
2582 bp->b_lastbrelse = current_thread();
2583 bp->b_tag = 0;
2584 #endif
2585 if (bp->b_lflags & BL_IOBUF) {
2586 buf_t shadow_master_bp = NULL;
2587
2588 if (ISSET(bp->b_lflags, BL_SHADOW))
2589 shadow_master_bp = buf_brelse_shadow(bp);
2590 else if (ISSET(bp->b_lflags, BL_IOBUF_ALLOC))
2591 buf_free_meta_store(bp);
2592 free_io_buf(bp);
2593
2594 if (shadow_master_bp) {
2595 bp = shadow_master_bp;
2596 goto finish_shadow_master;
2597 }
2598 return;
2599 }
2600
2601 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 388)) | DBG_FUNC_START,
2602 bp->b_lblkno * PAGE_SIZE, bp, bp->b_datap,
2603 bp->b_flags, 0);
2604
2605 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
2606
2607 /*
2608 * if we're invalidating a buffer that has the B_FILTER bit
2609 * set then call the b_iodone function so it gets cleaned
2610 * up properly.
2611 *
2612 * the HFS journal code depends on this
2613 */
2614 if (ISSET(bp->b_flags, B_META) && ISSET(bp->b_flags, B_INVAL)) {
2615 if (ISSET(bp->b_flags, B_FILTER)) { /* if necessary, call out */
2616 void (*iodone_func)(struct buf *, void *) = bp->b_iodone;
2617 void *arg = bp->b_transaction;
2618
2619 CLR(bp->b_flags, B_FILTER); /* but note callout done */
2620 bp->b_iodone = NULL;
2621 bp->b_transaction = NULL;
2622
2623 if (iodone_func == NULL) {
2624 panic("brelse: bp @ %p has NULL b_iodone!\n", bp);
2625 }
2626 (*iodone_func)(bp, arg);
2627 }
2628 }
2629 /*
2630 * I/O is done. Cleanup the UPL state
2631 */
2632 upl = bp->b_upl;
2633
2634 if ( !ISSET(bp->b_flags, B_META) && UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
2635 kern_return_t kret;
2636 int upl_flags;
2637
2638 if (upl == NULL) {
2639 if ( !ISSET(bp->b_flags, B_INVAL)) {
2640 kret = ubc_create_upl_kernel(bp->b_vp,
2641 ubc_blktooff(bp->b_vp, bp->b_lblkno),
2642 bp->b_bufsize,
2643 &upl,
2644 NULL,
2645 UPL_PRECIOUS,
2646 VM_KERN_MEMORY_FILE);
2647
2648 if (kret != KERN_SUCCESS)
2649 panic("brelse: Failed to create UPL");
2650 #if UPL_DEBUG
2651 upl_ubc_alias_set(upl, (uintptr_t) bp, (uintptr_t) 5);
2652 #endif /* UPL_DEBUG */
2653 }
2654 } else {
2655 if (bp->b_datap) {
2656 kret = ubc_upl_unmap(upl);
2657
2658 if (kret != KERN_SUCCESS)
2659 panic("ubc_upl_unmap failed");
2660 bp->b_datap = (uintptr_t)NULL;
2661 }
2662 }
2663 if (upl) {
2664 if (bp->b_flags & (B_ERROR | B_INVAL)) {
2665 if (bp->b_flags & (B_READ | B_INVAL))
2666 upl_flags = UPL_ABORT_DUMP_PAGES;
2667 else
2668 upl_flags = 0;
2669
2670 ubc_upl_abort(upl, upl_flags);
2671 } else {
2672 if (ISSET(bp->b_flags, B_DELWRI | B_WASDIRTY))
2673 upl_flags = UPL_COMMIT_SET_DIRTY ;
2674 else
2675 upl_flags = UPL_COMMIT_CLEAR_DIRTY ;
2676
2677 ubc_upl_commit_range(upl, 0, bp->b_bufsize, upl_flags |
2678 UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
2679 }
2680 bp->b_upl = NULL;
2681 }
2682 } else {
2683 if ( (upl) )
2684 panic("brelse: UPL set for non VREG; vp=%p", bp->b_vp);
2685 }
2686
2687 /*
2688 * If it's locked, don't report an error; try again later.
2689 */
2690 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
2691 CLR(bp->b_flags, B_ERROR);
2692 /*
2693 * If it's not cacheable, or an error, mark it invalid.
2694 */
2695 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
2696 SET(bp->b_flags, B_INVAL);
2697
2698 if ((bp->b_bufsize <= 0) ||
2699 ISSET(bp->b_flags, B_INVAL) ||
2700 (ISSET(bp->b_lflags, BL_WANTDEALLOC) && !ISSET(bp->b_flags, B_DELWRI))) {
2701
2702 boolean_t delayed_buf_free_meta_store = FALSE;
2703
2704 /*
2705 * If it's invalid or empty, dissociate it from its vnode,
2706 * release its storage if B_META, and
2707 * clean it up a bit and put it on the EMPTY queue
2708 */
2709 if (ISSET(bp->b_flags, B_DELWRI))
2710 OSAddAtomicLong(-1, &nbdwrite);
2711
2712 if (ISSET(bp->b_flags, B_META)) {
2713 if (bp->b_shadow_ref)
2714 delayed_buf_free_meta_store = TRUE;
2715 else
2716 buf_free_meta_store(bp);
2717 }
2718 /*
2719 * nuke any credentials we were holding
2720 */
2721 buf_release_credentials(bp);
2722
2723 lck_mtx_lock_spin(buf_mtxp);
2724
2725 if (bp->b_shadow_ref) {
2726 SET(bp->b_lflags, BL_WAITSHADOW);
2727
2728 lck_mtx_unlock(buf_mtxp);
2729
2730 return;
2731 }
2732 if (delayed_buf_free_meta_store == TRUE) {
2733
2734 lck_mtx_unlock(buf_mtxp);
2735 finish_shadow_master:
2736 buf_free_meta_store(bp);
2737
2738 lck_mtx_lock_spin(buf_mtxp);
2739 }
2740 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
2741
2742 if (bp->b_vp)
2743 brelvp_locked(bp);
2744
2745 bremhash(bp);
2746 BLISTNONE(bp);
2747 binshash(bp, &invalhash);
2748
2749 bp->b_whichq = BQ_EMPTY;
2750 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
2751 } else {
2752
2753 /*
2754 * It has valid data. Put it on the end of the appropriate
2755 * queue, so that it'll stick around for as long as possible.
2756 */
2757 if (ISSET(bp->b_flags, B_LOCKED))
2758 whichq = BQ_LOCKED; /* locked in core */
2759 else if (ISSET(bp->b_flags, B_META))
2760 whichq = BQ_META; /* meta-data */
2761 else if (ISSET(bp->b_flags, B_AGE))
2762 whichq = BQ_AGE; /* stale but valid data */
2763 else
2764 whichq = BQ_LRU; /* valid data */
2765 bufq = &bufqueues[whichq];
2766
2767 bp->b_timestamp = buf_timestamp();
2768
2769 lck_mtx_lock_spin(buf_mtxp);
2770
2771 /*
2772 * the buf_brelse_shadow routine doesn't take 'ownership'
2773 * of the parent buf_t... it updates state that is protected by
2774 * the buf_mtxp, and checks for BL_BUSY to determine whether to
2775 * put the buf_t back on a free list. b_shadow_ref is protected
2776 * by the lock, and since we have not yet cleared B_BUSY, we need
2777 * to check it while holding the lock to insure that one of us
2778 * puts this buf_t back on a free list when it is safe to do so
2779 */
2780 if (bp->b_shadow_ref == 0) {
2781 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE));
2782 bp->b_whichq = whichq;
2783 binstailfree(bp, bufq, whichq);
2784 } else {
2785 /*
2786 * there are still cloned buf_t's pointing
2787 * at this guy... need to keep it off the
2788 * freelists until a buf_brelse is done on
2789 * the last clone
2790 */
2791 CLR(bp->b_flags, (B_ASYNC | B_NOCACHE));
2792 }
2793 }
2794 if (needbuffer) {
2795 /*
2796 * needbuffer is a global
2797 * we're currently using buf_mtxp to protect it
2798 * delay doing the actual wakeup until after
2799 * we drop buf_mtxp
2800 */
2801 needbuffer = 0;
2802 need_wakeup = 1;
2803 }
2804 if (ISSET(bp->b_lflags, BL_WANTED)) {
2805 /*
2806 * delay the actual wakeup until after we
2807 * clear BL_BUSY and we've dropped buf_mtxp
2808 */
2809 need_bp_wakeup = 1;
2810 }
2811 /*
2812 * Unlock the buffer.
2813 */
2814 CLR(bp->b_lflags, (BL_BUSY | BL_WANTED));
2815 buf_busycount--;
2816
2817 lck_mtx_unlock(buf_mtxp);
2818
2819 if (need_wakeup) {
2820 /*
2821 * Wake up any processes waiting for any buffer to become free.
2822 */
2823 wakeup(&needbuffer);
2824 }
2825 if (need_bp_wakeup) {
2826 /*
2827 * Wake up any proceeses waiting for _this_ buffer to become free.
2828 */
2829 wakeup(bp);
2830 }
2831 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 388)) | DBG_FUNC_END,
2832 bp, bp->b_datap, bp->b_flags, 0, 0);
2833 }
2834
2835 /*
2836 * Determine if a block is in the cache.
2837 * Just look on what would be its hash chain. If it's there, return
2838 * a pointer to it, unless it's marked invalid. If it's marked invalid,
2839 * we normally don't return the buffer, unless the caller explicitly
2840 * wants us to.
2841 */
2842 static boolean_t
2843 incore(vnode_t vp, daddr64_t blkno)
2844 {
2845 boolean_t retval;
2846 struct bufhashhdr *dp;
2847
2848 dp = BUFHASH(vp, blkno);
2849
2850 lck_mtx_lock_spin(buf_mtxp);
2851
2852 if (incore_locked(vp, blkno, dp))
2853 retval = TRUE;
2854 else
2855 retval = FALSE;
2856 lck_mtx_unlock(buf_mtxp);
2857
2858 return (retval);
2859 }
2860
2861
2862 static buf_t
2863 incore_locked(vnode_t vp, daddr64_t blkno, struct bufhashhdr *dp)
2864 {
2865 struct buf *bp;
2866
2867 /* Search hash chain */
2868 for (bp = dp->lh_first; bp != NULL; bp = bp->b_hash.le_next) {
2869 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
2870 !ISSET(bp->b_flags, B_INVAL)) {
2871 return (bp);
2872 }
2873 }
2874 return (NULL);
2875 }
2876
2877
2878 void
2879 buf_wait_for_shadow_io(vnode_t vp, daddr64_t blkno)
2880 {
2881 buf_t bp;
2882 struct bufhashhdr *dp;
2883
2884 dp = BUFHASH(vp, blkno);
2885
2886 lck_mtx_lock_spin(buf_mtxp);
2887
2888 for (;;) {
2889 if ((bp = incore_locked(vp, blkno, dp)) == NULL)
2890 break;
2891
2892 if (bp->b_shadow_ref == 0)
2893 break;
2894
2895 SET(bp->b_lflags, BL_WANTED_REF);
2896
2897 (void) msleep(bp, buf_mtxp, PSPIN | (PRIBIO+1), "buf_wait_for_shadow", NULL);
2898 }
2899 lck_mtx_unlock(buf_mtxp);
2900 }
2901
2902 /* XXX FIXME -- Update the comment to reflect the UBC changes (please) -- */
2903 /*
2904 * Get a block of requested size that is associated with
2905 * a given vnode and block offset. If it is found in the
2906 * block cache, mark it as having been found, make it busy
2907 * and return it. Otherwise, return an empty block of the
2908 * correct size. It is up to the caller to insure that the
2909 * cached blocks be of the correct size.
2910 */
2911 buf_t
2912 buf_getblk(vnode_t vp, daddr64_t blkno, int size, int slpflag, int slptimeo, int operation)
2913 {
2914 buf_t bp;
2915 int err;
2916 upl_t upl;
2917 upl_page_info_t *pl;
2918 kern_return_t kret;
2919 int ret_only_valid;
2920 struct timespec ts;
2921 int upl_flags;
2922 struct bufhashhdr *dp;
2923
2924 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 386)) | DBG_FUNC_START,
2925 (uintptr_t)(blkno * PAGE_SIZE), size, operation, 0, 0);
2926
2927 ret_only_valid = operation & BLK_ONLYVALID;
2928 operation &= ~BLK_ONLYVALID;
2929 dp = BUFHASH(vp, blkno);
2930 start:
2931 lck_mtx_lock_spin(buf_mtxp);
2932
2933 if ((bp = incore_locked(vp, blkno, dp))) {
2934 /*
2935 * Found in the Buffer Cache
2936 */
2937 if (ISSET(bp->b_lflags, BL_BUSY)) {
2938 /*
2939 * but is busy
2940 */
2941 switch (operation) {
2942 case BLK_READ:
2943 case BLK_WRITE:
2944 case BLK_META:
2945 SET(bp->b_lflags, BL_WANTED);
2946 bufstats.bufs_busyincore++;
2947
2948 /*
2949 * don't retake the mutex after being awakened...
2950 * the time out is in msecs
2951 */
2952 ts.tv_sec = (slptimeo/1000);
2953 ts.tv_nsec = (slptimeo % 1000) * 10 * NSEC_PER_USEC * 1000;
2954
2955 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 396)) | DBG_FUNC_NONE,
2956 (uintptr_t)blkno, size, operation, 0, 0);
2957
2958 err = msleep(bp, buf_mtxp, slpflag | PDROP | (PRIBIO + 1), "buf_getblk", &ts);
2959
2960 /*
2961 * Callers who call with PCATCH or timeout are
2962 * willing to deal with the NULL pointer
2963 */
2964 if (err && ((slpflag & PCATCH) || ((err == EWOULDBLOCK) && slptimeo)))
2965 return (NULL);
2966 goto start;
2967 /*NOTREACHED*/
2968
2969 default:
2970 /*
2971 * unknown operation requested
2972 */
2973 panic("getblk: paging or unknown operation for incore busy buffer - %x\n", operation);
2974 /*NOTREACHED*/
2975 break;
2976 }
2977 } else {
2978 int clear_bdone;
2979
2980 /*
2981 * buffer in core and not busy
2982 */
2983 SET(bp->b_lflags, BL_BUSY);
2984 SET(bp->b_flags, B_CACHE);
2985 buf_busycount++;
2986
2987 bremfree_locked(bp);
2988 bufstats.bufs_incore++;
2989
2990 lck_mtx_unlock(buf_mtxp);
2991 #ifdef JOE_DEBUG
2992 bp->b_owner = current_thread();
2993 bp->b_tag = 1;
2994 #endif
2995 if ( (bp->b_upl) )
2996 panic("buffer has UPL, but not marked BUSY: %p", bp);
2997
2998 clear_bdone = FALSE;
2999 if (!ret_only_valid) {
3000 /*
3001 * If the number bytes that are valid is going
3002 * to increase (even if we end up not doing a
3003 * reallocation through allocbuf) we have to read
3004 * the new size first.
3005 *
3006 * This is required in cases where we doing a read
3007 * modify write of a already valid data on disk but
3008 * in cases where the data on disk beyond (blkno + b_bcount)
3009 * is invalid, we may end up doing extra I/O.
3010 */
3011 if (operation == BLK_META && bp->b_bcount < size) {
3012 /*
3013 * Since we are going to read in the whole size first
3014 * we first have to ensure that any pending delayed write
3015 * is flushed to disk first.
3016 */
3017 if (ISSET(bp->b_flags, B_DELWRI)) {
3018 CLR(bp->b_flags, B_CACHE);
3019 buf_bwrite(bp);
3020 goto start;
3021 }
3022 /*
3023 * clear B_DONE before returning from
3024 * this function so that the caller can
3025 * can issue a read for the new size.
3026 */
3027 clear_bdone = TRUE;
3028 }
3029
3030 if (bp->b_bufsize != size)
3031 allocbuf(bp, size);
3032 }
3033
3034 upl_flags = 0;
3035 switch (operation) {
3036 case BLK_WRITE:
3037 /*
3038 * "write" operation: let the UPL subsystem
3039 * know that we intend to modify the buffer
3040 * cache pages we're gathering.
3041 */
3042 upl_flags |= UPL_WILL_MODIFY;
3043 case BLK_READ:
3044 upl_flags |= UPL_PRECIOUS;
3045 if (UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
3046 kret = ubc_create_upl_kernel(vp,
3047 ubc_blktooff(vp, bp->b_lblkno),
3048 bp->b_bufsize,
3049 &upl,
3050 &pl,
3051 upl_flags,
3052 VM_KERN_MEMORY_FILE);
3053 if (kret != KERN_SUCCESS)
3054 panic("Failed to create UPL");
3055
3056 bp->b_upl = upl;
3057
3058 if (upl_valid_page(pl, 0)) {
3059 if (upl_dirty_page(pl, 0))
3060 SET(bp->b_flags, B_WASDIRTY);
3061 else
3062 CLR(bp->b_flags, B_WASDIRTY);
3063 } else
3064 CLR(bp->b_flags, (B_DONE | B_CACHE | B_WASDIRTY | B_DELWRI));
3065
3066 kret = ubc_upl_map(upl, (vm_offset_t*)&(bp->b_datap));
3067
3068 if (kret != KERN_SUCCESS)
3069 panic("getblk: ubc_upl_map() failed with (%d)", kret);
3070 }
3071 break;
3072
3073 case BLK_META:
3074 /*
3075 * VM is not involved in IO for the meta data
3076 * buffer already has valid data
3077 */
3078 break;
3079
3080 default:
3081 panic("getblk: paging or unknown operation for incore buffer- %d\n", operation);
3082 /*NOTREACHED*/
3083 break;
3084 }
3085
3086 if (clear_bdone)
3087 CLR(bp->b_flags, B_DONE);
3088 }
3089 } else { /* not incore() */
3090 int queue = BQ_EMPTY; /* Start with no preference */
3091
3092 if (ret_only_valid) {
3093 lck_mtx_unlock(buf_mtxp);
3094 return (NULL);
3095 }
3096 if ((vnode_isreg(vp) == 0) || (UBCINFOEXISTS(vp) == 0) /*|| (vnode_issystem(vp) == 1)*/)
3097 operation = BLK_META;
3098
3099 if ((bp = getnewbuf(slpflag, slptimeo, &queue)) == NULL)
3100 goto start;
3101
3102 /*
3103 * getnewbuf may block for a number of different reasons...
3104 * if it does, it's then possible for someone else to
3105 * create a buffer for the same block and insert it into
3106 * the hash... if we see it incore at this point we dump
3107 * the buffer we were working on and start over
3108 */
3109 if (incore_locked(vp, blkno, dp)) {
3110 SET(bp->b_flags, B_INVAL);
3111 binshash(bp, &invalhash);
3112
3113 lck_mtx_unlock(buf_mtxp);
3114
3115 buf_brelse(bp);
3116 goto start;
3117 }
3118 /*
3119 * NOTE: YOU CAN NOT BLOCK UNTIL binshash() HAS BEEN
3120 * CALLED! BE CAREFUL.
3121 */
3122
3123 /*
3124 * mark the buffer as B_META if indicated
3125 * so that when buffer is released it will goto META queue
3126 */
3127 if (operation == BLK_META)
3128 SET(bp->b_flags, B_META);
3129
3130 bp->b_blkno = bp->b_lblkno = blkno;
3131 bp->b_vp = vp;
3132
3133 /*
3134 * Insert in the hash so that incore() can find it
3135 */
3136 binshash(bp, BUFHASH(vp, blkno));
3137
3138 bgetvp_locked(vp, bp);
3139
3140 lck_mtx_unlock(buf_mtxp);
3141
3142 allocbuf(bp, size);
3143
3144 upl_flags = 0;
3145 switch (operation) {
3146 case BLK_META:
3147 /*
3148 * buffer data is invalid...
3149 *
3150 * I don't want to have to retake buf_mtxp,
3151 * so the miss and vmhits counters are done
3152 * with Atomic updates... all other counters
3153 * in bufstats are protected with either
3154 * buf_mtxp or iobuffer_mtxp
3155 */
3156 OSAddAtomicLong(1, &bufstats.bufs_miss);
3157 break;
3158
3159 case BLK_WRITE:
3160 /*
3161 * "write" operation: let the UPL subsystem know
3162 * that we intend to modify the buffer cache pages
3163 * we're gathering.
3164 */
3165 upl_flags |= UPL_WILL_MODIFY;
3166 case BLK_READ:
3167 { off_t f_offset;
3168 size_t contig_bytes;
3169 int bmap_flags;
3170
3171 #if DEVELOPMENT || DEBUG
3172 /*
3173 * Apple implemented file systems use UBC excludively; they should
3174 * not call in here."
3175 */
3176 const char* excldfs[] = {"hfs", "afpfs", "smbfs", "acfs",
3177 "exfat", "msdos", "webdav", NULL};
3178
3179 for (int i = 0; excldfs[i] != NULL; i++) {
3180 if (vp->v_mount &&
3181 !strcmp(vp->v_mount->mnt_vfsstat.f_fstypename,
3182 excldfs[i])) {
3183 panic("%s %s calls buf_getblk",
3184 excldfs[i],
3185 operation == BLK_READ ? "BLK_READ" : "BLK_WRITE");
3186 }
3187 }
3188 #endif
3189
3190 if ( (bp->b_upl) )
3191 panic("bp already has UPL: %p",bp);
3192
3193 f_offset = ubc_blktooff(vp, blkno);
3194
3195 upl_flags |= UPL_PRECIOUS;
3196 kret = ubc_create_upl_kernel(vp,
3197 f_offset,
3198 bp->b_bufsize,
3199 &upl,
3200 &pl,
3201 upl_flags,
3202 VM_KERN_MEMORY_FILE);
3203
3204 if (kret != KERN_SUCCESS)
3205 panic("Failed to create UPL");
3206 #if UPL_DEBUG
3207 upl_ubc_alias_set(upl, (uintptr_t) bp, (uintptr_t) 4);
3208 #endif /* UPL_DEBUG */
3209 bp->b_upl = upl;
3210
3211 if (upl_valid_page(pl, 0)) {
3212
3213 if (operation == BLK_READ)
3214 bmap_flags = VNODE_READ;
3215 else
3216 bmap_flags = VNODE_WRITE;
3217
3218 SET(bp->b_flags, B_CACHE | B_DONE);
3219
3220 OSAddAtomicLong(1, &bufstats.bufs_vmhits);
3221
3222 bp->b_validoff = 0;
3223 bp->b_dirtyoff = 0;
3224
3225 if (upl_dirty_page(pl, 0)) {
3226 /* page is dirty */
3227 SET(bp->b_flags, B_WASDIRTY);
3228
3229 bp->b_validend = bp->b_bcount;
3230 bp->b_dirtyend = bp->b_bcount;
3231 } else {
3232 /* page is clean */
3233 bp->b_validend = bp->b_bcount;
3234 bp->b_dirtyend = 0;
3235 }
3236 /*
3237 * try to recreate the physical block number associated with
3238 * this buffer...
3239 */
3240 if (VNOP_BLOCKMAP(vp, f_offset, bp->b_bcount, &bp->b_blkno, &contig_bytes, NULL, bmap_flags, NULL))
3241 panic("getblk: VNOP_BLOCKMAP failed");
3242 /*
3243 * if the extent represented by this buffer
3244 * is not completely physically contiguous on
3245 * disk, than we can't cache the physical mapping
3246 * in the buffer header
3247 */
3248 if ((long)contig_bytes < bp->b_bcount)
3249 bp->b_blkno = bp->b_lblkno;
3250 } else {
3251 OSAddAtomicLong(1, &bufstats.bufs_miss);
3252 }
3253 kret = ubc_upl_map(upl, (vm_offset_t *)&(bp->b_datap));
3254
3255 if (kret != KERN_SUCCESS)
3256 panic("getblk: ubc_upl_map() failed with (%d)", kret);
3257 break;
3258 } // end BLK_READ
3259 default:
3260 panic("getblk: paging or unknown operation - %x", operation);
3261 /*NOTREACHED*/
3262 break;
3263 } // end switch
3264 } //end buf_t !incore
3265
3266 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 386)) | DBG_FUNC_END,
3267 bp, bp->b_datap, bp->b_flags, 3, 0);
3268
3269 #ifdef JOE_DEBUG
3270 (void) OSBacktrace(&bp->b_stackgetblk[0], 6);
3271 #endif
3272 return (bp);
3273 }
3274
3275 /*
3276 * Get an empty, disassociated buffer of given size.
3277 */
3278 buf_t
3279 buf_geteblk(int size)
3280 {
3281 buf_t bp = NULL;
3282 int queue = BQ_EMPTY;
3283
3284 do {
3285 lck_mtx_lock_spin(buf_mtxp);
3286
3287 bp = getnewbuf(0, 0, &queue);
3288 } while (bp == NULL);
3289
3290 SET(bp->b_flags, (B_META|B_INVAL));
3291
3292 #if DIAGNOSTIC
3293 assert(queue == BQ_EMPTY);
3294 #endif /* DIAGNOSTIC */
3295 /* XXX need to implement logic to deal with other queues */
3296
3297 binshash(bp, &invalhash);
3298 bufstats.bufs_eblk++;
3299
3300 lck_mtx_unlock(buf_mtxp);
3301
3302 allocbuf(bp, size);
3303
3304 return (bp);
3305 }
3306
3307 uint32_t
3308 buf_redundancy_flags(buf_t bp)
3309 {
3310 return bp->b_redundancy_flags;
3311 }
3312
3313 void
3314 buf_set_redundancy_flags(buf_t bp, uint32_t flags)
3315 {
3316 SET(bp->b_redundancy_flags, flags);
3317 }
3318
3319 void
3320 buf_clear_redundancy_flags(buf_t bp, uint32_t flags)
3321 {
3322 CLR(bp->b_redundancy_flags, flags);
3323 }
3324
3325
3326
3327 static void *
3328 recycle_buf_from_pool(int nsize)
3329 {
3330 buf_t bp;
3331 void *ptr = NULL;
3332
3333 lck_mtx_lock_spin(buf_mtxp);
3334
3335 TAILQ_FOREACH(bp, &bufqueues[BQ_META], b_freelist) {
3336 if (ISSET(bp->b_flags, B_DELWRI) || bp->b_bufsize != nsize)
3337 continue;
3338 ptr = (void *)bp->b_datap;
3339 bp->b_bufsize = 0;
3340
3341 bcleanbuf(bp, TRUE);
3342 break;
3343 }
3344 lck_mtx_unlock(buf_mtxp);
3345
3346 return (ptr);
3347 }
3348
3349
3350
3351 int zalloc_nopagewait_failed = 0;
3352 int recycle_buf_failed = 0;
3353
3354 static void *
3355 grab_memory_for_meta_buf(int nsize)
3356 {
3357 zone_t z;
3358 void *ptr;
3359 boolean_t was_vmpriv;
3360
3361 z = getbufzone(nsize);
3362
3363 /*
3364 * make sure we're NOT priviliged so that
3365 * if a vm_page_grab is needed, it won't
3366 * block if we're out of free pages... if
3367 * it blocks, then we can't honor the
3368 * nopagewait request
3369 */
3370 was_vmpriv = set_vm_privilege(FALSE);
3371
3372 ptr = zalloc_nopagewait(z);
3373
3374 if (was_vmpriv == TRUE)
3375 set_vm_privilege(TRUE);
3376
3377 if (ptr == NULL) {
3378
3379 zalloc_nopagewait_failed++;
3380
3381 ptr = recycle_buf_from_pool(nsize);
3382
3383 if (ptr == NULL) {
3384
3385 recycle_buf_failed++;
3386
3387 if (was_vmpriv == FALSE)
3388 set_vm_privilege(TRUE);
3389
3390 ptr = zalloc(z);
3391
3392 if (was_vmpriv == FALSE)
3393 set_vm_privilege(FALSE);
3394 }
3395 }
3396 return (ptr);
3397 }
3398
3399 /*
3400 * With UBC, there is no need to expand / shrink the file data
3401 * buffer. The VM uses the same pages, hence no waste.
3402 * All the file data buffers can have one size.
3403 * In fact expand / shrink would be an expensive operation.
3404 *
3405 * Only exception to this is meta-data buffers. Most of the
3406 * meta data operations are smaller than PAGE_SIZE. Having the
3407 * meta-data buffers grow and shrink as needed, optimizes use
3408 * of the kernel wired memory.
3409 */
3410
3411 int
3412 allocbuf(buf_t bp, int size)
3413 {
3414 vm_size_t desired_size;
3415
3416 desired_size = roundup(size, CLBYTES);
3417
3418 if (desired_size < PAGE_SIZE)
3419 desired_size = PAGE_SIZE;
3420 if (desired_size > MAXBSIZE)
3421 panic("allocbuf: buffer larger than MAXBSIZE requested");
3422
3423 if (ISSET(bp->b_flags, B_META)) {
3424 int nsize = roundup(size, MINMETA);
3425
3426 if (bp->b_datap) {
3427 vm_offset_t elem = (vm_offset_t)bp->b_datap;
3428
3429 if (ISSET(bp->b_flags, B_ZALLOC)) {
3430 if (bp->b_bufsize < nsize) {
3431 zone_t zprev;
3432
3433 /* reallocate to a bigger size */
3434
3435 zprev = getbufzone(bp->b_bufsize);
3436 if (nsize <= MAXMETA) {
3437 desired_size = nsize;
3438
3439 /* b_datap not really a ptr */
3440 *(void **)(&bp->b_datap) = grab_memory_for_meta_buf(nsize);
3441 } else {
3442 bp->b_datap = (uintptr_t)NULL;
3443 kmem_alloc_kobject(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size, VM_KERN_MEMORY_FILE);
3444 CLR(bp->b_flags, B_ZALLOC);
3445 }
3446 bcopy((void *)elem, (caddr_t)bp->b_datap, bp->b_bufsize);
3447 zfree(zprev, (void *)elem);
3448 } else {
3449 desired_size = bp->b_bufsize;
3450 }
3451
3452 } else {
3453 if ((vm_size_t)bp->b_bufsize < desired_size) {
3454 /* reallocate to a bigger size */
3455 bp->b_datap = (uintptr_t)NULL;
3456 kmem_alloc_kobject(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size, VM_KERN_MEMORY_FILE);
3457 bcopy((const void *)elem, (caddr_t)bp->b_datap, bp->b_bufsize);
3458 kmem_free(kernel_map, elem, bp->b_bufsize);
3459 } else {
3460 desired_size = bp->b_bufsize;
3461 }
3462 }
3463 } else {
3464 /* new allocation */
3465 if (nsize <= MAXMETA) {
3466 desired_size = nsize;
3467
3468 /* b_datap not really a ptr */
3469 *(void **)(&bp->b_datap) = grab_memory_for_meta_buf(nsize);
3470 SET(bp->b_flags, B_ZALLOC);
3471 } else
3472 kmem_alloc_kobject(kernel_map, (vm_offset_t *)&bp->b_datap, desired_size, VM_KERN_MEMORY_FILE);
3473 }
3474
3475 if (bp->b_datap == 0)
3476 panic("allocbuf: NULL b_datap");
3477 }
3478 bp->b_bufsize = desired_size;
3479 bp->b_bcount = size;
3480
3481 return (0);
3482 }
3483
3484 /*
3485 * Get a new buffer from one of the free lists.
3486 *
3487 * Request for a queue is passes in. The queue from which the buffer was taken
3488 * from is returned. Out of range queue requests get BQ_EMPTY. Request for
3489 * BQUEUE means no preference. Use heuristics in that case.
3490 * Heuristics is as follows:
3491 * Try BQ_AGE, BQ_LRU, BQ_EMPTY, BQ_META in that order.
3492 * If none available block till one is made available.
3493 * If buffers available on both BQ_AGE and BQ_LRU, check the timestamps.
3494 * Pick the most stale buffer.
3495 * If found buffer was marked delayed write, start the async. write
3496 * and restart the search.
3497 * Initialize the fields and disassociate the buffer from the vnode.
3498 * Remove the buffer from the hash. Return the buffer and the queue
3499 * on which it was found.
3500 *
3501 * buf_mtxp is held upon entry
3502 * returns with buf_mtxp locked if new buf available
3503 * returns with buf_mtxp UNlocked if new buf NOT available
3504 */
3505
3506 static buf_t
3507 getnewbuf(int slpflag, int slptimeo, int * queue)
3508 {
3509 buf_t bp;
3510 buf_t lru_bp;
3511 buf_t age_bp;
3512 buf_t meta_bp;
3513 int age_time, lru_time, bp_time, meta_time;
3514 int req = *queue; /* save it for restarts */
3515 struct timespec ts;
3516
3517 start:
3518 /*
3519 * invalid request gets empty queue
3520 */
3521 if ((*queue >= BQUEUES) || (*queue < 0)
3522 || (*queue == BQ_LAUNDRY) || (*queue == BQ_LOCKED))
3523 *queue = BQ_EMPTY;
3524
3525
3526 if (*queue == BQ_EMPTY && (bp = bufqueues[*queue].tqh_first))
3527 goto found;
3528
3529 /*
3530 * need to grow number of bufs, add another one rather than recycling
3531 */
3532 if (nbuf_headers < max_nbuf_headers) {
3533 /*
3534 * Increment count now as lock
3535 * is dropped for allocation.
3536 * That avoids over commits
3537 */
3538 nbuf_headers++;
3539 goto add_newbufs;
3540 }
3541 /* Try for the requested queue first */
3542 bp = bufqueues[*queue].tqh_first;
3543 if (bp)
3544 goto found;
3545
3546 /* Unable to use requested queue */
3547 age_bp = bufqueues[BQ_AGE].tqh_first;
3548 lru_bp = bufqueues[BQ_LRU].tqh_first;
3549 meta_bp = bufqueues[BQ_META].tqh_first;
3550
3551 if (!age_bp && !lru_bp && !meta_bp) {
3552 /*
3553 * Unavailble on AGE or LRU or META queues
3554 * Try the empty list first
3555 */
3556 bp = bufqueues[BQ_EMPTY].tqh_first;
3557 if (bp) {
3558 *queue = BQ_EMPTY;
3559 goto found;
3560 }
3561 /*
3562 * We have seen is this is hard to trigger.
3563 * This is an overcommit of nbufs but needed
3564 * in some scenarios with diskiamges
3565 */
3566
3567 add_newbufs:
3568 lck_mtx_unlock(buf_mtxp);
3569
3570 /* Create a new temporary buffer header */
3571 bp = (struct buf *)zalloc(buf_hdr_zone);
3572
3573 if (bp) {
3574 bufhdrinit(bp);
3575 bp->b_whichq = BQ_EMPTY;
3576 bp->b_timestamp = buf_timestamp();
3577 BLISTNONE(bp);
3578 SET(bp->b_flags, B_HDRALLOC);
3579 *queue = BQ_EMPTY;
3580 }
3581 lck_mtx_lock_spin(buf_mtxp);
3582
3583 if (bp) {
3584 binshash(bp, &invalhash);
3585 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
3586 buf_hdr_count++;
3587 goto found;
3588 }
3589 /* subtract already accounted bufcount */
3590 nbuf_headers--;
3591
3592 bufstats.bufs_sleeps++;
3593
3594 /* wait for a free buffer of any kind */
3595 needbuffer = 1;
3596 /* hz value is 100 */
3597 ts.tv_sec = (slptimeo/1000);
3598 /* the hz value is 100; which leads to 10ms */
3599 ts.tv_nsec = (slptimeo % 1000) * NSEC_PER_USEC * 1000 * 10;
3600
3601 msleep(&needbuffer, buf_mtxp, slpflag | PDROP | (PRIBIO+1), "getnewbuf", &ts);
3602 return (NULL);
3603 }
3604
3605 /* Buffer available either on AGE or LRU or META */
3606 bp = NULL;
3607 *queue = -1;
3608
3609 /* Buffer available either on AGE or LRU */
3610 if (!age_bp) {
3611 bp = lru_bp;
3612 *queue = BQ_LRU;
3613 } else if (!lru_bp) {
3614 bp = age_bp;
3615 *queue = BQ_AGE;
3616 } else { /* buffer available on both AGE and LRU */
3617 int t = buf_timestamp();
3618
3619 age_time = t - age_bp->b_timestamp;
3620 lru_time = t - lru_bp->b_timestamp;
3621 if ((age_time < 0) || (lru_time < 0)) { /* time set backwards */
3622 bp = age_bp;
3623 *queue = BQ_AGE;
3624 /*
3625 * we should probably re-timestamp eveything in the
3626 * queues at this point with the current time
3627 */
3628 } else {
3629 if ((lru_time >= lru_is_stale) && (age_time < age_is_stale)) {
3630 bp = lru_bp;
3631 *queue = BQ_LRU;
3632 } else {
3633 bp = age_bp;
3634 *queue = BQ_AGE;
3635 }
3636 }
3637 }
3638
3639 if (!bp) { /* Neither on AGE nor on LRU */
3640 bp = meta_bp;
3641 *queue = BQ_META;
3642 } else if (meta_bp) {
3643 int t = buf_timestamp();
3644
3645 bp_time = t - bp->b_timestamp;
3646 meta_time = t - meta_bp->b_timestamp;
3647
3648 if (!(bp_time < 0) && !(meta_time < 0)) {
3649 /* time not set backwards */
3650 int bp_is_stale;
3651 bp_is_stale = (*queue == BQ_LRU) ?
3652 lru_is_stale : age_is_stale;
3653
3654 if ((meta_time >= meta_is_stale) &&
3655 (bp_time < bp_is_stale)) {
3656 bp = meta_bp;
3657 *queue = BQ_META;
3658 }
3659 }
3660 }
3661 found:
3662 if (ISSET(bp->b_flags, B_LOCKED) || ISSET(bp->b_lflags, BL_BUSY))
3663 panic("getnewbuf: bp @ %p is LOCKED or BUSY! (flags 0x%x)\n", bp, bp->b_flags);
3664
3665 /* Clean it */
3666 if (bcleanbuf(bp, FALSE)) {
3667 /*
3668 * moved to the laundry thread, buffer not ready
3669 */
3670 *queue = req;
3671 goto start;
3672 }
3673 return (bp);
3674 }
3675
3676
3677 /*
3678 * Clean a buffer.
3679 * Returns 0 if buffer is ready to use,
3680 * Returns 1 if issued a buf_bawrite() to indicate
3681 * that the buffer is not ready.
3682 *
3683 * buf_mtxp is held upon entry
3684 * returns with buf_mtxp locked
3685 */
3686 int
3687 bcleanbuf(buf_t bp, boolean_t discard)
3688 {
3689 /* Remove from the queue */
3690 bremfree_locked(bp);
3691
3692 #ifdef JOE_DEBUG
3693 bp->b_owner = current_thread();
3694 bp->b_tag = 2;
3695 #endif
3696 /*
3697 * If buffer was a delayed write, start the IO by queuing
3698 * it on the LAUNDRY queue, and return 1
3699 */
3700 if (ISSET(bp->b_flags, B_DELWRI)) {
3701 if (discard) {
3702 SET(bp->b_lflags, BL_WANTDEALLOC);
3703 }
3704
3705 bmovelaundry(bp);
3706
3707 lck_mtx_unlock(buf_mtxp);
3708
3709 wakeup(&bufqueues[BQ_LAUNDRY]);
3710 /*
3711 * and give it a chance to run
3712 */
3713 (void)thread_block(THREAD_CONTINUE_NULL);
3714
3715 lck_mtx_lock_spin(buf_mtxp);
3716
3717 return (1);
3718 }
3719 #ifdef JOE_DEBUG
3720 bp->b_owner = current_thread();
3721 bp->b_tag = 8;
3722 #endif
3723 /*
3724 * Buffer is no longer on any free list... we own it
3725 */
3726 SET(bp->b_lflags, BL_BUSY);
3727 buf_busycount++;
3728
3729 bremhash(bp);
3730
3731 /*
3732 * disassociate us from our vnode, if we had one...
3733 */
3734 if (bp->b_vp)
3735 brelvp_locked(bp);
3736
3737 lck_mtx_unlock(buf_mtxp);
3738
3739 BLISTNONE(bp);
3740
3741 if (ISSET(bp->b_flags, B_META))
3742 buf_free_meta_store(bp);
3743
3744 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
3745
3746 buf_release_credentials(bp);
3747
3748 /* If discarding, just move to the empty queue */
3749 if (discard) {
3750 lck_mtx_lock_spin(buf_mtxp);
3751 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
3752 bp->b_whichq = BQ_EMPTY;
3753 binshash(bp, &invalhash);
3754 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
3755 CLR(bp->b_lflags, BL_BUSY);
3756 buf_busycount--;
3757 } else {
3758 /* Not discarding: clean up and prepare for reuse */
3759 bp->b_bufsize = 0;
3760 bp->b_datap = (uintptr_t)NULL;
3761 bp->b_upl = (void *)NULL;
3762 bp->b_fsprivate = (void *)NULL;
3763 /*
3764 * preserve the state of whether this buffer
3765 * was allocated on the fly or not...
3766 * the only other flag that should be set at
3767 * this point is BL_BUSY...
3768 */
3769 #ifdef JOE_DEBUG
3770 bp->b_owner = current_thread();
3771 bp->b_tag = 3;
3772 #endif
3773 bp->b_lflags = BL_BUSY;
3774 bp->b_flags = (bp->b_flags & B_HDRALLOC);
3775 bp->b_redundancy_flags = 0;
3776 bp->b_dev = NODEV;
3777 bp->b_blkno = bp->b_lblkno = 0;
3778 bp->b_iodone = NULL;
3779 bp->b_error = 0;
3780 bp->b_resid = 0;
3781 bp->b_bcount = 0;
3782 bp->b_dirtyoff = bp->b_dirtyend = 0;
3783 bp->b_validoff = bp->b_validend = 0;
3784 bzero(&bp->b_attr, sizeof(struct bufattr));
3785
3786 lck_mtx_lock_spin(buf_mtxp);
3787 }
3788 return (0);
3789 }
3790
3791
3792
3793 errno_t
3794 buf_invalblkno(vnode_t vp, daddr64_t lblkno, int flags)
3795 {
3796 buf_t bp;
3797 errno_t error;
3798 struct bufhashhdr *dp;
3799
3800 dp = BUFHASH(vp, lblkno);
3801
3802 relook:
3803 lck_mtx_lock_spin(buf_mtxp);
3804
3805 if ((bp = incore_locked(vp, lblkno, dp)) == (struct buf *)0) {
3806 lck_mtx_unlock(buf_mtxp);
3807 return (0);
3808 }
3809 if (ISSET(bp->b_lflags, BL_BUSY)) {
3810 if ( !ISSET(flags, BUF_WAIT)) {
3811 lck_mtx_unlock(buf_mtxp);
3812 return (EBUSY);
3813 }
3814 SET(bp->b_lflags, BL_WANTED);
3815
3816 error = msleep((caddr_t)bp, buf_mtxp, PDROP | (PRIBIO + 1), "buf_invalblkno", NULL);
3817
3818 if (error) {
3819 return (error);
3820 }
3821 goto relook;
3822 }
3823 bremfree_locked(bp);
3824 SET(bp->b_lflags, BL_BUSY);
3825 SET(bp->b_flags, B_INVAL);
3826 buf_busycount++;
3827 #ifdef JOE_DEBUG
3828 bp->b_owner = current_thread();
3829 bp->b_tag = 4;
3830 #endif
3831 lck_mtx_unlock(buf_mtxp);
3832 buf_brelse(bp);
3833
3834 return (0);
3835 }
3836
3837
3838 void
3839 buf_drop(buf_t bp)
3840 {
3841 int need_wakeup = 0;
3842
3843 lck_mtx_lock_spin(buf_mtxp);
3844
3845 if (ISSET(bp->b_lflags, BL_WANTED)) {
3846 /*
3847 * delay the actual wakeup until after we
3848 * clear BL_BUSY and we've dropped buf_mtxp
3849 */
3850 need_wakeup = 1;
3851 }
3852 #ifdef JOE_DEBUG
3853 bp->b_owner = current_thread();
3854 bp->b_tag = 9;
3855 #endif
3856 /*
3857 * Unlock the buffer.
3858 */
3859 CLR(bp->b_lflags, (BL_BUSY | BL_WANTED));
3860 buf_busycount--;
3861
3862 lck_mtx_unlock(buf_mtxp);
3863
3864 if (need_wakeup) {
3865 /*
3866 * Wake up any proceeses waiting for _this_ buffer to become free.
3867 */
3868 wakeup(bp);
3869 }
3870 }
3871
3872
3873 errno_t
3874 buf_acquire(buf_t bp, int flags, int slpflag, int slptimeo) {
3875 errno_t error;
3876
3877 lck_mtx_lock_spin(buf_mtxp);
3878
3879 error = buf_acquire_locked(bp, flags, slpflag, slptimeo);
3880
3881 lck_mtx_unlock(buf_mtxp);
3882
3883 return (error);
3884 }
3885
3886
3887 static errno_t
3888 buf_acquire_locked(buf_t bp, int flags, int slpflag, int slptimeo)
3889 {
3890 errno_t error;
3891 struct timespec ts;
3892
3893 if (ISSET(bp->b_flags, B_LOCKED)) {
3894 if ((flags & BAC_SKIP_LOCKED))
3895 return (EDEADLK);
3896 } else {
3897 if ((flags & BAC_SKIP_NONLOCKED))
3898 return (EDEADLK);
3899 }
3900 if (ISSET(bp->b_lflags, BL_BUSY)) {
3901 /*
3902 * since the lck_mtx_lock may block, the buffer
3903 * may become BUSY, so we need to
3904 * recheck for a NOWAIT request
3905 */
3906 if (flags & BAC_NOWAIT)
3907 return (EBUSY);
3908 SET(bp->b_lflags, BL_WANTED);
3909
3910 /* the hz value is 100; which leads to 10ms */
3911 ts.tv_sec = (slptimeo/100);
3912 ts.tv_nsec = (slptimeo % 100) * 10 * NSEC_PER_USEC * 1000;
3913 error = msleep((caddr_t)bp, buf_mtxp, slpflag | (PRIBIO + 1), "buf_acquire", &ts);
3914
3915 if (error)
3916 return (error);
3917 return (EAGAIN);
3918 }
3919 if (flags & BAC_REMOVE)
3920 bremfree_locked(bp);
3921 SET(bp->b_lflags, BL_BUSY);
3922 buf_busycount++;
3923
3924 #ifdef JOE_DEBUG
3925 bp->b_owner = current_thread();
3926 bp->b_tag = 5;
3927 #endif
3928 return (0);
3929 }
3930
3931
3932 /*
3933 * Wait for operations on the buffer to complete.
3934 * When they do, extract and return the I/O's error value.
3935 */
3936 errno_t
3937 buf_biowait(buf_t bp)
3938 {
3939 while (!ISSET(bp->b_flags, B_DONE)) {
3940
3941 lck_mtx_lock_spin(buf_mtxp);
3942
3943 if (!ISSET(bp->b_flags, B_DONE)) {
3944 DTRACE_IO1(wait__start, buf_t, bp);
3945 (void) msleep(bp, buf_mtxp, PDROP | (PRIBIO+1), "buf_biowait", NULL);
3946 DTRACE_IO1(wait__done, buf_t, bp);
3947 } else
3948 lck_mtx_unlock(buf_mtxp);
3949 }
3950 /* check for interruption of I/O (e.g. via NFS), then errors. */
3951 if (ISSET(bp->b_flags, B_EINTR)) {
3952 CLR(bp->b_flags, B_EINTR);
3953 return (EINTR);
3954 } else if (ISSET(bp->b_flags, B_ERROR))
3955 return (bp->b_error ? bp->b_error : EIO);
3956 else
3957 return (0);
3958 }
3959
3960
3961 /*
3962 * Mark I/O complete on a buffer.
3963 *
3964 * If a callback has been requested, e.g. the pageout
3965 * daemon, do so. Otherwise, awaken waiting processes.
3966 *
3967 * [ Leffler, et al., says on p.247:
3968 * "This routine wakes up the blocked process, frees the buffer
3969 * for an asynchronous write, or, for a request by the pagedaemon
3970 * process, invokes a procedure specified in the buffer structure" ]
3971 *
3972 * In real life, the pagedaemon (or other system processes) wants
3973 * to do async stuff to, and doesn't want the buffer buf_brelse()'d.
3974 * (for swap pager, that puts swap buffers on the free lists (!!!),
3975 * for the vn device, that puts malloc'd buffers on the free lists!)
3976 */
3977
3978 void
3979 buf_biodone(buf_t bp)
3980 {
3981 mount_t mp;
3982 struct bufattr *bap;
3983 struct timeval real_elapsed;
3984 uint64_t real_elapsed_usec = 0;
3985
3986 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_START,
3987 bp, bp->b_datap, bp->b_flags, 0, 0);
3988
3989 if (ISSET(bp->b_flags, B_DONE))
3990 panic("biodone already");
3991
3992 bap = &bp->b_attr;
3993
3994 if (bp->b_vp && bp->b_vp->v_mount) {
3995 mp = bp->b_vp->v_mount;
3996 } else {
3997 mp = NULL;
3998 }
3999
4000 if (ISSET(bp->b_flags, B_ERROR)) {
4001 if (mp && (MNT_ROOTFS & mp->mnt_flag)) {
4002 dk_error_description_t desc;
4003 bzero(&desc, sizeof(desc));
4004 desc.description = panic_disk_error_description;
4005 desc.description_size = panic_disk_error_description_size;
4006 VNOP_IOCTL(mp->mnt_devvp, DKIOCGETERRORDESCRIPTION, (caddr_t)&desc, 0, vfs_context_kernel());
4007 }
4008 }
4009
4010 if (mp && (bp->b_flags & B_READ) == 0) {
4011 update_last_io_time(mp);
4012 INCR_PENDING_IO(-(pending_io_t)buf_count(bp), mp->mnt_pending_write_size);
4013 } else if (mp) {
4014 INCR_PENDING_IO(-(pending_io_t)buf_count(bp), mp->mnt_pending_read_size);
4015 }
4016
4017 throttle_info_end_io(bp);
4018
4019 if (kdebug_enable) {
4020 int code = DKIO_DONE;
4021 int io_tier = GET_BUFATTR_IO_TIER(bap);
4022
4023 if (bp->b_flags & B_READ)
4024 code |= DKIO_READ;
4025 if (bp->b_flags & B_ASYNC)
4026 code |= DKIO_ASYNC;
4027
4028 if (bp->b_flags & B_META)
4029 code |= DKIO_META;
4030 else if (bp->b_flags & B_PAGEIO)
4031 code |= DKIO_PAGING;
4032
4033 if (io_tier != 0)
4034 code |= DKIO_THROTTLE;
4035
4036 code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK);
4037
4038 if (bp->b_flags & B_PASSIVE)
4039 code |= DKIO_PASSIVE;
4040
4041 if (bap->ba_flags & BA_NOCACHE)
4042 code |= DKIO_NOCACHE;
4043
4044 if (bap->ba_flags & BA_IO_TIER_UPGRADE) {
4045 code |= DKIO_TIER_UPGRADE;
4046 }
4047
4048 KDBG_RELEASE_NOPROCFILT(FSDBG_CODE(DBG_DKRW, code),
4049 buf_kernel_addrperm_addr(bp),
4050 (uintptr_t)VM_KERNEL_ADDRPERM(bp->b_vp), bp->b_resid,
4051 bp->b_error);
4052 }
4053
4054 microuptime(&real_elapsed);
4055 timevalsub(&real_elapsed, &bp->b_timestamp_tv);
4056 real_elapsed_usec = real_elapsed.tv_sec * USEC_PER_SEC + real_elapsed.tv_usec;
4057 disk_conditioner_delay(bp, 1, bp->b_bcount, real_elapsed_usec);
4058
4059 /*
4060 * I/O was done, so don't believe
4061 * the DIRTY state from VM anymore...
4062 * and we need to reset the THROTTLED/PASSIVE
4063 * indicators
4064 */
4065 CLR(bp->b_flags, (B_WASDIRTY | B_PASSIVE));
4066 CLR(bap->ba_flags, (BA_META | BA_NOCACHE | BA_DELAYIDLESLEEP | BA_IO_TIER_UPGRADE));
4067
4068 SET_BUFATTR_IO_TIER(bap, 0);
4069
4070 DTRACE_IO1(done, buf_t, bp);
4071
4072 if (!ISSET(bp->b_flags, B_READ) && !ISSET(bp->b_flags, B_RAW))
4073 /*
4074 * wake up any writer's blocked
4075 * on throttle or waiting for I/O
4076 * to drain
4077 */
4078 vnode_writedone(bp->b_vp);
4079
4080 if (ISSET(bp->b_flags, (B_CALL | B_FILTER))) { /* if necessary, call out */
4081 void (*iodone_func)(struct buf *, void *) = bp->b_iodone;
4082 void *arg = bp->b_transaction;
4083 int callout = ISSET(bp->b_flags, B_CALL);
4084
4085 if (iodone_func == NULL)
4086 panic("biodone: bp @ %p has NULL b_iodone!\n", bp);
4087
4088 CLR(bp->b_flags, (B_CALL | B_FILTER)); /* filters and callouts are one-shot */
4089 bp->b_iodone = NULL;
4090 bp->b_transaction = NULL;
4091
4092 if (callout)
4093 SET(bp->b_flags, B_DONE); /* note that it's done */
4094
4095 (*iodone_func)(bp, arg);
4096
4097 if (callout) {
4098 /*
4099 * assumes that the callback function takes
4100 * ownership of the bp and deals with releasing it if necessary
4101 */
4102 goto biodone_done;
4103 }
4104 /*
4105 * in this case the call back function is acting
4106 * strictly as a filter... it does not take
4107 * ownership of the bp and is expecting us
4108 * to finish cleaning up... this is currently used
4109 * by the HFS journaling code
4110 */
4111 }
4112 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release it */
4113 SET(bp->b_flags, B_DONE); /* note that it's done */
4114
4115 buf_brelse(bp);
4116 } else { /* or just wakeup the buffer */
4117 /*
4118 * by taking the mutex, we serialize
4119 * the buf owner calling buf_biowait so that we'll
4120 * only see him in one of 2 states...
4121 * state 1: B_DONE wasn't set and he's
4122 * blocked in msleep
4123 * state 2: he's blocked trying to take the
4124 * mutex before looking at B_DONE
4125 * BL_WANTED is cleared in case anyone else
4126 * is blocked waiting for the buffer... note
4127 * that we haven't cleared B_BUSY yet, so if
4128 * they do get to run, their going to re-set
4129 * BL_WANTED and go back to sleep
4130 */
4131 lck_mtx_lock_spin(buf_mtxp);
4132
4133 CLR(bp->b_lflags, BL_WANTED);
4134 SET(bp->b_flags, B_DONE); /* note that it's done */
4135
4136 lck_mtx_unlock(buf_mtxp);
4137
4138 wakeup(bp);
4139 }
4140 biodone_done:
4141 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_END,
4142 (uintptr_t)bp, (uintptr_t)bp->b_datap, bp->b_flags, 0, 0);
4143 }
4144
4145 /*
4146 * Obfuscate buf pointers.
4147 */
4148 vm_offset_t
4149 buf_kernel_addrperm_addr(void * addr)
4150 {
4151 if ((vm_offset_t)addr == 0)
4152 return 0;
4153 else
4154 return ((vm_offset_t)addr + buf_kernel_addrperm);
4155 }
4156
4157 /*
4158 * Return a count of buffers on the "locked" queue.
4159 */
4160 int
4161 count_lock_queue(void)
4162 {
4163 buf_t bp;
4164 int n = 0;
4165
4166 lck_mtx_lock_spin(buf_mtxp);
4167
4168 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
4169 bp = bp->b_freelist.tqe_next)
4170 n++;
4171 lck_mtx_unlock(buf_mtxp);
4172
4173 return (n);
4174 }
4175
4176 /*
4177 * Return a count of 'busy' buffers. Used at the time of shutdown.
4178 * note: This is also called from the mach side in debug context in kdp.c
4179 */
4180 int
4181 count_busy_buffers(void)
4182 {
4183 return buf_busycount + bufstats.bufs_iobufinuse;
4184 }
4185
4186 #if DIAGNOSTIC
4187 /*
4188 * Print out statistics on the current allocation of the buffer pool.
4189 * Can be enabled to print out on every ``sync'' by setting "syncprt"
4190 * in vfs_syscalls.c using sysctl.
4191 */
4192 void
4193 vfs_bufstats()
4194 {
4195 int i, j, count;
4196 struct buf *bp;
4197 struct bqueues *dp;
4198 int counts[MAXBSIZE/CLBYTES+1];
4199 static char *bname[BQUEUES] =
4200 { "LOCKED", "LRU", "AGE", "EMPTY", "META", "LAUNDRY" };
4201
4202 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
4203 count = 0;
4204 for (j = 0; j <= MAXBSIZE/CLBYTES; j++)
4205 counts[j] = 0;
4206
4207 lck_mtx_lock(buf_mtxp);
4208
4209 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
4210 counts[bp->b_bufsize/CLBYTES]++;
4211 count++;
4212 }
4213 lck_mtx_unlock(buf_mtxp);
4214
4215 printf("%s: total-%d", bname[i], count);
4216 for (j = 0; j <= MAXBSIZE/CLBYTES; j++)
4217 if (counts[j] != 0)
4218 printf(", %d-%d", j * CLBYTES, counts[j]);
4219 printf("\n");
4220 }
4221 }
4222 #endif /* DIAGNOSTIC */
4223
4224 #define NRESERVEDIOBUFS 128
4225
4226 #define MNT_VIRTUALDEV_MAX_IOBUFS 16
4227 #define VIRTUALDEV_MAX_IOBUFS ((40*niobuf_headers)/100)
4228
4229 buf_t
4230 alloc_io_buf(vnode_t vp, int priv)
4231 {
4232 buf_t bp;
4233 mount_t mp = NULL;
4234 int alloc_for_virtualdev = FALSE;
4235
4236 lck_mtx_lock_spin(iobuffer_mtxp);
4237
4238 /*
4239 * We subject iobuf requests for diskimages to additional restrictions.
4240 *
4241 * a) A single diskimage mount cannot use up more than
4242 * MNT_VIRTUALDEV_MAX_IOBUFS. However,vm privileged (pageout) requests
4243 * are not subject to this restriction.
4244 * b) iobuf headers used by all diskimage headers by all mount
4245 * points cannot exceed VIRTUALDEV_MAX_IOBUFS.
4246 */
4247 if (vp && ((mp = vp->v_mount)) && mp != dead_mountp &&
4248 mp->mnt_kern_flag & MNTK_VIRTUALDEV) {
4249 alloc_for_virtualdev = TRUE;
4250 while ((!priv && mp->mnt_iobufinuse > MNT_VIRTUALDEV_MAX_IOBUFS) ||
4251 bufstats.bufs_iobufinuse_vdev > VIRTUALDEV_MAX_IOBUFS) {
4252 bufstats.bufs_iobufsleeps++;
4253
4254 need_iobuffer = 1;
4255 (void)msleep(&need_iobuffer, iobuffer_mtxp,
4256 PSPIN | (PRIBIO+1), (const char *)"alloc_io_buf (1)",
4257 NULL);
4258 }
4259 }
4260
4261 while (((niobuf_headers - NRESERVEDIOBUFS < bufstats.bufs_iobufinuse) && !priv) ||
4262 (bp = iobufqueue.tqh_first) == NULL) {
4263 bufstats.bufs_iobufsleeps++;
4264
4265 need_iobuffer = 1;
4266 (void)msleep(&need_iobuffer, iobuffer_mtxp, PSPIN | (PRIBIO+1),
4267 (const char *)"alloc_io_buf (2)", NULL);
4268 }
4269 TAILQ_REMOVE(&iobufqueue, bp, b_freelist);
4270
4271 bufstats.bufs_iobufinuse++;
4272 if (bufstats.bufs_iobufinuse > bufstats.bufs_iobufmax)
4273 bufstats.bufs_iobufmax = bufstats.bufs_iobufinuse;
4274
4275 if (alloc_for_virtualdev) {
4276 mp->mnt_iobufinuse++;
4277 bufstats.bufs_iobufinuse_vdev++;
4278 }
4279
4280 lck_mtx_unlock(iobuffer_mtxp);
4281
4282 /*
4283 * initialize various fields
4284 * we don't need to hold the mutex since the buffer
4285 * is now private... the vp should have a reference
4286 * on it and is not protected by this mutex in any event
4287 */
4288 bp->b_timestamp = 0;
4289 bp->b_proc = NULL;
4290
4291 bp->b_datap = 0;
4292 bp->b_flags = 0;
4293 bp->b_lflags = BL_BUSY | BL_IOBUF;
4294 if (alloc_for_virtualdev)
4295 bp->b_lflags |= BL_IOBUF_VDEV;
4296 bp->b_redundancy_flags = 0;
4297 bp->b_blkno = bp->b_lblkno = 0;
4298 #ifdef JOE_DEBUG
4299 bp->b_owner = current_thread();
4300 bp->b_tag = 6;
4301 #endif
4302 bp->b_iodone = NULL;
4303 bp->b_error = 0;
4304 bp->b_resid = 0;
4305 bp->b_bcount = 0;
4306 bp->b_bufsize = 0;
4307 bp->b_upl = NULL;
4308 bp->b_fsprivate = (void *)NULL;
4309 bp->b_vp = vp;
4310 bzero(&bp->b_attr, sizeof(struct bufattr));
4311
4312 if (vp && (vp->v_type == VBLK || vp->v_type == VCHR))
4313 bp->b_dev = vp->v_rdev;
4314 else
4315 bp->b_dev = NODEV;
4316
4317 return (bp);
4318 }
4319
4320
4321 void
4322 free_io_buf(buf_t bp)
4323 {
4324 int need_wakeup = 0;
4325 int free_for_virtualdev = FALSE;
4326 mount_t mp = NULL;
4327
4328 /* Was this iobuf for a diskimage ? */
4329 if (bp->b_lflags & BL_IOBUF_VDEV) {
4330 free_for_virtualdev = TRUE;
4331 if (bp->b_vp)
4332 mp = bp->b_vp->v_mount;
4333 }
4334
4335 /*
4336 * put buffer back on the head of the iobufqueue
4337 */
4338 bp->b_vp = NULL;
4339 bp->b_flags = B_INVAL;
4340
4341 /* Zero out the bufattr and its flags before relinquishing this iobuf */
4342 bzero (&bp->b_attr, sizeof(struct bufattr));
4343
4344 lck_mtx_lock_spin(iobuffer_mtxp);
4345
4346 binsheadfree(bp, &iobufqueue, -1);
4347
4348 if (need_iobuffer) {
4349 /*
4350 * Wake up any processes waiting because they need an io buffer
4351 *
4352 * do the wakeup after we drop the mutex... it's possible that the
4353 * wakeup will be superfluous if need_iobuffer gets set again and
4354 * another thread runs this path, but it's highly unlikely, doesn't
4355 * hurt, and it means we don't hold up I/O progress if the wakeup blocks
4356 * trying to grab a task related lock...
4357 */
4358 need_iobuffer = 0;
4359 need_wakeup = 1;
4360 }
4361 if (bufstats.bufs_iobufinuse <= 0)
4362 panic("free_io_buf: bp(%p) - bufstats.bufs_iobufinuse < 0", bp);
4363
4364 bufstats.bufs_iobufinuse--;
4365
4366 if (free_for_virtualdev) {
4367 bufstats.bufs_iobufinuse_vdev--;
4368 if (mp && mp != dead_mountp)
4369 mp->mnt_iobufinuse--;
4370 }
4371
4372 lck_mtx_unlock(iobuffer_mtxp);
4373
4374 if (need_wakeup)
4375 wakeup(&need_iobuffer);
4376 }
4377
4378
4379 void
4380 buf_list_lock(void)
4381 {
4382 lck_mtx_lock_spin(buf_mtxp);
4383 }
4384
4385 void
4386 buf_list_unlock(void)
4387 {
4388 lck_mtx_unlock(buf_mtxp);
4389 }
4390
4391 /*
4392 * If getnewbuf() calls bcleanbuf() on the same thread
4393 * there is a potential for stack overrun and deadlocks.
4394 * So we always handoff the work to a worker thread for completion
4395 */
4396
4397
4398 static void
4399 bcleanbuf_thread_init(void)
4400 {
4401 thread_t thread = THREAD_NULL;
4402
4403 /* create worker thread */
4404 kernel_thread_start((thread_continue_t)bcleanbuf_thread, NULL, &thread);
4405 thread_deallocate(thread);
4406 }
4407
4408 typedef int (*bcleanbufcontinuation)(int);
4409
4410 __attribute__((noreturn))
4411 static void
4412 bcleanbuf_thread(void)
4413 {
4414 struct buf *bp;
4415 int error = 0;
4416 int loopcnt = 0;
4417
4418 for (;;) {
4419 lck_mtx_lock_spin(buf_mtxp);
4420
4421 while ( (bp = TAILQ_FIRST(&bufqueues[BQ_LAUNDRY])) == NULL) {
4422 (void)msleep0(&bufqueues[BQ_LAUNDRY], buf_mtxp, PRIBIO|PDROP, "blaundry", 0, (bcleanbufcontinuation)bcleanbuf_thread);
4423 }
4424
4425 /*
4426 * Remove from the queue
4427 */
4428 bremfree_locked(bp);
4429
4430 /*
4431 * Buffer is no longer on any free list
4432 */
4433 SET(bp->b_lflags, BL_BUSY);
4434 buf_busycount++;
4435
4436 #ifdef JOE_DEBUG
4437 bp->b_owner = current_thread();
4438 bp->b_tag = 10;
4439 #endif
4440
4441 lck_mtx_unlock(buf_mtxp);
4442 /*
4443 * do the IO
4444 */
4445 error = bawrite_internal(bp, 0);
4446
4447 if (error) {
4448 bp->b_whichq = BQ_LAUNDRY;
4449 bp->b_timestamp = buf_timestamp();
4450
4451 lck_mtx_lock_spin(buf_mtxp);
4452
4453 binstailfree(bp, &bufqueues[BQ_LAUNDRY], BQ_LAUNDRY);
4454 blaundrycnt++;
4455
4456 /* we never leave a busy page on the laundry queue */
4457 CLR(bp->b_lflags, BL_BUSY);
4458 buf_busycount--;
4459 #ifdef JOE_DEBUG
4460 bp->b_owner = current_thread();
4461 bp->b_tag = 11;
4462 #endif
4463
4464 lck_mtx_unlock(buf_mtxp);
4465
4466 if (loopcnt > MAXLAUNDRY) {
4467 /*
4468 * bawrite_internal() can return errors if we're throttled. If we've
4469 * done several I/Os and failed, give the system some time to unthrottle
4470 * the vnode
4471 */
4472 (void)tsleep((void *)&bufqueues[BQ_LAUNDRY], PRIBIO, "blaundry", 1);
4473 loopcnt = 0;
4474 } else {
4475 /* give other threads a chance to run */
4476 (void)thread_block(THREAD_CONTINUE_NULL);
4477 loopcnt++;
4478 }
4479 }
4480 }
4481 }
4482
4483
4484 static int
4485 brecover_data(buf_t bp)
4486 {
4487 int upl_offset;
4488 upl_t upl;
4489 upl_page_info_t *pl;
4490 kern_return_t kret;
4491 vnode_t vp = bp->b_vp;
4492 int upl_flags;
4493
4494
4495 if ( !UBCINFOEXISTS(vp) || bp->b_bufsize == 0)
4496 goto dump_buffer;
4497
4498 upl_flags = UPL_PRECIOUS;
4499 if (! (buf_flags(bp) & B_READ)) {
4500 /*
4501 * "write" operation: let the UPL subsystem know
4502 * that we intend to modify the buffer cache pages we're
4503 * gathering.
4504 */
4505 upl_flags |= UPL_WILL_MODIFY;
4506 }
4507
4508 kret = ubc_create_upl_kernel(vp,
4509 ubc_blktooff(vp, bp->b_lblkno),
4510 bp->b_bufsize,
4511 &upl,
4512 &pl,
4513 upl_flags,
4514 VM_KERN_MEMORY_FILE);
4515 if (kret != KERN_SUCCESS)
4516 panic("Failed to create UPL");
4517
4518 for (upl_offset = 0; upl_offset < bp->b_bufsize; upl_offset += PAGE_SIZE) {
4519
4520 if (!upl_valid_page(pl, upl_offset / PAGE_SIZE) || !upl_dirty_page(pl, upl_offset / PAGE_SIZE)) {
4521 ubc_upl_abort(upl, 0);
4522 goto dump_buffer;
4523 }
4524 }
4525 bp->b_upl = upl;
4526
4527 kret = ubc_upl_map(upl, (vm_offset_t *)&(bp->b_datap));
4528
4529 if (kret != KERN_SUCCESS)
4530 panic("getblk: ubc_upl_map() failed with (%d)", kret);
4531 return (1);
4532
4533 dump_buffer:
4534 bp->b_bufsize = 0;
4535 SET(bp->b_flags, B_INVAL);
4536 buf_brelse(bp);
4537
4538 return(0);
4539 }
4540
4541 int
4542 fs_buffer_cache_gc_register(void (* callout)(int, void *), void *context)
4543 {
4544 lck_mtx_lock(buf_gc_callout);
4545 for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4546 if (fs_callouts[i].callout == NULL) {
4547 fs_callouts[i].callout = callout;
4548 fs_callouts[i].context = context;
4549 lck_mtx_unlock(buf_gc_callout);
4550 return 0;
4551 }
4552 }
4553
4554 lck_mtx_unlock(buf_gc_callout);
4555 return ENOMEM;
4556 }
4557
4558 int
4559 fs_buffer_cache_gc_unregister(void (* callout)(int, void *), void *context)
4560 {
4561 lck_mtx_lock(buf_gc_callout);
4562 for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4563 if (fs_callouts[i].callout == callout &&
4564 fs_callouts[i].context == context) {
4565 fs_callouts[i].callout = NULL;
4566 fs_callouts[i].context = NULL;
4567 }
4568 }
4569 lck_mtx_unlock(buf_gc_callout);
4570 return 0;
4571 }
4572
4573 static void
4574 fs_buffer_cache_gc_dispatch_callouts(int all)
4575 {
4576 lck_mtx_lock(buf_gc_callout);
4577 for(int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4578 if (fs_callouts[i].callout != NULL) {
4579 fs_callouts[i].callout(all, fs_callouts[i].context);
4580 }
4581 }
4582 lck_mtx_unlock(buf_gc_callout);
4583 }
4584
4585 static boolean_t
4586 buffer_cache_gc(int all)
4587 {
4588 buf_t bp;
4589 boolean_t did_large_zfree = FALSE;
4590 boolean_t need_wakeup = FALSE;
4591 int now = buf_timestamp();
4592 uint32_t found = 0;
4593 struct bqueues privq;
4594 int thresh_hold = BUF_STALE_THRESHHOLD;
4595
4596 if (all)
4597 thresh_hold = 0;
4598 /*
4599 * We only care about metadata (incore storage comes from zalloc()).
4600 * Unless "all" is set (used to evict meta data buffers in preparation
4601 * for deep sleep), we only evict up to BUF_MAX_GC_BATCH_SIZE buffers
4602 * that have not been accessed in the last BUF_STALE_THRESHOLD seconds.
4603 * BUF_MAX_GC_BATCH_SIZE controls both the hold time of the global lock
4604 * "buf_mtxp" and the length of time we spend compute bound in the GC
4605 * thread which calls this function
4606 */
4607 lck_mtx_lock(buf_mtxp);
4608
4609 do {
4610 found = 0;
4611 TAILQ_INIT(&privq);
4612 need_wakeup = FALSE;
4613
4614 while (((bp = TAILQ_FIRST(&bufqueues[BQ_META]))) &&
4615 (now > bp->b_timestamp) &&
4616 (now - bp->b_timestamp > thresh_hold) &&
4617 (found < BUF_MAX_GC_BATCH_SIZE)) {
4618
4619 /* Remove from free list */
4620 bremfree_locked(bp);
4621 found++;
4622
4623 #ifdef JOE_DEBUG
4624 bp->b_owner = current_thread();
4625 bp->b_tag = 12;
4626 #endif
4627
4628 /* If dirty, move to laundry queue and remember to do wakeup */
4629 if (ISSET(bp->b_flags, B_DELWRI)) {
4630 SET(bp->b_lflags, BL_WANTDEALLOC);
4631
4632 bmovelaundry(bp);
4633 need_wakeup = TRUE;
4634
4635 continue;
4636 }
4637
4638 /*
4639 * Mark busy and put on private list. We could technically get
4640 * away without setting BL_BUSY here.
4641 */
4642 SET(bp->b_lflags, BL_BUSY);
4643 buf_busycount++;
4644
4645 /*
4646 * Remove from hash and dissociate from vp.
4647 */
4648 bremhash(bp);
4649 if (bp->b_vp) {
4650 brelvp_locked(bp);
4651 }
4652
4653 TAILQ_INSERT_TAIL(&privq, bp, b_freelist);
4654 }
4655
4656 if (found == 0) {
4657 break;
4658 }
4659
4660 /* Drop lock for batch processing */
4661 lck_mtx_unlock(buf_mtxp);
4662
4663 /* Wakeup and yield for laundry if need be */
4664 if (need_wakeup) {
4665 wakeup(&bufqueues[BQ_LAUNDRY]);
4666 (void)thread_block(THREAD_CONTINUE_NULL);
4667 }
4668
4669 /* Clean up every buffer on private list */
4670 TAILQ_FOREACH(bp, &privq, b_freelist) {
4671 /* Take note if we've definitely freed at least a page to a zone */
4672 if ((ISSET(bp->b_flags, B_ZALLOC)) && (buf_size(bp) >= PAGE_SIZE)) {
4673 did_large_zfree = TRUE;
4674 }
4675
4676 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
4677
4678 /* Free Storage */
4679 buf_free_meta_store(bp);
4680
4681 /* Release credentials */
4682 buf_release_credentials(bp);
4683
4684 /* Prepare for moving to empty queue */
4685 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED
4686 | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
4687 bp->b_whichq = BQ_EMPTY;
4688 BLISTNONE(bp);
4689 }
4690 lck_mtx_lock(buf_mtxp);
4691
4692 /* Back under lock, move them all to invalid hash and clear busy */
4693 TAILQ_FOREACH(bp, &privq, b_freelist) {
4694 binshash(bp, &invalhash);
4695 CLR(bp->b_lflags, BL_BUSY);
4696 buf_busycount--;
4697
4698 #ifdef JOE_DEBUG
4699 if (bp->b_owner != current_thread()) {
4700 panic("Buffer stolen from buffer_cache_gc()");
4701 }
4702 bp->b_owner = current_thread();
4703 bp->b_tag = 13;
4704 #endif
4705 }
4706
4707 /* And do a big bulk move to the empty queue */
4708 TAILQ_CONCAT(&bufqueues[BQ_EMPTY], &privq, b_freelist);
4709
4710 } while (all && (found == BUF_MAX_GC_BATCH_SIZE));
4711
4712 lck_mtx_unlock(buf_mtxp);
4713
4714 fs_buffer_cache_gc_dispatch_callouts(all);
4715
4716 return did_large_zfree;
4717 }
4718
4719
4720 /*
4721 * disabled for now
4722 */
4723
4724 #if FLUSH_QUEUES
4725
4726 #define NFLUSH 32
4727
4728 static int
4729 bp_cmp(void *a, void *b)
4730 {
4731 buf_t *bp_a = *(buf_t **)a,
4732 *bp_b = *(buf_t **)b;
4733 daddr64_t res;
4734
4735 // don't have to worry about negative block
4736 // numbers so this is ok to do.
4737 //
4738 res = (bp_a->b_blkno - bp_b->b_blkno);
4739
4740 return (int)res;
4741 }
4742
4743
4744 int
4745 bflushq(int whichq, mount_t mp)
4746 {
4747 buf_t bp, next;
4748 int i, buf_count;
4749 int total_writes = 0;
4750 static buf_t flush_table[NFLUSH];
4751
4752 if (whichq < 0 || whichq >= BQUEUES) {
4753 return (0);
4754 }
4755
4756 restart:
4757 lck_mtx_lock(buf_mtxp);
4758
4759 bp = TAILQ_FIRST(&bufqueues[whichq]);
4760
4761 for (buf_count = 0; bp; bp = next) {
4762 next = bp->b_freelist.tqe_next;
4763
4764 if (bp->b_vp == NULL || bp->b_vp->v_mount != mp) {
4765 continue;
4766 }
4767
4768 if (ISSET(bp->b_flags, B_DELWRI) && !ISSET(bp->b_lflags, BL_BUSY)) {
4769
4770 bremfree_locked(bp);
4771 #ifdef JOE_DEBUG
4772 bp->b_owner = current_thread();
4773 bp->b_tag = 7;
4774 #endif
4775 SET(bp->b_lflags, BL_BUSY);
4776 buf_busycount++;
4777
4778 flush_table[buf_count] = bp;
4779 buf_count++;
4780 total_writes++;
4781
4782 if (buf_count >= NFLUSH) {
4783 lck_mtx_unlock(buf_mtxp);
4784
4785 qsort(flush_table, buf_count, sizeof(struct buf *), bp_cmp);
4786
4787 for (i = 0; i < buf_count; i++) {
4788 buf_bawrite(flush_table[i]);
4789 }
4790 goto restart;
4791 }
4792 }
4793 }
4794 lck_mtx_unlock(buf_mtxp);
4795
4796 if (buf_count > 0) {
4797 qsort(flush_table, buf_count, sizeof(struct buf *), bp_cmp);
4798
4799 for (i = 0; i < buf_count; i++) {
4800 buf_bawrite(flush_table[i]);
4801 }
4802 }
4803
4804 return (total_writes);
4805 }
4806 #endif