2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1991, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/malloc.h>
68 #include <sys/domain.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mcache.h>
76 #include <sys/kauth.h>
78 #include <sys/proc_uuid_policy.h>
79 #include <sys/syslog.h>
83 #include <libkern/OSAtomic.h>
84 #include <kern/locks.h>
86 #include <machine/limits.h>
88 #include <kern/zalloc.h>
91 #include <net/if_types.h>
92 #include <net/route.h>
93 #include <net/flowhash.h>
94 #include <net/flowadv.h>
95 #include <net/nat464_utils.h>
96 #include <net/ntstat.h>
98 #include <netinet/in.h>
99 #include <netinet/in_pcb.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #include <netinet6/ip6_var.h>
107 #include <sys/kdebug.h>
108 #include <sys/random.h>
110 #include <dev/random/randomdev.h>
111 #include <mach/boolean.h>
113 #include <pexpert/pexpert.h>
116 #include <net/necp.h>
119 #include <sys/stat.h>
121 #include <sys/vnode.h>
123 static lck_grp_t
*inpcb_lock_grp
;
124 static lck_attr_t
*inpcb_lock_attr
;
125 static lck_grp_attr_t
*inpcb_lock_grp_attr
;
126 decl_lck_mtx_data(static, inpcb_lock
); /* global INPCB lock */
127 decl_lck_mtx_data(static, inpcb_timeout_lock
);
129 static TAILQ_HEAD(, inpcbinfo
) inpcb_head
= TAILQ_HEAD_INITIALIZER(inpcb_head
);
131 static u_int16_t inpcb_timeout_run
= 0; /* INPCB timer is scheduled to run */
132 static boolean_t inpcb_garbage_collecting
= FALSE
; /* gc timer is scheduled */
133 static boolean_t inpcb_ticking
= FALSE
; /* "slow" timer is scheduled */
134 static boolean_t inpcb_fast_timer_on
= FALSE
;
136 #define INPCB_GCREQ_THRESHOLD 50000
138 static thread_call_t inpcb_thread_call
, inpcb_fast_thread_call
;
139 static void inpcb_sched_timeout(void);
140 static void inpcb_sched_lazy_timeout(void);
141 static void _inpcb_sched_timeout(unsigned int);
142 static void inpcb_timeout(void *, void *);
143 const int inpcb_timeout_lazy
= 10; /* 10 seconds leeway for lazy timers */
144 extern int tvtohz(struct timeval
*);
146 #if CONFIG_PROC_UUID_POLICY
147 static void inp_update_cellular_policy(struct inpcb
*, boolean_t
);
149 static void inp_update_necp_want_app_policy(struct inpcb
*, boolean_t
);
151 #endif /* !CONFIG_PROC_UUID_POLICY */
153 #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8))
154 #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1))
157 * These configure the range of local port addresses assigned to
158 * "unspecified" outgoing connections/packets/whatever.
160 int ipport_lowfirstauto
= IPPORT_RESERVED
- 1; /* 1023 */
161 int ipport_lowlastauto
= IPPORT_RESERVEDSTART
; /* 600 */
162 int ipport_firstauto
= IPPORT_HIFIRSTAUTO
; /* 49152 */
163 int ipport_lastauto
= IPPORT_HILASTAUTO
; /* 65535 */
164 int ipport_hifirstauto
= IPPORT_HIFIRSTAUTO
; /* 49152 */
165 int ipport_hilastauto
= IPPORT_HILASTAUTO
; /* 65535 */
167 #define RANGECHK(var, min, max) \
168 if ((var) < (min)) { (var) = (min); } \
169 else if ((var) > (max)) { (var) = (max); }
172 sysctl_net_ipport_check SYSCTL_HANDLER_ARGS
174 #pragma unused(arg1, arg2)
177 error
= sysctl_handle_int(oidp
, oidp
->oid_arg1
, oidp
->oid_arg2
, req
);
179 RANGECHK(ipport_lowfirstauto
, 1, IPPORT_RESERVED
- 1);
180 RANGECHK(ipport_lowlastauto
, 1, IPPORT_RESERVED
- 1);
181 RANGECHK(ipport_firstauto
, IPPORT_RESERVED
, USHRT_MAX
);
182 RANGECHK(ipport_lastauto
, IPPORT_RESERVED
, USHRT_MAX
);
183 RANGECHK(ipport_hifirstauto
, IPPORT_RESERVED
, USHRT_MAX
);
184 RANGECHK(ipport_hilastauto
, IPPORT_RESERVED
, USHRT_MAX
);
191 SYSCTL_NODE(_net_inet_ip
, IPPROTO_IP
, portrange
,
192 CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "IP Ports");
194 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, lowfirst
,
195 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
196 &ipport_lowfirstauto
, 0, &sysctl_net_ipport_check
, "I", "");
197 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, lowlast
,
198 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
199 &ipport_lowlastauto
, 0, &sysctl_net_ipport_check
, "I", "");
200 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, first
,
201 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
202 &ipport_firstauto
, 0, &sysctl_net_ipport_check
, "I", "");
203 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, last
,
204 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
205 &ipport_lastauto
, 0, &sysctl_net_ipport_check
, "I", "");
206 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, hifirst
,
207 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
208 &ipport_hifirstauto
, 0, &sysctl_net_ipport_check
, "I", "");
209 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, hilast
,
210 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
211 &ipport_hilastauto
, 0, &sysctl_net_ipport_check
, "I", "");
213 static uint32_t apn_fallbk_debug
= 0;
214 #define apn_fallbk_log(x) do { if (apn_fallbk_debug >= 1) log x; } while (0)
217 static boolean_t apn_fallbk_enabled
= TRUE
;
219 SYSCTL_DECL(_net_inet
);
220 SYSCTL_NODE(_net_inet
, OID_AUTO
, apn_fallback
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "APN Fallback");
221 SYSCTL_UINT(_net_inet_apn_fallback
, OID_AUTO
, enable
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
222 &apn_fallbk_enabled
, 0, "APN fallback enable");
223 SYSCTL_UINT(_net_inet_apn_fallback
, OID_AUTO
, debug
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
224 &apn_fallbk_debug
, 0, "APN fallback debug enable");
226 static boolean_t apn_fallbk_enabled
= FALSE
;
229 extern int udp_use_randomport
;
230 extern int tcp_use_randomport
;
232 /* Structs used for flowhash computation */
233 struct inp_flowhash_key_addr
{
243 struct inp_flowhash_key
{
244 struct inp_flowhash_key_addr infh_laddr
;
245 struct inp_flowhash_key_addr infh_faddr
;
246 u_int32_t infh_lport
;
247 u_int32_t infh_fport
;
249 u_int32_t infh_proto
;
250 u_int32_t infh_rand1
;
251 u_int32_t infh_rand2
;
254 static u_int32_t inp_hash_seed
= 0;
256 static int infc_cmp(const struct inpcb
*, const struct inpcb
*);
258 /* Flags used by inp_fc_getinp */
259 #define INPFC_SOLOCKED 0x1
260 #define INPFC_REMOVE 0x2
261 static struct inpcb
*inp_fc_getinp(u_int32_t
, u_int32_t
);
263 static void inp_fc_feedback(struct inpcb
*);
264 extern void tcp_remove_from_time_wait(struct inpcb
*inp
);
266 decl_lck_mtx_data(static, inp_fc_lck
);
268 RB_HEAD(inp_fc_tree
, inpcb
) inp_fc_tree
;
269 RB_PROTOTYPE(inp_fc_tree
, inpcb
, infc_link
, infc_cmp
);
270 RB_GENERATE(inp_fc_tree
, inpcb
, infc_link
, infc_cmp
);
273 * Use this inp as a key to find an inp in the flowhash tree.
274 * Accesses to it are protected by inp_fc_lck.
276 struct inpcb key_inp
;
279 * in_pcb.c: manage the Protocol Control Blocks.
285 static int inpcb_initialized
= 0;
287 VERIFY(!inpcb_initialized
);
288 inpcb_initialized
= 1;
290 inpcb_lock_grp_attr
= lck_grp_attr_alloc_init();
291 inpcb_lock_grp
= lck_grp_alloc_init("inpcb", inpcb_lock_grp_attr
);
292 inpcb_lock_attr
= lck_attr_alloc_init();
293 lck_mtx_init(&inpcb_lock
, inpcb_lock_grp
, inpcb_lock_attr
);
294 lck_mtx_init(&inpcb_timeout_lock
, inpcb_lock_grp
, inpcb_lock_attr
);
295 inpcb_thread_call
= thread_call_allocate_with_priority(inpcb_timeout
,
296 NULL
, THREAD_CALL_PRIORITY_KERNEL
);
297 inpcb_fast_thread_call
= thread_call_allocate_with_priority(
298 inpcb_timeout
, NULL
, THREAD_CALL_PRIORITY_KERNEL
);
299 if (inpcb_thread_call
== NULL
|| inpcb_fast_thread_call
== NULL
)
300 panic("unable to alloc the inpcb thread call");
303 * Initialize data structures required to deliver
306 lck_mtx_init(&inp_fc_lck
, inpcb_lock_grp
, inpcb_lock_attr
);
307 lck_mtx_lock(&inp_fc_lck
);
308 RB_INIT(&inp_fc_tree
);
309 bzero(&key_inp
, sizeof(key_inp
));
310 lck_mtx_unlock(&inp_fc_lck
);
313 #define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \
314 ((req).intimer_fast > 0) || ((req).intimer_nodelay > 0))
316 inpcb_timeout(void *arg0
, void *arg1
)
318 #pragma unused(arg0, arg1)
319 struct inpcbinfo
*ipi
;
321 struct intimercount gccnt
, tmcnt
;
324 * Update coarse-grained networking timestamp (in sec.); the idea
325 * is to piggy-back on the timeout callout to update the counter
326 * returnable via net_uptime().
330 bzero(&gccnt
, sizeof(gccnt
));
331 bzero(&tmcnt
, sizeof(tmcnt
));
333 lck_mtx_lock_spin(&inpcb_timeout_lock
);
334 gc
= inpcb_garbage_collecting
;
335 inpcb_garbage_collecting
= FALSE
;
338 inpcb_ticking
= FALSE
;
341 lck_mtx_unlock(&inpcb_timeout_lock
);
343 lck_mtx_lock(&inpcb_lock
);
344 TAILQ_FOREACH(ipi
, &inpcb_head
, ipi_entry
) {
345 if (INPCB_HAVE_TIMER_REQ(ipi
->ipi_gc_req
)) {
346 bzero(&ipi
->ipi_gc_req
,
347 sizeof(ipi
->ipi_gc_req
));
348 if (gc
&& ipi
->ipi_gc
!= NULL
) {
350 gccnt
.intimer_lazy
+=
351 ipi
->ipi_gc_req
.intimer_lazy
;
352 gccnt
.intimer_fast
+=
353 ipi
->ipi_gc_req
.intimer_fast
;
354 gccnt
.intimer_nodelay
+=
355 ipi
->ipi_gc_req
.intimer_nodelay
;
358 if (INPCB_HAVE_TIMER_REQ(ipi
->ipi_timer_req
)) {
359 bzero(&ipi
->ipi_timer_req
,
360 sizeof(ipi
->ipi_timer_req
));
361 if (t
&& ipi
->ipi_timer
!= NULL
) {
363 tmcnt
.intimer_lazy
+=
364 ipi
->ipi_timer_req
.intimer_lazy
;
365 tmcnt
.intimer_fast
+=
366 ipi
->ipi_timer_req
.intimer_fast
;
367 tmcnt
.intimer_nodelay
+=
368 ipi
->ipi_timer_req
.intimer_nodelay
;
372 lck_mtx_unlock(&inpcb_lock
);
373 lck_mtx_lock_spin(&inpcb_timeout_lock
);
376 /* lock was dropped above, so check first before overriding */
377 if (!inpcb_garbage_collecting
)
378 inpcb_garbage_collecting
= INPCB_HAVE_TIMER_REQ(gccnt
);
380 inpcb_ticking
= INPCB_HAVE_TIMER_REQ(tmcnt
);
382 /* re-arm the timer if there's work to do */
384 VERIFY(inpcb_timeout_run
>= 0 && inpcb_timeout_run
< 2);
386 if (gccnt
.intimer_nodelay
> 0 || tmcnt
.intimer_nodelay
> 0)
387 inpcb_sched_timeout();
388 else if ((gccnt
.intimer_fast
+ tmcnt
.intimer_fast
) <= 5)
389 /* be lazy when idle with little activity */
390 inpcb_sched_lazy_timeout();
392 inpcb_sched_timeout();
394 lck_mtx_unlock(&inpcb_timeout_lock
);
398 inpcb_sched_timeout(void)
400 _inpcb_sched_timeout(0);
404 inpcb_sched_lazy_timeout(void)
406 _inpcb_sched_timeout(inpcb_timeout_lazy
);
410 _inpcb_sched_timeout(unsigned int offset
)
412 uint64_t deadline
, leeway
;
414 clock_interval_to_deadline(1, NSEC_PER_SEC
, &deadline
);
415 LCK_MTX_ASSERT(&inpcb_timeout_lock
, LCK_MTX_ASSERT_OWNED
);
416 if (inpcb_timeout_run
== 0 &&
417 (inpcb_garbage_collecting
|| inpcb_ticking
)) {
418 lck_mtx_convert_spin(&inpcb_timeout_lock
);
421 inpcb_fast_timer_on
= TRUE
;
422 thread_call_enter_delayed(inpcb_thread_call
,
425 inpcb_fast_timer_on
= FALSE
;
426 clock_interval_to_absolutetime_interval(offset
,
427 NSEC_PER_SEC
, &leeway
);
428 thread_call_enter_delayed_with_leeway(
429 inpcb_thread_call
, NULL
, deadline
, leeway
,
430 THREAD_CALL_DELAY_LEEWAY
);
432 } else if (inpcb_timeout_run
== 1 &&
433 offset
== 0 && !inpcb_fast_timer_on
) {
435 * Since the request was for a fast timer but the
436 * scheduled timer is a lazy timer, try to schedule
437 * another instance of fast timer also.
439 lck_mtx_convert_spin(&inpcb_timeout_lock
);
441 inpcb_fast_timer_on
= TRUE
;
442 thread_call_enter_delayed(inpcb_fast_thread_call
, deadline
);
447 inpcb_gc_sched(struct inpcbinfo
*ipi
, u_int32_t type
)
451 lck_mtx_lock_spin(&inpcb_timeout_lock
);
452 inpcb_garbage_collecting
= TRUE
;
453 gccnt
= ipi
->ipi_gc_req
.intimer_nodelay
+
454 ipi
->ipi_gc_req
.intimer_fast
;
456 if (gccnt
> INPCB_GCREQ_THRESHOLD
) {
457 type
= INPCB_TIMER_FAST
;
461 case INPCB_TIMER_NODELAY
:
462 atomic_add_32(&ipi
->ipi_gc_req
.intimer_nodelay
, 1);
463 inpcb_sched_timeout();
465 case INPCB_TIMER_FAST
:
466 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
467 inpcb_sched_timeout();
470 atomic_add_32(&ipi
->ipi_gc_req
.intimer_lazy
, 1);
471 inpcb_sched_lazy_timeout();
474 lck_mtx_unlock(&inpcb_timeout_lock
);
478 inpcb_timer_sched(struct inpcbinfo
*ipi
, u_int32_t type
)
481 lck_mtx_lock_spin(&inpcb_timeout_lock
);
482 inpcb_ticking
= TRUE
;
484 case INPCB_TIMER_NODELAY
:
485 atomic_add_32(&ipi
->ipi_timer_req
.intimer_nodelay
, 1);
486 inpcb_sched_timeout();
488 case INPCB_TIMER_FAST
:
489 atomic_add_32(&ipi
->ipi_timer_req
.intimer_fast
, 1);
490 inpcb_sched_timeout();
493 atomic_add_32(&ipi
->ipi_timer_req
.intimer_lazy
, 1);
494 inpcb_sched_lazy_timeout();
497 lck_mtx_unlock(&inpcb_timeout_lock
);
501 in_pcbinfo_attach(struct inpcbinfo
*ipi
)
503 struct inpcbinfo
*ipi0
;
505 lck_mtx_lock(&inpcb_lock
);
506 TAILQ_FOREACH(ipi0
, &inpcb_head
, ipi_entry
) {
508 panic("%s: ipi %p already in the list\n",
513 TAILQ_INSERT_TAIL(&inpcb_head
, ipi
, ipi_entry
);
514 lck_mtx_unlock(&inpcb_lock
);
518 in_pcbinfo_detach(struct inpcbinfo
*ipi
)
520 struct inpcbinfo
*ipi0
;
523 lck_mtx_lock(&inpcb_lock
);
524 TAILQ_FOREACH(ipi0
, &inpcb_head
, ipi_entry
) {
529 TAILQ_REMOVE(&inpcb_head
, ipi0
, ipi_entry
);
532 lck_mtx_unlock(&inpcb_lock
);
538 * Allocate a PCB and associate it with the socket.
545 in_pcballoc(struct socket
*so
, struct inpcbinfo
*pcbinfo
, struct proc
*p
)
552 #endif /* CONFIG_MACF_NET */
554 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0) {
555 inp
= (struct inpcb
*)zalloc(pcbinfo
->ipi_zone
);
558 bzero((caddr_t
)inp
, sizeof (*inp
));
560 inp
= (struct inpcb
*)(void *)so
->so_saved_pcb
;
561 temp
= inp
->inp_saved_ppcb
;
562 bzero((caddr_t
)inp
, sizeof (*inp
));
563 inp
->inp_saved_ppcb
= temp
;
566 inp
->inp_gencnt
= ++pcbinfo
->ipi_gencnt
;
567 inp
->inp_pcbinfo
= pcbinfo
;
568 inp
->inp_socket
= so
;
570 mac_error
= mac_inpcb_label_init(inp
, M_WAITOK
);
571 if (mac_error
!= 0) {
572 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0)
573 zfree(pcbinfo
->ipi_zone
, inp
);
576 mac_inpcb_label_associate(so
, inp
);
577 #endif /* CONFIG_MACF_NET */
578 /* make sure inp_stat is always 64-bit aligned */
579 inp
->inp_stat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_stat_store
,
581 if (((uintptr_t)inp
->inp_stat
- (uintptr_t)inp
->inp_stat_store
) +
582 sizeof (*inp
->inp_stat
) > sizeof (inp
->inp_stat_store
)) {
583 panic("%s: insufficient space to align inp_stat", __func__
);
587 /* make sure inp_cstat is always 64-bit aligned */
588 inp
->inp_cstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_cstat_store
,
590 if (((uintptr_t)inp
->inp_cstat
- (uintptr_t)inp
->inp_cstat_store
) +
591 sizeof (*inp
->inp_cstat
) > sizeof (inp
->inp_cstat_store
)) {
592 panic("%s: insufficient space to align inp_cstat", __func__
);
596 /* make sure inp_wstat is always 64-bit aligned */
597 inp
->inp_wstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_wstat_store
,
599 if (((uintptr_t)inp
->inp_wstat
- (uintptr_t)inp
->inp_wstat_store
) +
600 sizeof (*inp
->inp_wstat
) > sizeof (inp
->inp_wstat_store
)) {
601 panic("%s: insufficient space to align inp_wstat", __func__
);
605 /* make sure inp_Wstat is always 64-bit aligned */
606 inp
->inp_Wstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_Wstat_store
,
608 if (((uintptr_t)inp
->inp_Wstat
- (uintptr_t)inp
->inp_Wstat_store
) +
609 sizeof (*inp
->inp_Wstat
) > sizeof (inp
->inp_Wstat_store
)) {
610 panic("%s: insufficient space to align inp_Wstat", __func__
);
614 so
->so_pcb
= (caddr_t
)inp
;
616 if (so
->so_proto
->pr_flags
& PR_PCBLOCK
) {
617 lck_mtx_init(&inp
->inpcb_mtx
, pcbinfo
->ipi_lock_grp
,
618 pcbinfo
->ipi_lock_attr
);
622 if (SOCK_DOM(so
) == PF_INET6
&& !ip6_mapped_addr_on
)
623 inp
->inp_flags
|= IN6P_IPV6_V6ONLY
;
625 if (ip6_auto_flowlabel
)
626 inp
->inp_flags
|= IN6P_AUTOFLOWLABEL
;
628 if (intcoproc_unrestricted
)
629 inp
->inp_flags2
|= INP2_INTCOPROC_ALLOWED
;
631 (void) inp_update_policy(inp
);
633 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
634 inp
->inp_gencnt
= ++pcbinfo
->ipi_gencnt
;
635 LIST_INSERT_HEAD(pcbinfo
->ipi_listhead
, inp
, inp_list
);
636 pcbinfo
->ipi_count
++;
637 lck_rw_done(pcbinfo
->ipi_lock
);
642 * in_pcblookup_local_and_cleanup does everything
643 * in_pcblookup_local does but it checks for a socket
644 * that's going away. Since we know that the lock is
645 * held read+write when this funciton is called, we
646 * can safely dispose of this socket like the slow
647 * timer would usually do and return NULL. This is
651 in_pcblookup_local_and_cleanup(struct inpcbinfo
*pcbinfo
, struct in_addr laddr
,
652 u_int lport_arg
, int wild_okay
)
656 /* Perform normal lookup */
657 inp
= in_pcblookup_local(pcbinfo
, laddr
, lport_arg
, wild_okay
);
659 /* Check if we found a match but it's waiting to be disposed */
660 if (inp
!= NULL
&& inp
->inp_wantcnt
== WNT_STOPUSING
) {
661 struct socket
*so
= inp
->inp_socket
;
665 if (so
->so_usecount
== 0) {
666 if (inp
->inp_state
!= INPCB_STATE_DEAD
)
668 in_pcbdispose(inp
); /* will unlock & destroy */
671 socket_unlock(so
, 0);
679 in_pcb_conflict_post_msg(u_int16_t port
)
682 * Radar 5523020 send a kernel event notification if a
683 * non-participating socket tries to bind the port a socket
684 * who has set SOF_NOTIFYCONFLICT owns.
686 struct kev_msg ev_msg
;
687 struct kev_in_portinuse in_portinuse
;
689 bzero(&in_portinuse
, sizeof (struct kev_in_portinuse
));
690 bzero(&ev_msg
, sizeof (struct kev_msg
));
691 in_portinuse
.port
= ntohs(port
); /* port in host order */
692 in_portinuse
.req_pid
= proc_selfpid();
693 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
694 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
695 ev_msg
.kev_subclass
= KEV_INET_SUBCLASS
;
696 ev_msg
.event_code
= KEV_INET_PORTINUSE
;
697 ev_msg
.dv
[0].data_ptr
= &in_portinuse
;
698 ev_msg
.dv
[0].data_length
= sizeof (struct kev_in_portinuse
);
699 ev_msg
.dv
[1].data_length
= 0;
700 dlil_post_complete_msg(NULL
, &ev_msg
);
704 * Bind an INPCB to an address and/or port. This routine should not alter
705 * the caller-supplied local address "nam".
708 * EADDRNOTAVAIL Address not available.
709 * EINVAL Invalid argument
710 * EAFNOSUPPORT Address family not supported [notdef]
711 * EACCES Permission denied
712 * EADDRINUSE Address in use
713 * EAGAIN Resource unavailable, try again
714 * priv_check_cred:EPERM Operation not permitted
717 in_pcbbind(struct inpcb
*inp
, struct sockaddr
*nam
, struct proc
*p
)
719 struct socket
*so
= inp
->inp_socket
;
720 unsigned short *lastport
;
721 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
722 u_short lport
= 0, rand_port
= 0;
723 int wild
= 0, reuseport
= (so
->so_options
& SO_REUSEPORT
);
724 int error
, randomport
, conflict
= 0;
725 boolean_t anonport
= FALSE
;
727 struct in_addr laddr
;
728 struct ifnet
*outif
= NULL
;
730 if (TAILQ_EMPTY(&in_ifaddrhead
)) /* XXX broken! */
731 return (EADDRNOTAVAIL
);
732 if (!(so
->so_options
& (SO_REUSEADDR
|SO_REUSEPORT
)))
735 bzero(&laddr
, sizeof(laddr
));
737 socket_unlock(so
, 0); /* keep reference on socket */
738 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
739 if (inp
->inp_lport
!= 0 || inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
740 /* another thread completed the bind */
741 lck_rw_done(pcbinfo
->ipi_lock
);
747 if (nam
->sa_len
!= sizeof (struct sockaddr_in
)) {
748 lck_rw_done(pcbinfo
->ipi_lock
);
754 * We should check the family, but old programs
755 * incorrectly fail to initialize it.
757 if (nam
->sa_family
!= AF_INET
) {
758 lck_rw_done(pcbinfo
->ipi_lock
);
760 return (EAFNOSUPPORT
);
763 lport
= SIN(nam
)->sin_port
;
765 if (IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
))) {
767 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
768 * allow complete duplication of binding if
769 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
770 * and a multicast address is bound on both
771 * new and duplicated sockets.
773 if (so
->so_options
& SO_REUSEADDR
)
774 reuseport
= SO_REUSEADDR
|SO_REUSEPORT
;
775 } else if (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
) {
776 struct sockaddr_in sin
;
779 /* Sanitized for interface address searches */
780 bzero(&sin
, sizeof (sin
));
781 sin
.sin_family
= AF_INET
;
782 sin
.sin_len
= sizeof (struct sockaddr_in
);
783 sin
.sin_addr
.s_addr
= SIN(nam
)->sin_addr
.s_addr
;
785 ifa
= ifa_ifwithaddr(SA(&sin
));
787 lck_rw_done(pcbinfo
->ipi_lock
);
789 return (EADDRNOTAVAIL
);
792 * Opportunistically determine the outbound
793 * interface that may be used; this may not
794 * hold true if we end up using a route
795 * going over a different interface, e.g.
796 * when sending to a local address. This
797 * will get updated again after sending.
800 outif
= ifa
->ifa_ifp
;
810 if (ntohs(lport
) < IPPORT_RESERVED
&&
811 SIN(nam
)->sin_addr
.s_addr
!= 0) {
812 cred
= kauth_cred_proc_ref(p
);
813 error
= priv_check_cred(cred
,
814 PRIV_NETINET_RESERVEDPORT
, 0);
815 kauth_cred_unref(&cred
);
817 lck_rw_done(pcbinfo
->ipi_lock
);
822 #endif /* !CONFIG_EMBEDDED */
823 if (!IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
)) &&
824 (u
= kauth_cred_getuid(so
->so_cred
)) != 0 &&
825 (t
= in_pcblookup_local_and_cleanup(
826 inp
->inp_pcbinfo
, SIN(nam
)->sin_addr
, lport
,
827 INPLOOKUP_WILDCARD
)) != NULL
&&
828 (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
829 t
->inp_laddr
.s_addr
!= INADDR_ANY
||
830 !(t
->inp_socket
->so_options
& SO_REUSEPORT
)) &&
831 (u
!= kauth_cred_getuid(t
->inp_socket
->so_cred
)) &&
832 !(t
->inp_socket
->so_flags
& SOF_REUSESHAREUID
) &&
833 (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
834 t
->inp_laddr
.s_addr
!= INADDR_ANY
)) {
835 if ((t
->inp_socket
->so_flags
&
836 SOF_NOTIFYCONFLICT
) &&
837 !(so
->so_flags
& SOF_NOTIFYCONFLICT
))
840 lck_rw_done(pcbinfo
->ipi_lock
);
843 in_pcb_conflict_post_msg(lport
);
848 t
= in_pcblookup_local_and_cleanup(pcbinfo
,
849 SIN(nam
)->sin_addr
, lport
, wild
);
851 (reuseport
& t
->inp_socket
->so_options
) == 0) {
853 if (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
854 t
->inp_laddr
.s_addr
!= INADDR_ANY
||
855 SOCK_DOM(so
) != PF_INET6
||
856 SOCK_DOM(t
->inp_socket
) != PF_INET6
)
860 if ((t
->inp_socket
->so_flags
&
861 SOF_NOTIFYCONFLICT
) &&
862 !(so
->so_flags
& SOF_NOTIFYCONFLICT
))
865 lck_rw_done(pcbinfo
->ipi_lock
);
868 in_pcb_conflict_post_msg(lport
);
874 laddr
= SIN(nam
)->sin_addr
;
881 randomport
= (so
->so_flags
& SOF_BINDRANDOMPORT
) ||
882 (so
->so_type
== SOCK_STREAM
? tcp_use_randomport
:
886 * Even though this looks similar to the code in
887 * in6_pcbsetport, the v6 vs v4 checks are different.
890 if (inp
->inp_flags
& INP_HIGHPORT
) {
891 first
= ipport_hifirstauto
; /* sysctl */
892 last
= ipport_hilastauto
;
893 lastport
= &pcbinfo
->ipi_lasthi
;
894 } else if (inp
->inp_flags
& INP_LOWPORT
) {
895 cred
= kauth_cred_proc_ref(p
);
896 error
= priv_check_cred(cred
,
897 PRIV_NETINET_RESERVEDPORT
, 0);
898 kauth_cred_unref(&cred
);
900 lck_rw_done(pcbinfo
->ipi_lock
);
904 first
= ipport_lowfirstauto
; /* 1023 */
905 last
= ipport_lowlastauto
; /* 600 */
906 lastport
= &pcbinfo
->ipi_lastlow
;
908 first
= ipport_firstauto
; /* sysctl */
909 last
= ipport_lastauto
;
910 lastport
= &pcbinfo
->ipi_lastport
;
912 /* No point in randomizing if only one port is available */
917 * Simple check to ensure all ports are not used up causing
920 * We split the two cases (up and down) so that the direction
921 * is not being tested on each round of the loop.
924 struct in_addr lookup_addr
;
930 read_frandom(&rand_port
, sizeof (rand_port
));
932 first
- (rand_port
% (first
- last
));
934 count
= first
- last
;
936 lookup_addr
= (laddr
.s_addr
!= INADDR_ANY
) ? laddr
:
941 if (count
-- < 0) { /* completely used? */
942 lck_rw_done(pcbinfo
->ipi_lock
);
944 return (EADDRNOTAVAIL
);
947 if (*lastport
> first
|| *lastport
< last
)
949 lport
= htons(*lastport
);
951 found
= in_pcblookup_local_and_cleanup(pcbinfo
,
952 lookup_addr
, lport
, wild
) == NULL
;
955 struct in_addr lookup_addr
;
961 read_frandom(&rand_port
, sizeof (rand_port
));
963 first
+ (rand_port
% (first
- last
));
965 count
= last
- first
;
967 lookup_addr
= (laddr
.s_addr
!= INADDR_ANY
) ? laddr
:
972 if (count
-- < 0) { /* completely used? */
973 lck_rw_done(pcbinfo
->ipi_lock
);
975 return (EADDRNOTAVAIL
);
978 if (*lastport
< first
|| *lastport
> last
)
980 lport
= htons(*lastport
);
982 found
= in_pcblookup_local_and_cleanup(pcbinfo
,
983 lookup_addr
, lport
, wild
) == NULL
;
990 * We unlocked socket's protocol lock for a long time.
991 * The socket might have been dropped/defuncted.
992 * Checking if world has changed since.
994 if (inp
->inp_state
== INPCB_STATE_DEAD
) {
995 lck_rw_done(pcbinfo
->ipi_lock
);
996 return (ECONNABORTED
);
999 if (inp
->inp_lport
!= 0 || inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
1000 lck_rw_done(pcbinfo
->ipi_lock
);
1004 if (laddr
.s_addr
!= INADDR_ANY
) {
1005 inp
->inp_laddr
= laddr
;
1006 inp
->inp_last_outifp
= outif
;
1008 inp
->inp_lport
= lport
;
1010 inp
->inp_flags
|= INP_ANONPORT
;
1012 if (in_pcbinshash(inp
, 1) != 0) {
1013 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
1014 inp
->inp_last_outifp
= NULL
;
1018 inp
->inp_flags
&= ~INP_ANONPORT
;
1019 lck_rw_done(pcbinfo
->ipi_lock
);
1022 lck_rw_done(pcbinfo
->ipi_lock
);
1023 sflt_notify(so
, sock_evt_bound
, NULL
);
1027 #define APN_FALLBACK_IP_FILTER(a) \
1028 (IN_LINKLOCAL(ntohl((a)->sin_addr.s_addr)) || \
1029 IN_LOOPBACK(ntohl((a)->sin_addr.s_addr)) || \
1030 IN_ZERONET(ntohl((a)->sin_addr.s_addr)) || \
1031 IN_MULTICAST(ntohl((a)->sin_addr.s_addr)) || \
1032 IN_PRIVATE(ntohl((a)->sin_addr.s_addr)))
1034 #define APN_FALLBACK_NOTIF_INTERVAL 2 /* Magic Number */
1035 static uint64_t last_apn_fallback
= 0;
1038 apn_fallback_required (proc_t proc
, struct socket
*so
, struct sockaddr_in
*p_dstv4
)
1041 struct sockaddr_storage lookup_default_addr
;
1042 struct rtentry
*rt
= NULL
;
1044 VERIFY(proc
!= NULL
);
1046 if (apn_fallbk_enabled
== FALSE
)
1049 if (proc
== kernproc
)
1052 if (so
&& (so
->so_options
& SO_NOAPNFALLBK
))
1055 timenow
= net_uptime();
1056 if ((timenow
- last_apn_fallback
) < APN_FALLBACK_NOTIF_INTERVAL
) {
1057 apn_fallbk_log((LOG_INFO
, "APN fallback notification throttled.\n"));
1061 if (p_dstv4
&& APN_FALLBACK_IP_FILTER(p_dstv4
))
1064 /* Check if we have unscoped IPv6 default route through cellular */
1065 bzero(&lookup_default_addr
, sizeof(lookup_default_addr
));
1066 lookup_default_addr
.ss_family
= AF_INET6
;
1067 lookup_default_addr
.ss_len
= sizeof(struct sockaddr_in6
);
1069 rt
= rtalloc1((struct sockaddr
*)&lookup_default_addr
, 0, 0);
1071 apn_fallbk_log((LOG_INFO
, "APN fallback notification could not find "
1072 "unscoped default IPv6 route.\n"));
1076 if (!IFNET_IS_CELLULAR(rt
->rt_ifp
)) {
1078 apn_fallbk_log((LOG_INFO
, "APN fallback notification could not find "
1079 "unscoped default IPv6 route through cellular interface.\n"));
1084 * We have a default IPv6 route, ensure that
1085 * we do not have IPv4 default route before triggering
1091 bzero(&lookup_default_addr
, sizeof(lookup_default_addr
));
1092 lookup_default_addr
.ss_family
= AF_INET
;
1093 lookup_default_addr
.ss_len
= sizeof(struct sockaddr_in
);
1095 rt
= rtalloc1((struct sockaddr
*)&lookup_default_addr
, 0, 0);
1100 apn_fallbk_log((LOG_INFO
, "APN fallback notification found unscoped "
1101 "IPv4 default route!\n"));
1107 * We disable APN fallback if the binary is not a third-party app.
1108 * Note that platform daemons use their process name as a
1109 * bundle ID so we filter out bundle IDs without dots.
1111 const char *bundle_id
= cs_identity_get(proc
);
1112 if (bundle_id
== NULL
||
1113 bundle_id
[0] == '\0' ||
1114 strchr(bundle_id
, '.') == NULL
||
1115 strncmp(bundle_id
, "com.apple.", sizeof("com.apple.") - 1) == 0) {
1116 apn_fallbk_log((LOG_INFO
, "Abort: APN fallback notification found first-"
1117 "party bundle ID \"%s\"!\n", (bundle_id
? bundle_id
: "NULL")));
1124 * The Apple App Store IPv6 requirement started on
1125 * June 1st, 2016 at 12:00:00 AM PDT.
1126 * We disable APN fallback if the binary is more recent than that.
1127 * We check both atime and birthtime since birthtime is not always supported.
1129 static const long ipv6_start_date
= 1464764400L;
1130 vfs_context_t context
;
1134 bzero(&sb
, sizeof(struct stat64
));
1135 context
= vfs_context_create(NULL
);
1136 vn_stat_error
= vn_stat(proc
->p_textvp
, &sb
, NULL
, 1, context
);
1137 (void)vfs_context_rele(context
);
1139 if (vn_stat_error
!= 0 ||
1140 sb
.st_atimespec
.tv_sec
>= ipv6_start_date
||
1141 sb
.st_birthtimespec
.tv_sec
>= ipv6_start_date
) {
1142 apn_fallbk_log((LOG_INFO
, "Abort: APN fallback notification found binary "
1143 "too recent! (err %d atime %ld mtime %ld ctime %ld birthtime %ld)\n",
1144 vn_stat_error
, sb
.st_atimespec
.tv_sec
, sb
.st_mtimespec
.tv_sec
,
1145 sb
.st_ctimespec
.tv_sec
, sb
.st_birthtimespec
.tv_sec
));
1153 apn_fallback_trigger(proc_t proc
, struct socket
*so
)
1156 struct kev_msg ev_msg
;
1157 struct kev_netevent_apnfallbk_data apnfallbk_data
;
1159 last_apn_fallback
= net_uptime();
1160 pid
= proc_pid(proc
);
1161 uuid_t application_uuid
;
1162 uuid_clear(application_uuid
);
1163 proc_getexecutableuuid(proc
, application_uuid
,
1164 sizeof(application_uuid
));
1166 bzero(&ev_msg
, sizeof (struct kev_msg
));
1167 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
1168 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
1169 ev_msg
.kev_subclass
= KEV_NETEVENT_SUBCLASS
;
1170 ev_msg
.event_code
= KEV_NETEVENT_APNFALLBACK
;
1172 bzero(&apnfallbk_data
, sizeof(apnfallbk_data
));
1174 if (so
->so_flags
& SOF_DELEGATED
) {
1175 apnfallbk_data
.epid
= so
->e_pid
;
1176 uuid_copy(apnfallbk_data
.euuid
, so
->e_uuid
);
1178 apnfallbk_data
.epid
= so
->last_pid
;
1179 uuid_copy(apnfallbk_data
.euuid
, so
->last_uuid
);
1182 ev_msg
.dv
[0].data_ptr
= &apnfallbk_data
;
1183 ev_msg
.dv
[0].data_length
= sizeof(apnfallbk_data
);
1184 kev_post_msg(&ev_msg
);
1185 apn_fallbk_log((LOG_INFO
, "APN fallback notification issued.\n"));
1189 * Transform old in_pcbconnect() into an inner subroutine for new
1190 * in_pcbconnect(); do some validity-checking on the remote address
1191 * (in "nam") and then determine local host address (i.e., which
1192 * interface) to use to access that remote host.
1194 * This routine may alter the caller-supplied remote address "nam".
1196 * The caller may override the bound-to-interface setting of the socket
1197 * by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
1199 * This routine might return an ifp with a reference held if the caller
1200 * provides a non-NULL outif, even in the error case. The caller is
1201 * responsible for releasing its reference.
1203 * Returns: 0 Success
1204 * EINVAL Invalid argument
1205 * EAFNOSUPPORT Address family not supported
1206 * EADDRNOTAVAIL Address not available
1209 in_pcbladdr(struct inpcb
*inp
, struct sockaddr
*nam
, struct in_addr
*laddr
,
1210 unsigned int ifscope
, struct ifnet
**outif
, int raw
)
1212 struct route
*ro
= &inp
->inp_route
;
1213 struct in_ifaddr
*ia
= NULL
;
1214 struct sockaddr_in sin
;
1216 boolean_t restricted
= FALSE
;
1220 if (nam
->sa_len
!= sizeof (struct sockaddr_in
))
1222 if (SIN(nam
)->sin_family
!= AF_INET
)
1223 return (EAFNOSUPPORT
);
1224 if (raw
== 0 && SIN(nam
)->sin_port
== 0)
1225 return (EADDRNOTAVAIL
);
1228 * If the destination address is INADDR_ANY,
1229 * use the primary local address.
1230 * If the supplied address is INADDR_BROADCAST,
1231 * and the primary interface supports broadcast,
1232 * choose the broadcast address for that interface.
1234 if (raw
== 0 && (SIN(nam
)->sin_addr
.s_addr
== INADDR_ANY
||
1235 SIN(nam
)->sin_addr
.s_addr
== (u_int32_t
)INADDR_BROADCAST
)) {
1236 lck_rw_lock_shared(in_ifaddr_rwlock
);
1237 if (!TAILQ_EMPTY(&in_ifaddrhead
)) {
1238 ia
= TAILQ_FIRST(&in_ifaddrhead
);
1239 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1240 if (SIN(nam
)->sin_addr
.s_addr
== INADDR_ANY
) {
1241 SIN(nam
)->sin_addr
= IA_SIN(ia
)->sin_addr
;
1242 } else if (ia
->ia_ifp
->if_flags
& IFF_BROADCAST
) {
1243 SIN(nam
)->sin_addr
=
1244 SIN(&ia
->ia_broadaddr
)->sin_addr
;
1246 IFA_UNLOCK(&ia
->ia_ifa
);
1249 lck_rw_done(in_ifaddr_rwlock
);
1252 * Otherwise, if the socket has already bound the source, just use it.
1254 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
1256 *laddr
= inp
->inp_laddr
;
1261 * If the ifscope is specified by the caller (e.g. IP_PKTINFO)
1262 * then it overrides the sticky ifscope set for the socket.
1264 if (ifscope
== IFSCOPE_NONE
&& (inp
->inp_flags
& INP_BOUND_IF
))
1265 ifscope
= inp
->inp_boundifp
->if_index
;
1268 * If route is known or can be allocated now,
1269 * our src addr is taken from the i/f, else punt.
1270 * Note that we should check the address family of the cached
1271 * destination, in case of sharing the cache with IPv6.
1273 if (ro
->ro_rt
!= NULL
)
1274 RT_LOCK_SPIN(ro
->ro_rt
);
1275 if (ROUTE_UNUSABLE(ro
) || ro
->ro_dst
.sa_family
!= AF_INET
||
1276 SIN(&ro
->ro_dst
)->sin_addr
.s_addr
!= SIN(nam
)->sin_addr
.s_addr
||
1277 (inp
->inp_socket
->so_options
& SO_DONTROUTE
)) {
1278 if (ro
->ro_rt
!= NULL
)
1279 RT_UNLOCK(ro
->ro_rt
);
1282 if (!(inp
->inp_socket
->so_options
& SO_DONTROUTE
) &&
1283 (ro
->ro_rt
== NULL
|| ro
->ro_rt
->rt_ifp
== NULL
)) {
1284 if (ro
->ro_rt
!= NULL
)
1285 RT_UNLOCK(ro
->ro_rt
);
1287 /* No route yet, so try to acquire one */
1288 bzero(&ro
->ro_dst
, sizeof (struct sockaddr_in
));
1289 ro
->ro_dst
.sa_family
= AF_INET
;
1290 ro
->ro_dst
.sa_len
= sizeof (struct sockaddr_in
);
1291 SIN(&ro
->ro_dst
)->sin_addr
= SIN(nam
)->sin_addr
;
1292 rtalloc_scoped(ro
, ifscope
);
1293 if (ro
->ro_rt
!= NULL
)
1294 RT_LOCK_SPIN(ro
->ro_rt
);
1296 /* Sanitized local copy for interface address searches */
1297 bzero(&sin
, sizeof (sin
));
1298 sin
.sin_family
= AF_INET
;
1299 sin
.sin_len
= sizeof (struct sockaddr_in
);
1300 sin
.sin_addr
.s_addr
= SIN(nam
)->sin_addr
.s_addr
;
1302 * If we did not find (or use) a route, assume dest is reachable
1303 * on a directly connected network and try to find a corresponding
1304 * interface to take the source address from.
1306 if (ro
->ro_rt
== NULL
) {
1307 proc_t proc
= current_proc();
1310 ia
= ifatoia(ifa_ifwithdstaddr(SA(&sin
)));
1312 ia
= ifatoia(ifa_ifwithnet_scoped(SA(&sin
), ifscope
));
1313 error
= ((ia
== NULL
) ? ENETUNREACH
: 0);
1315 if (apn_fallback_required(proc
, inp
->inp_socket
,
1317 apn_fallback_trigger(proc
, inp
->inp_socket
);
1321 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
1323 * If the outgoing interface on the route found is not
1324 * a loopback interface, use the address from that interface.
1326 if (!(ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)) {
1329 * If the route points to a cellular interface and the
1330 * caller forbids our using interfaces of such type,
1331 * pretend that there is no route.
1332 * Apply the same logic for expensive interfaces.
1334 if (inp_restricted_send(inp
, ro
->ro_rt
->rt_ifp
)) {
1335 RT_UNLOCK(ro
->ro_rt
);
1337 error
= EHOSTUNREACH
;
1340 /* Become a regular mutex */
1341 RT_CONVERT_LOCK(ro
->ro_rt
);
1342 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1343 IFA_ADDREF(&ia
->ia_ifa
);
1346 * Mark the control block for notification of
1347 * a possible flow that might undergo clat46
1350 * We defer the decision to a later point when
1351 * inpcb is being disposed off.
1352 * The reason is that we only want to send notification
1353 * if the flow was ever used to send data.
1355 if (IS_INTF_CLAT46(ro
->ro_rt
->rt_ifp
))
1356 inp
->inp_flags2
|= INP2_CLAT46_FLOW
;
1358 RT_UNLOCK(ro
->ro_rt
);
1363 VERIFY(ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
);
1364 RT_UNLOCK(ro
->ro_rt
);
1366 * The outgoing interface is marked with 'loopback net', so a route
1367 * to ourselves is here.
1368 * Try to find the interface of the destination address and then
1369 * take the address from there. That interface is not necessarily
1370 * a loopback interface.
1373 ia
= ifatoia(ifa_ifwithdstaddr(SA(&sin
)));
1375 ia
= ifatoia(ifa_ifwithaddr_scoped(SA(&sin
), ifscope
));
1377 ia
= ifatoia(ifa_ifwithnet_scoped(SA(&sin
), ifscope
));
1380 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1382 IFA_ADDREF(&ia
->ia_ifa
);
1383 RT_UNLOCK(ro
->ro_rt
);
1385 error
= ((ia
== NULL
) ? ENETUNREACH
: 0);
1389 * If the destination address is multicast and an outgoing
1390 * interface has been set as a multicast option, use the
1391 * address of that interface as our source address.
1393 if (IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
)) &&
1394 inp
->inp_moptions
!= NULL
) {
1395 struct ip_moptions
*imo
;
1398 imo
= inp
->inp_moptions
;
1400 if (imo
->imo_multicast_ifp
!= NULL
&& (ia
== NULL
||
1401 ia
->ia_ifp
!= imo
->imo_multicast_ifp
)) {
1402 ifp
= imo
->imo_multicast_ifp
;
1404 IFA_REMREF(&ia
->ia_ifa
);
1405 lck_rw_lock_shared(in_ifaddr_rwlock
);
1406 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
1407 if (ia
->ia_ifp
== ifp
)
1411 IFA_ADDREF(&ia
->ia_ifa
);
1412 lck_rw_done(in_ifaddr_rwlock
);
1414 error
= EADDRNOTAVAIL
;
1421 * Don't do pcblookup call here; return interface in laddr
1422 * and exit to caller, that will do the lookup.
1426 * If the source address belongs to a cellular interface
1427 * and the socket forbids our using interfaces of such
1428 * type, pretend that there is no source address.
1429 * Apply the same logic for expensive interfaces.
1431 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1432 if (inp_restricted_send(inp
, ia
->ia_ifa
.ifa_ifp
)) {
1433 IFA_UNLOCK(&ia
->ia_ifa
);
1434 error
= EHOSTUNREACH
;
1436 } else if (error
== 0) {
1437 *laddr
= ia
->ia_addr
.sin_addr
;
1438 if (outif
!= NULL
) {
1441 if (ro
->ro_rt
!= NULL
)
1442 ifp
= ro
->ro_rt
->rt_ifp
;
1446 VERIFY(ifp
!= NULL
);
1447 IFA_CONVERT_LOCK(&ia
->ia_ifa
);
1448 ifnet_reference(ifp
); /* for caller */
1450 ifnet_release(*outif
);
1453 IFA_UNLOCK(&ia
->ia_ifa
);
1455 IFA_UNLOCK(&ia
->ia_ifa
);
1457 IFA_REMREF(&ia
->ia_ifa
);
1461 if (restricted
&& error
== EHOSTUNREACH
) {
1462 soevent(inp
->inp_socket
, (SO_FILT_HINT_LOCKED
|
1463 SO_FILT_HINT_IFDENIED
));
1471 * Connect from a socket to a specified address.
1472 * Both address and port must be specified in argument sin.
1473 * If don't have a local address for this socket yet,
1476 * The caller may override the bound-to-interface setting of the socket
1477 * by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
1480 in_pcbconnect(struct inpcb
*inp
, struct sockaddr
*nam
, struct proc
*p
,
1481 unsigned int ifscope
, struct ifnet
**outif
)
1483 struct in_addr laddr
;
1484 struct sockaddr_in
*sin
= (struct sockaddr_in
*)(void *)nam
;
1487 struct socket
*so
= inp
->inp_socket
;
1491 so
->so_state_change_cnt
++;
1495 * Call inner routine, to assign local interface address.
1497 if ((error
= in_pcbladdr(inp
, nam
, &laddr
, ifscope
, outif
, 0)) != 0)
1500 socket_unlock(so
, 0);
1501 pcb
= in_pcblookup_hash(inp
->inp_pcbinfo
, sin
->sin_addr
, sin
->sin_port
,
1502 inp
->inp_laddr
.s_addr
? inp
->inp_laddr
: laddr
,
1503 inp
->inp_lport
, 0, NULL
);
1507 * Check if the socket is still in a valid state. When we unlock this
1508 * embryonic socket, it can get aborted if another thread is closing
1509 * the listener (radar 7947600).
1511 if ((so
->so_flags
& SOF_ABORTED
) != 0)
1512 return (ECONNREFUSED
);
1515 in_pcb_checkstate(pcb
, WNT_RELEASE
, pcb
== inp
? 1 : 0);
1516 return (EADDRINUSE
);
1518 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
1519 if (inp
->inp_lport
== 0) {
1520 error
= in_pcbbind(inp
, NULL
, p
);
1524 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1526 * Lock inversion issue, mostly with udp
1527 * multicast packets.
1529 socket_unlock(so
, 0);
1530 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1533 inp
->inp_laddr
= laddr
;
1534 /* no reference needed */
1535 inp
->inp_last_outifp
= (outif
!= NULL
) ? *outif
: NULL
;
1536 inp
->inp_flags
|= INP_INADDR_ANY
;
1539 * Usage of IP_PKTINFO, without local port already
1540 * speficified will cause kernel to panic,
1541 * see rdar://problem/18508185.
1542 * For now returning error to avoid a kernel panic
1543 * This routines can be refactored and handle this better
1546 if (inp
->inp_lport
== 0)
1548 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1550 * Lock inversion issue, mostly with udp
1551 * multicast packets.
1553 socket_unlock(so
, 0);
1554 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1558 inp
->inp_faddr
= sin
->sin_addr
;
1559 inp
->inp_fport
= sin
->sin_port
;
1560 if (nstat_collect
&& SOCK_PROTO(so
) == IPPROTO_UDP
)
1561 nstat_pcb_invalidate_cache(inp
);
1563 lck_rw_done(inp
->inp_pcbinfo
->ipi_lock
);
1568 in_pcbdisconnect(struct inpcb
*inp
)
1570 struct socket
*so
= inp
->inp_socket
;
1572 if (nstat_collect
&& SOCK_PROTO(so
) == IPPROTO_UDP
)
1573 nstat_pcb_cache(inp
);
1575 inp
->inp_faddr
.s_addr
= INADDR_ANY
;
1580 so
->so_state_change_cnt
++;
1583 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1584 /* lock inversion issue, mostly with udp multicast packets */
1585 socket_unlock(so
, 0);
1586 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1591 lck_rw_done(inp
->inp_pcbinfo
->ipi_lock
);
1593 * A multipath subflow socket would have its SS_NOFDREF set by default,
1594 * so check for SOF_MP_SUBFLOW socket flag before detaching the PCB;
1595 * when the socket is closed for real, SOF_MP_SUBFLOW would be cleared.
1597 if (!(so
->so_flags
& SOF_MP_SUBFLOW
) && (so
->so_state
& SS_NOFDREF
))
1602 in_pcbdetach(struct inpcb
*inp
)
1604 struct socket
*so
= inp
->inp_socket
;
1606 if (so
->so_pcb
== NULL
) {
1607 /* PCB has been disposed */
1608 panic("%s: inp=%p so=%p proto=%d so_pcb is null!\n", __func__
,
1609 inp
, so
, SOCK_PROTO(so
));
1614 if (inp
->inp_sp
!= NULL
) {
1615 (void) ipsec4_delete_pcbpolicy(inp
);
1619 if (inp
->inp_stat
!= NULL
&& SOCK_PROTO(so
) == IPPROTO_UDP
) {
1620 if (inp
->inp_stat
->rxpackets
== 0 && inp
->inp_stat
->txpackets
== 0) {
1621 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_no_data
);
1626 * Let NetworkStatistics know this PCB is going away
1627 * before we detach it.
1629 if (nstat_collect
&&
1630 (SOCK_PROTO(so
) == IPPROTO_TCP
|| SOCK_PROTO(so
) == IPPROTO_UDP
))
1631 nstat_pcb_detach(inp
);
1633 /* Free memory buffer held for generating keep alives */
1634 if (inp
->inp_keepalive_data
!= NULL
) {
1635 FREE(inp
->inp_keepalive_data
, M_TEMP
);
1636 inp
->inp_keepalive_data
= NULL
;
1639 /* mark socket state as dead */
1640 if (in_pcb_checkstate(inp
, WNT_STOPUSING
, 1) != WNT_STOPUSING
) {
1641 panic("%s: so=%p proto=%d couldn't set to STOPUSING\n",
1642 __func__
, so
, SOCK_PROTO(so
));
1646 if (!(so
->so_flags
& SOF_PCBCLEARING
)) {
1647 struct ip_moptions
*imo
;
1650 if (inp
->inp_options
!= NULL
) {
1651 (void) m_free(inp
->inp_options
);
1652 inp
->inp_options
= NULL
;
1654 ROUTE_RELEASE(&inp
->inp_route
);
1655 imo
= inp
->inp_moptions
;
1656 inp
->inp_moptions
= NULL
;
1657 sofreelastref(so
, 0);
1658 inp
->inp_state
= INPCB_STATE_DEAD
;
1661 * Enqueue an event to send kernel event notification
1662 * if the flow has to CLAT46 for data packets
1664 if (inp
->inp_flags2
& INP2_CLAT46_FLOW
) {
1666 * If there has been any exchange of data bytes
1668 * Schedule a notification to report that flow is
1669 * using client side translation.
1671 if (inp
->inp_stat
!= NULL
&&
1672 (inp
->inp_stat
->txbytes
!= 0 ||
1673 inp
->inp_stat
->rxbytes
!=0)) {
1674 if (so
->so_flags
& SOF_DELEGATED
) {
1675 in6_clat46_event_enqueue_nwk_wq_entry(
1676 IN6_CLAT46_EVENT_V4_FLOW
,
1680 in6_clat46_event_enqueue_nwk_wq_entry(
1681 IN6_CLAT46_EVENT_V4_FLOW
,
1688 /* makes sure we're not called twice from so_close */
1689 so
->so_flags
|= SOF_PCBCLEARING
;
1691 inpcb_gc_sched(inp
->inp_pcbinfo
, INPCB_TIMER_FAST
);
1694 * See inp_join_group() for why we need to unlock
1697 socket_unlock(so
, 0);
1706 in_pcbdispose(struct inpcb
*inp
)
1708 struct socket
*so
= inp
->inp_socket
;
1709 struct inpcbinfo
*ipi
= inp
->inp_pcbinfo
;
1711 if (so
!= NULL
&& so
->so_usecount
!= 0) {
1712 panic("%s: so %p [%d,%d] usecount %d lockhistory %s\n",
1713 __func__
, so
, SOCK_DOM(so
), SOCK_TYPE(so
), so
->so_usecount
,
1714 solockhistory_nr(so
));
1716 } else if (inp
->inp_wantcnt
!= WNT_STOPUSING
) {
1718 panic_plain("%s: inp %p invalid wantcnt %d, so %p "
1719 "[%d,%d] usecount %d retaincnt %d state 0x%x "
1720 "flags 0x%x lockhistory %s\n", __func__
, inp
,
1721 inp
->inp_wantcnt
, so
, SOCK_DOM(so
), SOCK_TYPE(so
),
1722 so
->so_usecount
, so
->so_retaincnt
, so
->so_state
,
1723 so
->so_flags
, solockhistory_nr(so
));
1726 panic("%s: inp %p invalid wantcnt %d no socket\n",
1727 __func__
, inp
, inp
->inp_wantcnt
);
1732 LCK_RW_ASSERT(ipi
->ipi_lock
, LCK_RW_ASSERT_EXCLUSIVE
);
1734 inp
->inp_gencnt
= ++ipi
->ipi_gencnt
;
1735 /* access ipi in in_pcbremlists */
1736 in_pcbremlists(inp
);
1739 if (so
->so_proto
->pr_flags
& PR_PCBLOCK
) {
1740 sofreelastref(so
, 0);
1741 if (so
->so_rcv
.sb_cc
> 0 || so
->so_snd
.sb_cc
> 0) {
1743 * selthreadclear() already called
1744 * during sofreelastref() above.
1746 sbrelease(&so
->so_rcv
);
1747 sbrelease(&so
->so_snd
);
1749 if (so
->so_head
!= NULL
) {
1750 panic("%s: so=%p head still exist\n",
1754 lck_mtx_unlock(&inp
->inpcb_mtx
);
1757 necp_inpcb_remove_cb(inp
);
1760 lck_mtx_destroy(&inp
->inpcb_mtx
, ipi
->ipi_lock_grp
);
1762 /* makes sure we're not called twice from so_close */
1763 so
->so_flags
|= SOF_PCBCLEARING
;
1764 so
->so_saved_pcb
= (caddr_t
)inp
;
1766 inp
->inp_socket
= NULL
;
1768 mac_inpcb_label_destroy(inp
);
1769 #endif /* CONFIG_MACF_NET */
1771 necp_inpcb_dispose(inp
);
1774 * In case there a route cached after a detach (possible
1775 * in the tcp case), make sure that it is freed before
1776 * we deallocate the structure.
1778 ROUTE_RELEASE(&inp
->inp_route
);
1779 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0) {
1780 zfree(ipi
->ipi_zone
, inp
);
1787 * The calling convention of in_getsockaddr() and in_getpeeraddr() was
1788 * modified to match the pru_sockaddr() and pru_peeraddr() entry points
1789 * in struct pr_usrreqs, so that protocols can just reference then directly
1790 * without the need for a wrapper function.
1793 in_getsockaddr(struct socket
*so
, struct sockaddr
**nam
)
1796 struct sockaddr_in
*sin
;
1799 * Do the malloc first in case it blocks.
1801 MALLOC(sin
, struct sockaddr_in
*, sizeof (*sin
), M_SONAME
, M_WAITOK
);
1804 bzero(sin
, sizeof (*sin
));
1805 sin
->sin_family
= AF_INET
;
1806 sin
->sin_len
= sizeof (*sin
);
1808 if ((inp
= sotoinpcb(so
)) == NULL
) {
1809 FREE(sin
, M_SONAME
);
1812 sin
->sin_port
= inp
->inp_lport
;
1813 sin
->sin_addr
= inp
->inp_laddr
;
1815 *nam
= (struct sockaddr
*)sin
;
1820 in_getsockaddr_s(struct socket
*so
, struct sockaddr_in
*ss
)
1822 struct sockaddr_in
*sin
= ss
;
1826 bzero(ss
, sizeof (*ss
));
1828 sin
->sin_family
= AF_INET
;
1829 sin
->sin_len
= sizeof (*sin
);
1831 if ((inp
= sotoinpcb(so
)) == NULL
)
1834 sin
->sin_port
= inp
->inp_lport
;
1835 sin
->sin_addr
= inp
->inp_laddr
;
1840 in_getpeeraddr(struct socket
*so
, struct sockaddr
**nam
)
1843 struct sockaddr_in
*sin
;
1846 * Do the malloc first in case it blocks.
1848 MALLOC(sin
, struct sockaddr_in
*, sizeof (*sin
), M_SONAME
, M_WAITOK
);
1851 bzero((caddr_t
)sin
, sizeof (*sin
));
1852 sin
->sin_family
= AF_INET
;
1853 sin
->sin_len
= sizeof (*sin
);
1855 if ((inp
= sotoinpcb(so
)) == NULL
) {
1856 FREE(sin
, M_SONAME
);
1859 sin
->sin_port
= inp
->inp_fport
;
1860 sin
->sin_addr
= inp
->inp_faddr
;
1862 *nam
= (struct sockaddr
*)sin
;
1867 in_pcbnotifyall(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
1868 int errno
, void (*notify
)(struct inpcb
*, int))
1872 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
1874 LIST_FOREACH(inp
, pcbinfo
->ipi_listhead
, inp_list
) {
1876 if (!(inp
->inp_vflag
& INP_IPV4
))
1879 if (inp
->inp_faddr
.s_addr
!= faddr
.s_addr
||
1880 inp
->inp_socket
== NULL
)
1882 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
)
1884 socket_lock(inp
->inp_socket
, 1);
1885 (*notify
)(inp
, errno
);
1886 (void) in_pcb_checkstate(inp
, WNT_RELEASE
, 1);
1887 socket_unlock(inp
->inp_socket
, 1);
1889 lck_rw_done(pcbinfo
->ipi_lock
);
1893 * Check for alternatives when higher level complains
1894 * about service problems. For now, invalidate cached
1895 * routing information. If the route was created dynamically
1896 * (by a redirect), time to try a default gateway again.
1899 in_losing(struct inpcb
*inp
)
1901 boolean_t release
= FALSE
;
1904 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
1905 struct in_ifaddr
*ia
= NULL
;
1908 if (rt
->rt_flags
& RTF_DYNAMIC
) {
1910 * Prevent another thread from modifying rt_key,
1911 * rt_gateway via rt_setgate() after rt_lock is
1912 * dropped by marking the route as defunct.
1914 rt
->rt_flags
|= RTF_CONDEMNED
;
1916 (void) rtrequest(RTM_DELETE
, rt_key(rt
),
1917 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
1921 /* if the address is gone keep the old route in the pcb */
1922 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1923 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) != NULL
) {
1925 * Address is around; ditch the route. A new route
1926 * can be allocated the next time output is attempted.
1931 IFA_REMREF(&ia
->ia_ifa
);
1933 if (rt
== NULL
|| release
)
1934 ROUTE_RELEASE(&inp
->inp_route
);
1938 * After a routing change, flush old routing
1939 * and allocate a (hopefully) better one.
1942 in_rtchange(struct inpcb
*inp
, int errno
)
1944 #pragma unused(errno)
1945 boolean_t release
= FALSE
;
1948 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
1949 struct in_ifaddr
*ia
= NULL
;
1951 /* if address is gone, keep the old route */
1952 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1953 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) != NULL
) {
1955 * Address is around; ditch the route. A new route
1956 * can be allocated the next time output is attempted.
1961 IFA_REMREF(&ia
->ia_ifa
);
1963 if (rt
== NULL
|| release
)
1964 ROUTE_RELEASE(&inp
->inp_route
);
1968 * Lookup a PCB based on the local address and port.
1971 in_pcblookup_local(struct inpcbinfo
*pcbinfo
, struct in_addr laddr
,
1972 unsigned int lport_arg
, int wild_okay
)
1975 int matchwild
= 3, wildcard
;
1976 u_short lport
= lport_arg
;
1978 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1981 struct inpcbhead
*head
;
1983 * Look for an unconnected (wildcard foreign addr) PCB that
1984 * matches the local address and port we're looking for.
1986 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
1987 pcbinfo
->ipi_hashmask
)];
1988 LIST_FOREACH(inp
, head
, inp_hash
) {
1990 if (!(inp
->inp_vflag
& INP_IPV4
))
1993 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
1994 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
1995 inp
->inp_lport
== lport
) {
2005 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
2008 struct inpcbporthead
*porthash
;
2009 struct inpcbport
*phd
;
2010 struct inpcb
*match
= NULL
;
2012 * Best fit PCB lookup.
2014 * First see if this local port is in use by looking on the
2017 porthash
= &pcbinfo
->ipi_porthashbase
[INP_PCBPORTHASH(lport
,
2018 pcbinfo
->ipi_porthashmask
)];
2019 LIST_FOREACH(phd
, porthash
, phd_hash
) {
2020 if (phd
->phd_port
== lport
)
2025 * Port is in use by one or more PCBs. Look for best
2028 LIST_FOREACH(inp
, &phd
->phd_pcblist
, inp_portlist
) {
2031 if (!(inp
->inp_vflag
& INP_IPV4
))
2034 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
)
2036 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
2037 if (laddr
.s_addr
== INADDR_ANY
)
2039 else if (inp
->inp_laddr
.s_addr
!=
2043 if (laddr
.s_addr
!= INADDR_ANY
)
2046 if (wildcard
< matchwild
) {
2048 matchwild
= wildcard
;
2049 if (matchwild
== 0) {
2055 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_END
, match
,
2062 * Check if PCB exists in hash list.
2065 in_pcblookup_hash_exists(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
2066 u_int fport_arg
, struct in_addr laddr
, u_int lport_arg
, int wildcard
,
2067 uid_t
*uid
, gid_t
*gid
, struct ifnet
*ifp
)
2069 struct inpcbhead
*head
;
2071 u_short fport
= fport_arg
, lport
= lport_arg
;
2073 struct inpcb
*local_wild
= NULL
;
2075 struct inpcb
*local_wild_mapped
= NULL
;
2082 * We may have found the pcb in the last lookup - check this first.
2085 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
2088 * First look for an exact match.
2090 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(faddr
.s_addr
, lport
, fport
,
2091 pcbinfo
->ipi_hashmask
)];
2092 LIST_FOREACH(inp
, head
, inp_hash
) {
2094 if (!(inp
->inp_vflag
& INP_IPV4
))
2097 if (inp_restricted_recv(inp
, ifp
))
2100 if (inp
->inp_faddr
.s_addr
== faddr
.s_addr
&&
2101 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
2102 inp
->inp_fport
== fport
&&
2103 inp
->inp_lport
== lport
) {
2104 if ((found
= (inp
->inp_socket
!= NULL
))) {
2108 *uid
= kauth_cred_getuid(
2109 inp
->inp_socket
->so_cred
);
2110 *gid
= kauth_cred_getgid(
2111 inp
->inp_socket
->so_cred
);
2113 lck_rw_done(pcbinfo
->ipi_lock
);
2122 lck_rw_done(pcbinfo
->ipi_lock
);
2126 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
2127 pcbinfo
->ipi_hashmask
)];
2128 LIST_FOREACH(inp
, head
, inp_hash
) {
2130 if (!(inp
->inp_vflag
& INP_IPV4
))
2133 if (inp_restricted_recv(inp
, ifp
))
2136 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
2137 inp
->inp_lport
== lport
) {
2138 if (inp
->inp_laddr
.s_addr
== laddr
.s_addr
) {
2139 if ((found
= (inp
->inp_socket
!= NULL
))) {
2140 *uid
= kauth_cred_getuid(
2141 inp
->inp_socket
->so_cred
);
2142 *gid
= kauth_cred_getgid(
2143 inp
->inp_socket
->so_cred
);
2145 lck_rw_done(pcbinfo
->ipi_lock
);
2147 } else if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
2149 if (inp
->inp_socket
&&
2150 SOCK_CHECK_DOM(inp
->inp_socket
, PF_INET6
))
2151 local_wild_mapped
= inp
;
2158 if (local_wild
== NULL
) {
2160 if (local_wild_mapped
!= NULL
) {
2161 if ((found
= (local_wild_mapped
->inp_socket
!= NULL
))) {
2162 *uid
= kauth_cred_getuid(
2163 local_wild_mapped
->inp_socket
->so_cred
);
2164 *gid
= kauth_cred_getgid(
2165 local_wild_mapped
->inp_socket
->so_cred
);
2167 lck_rw_done(pcbinfo
->ipi_lock
);
2171 lck_rw_done(pcbinfo
->ipi_lock
);
2174 if ((found
= (local_wild
->inp_socket
!= NULL
))) {
2175 *uid
= kauth_cred_getuid(
2176 local_wild
->inp_socket
->so_cred
);
2177 *gid
= kauth_cred_getgid(
2178 local_wild
->inp_socket
->so_cred
);
2180 lck_rw_done(pcbinfo
->ipi_lock
);
2185 * Lookup PCB in hash list.
2188 in_pcblookup_hash(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
2189 u_int fport_arg
, struct in_addr laddr
, u_int lport_arg
, int wildcard
,
2192 struct inpcbhead
*head
;
2194 u_short fport
= fport_arg
, lport
= lport_arg
;
2195 struct inpcb
*local_wild
= NULL
;
2197 struct inpcb
*local_wild_mapped
= NULL
;
2201 * We may have found the pcb in the last lookup - check this first.
2204 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
2207 * First look for an exact match.
2209 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(faddr
.s_addr
, lport
, fport
,
2210 pcbinfo
->ipi_hashmask
)];
2211 LIST_FOREACH(inp
, head
, inp_hash
) {
2213 if (!(inp
->inp_vflag
& INP_IPV4
))
2216 if (inp_restricted_recv(inp
, ifp
))
2219 if (inp
->inp_faddr
.s_addr
== faddr
.s_addr
&&
2220 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
2221 inp
->inp_fport
== fport
&&
2222 inp
->inp_lport
== lport
) {
2226 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) !=
2228 lck_rw_done(pcbinfo
->ipi_lock
);
2231 /* it's there but dead, say it isn't found */
2232 lck_rw_done(pcbinfo
->ipi_lock
);
2242 lck_rw_done(pcbinfo
->ipi_lock
);
2246 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
2247 pcbinfo
->ipi_hashmask
)];
2248 LIST_FOREACH(inp
, head
, inp_hash
) {
2250 if (!(inp
->inp_vflag
& INP_IPV4
))
2253 if (inp_restricted_recv(inp
, ifp
))
2256 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
2257 inp
->inp_lport
== lport
) {
2258 if (inp
->inp_laddr
.s_addr
== laddr
.s_addr
) {
2259 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) !=
2261 lck_rw_done(pcbinfo
->ipi_lock
);
2264 /* it's dead; say it isn't found */
2265 lck_rw_done(pcbinfo
->ipi_lock
);
2268 } else if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
2270 if (SOCK_CHECK_DOM(inp
->inp_socket
, PF_INET6
))
2271 local_wild_mapped
= inp
;
2278 if (local_wild
== NULL
) {
2280 if (local_wild_mapped
!= NULL
) {
2281 if (in_pcb_checkstate(local_wild_mapped
,
2282 WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
2283 lck_rw_done(pcbinfo
->ipi_lock
);
2284 return (local_wild_mapped
);
2286 /* it's dead; say it isn't found */
2287 lck_rw_done(pcbinfo
->ipi_lock
);
2292 lck_rw_done(pcbinfo
->ipi_lock
);
2295 if (in_pcb_checkstate(local_wild
, WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
2296 lck_rw_done(pcbinfo
->ipi_lock
);
2297 return (local_wild
);
2300 * It's either not found or is already dead.
2302 lck_rw_done(pcbinfo
->ipi_lock
);
2307 * @brief Insert PCB onto various hash lists.
2309 * @param inp Pointer to internet protocol control block
2310 * @param locked Implies if ipi_lock (protecting pcb list)
2311 * is already locked or not.
2313 * @return int error on failure and 0 on success
2316 in_pcbinshash(struct inpcb
*inp
, int locked
)
2318 struct inpcbhead
*pcbhash
;
2319 struct inpcbporthead
*pcbporthash
;
2320 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
2321 struct inpcbport
*phd
;
2322 u_int32_t hashkey_faddr
;
2325 if (!lck_rw_try_lock_exclusive(pcbinfo
->ipi_lock
)) {
2327 * Lock inversion issue, mostly with udp
2330 socket_unlock(inp
->inp_socket
, 0);
2331 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
2332 socket_lock(inp
->inp_socket
, 0);
2337 * This routine or its caller may have given up
2338 * socket's protocol lock briefly.
2339 * During that time the socket may have been dropped.
2340 * Safe-guarding against that.
2342 if (inp
->inp_state
== INPCB_STATE_DEAD
) {
2344 lck_rw_done(pcbinfo
->ipi_lock
);
2346 return (ECONNABORTED
);
2351 if (inp
->inp_vflag
& INP_IPV6
)
2352 hashkey_faddr
= inp
->in6p_faddr
.s6_addr32
[3] /* XXX */;
2355 hashkey_faddr
= inp
->inp_faddr
.s_addr
;
2357 inp
->inp_hash_element
= INP_PCBHASH(hashkey_faddr
, inp
->inp_lport
,
2358 inp
->inp_fport
, pcbinfo
->ipi_hashmask
);
2360 pcbhash
= &pcbinfo
->ipi_hashbase
[inp
->inp_hash_element
];
2362 pcbporthash
= &pcbinfo
->ipi_porthashbase
[INP_PCBPORTHASH(inp
->inp_lport
,
2363 pcbinfo
->ipi_porthashmask
)];
2366 * Go through port list and look for a head for this lport.
2368 LIST_FOREACH(phd
, pcbporthash
, phd_hash
) {
2369 if (phd
->phd_port
== inp
->inp_lport
)
2374 * If none exists, malloc one and tack it on.
2377 MALLOC(phd
, struct inpcbport
*, sizeof (struct inpcbport
),
2381 lck_rw_done(pcbinfo
->ipi_lock
);
2382 return (ENOBUFS
); /* XXX */
2384 phd
->phd_port
= inp
->inp_lport
;
2385 LIST_INIT(&phd
->phd_pcblist
);
2386 LIST_INSERT_HEAD(pcbporthash
, phd
, phd_hash
);
2389 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2393 LIST_INSERT_HEAD(&phd
->phd_pcblist
, inp
, inp_portlist
);
2394 LIST_INSERT_HEAD(pcbhash
, inp
, inp_hash
);
2395 inp
->inp_flags2
|= INP2_INHASHLIST
;
2398 lck_rw_done(pcbinfo
->ipi_lock
);
2401 // This call catches the original setting of the local address
2402 inp_update_necp_policy(inp
, NULL
, NULL
, 0);
2409 * Move PCB to the proper hash bucket when { faddr, fport } have been
2410 * changed. NOTE: This does not handle the case of the lport changing (the
2411 * hashed port list would have to be updated as well), so the lport must
2412 * not change after in_pcbinshash() has been called.
2415 in_pcbrehash(struct inpcb
*inp
)
2417 struct inpcbhead
*head
;
2418 u_int32_t hashkey_faddr
;
2421 if (inp
->inp_vflag
& INP_IPV6
)
2422 hashkey_faddr
= inp
->in6p_faddr
.s6_addr32
[3] /* XXX */;
2425 hashkey_faddr
= inp
->inp_faddr
.s_addr
;
2427 inp
->inp_hash_element
= INP_PCBHASH(hashkey_faddr
, inp
->inp_lport
,
2428 inp
->inp_fport
, inp
->inp_pcbinfo
->ipi_hashmask
);
2429 head
= &inp
->inp_pcbinfo
->ipi_hashbase
[inp
->inp_hash_element
];
2431 if (inp
->inp_flags2
& INP2_INHASHLIST
) {
2432 LIST_REMOVE(inp
, inp_hash
);
2433 inp
->inp_flags2
&= ~INP2_INHASHLIST
;
2436 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2437 LIST_INSERT_HEAD(head
, inp
, inp_hash
);
2438 inp
->inp_flags2
|= INP2_INHASHLIST
;
2441 // This call catches updates to the remote addresses
2442 inp_update_necp_policy(inp
, NULL
, NULL
, 0);
2447 * Remove PCB from various lists.
2448 * Must be called pcbinfo lock is held in exclusive mode.
2451 in_pcbremlists(struct inpcb
*inp
)
2453 inp
->inp_gencnt
= ++inp
->inp_pcbinfo
->ipi_gencnt
;
2456 * Check if it's in hashlist -- an inp is placed in hashlist when
2457 * it's local port gets assigned. So it should also be present
2460 if (inp
->inp_flags2
& INP2_INHASHLIST
) {
2461 struct inpcbport
*phd
= inp
->inp_phd
;
2463 VERIFY(phd
!= NULL
&& inp
->inp_lport
> 0);
2465 LIST_REMOVE(inp
, inp_hash
);
2466 inp
->inp_hash
.le_next
= NULL
;
2467 inp
->inp_hash
.le_prev
= NULL
;
2469 LIST_REMOVE(inp
, inp_portlist
);
2470 inp
->inp_portlist
.le_next
= NULL
;
2471 inp
->inp_portlist
.le_prev
= NULL
;
2472 if (LIST_EMPTY(&phd
->phd_pcblist
)) {
2473 LIST_REMOVE(phd
, phd_hash
);
2476 inp
->inp_phd
= NULL
;
2477 inp
->inp_flags2
&= ~INP2_INHASHLIST
;
2479 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2481 if (inp
->inp_flags2
& INP2_TIMEWAIT
) {
2482 /* Remove from time-wait queue */
2483 tcp_remove_from_time_wait(inp
);
2484 inp
->inp_flags2
&= ~INP2_TIMEWAIT
;
2485 VERIFY(inp
->inp_pcbinfo
->ipi_twcount
!= 0);
2486 inp
->inp_pcbinfo
->ipi_twcount
--;
2488 /* Remove from global inp list if it is not time-wait */
2489 LIST_REMOVE(inp
, inp_list
);
2492 if (inp
->inp_flags2
& INP2_IN_FCTREE
) {
2493 inp_fc_getinp(inp
->inp_flowhash
, (INPFC_SOLOCKED
|INPFC_REMOVE
));
2494 VERIFY(!(inp
->inp_flags2
& INP2_IN_FCTREE
));
2497 inp
->inp_pcbinfo
->ipi_count
--;
2501 * Mechanism used to defer the memory release of PCBs
2502 * The pcb list will contain the pcb until the reaper can clean it up if
2503 * the following conditions are met:
2505 * 2) wantcnt is STOPUSING
2507 * This function will be called to either mark the pcb as
2510 in_pcb_checkstate(struct inpcb
*pcb
, int mode
, int locked
)
2512 volatile UInt32
*wantcnt
= (volatile UInt32
*)&pcb
->inp_wantcnt
;
2519 * Try to mark the pcb as ready for recycling. CAS with
2520 * STOPUSING, if success we're good, if it's in use, will
2524 socket_lock(pcb
->inp_socket
, 1);
2525 pcb
->inp_state
= INPCB_STATE_DEAD
;
2528 if (pcb
->inp_socket
->so_usecount
< 0) {
2529 panic("%s: pcb=%p so=%p usecount is negative\n",
2530 __func__
, pcb
, pcb
->inp_socket
);
2534 socket_unlock(pcb
->inp_socket
, 1);
2536 inpcb_gc_sched(pcb
->inp_pcbinfo
, INPCB_TIMER_FAST
);
2538 origwant
= *wantcnt
;
2539 if ((UInt16
) origwant
== 0xffff) /* should stop using */
2540 return (WNT_STOPUSING
);
2542 if ((UInt16
) origwant
== 0) {
2543 /* try to mark it as unsuable now */
2544 OSCompareAndSwap(origwant
, newwant
, wantcnt
);
2546 return (WNT_STOPUSING
);
2550 * Try to increase reference to pcb. If WNT_STOPUSING
2551 * should bail out. If socket state DEAD, try to set count
2552 * to STOPUSING, return failed otherwise increase cnt.
2555 origwant
= *wantcnt
;
2556 if ((UInt16
) origwant
== 0xffff) {
2557 /* should stop using */
2558 return (WNT_STOPUSING
);
2560 newwant
= origwant
+ 1;
2561 } while (!OSCompareAndSwap(origwant
, newwant
, wantcnt
));
2562 return (WNT_ACQUIRE
);
2566 * Release reference. If result is null and pcb state
2567 * is DEAD, set wanted bit to STOPUSING
2570 socket_lock(pcb
->inp_socket
, 1);
2573 origwant
= *wantcnt
;
2574 if ((UInt16
) origwant
== 0x0) {
2575 panic("%s: pcb=%p release with zero count",
2579 if ((UInt16
) origwant
== 0xffff) {
2580 /* should stop using */
2582 socket_unlock(pcb
->inp_socket
, 1);
2583 return (WNT_STOPUSING
);
2585 newwant
= origwant
- 1;
2586 } while (!OSCompareAndSwap(origwant
, newwant
, wantcnt
));
2588 if (pcb
->inp_state
== INPCB_STATE_DEAD
)
2590 if (pcb
->inp_socket
->so_usecount
< 0) {
2591 panic("%s: RELEASE pcb=%p so=%p usecount is negative\n",
2592 __func__
, pcb
, pcb
->inp_socket
);
2597 socket_unlock(pcb
->inp_socket
, 1);
2598 return (WNT_RELEASE
);
2601 panic("%s: so=%p not a valid state =%x\n", __func__
,
2602 pcb
->inp_socket
, mode
);
2611 * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat.
2612 * The inpcb_compat data structure is passed to user space and must
2613 * not change. We intentionally avoid copying pointers.
2616 inpcb_to_compat(struct inpcb
*inp
, struct inpcb_compat
*inp_compat
)
2618 bzero(inp_compat
, sizeof (*inp_compat
));
2619 inp_compat
->inp_fport
= inp
->inp_fport
;
2620 inp_compat
->inp_lport
= inp
->inp_lport
;
2621 inp_compat
->nat_owner
= 0;
2622 inp_compat
->nat_cookie
= 0;
2623 inp_compat
->inp_gencnt
= inp
->inp_gencnt
;
2624 inp_compat
->inp_flags
= inp
->inp_flags
;
2625 inp_compat
->inp_flow
= inp
->inp_flow
;
2626 inp_compat
->inp_vflag
= inp
->inp_vflag
;
2627 inp_compat
->inp_ip_ttl
= inp
->inp_ip_ttl
;
2628 inp_compat
->inp_ip_p
= inp
->inp_ip_p
;
2629 inp_compat
->inp_dependfaddr
.inp6_foreign
=
2630 inp
->inp_dependfaddr
.inp6_foreign
;
2631 inp_compat
->inp_dependladdr
.inp6_local
=
2632 inp
->inp_dependladdr
.inp6_local
;
2633 inp_compat
->inp_depend4
.inp4_ip_tos
= inp
->inp_depend4
.inp4_ip_tos
;
2634 inp_compat
->inp_depend6
.inp6_hlim
= 0;
2635 inp_compat
->inp_depend6
.inp6_cksum
= inp
->inp_depend6
.inp6_cksum
;
2636 inp_compat
->inp_depend6
.inp6_ifindex
= 0;
2637 inp_compat
->inp_depend6
.inp6_hops
= inp
->inp_depend6
.inp6_hops
;
2640 #if !CONFIG_EMBEDDED
2642 inpcb_to_xinpcb64(struct inpcb
*inp
, struct xinpcb64
*xinp
)
2644 xinp
->inp_fport
= inp
->inp_fport
;
2645 xinp
->inp_lport
= inp
->inp_lport
;
2646 xinp
->inp_gencnt
= inp
->inp_gencnt
;
2647 xinp
->inp_flags
= inp
->inp_flags
;
2648 xinp
->inp_flow
= inp
->inp_flow
;
2649 xinp
->inp_vflag
= inp
->inp_vflag
;
2650 xinp
->inp_ip_ttl
= inp
->inp_ip_ttl
;
2651 xinp
->inp_ip_p
= inp
->inp_ip_p
;
2652 xinp
->inp_dependfaddr
.inp6_foreign
= inp
->inp_dependfaddr
.inp6_foreign
;
2653 xinp
->inp_dependladdr
.inp6_local
= inp
->inp_dependladdr
.inp6_local
;
2654 xinp
->inp_depend4
.inp4_ip_tos
= inp
->inp_depend4
.inp4_ip_tos
;
2655 xinp
->inp_depend6
.inp6_hlim
= 0;
2656 xinp
->inp_depend6
.inp6_cksum
= inp
->inp_depend6
.inp6_cksum
;
2657 xinp
->inp_depend6
.inp6_ifindex
= 0;
2658 xinp
->inp_depend6
.inp6_hops
= inp
->inp_depend6
.inp6_hops
;
2660 #endif /* !CONFIG_EMBEDDED */
2663 * The following routines implement this scheme:
2665 * Callers of ip_output() that intend to cache the route in the inpcb pass
2666 * a local copy of the struct route to ip_output(). Using a local copy of
2667 * the cached route significantly simplifies things as IP no longer has to
2668 * worry about having exclusive access to the passed in struct route, since
2669 * it's defined in the caller's stack; in essence, this allows for a lock-
2670 * less operation when updating the struct route at the IP level and below,
2671 * whenever necessary. The scheme works as follows:
2673 * Prior to dropping the socket's lock and calling ip_output(), the caller
2674 * copies the struct route from the inpcb into its stack, and adds a reference
2675 * to the cached route entry, if there was any. The socket's lock is then
2676 * dropped and ip_output() is called with a pointer to the copy of struct
2677 * route defined on the stack (not to the one in the inpcb.)
2679 * Upon returning from ip_output(), the caller then acquires the socket's
2680 * lock and synchronizes the cache; if there is no route cached in the inpcb,
2681 * it copies the local copy of struct route (which may or may not contain any
2682 * route) back into the cache; otherwise, if the inpcb has a route cached in
2683 * it, the one in the local copy will be freed, if there's any. Trashing the
2684 * cached route in the inpcb can be avoided because ip_output() is single-
2685 * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized
2686 * by the socket/transport layer.)
2689 inp_route_copyout(struct inpcb
*inp
, struct route
*dst
)
2691 struct route
*src
= &inp
->inp_route
;
2693 socket_lock_assert_owned(inp
->inp_socket
);
2696 * If the route in the PCB is stale or not for IPv4, blow it away;
2697 * this is possible in the case of IPv4-mapped address case.
2699 if (ROUTE_UNUSABLE(src
) || rt_key(src
->ro_rt
)->sa_family
!= AF_INET
)
2702 route_copyout(dst
, src
, sizeof (*dst
));
2706 inp_route_copyin(struct inpcb
*inp
, struct route
*src
)
2708 struct route
*dst
= &inp
->inp_route
;
2710 socket_lock_assert_owned(inp
->inp_socket
);
2712 /* Minor sanity check */
2713 if (src
->ro_rt
!= NULL
&& rt_key(src
->ro_rt
)->sa_family
!= AF_INET
)
2714 panic("%s: wrong or corrupted route: %p", __func__
, src
);
2716 route_copyin(src
, dst
, sizeof (*src
));
2720 * Handler for setting IP_BOUND_IF/IPV6_BOUND_IF socket option.
2723 inp_bindif(struct inpcb
*inp
, unsigned int ifscope
, struct ifnet
**pifp
)
2725 struct ifnet
*ifp
= NULL
;
2727 ifnet_head_lock_shared();
2728 if ((ifscope
> (unsigned)if_index
) || (ifscope
!= IFSCOPE_NONE
&&
2729 (ifp
= ifindex2ifnet
[ifscope
]) == NULL
)) {
2735 VERIFY(ifp
!= NULL
|| ifscope
== IFSCOPE_NONE
);
2738 * A zero interface scope value indicates an "unbind".
2739 * Otherwise, take in whatever value the app desires;
2740 * the app may already know the scope (or force itself
2741 * to such a scope) ahead of time before the interface
2742 * gets attached. It doesn't matter either way; any
2743 * route lookup from this point on will require an
2744 * exact match for the embedded interface scope.
2746 inp
->inp_boundifp
= ifp
;
2747 if (inp
->inp_boundifp
== NULL
)
2748 inp
->inp_flags
&= ~INP_BOUND_IF
;
2750 inp
->inp_flags
|= INP_BOUND_IF
;
2752 /* Blow away any cached route in the PCB */
2753 ROUTE_RELEASE(&inp
->inp_route
);
2762 * Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
2763 * as well as for setting PROC_UUID_NO_CELLULAR policy.
2766 inp_set_nocellular(struct inpcb
*inp
)
2768 inp
->inp_flags
|= INP_NO_IFT_CELLULAR
;
2770 /* Blow away any cached route in the PCB */
2771 ROUTE_RELEASE(&inp
->inp_route
);
2775 * Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
2776 * as well as for clearing PROC_UUID_NO_CELLULAR policy.
2779 inp_clear_nocellular(struct inpcb
*inp
)
2781 struct socket
*so
= inp
->inp_socket
;
2784 * SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket
2785 * has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag
2786 * if and only if the socket is unrestricted.
2788 if (so
!= NULL
&& !(so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
)) {
2789 inp
->inp_flags
&= ~INP_NO_IFT_CELLULAR
;
2791 /* Blow away any cached route in the PCB */
2792 ROUTE_RELEASE(&inp
->inp_route
);
2797 inp_set_noexpensive(struct inpcb
*inp
)
2799 inp
->inp_flags2
|= INP2_NO_IFF_EXPENSIVE
;
2801 /* Blow away any cached route in the PCB */
2802 ROUTE_RELEASE(&inp
->inp_route
);
2806 inp_set_awdl_unrestricted(struct inpcb
*inp
)
2808 inp
->inp_flags2
|= INP2_AWDL_UNRESTRICTED
;
2810 /* Blow away any cached route in the PCB */
2811 ROUTE_RELEASE(&inp
->inp_route
);
2815 inp_get_awdl_unrestricted(struct inpcb
*inp
)
2817 return (inp
->inp_flags2
& INP2_AWDL_UNRESTRICTED
) ? TRUE
: FALSE
;
2821 inp_clear_awdl_unrestricted(struct inpcb
*inp
)
2823 inp
->inp_flags2
&= ~INP2_AWDL_UNRESTRICTED
;
2825 /* Blow away any cached route in the PCB */
2826 ROUTE_RELEASE(&inp
->inp_route
);
2830 inp_set_intcoproc_allowed(struct inpcb
*inp
)
2832 inp
->inp_flags2
|= INP2_INTCOPROC_ALLOWED
;
2834 /* Blow away any cached route in the PCB */
2835 ROUTE_RELEASE(&inp
->inp_route
);
2839 inp_get_intcoproc_allowed(struct inpcb
*inp
)
2841 return (inp
->inp_flags2
& INP2_INTCOPROC_ALLOWED
) ? TRUE
: FALSE
;
2845 inp_clear_intcoproc_allowed(struct inpcb
*inp
)
2847 inp
->inp_flags2
&= ~INP2_INTCOPROC_ALLOWED
;
2849 /* Blow away any cached route in the PCB */
2850 ROUTE_RELEASE(&inp
->inp_route
);
2855 * Called when PROC_UUID_NECP_APP_POLICY is set.
2858 inp_set_want_app_policy(struct inpcb
*inp
)
2860 inp
->inp_flags2
|= INP2_WANT_APP_POLICY
;
2864 * Called when PROC_UUID_NECP_APP_POLICY is cleared.
2867 inp_clear_want_app_policy(struct inpcb
*inp
)
2869 inp
->inp_flags2
&= ~INP2_WANT_APP_POLICY
;
2874 * Calculate flow hash for an inp, used by an interface to identify a
2875 * flow. When an interface provides flow control advisory, this flow
2876 * hash is used as an identifier.
2879 inp_calc_flowhash(struct inpcb
*inp
)
2881 struct inp_flowhash_key fh
__attribute__((aligned(8)));
2882 u_int32_t flowhash
= 0;
2883 struct inpcb
*tmp_inp
= NULL
;
2885 if (inp_hash_seed
== 0)
2886 inp_hash_seed
= RandomULong();
2888 bzero(&fh
, sizeof (fh
));
2890 bcopy(&inp
->inp_dependladdr
, &fh
.infh_laddr
, sizeof (fh
.infh_laddr
));
2891 bcopy(&inp
->inp_dependfaddr
, &fh
.infh_faddr
, sizeof (fh
.infh_faddr
));
2893 fh
.infh_lport
= inp
->inp_lport
;
2894 fh
.infh_fport
= inp
->inp_fport
;
2895 fh
.infh_af
= (inp
->inp_vflag
& INP_IPV6
) ? AF_INET6
: AF_INET
;
2896 fh
.infh_proto
= inp
->inp_ip_p
;
2897 fh
.infh_rand1
= RandomULong();
2898 fh
.infh_rand2
= RandomULong();
2901 flowhash
= net_flowhash(&fh
, sizeof (fh
), inp_hash_seed
);
2902 if (flowhash
== 0) {
2903 /* try to get a non-zero flowhash */
2904 inp_hash_seed
= RandomULong();
2908 inp
->inp_flowhash
= flowhash
;
2910 /* Insert the inp into inp_fc_tree */
2911 lck_mtx_lock_spin(&inp_fc_lck
);
2912 tmp_inp
= RB_FIND(inp_fc_tree
, &inp_fc_tree
, inp
);
2913 if (tmp_inp
!= NULL
) {
2915 * There is a different inp with the same flowhash.
2916 * There can be a collision on flow hash but the
2917 * probability is low. Let's recompute the
2920 lck_mtx_unlock(&inp_fc_lck
);
2921 /* recompute hash seed */
2922 inp_hash_seed
= RandomULong();
2926 RB_INSERT(inp_fc_tree
, &inp_fc_tree
, inp
);
2927 inp
->inp_flags2
|= INP2_IN_FCTREE
;
2928 lck_mtx_unlock(&inp_fc_lck
);
2934 inp_flowadv(uint32_t flowhash
)
2938 inp
= inp_fc_getinp(flowhash
, 0);
2942 inp_fc_feedback(inp
);
2946 * Function to compare inp_fc_entries in inp flow control tree
2949 infc_cmp(const struct inpcb
*inp1
, const struct inpcb
*inp2
)
2951 return (memcmp(&(inp1
->inp_flowhash
), &(inp2
->inp_flowhash
),
2952 sizeof(inp1
->inp_flowhash
)));
2955 static struct inpcb
*
2956 inp_fc_getinp(u_int32_t flowhash
, u_int32_t flags
)
2958 struct inpcb
*inp
= NULL
;
2959 int locked
= (flags
& INPFC_SOLOCKED
) ? 1 : 0;
2961 lck_mtx_lock_spin(&inp_fc_lck
);
2962 key_inp
.inp_flowhash
= flowhash
;
2963 inp
= RB_FIND(inp_fc_tree
, &inp_fc_tree
, &key_inp
);
2965 /* inp is not present, return */
2966 lck_mtx_unlock(&inp_fc_lck
);
2970 if (flags
& INPFC_REMOVE
) {
2971 RB_REMOVE(inp_fc_tree
, &inp_fc_tree
, inp
);
2972 lck_mtx_unlock(&inp_fc_lck
);
2974 bzero(&(inp
->infc_link
), sizeof (inp
->infc_link
));
2975 inp
->inp_flags2
&= ~INP2_IN_FCTREE
;
2979 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, locked
) == WNT_STOPUSING
)
2981 lck_mtx_unlock(&inp_fc_lck
);
2987 inp_fc_feedback(struct inpcb
*inp
)
2989 struct socket
*so
= inp
->inp_socket
;
2991 /* we already hold a want_cnt on this inp, socket can't be null */
2995 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
2996 socket_unlock(so
, 1);
3000 if (inp
->inp_sndinprog_cnt
> 0)
3001 inp
->inp_flags
|= INP_FC_FEEDBACK
;
3004 * Return if the connection is not in flow-controlled state.
3005 * This can happen if the connection experienced
3006 * loss while it was in flow controlled state
3008 if (!INP_WAIT_FOR_IF_FEEDBACK(inp
)) {
3009 socket_unlock(so
, 1);
3012 inp_reset_fc_state(inp
);
3014 if (SOCK_TYPE(so
) == SOCK_STREAM
)
3015 inp_fc_unthrottle_tcp(inp
);
3017 socket_unlock(so
, 1);
3021 inp_reset_fc_state(struct inpcb
*inp
)
3023 struct socket
*so
= inp
->inp_socket
;
3024 int suspended
= (INP_IS_FLOW_SUSPENDED(inp
)) ? 1 : 0;
3025 int needwakeup
= (INP_WAIT_FOR_IF_FEEDBACK(inp
)) ? 1 : 0;
3027 inp
->inp_flags
&= ~(INP_FLOW_CONTROLLED
| INP_FLOW_SUSPENDED
);
3030 so
->so_flags
&= ~(SOF_SUSPENDED
);
3031 soevent(so
, (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_RESUME
));
3034 /* Give a write wakeup to unblock the socket */
3040 inp_set_fc_state(struct inpcb
*inp
, int advcode
)
3042 struct inpcb
*tmp_inp
= NULL
;
3044 * If there was a feedback from the interface when
3045 * send operation was in progress, we should ignore
3046 * this flow advisory to avoid a race between setting
3047 * flow controlled state and receiving feedback from
3050 if (inp
->inp_flags
& INP_FC_FEEDBACK
)
3053 inp
->inp_flags
&= ~(INP_FLOW_CONTROLLED
| INP_FLOW_SUSPENDED
);
3054 if ((tmp_inp
= inp_fc_getinp(inp
->inp_flowhash
,
3055 INPFC_SOLOCKED
)) != NULL
) {
3056 if (in_pcb_checkstate(tmp_inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
)
3058 VERIFY(tmp_inp
== inp
);
3060 case FADV_FLOW_CONTROLLED
:
3061 inp
->inp_flags
|= INP_FLOW_CONTROLLED
;
3063 case FADV_SUSPENDED
:
3064 inp
->inp_flags
|= INP_FLOW_SUSPENDED
;
3065 soevent(inp
->inp_socket
,
3066 (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_SUSPEND
));
3068 /* Record the fact that suspend event was sent */
3069 inp
->inp_socket
->so_flags
|= SOF_SUSPENDED
;
3078 * Handler for SO_FLUSH socket option.
3081 inp_flush(struct inpcb
*inp
, int optval
)
3083 u_int32_t flowhash
= inp
->inp_flowhash
;
3084 struct ifnet
*rtifp
, *oifp
;
3086 /* Either all classes or one of the valid ones */
3087 if (optval
!= SO_TC_ALL
&& !SO_VALID_TC(optval
))
3090 /* We need a flow hash for identification */
3094 /* Grab the interfaces from the route and pcb */
3095 rtifp
= ((inp
->inp_route
.ro_rt
!= NULL
) ?
3096 inp
->inp_route
.ro_rt
->rt_ifp
: NULL
);
3097 oifp
= inp
->inp_last_outifp
;
3100 if_qflush_sc(rtifp
, so_tc2msc(optval
), flowhash
, NULL
, NULL
, 0);
3101 if (oifp
!= NULL
&& oifp
!= rtifp
)
3102 if_qflush_sc(oifp
, so_tc2msc(optval
), flowhash
, NULL
, NULL
, 0);
3108 * Clear the INP_INADDR_ANY flag (special case for PPP only)
3111 inp_clear_INP_INADDR_ANY(struct socket
*so
)
3113 struct inpcb
*inp
= NULL
;
3116 inp
= sotoinpcb(so
);
3118 inp
->inp_flags
&= ~INP_INADDR_ANY
;
3120 socket_unlock(so
, 1);
3124 inp_get_soprocinfo(struct inpcb
*inp
, struct so_procinfo
*soprocinfo
)
3126 struct socket
*so
= inp
->inp_socket
;
3128 soprocinfo
->spi_pid
= so
->last_pid
;
3129 if (so
->last_pid
!= 0)
3130 uuid_copy(soprocinfo
->spi_uuid
, so
->last_uuid
);
3132 * When not delegated, the effective pid is the same as the real pid
3134 if (so
->so_flags
& SOF_DELEGATED
) {
3135 soprocinfo
->spi_delegated
= 1;
3136 soprocinfo
->spi_epid
= so
->e_pid
;
3137 uuid_copy(soprocinfo
->spi_euuid
, so
->e_uuid
);
3139 soprocinfo
->spi_delegated
= 0;
3140 soprocinfo
->spi_epid
= so
->last_pid
;
3145 inp_findinpcb_procinfo(struct inpcbinfo
*pcbinfo
, uint32_t flowhash
,
3146 struct so_procinfo
*soprocinfo
)
3148 struct inpcb
*inp
= NULL
;
3151 bzero(soprocinfo
, sizeof (struct so_procinfo
));
3156 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
3157 LIST_FOREACH(inp
, pcbinfo
->ipi_listhead
, inp_list
) {
3158 if (inp
->inp_state
!= INPCB_STATE_DEAD
&&
3159 inp
->inp_socket
!= NULL
&&
3160 inp
->inp_flowhash
== flowhash
) {
3162 inp_get_soprocinfo(inp
, soprocinfo
);
3166 lck_rw_done(pcbinfo
->ipi_lock
);
3171 #if CONFIG_PROC_UUID_POLICY
3173 inp_update_cellular_policy(struct inpcb
*inp
, boolean_t set
)
3175 struct socket
*so
= inp
->inp_socket
;
3179 VERIFY(inp
->inp_state
!= INPCB_STATE_DEAD
);
3181 before
= INP_NO_CELLULAR(inp
);
3183 inp_set_nocellular(inp
);
3185 inp_clear_nocellular(inp
);
3187 after
= INP_NO_CELLULAR(inp
);
3188 if (net_io_policy_log
&& (before
!= after
)) {
3189 static const char *ok
= "OK";
3190 static const char *nok
= "NOACCESS";
3191 uuid_string_t euuid_buf
;
3194 if (so
->so_flags
& SOF_DELEGATED
) {
3195 uuid_unparse(so
->e_uuid
, euuid_buf
);
3198 uuid_unparse(so
->last_uuid
, euuid_buf
);
3199 epid
= so
->last_pid
;
3202 /* allow this socket to generate another notification event */
3203 so
->so_ifdenied_notifies
= 0;
3205 log(LOG_DEBUG
, "%s: so 0x%llx [%d,%d] epid %d "
3206 "euuid %s%s %s->%s\n", __func__
,
3207 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
3208 SOCK_TYPE(so
), epid
, euuid_buf
,
3209 (so
->so_flags
& SOF_DELEGATED
) ?
3210 " [delegated]" : "",
3211 ((before
< after
) ? ok
: nok
),
3212 ((before
< after
) ? nok
: ok
));
3218 inp_update_necp_want_app_policy(struct inpcb
*inp
, boolean_t set
)
3220 struct socket
*so
= inp
->inp_socket
;
3224 VERIFY(inp
->inp_state
!= INPCB_STATE_DEAD
);
3226 before
= (inp
->inp_flags2
& INP2_WANT_APP_POLICY
);
3228 inp_set_want_app_policy(inp
);
3230 inp_clear_want_app_policy(inp
);
3232 after
= (inp
->inp_flags2
& INP2_WANT_APP_POLICY
);
3233 if (net_io_policy_log
&& (before
!= after
)) {
3234 static const char *wanted
= "WANTED";
3235 static const char *unwanted
= "UNWANTED";
3236 uuid_string_t euuid_buf
;
3239 if (so
->so_flags
& SOF_DELEGATED
) {
3240 uuid_unparse(so
->e_uuid
, euuid_buf
);
3243 uuid_unparse(so
->last_uuid
, euuid_buf
);
3244 epid
= so
->last_pid
;
3247 log(LOG_DEBUG
, "%s: so 0x%llx [%d,%d] epid %d "
3248 "euuid %s%s %s->%s\n", __func__
,
3249 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
3250 SOCK_TYPE(so
), epid
, euuid_buf
,
3251 (so
->so_flags
& SOF_DELEGATED
) ?
3252 " [delegated]" : "",
3253 ((before
< after
) ? unwanted
: wanted
),
3254 ((before
< after
) ? wanted
: unwanted
));
3258 #endif /* !CONFIG_PROC_UUID_POLICY */
3262 inp_update_necp_policy(struct inpcb
*inp
, struct sockaddr
*override_local_addr
, struct sockaddr
*override_remote_addr
, u_int override_bound_interface
)
3264 necp_socket_find_policy_match(inp
, override_local_addr
, override_remote_addr
, override_bound_interface
);
3265 if (necp_socket_should_rescope(inp
) &&
3266 inp
->inp_lport
== 0 &&
3267 inp
->inp_laddr
.s_addr
== INADDR_ANY
&&
3268 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
)) {
3269 // If we should rescope, and the socket is not yet bound
3270 inp_bindif(inp
, necp_socket_get_rescope_if_index(inp
), NULL
);
3276 inp_update_policy(struct inpcb
*inp
)
3278 #if CONFIG_PROC_UUID_POLICY
3279 struct socket
*so
= inp
->inp_socket
;
3280 uint32_t pflags
= 0;
3284 if (!net_io_policy_uuid
||
3285 so
== NULL
|| inp
->inp_state
== INPCB_STATE_DEAD
)
3289 * Kernel-created sockets that aren't delegating other sockets
3290 * are currently exempted from UUID policy checks.
3292 if (so
->last_pid
== 0 && !(so
->so_flags
& SOF_DELEGATED
))
3295 ogencnt
= so
->so_policy_gencnt
;
3296 err
= proc_uuid_policy_lookup(((so
->so_flags
& SOF_DELEGATED
) ?
3297 so
->e_uuid
: so
->last_uuid
), &pflags
, &so
->so_policy_gencnt
);
3300 * Discard cached generation count if the entry is gone (ENOENT),
3301 * so that we go thru the checks below.
3303 if (err
== ENOENT
&& ogencnt
!= 0)
3304 so
->so_policy_gencnt
= 0;
3307 * If the generation count has changed, inspect the policy flags
3308 * and act accordingly. If a policy flag was previously set and
3309 * the UUID is no longer present in the table (ENOENT), treat it
3310 * as if the flag has been cleared.
3312 if ((err
== 0 || err
== ENOENT
) && ogencnt
!= so
->so_policy_gencnt
) {
3313 /* update cellular policy for this socket */
3314 if (err
== 0 && (pflags
& PROC_UUID_NO_CELLULAR
)) {
3315 inp_update_cellular_policy(inp
, TRUE
);
3316 } else if (!(pflags
& PROC_UUID_NO_CELLULAR
)) {
3317 inp_update_cellular_policy(inp
, FALSE
);
3320 /* update necp want app policy for this socket */
3321 if (err
== 0 && (pflags
& PROC_UUID_NECP_APP_POLICY
)) {
3322 inp_update_necp_want_app_policy(inp
, TRUE
);
3323 } else if (!(pflags
& PROC_UUID_NECP_APP_POLICY
)) {
3324 inp_update_necp_want_app_policy(inp
, FALSE
);
3329 return ((err
== ENOENT
) ? 0 : err
);
3330 #else /* !CONFIG_PROC_UUID_POLICY */
3333 #endif /* !CONFIG_PROC_UUID_POLICY */
3336 static unsigned int log_restricted
;
3337 SYSCTL_DECL(_net_inet
);
3338 SYSCTL_INT(_net_inet
, OID_AUTO
, log_restricted
,
3339 CTLFLAG_RW
| CTLFLAG_LOCKED
, &log_restricted
, 0,
3340 "Log network restrictions");
3342 * Called when we need to enforce policy restrictions in the input path.
3344 * Returns TRUE if we're not allowed to receive data, otherwise FALSE.
3347 _inp_restricted_recv(struct inpcb
*inp
, struct ifnet
*ifp
)
3349 VERIFY(inp
!= NULL
);
3352 * Inbound restrictions.
3354 if (!sorestrictrecv
)
3360 if (IFNET_IS_CELLULAR(ifp
) && INP_NO_CELLULAR(inp
))
3363 if (IFNET_IS_EXPENSIVE(ifp
) && INP_NO_EXPENSIVE(inp
))
3366 if (IFNET_IS_AWDL_RESTRICTED(ifp
) && !INP_AWDL_UNRESTRICTED(inp
))
3369 if (!(ifp
->if_eflags
& IFEF_RESTRICTED_RECV
))
3372 if (inp
->inp_flags
& INP_RECV_ANYIF
)
3375 if ((inp
->inp_flags
& INP_BOUND_IF
) && inp
->inp_boundifp
== ifp
)
3378 if (IFNET_IS_INTCOPROC(ifp
) && !INP_INTCOPROC_ALLOWED(inp
))
3385 inp_restricted_recv(struct inpcb
*inp
, struct ifnet
*ifp
)
3389 ret
= _inp_restricted_recv(inp
, ifp
);
3390 if (ret
== TRUE
&& log_restricted
) {
3391 printf("pid %d (%s) is unable to receive packets on %s\n",
3392 current_proc()->p_pid
, proc_best_name(current_proc()),
3399 * Called when we need to enforce policy restrictions in the output path.
3401 * Returns TRUE if we're not allowed to send data out, otherwise FALSE.
3404 _inp_restricted_send(struct inpcb
*inp
, struct ifnet
*ifp
)
3406 VERIFY(inp
!= NULL
);
3409 * Outbound restrictions.
3411 if (!sorestrictsend
)
3417 if (IFNET_IS_CELLULAR(ifp
) && INP_NO_CELLULAR(inp
))
3420 if (IFNET_IS_EXPENSIVE(ifp
) && INP_NO_EXPENSIVE(inp
))
3423 if (IFNET_IS_AWDL_RESTRICTED(ifp
) && !INP_AWDL_UNRESTRICTED(inp
))
3426 if (IFNET_IS_INTCOPROC(ifp
) && !INP_INTCOPROC_ALLOWED(inp
))
3433 inp_restricted_send(struct inpcb
*inp
, struct ifnet
*ifp
)
3437 ret
= _inp_restricted_send(inp
, ifp
);
3438 if (ret
== TRUE
&& log_restricted
) {
3439 printf("pid %d (%s) is unable to transmit packets on %s\n",
3440 current_proc()->p_pid
, proc_best_name(current_proc()),
3447 inp_count_sndbytes(struct inpcb
*inp
, u_int32_t th_ack
)
3449 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3450 struct socket
*so
= inp
->inp_socket
;
3451 if (ifp
!= NULL
&& !(so
->so_flags
& SOF_MP_SUBFLOW
) &&
3452 (ifp
->if_type
== IFT_CELLULAR
||
3453 ifp
->if_subfamily
== IFNET_SUBFAMILY_WIFI
)) {
3456 so
->so_snd
.sb_flags
|= SB_SNDBYTE_CNT
;
3459 * There can be data outstanding before the connection
3460 * becomes established -- TFO case
3462 if (so
->so_snd
.sb_cc
> 0)
3463 inp_incr_sndbytes_total(so
, so
->so_snd
.sb_cc
);
3465 unsent
= inp_get_sndbytes_allunsent(so
, th_ack
);
3467 inp_incr_sndbytes_unsent(so
, unsent
);
3472 inp_incr_sndbytes_total(struct socket
*so
, int32_t len
)
3474 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3475 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3478 VERIFY(ifp
->if_sndbyte_total
>= 0);
3479 OSAddAtomic64(len
, &ifp
->if_sndbyte_total
);
3484 inp_decr_sndbytes_total(struct socket
*so
, int32_t len
)
3486 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3487 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3490 VERIFY(ifp
->if_sndbyte_total
>= len
);
3491 OSAddAtomic64(-len
, &ifp
->if_sndbyte_total
);
3496 inp_incr_sndbytes_unsent(struct socket
*so
, int32_t len
)
3498 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3499 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3502 VERIFY(ifp
->if_sndbyte_unsent
>= 0);
3503 OSAddAtomic64(len
, &ifp
->if_sndbyte_unsent
);
3508 inp_decr_sndbytes_unsent(struct socket
*so
, int32_t len
)
3510 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3511 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3513 if (so
== NULL
|| !(so
->so_snd
.sb_flags
& SB_SNDBYTE_CNT
))
3517 if (ifp
->if_sndbyte_unsent
>= len
)
3518 OSAddAtomic64(-len
, &ifp
->if_sndbyte_unsent
);
3520 ifp
->if_sndbyte_unsent
= 0;
3525 inp_decr_sndbytes_allunsent(struct socket
*so
, u_int32_t th_ack
)
3529 if (so
== NULL
|| !(so
->so_snd
.sb_flags
& SB_SNDBYTE_CNT
))
3532 len
= inp_get_sndbytes_allunsent(so
, th_ack
);
3533 inp_decr_sndbytes_unsent(so
, len
);
3538 inp_set_activity_bitmap(struct inpcb
*inp
)
3540 in_stat_set_activity_bitmap(&inp
->inp_nw_activity
, net_uptime());
3544 inp_get_activity_bitmap(struct inpcb
*inp
, activity_bitmap_t
*ab
)
3546 bcopy(&inp
->inp_nw_activity
, ab
, sizeof (*ab
));